1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Author: Artem Bityutskiy (Битюцкий Артём)
6 */
7
8 /*
9 * The UBI Eraseblock Association (EBA) sub-system.
10 *
11 * This sub-system is responsible for I/O to/from logical eraseblock.
12 *
13 * Although in this implementation the EBA table is fully kept and managed in
14 * RAM, which assumes poor scalability, it might be (partially) maintained on
15 * flash in future implementations.
16 *
17 * The EBA sub-system implements per-logical eraseblock locking. Before
18 * accessing a logical eraseblock it is locked for reading or writing. The
19 * per-logical eraseblock locking is implemented by means of the lock tree. The
20 * lock tree is an RB-tree which refers all the currently locked logical
21 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
22 * They are indexed by (@vol_id, @lnum) pairs.
23 *
24 * EBA also maintains the global sequence counter which is incremented each
25 * time a logical eraseblock is mapped to a physical eraseblock and it is
26 * stored in the volume identifier header. This means that each VID header has
27 * a unique sequence number. The sequence number is only increased an we assume
28 * 64 bits is enough to never overflow.
29 */
30
31 #ifndef __UBOOT__
32 #include <log.h>
33 #include <dm/devres.h>
34 #include <linux/slab.h>
35 #include <linux/crc32.h>
36 #include <u-boot/crc.h>
37 #else
38 #include <ubi_uboot.h>
39 #endif
40
41 #include <linux/err.h>
42 #include "ubi.h"
43
44 /* Number of physical eraseblocks reserved for atomic LEB change operation */
45 #define EBA_RESERVED_PEBS 1
46
47 /**
48 * next_sqnum - get next sequence number.
49 * @ubi: UBI device description object
50 *
51 * This function returns next sequence number to use, which is just the current
52 * global sequence counter value. It also increases the global sequence
53 * counter.
54 */
ubi_next_sqnum(struct ubi_device * ubi)55 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
56 {
57 unsigned long long sqnum;
58
59 spin_lock(&ubi->ltree_lock);
60 sqnum = ubi->global_sqnum++;
61 spin_unlock(&ubi->ltree_lock);
62
63 return sqnum;
64 }
65
66 /**
67 * ubi_get_compat - get compatibility flags of a volume.
68 * @ubi: UBI device description object
69 * @vol_id: volume ID
70 *
71 * This function returns compatibility flags for an internal volume. User
72 * volumes have no compatibility flags, so %0 is returned.
73 */
ubi_get_compat(const struct ubi_device * ubi,int vol_id)74 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
75 {
76 if (vol_id == UBI_LAYOUT_VOLUME_ID)
77 return UBI_LAYOUT_VOLUME_COMPAT;
78 return 0;
79 }
80
81 /**
82 * ltree_lookup - look up the lock tree.
83 * @ubi: UBI device description object
84 * @vol_id: volume ID
85 * @lnum: logical eraseblock number
86 *
87 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
88 * object if the logical eraseblock is locked and %NULL if it is not.
89 * @ubi->ltree_lock has to be locked.
90 */
ltree_lookup(struct ubi_device * ubi,int vol_id,int lnum)91 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
92 int lnum)
93 {
94 struct rb_node *p;
95
96 p = ubi->ltree.rb_node;
97 while (p) {
98 struct ubi_ltree_entry *le;
99
100 le = rb_entry(p, struct ubi_ltree_entry, rb);
101
102 if (vol_id < le->vol_id)
103 p = p->rb_left;
104 else if (vol_id > le->vol_id)
105 p = p->rb_right;
106 else {
107 if (lnum < le->lnum)
108 p = p->rb_left;
109 else if (lnum > le->lnum)
110 p = p->rb_right;
111 else
112 return le;
113 }
114 }
115
116 return NULL;
117 }
118
119 /**
120 * ltree_add_entry - add new entry to the lock tree.
121 * @ubi: UBI device description object
122 * @vol_id: volume ID
123 * @lnum: logical eraseblock number
124 *
125 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
126 * lock tree. If such entry is already there, its usage counter is increased.
127 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
128 * failed.
129 */
ltree_add_entry(struct ubi_device * ubi,int vol_id,int lnum)130 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
131 int vol_id, int lnum)
132 {
133 struct ubi_ltree_entry *le, *le1, *le_free;
134
135 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
136 if (!le)
137 return ERR_PTR(-ENOMEM);
138
139 le->users = 0;
140 init_rwsem(&le->mutex);
141 le->vol_id = vol_id;
142 le->lnum = lnum;
143
144 spin_lock(&ubi->ltree_lock);
145 le1 = ltree_lookup(ubi, vol_id, lnum);
146
147 if (le1) {
148 /*
149 * This logical eraseblock is already locked. The newly
150 * allocated lock entry is not needed.
151 */
152 le_free = le;
153 le = le1;
154 } else {
155 struct rb_node **p, *parent = NULL;
156
157 /*
158 * No lock entry, add the newly allocated one to the
159 * @ubi->ltree RB-tree.
160 */
161 le_free = NULL;
162
163 p = &ubi->ltree.rb_node;
164 while (*p) {
165 parent = *p;
166 le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
167
168 if (vol_id < le1->vol_id)
169 p = &(*p)->rb_left;
170 else if (vol_id > le1->vol_id)
171 p = &(*p)->rb_right;
172 else {
173 ubi_assert(lnum != le1->lnum);
174 if (lnum < le1->lnum)
175 p = &(*p)->rb_left;
176 else
177 p = &(*p)->rb_right;
178 }
179 }
180
181 rb_link_node(&le->rb, parent, p);
182 rb_insert_color(&le->rb, &ubi->ltree);
183 }
184 le->users += 1;
185 spin_unlock(&ubi->ltree_lock);
186
187 kfree(le_free);
188 return le;
189 }
190
191 /**
192 * leb_read_lock - lock logical eraseblock for reading.
