1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10 
11 /*
12  * This file implements the LEB properties tree (LPT) area. The LPT area
13  * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
14  * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
15  * between the log and the orphan area.
16  *
17  * The LPT area is like a miniature self-contained file system. It is required
18  * that it never runs out of space, is fast to access and update, and scales
19  * logarithmically. The LEB properties tree is implemented as a wandering tree
20  * much like the TNC, and the LPT area has its own garbage collection.
21  *
22  * The LPT has two slightly different forms called the "small model" and the
23  * "big model". The small model is used when the entire LEB properties table
24  * can be written into a single eraseblock. In that case, garbage collection
25  * consists of just writing the whole table, which therefore makes all other
26  * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
27  * selected for garbage collection, which consists of marking the clean nodes in
28  * that LEB as dirty, and then only the dirty nodes are written out. Also, in
29  * the case of the big model, a table of LEB numbers is saved so that the entire
30  * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
31  * mounted.
32  */
33 
34 #include "ubifs.h"
35 #ifndef __UBOOT__
36 #include <log.h>
37 #include <dm/devres.h>
38 #include <linux/crc16.h>
39 #include <linux/math64.h>
40 #include <linux/slab.h>
41 #else
42 #include <linux/compat.h>
43 #include <linux/err.h>
44 #include <ubi_uboot.h>
45 #include "crc16.h"
46 #endif
47 
48 /**
49  * do_calc_lpt_geom - calculate sizes for the LPT area.
50  * @c: the UBIFS file-system description object
51  *
52  * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
53  * properties of the flash and whether LPT is "big" (c->big_lpt).
54  */
do_calc_lpt_geom(struct ubifs_info * c)55 static void do_calc_lpt_geom(struct ubifs_info *c)
56 {
57 	int i, n, bits, per_leb_wastage, max_pnode_cnt;
58 	long long sz, tot_wastage;
59 
60 	n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
61 	max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
62 
63 	c->lpt_hght = 1;
64 	n = UBIFS_LPT_FANOUT;
65 	while (n < max_pnode_cnt) {
66 		c->lpt_hght += 1;
67 		n <<= UBIFS_LPT_FANOUT_SHIFT;
68 	}
69 
70 	c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
71 
72 	n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
73 	c->nnode_cnt = n;
74 	for (i = 1; i < c->lpt_hght; i++) {
75 		n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
76 		c->nnode_cnt += n;
77 	}
78 
79 	c->space_bits = fls(c->leb_size) - 3;
80 	c->lpt_lnum_bits = fls(c->lpt_lebs);
81 	c->lpt_offs_bits = fls(c->leb_size - 1);
82 	c->lpt_spc_bits = fls(c->leb_size);
83 
84 	n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
85 	c->pcnt_bits = fls(n - 1);
86 
87 	c->lnum_bits = fls(c->max_leb_cnt - 1);
88 
89 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
90 	       (c->big_lpt ? c->pcnt_bits : 0) +
91 	       (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
92 	c->pnode_sz = (bits + 7) / 8;
93 
94 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
95 	       (c->big_lpt ? c->pcnt_bits : 0) +
96 	       (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
97 	c->nnode_sz = (bits + 7) / 8;
98 
99 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
100 	       c->lpt_lebs * c->lpt_spc_bits * 2;
101 	c->ltab_sz = (bits + 7) / 8;
102 
103 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
104 	       c->lnum_bits * c->lsave_cnt;
105 	c->lsave_sz = (bits + 7) / 8;
106 
107 	/* Calculate the minimum LPT size */
108 	c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
109 	c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
110 	c->lpt_sz += c->ltab_sz;
111 	if (c->big_lpt)
112 		c->lpt_sz += c->lsave_sz;
113 
114 	/* Add wastage */
115 	sz = c->lpt_sz;
116 	per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
117 	sz += per_leb_wastage;
118 	tot_wastage = per_leb_wastage;
119 	while (sz > c->leb_size) {
120 		sz += per_leb_wastage;
121 		sz -= c->leb_size;
122 		tot_wastage += per_leb_wastage;
123 	}
124 	tot_wastage += ALIGN(sz, c->min_io_size) - sz;
125 	c->lpt_sz += tot_wastage;
126 }
127 
128 /**
129  * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
130  * @c: the UBIFS file-system description object
131  *
132  * This function returns %0 on success and a negative error code on failure.
