1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  * Copyright (C) 2006, 2007 University of Szeged, Hungary
7  *
8  * Authors: Artem Bityutskiy (Битюцкий Артём)
9  *          Adrian Hunter
10  *          Zoltan Sogor
11  */
12 
13 /*
14  * This file implements UBIFS I/O subsystem which provides various I/O-related
15  * helper functions (reading/writing/checking/validating nodes) and implements
16  * write-buffering support. Write buffers help to save space which otherwise
17  * would have been wasted for padding to the nearest minimal I/O unit boundary.
18  * Instead, data first goes to the write-buffer and is flushed when the
19  * buffer is full or when it is not used for some time (by timer). This is
20  * similar to the mechanism is used by JFFS2.
21  *
22  * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
23  * write size (@c->max_write_size). The latter is the maximum amount of bytes
24  * the underlying flash is able to program at a time, and writing in
25  * @c->max_write_size units should presumably be faster. Obviously,
26  * @c->min_io_size <= @c->max_write_size. Write-buffers are of
27  * @c->max_write_size bytes in size for maximum performance. However, when a
28  * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
29  * boundary) which contains data is written, not the whole write-buffer,
30  * because this is more space-efficient.
31  *
32  * This optimization adds few complications to the code. Indeed, on the one
33  * hand, we want to write in optimal @c->max_write_size bytes chunks, which
34  * also means aligning writes at the @c->max_write_size bytes offsets. On the
35  * other hand, we do not want to waste space when synchronizing the write
36  * buffer, so during synchronization we writes in smaller chunks. And this makes
37  * the next write offset to be not aligned to @c->max_write_size bytes. So the
38  * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
39  * to @c->max_write_size bytes again. We do this by temporarily shrinking
40  * write-buffer size (@wbuf->size).
41  *
42  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
43  * mutexes defined inside these objects. Since sometimes upper-level code
44  * has to lock the write-buffer (e.g. journal space reservation code), many
45  * functions related to write-buffers have "nolock" suffix which means that the
46  * caller has to lock the write-buffer before calling this function.
47  *
48  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
49  * aligned, UBIFS starts the next node from the aligned address, and the padded
50  * bytes may contain any rubbish. In other words, UBIFS does not put padding
51  * bytes in those small gaps. Common headers of nodes store real node lengths,
52  * not aligned lengths. Indexing nodes also store real lengths in branches.
53  *
54  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
55  * uses padding nodes or padding bytes, if the padding node does not fit.
56  *
57  * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
58  * they are read from the flash media.
59  */
60 
61 #ifndef __UBOOT__
62 #include <init.h>
63 #include <log.h>
64 #include <dm/devres.h>
65 #include <linux/crc32.h>
66 #include <linux/slab.h>
67 #include <u-boot/crc.h>
68 #else
69 #include <linux/compat.h>
70 #include <linux/err.h>
71 #endif
72 #include "ubifs.h"
73 
74 /**
75  * ubifs_ro_mode - switch UBIFS to read read-only mode.
76  * @c: UBIFS file-system description object
77  * @err: error code which is the reason of switching to R/O mode
78  */
ubifs_ro_mode(struct ubifs_info * c,int err)79 void ubifs_ro_mode(struct ubifs_info *c, int err)
80 {
81 	if (!c->ro_error) {
82 		c->ro_error = 1;
83 		c->no_chk_data_crc = 0;
84 		c->vfs_sb->s_flags |= MS_RDONLY;
85 		ubifs_warn(c, "switched to read-only mode, error %d", err);
86 		dump_stack();
87 	}
88 }
89 
90 /*
91  * Below are simple wrappers over UBI I/O functions which include some
92  * additional checks and UBIFS debugging stuff. See corresponding UBI function
93  * for more information.
94  */
95 
ubifs_leb_read(const struct ubifs_info * c,int lnum,void * buf,int offs,int len,int even_ebadmsg)96 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
97 		   int len, int even_ebadmsg)
98 {
99 	int err;
100 
101 	err = ubi_read(c->ubi, lnum, buf, offs, len);
102 	/*
103 	 * In case of %-EBADMSG print the error message only if the
104 	 * @even_ebadmsg is true.
