1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * (C) Copyright 2017 Theobroma Systems Design und Consulting GmbH
4  */
5 
6 #include <common.h>
7 #include <clk.h>
8 #include <dm.h>
9 #include <hang.h>
10 #include <log.h>
11 #include <dt-bindings/memory/rk3368-dmc.h>
12 #include <dt-structs.h>
13 #include <ram.h>
14 #include <regmap.h>
15 #include <syscon.h>
16 #include <asm/io.h>
17 #include <asm/arch-rockchip/clock.h>
18 #include <asm/arch-rockchip/cru_rk3368.h>
19 #include <asm/arch-rockchip/grf_rk3368.h>
20 #include <asm/arch-rockchip/ddr_rk3368.h>
21 #include <asm/arch-rockchip/sdram.h>
22 #include <asm/arch-rockchip/sdram_rk3288.h>
23 #include <linux/bitops.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 
27 struct dram_info {
28 	struct ram_info info;
29 	struct clk ddr_clk;
30 	struct rk3368_cru *cru;
31 	struct rk3368_grf *grf;
32 	struct rk3368_ddr_pctl *pctl;
33 	struct rk3368_ddrphy *phy;
34 	struct rk3368_pmu_grf *pmugrf;
35 	struct rk3368_msch *msch;
36 };
37 
38 struct rk3368_sdram_params {
39 #if CONFIG_IS_ENABLED(OF_PLATDATA)
40 	struct dtd_rockchip_rk3368_dmc of_plat;
41 #endif
42 	struct rk3288_sdram_pctl_timing pctl_timing;
43 	u32 trefi_mem_ddr3;
44 	struct rk3288_sdram_channel chan;
45 	struct regmap *map;
46 	u32 ddr_freq;
47 	u32 memory_schedule;
48 	u32 ddr_speed_bin;
49 	u32 tfaw_mult;
50 };
51 
52 /* PTCL bits */
53 enum {
54 	/* PCTL_DFISTCFG0 */
55 	DFI_INIT_START = BIT(0),
56 	DFI_DATA_BYTE_DISABLE_EN = BIT(2),
57 
58 	/* PCTL_DFISTCFG1 */
59 	DFI_DRAM_CLK_SR_EN = BIT(0),
60 	DFI_DRAM_CLK_DPD_EN = BIT(1),
61 	ODT_LEN_BL8_W_SHIFT = 16,
62 
63 	/* PCTL_DFISTCFG2 */
64 	DFI_PARITY_INTR_EN = BIT(0),
65 	DFI_PARITY_EN = BIT(1),
66 
67 	/* PCTL_DFILPCFG0 */
68 	TLP_RESP_TIME_SHIFT = 16,
69 	LP_SR_EN = BIT(8),
70 	LP_PD_EN = BIT(0),
71 
72 	/* PCTL_DFIODTCFG */
73 	RANK0_ODT_WRITE_SEL = BIT(3),
74 	RANK1_ODT_WRITE_SEL = BIT(11),
75 
76 	/* PCTL_SCFG */
77 	HW_LOW_POWER_EN = BIT(0),
78 
79 	/* PCTL_MCMD */
80 	START_CMD = BIT(31),
81 	MCMD_RANK0 = BIT(20),
82 	MCMD_RANK1 = BIT(21),
83 	DESELECT_CMD = 0,
84 	PREA_CMD,
85 	REF_CMD,
86 	MRS_CMD,
87 	ZQCS_CMD,
88 	ZQCL_CMD,
89 	RSTL_CMD,
90 	MRR_CMD	= 8,
91 	DPDE_CMD,
92 
93 	/* PCTL_POWCTL */
94 	POWER_UP_START = BIT(0),
95 
96 	/* PCTL_POWSTAT */
97 	POWER_UP_DONE = BIT(0),
98 
99 	/* PCTL_SCTL */
100 	INIT_STATE = 0,
101 	CFG_STATE,
102 	GO_STATE,
103 	SLEEP_STATE,
104 	WAKEUP_STATE,
105 
106 	/* PCTL_STAT */
107 	LP_TRIG_SHIFT = 4,
108 	LP_TRIG_MASK = 7,
109 	PCTL_STAT_MSK = 7,
110 	INIT_MEM = 0,
111 	CONFIG,
112 	CONFIG_REQ,
113 	ACCESS,
114 	ACCESS_REQ,
115 	LOW_POWER,
116 	LOW_POWER_ENTRY_REQ,
117 	LOW_POWER_EXIT_REQ,
118 
119 	/* PCTL_MCFG */
120 	DDR2_DDR3_BL_8 = BIT(0),
121 	DDR3_EN = BIT(5),
122 	TFAW_TRRD_MULT4 = (0 << 18),
123 	TFAW_TRRD_MULT5 = (1 << 18),
124 	TFAW_TRRD_MULT6 = (2 << 18),
125 };
126 
127 #define DDR3_MR0_WR(n) \
128 	((n <= 8) ? ((n - 4) << 9) : (((n >> 1) & 0x7) << 9))
129 #define DDR3_MR0_CL(n) \
130 	((((n - 4) & 0x7) << 4) | (((n - 4) & 0x8) >> 2))
131 #define DDR3_MR0_BL8 \
132 	(0 << 0)
133 #define DDR3_MR0_DLL_RESET \
134 	(1 << 8)
135 #define DDR3_MR1_RTT120OHM \