133  */
ubifs_calc_lpt_geom(struct ubifs_info * c)134 int ubifs_calc_lpt_geom(struct ubifs_info *c)
135 {
136 	int lebs_needed;
137 	long long sz;
138 
139 	do_calc_lpt_geom(c);
140 
141 	/* Verify that lpt_lebs is big enough */
142 	sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
143 	lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
144 	if (lebs_needed > c->lpt_lebs) {
145 		ubifs_err(c, "too few LPT LEBs");
146 		return -EINVAL;
147 	}
148 
149 	/* Verify that ltab fits in a single LEB (since ltab is a single node */
150 	if (c->ltab_sz > c->leb_size) {
151 		ubifs_err(c, "LPT ltab too big");
152 		return -EINVAL;
153 	}
154 
155 	c->check_lpt_free = c->big_lpt;
156 	return 0;
157 }
158 
159 /**
160  * calc_dflt_lpt_geom - calculate default LPT geometry.
161  * @c: the UBIFS file-system description object
162  * @main_lebs: number of main area LEBs is passed and returned here
163  * @big_lpt: whether the LPT area is "big" is returned here
164  *
165  * The size of the LPT area depends on parameters that themselves are dependent
166  * on the size of the LPT area. This function, successively recalculates the LPT
167  * area geometry until the parameters and resultant geometry are consistent.
168  *
169  * This function returns %0 on success and a negative error code on failure.
170  */
calc_dflt_lpt_geom(struct ubifs_info * c,int * main_lebs,int * big_lpt)171 static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
172 			      int *big_lpt)
173 {
174 	int i, lebs_needed;
175 	long long sz;
176 
177 	/* Start by assuming the minimum number of LPT LEBs */
178 	c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
179 	c->main_lebs = *main_lebs - c->lpt_lebs;
180 	if (c->main_lebs <= 0)
181 		return -EINVAL;
182 
183 	/* And assume we will use the small LPT model */
184 	c->big_lpt = 0;
185 
186 	/*
187 	 * Calculate the geometry based on assumptions above and then see if it
188 	 * makes sense
189 	 */
190 	do_calc_lpt_geom(c);
191 
192 	/* Small LPT model must have lpt_sz < leb_size */
193 	if (c->lpt_sz > c->leb_size) {
194 		/* Nope, so try again using big LPT model */
195 		c->big_lpt = 1;
196 		do_calc_lpt_geom(c);
197 	}
198 
199 	/* Now check there are enough LPT LEBs */
200 	for (i = 0; i < 64 ; i++) {
201 		sz = c->lpt_sz * 4; /* Allow 4 times the size */
202 		lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
203 		if (lebs_needed > c->lpt_lebs) {
204 			/* Not enough LPT LEBs so try again with more */
205 			c->lpt_lebs = lebs_needed;
206 			c->main_lebs = *main_lebs - c->lpt_lebs;
207 			if (c->main_lebs <= 0)
208 				return -EINVAL;
209 			do_calc_lpt_geom(c);
210 			continue;
211 		}
212 		if (c->ltab_sz > c->leb_size) {
213 			ubifs_err(c, "LPT ltab too big");
214 			return -EINVAL;
215 		}
216 		*main_lebs = c->main_lebs;
217 		*big_lpt = c->big_lpt;
218 		return 0;
219 	}
220 	return -EINVAL;
221 }
222 
223 /**
224  * pack_bits - pack bit fields end-to-end.
225  * @addr: address at which to pack (passed and next address returned)
226  * @pos: bit position at which to pack (passed and next position returned)
227  * @val: value to pack
228  * @nrbits: number of bits of value to pack (1-32)
229  */
pack_bits(uint8_t ** addr,int * pos,uint32_t val,int nrbits)230 static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
231 {
232 	uint8_t *p = *addr;
233 	int b = *pos;
234 
235 	ubifs_assert(nrbits > 0);
236 	ubifs_assert(nrbits <= 32);
237 	ubifs_assert(*pos >= 0);
238 	ubifs_assert(*pos < 8);
239 	ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
240 	if (b) {
241 		*p |= ((uint8_t)val) << b;
242 		nrbits += b;
243 		if (nrbits > 8) {
244 			*++p = (uint8_t)(val >>= (8 - b));
245 			if (nrbits > 16) {
246 				*++p = (uint8_t)(val >>= 8);
247 				if (nrbits > 24) {
248 					*++p = (uint8_t)(val >>= 8);
249 					if (nrbits > 32)
250 						*++p = (uint8_t)(val >>= 8);
251 				}
252 			}
253 		}
254 	} else {
255 		*p = (uint8_t)val;
256 		if (nrbits > 8) {
257 			*++p = (uint8_t)(val >>= 8);
258 			if (nrbits > 16) {
259 				*++p = (uint8_t)(val >>= 8);
260 				if (nrbits > 24)
261 					*++p = (uint8_t)(val >>= 8);
262 			}
263 		}
264 	}
265 	b = nrbits & 7;
266 	if (b == 0)
267 		p++;
268 	*addr = p;
269 	*pos = b;
270 }
271 
272 /**
273  * ubifs_unpack_bits - unpack bit fields.