105 	 */
106 	if (err && (err != -EBADMSG || even_ebadmsg)) {
107 		ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
108 			  len, lnum, offs, err);
109 		dump_stack();
110 	}
111 	return err;
112 }
113 
ubifs_leb_write(struct ubifs_info * c,int lnum,const void * buf,int offs,int len)114 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
115 		    int len)
116 {
117 	int err = 0;
118 
119 	ubifs_assert(!c->ro_media && !c->ro_mount);
120 	if (c->ro_error)
121 		return -EROFS;
122 	if (!dbg_is_tst_rcvry(c))
123 		err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
124 #ifndef __UBOOT__
125 	else
126 		err = dbg_leb_write(c, lnum, buf, offs, len);
127 #endif
128 	if (err) {
129 		ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
130 			  len, lnum, offs, err);
131 		ubifs_ro_mode(c, err);
132 		dump_stack();
133 	}
134 	return err;
135 }
136 
ubifs_leb_change(struct ubifs_info * c,int lnum,const void * buf,int len)137 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
138 {
139 	int err = 0;
140 
141 	ubifs_assert(!c->ro_media && !c->ro_mount);
142 	if (c->ro_error)
143 		return -EROFS;
144 	if (!dbg_is_tst_rcvry(c))
145 		err = ubi_leb_change(c->ubi, lnum, buf, len);
146 #ifndef __UBOOT__
147 	else
148 		err = dbg_leb_change(c, lnum, buf, len);
149 #endif
150 	if (err) {
151 		ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
152 			  len, lnum, err);
153 		ubifs_ro_mode(c, err);
154 		dump_stack();
155 	}
156 	return err;
157 }
158 
ubifs_leb_unmap(struct ubifs_info * c,int lnum)159 int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
160 {
161 	int err = 0;
162 
163 	ubifs_assert(!c->ro_media && !c->ro_mount);
164 	if (c->ro_error)
165 		return -EROFS;
166 	if (!dbg_is_tst_rcvry(c))
167 		err = ubi_leb_unmap(c->ubi, lnum);
168 #ifndef __UBOOT__
169 	else
170 		err = dbg_leb_unmap(c, lnum);
171 #endif
172 	if (err) {
173 		ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
174 		ubifs_ro_mode(c, err);
175 		dump_stack();
176 	}
177 	return err;
178 }
179 
ubifs_leb_map(struct ubifs_info * c,int lnum)180 int ubifs_leb_map(struct ubifs_info *c, int lnum)
181 {
182 	int err = 0;
183 
184 	ubifs_assert(!c->ro_media && !c->ro_mount);
185 	if (c->ro_error)
186 		return -EROFS;
187 	if (!dbg_is_tst_rcvry(c))
188 		err = ubi_leb_map(c->ubi, lnum);
189 #ifndef __UBOOT__
190 	else
191 		err = dbg_leb_map(c, lnum);
192 #endif
193 	if (err) {
194 		ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
195 		ubifs_ro_mode(c, err);
196 		dump_stack();
197 	}
198 	return err;
199 }
200 
ubifs_is_mapped(const struct ubifs_info * c,int lnum)201 int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
202 {
203 	int err;
204 
205 	err = ubi_is_mapped(c->ubi, lnum);
206 	if (err < 0) {
207 		ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
208 			  lnum, err);
209 		dump_stack();
210 	}
211 	return err;
212 }
213 
214 /**
215  * ubifs_check_node - check node.
216  * @c: UBIFS file-system description object
217  * @buf: node to check
218  * @lnum: logical eraseblock number
219  * @offs: offset within the logical eraseblock
220  * @quiet: print no messages
221  * @must_chk_crc: indicates whether to always check the CRC
222  *
223  * This function checks node magic number and CRC checksum. This function also
224  * validates node length to prevent UBIFS from becoming crazy when an attacker
225  * feeds it a file-system image with incorrect nodes. For example, too large
226  * node length in the common header could cause UBIFS to read memory outside of
227  * allocated buffer when checking the CRC checksum.
228  *
229  * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
230  * true, which is controlled by corresponding UBIFS mount option. However, if
231  * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
232  * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
233  * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
234  * is checked. This is because during mounting or re-mounting from R/O mode to
235  * R/W mode we may read journal nodes (when replying the journal or doing the
236  * recovery) and the journal nodes may potentially be corrupted, so checking is
237  * required.
238  *
239  * This function returns zero in case of success and %-EUCLEAN in case of bad
240  * CRC or magic.
241  */
ubifs_check_node(const struct ubifs_info * c,const void * buf,int lnum,int offs,int quiet,int must_chk_crc)242 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
243 		     int offs, int quiet, int must_chk_crc)
244 {
245 	int err = -EINVAL, type, node_len;
246 	uint32_t crc, node_crc, magic;
247 	const struct ubifs_ch *ch = buf;
248 
249 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
250 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
251 
252 	magic = le32_to_cpu(ch->magic);
253 	if (magic != UBIFS_NODE_MAGIC) {
254 		if (!quiet)
255 			ubifs_err(c, "bad magic %#08x, expected %#08x",
256 				  magic, UBIFS_NODE_MAGIC);
257 		err = -EUCLEAN;
258 		goto out;
259 	}
260 
261 	type = ch->node_type;
262 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
263 		if (!quiet)
264 			ubifs_err(c, "bad node type %d", type);
265 		goto out;
266 	}
267 
268 	node_len = le32_to_cpu(ch->len);
269 	if (node_len + offs > c->leb_size)
270 		goto out_len;
271 
272 	if (c->ranges[type].max_len == 0) {
273 		if (node_len != c->ranges[type].len)
274 			goto out_len;
275 	} else if (node_len < c->ranges[type].min_len ||
276 		   node_len > c->ranges[type].max_len)
277 		goto out_len;
278 
279 	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
280 	    !c->remounting_rw && c->no_chk_data_crc)
281 		return 0;
282 
283 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
284 	node_crc = le32_to_cpu(ch->crc);
285 	if (crc != node_crc) {
286 		if (!quiet)
287 			ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
288 				  crc, node_crc);
289 		err = -EUCLEAN;
290 		goto out;
291 	}
292 
293 	return 0;
294 
295 out_len:
296 	if (!quiet)
297 		ubifs_err(c, "bad node length %d", node_len);
298 out:
299 	if (!quiet) {
300 		ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
301 		ubifs_dump_node(c, buf);
302 		dump_stack();
303 	}
304 	return err;
305 }
306 
307 /**
308  * ubifs_pad - pad flash space.