136 	((0 << 9) | (1 << 6) | (0 << 2))
137 #define DDR3_MR2_TWL(n) \
138 	(((n - 5) & 0x7) << 3)
139 
140 
141 #ifdef CONFIG_TPL_BUILD
142 
ddr_set_noc_spr_err_stall(struct rk3368_grf * grf,bool enable)143 static void ddr_set_noc_spr_err_stall(struct rk3368_grf *grf, bool enable)
144 {
145 	if (enable)
146 		rk_setreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL);
147 	else
148 		rk_clrreg(&grf->ddrc0_con0, NOC_RSP_ERR_STALL);
149 }
150 
ddr_set_ddr3_mode(struct rk3368_grf * grf,bool ddr3_mode)151 static void ddr_set_ddr3_mode(struct rk3368_grf *grf, bool ddr3_mode)
152 {
153 	if (ddr3_mode)
154 		rk_setreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3);
155 	else
156 		rk_clrreg(&grf->ddrc0_con0, MSCH0_MAINDDR3_DDR3);
157 }
158 
ddrphy_config(struct rk3368_ddrphy * phy,u32 tcl,u32 tal,u32 tcwl)159 static void ddrphy_config(struct rk3368_ddrphy *phy,
160 			  u32 tcl, u32 tal, u32 tcwl)
161 {
162 	int i;
163 
164 	/* Set to DDR3 mode */
165 	clrsetbits_le32(&phy->reg[1], 0x3, 0x0);
166 
167 	/* DDRPHY_REGB: CL, AL */
168 	clrsetbits_le32(&phy->reg[0xb], 0xff, tcl << 4 | tal);
169 	/* DDRPHY_REGC: CWL */
170 	clrsetbits_le32(&phy->reg[0xc], 0x0f, tcwl);
171 
172 	/* Update drive-strength */
173 	writel(0xcc, &phy->reg[0x11]);
174 	writel(0xaa, &phy->reg[0x16]);
175 	/*
176 	 * Update NRCOMP/PRCOMP for all 4 channels (for details of all
177 	 * affected registers refer to the documentation of DDRPHY_REG20
178 	 * and DDRPHY_REG21 in the RK3368 TRM.
179 	 */
180 	for (i = 0; i < 4; ++i) {
181 		writel(0xcc, &phy->reg[0x20 + i * 0x10]);
182 		writel(0x44, &phy->reg[0x21 + i * 0x10]);
183 	}
184 
185 	/* Enable write-leveling calibration bypass */
186 	setbits_le32(&phy->reg[2], BIT(3));
187 }
188 
copy_to_reg(u32 * dest,const u32 * src,u32 n)189 static void copy_to_reg(u32 *dest, const u32 *src, u32 n)
190 {
191 	int i;
192 
193 	for (i = 0; i < n / sizeof(u32); i++)
194 		writel(*src++, dest++);
195 }
196 
send_command(struct rk3368_ddr_pctl * pctl,u32 rank,u32 cmd)197 static void send_command(struct rk3368_ddr_pctl *pctl, u32 rank, u32 cmd)
198 {
199 	u32 mcmd = START_CMD | cmd | rank;
200 
201 	debug("%s: writing %x to MCMD\n", __func__, mcmd);
202 	writel(mcmd, &pctl->mcmd);
203 	while (readl(&pctl->mcmd) & START_CMD)
204 		/* spin */;
205 }
206 
send_mrs(struct rk3368_ddr_pctl * pctl,u32 rank,u32 mr_num,u32 mr_data)207 static void send_mrs(struct rk3368_ddr_pctl *pctl,
208 			    u32 rank, u32 mr_num, u32 mr_data)
209 {
210 	u32 mcmd = START_CMD | MRS_CMD | rank | (mr_num << 17) | (mr_data << 4);
211 
212 	debug("%s: writing %x to MCMD\n", __func__, mcmd);
213 	writel(mcmd, &pctl->mcmd);
214 	while (readl(&pctl->mcmd) & START_CMD)
215 		/* spin */;
216 }
217 
memory_init(struct rk3368_ddr_pctl * pctl,struct rk3368_sdram_params * params)218 static int memory_init(struct rk3368_ddr_pctl *pctl,
219 		       struct rk3368_sdram_params *params)
220 {
221 	u32 mr[4];
222 	const ulong timeout_ms = 500;
223 	ulong tmp;
224 
225 	/*
226 	 * Power up DRAM by DDR_PCTL_POWCTL[0] register of PCTL and
227 	 * wait power up DRAM finish with DDR_PCTL_POWSTAT[0] register
228 	 * of PCTL.