193 * @ubi: UBI device description object
194 * @vol_id: volume ID
195 * @lnum: logical eraseblock number
196 *
197 * This function locks a logical eraseblock for reading. Returns zero in case
198 * of success and a negative error code in case of failure.
199 */
leb_read_lock(struct ubi_device * ubi,int vol_id,int lnum)200 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
201 {
202 struct ubi_ltree_entry *le;
203
204 le = ltree_add_entry(ubi, vol_id, lnum);
205 if (IS_ERR(le))
206 return PTR_ERR(le);
207 down_read(&le->mutex);
208 return 0;
209 }
210
211 /**
212 * leb_read_unlock - unlock logical eraseblock.
213 * @ubi: UBI device description object
214 * @vol_id: volume ID
215 * @lnum: logical eraseblock number
216 */
leb_read_unlock(struct ubi_device * ubi,int vol_id,int lnum)217 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
218 {
219 struct ubi_ltree_entry *le;
220
221 spin_lock(&ubi->ltree_lock);
222 le = ltree_lookup(ubi, vol_id, lnum);
223 le->users -= 1;
224 ubi_assert(le->users >= 0);
225 up_read(&le->mutex);
226 if (le->users == 0) {
227 rb_erase(&le->rb, &ubi->ltree);
228 kfree(le);
229 }
230 spin_unlock(&ubi->ltree_lock);
231 }
232
233 /**
234 * leb_write_lock - lock logical eraseblock for writing.
235 * @ubi: UBI device description object
236 * @vol_id: volume ID
237 * @lnum: logical eraseblock number
238 *
239 * This function locks a logical eraseblock for writing. Returns zero in case
240 * of success and a negative error code in case of failure.
241 */
leb_write_lock(struct ubi_device * ubi,int vol_id,int lnum)242 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
243 {
244 struct ubi_ltree_entry *le;
245
246 le = ltree_add_entry(ubi, vol_id, lnum);
247 if (IS_ERR(le))
248 return PTR_ERR(le);
249 down_write(&le->mutex);
250 return 0;
251 }
252
253 /**
254 * leb_write_lock - lock logical eraseblock for writing.
255 * @ubi: UBI device description object
256 * @vol_id: volume ID
257 * @lnum: logical eraseblock number
258 *
259 * This function locks a logical eraseblock for writing if there is no
260 * contention and does nothing if there is contention. Returns %0 in case of
261 * success, %1 in case of contention, and and a negative error code in case of
262 * failure.
263 */
leb_write_trylock(struct ubi_device * ubi,int vol_id,int lnum)264 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
265 {
266 struct ubi_ltree_entry *le;
267
268 le = ltree_add_entry(ubi, vol_id, lnum);
269 if (IS_ERR(le))
270 return PTR_ERR(le);
271 if (down_write_trylock(&le->mutex))
272 return 0;
273
274 /* Contention, cancel */
275 spin_lock(&ubi->ltree_lock);
276 le->users -= 1;
277 ubi_assert(le->users >= 0);
278 if (le->users == 0) {
279 rb_erase(&le->rb, &ubi->ltree);
280 kfree(le);
281 }
282 spin_unlock(&ubi->ltree_lock);
283
284 return 1;
285 }
286
287 /**
288 * leb_write_unlock - unlock logical eraseblock.
289 * @ubi: UBI device description object
290 * @vol_id: volume ID
291 * @lnum: logical eraseblock number
292 */
leb_write_unlock(struct ubi_device * ubi,int vol_id,int lnum)293 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
294 {
295 struct ubi_ltree_entry *le;
296
297 spin_lock(&ubi->ltree_lock);
298 le = ltree_lookup(ubi, vol_id, lnum);
299 le->users -= 1;
300 ubi_assert(le->users >= 0);
301 up_write(&le->mutex);
302 if (le->users == 0) {
303 rb_erase(&le->rb, &ubi->ltree);
304 kfree(le);
305 }
306 spin_unlock(&ubi->ltree_lock);
307 }
308
309 /**
310 * ubi_eba_unmap_leb - un-map logical eraseblock.
311 * @ubi: UBI device description object
312 * @vol: volume description object
313 * @lnum: logical eraseblock number
314 *
315 * This function un-maps logical eraseblock @lnum and schedules corresponding
316 * physical eraseblock for erasure. Returns zero in case of success and a
317 * negative error code in case of failure.
318 */
ubi_eba_unmap_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum)319 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
320 int lnum)
321 {
322 int err, pnum, vol_id = vol->vol_id;
323
324 if (ubi->ro_mode)
325 return -EROFS;
326
327 err = leb_write_lock(ubi, vol_id, lnum);
328 if (err)
329 return err;
330
331 pnum = vol->eba_tbl[lnum];
332 if (pnum < 0)
333 /* This logical eraseblock is already unmapped */
334 goto out_unlock;
335
336 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
337
338 down_read(&ubi->fm_eba_sem);
339 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
340 up_read(&ubi->fm_eba_sem);
341 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
342
343 out_unlock:
344 leb_write_unlock(ubi, vol_id, lnum);
345 return err;
346 }
347
348 /**
349 * ubi_eba_read_leb - read data.
350 * @ubi: UBI device description object
351 * @vol: volume description object
352 * @lnum: logical eraseblock number
353 * @buf: buffer to store the read data
354 * @offset: offset from where to read
355 * @len: how many bytes to read
356 * @check: data CRC check flag
357 *
358 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
359 * bytes. The @check flag only makes sense for static volumes and forces
360 * eraseblock data CRC checking.
361 *
362 * In case of success this function returns zero. In case of a static volume,
363 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
364 * returned for any volume type if an ECC error was detected by the MTD device
365 * driver. Other negative error cored may be returned in case of other errors.