309  * @c: UBIFS file-system description object
310  * @buf: buffer to put padding to
311  * @pad: how many bytes to pad
312  *
313  * The flash media obliges us to write only in chunks of %c->min_io_size and
314  * when we have to write less data we add padding node to the write-buffer and
315  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
316  * media is being scanned. If the amount of wasted space is not enough to fit a
317  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
318  * pattern (%UBIFS_PADDING_BYTE).
319  *
320  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
321  * used.
322  */
ubifs_pad(const struct ubifs_info * c,void * buf,int pad)323 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
324 {
325 	uint32_t crc;
326 
327 	ubifs_assert(pad >= 0 && !(pad & 7));
328 
329 	if (pad >= UBIFS_PAD_NODE_SZ) {
330 		struct ubifs_ch *ch = buf;
331 		struct ubifs_pad_node *pad_node = buf;
332 
333 		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
334 		ch->node_type = UBIFS_PAD_NODE;
335 		ch->group_type = UBIFS_NO_NODE_GROUP;
336 		ch->padding[0] = ch->padding[1] = 0;
337 		ch->sqnum = 0;
338 		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
339 		pad -= UBIFS_PAD_NODE_SZ;
340 		pad_node->pad_len = cpu_to_le32(pad);
341 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
342 		ch->crc = cpu_to_le32(crc);
343 		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
344 	} else if (pad > 0)
345 		/* Too little space, padding node won't fit */
346 		memset(buf, UBIFS_PADDING_BYTE, pad);
347 }
348 
349 /**
350  * next_sqnum - get next sequence number.
351  * @c: UBIFS file-system description object
352  */
next_sqnum(struct ubifs_info * c)353 static unsigned long long next_sqnum(struct ubifs_info *c)
354 {
355 	unsigned long long sqnum;
356 
357 	spin_lock(&c->cnt_lock);
358 	sqnum = ++c->max_sqnum;
359 	spin_unlock(&c->cnt_lock);
360 
361 	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
362 		if (sqnum >= SQNUM_WATERMARK) {
363 			ubifs_err(c, "sequence number overflow %llu, end of life",
364 				  sqnum);
365 			ubifs_ro_mode(c, -EINVAL);
366 		}
367 		ubifs_warn(c, "running out of sequence numbers, end of life soon");
368 	}
369 
370 	return sqnum;
371 }
372 
373 /**
374  * ubifs_prepare_node - prepare node to be written to flash.
375  * @c: UBIFS file-system description object
376  * @node: the node to pad
377  * @len: node length
378  * @pad: if the buffer has to be padded
379  *
380  * This function prepares node at @node to be written to the media - it
381  * calculates node CRC, fills the common header, and adds proper padding up to
382  * the next minimum I/O unit if @pad is not zero.
383  */
ubifs_prepare_node(struct ubifs_info * c,void * node,int len,int pad)384 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
385 {
386 	uint32_t crc;
387 	struct ubifs_ch *ch = node;
388 	unsigned long long sqnum = next_sqnum(c);
389 
390 	ubifs_assert(len >= UBIFS_CH_SZ);
391 
392 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
393 	ch->len = cpu_to_le32(len);
394 	ch->group_type = UBIFS_NO_NODE_GROUP;
395 	ch->sqnum = cpu_to_le64(sqnum);
396 	ch->padding[0] = ch->padding[1] = 0;
397 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
398 	ch->crc = cpu_to_le32(crc);
399 
400 	if (pad) {
401 		len = ALIGN(len, 8);
402 		pad = ALIGN(len, c->min_io_size) - len;
403 		ubifs_pad(c, node + len, pad);
404 	}
405 }
406 
407 /**
408  * ubifs_prep_grp_node - prepare node of a group to be written to flash.
409  * @c: UBIFS file-system description object
410  * @node: the node to pad
411  * @len: node length
412  * @last: indicates the last node of the group
413  *
414  * This function prepares node at @node to be written to the media - it
415  * calculates node CRC and fills the common header.