229 	 */
230 	writel(POWER_UP_START, &pctl->powctl);
231 
232 	tmp = get_timer(0);
233 	do {
234 		if (get_timer(tmp) > timeout_ms) {
235 			pr_err("%s: POWER_UP_START did not complete in %ld ms\n",
236 			      __func__, timeout_ms);
237 			return -ETIME;
238 		}
239 	} while (!(readl(&pctl->powstat) & POWER_UP_DONE));
240 
241 	/* Configure MR0 through MR3 */
242 	mr[0] = DDR3_MR0_WR(params->pctl_timing.twr) |
243 		DDR3_MR0_CL(params->pctl_timing.tcl) |
244 		DDR3_MR0_DLL_RESET;
245 	mr[1] = DDR3_MR1_RTT120OHM;
246 	mr[2] = DDR3_MR2_TWL(params->pctl_timing.tcwl);
247 	mr[3] = 0;
248 
249 	/*
250 	 * Also see RK3368 Technical Reference Manual:
251 	 *   "16.6.2 Initialization (DDR3 Initialization Sequence)"
252 	 */
253 	send_command(pctl, MCMD_RANK0 | MCMD_RANK1, DESELECT_CMD);
254 	udelay(1);
255 	send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD);
256 	send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 2, mr[2]);
257 	send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 3, mr[3]);
258 	send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 1, mr[1]);
259 	send_mrs(pctl, MCMD_RANK0 | MCMD_RANK1, 0, mr[0]);
260 	send_command(pctl, MCMD_RANK0 | MCMD_RANK1, ZQCL_CMD);
261 
262 	return 0;
263 }
264 
move_to_config_state(struct rk3368_ddr_pctl * pctl)265 static void move_to_config_state(struct rk3368_ddr_pctl *pctl)
266 {
267 	/*
268 	 * Also see RK3368 Technical Reference Manual:
269 	 *   "16.6.1 State transition of PCTL (Moving to Config State)"
270 	 */
271 	u32 state = readl(&pctl->stat) & PCTL_STAT_MSK;
272 
273 	switch (state) {
274 	case LOW_POWER:
275 		writel(WAKEUP_STATE, &pctl->sctl);
276 		while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS)
277 			/* spin */;
278 
279 		/* fall-through */
280 	case ACCESS:
281 	case INIT_MEM:
282 		writel(CFG_STATE, &pctl->sctl);
283 		while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
284 			/* spin */;
285 		break;
286 
287 	case CONFIG:
288 		return;
289 
290 	default:
291 		break;
292 	}
293 }
294 
move_to_access_state(struct rk3368_ddr_pctl * pctl)295 static void move_to_access_state(struct rk3368_ddr_pctl *pctl)
296 {
297 	/*
298 	 * Also see RK3368 Technical Reference Manual:
299 	 *   "16.6.1 State transition of PCTL (Moving to Access State)"
300 	 */
301 	u32 state = readl(&pctl->stat) & PCTL_STAT_MSK;
302 
303 	switch (state) {
304 	case LOW_POWER:
305 		if (((readl(&pctl->stat) >> LP_TRIG_SHIFT) &
306 		     LP_TRIG_MASK) == 1)
307 			return;
308 
309 		writel(WAKEUP_STATE, &pctl->sctl);
310 		while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS)
311 			/* spin */;
312 
313 		/* fall-through */
314 	case INIT_MEM:
315 		writel(CFG_STATE, &pctl->sctl);
316 		while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
317 			/* spin */;
318 
319 		/* fall-through */
320 	case CONFIG:
321 		writel(GO_STATE, &pctl->sctl);
322 		while ((readl(&pctl->stat) & PCTL_STAT_MSK) == CONFIG)
323 			/* spin */;
324 		break;
325 
326 	case ACCESS:
327 		return;
328 
329 	default:
330 		break;
331 	}
332 }
333 
ddrctl_reset(struct rk3368_cru * cru)334 static void ddrctl_reset(struct rk3368_cru *cru)
335 {
336 	const u32 ctl_reset = BIT(3) | BIT(2);
337 	const u32 phy_reset = BIT(1) | BIT(0);
338 
339 	/*
340 	 * The PHY reset should be released before the PCTL reset.
341 	 *
342 	 * Note that the following sequence (including the number of
343 	 * us to delay between releasing the PHY and PCTL reset) has
344 	 * been adapted per feedback received from Rockchips, so do
345 	 * not try to optimise.
346 	 */
347 	rk_setreg(&cru->softrst_con[10], ctl_reset | phy_reset);
348 	udelay(1);
349 	rk_clrreg(&cru->softrst_con[10], phy_reset);
350 	udelay(5);
351 	rk_clrreg(&cru->softrst_con[10], ctl_reset);
352 }
353 
ddrphy_reset(struct rk3368_ddrphy * ddrphy)354 static void ddrphy_reset(struct rk3368_ddrphy *ddrphy)
355 {
356 	/*
357 	 * The analog part of the PHY should be release at least 1000
358 	 * DRAM cycles before the digital part of the PHY (waiting for
359 	 * 5us will ensure this for a DRAM clock as low as 200MHz).
360 	 */
361 	clrbits_le32(&ddrphy->reg[0], BIT(3) | BIT(2));
362 	udelay(1);
363 	setbits_le32(&ddrphy->reg[0], BIT(2));
364 	udelay(5);
365 	setbits_le32(&ddrphy->reg[0], BIT(3));
366 }
367 
ddrphy_config_delays(struct rk3368_ddrphy * ddrphy,u32 freq)368 static void ddrphy_config_delays(struct rk3368_ddrphy *ddrphy, u32 freq)
369 {
370 	u32 dqs_dll_delay;
371 
372 	setbits_le32(&ddrphy->reg[0x13], BIT(4));
373 	clrbits_le32(&ddrphy->reg[0x14], BIT(3));
374 
375 	setbits_le32(&ddrphy->reg[0x26], BIT(4));
376 	clrbits_le32(&ddrphy->reg[0x27], BIT(3));
377 
378 	setbits_le32(&ddrphy->reg[0x36], BIT(4));
379 	clrbits_le32(&ddrphy->reg[0x37], BIT(3));
380 
381 	setbits_le32(&ddrphy->reg[0x46], BIT(4));
382 	clrbits_le32(&ddrphy->reg[0x47], BIT(3));
383 
384 	setbits_le32(&ddrphy->reg[0x56], BIT(4));
385 	clrbits_le32(&ddrphy->reg[0x57], BIT(3));
386 
387 	if (freq <= 400000000)
388 		setbits_le32(&ddrphy->reg[0xa4], 0x1f);
389 	else
390 		clrbits_le32(&ddrphy->reg[0xa4], 0x1f);
391 
392 	if (freq < 681000000)
393 		dqs_dll_delay = 3; /* 67.5 degree delay */
394 	else
395 		dqs_dll_delay = 2; /* 45 degree delay */