366 */
ubi_eba_read_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,void * buf,int offset,int len,int check)367 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
368 void *buf, int offset, int len, int check)
369 {
370 int err, pnum, scrub = 0, vol_id = vol->vol_id;
371 struct ubi_vid_hdr *vid_hdr;
372 uint32_t uninitialized_var(crc);
373
374 err = leb_read_lock(ubi, vol_id, lnum);
375 if (err)
376 return err;
377
378 pnum = vol->eba_tbl[lnum];
379 if (pnum < 0) {
380 /*
381 * The logical eraseblock is not mapped, fill the whole buffer
382 * with 0xFF bytes. The exception is static volumes for which
383 * it is an error to read unmapped logical eraseblocks.
384 */
385 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
386 len, offset, vol_id, lnum);
387 leb_read_unlock(ubi, vol_id, lnum);
388 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
389 memset(buf, 0xFF, len);
390 return 0;
391 }
392
393 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
394 len, offset, vol_id, lnum, pnum);
395
396 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
397 check = 0;
398
399 retry:
400 if (check) {
401 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
402 if (!vid_hdr) {
403 err = -ENOMEM;
404 goto out_unlock;
405 }
406
407 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
408 if (err && err != UBI_IO_BITFLIPS) {
409 if (err > 0) {
410 /*
411 * The header is either absent or corrupted.
412 * The former case means there is a bug -
413 * switch to read-only mode just in case.
414 * The latter case means a real corruption - we
415 * may try to recover data. FIXME: but this is
416 * not implemented.
417 */
418 if (err == UBI_IO_BAD_HDR_EBADMSG ||
419 err == UBI_IO_BAD_HDR) {
420 ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
421 pnum, vol_id, lnum);
422 err = -EBADMSG;
423 } else {
424 err = -EINVAL;
425 ubi_ro_mode(ubi);
426 }
427 }
428 goto out_free;
429 } else if (err == UBI_IO_BITFLIPS)
430 scrub = 1;
431
432 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
433 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
434
435 crc = be32_to_cpu(vid_hdr->data_crc);
436 ubi_free_vid_hdr(ubi, vid_hdr);
437 }
438
439 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
440 if (err) {
441 if (err == UBI_IO_BITFLIPS)
442 scrub = 1;
443 else if (mtd_is_eccerr(err)) {
444 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
445 goto out_unlock;
446 scrub = 1;
447 if (!check) {
448 ubi_msg(ubi, "force data checking");
449 check = 1;
450 goto retry;
451 }
452 } else
453 goto out_unlock;
454 }
455
456 if (check) {
457 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
458 if (crc1 != crc) {
459 ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
460 crc1, crc);
461 err = -EBADMSG;
462 goto out_unlock;
463 }
464 }
465
466 if (scrub)
467 err = ubi_wl_scrub_peb(ubi, pnum);
468
469 leb_read_unlock(ubi, vol_id, lnum);
470 return err;
471
472 out_free:
473 ubi_free_vid_hdr(ubi, vid_hdr);
474 out_unlock:
475 leb_read_unlock(ubi, vol_id, lnum);
476 return err;
477 }
478
479 #ifndef __UBOOT__
480 /**
481 * ubi_eba_read_leb_sg - read data into a scatter gather list.
482 * @ubi: UBI device description object
483 * @vol: volume description object
484 * @lnum: logical eraseblock number
485 * @sgl: UBI scatter gather list to store the read data
486 * @offset: offset from where to read
487 * @len: how many bytes to read
488 * @check: data CRC check flag
489 *
490 * This function works exactly like ubi_eba_read_leb(). But instead of
491 * storing the read data into a buffer it writes to an UBI scatter gather
492 * list.
493 */
ubi_eba_read_leb_sg(struct ubi_device * ubi,struct ubi_volume * vol,struct ubi_sgl * sgl,int lnum,int offset,int len,int check)494 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
495 struct ubi_sgl *sgl, int lnum, int offset, int len,
496 int check)
497 {
498 int to_read;
499 int ret;
500 struct scatterlist *sg;
501
502 for (;;) {
503 ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
504 sg = &sgl->sg[sgl->list_pos];
505 if (len < sg->length - sgl->page_pos)
506 to_read = len;
507 else
508 to_read = sg->length - sgl->page_pos;
509
510 ret = ubi_eba_read_leb(ubi, vol, lnum,
511 sg_virt(sg) + sgl->page_pos, offset,
512 to_read, check);
513 if (ret < 0)
514 return ret;
515
516 offset += to_read;
517 len -= to_read;
518 if (!len) {
519 sgl->page_pos += to_read;
520 if (sgl->page_pos == sg->length) {
521 sgl->list_pos++;
522 sgl->page_pos = 0;
523 }
524
525 break;
526 }
527
528 sgl->list_pos++;
529 sgl->page_pos = 0;
530 }
531
532 return ret;
533 }
534 #endif
535
536 /**
537 * recover_peb - recover from write failure.
538 * @ubi: UBI device description object
539 * @pnum: the physical eraseblock to recover
540 * @vol_id: volume ID
541 * @lnum: logical eraseblock number
542 * @buf: data which was not written because of the write failure
543 * @offset: offset of the failed write
544 * @len: how many bytes should have been written
545 *
546 * This function is called in case of a write failure and moves all good data
547 * from the potentially bad physical eraseblock to a good physical eraseblock.
548 * This function also writes the data which was not written due to the failure.
549 * Returns new physical eraseblock number in case of success, and a negative
550 * error code in case of failure.