416  */
ubifs_prep_grp_node(struct ubifs_info * c,void * node,int len,int last)417 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
418 {
419 	uint32_t crc;
420 	struct ubifs_ch *ch = node;
421 	unsigned long long sqnum = next_sqnum(c);
422 
423 	ubifs_assert(len >= UBIFS_CH_SZ);
424 
425 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
426 	ch->len = cpu_to_le32(len);
427 	if (last)
428 		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
429 	else
430 		ch->group_type = UBIFS_IN_NODE_GROUP;
431 	ch->sqnum = cpu_to_le64(sqnum);
432 	ch->padding[0] = ch->padding[1] = 0;
433 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
434 	ch->crc = cpu_to_le32(crc);
435 }
436 
437 #ifndef __UBOOT__
438 /**
439  * wbuf_timer_callback - write-buffer timer callback function.
440  * @timer: timer data (write-buffer descriptor)
441  *
442  * This function is called when the write-buffer timer expires.
443  */
wbuf_timer_callback_nolock(struct hrtimer * timer)444 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
445 {
446 	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
447 
448 	dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
449 	wbuf->need_sync = 1;
450 	wbuf->c->need_wbuf_sync = 1;
451 	ubifs_wake_up_bgt(wbuf->c);
452 	return HRTIMER_NORESTART;
453 }
454 
455 /**
456  * new_wbuf_timer - start new write-buffer timer.
457  * @wbuf: write-buffer descriptor
458  */
new_wbuf_timer_nolock(struct ubifs_wbuf * wbuf)459 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
460 {
461 	ubifs_assert(!hrtimer_active(&wbuf->timer));
462 
463 	if (wbuf->no_timer)
464 		return;
465 	dbg_io("set timer for jhead %s, %llu-%llu millisecs",
466 	       dbg_jhead(wbuf->jhead),
467 	       div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
468 	       div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
469 		       USEC_PER_SEC));
470 	hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
471 			       HRTIMER_MODE_REL);
472 }
473 #endif
474 
475 /**
476  * cancel_wbuf_timer - cancel write-buffer timer.
477  * @wbuf: write-buffer descriptor
478  */
cancel_wbuf_timer_nolock(struct ubifs_wbuf * wbuf)479 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
480 {
481 	if (wbuf->no_timer)
482 		return;
483 	wbuf->need_sync = 0;
484 #ifndef __UBOOT__
485 	hrtimer_cancel(&wbuf->timer);
486 #endif
487 }
488 
489 /**
490  * ubifs_wbuf_sync_nolock - synchronize write-buffer.
491  * @wbuf: write-buffer to synchronize
492  *
493  * This function synchronizes write-buffer @buf and returns zero in case of
494  * success or a negative error code in case of failure.
495  *
496  * Note, although write-buffers are of @c->max_write_size, this function does
497  * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
498  * if the write-buffer is only partially filled with data, only the used part
499  * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
500  * This way we waste less space.
501  */
ubifs_wbuf_sync_nolock(struct ubifs_wbuf * wbuf)502 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
503 {
504 	struct ubifs_info *c = wbuf->c;
505 	int err, dirt, sync_len;
506 
507 	cancel_wbuf_timer_nolock(wbuf);
508 	if (!wbuf->used || wbuf->lnum == -1)
509 		/* Write-buffer is empty or not seeked */
510 		return 0;
511 
512 	dbg_io("LEB %d:%d, %d bytes, jhead %s",
513 	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
514 	ubifs_assert(!(wbuf->avail & 7));
515 	ubifs_assert(wbuf->offs + wbuf->size <= c->leb_size);
516 	ubifs_assert(wbuf->size >= c->min_io_size);
517 	ubifs_assert(wbuf->size <= c->max_write_size);
518 	ubifs_assert(wbuf->size % c->min_io_size == 0);
519 	ubifs_assert(!c->ro_media && !c->ro_mount);
520 	if (c->leb_size - wbuf->offs >= c->max_write_size)
521 		ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
522 
523 	if (c->ro_error)
524 		return -EROFS;
525 
526 	/*
527 	 * Do not write whole write buffer but write only the minimum necessary
528 	 * amount of min. I/O units.
529 	 */
530 	sync_len = ALIGN(wbuf->used, c->min_io_size);
531 	dirt = sync_len - wbuf->used;
532 	if (dirt)
533 		ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
534 	err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
535 	if (err)
536 		return err;
537 
538 	spin_lock(&wbuf->lock);
539 	wbuf->offs += sync_len;
540 	/*
541 	 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
542 	 * But our goal is to optimize writes and make sure we write in
543 	 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
544 	 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
545 	 * sure that @wbuf->offs + @wbuf->size is aligned to
546 	 * @c->max_write_size. This way we make sure that after next
547 	 * write-buffer flush we are again at the optimal offset (aligned to
548 	 * @c->max_write_size).
549 	 */
550 	if (c->leb_size - wbuf->offs < c->max_write_size)
551 		wbuf->size = c->leb_size - wbuf->offs;
552 	else if (wbuf->offs & (c->max_write_size - 1))
553 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
554 	else
555 		wbuf->size = c->max_write_size;
556 	wbuf->avail = wbuf->size;
557 	wbuf->used = 0;
558 	wbuf->next_ino = 0;
559 	spin_unlock(&wbuf->lock);
560 
561 	if (wbuf->sync_callback)
562 		err = wbuf->sync_callback(c, wbuf->lnum,
563 					  c->leb_size - wbuf->offs, dirt);
564 	return err;
565 }
566 
567 /**
568  * ubifs_wbuf_seek_nolock - seek write-buffer.