396 
397 	writel(dqs_dll_delay, &ddrphy->reg[0x28]);
398 	writel(dqs_dll_delay, &ddrphy->reg[0x38]);
399 	writel(dqs_dll_delay, &ddrphy->reg[0x48]);
400 	writel(dqs_dll_delay, &ddrphy->reg[0x58]);
401 }
402 
dfi_cfg(struct rk3368_ddr_pctl * pctl)403 static int dfi_cfg(struct rk3368_ddr_pctl *pctl)
404 {
405 	const ulong timeout_ms = 200;
406 	ulong tmp;
407 
408 	writel(DFI_DATA_BYTE_DISABLE_EN, &pctl->dfistcfg0);
409 
410 	writel(DFI_DRAM_CLK_SR_EN | DFI_DRAM_CLK_DPD_EN,
411 	       &pctl->dfistcfg1);
412 	writel(DFI_PARITY_INTR_EN | DFI_PARITY_EN, &pctl->dfistcfg2);
413 	writel(7 << TLP_RESP_TIME_SHIFT | LP_SR_EN | LP_PD_EN,
414 	       &pctl->dfilpcfg0);
415 
416 	writel(1, &pctl->dfitphyupdtype0);
417 
418 	writel(0x1f, &pctl->dfitphyrdlat);
419 	writel(0, &pctl->dfitphywrdata);
420 	writel(0, &pctl->dfiupdcfg);  /* phyupd and ctrlupd disabled */
421 
422 	setbits_le32(&pctl->dfistcfg0, DFI_INIT_START);
423 
424 	tmp = get_timer(0);
425 	do {
426 		if (get_timer(tmp) > timeout_ms) {
427 			pr_err("%s: DFI init did not complete within %ld ms\n",
428 			      __func__, timeout_ms);
429 			return -ETIME;
430 		}
431 	} while ((readl(&pctl->dfiststat0) & 1) == 0);
432 
433 	return 0;
434 }
435 
ps_to_tCK(const u32 ps,const ulong freq)436 static inline u32 ps_to_tCK(const u32 ps, const ulong freq)
437 {
438 	const ulong MHz = 1000000;
439 	return DIV_ROUND_UP(ps * freq, 1000000 * MHz);
440 }
441 
ns_to_tCK(const u32 ns,const ulong freq)442 static inline u32 ns_to_tCK(const u32 ns, const ulong freq)
443 {
444 	return ps_to_tCK(ns * 1000, freq);
445 }
446 
tCK_to_ps(const ulong tCK,const ulong freq)447 static inline u32 tCK_to_ps(const ulong tCK, const ulong freq)
448 {
449 	const ulong MHz = 1000000;
450 	return DIV_ROUND_UP(tCK * 1000000 * MHz, freq);
451 }
452 
pctl_calc_timings(struct rk3368_sdram_params * params,ulong freq)453 static int pctl_calc_timings(struct rk3368_sdram_params *params,
454 			      ulong freq)
455 {
456 	struct rk3288_sdram_pctl_timing *pctl_timing = &params->pctl_timing;
457 	const ulong MHz = 1000000;
458 	u32 tccd;
459 	u32 tfaw_as_ps;
460 
461 	if (params->ddr_speed_bin != DDR3_1600K) {
462 		pr_err("%s: unimplemented DDR3 speed bin %d\n",
463 		      __func__, params->ddr_speed_bin);
464 		return -1;
465 	}
466 
467 	/* PCTL is clocked at 1/2 the DRAM clock; err on the side of caution */
468 	pctl_timing->togcnt1u = DIV_ROUND_UP(freq, 2 * MHz);
469 	pctl_timing->togcnt100n = DIV_ROUND_UP(freq / 10, 2 * MHz);
470 
471 	pctl_timing->tinit = 200;                 /* 200 usec                */
472 	pctl_timing->trsth = 500;                 /* 500 usec                */
473 	pctl_timing->trefi = 78;                  /* 7.8usec = 78 * 100ns    */
474 	params->trefi_mem_ddr3 = ns_to_tCK(pctl_timing->trefi * 100, freq);
475 
476 	if (freq <= (400 * MHz)) {
477 		pctl_timing->tcl = 6;
478 		pctl_timing->tcwl = 10;
479 	} else if (freq <= (533 * MHz)) {
480 		pctl_timing->tcl = 8;
481 		pctl_timing->tcwl = 6;
482 	} else if (freq <= (666 * MHz)) {
483 		pctl_timing->tcl = 10;
484 		pctl_timing->tcwl = 7;
485 	} else {
486 		pctl_timing->tcl = 11;
487 		pctl_timing->tcwl = 8;
488 	}
489 
490 	pctl_timing->tmrd = 4;                    /* 4 tCK (all speed bins)  */
491 	pctl_timing->trfc = ns_to_tCK(350, freq); /* tRFC: 350 (max) @ 8GBit */
492 	pctl_timing->trp = max(4u, ps_to_tCK(13750, freq));
493 	/*
494 	 * JESD-79:
495 	 *   READ to WRITE Command Delay = RL + tCCD / 2 + 2tCK - WL
496 	 */
497 	tccd = 4;
498 	pctl_timing->trtw = pctl_timing->tcl + tccd/2 + 2 - pctl_timing->tcwl;
499 	pctl_timing->tal = 0;
500 	pctl_timing->tras = ps_to_tCK(35000, freq);
501 	pctl_timing->trc = ps_to_tCK(48750, freq);
502 	pctl_timing->trcd = ps_to_tCK(13750, freq);
503 	pctl_timing->trrd = max(4u, ps_to_tCK(7500, freq));
504 	pctl_timing->trtp = max(4u, ps_to_tCK(7500, freq));
505 	pctl_timing->twr = ps_to_tCK(15000, freq);
506 	/* The DDR3 mode-register does only support even values for tWR > 8. */
507 	if (pctl_timing->twr > 8)
508 		pctl_timing->twr = (pctl_timing->twr + 1) & ~1;
509 	pctl_timing->twtr = max(4u, ps_to_tCK(7500, freq));
510 	pctl_timing->texsr = 512;                 /* tEXSR(max) is tDLLLK    */
511 	pctl_timing->txp = max(3u, ps_to_tCK(6000, freq));
512 	pctl_timing->txpdll = max(10u, ps_to_tCK(24000, freq));
513 	pctl_timing->tzqcs = max(64u, ps_to_tCK(80000, freq));
514 	pctl_timing->tzqcsi = 10000;               /* as used by Rockchip    */
515 	pctl_timing->tdqs = 1;                     /* fixed for DDR3         */
516 	pctl_timing->tcksre = max(5u, ps_to_tCK(10000, freq));
517 	pctl_timing->tcksrx = max(5u, ps_to_tCK(10000, freq));
518 	pctl_timing->tcke = max(3u, ps_to_tCK(5000, freq));
519 	pctl_timing->tmod = max(12u, ps_to_tCK(15000, freq));
520 	pctl_timing->trstl = ns_to_tCK(100, freq);
521 	pctl_timing->tzqcl = max(256u, ps_to_tCK(320000, freq));   /* tZQoper */
522 	pctl_timing->tmrr = 0;
523 	pctl_timing->tckesr = pctl_timing->tcke + 1;  /* JESD-79: tCKE + 1tCK */
524 	pctl_timing->tdpd = 0;    /* RK3368 TRM: "allowed values for DDR3: 0" */
525 
526 
527 	/*
528 	 * The controller can represent tFAW as 4x, 5x or 6x tRRD only.