274  * @addr: address at which to unpack (passed and next address returned)
275  * @pos: bit position at which to unpack (passed and next position returned)
276  * @nrbits: number of bits of value to unpack (1-32)
277  *
278  * This functions returns the value unpacked.
279  */
ubifs_unpack_bits(uint8_t ** addr,int * pos,int nrbits)280 uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
281 {
282 	const int k = 32 - nrbits;
283 	uint8_t *p = *addr;
284 	int b = *pos;
285 	uint32_t uninitialized_var(val);
286 	const int bytes = (nrbits + b + 7) >> 3;
287 
288 	ubifs_assert(nrbits > 0);
289 	ubifs_assert(nrbits <= 32);
290 	ubifs_assert(*pos >= 0);
291 	ubifs_assert(*pos < 8);
292 	if (b) {
293 		switch (bytes) {
294 		case 2:
295 			val = p[1];
296 			break;
297 		case 3:
298 			val = p[1] | ((uint32_t)p[2] << 8);
299 			break;
300 		case 4:
301 			val = p[1] | ((uint32_t)p[2] << 8) |
302 				     ((uint32_t)p[3] << 16);
303 			break;
304 		case 5:
305 			val = p[1] | ((uint32_t)p[2] << 8) |
306 				     ((uint32_t)p[3] << 16) |
307 				     ((uint32_t)p[4] << 24);
308 		}
309 		val <<= (8 - b);
310 		val |= *p >> b;
311 		nrbits += b;
312 	} else {
313 		switch (bytes) {
314 		case 1:
315 			val = p[0];
316 			break;
317 		case 2:
318 			val = p[0] | ((uint32_t)p[1] << 8);
319 			break;
320 		case 3:
321 			val = p[0] | ((uint32_t)p[1] << 8) |
322 				     ((uint32_t)p[2] << 16);
323 			break;
324 		case 4:
325 			val = p[0] | ((uint32_t)p[1] << 8) |
326 				     ((uint32_t)p[2] << 16) |
327 				     ((uint32_t)p[3] << 24);
328 			break;
329 		}
330 	}
331 	val <<= k;
332 	val >>= k;
333 	b = nrbits & 7;
334 	p += nrbits >> 3;
335 	*addr = p;
336 	*pos = b;
337 	ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
338 	return val;
339 }
340 
341 /**
342  * ubifs_pack_pnode - pack all the bit fields of a pnode.
343  * @c: UBIFS file-system description object
344  * @buf: buffer into which to pack
345  * @pnode: pnode to pack
346  */
ubifs_pack_pnode(struct ubifs_info * c,void * buf,struct ubifs_pnode * pnode)347 void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
348 		      struct ubifs_pnode *pnode)
349 {
350 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
351 	int i, pos = 0;
352 	uint16_t crc;
353 
354 	pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
355 	if (c->big_lpt)
356 		pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
357 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
358 		pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
359 			  c->space_bits);
360 		pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
361 			  c->space_bits);
362 		if (pnode->lprops[i].flags & LPROPS_INDEX)
363 			pack_bits(&addr, &pos, 1, 1);
364 		else
365 			pack_bits(&addr, &pos, 0, 1);
366 	}
367 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
368 		    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
369 	addr = buf;
370 	pos = 0;
371 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
372 }
373 
374 /**
375  * ubifs_pack_nnode - pack all the bit fields of a nnode.
376  * @c: UBIFS file-system description object
377  * @buf: buffer into which to pack
378  * @nnode: nnode to pack
379  */
ubifs_pack_nnode(struct ubifs_info * c,void * buf,struct ubifs_nnode * nnode)380 void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
381 		      struct ubifs_nnode *nnode)
382 {
383 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
384 	int i, pos = 0;
385 	uint16_t crc;
386 
387 	pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
388 	if (c->big_lpt)
389 		pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
390 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
391 		int lnum = nnode->nbranch[i].lnum;
392 
393 		if (lnum == 0)
394 			lnum = c->lpt_last + 1;
395 		pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
396 		pack_bits(&addr, &pos, nnode->nbranch[i].offs,
397 			  c->lpt_offs_bits);
398 	}
399 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
400 		    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
401 	addr = buf;
402 	pos = 0;
403 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
404 }
405 
406 /**
407  * ubifs_pack_ltab - pack the LPT's own lprops table.