569  * @wbuf: write-buffer
570  * @lnum: logical eraseblock number to seek to
571  * @offs: logical eraseblock offset to seek to
572  *
573  * This function targets the write-buffer to logical eraseblock @lnum:@offs.
574  * The write-buffer has to be empty. Returns zero in case of success and a
575  * negative error code in case of failure.
576  */
ubifs_wbuf_seek_nolock(struct ubifs_wbuf * wbuf,int lnum,int offs)577 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
578 {
579 	const struct ubifs_info *c = wbuf->c;
580 
581 	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
582 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
583 	ubifs_assert(offs >= 0 && offs <= c->leb_size);
584 	ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
585 	ubifs_assert(lnum != wbuf->lnum);
586 	ubifs_assert(wbuf->used == 0);
587 
588 	spin_lock(&wbuf->lock);
589 	wbuf->lnum = lnum;
590 	wbuf->offs = offs;
591 	if (c->leb_size - wbuf->offs < c->max_write_size)
592 		wbuf->size = c->leb_size - wbuf->offs;
593 	else if (wbuf->offs & (c->max_write_size - 1))
594 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
595 	else
596 		wbuf->size = c->max_write_size;
597 	wbuf->avail = wbuf->size;
598 	wbuf->used = 0;
599 	spin_unlock(&wbuf->lock);
600 
601 	return 0;
602 }
603 
604 #ifndef __UBOOT__
605 /**
606  * ubifs_bg_wbufs_sync - synchronize write-buffers.
607  * @c: UBIFS file-system description object
608  *
609  * This function is called by background thread to synchronize write-buffers.
610  * Returns zero in case of success and a negative error code in case of
611  * failure.
612  */
ubifs_bg_wbufs_sync(struct ubifs_info * c)613 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
614 {
615 	int err, i;
616 
617 	ubifs_assert(!c->ro_media && !c->ro_mount);
618 	if (!c->need_wbuf_sync)
619 		return 0;
620 	c->need_wbuf_sync = 0;
621 
622 	if (c->ro_error) {
623 		err = -EROFS;
624 		goto out_timers;
625 	}
626 
627 	dbg_io("synchronize");
628 	for (i = 0; i < c->jhead_cnt; i++) {
629 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
630 
631 		cond_resched();
632 
633 		/*
634 		 * If the mutex is locked then wbuf is being changed, so
635 		 * synchronization is not necessary.
636 		 */
637 		if (mutex_is_locked(&wbuf->io_mutex))
638 			continue;
639 
640 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
641 		if (!wbuf->need_sync) {
642 			mutex_unlock(&wbuf->io_mutex);
643 			continue;
644 		}
645 
646 		err = ubifs_wbuf_sync_nolock(wbuf);
647 		mutex_unlock(&wbuf->io_mutex);
648 		if (err) {
649 			ubifs_err(c, "cannot sync write-buffer, error %d", err);
650 			ubifs_ro_mode(c, err);
651 			goto out_timers;
652 		}
653 	}
654 
655 	return 0;
656 
657 out_timers:
658 	/* Cancel all timers to prevent repeated errors */
659 	for (i = 0; i < c->jhead_cnt; i++) {
660 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
661 
662 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
663 		cancel_wbuf_timer_nolock(wbuf);
664 		mutex_unlock(&wbuf->io_mutex);
665 	}
666 	return err;
667 }
668 
669 /**
670  * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
671  * @wbuf: write-buffer
672  * @buf: node to write
673  * @len: node length
674  *
675  * This function writes data to flash via write-buffer @wbuf. This means that
676  * the last piece of the node won't reach the flash media immediately if it
677  * does not take whole max. write unit (@c->max_write_size). Instead, the node
678  * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
679  * because more data are appended to the write-buffer).
680  *
681  * This function returns zero in case of success and a negative error code in
682  * case of failure. If the node cannot be written because there is no more
683  * space in this logical eraseblock, %-ENOSPC is returned.
684  */
ubifs_wbuf_write_nolock(struct ubifs_wbuf * wbuf,void * buf,int len)685 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
686 {
687 	struct ubifs_info *c = wbuf->c;
688 	int err, written, n, aligned_len = ALIGN(len, 8);
689 
690 	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
691 	       dbg_ntype(((struct ubifs_ch *)buf)->node_type),
692 	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
693 	ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
694 	ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
695 	ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
696 	ubifs_assert(wbuf->avail > 0 && wbuf->avail <= wbuf->size);
697 	ubifs_assert(wbuf->size >= c->min_io_size);
698 	ubifs_assert(wbuf->size <= c->max_write_size);
699 	ubifs_assert(wbuf->size % c->min_io_size == 0);
700 	ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
701 	ubifs_assert(!c->ro_media && !c->ro_mount);
702 	ubifs_assert(!c->space_fixup);
703 	if (c->leb_size - wbuf->offs >= c->max_write_size)
704 		ubifs_assert(!((wbuf->offs + wbuf->size) % c->max_write_size));
705 
706 	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
707 		err = -ENOSPC;
708 		goto out;
709 	}
710 
711 	cancel_wbuf_timer_nolock(wbuf);
712 
713 	if (c->ro_error)
714 		return -EROFS;
715 
716 	if (aligned_len <= wbuf->avail) {
717 		/*
718 		 * The node is not very large and fits entirely within
719 		 * write-buffer.