551 */
recover_peb(struct ubi_device * ubi,int pnum,int vol_id,int lnum,const void * buf,int offset,int len)552 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
553 const void *buf, int offset, int len)
554 {
555 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
556 struct ubi_volume *vol = ubi->volumes[idx];
557 struct ubi_vid_hdr *vid_hdr;
558
559 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
560 if (!vid_hdr)
561 return -ENOMEM;
562
563 retry:
564 new_pnum = ubi_wl_get_peb(ubi);
565 if (new_pnum < 0) {
566 ubi_free_vid_hdr(ubi, vid_hdr);
567 up_read(&ubi->fm_eba_sem);
568 return new_pnum;
569 }
570
571 ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
572 pnum, new_pnum);
573
574 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
575 if (err && err != UBI_IO_BITFLIPS) {
576 if (err > 0)
577 err = -EIO;
578 up_read(&ubi->fm_eba_sem);
579 goto out_put;
580 }
581
582 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
583 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
584 if (err) {
585 up_read(&ubi->fm_eba_sem);
586 goto write_error;
587 }
588
589 data_size = offset + len;
590 mutex_lock(&ubi->buf_mutex);
591 memset(ubi->peb_buf + offset, 0xFF, len);
592
593 /* Read everything before the area where the write failure happened */
594 if (offset > 0) {
595 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
596 if (err && err != UBI_IO_BITFLIPS) {
597 up_read(&ubi->fm_eba_sem);
598 goto out_unlock;
599 }
600 }
601
602 memcpy(ubi->peb_buf + offset, buf, len);
603
604 err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
605 if (err) {
606 mutex_unlock(&ubi->buf_mutex);
607 up_read(&ubi->fm_eba_sem);
608 goto write_error;
609 }
610
611 mutex_unlock(&ubi->buf_mutex);
612 ubi_free_vid_hdr(ubi, vid_hdr);
613
614 vol->eba_tbl[lnum] = new_pnum;
615 up_read(&ubi->fm_eba_sem);
616 ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
617
618 ubi_msg(ubi, "data was successfully recovered");
619 return 0;
620
621 out_unlock:
622 mutex_unlock(&ubi->buf_mutex);
623 out_put:
624 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
625 ubi_free_vid_hdr(ubi, vid_hdr);
626 return err;
627
628 write_error:
629 /*
630 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
631 * get another one.
632 */
633 ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
634 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
635 if (++tries > UBI_IO_RETRIES) {
636 ubi_free_vid_hdr(ubi, vid_hdr);
637 return err;
638 }
639 ubi_msg(ubi, "try again");
640 goto retry;
641 }
642
643 /**
644 * ubi_eba_write_leb - write data to dynamic volume.
645 * @ubi: UBI device description object
646 * @vol: volume description object
647 * @lnum: logical eraseblock number
648 * @buf: the data to write
649 * @offset: offset within the logical eraseblock where to write
650 * @len: how many bytes to write
651 *
652 * This function writes data to logical eraseblock @lnum of a dynamic volume
653 * @vol. Returns zero in case of success and a negative error code in case
654 * of failure. In case of error, it is possible that something was still
655 * written to the flash media, but may be some garbage.
656 */
ubi_eba_write_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int offset,int len)657 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
658 const void *buf, int offset, int len)
659 {
660 int err, pnum, tries = 0, vol_id = vol->vol_id;
661 struct ubi_vid_hdr *vid_hdr;
662
663 if (ubi->ro_mode)
664 return -EROFS;
665
666 err = leb_write_lock(ubi, vol_id, lnum);
667 if (err)
668 return err;
669
670 pnum = vol->eba_tbl[lnum];
671 if (pnum >= 0) {
672 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
673 len, offset, vol_id, lnum, pnum);
674
675 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
676 if (err) {
677 ubi_warn(ubi, "failed to write data to PEB %d", pnum);
678 if (err == -EIO && ubi->bad_allowed)
679 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
680 offset, len);
681 if (err)
682 ubi_ro_mode(ubi);
683 }
684 leb_write_unlock(ubi, vol_id, lnum);
685 return err;
686 }
687
688 /*
689 * The logical eraseblock is not mapped. We have to get a free physical
690 * eraseblock and write the volume identifier header there first.
691 */
692 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
693 if (!vid_hdr) {
694 leb_write_unlock(ubi, vol_id, lnum);
695 return -ENOMEM;
696 }
697
698 vid_hdr->vol_type = UBI_VID_DYNAMIC;
699 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
700 vid_hdr->vol_id = cpu_to_be32(vol_id);
701 vid_hdr->lnum = cpu_to_be32(lnum);
702 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
703 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
704
705 retry:
706 pnum = ubi_wl_get_peb(ubi);
707 if (pnum < 0) {
708 ubi_free_vid_hdr(ubi, vid_hdr);
709 leb_write_unlock(ubi, vol_id, lnum);
710 up_read(&ubi->fm_eba_sem);
711 return pnum;
712 }
713
714 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
715 len, offset, vol_id, lnum, pnum);
716
717 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
718 if (err) {
719 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
720 vol_id, lnum, pnum);
721 up_read(&ubi->fm_eba_sem);
722 goto write_error;
723 }
724
725 if (len) {
726 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
727 if (err) {
728 ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
729 len, offset, vol_id, lnum, pnum);
730 up_read(&ubi->fm_eba_sem);
731 goto write_error;
732 }
733 }
734
735 vol->eba_tbl[lnum] = pnum;
736 up_read(&ubi->fm_eba_sem);
737
738 leb_write_unlock(ubi, vol_id, lnum);
739 ubi_free_vid_hdr(ubi, vid_hdr);
740 return 0;
741
742 write_error:
743 if (err != -EIO || !ubi->bad_allowed) {
744 ubi_ro_mode(ubi);
745 leb_write_unlock(ubi, vol_id, lnum);
746 ubi_free_vid_hdr(ubi, vid_hdr);
747 return err;
748 }
749
750 /*
751 * Fortunately, this is the first write operation to this physical
752 * eraseblock, so just put it and request a new one. We assume that if
753 * this physical eraseblock went bad, the erase code will handle that.