529 	 * We want to use the smallest multiplier that satisfies the tFAW
530 	 * requirements of the given speed-bin.  If necessary, we stretch out
531 	 * tRRD to allow us to operate on a 6x multiplier for tFAW.
532 	 */
533 	tfaw_as_ps = 40000;      /* 40ns: tFAW for DDR3-1600K, 2KB page-size */
534 	if (tCK_to_ps(pctl_timing->trrd * 6, freq) < tfaw_as_ps) {
535 		/* If tFAW is > 6 x tRRD, we need to stretch tRRD */
536 		pctl_timing->trrd = ps_to_tCK(DIV_ROUND_UP(40000, 6), freq);
537 		params->tfaw_mult = TFAW_TRRD_MULT6;
538 	} else if (tCK_to_ps(pctl_timing->trrd * 5, freq) < tfaw_as_ps) {
539 		params->tfaw_mult = TFAW_TRRD_MULT6;
540 	} else if (tCK_to_ps(pctl_timing->trrd * 4, freq) < tfaw_as_ps) {
541 		params->tfaw_mult = TFAW_TRRD_MULT5;
542 	} else {
543 		params->tfaw_mult = TFAW_TRRD_MULT4;
544 	}
545 
546 	return 0;
547 }
548 
pctl_cfg(struct rk3368_ddr_pctl * pctl,struct rk3368_sdram_params * params,struct rk3368_grf * grf)549 static void pctl_cfg(struct rk3368_ddr_pctl *pctl,
550 		     struct rk3368_sdram_params *params,
551 		     struct rk3368_grf *grf)
552 {
553 	/* Configure PCTL timing registers */
554 	params->pctl_timing.trefi |= BIT(31);   /* see PCTL_TREFI */
555 	copy_to_reg(&pctl->togcnt1u, &params->pctl_timing.togcnt1u,
556 		    sizeof(params->pctl_timing));
557 	writel(params->trefi_mem_ddr3, &pctl->trefi_mem_ddr3);
558 
559 	/* Set up ODT write selector and ODT write length */
560 	writel((RANK0_ODT_WRITE_SEL | RANK1_ODT_WRITE_SEL), &pctl->dfiodtcfg);
561 	writel(7 << ODT_LEN_BL8_W_SHIFT, &pctl->dfiodtcfg1);
562 
563 	/* Set up the CL/CWL-dependent timings of DFI */
564 	writel((params->pctl_timing.tcl - 1) / 2 - 1, &pctl->dfitrddataen);
565 	writel((params->pctl_timing.tcwl - 1) / 2 - 1, &pctl->dfitphywrlat);
566 
567 	/* DDR3 */
568 	writel(params->tfaw_mult | DDR3_EN | DDR2_DDR3_BL_8, &pctl->mcfg);
569 	writel(0x001c0004, &grf->ddrc0_con0);
570 
571 	setbits_le32(&pctl->scfg, HW_LOW_POWER_EN);
572 }
573 
ddrphy_data_training(struct rk3368_ddr_pctl * pctl,struct rk3368_ddrphy * ddrphy)574 static int ddrphy_data_training(struct rk3368_ddr_pctl *pctl,
575 				struct rk3368_ddrphy *ddrphy)
576 {
577 	const u32 trefi = readl(&pctl->trefi);
578 	const ulong timeout_ms = 500;
579 	ulong tmp;
580 
581 	/* disable auto-refresh */
582 	writel(0 | BIT(31), &pctl->trefi);
583 
584 	clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20);
585 	clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x21);
586 
587 	tmp = get_timer(0);
588 	do {
589 		if (get_timer(tmp) > timeout_ms) {
590 			pr_err("%s: did not complete within %ld ms\n",
591 			      __func__, timeout_ms);
592 			return -ETIME;
593 		}
594 	} while ((readl(&ddrphy->reg[0xff]) & 0xf) != 0xf);
595 
596 	send_command(pctl, MCMD_RANK0 | MCMD_RANK1, PREA_CMD);
597 	clrsetbits_le32(&ddrphy->reg[2], 0x33, 0x20);
598 	/* resume auto-refresh */
599 	writel(trefi | BIT(31), &pctl->trefi);
600 
601 	return 0;
602 }
603 
sdram_col_row_detect(struct udevice * dev)604 static int sdram_col_row_detect(struct udevice *dev)
605 {
606 	struct dram_info *priv = dev_get_priv(dev);
607 	struct rk3368_sdram_params *params = dev_get_plat(dev);
608 	struct rk3368_ddr_pctl *pctl = priv->pctl;
609 	struct rk3368_msch *msch = priv->msch;
610 	const u32 test_pattern = 0x5aa5f00f;
611 	int row, col;
612 	uintptr_t addr;
613 
614 	move_to_config_state(pctl);
615 	writel(6, &msch->ddrconf);
616 	move_to_access_state(pctl);
617 
618 	/* Detect col */
619 	for (col = 11; col >= 9; col--) {
620 		writel(0, CONFIG_SYS_SDRAM_BASE);
621 		addr = CONFIG_SYS_SDRAM_BASE +
622 			(1 << (col + params->chan.bw - 1));
623 		writel(test_pattern, addr);
624 		if ((readl(addr) == test_pattern) &&
625 		    (readl(CONFIG_SYS_SDRAM_BASE) == 0))
626 			break;
627 	}
628 
629 	if (col == 8) {
630 		pr_err("%s: col detect error\n", __func__);
631 		return -EINVAL;
632 	}
633 