720 		 */
721 		memcpy(wbuf->buf + wbuf->used, buf, len);
722 
723 		if (aligned_len == wbuf->avail) {
724 			dbg_io("flush jhead %s wbuf to LEB %d:%d",
725 			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
726 			err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
727 					      wbuf->offs, wbuf->size);
728 			if (err)
729 				goto out;
730 
731 			spin_lock(&wbuf->lock);
732 			wbuf->offs += wbuf->size;
733 			if (c->leb_size - wbuf->offs >= c->max_write_size)
734 				wbuf->size = c->max_write_size;
735 			else
736 				wbuf->size = c->leb_size - wbuf->offs;
737 			wbuf->avail = wbuf->size;
738 			wbuf->used = 0;
739 			wbuf->next_ino = 0;
740 			spin_unlock(&wbuf->lock);
741 		} else {
742 			spin_lock(&wbuf->lock);
743 			wbuf->avail -= aligned_len;
744 			wbuf->used += aligned_len;
745 			spin_unlock(&wbuf->lock);
746 		}
747 
748 		goto exit;
749 	}
750 
751 	written = 0;
752 
753 	if (wbuf->used) {
754 		/*
755 		 * The node is large enough and does not fit entirely within
756 		 * current available space. We have to fill and flush
757 		 * write-buffer and switch to the next max. write unit.
758 		 */
759 		dbg_io("flush jhead %s wbuf to LEB %d:%d",
760 		       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
761 		memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
762 		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
763 				      wbuf->size);
764 		if (err)
765 			goto out;
766 
767 		wbuf->offs += wbuf->size;
768 		len -= wbuf->avail;
769 		aligned_len -= wbuf->avail;
770 		written += wbuf->avail;
771 	} else if (wbuf->offs & (c->max_write_size - 1)) {
772 		/*
773 		 * The write-buffer offset is not aligned to
774 		 * @c->max_write_size and @wbuf->size is less than
775 		 * @c->max_write_size. Write @wbuf->size bytes to make sure the
776 		 * following writes are done in optimal @c->max_write_size
777 		 * chunks.
778 		 */
779 		dbg_io("write %d bytes to LEB %d:%d",
780 		       wbuf->size, wbuf->lnum, wbuf->offs);
781 		err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
782 				      wbuf->size);
783 		if (err)
784 			goto out;
785 
786 		wbuf->offs += wbuf->size;
787 		len -= wbuf->size;
788 		aligned_len -= wbuf->size;
789 		written += wbuf->size;
790 	}
791 
792 	/*
793 	 * The remaining data may take more whole max. write units, so write the
794 	 * remains multiple to max. write unit size directly to the flash media.
795 	 * We align node length to 8-byte boundary because we anyway flash wbuf
796 	 * if the remaining space is less than 8 bytes.
797 	 */
798 	n = aligned_len >> c->max_write_shift;
799 	if (n) {
800 		n <<= c->max_write_shift;
801 		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
802 		       wbuf->offs);
803 		err = ubifs_leb_write(c, wbuf->lnum, buf + written,
804 				      wbuf->offs, n);
805 		if (err)
806 			goto out;
807 		wbuf->offs += n;
808 		aligned_len -= n;
809 		len -= n;
810 		written += n;
811 	}
812 
813 	spin_lock(&wbuf->lock);
814 	if (aligned_len)
815 		/*
816 		 * And now we have what's left and what does not take whole
817 		 * max. write unit, so write it to the write-buffer and we are
818 		 * done.
819 		 */
820 		memcpy(wbuf->buf, buf + written, len);
821 
822 	if (c->leb_size - wbuf->offs >= c->max_write_size)
823 		wbuf->size = c->max_write_size;
824 	else
825 		wbuf->size = c->leb_size - wbuf->offs;
826 	wbuf->avail = wbuf->size - aligned_len;
827 	wbuf->used = aligned_len;
828 	wbuf->next_ino = 0;
829 	spin_unlock(&wbuf->lock);
830 
831 exit:
832 	if (wbuf->sync_callback) {
833 		int free = c->leb_size - wbuf->offs - wbuf->used;
834 
835 		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
836 		if (err)
837 			goto out;
838 	}
839 
840 	if (wbuf->used)
841 		new_wbuf_timer_nolock(wbuf);
842 
843 	return 0;
844 
845 out:
846 	ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
847 		  len, wbuf->lnum, wbuf->offs, err);
848 	ubifs_dump_node(c, buf);
849 	dump_stack();
850 	ubifs_dump_leb(c, wbuf->lnum);
851 	return err;
852 }
853 
854 /**
855  * ubifs_write_node - write node to the media.