408  * @c: UBIFS file-system description object
409  * @buf: buffer into which to pack
410  * @ltab: LPT's own lprops table to pack
411  */
ubifs_pack_ltab(struct ubifs_info * c,void * buf,struct ubifs_lpt_lprops * ltab)412 void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
413 		     struct ubifs_lpt_lprops *ltab)
414 {
415 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
416 	int i, pos = 0;
417 	uint16_t crc;
418 
419 	pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
420 	for (i = 0; i < c->lpt_lebs; i++) {
421 		pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
422 		pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
423 	}
424 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
425 		    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
426 	addr = buf;
427 	pos = 0;
428 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
429 }
430 
431 /**
432  * ubifs_pack_lsave - pack the LPT's save table.
433  * @c: UBIFS file-system description object
434  * @buf: buffer into which to pack
435  * @lsave: LPT's save table to pack
436  */
ubifs_pack_lsave(struct ubifs_info * c,void * buf,int * lsave)437 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
438 {
439 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
440 	int i, pos = 0;
441 	uint16_t crc;
442 
443 	pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
444 	for (i = 0; i < c->lsave_cnt; i++)
445 		pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
446 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
447 		    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
448 	addr = buf;
449 	pos = 0;
450 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
451 }
452 
453 /**
454  * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
455  * @c: UBIFS file-system description object
456  * @lnum: LEB number to which to add dirty space
457  * @dirty: amount of dirty space to add
458  */
ubifs_add_lpt_dirt(struct ubifs_info * c,int lnum,int dirty)459 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
460 {
461 	if (!dirty || !lnum)
462 		return;
463 	dbg_lp("LEB %d add %d to %d",
464 	       lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
465 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
466 	c->ltab[lnum - c->lpt_first].dirty += dirty;
467 }
468 
469 /**
470  * set_ltab - set LPT LEB properties.
471  * @c: UBIFS file-system description object
472  * @lnum: LEB number
473  * @free: amount of free space
474  * @dirty: amount of dirty space
475  */
set_ltab(struct ubifs_info * c,int lnum,int free,int dirty)476 static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
477 {
478 	dbg_lp("LEB %d free %d dirty %d to %d %d",
479 	       lnum, c->ltab[lnum - c->lpt_first].free,
480 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
481 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
482 	c->ltab[lnum - c->lpt_first].free = free;
483 	c->ltab[lnum - c->lpt_first].dirty = dirty;
484 }
485 
486 /**
487  * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
488  * @c: UBIFS file-system description object
489  * @nnode: nnode for which to add dirt
490  */
ubifs_add_nnode_dirt(struct ubifs_info * c,struct ubifs_nnode * nnode)491 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
492 {
493 	struct ubifs_nnode *np = nnode->parent;
494 
495 	if (np)
496 		ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
497 				   c->nnode_sz);
498 	else {
499 		ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
500 		if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
501 			c->lpt_drty_flgs |= LTAB_DIRTY;
502 			ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
503 		}
504 	}
505 }
506 
507 /**
508  * add_pnode_dirt - add dirty space to LPT LEB properties.
509  * @c: UBIFS file-system description object
510  * @pnode: pnode for which to add dirt
511  */
add_pnode_dirt(struct ubifs_info * c,struct ubifs_pnode * pnode)512 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
513 {
514 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
515 			   c->pnode_sz);
516 }
517 
518 /**
519  * calc_nnode_num - calculate nnode number.
520  * @row: the row in the tree (root is zero)
521  * @col: the column in the row (leftmost is zero)
522  *
523  * The nnode number is a number that uniquely identifies a nnode and can be used
524  * easily to traverse the tree from the root to that nnode.
525  *
526  * This function calculates and returns the nnode number for the nnode at @row
527  * and @col.