634 	move_to_config_state(pctl);
635 	writel(15, &msch->ddrconf);
636 	move_to_access_state(pctl);
637 
638 	/* Detect row*/
639 	for (row = 16; row >= 12; row--) {
640 		writel(0, CONFIG_SYS_SDRAM_BASE);
641 		addr = CONFIG_SYS_SDRAM_BASE + (1 << (row + 15 - 1));
642 		writel(test_pattern, addr);
643 		if ((readl(addr) == test_pattern) &&
644 		    (readl(CONFIG_SYS_SDRAM_BASE) == 0))
645 			break;
646 	}
647 
648 	if (row == 11) {
649 		pr_err("%s: row detect error\n", __func__);
650 		return -EINVAL;
651 	}
652 
653 	/* Record results */
654 	debug("%s: col %d, row %d\n", __func__, col, row);
655 	params->chan.col = col;
656 	params->chan.cs0_row = row;
657 	params->chan.cs1_row = row;
658 	params->chan.row_3_4 = 0;
659 
660 	return 0;
661 }
662 
msch_niu_config(struct rk3368_msch * msch,struct rk3368_sdram_params * params)663 static int msch_niu_config(struct rk3368_msch *msch,
664 			   struct rk3368_sdram_params *params)
665 {
666 	int i;
667 	const u8 cols =	params->chan.col - ((params->chan.bw == 2) ? 0 : 1);
668 	const u8 rows = params->chan.cs0_row;
669 
670 	/*
671 	 * The DDR address-translation table always assumes a 32bit
672 	 * bus and the comparison below takes care of adjusting for
673 	 * a 16bit bus (i.e. one column-address is consumed).
674 	 */
675 	const struct {
676 		u8 rows;
677 		u8 columns;
678 		u8 type;
679 	} ddrconf_table[] = {
680 		/*
681 		 * C-B-R-D patterns are first. For these we require an
682 		 * exact match for the columns and rows (as there's
683 		 * one entry per possible configuration).
684 		 */
685 		[0] =  { .rows = 13, .columns = 10, .type = DMC_MSCH_CBRD },
686 		[1] =  { .rows = 14, .columns = 10, .type = DMC_MSCH_CBRD },
687 		[2] =  { .rows = 15, .columns = 10, .type = DMC_MSCH_CBRD },
688 		[3] =  { .rows = 16, .columns = 10, .type = DMC_MSCH_CBRD },
689 		[4] =  { .rows = 14, .columns = 11, .type = DMC_MSCH_CBRD },
690 		[5] =  { .rows = 15, .columns = 11, .type = DMC_MSCH_CBRD },
691 		[6] =  { .rows = 16, .columns = 11, .type = DMC_MSCH_CBRD },
692 		[7] =  { .rows = 13, .columns = 9, .type = DMC_MSCH_CBRD },
693 		[8] =  { .rows = 14, .columns = 9, .type = DMC_MSCH_CBRD },
694 		[9] =  { .rows = 15, .columns = 9, .type = DMC_MSCH_CBRD },
695 		[10] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBRD },
696 		/*
697 		 * 11 through 13 are C-R-B-D patterns. These are
698 		 * matched for an exact number of columns and to
699 		 * ensure that the hardware uses at least as many rows
700 		 * as the pattern requires (i.e. we make sure that
701 		 * there's no gaps up until we hit the device/chip-select;
702 		 * however, these patterns can accept up to 16 rows,
703 		 * as the row-address continues right after the CS
704 		 * switching)
705 		 */
706 		[11] = { .rows = 15, .columns = 10, .type = DMC_MSCH_CRBD },
707 		[12] = { .rows = 14, .columns = 11, .type = DMC_MSCH_CRBD },
708 		[13] = { .rows = 13, .columns = 10, .type = DMC_MSCH_CRBD },
709 		/*
710 		 * 14 and 15 are catch-all variants using a C-B-D-R
711 		 * scheme (i.e. alternating the chip-select every time
712 		 * C-B overflows) and stuffing the remaining C-bits
713 		 * into the top. Matching needs to make sure that the
714 		 * number of columns is either an exact match (i.e. we
715 		 * can use less the the maximum number of rows) -or-
716 		 * that the columns exceed what is given in this table
717 		 * and the rows are an exact match (in which case the
718 		 * remaining C-bits will be stuffed onto the top after
719 		 * the device/chip-select switches).
720 		 */
721 		[14] = { .rows = 16, .columns = 10, .type = DMC_MSCH_CBDR },
722 		[15] = { .rows = 16, .columns = 9, .type = DMC_MSCH_CBDR },
723 	};
724 
725 	/*
726 	 * For C-B-R-D, we need an exact match (i.e. both for the number of
727 	 * columns and rows), while for C-B-D-R, only the the number of
728 	 * columns needs to match.