754 */
755 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
756 if (err || ++tries > UBI_IO_RETRIES) {
757 ubi_ro_mode(ubi);
758 leb_write_unlock(ubi, vol_id, lnum);
759 ubi_free_vid_hdr(ubi, vid_hdr);
760 return err;
761 }
762
763 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
764 ubi_msg(ubi, "try another PEB");
765 goto retry;
766 }
767
768 /**
769 * ubi_eba_write_leb_st - write data to static volume.
770 * @ubi: UBI device description object
771 * @vol: volume description object
772 * @lnum: logical eraseblock number
773 * @buf: data to write
774 * @len: how many bytes to write
775 * @used_ebs: how many logical eraseblocks will this volume contain
776 *
777 * This function writes data to logical eraseblock @lnum of static volume
778 * @vol. The @used_ebs argument should contain total number of logical
779 * eraseblock in this static volume.
780 *
781 * When writing to the last logical eraseblock, the @len argument doesn't have
782 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
783 * to the real data size, although the @buf buffer has to contain the
784 * alignment. In all other cases, @len has to be aligned.
785 *
786 * It is prohibited to write more than once to logical eraseblocks of static
787 * volumes. This function returns zero in case of success and a negative error
788 * code in case of failure.
789 */
ubi_eba_write_leb_st(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int len,int used_ebs)790 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
791 int lnum, const void *buf, int len, int used_ebs)
792 {
793 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
794 struct ubi_vid_hdr *vid_hdr;
795 uint32_t crc;
796
797 if (ubi->ro_mode)
798 return -EROFS;
799
800 if (lnum == used_ebs - 1)
801 /* If this is the last LEB @len may be unaligned */
802 len = ALIGN(data_size, ubi->min_io_size);
803 else
804 ubi_assert(!(len & (ubi->min_io_size - 1)));
805
806 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
807 if (!vid_hdr)
808 return -ENOMEM;
809
810 err = leb_write_lock(ubi, vol_id, lnum);
811 if (err) {
812 ubi_free_vid_hdr(ubi, vid_hdr);
813 return err;
814 }
815
816 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
817 vid_hdr->vol_id = cpu_to_be32(vol_id);
818 vid_hdr->lnum = cpu_to_be32(lnum);
819 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
820 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
821
822 crc = crc32(UBI_CRC32_INIT, buf, data_size);
823 vid_hdr->vol_type = UBI_VID_STATIC;
824 vid_hdr->data_size = cpu_to_be32(data_size);
825 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
826 vid_hdr->data_crc = cpu_to_be32(crc);
827
828 retry:
829 pnum = ubi_wl_get_peb(ubi);
830 if (pnum < 0) {
831 ubi_free_vid_hdr(ubi, vid_hdr);
832 leb_write_unlock(ubi, vol_id, lnum);
833 up_read(&ubi->fm_eba_sem);
834 return pnum;
835 }
836
837 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
838 len, vol_id, lnum, pnum, used_ebs);
839
840 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
841 if (err) {
842 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
843 vol_id, lnum, pnum);
844 up_read(&ubi->fm_eba_sem);
845 goto write_error;
846 }
847
848 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
849 if (err) {
850 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
851 len, pnum);
852 up_read(&ubi->fm_eba_sem);
853 goto write_error;
854 }
855
856 ubi_assert(vol->eba_tbl[lnum] < 0);
857 vol->eba_tbl[lnum] = pnum;
858 up_read(&ubi->fm_eba_sem);
859
860 leb_write_unlock(ubi, vol_id, lnum);
861 ubi_free_vid_hdr(ubi, vid_hdr);
862 return 0;
863
864 write_error:
865 if (err != -EIO || !ubi->bad_allowed) {
866 /*
867 * This flash device does not admit of bad eraseblocks or
868 * something nasty and unexpected happened. Switch to read-only
869 * mode just in case.
870 */
871 ubi_ro_mode(ubi);
872 leb_write_unlock(ubi, vol_id, lnum);
873 ubi_free_vid_hdr(ubi, vid_hdr);
874 return err;
875 }
876
877 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
878 if (err || ++tries > UBI_IO_RETRIES) {
879 ubi_ro_mode(ubi);
880 leb_write_unlock(ubi, vol_id, lnum);
881 ubi_free_vid_hdr(ubi, vid_hdr);
882 return err;
883 }
884
885 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
886 ubi_msg(ubi, "try another PEB");
887 goto retry;
888 }
889
890 /*
891 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
892 * @ubi: UBI device description object
893 * @vol: volume description object
894 * @lnum: logical eraseblock number
895 * @buf: data to write
896 * @len: how many bytes to write
897 *
898 * This function changes the contents of a logical eraseblock atomically. @buf
899 * has to contain new logical eraseblock data, and @len - the length of the
900 * data, which has to be aligned. This function guarantees that in case of an
901 * unclean reboot the old contents is preserved. Returns zero in case of
902 * success and a negative error code in case of failure.
903 *
904 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
905 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
906 */
ubi_eba_atomic_leb_change(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int len)907 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
908 int lnum, const void *buf, int len)
909 {
910 int err, pnum, old_pnum, tries = 0, vol_id = vol->vol_id;
911 struct ubi_vid_hdr *vid_hdr;
912 uint32_t crc;
913
914 if (ubi->ro_mode)
915 return -EROFS;
916
917 if (len == 0) {
918 /*
919 * Special case when data length is zero. In this case the LEB
920 * has to be unmapped and mapped somewhere else.