528  */
calc_nnode_num(int row,int col)529 static int calc_nnode_num(int row, int col)
530 {
531 	int num, bits;
532 
533 	num = 1;
534 	while (row--) {
535 		bits = (col & (UBIFS_LPT_FANOUT - 1));
536 		col >>= UBIFS_LPT_FANOUT_SHIFT;
537 		num <<= UBIFS_LPT_FANOUT_SHIFT;
538 		num |= bits;
539 	}
540 	return num;
541 }
542 
543 /**
544  * calc_nnode_num_from_parent - calculate nnode number.
545  * @c: UBIFS file-system description object
546  * @parent: parent nnode
547  * @iip: index in parent
548  *
549  * The nnode number is a number that uniquely identifies a nnode and can be used
550  * easily to traverse the tree from the root to that nnode.
551  *
552  * This function calculates and returns the nnode number based on the parent's
553  * nnode number and the index in parent.
554  */
calc_nnode_num_from_parent(const struct ubifs_info * c,struct ubifs_nnode * parent,int iip)555 static int calc_nnode_num_from_parent(const struct ubifs_info *c,
556 				      struct ubifs_nnode *parent, int iip)
557 {
558 	int num, shft;
559 
560 	if (!parent)
561 		return 1;
562 	shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
563 	num = parent->num ^ (1 << shft);
564 	num |= (UBIFS_LPT_FANOUT + iip) << shft;
565 	return num;
566 }
567 
568 /**
569  * calc_pnode_num_from_parent - calculate pnode number.
570  * @c: UBIFS file-system description object
571  * @parent: parent nnode
572  * @iip: index in parent
573  *
574  * The pnode number is a number that uniquely identifies a pnode and can be used
575  * easily to traverse the tree from the root to that pnode.
576  *
577  * This function calculates and returns the pnode number based on the parent's
578  * nnode number and the index in parent.
579  */
calc_pnode_num_from_parent(const struct ubifs_info * c,struct ubifs_nnode * parent,int iip)580 static int calc_pnode_num_from_parent(const struct ubifs_info *c,
581 				      struct ubifs_nnode *parent, int iip)
582 {
583 	int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
584 
585 	for (i = 0; i < n; i++) {
586 		num <<= UBIFS_LPT_FANOUT_SHIFT;
587 		num |= pnum & (UBIFS_LPT_FANOUT - 1);
588 		pnum >>= UBIFS_LPT_FANOUT_SHIFT;
589 	}
590 	num <<= UBIFS_LPT_FANOUT_SHIFT;
591 	num |= iip;
592 	return num;
593 }
594 
595 /**
596  * ubifs_create_dflt_lpt - create default LPT.
597  * @c: UBIFS file-system description object
598  * @main_lebs: number of main area LEBs is passed and returned here
599  * @lpt_first: LEB number of first LPT LEB
600  * @lpt_lebs: number of LEBs for LPT is passed and returned here
601  * @big_lpt: use big LPT model is passed and returned here
602  *
603  * This function returns %0 on success and a negative error code on failure.
604  */
ubifs_create_dflt_lpt(struct ubifs_info * c,int * main_lebs,int lpt_first,int * lpt_lebs,int * big_lpt)605 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
606 			  int *lpt_lebs, int *big_lpt)
607 {
608 	int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
609 	int blnum, boffs, bsz, bcnt;
610 	struct ubifs_pnode *pnode = NULL;
611 	struct ubifs_nnode *nnode = NULL;
612 	void *buf = NULL, *p;
613 	struct ubifs_lpt_lprops *ltab = NULL;
614 	int *lsave = NULL;
615 
616 	err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
617 	if (err)
618 		return err;
619 	*lpt_lebs = c->lpt_lebs;
620 
621 	/* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
622 	c->lpt_first = lpt_first;
623 	/* Needed by 'set_ltab()' */
624 	c->lpt_last = lpt_first + c->lpt_lebs - 1;
625 	/* Needed by 'ubifs_pack_lsave()' */
626 	c->main_first = c->leb_cnt - *main_lebs;
627 
628 	lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
629 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
630 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
631 	buf = vmalloc(c->leb_size);
632 	ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
633 	if (!pnode || !nnode || !buf || !ltab || !lsave) {
634 		err = -ENOMEM;
635 		goto out;
636 	}
637 
638 	ubifs_assert(!c->ltab);
639 	c->ltab = ltab; /* Needed by set_ltab */
640 
641 	/* Initialize LPT's own lprops */
642 	for (i = 0; i < c->lpt_lebs; i++) {
643 		ltab[i].free = c->leb_size;
644 		ltab[i].dirty = 0;
645 		ltab[i].tgc = 0;
646 		ltab[i].cmt = 0;
647 	}
648 
649 	lnum = lpt_first;
650 	p = buf;
651 	/* Number of leaf nodes (pnodes) */
652 	cnt = c->pnode_cnt;
653 
654 	/*
655 	 * The first pnode contains the LEB properties for the LEBs that contain
656 	 * the root inode node and the root index node of the index tree.