729 	 */
730 	for (i = 0; i < ARRAY_SIZE(ddrconf_table); i++) {
731 		bool match = false;
732 
733 		/* If this entry if for a different matcher, then skip it */
734 		if (ddrconf_table[i].type != params->memory_schedule)
735 			continue;
736 
737 		/*
738 		 * Match according to the rules (exact/inexact/at-least)
739 		 * documented in the ddrconf_table above.
740 		 */
741 		switch (params->memory_schedule) {
742 		case DMC_MSCH_CBRD:
743 			match = (ddrconf_table[i].columns == cols) &&
744 				(ddrconf_table[i].rows == rows);
745 			break;
746 
747 		case DMC_MSCH_CRBD:
748 			match = (ddrconf_table[i].columns == cols) &&
749 				(ddrconf_table[i].rows <= rows);
750 			break;
751 
752 		case DMC_MSCH_CBDR:
753 			match = (ddrconf_table[i].columns == cols) ||
754 				((ddrconf_table[i].columns <= cols) &&
755 				 (ddrconf_table[i].rows == rows));
756 			break;
757 
758 		default:
759 			break;
760 		}
761 
762 		if (match) {
763 			debug("%s: setting ddrconf 0x%x\n", __func__, i);
764 			writel(i, &msch->ddrconf);
765 			return 0;
766 		}
767 	}
768 
769 	pr_err("%s: ddrconf (NIU config) not found\n", __func__);
770 	return -EINVAL;
771 }
772 
dram_all_config(struct udevice * dev)773 static void dram_all_config(struct udevice *dev)
774 {
775 	struct dram_info *priv = dev_get_priv(dev);
776 	struct rk3368_pmu_grf *pmugrf = priv->pmugrf;
777 	struct rk3368_sdram_params *params = dev_get_plat(dev);
778 	const struct rk3288_sdram_channel *info = &params->chan;
779 	u32 sys_reg = 0;
780 	const int chan = 0;
781 
782 	sys_reg |= DDR3 << SYS_REG_DDRTYPE_SHIFT;
783 	sys_reg |= 0 << SYS_REG_NUM_CH_SHIFT;
784 
785 	sys_reg |= info->row_3_4 << SYS_REG_ROW_3_4_SHIFT(chan);
786 	sys_reg |= 1 << SYS_REG_CHINFO_SHIFT(chan);
787 	sys_reg |= (info->rank - 1) << SYS_REG_RANK_SHIFT(chan);
788 	sys_reg |= (info->col - 9) << SYS_REG_COL_SHIFT(chan);
789 	sys_reg |= info->bk == 3 ? 0 : 1 << SYS_REG_BK_SHIFT(chan);
790 	sys_reg |= (info->cs0_row - 13) << SYS_REG_CS0_ROW_SHIFT(chan);
791 	sys_reg |= (info->cs1_row - 13) << SYS_REG_CS1_ROW_SHIFT(chan);
792 	sys_reg |= (2 >> info->bw) << SYS_REG_BW_SHIFT(chan);
793 	sys_reg |= (2 >> info->dbw) << SYS_REG_DBW_SHIFT(chan);
794 
795 	writel(sys_reg, &pmugrf->os_reg[2]);
796 }
797 
setup_sdram(struct udevice * dev)798 static int setup_sdram(struct udevice *dev)
799 {
800 	struct dram_info *priv = dev_get_priv(dev);
801 	struct rk3368_sdram_params *params = dev_get_plat(dev);
802 
803 	struct rk3368_ddr_pctl *pctl = priv->pctl;
804 	struct rk3368_ddrphy *ddrphy = priv->phy;
805 	struct rk3368_cru *cru = priv->cru;
806 	struct rk3368_grf *grf = priv->grf;
807 	struct rk3368_msch *msch = priv->msch;
808 
809 	int ret;
810 
811 	/* The input clock (i.e. DPLL) needs to be 2x the DRAM frequency */
812 	ret = clk_set_rate(&priv->ddr_clk, 2 * params->ddr_freq);
813 	if (ret < 0) {
814 		debug("%s: could not set DDR clock: %d\n", __func__, ret);
815 		return ret;
816 	}
817 
818 	/* Update the read-latency for the RK3368 */
819 	writel(0x32, &msch->readlatency);
820 
821 	/* Initialise the DDR PCTL and DDR PHY */
822 	ddrctl_reset(cru);
823 	ddrphy_reset(ddrphy);
824 	ddrphy_config_delays(ddrphy, params->ddr_freq);
825 	dfi_cfg(pctl);
826 	/* Configure relative system information of grf_ddrc0_con0 register */
827 	ddr_set_ddr3_mode(grf, true);
828 	ddr_set_noc_spr_err_stall(grf, true);
829 	/* Calculate timings */
830 	pctl_calc_timings(params, params->ddr_freq);
831 	/* Initialise the device timings in protocol controller */
832 	pctl_cfg(pctl, params, grf);
833 	/* Configure AL, CL ... information of PHY registers */
834 	ddrphy_config(ddrphy,
835 		      params->pctl_timing.tcl,
836 		      params->pctl_timing.tal,
837 		      params->pctl_timing.tcwl);
838 
839 	/* Initialize DRAM and configure with mode-register values */
840 	ret = memory_init(pctl, params);
841 	if (ret)
842 		goto error;
843 
844 	move_to_config_state(pctl);
845 	/* Perform data-training */
846 	ddrphy_data_training(pctl, ddrphy);
847 	move_to_access_state(pctl);
848 
849 	/* TODO(prt): could detect rank in training... */
850 #ifdef CONFIG_TARGET_EVB_PX5
851 	params->chan.rank = 1;
852 #else
853 	params->chan.rank = 2;
854 #endif
855 	/* TODO(prt): bus width is not auto-detected (yet)... */