856  * @c: UBIFS file-system description object
857  * @buf: the node to write
858  * @len: node length
859  * @lnum: logical eraseblock number
860  * @offs: offset within the logical eraseblock
861  *
862  * This function automatically fills node magic number, assigns sequence
863  * number, and calculates node CRC checksum. The length of the @buf buffer has
864  * to be aligned to the minimal I/O unit size. This function automatically
865  * appends padding node and padding bytes if needed. Returns zero in case of
866  * success and a negative error code in case of failure.
867  */
ubifs_write_node(struct ubifs_info * c,void * buf,int len,int lnum,int offs)868 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
869 		     int offs)
870 {
871 	int err, buf_len = ALIGN(len, c->min_io_size);
872 
873 	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
874 	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
875 	       buf_len);
876 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
877 	ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
878 	ubifs_assert(!c->ro_media && !c->ro_mount);
879 	ubifs_assert(!c->space_fixup);
880 
881 	if (c->ro_error)
882 		return -EROFS;
883 
884 	ubifs_prepare_node(c, buf, len, 1);
885 	err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
886 	if (err)
887 		ubifs_dump_node(c, buf);
888 
889 	return err;
890 }
891 #endif
892 
893 /**
894  * ubifs_read_node_wbuf - read node from the media or write-buffer.
895  * @wbuf: wbuf to check for un-written data
896  * @buf: buffer to read to
897  * @type: node type
898  * @len: node length
899  * @lnum: logical eraseblock number
900  * @offs: offset within the logical eraseblock
901  *
902  * This function reads a node of known type and length, checks it and stores
903  * in @buf. If the node partially or fully sits in the write-buffer, this
904  * function takes data from the buffer, otherwise it reads the flash media.
905  * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
906  * error code in case of failure.
907  */
ubifs_read_node_wbuf(struct ubifs_wbuf * wbuf,void * buf,int type,int len,int lnum,int offs)908 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
909 			 int lnum, int offs)
910 {
911 	const struct ubifs_info *c = wbuf->c;
912 	int err, rlen, overlap;
913 	struct ubifs_ch *ch = buf;
914 
915 	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
916 	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
917 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
918 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
919 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
920 
921 	spin_lock(&wbuf->lock);
922 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
923 	if (!overlap) {
924 		/* We may safely unlock the write-buffer and read the data */
925 		spin_unlock(&wbuf->lock);
926 		return ubifs_read_node(c, buf, type, len, lnum, offs);
927 	}
928 
929 	/* Don't read under wbuf */
930 	rlen = wbuf->offs - offs;
931 	if (rlen < 0)
932 		rlen = 0;
933 
934 	/* Copy the rest from the write-buffer */
935 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
936 	spin_unlock(&wbuf->lock);
937 
938 	if (rlen > 0) {
939 		/* Read everything that goes before write-buffer */
940 		err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
941 		if (err && err != -EBADMSG)
942 			return err;
943 	}
944 
945 	if (type != ch->node_type) {
946 		ubifs_err(c, "bad node type (%d but expected %d)",
947 			  ch->node_type, type);
948 		goto out;
949 	}
950 
951 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
952 	if (err) {
953 		ubifs_err(c, "expected node type %d", type);
954 		return err;
955 	}
956 
957 	rlen = le32_to_cpu(ch->len);
958 	if (rlen != len) {
959 		ubifs_err(c, "bad node length %d, expected %d", rlen, len);
960 		goto out;
961 	}
962 
963 	return 0;
964 
965 out:
966 	ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
967 	ubifs_dump_node(c, buf);
968 	dump_stack();
969 	return -EINVAL;
970 }
971 
972 /**
973  * ubifs_read_node - read node.
974  * @c: UBIFS file-system description object
975  * @buf: buffer to read to
976  * @type: node type
977  * @len: node length (not aligned)
978  * @lnum: logical eraseblock number
979  * @offs: offset within the logical eraseblock
980  *
981  * This function reads a node of known type and and length, checks it and
982  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
983  * and a negative error code in case of failure.
984  */
ubifs_read_node(const struct ubifs_info * c,void * buf,int type,int len,int lnum,int offs)985 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
986 		    int lnum, int offs)
987 {
988 	int err, l;
989 	struct ubifs_ch *ch = buf;
990 
991 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
992 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
993 	ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
994 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
995 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
996 
997 	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
998 	if (err && err != -EBADMSG)
999 		return err;
1000 
1001 	if (type != ch->node_type) {
1002 		ubifs_errc(c, "bad node type (%d but expected %d)",
1003 			   ch->node_type, type);
1004 		goto out;
1005 	}
1006 
1007 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1008 	if (err) {
1009 		ubifs_errc(c, "expected node type %d", type);
1010 		return err;
1011 	}
1012 
1013 	l = le32_to_cpu(ch->len);
1014 	if (l != len) {
1015 		ubifs_errc(c, "bad node length %d, expected %d", l, len);
1016 		goto out;
1017 	}
1018 
1019 	return 0;
1020 
1021 out:
1022 	ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1023 		   offs, ubi_is_mapped(c->ubi, lnum));
1024 	if (!c->probing) {
1025 		ubifs_dump_node(c, buf);
1026 		dump_stack();
1027 	}
1028 	return -EINVAL;
1029 }
1030 
1031 /**
1032  * ubifs_wbuf_init - initialize write-buffer.