921 */
922 err = ubi_eba_unmap_leb(ubi, vol, lnum);
923 if (err)
924 return err;
925 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
926 }
927
928 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
929 if (!vid_hdr)
930 return -ENOMEM;
931
932 mutex_lock(&ubi->alc_mutex);
933 err = leb_write_lock(ubi, vol_id, lnum);
934 if (err)
935 goto out_mutex;
936
937 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
938 vid_hdr->vol_id = cpu_to_be32(vol_id);
939 vid_hdr->lnum = cpu_to_be32(lnum);
940 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
941 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
942
943 crc = crc32(UBI_CRC32_INIT, buf, len);
944 vid_hdr->vol_type = UBI_VID_DYNAMIC;
945 vid_hdr->data_size = cpu_to_be32(len);
946 vid_hdr->copy_flag = 1;
947 vid_hdr->data_crc = cpu_to_be32(crc);
948
949 retry:
950 pnum = ubi_wl_get_peb(ubi);
951 if (pnum < 0) {
952 err = pnum;
953 up_read(&ubi->fm_eba_sem);
954 goto out_leb_unlock;
955 }
956
957 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
958 vol_id, lnum, vol->eba_tbl[lnum], pnum);
959
960 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
961 if (err) {
962 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
963 vol_id, lnum, pnum);
964 up_read(&ubi->fm_eba_sem);
965 goto write_error;
966 }
967
968 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
969 if (err) {
970 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
971 len, pnum);
972 up_read(&ubi->fm_eba_sem);
973 goto write_error;
974 }
975
976 old_pnum = vol->eba_tbl[lnum];
977 vol->eba_tbl[lnum] = pnum;
978 up_read(&ubi->fm_eba_sem);
979
980 if (old_pnum >= 0) {
981 err = ubi_wl_put_peb(ubi, vol_id, lnum, old_pnum, 0);
982 if (err)
983 goto out_leb_unlock;
984 }
985
986 out_leb_unlock:
987 leb_write_unlock(ubi, vol_id, lnum);
988 out_mutex:
989 mutex_unlock(&ubi->alc_mutex);
990 ubi_free_vid_hdr(ubi, vid_hdr);
991 return err;
992
993 write_error:
994 if (err != -EIO || !ubi->bad_allowed) {
995 /*
996 * This flash device does not admit of bad eraseblocks or
997 * something nasty and unexpected happened. Switch to read-only
998 * mode just in case.
999 */
1000 ubi_ro_mode(ubi);
1001 goto out_leb_unlock;
1002 }
1003
1004 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
1005 if (err || ++tries > UBI_IO_RETRIES) {
1006 ubi_ro_mode(ubi);
1007 goto out_leb_unlock;
1008 }
1009
1010 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1011 ubi_msg(ubi, "try another PEB");
1012 goto retry;
1013 }
1014
1015 /**
1016 * is_error_sane - check whether a read error is sane.
1017 * @err: code of the error happened during reading
1018 *
1019 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1020 * cannot read data from the target PEB (an error @err happened). If the error
1021 * code is sane, then we treat this error as non-fatal. Otherwise the error is
1022 * fatal and UBI will be switched to R/O mode later.
1023 *
1024 * The idea is that we try not to switch to R/O mode if the read error is
1025 * something which suggests there was a real read problem. E.g., %-EIO. Or a
1026 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1027 * mode, simply because we do not know what happened at the MTD level, and we
1028 * cannot handle this. E.g., the underlying driver may have become crazy, and
1029 * it is safer to switch to R/O mode to preserve the data.
1030 *
1031 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1032 * which we have just written.
1033 */
is_error_sane(int err)1034 static int is_error_sane(int err)
1035 {
1036 if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1037 err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1038 return 0;
1039 return 1;
1040 }
1041
1042 /**
1043 * ubi_eba_copy_leb - copy logical eraseblock.
1044 * @ubi: UBI device description object
1045 * @from: physical eraseblock number from where to copy
1046 * @to: physical eraseblock number where to copy
1047 * @vid_hdr: VID header of the @from physical eraseblock
1048 *
1049 * This function copies logical eraseblock from physical eraseblock @from to
1050 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1051 * function. Returns:
1052 * o %0 in case of success;
1053 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1054 * o a negative error code in case of failure.
1055 */
ubi_eba_copy_leb(struct ubi_device * ubi,int from,int to,struct ubi_vid_hdr * vid_hdr)1056 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1057 struct ubi_vid_hdr *vid_hdr)
1058 {
1059 int err, vol_id, lnum, data_size, aldata_size, idx;
1060 struct ubi_volume *vol;
1061 uint32_t crc;
1062
1063 vol_id = be32_to_cpu(vid_hdr->vol_id);
1064 lnum = be32_to_cpu(vid_hdr->lnum);
1065
1066 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1067
1068 if (vid_hdr->vol_type == UBI_VID_STATIC) {
1069 data_size = be32_to_cpu(vid_hdr->data_size);
1070 aldata_size = ALIGN(data_size, ubi->min_io_size);
1071 } else
1072 data_size = aldata_size =
1073 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1074
1075 idx = vol_id2idx(ubi, vol_id);
1076 spin_lock(&ubi->volumes_lock);
1077 /*
1078 * Note, we may race with volume deletion, which means that the volume
1079 * this logical eraseblock belongs to might be being deleted. Since the
1080 * volume deletion un-maps all the volume's logical eraseblocks, it will
1081 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1082 */
1083 vol = ubi->volumes[idx];
1084 spin_unlock(&ubi->volumes_lock);
1085 if (!vol) {
1086 /* No need to do further work, cancel */
1087 dbg_wl("volume %d is being removed, cancel", vol_id);
1088 return MOVE_CANCEL_RACE;
1089 }
1090
1091 /*
1092 * We do not want anybody to write to this logical eraseblock while we
1093 * are moving it, so lock it.
1094 *
1095 * Note, we are using non-waiting locking here, because we cannot sleep
1096 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1097 * unmapping the LEB which is mapped to the PEB we are going to move
1098 * (@from). This task locks the LEB and goes sleep in the
1099 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1100 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1101 * LEB is already locked, we just do not move it and return
1102 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1103 * we do not know the reasons of the contention - it may be just a
1104 * normal I/O on this LEB, so we want to re-try.