856 	params->chan.bw = 2;  /* 32bit wide bus */
857 	params->chan.dbw = params->chan.dbw;  /* 32bit wide bus */
858 
859 	/* DDR3 is always 8 bank */
860 	params->chan.bk = 3;
861 	/* Detect col and row number */
862 	ret = sdram_col_row_detect(dev);
863 	if (ret)
864 		goto error;
865 
866 	/* Configure NIU DDR configuration */
867 	ret = msch_niu_config(msch, params);
868 	if (ret)
869 		goto error;
870 
871 	/* set up OS_REG to communicate w/ next stage and OS */
872 	dram_all_config(dev);
873 
874 	return 0;
875 
876 error:
877 	printf("DRAM init failed!\n");
878 	hang();
879 }
880 #endif
881 
rk3368_dmc_of_to_plat(struct udevice * dev)882 static int rk3368_dmc_of_to_plat(struct udevice *dev)
883 {
884 	int ret = 0;
885 
886 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
887 	struct rk3368_sdram_params *plat = dev_get_plat(dev);
888 
889 	ret = regmap_init_mem(dev_ofnode(dev), &plat->map);
890 	if (ret)
891 		return ret;
892 #endif
893 
894 	return ret;
895 }
896 
897 #if CONFIG_IS_ENABLED(OF_PLATDATA)
conv_of_plat(struct udevice * dev)898 static int conv_of_plat(struct udevice *dev)
899 {
900 	struct rk3368_sdram_params *plat = dev_get_plat(dev);
901 	struct dtd_rockchip_rk3368_dmc *of_plat = &plat->of_plat;
902 
903 	plat->ddr_freq = of_plat->rockchip_ddr_frequency;
904 	plat->ddr_speed_bin = of_plat->rockchip_ddr_speed_bin;
905 	plat->memory_schedule = of_plat->rockchip_memory_schedule;
906 
907 	return 0;
908 }
909 #endif
910 
rk3368_dmc_probe(struct udevice * dev)911 static int rk3368_dmc_probe(struct udevice *dev)
912 {
913 #ifdef CONFIG_TPL_BUILD
914 	struct rk3368_sdram_params *plat = dev_get_plat(dev);
915 	struct rk3368_ddr_pctl *pctl;
916 	struct rk3368_ddrphy *ddrphy;
917 	struct rk3368_cru *cru;
918 	struct rk3368_grf *grf;
919 	struct rk3368_msch *msch;
920 	int ret;
921 	struct udevice *dev_clk;
922 #endif
923 	struct dram_info *priv = dev_get_priv(dev);
924 
925 #if CONFIG_IS_ENABLED(OF_PLATDATA)
926 	ret = conv_of_plat(dev);
927 	if (ret)
928 		return ret;
929 #endif
930 
931 	priv->pmugrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF);
932 	debug("%s: pmugrf=%p\n", __func__, priv->pmugrf);
933 
934 #ifdef CONFIG_TPL_BUILD
935 	pctl = (struct rk3368_ddr_pctl *)plat->of_plat.reg[0];
936 	ddrphy = (struct rk3368_ddrphy *)plat->of_plat.reg[2];
937 	msch = syscon_get_first_range(ROCKCHIP_SYSCON_MSCH);
938 	grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
939 
940 	priv->pctl = pctl;
941 	priv->phy = ddrphy;
942 	priv->msch = msch;
943 	priv->grf = grf;
944 
945 	ret = rockchip_get_clk(&dev_clk);
946 	if (ret)
947 		return ret;
948 	priv->ddr_clk.id = CLK_DDR;
949 	ret = clk_request(dev_clk, &priv->ddr_clk);
950 	if (ret)
951 		return ret;
952 
953 	cru = rockchip_get_cru();
954 	priv->cru = cru;
955 	if (IS_ERR(priv->cru))
956 		return PTR_ERR(priv->cru);
957 
958 	ret = setup_sdram(dev);
959 	if (ret)
960 		return ret;
961 #endif
962 
963 	priv->info.base = 0;
964 	priv->info.size =
965 		rockchip_sdram_size((phys_addr_t)&priv->pmugrf->os_reg[2]);
966 
967 	/*
968 	* we use the 0x00000000~0xfdffffff space since 0xff000000~0xffffffff
969 	* is SoC register space (i.e. reserved), and 0xfe000000~0xfeffffff is
970 	* inaccessible for some IP controller.
971 	*/
972 	priv->info.size = min(priv->info.size, (size_t)0xfe000000);
973 
974 	return 0;
975 }
976 
rk3368_dmc_get_info(struct udevice * dev,struct ram_info * info)977 static int rk3368_dmc_get_info(struct udevice *dev, struct ram_info *info)
978 {
979 	struct dram_info *priv = dev_get_priv(dev);
980 
981 	*info = priv->info;
982 	return 0;
983 }
984 
985 static struct ram_ops rk3368_dmc_ops = {
986 	.get_info = rk3368_dmc_get_info,
987 };
988 
989 
990 static const struct udevice_id rk3368_dmc_ids[] = {
991 	{ .compatible = "rockchip,rk3368-dmc" },
992 	{ }
993 };
994 
995 U_BOOT_DRIVER(rockchip_rk3368_dmc) = {
996 	.name = "rockchip_rk3368_dmc",
997 	.id = UCLASS_RAM,
998 	.of_match = rk3368_dmc_ids,
999 	.ops = &rk3368_dmc_ops,
1000 	.probe = rk3368_dmc_probe,
1001 	.priv_auto	= sizeof(struct dram_info),
1002 	.of_to_plat = rk3368_dmc_of_to_plat,
1003 	.probe = rk3368_dmc_probe,
1004 	.priv_auto	= sizeof(struct dram_info),
1005 	.plat_auto	= sizeof(struct rk3368_sdram_params),
1006 };
1007