1033  * @c: UBIFS file-system description object
1034  * @wbuf: write-buffer to initialize
1035  *
1036  * This function initializes write-buffer. Returns zero in case of success
1037  * %-ENOMEM in case of failure.
1038  */
ubifs_wbuf_init(struct ubifs_info * c,struct ubifs_wbuf * wbuf)1039 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1040 {
1041 	size_t size;
1042 
1043 	wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1044 	if (!wbuf->buf)
1045 		return -ENOMEM;
1046 
1047 	size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1048 	wbuf->inodes = kmalloc(size, GFP_KERNEL);
1049 	if (!wbuf->inodes) {
1050 		kfree(wbuf->buf);
1051 		wbuf->buf = NULL;
1052 		return -ENOMEM;
1053 	}
1054 
1055 	wbuf->used = 0;
1056 	wbuf->lnum = wbuf->offs = -1;
1057 	/*
1058 	 * If the LEB starts at the max. write size aligned address, then
1059 	 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1060 	 * set it to something smaller so that it ends at the closest max.
1061 	 * write size boundary.
1062 	 */
1063 	size = c->max_write_size - (c->leb_start % c->max_write_size);
1064 	wbuf->avail = wbuf->size = size;
1065 	wbuf->sync_callback = NULL;
1066 	mutex_init(&wbuf->io_mutex);
1067 	spin_lock_init(&wbuf->lock);
1068 	wbuf->c = c;
1069 	wbuf->next_ino = 0;
1070 
1071 #ifndef __UBOOT__
1072 	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1073 	wbuf->timer.function = wbuf_timer_callback_nolock;
1074 	wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
1075 	wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
1076 	wbuf->delta *= 1000000000ULL;
1077 	ubifs_assert(wbuf->delta <= ULONG_MAX);
1078 #endif
1079 	return 0;
1080 }
1081 
1082 /**
1083  * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1084  * @wbuf: the write-buffer where to add
1085  * @inum: the inode number
1086  *
1087  * This function adds an inode number to the inode array of the write-buffer.
1088  */
ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf * wbuf,ino_t inum)1089 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1090 {
1091 	if (!wbuf->buf)
1092 		/* NOR flash or something similar */
1093 		return;
1094 
1095 	spin_lock(&wbuf->lock);
1096 	if (wbuf->used)
1097 		wbuf->inodes[wbuf->next_ino++] = inum;
1098 	spin_unlock(&wbuf->lock);
1099 }
1100 
1101 /**
1102  * wbuf_has_ino - returns if the wbuf contains data from the inode.
1103  * @wbuf: the write-buffer
1104  * @inum: the inode number
1105  *
1106  * This function returns with %1 if the write-buffer contains some data from the
1107  * given inode otherwise it returns with %0.
1108  */
wbuf_has_ino(struct ubifs_wbuf * wbuf,ino_t inum)1109 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1110 {
1111 	int i, ret = 0;
1112 
1113 	spin_lock(&wbuf->lock);
1114 	for (i = 0; i < wbuf->next_ino; i++)
1115 		if (inum == wbuf->inodes[i]) {
1116 			ret = 1;
1117 			break;
1118 		}
1119 	spin_unlock(&wbuf->lock);
1120 
1121 	return ret;
1122 }
1123 
1124 /**
1125  * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1126  * @c: UBIFS file-system description object
1127  * @inode: inode to synchronize
1128  *
1129  * This function synchronizes write-buffers which contain nodes belonging to
1130  * @inode. Returns zero in case of success and a negative error code in case of
1131  * failure.
1132  */
ubifs_sync_wbufs_by_inode(struct ubifs_info * c,struct inode * inode)1133 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1134 {
1135 	int i, err = 0;
1136 
1137 	for (i = 0; i < c->jhead_cnt; i++) {
1138 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1139 
1140 		if (i == GCHD)
1141 			/*
1142 			 * GC head is special, do not look at it. Even if the
1143 			 * head contains something related to this inode, it is
1144 			 * a _copy_ of corresponding on-flash node which sits
1145 			 * somewhere else.
1146 			 */
1147 			continue;
1148 
1149 		if (!wbuf_has_ino(wbuf, inode->i_ino))
1150 			continue;
1151 
1152 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1153 		if (wbuf_has_ino(wbuf, inode->i_ino))
1154 			err = ubifs_wbuf_sync_nolock(wbuf);
1155 		mutex_unlock(&wbuf->io_mutex);
1156 
1157 		if (err) {
1158 			ubifs_ro_mode(c, err);
1159 			return err;
1160 		}
1161 	}
1162 	return 0;
1163 }
1164