1105 */
1106 err = leb_write_trylock(ubi, vol_id, lnum);
1107 if (err) {
1108 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1109 return MOVE_RETRY;
1110 }
1111
1112 /*
1113 * The LEB might have been put meanwhile, and the task which put it is
1114 * probably waiting on @ubi->move_mutex. No need to continue the work,
1115 * cancel it.
1116 */
1117 if (vol->eba_tbl[lnum] != from) {
1118 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1119 vol_id, lnum, from, vol->eba_tbl[lnum]);
1120 err = MOVE_CANCEL_RACE;
1121 goto out_unlock_leb;
1122 }
1123
1124 /*
1125 * OK, now the LEB is locked and we can safely start moving it. Since
1126 * this function utilizes the @ubi->peb_buf buffer which is shared
1127 * with some other functions - we lock the buffer by taking the
1128 * @ubi->buf_mutex.
1129 */
1130 mutex_lock(&ubi->buf_mutex);
1131 dbg_wl("read %d bytes of data", aldata_size);
1132 err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1133 if (err && err != UBI_IO_BITFLIPS) {
1134 ubi_warn(ubi, "error %d while reading data from PEB %d",
1135 err, from);
1136 err = MOVE_SOURCE_RD_ERR;
1137 goto out_unlock_buf;
1138 }
1139
1140 /*
1141 * Now we have got to calculate how much data we have to copy. In
1142 * case of a static volume it is fairly easy - the VID header contains
1143 * the data size. In case of a dynamic volume it is more difficult - we
1144 * have to read the contents, cut 0xFF bytes from the end and copy only
1145 * the first part. We must do this to avoid writing 0xFF bytes as it
1146 * may have some side-effects. And not only this. It is important not
1147 * to include those 0xFFs to CRC because later the they may be filled
1148 * by data.
1149 */
1150 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1151 aldata_size = data_size =
1152 ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1153
1154 cond_resched();
1155 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1156 cond_resched();
1157
1158 /*
1159 * It may turn out to be that the whole @from physical eraseblock
1160 * contains only 0xFF bytes. Then we have to only write the VID header
1161 * and do not write any data. This also means we should not set
1162 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1163 */
1164 if (data_size > 0) {
1165 vid_hdr->copy_flag = 1;
1166 vid_hdr->data_size = cpu_to_be32(data_size);
1167 vid_hdr->data_crc = cpu_to_be32(crc);
1168 }
1169 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1170
1171 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1172 if (err) {
1173 if (err == -EIO)
1174 err = MOVE_TARGET_WR_ERR;
1175 goto out_unlock_buf;
1176 }
1177
1178 cond_resched();
1179
1180 /* Read the VID header back and check if it was written correctly */
1181 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1182 if (err) {
1183 if (err != UBI_IO_BITFLIPS) {
1184 ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1185 err, to);
1186 if (is_error_sane(err))
1187 err = MOVE_TARGET_RD_ERR;
1188 } else
1189 err = MOVE_TARGET_BITFLIPS;
1190 goto out_unlock_buf;
1191 }
1192
1193 if (data_size > 0) {
1194 err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1195 if (err) {
1196 if (err == -EIO)
1197 err = MOVE_TARGET_WR_ERR;
1198 goto out_unlock_buf;
1199 }
1200
1201 cond_resched();
1202
1203 /*
1204 * We've written the data and are going to read it back to make
1205 * sure it was written correctly.
1206 */
1207 memset(ubi->peb_buf, 0xFF, aldata_size);
1208 err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1209 if (err) {
1210 if (err != UBI_IO_BITFLIPS) {
1211 ubi_warn(ubi, "error %d while reading data back from PEB %d",
1212 err, to);
1213 if (is_error_sane(err))
1214 err = MOVE_TARGET_RD_ERR;
1215 } else
1216 err = MOVE_TARGET_BITFLIPS;
1217 goto out_unlock_buf;
1218 }
1219
1220 cond_resched();
1221
1222 if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
1223 ubi_warn(ubi, "read data back from PEB %d and it is different",
1224 to);
1225 err = -EINVAL;
1226 goto out_unlock_buf;
1227 }
1228 }
1229
1230 ubi_assert(vol->eba_tbl[lnum] == from);
1231 down_read(&ubi->fm_eba_sem);
1232 vol->eba_tbl[lnum] = to;
1233 up_read(&ubi->fm_eba_sem);
1234
1235 out_unlock_buf:
1236 mutex_unlock(&ubi->buf_mutex);
1237 out_unlock_leb:
1238 leb_write_unlock(ubi, vol_id, lnum);
1239 return err;
1240 }
1241
1242 /**
1243 * print_rsvd_warning - warn about not having enough reserved PEBs.
1244 * @ubi: UBI device description object
1245 *
1246 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1247 * cannot reserve enough PEBs for bad block handling. This function makes a
1248 * decision whether we have to print a warning or not. The algorithm is as
1249 * follows:
1250 * o if this is a new UBI image, then just print the warning
1251 * o if this is an UBI image which has already been used for some time, print
1252 * a warning only if we can reserve less than 10% of the expected amount of
1253 * the reserved PEB.
1254 *
1255 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1256 * of PEBs becomes smaller, which is normal and we do not want to scare users
1257 * with a warning every time they attach the MTD device. This was an issue
1258 * reported by real users.
1259 */
print_rsvd_warning(struct ubi_device * ubi,struct ubi_attach_info * ai)1260 static void print_rsvd_warning(struct ubi_device *ubi,
1261 struct ubi_attach_info *ai)
1262 {
1263 /*
1264 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1265 * large number to distinguish between newly flashed and used images.
1266 */
1267 if (ai->max_sqnum > (1 << 18)) {
1268 int min = ubi->beb_rsvd_level / 10;
1269
1270 if (!min)
1271 min = 1;
1272 if (ubi->beb_rsvd_pebs > min)
1273 return;
1274 }
1275
1276 ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1277 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1278 if (ubi->corr_peb_count)
1279 ubi_warn(ubi, "%d PEBs are corrupted and not used",
1280 ubi->corr_peb_count);
1281 }
1282
1283 /**
1284 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1285 * @ubi: UBI device description object
1286 * @ai_fastmap: UBI attach info object created by fastmap
1287 * @ai_scan: UBI attach info object created by scanning
1288 *
1289 * Returns < 0 in case of an internal error, 0 otherwise.
1290 * If a bad EBA table entry was found it will be printed out and
1291 * ubi_assert() triggers.
1292 */
self_check_eba(struct ubi_device * ubi,struct ubi_attach_info * ai_fastmap,struct ubi_attach_info * ai_scan)1293 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1294 struct ubi_attach_info *ai_scan)
1295 {
1296 int i, j, num_volumes, ret = 0;
1297 int **scan_eba, **fm_eba;
1298 struct ubi_ainf_volume *av;
1299 struct ubi_volume *vol;
1300 struct ubi_ainf_peb *aeb;
1301 struct rb_node *rb;
1302
1303 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1304
1305 scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1306 if (!scan_eba)
1307 return -ENOMEM;
1308
1309 fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1310 if (!fm_eba) {
1311 kfree(scan_eba);
1312 return -ENOMEM;
1313 }
1314
1315 for (i = 0; i < num_volumes; i++) {
1316 vol = ubi->volumes[i];
1317 if (!vol)
1318 continue;
1319
1320 scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1321 GFP_KERNEL);
1322 if (!scan_eba[i]) {
1323 ret = -ENOMEM;
1324 goto out_free;
1325 }
1326
1327 fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1328 GFP_KERNEL);
1329 if (!fm_eba[i]) {
1330 ret = -ENOMEM;
1331 goto out_free;
1332 }
1333
1334 for (j = 0; j < vol->reserved_pebs; j++)
1335 scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1336
1337 av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1338 if (!av)
1339 continue;
1340
1341 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1342 scan_eba[i][aeb->lnum] = aeb->pnum;
1343
1344 av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1345 if (!av)
1346 continue;
1347
1348 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1349 fm_eba[i][aeb->lnum] = aeb->pnum;
1350
1351 for (j = 0; j < vol->reserved_pebs; j++) {
1352 if (scan_eba[i][j] != fm_eba[i][j]) {
1353 if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1354 fm_eba[i][j] == UBI_LEB_UNMAPPED)
1355 continue;
1356
1357 ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1358 vol->vol_id, i, fm_eba[i][j],
1359 scan_eba[i][j]);
1360 ubi_assert(0);
1361 }
1362 }
1363 }
1364
1365 out_free:
1366 for (i = 0; i < num_volumes; i++) {
1367 if (!ubi->volumes[i])
1368 continue;
1369
1370 kfree(scan_eba[i]);
1371 kfree(fm_eba[i]);
1372 }
1373
1374 kfree(scan_eba);
1375 kfree(fm_eba);
1376 return ret;
1377 }
1378
1379 /**
1380 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1381 * @ubi: UBI device description object
1382 * @ai: attaching information
1383 *
1384 * This function returns zero in case of success and a negative error code in
1385 * case of failure.
1386 */
ubi_eba_init(struct ubi_device * ubi,struct ubi_attach_info * ai)1387 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1388 {
1389 int i, j, err, num_volumes;
1390 struct ubi_ainf_volume *av;
1391 struct ubi_volume *vol;
1392 struct ubi_ainf_peb *aeb;
1393 struct rb_node *rb;
1394
1395 dbg_eba("initialize EBA sub-system");
1396
1397 spin_lock_init(&ubi->ltree_lock);
1398 mutex_init(&ubi->alc_mutex);
1399 ubi->ltree = RB_ROOT;
1400
1401 ubi->global_sqnum = ai->max_sqnum + 1;
1402 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1403
1404 for (i = 0; i < num_volumes; i++) {
1405 vol = ubi->volumes[i];
1406 if (!vol)
1407 continue;
1408
1409 cond_resched();
1410
1411 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1412 GFP_KERNEL);
1413 if (!vol->eba_tbl) {
1414 err = -ENOMEM;
1415 goto out_free;
1416 }
1417
1418 for (j = 0; j < vol->reserved_pebs; j++)
1419 vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1420
1421 av = ubi_find_av(ai, idx2vol_id(ubi, i));
1422 if (!av)
1423 continue;
1424
1425 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1426 if (aeb->lnum >= vol->reserved_pebs)
1427 /*
1428 * This may happen in case of an unclean reboot
1429 * during re-size.
1430 */
1431 ubi_move_aeb_to_list(av, aeb, &ai->erase);
1432 else
1433 vol->eba_tbl[aeb->lnum] = aeb->pnum;
1434 }
1435 }
1436
1437 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1438 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1439 ubi->avail_pebs, EBA_RESERVED_PEBS);
1440 if (ubi->corr_peb_count)
1441 ubi_err(ubi, "%d PEBs are corrupted and not used",
1442 ubi->corr_peb_count);
1443 err = -ENOSPC;
1444 goto out_free;
1445 }
1446 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1447 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1448
1449 if (ubi->bad_allowed) {
1450 ubi_calculate_reserved(ubi);
1451
1452 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1453 /* No enough free physical eraseblocks */
1454 ubi->beb_rsvd_pebs = ubi->avail_pebs;
1455 print_rsvd_warning(ubi, ai);
1456 } else
1457 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1458
1459 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1460 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1461 }
1462
1463 dbg_eba("EBA sub-system is initialized");
1464 return 0;
1465
1466 out_free:
1467 for (i = 0; i < num_volumes; i++) {
1468 if (!ubi->volumes[i])
1469 continue;
1470 kfree(ubi->volumes[i]->eba_tbl);
1471 ubi->volumes[i]->eba_tbl = NULL;
1472 }
1473 return err;
1474 }
1475