657 	 */
658 	node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
659 	iopos = ALIGN(node_sz, c->min_io_size);
660 	pnode->lprops[0].free = c->leb_size - iopos;
661 	pnode->lprops[0].dirty = iopos - node_sz;
662 	pnode->lprops[0].flags = LPROPS_INDEX;
663 
664 	node_sz = UBIFS_INO_NODE_SZ;
665 	iopos = ALIGN(node_sz, c->min_io_size);
666 	pnode->lprops[1].free = c->leb_size - iopos;
667 	pnode->lprops[1].dirty = iopos - node_sz;
668 
669 	for (i = 2; i < UBIFS_LPT_FANOUT; i++)
670 		pnode->lprops[i].free = c->leb_size;
671 
672 	/* Add first pnode */
673 	ubifs_pack_pnode(c, p, pnode);
674 	p += c->pnode_sz;
675 	len = c->pnode_sz;
676 	pnode->num += 1;
677 
678 	/* Reset pnode values for remaining pnodes */
679 	pnode->lprops[0].free = c->leb_size;
680 	pnode->lprops[0].dirty = 0;
681 	pnode->lprops[0].flags = 0;
682 
683 	pnode->lprops[1].free = c->leb_size;
684 	pnode->lprops[1].dirty = 0;
685 
686 	/*
687 	 * To calculate the internal node branches, we keep information about
688 	 * the level below.
689 	 */
690 	blnum = lnum; /* LEB number of level below */
691 	boffs = 0; /* Offset of level below */
692 	bcnt = cnt; /* Number of nodes in level below */
693 	bsz = c->pnode_sz; /* Size of nodes in level below */
694 
695 	/* Add all remaining pnodes */
696 	for (i = 1; i < cnt; i++) {
697 		if (len + c->pnode_sz > c->leb_size) {
698 			alen = ALIGN(len, c->min_io_size);
699 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
700 			memset(p, 0xff, alen - len);
701 			err = ubifs_leb_change(c, lnum++, buf, alen);
702 			if (err)
703 				goto out;
704 			p = buf;
705 			len = 0;
706 		}
707 		ubifs_pack_pnode(c, p, pnode);
708 		p += c->pnode_sz;
709 		len += c->pnode_sz;
710 		/*
711 		 * pnodes are simply numbered left to right starting at zero,
712 		 * which means the pnode number can be used easily to traverse
713 		 * down the tree to the corresponding pnode.
714 		 */
715 		pnode->num += 1;
716 	}
717 
718 	row = 0;
719 	for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
720 		row += 1;
721 	/* Add all nnodes, one level at a time */
722 	while (1) {
723 		/* Number of internal nodes (nnodes) at next level */
724 		cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
725 		for (i = 0; i < cnt; i++) {
726 			if (len + c->nnode_sz > c->leb_size) {
727 				alen = ALIGN(len, c->min_io_size);
728 				set_ltab(c, lnum, c->leb_size - alen,
729 					    alen - len);
730 				memset(p, 0xff, alen - len);
731 				err = ubifs_leb_change(c, lnum++, buf, alen);
732 				if (err)
733 					goto out;
734 				p = buf;
735 				len = 0;
736 			}
737 			/* Only 1 nnode at this level, so it is the root */
738 			if (cnt == 1) {
739 				c->lpt_lnum = lnum;
740 				c->lpt_offs = len;
741 			}
742 			/* Set branches to the level below */
743 			for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
744 				if (bcnt) {
745 					if (boffs + bsz > c->leb_size) {
746 						blnum += 1;
747 						boffs = 0;
748 					}
749 					nnode->nbranch[j].lnum = blnum;
750 					nnode->nbranch[j].offs = boffs;
751 					boffs += bsz;
752 					bcnt--;
753 				} else {
754 					nnode->nbranch[j].lnum = 0;
755 					nnode->nbranch[j].offs = 0;
756 				}
757 			}
758 			nnode->num = calc_nnode_num(row, i);
759 			ubifs_pack_nnode(c, p, nnode);
760 			p += c->nnode_sz;
761 			len += c->nnode_sz;
762 		}
763 		/* Only 1 nnode at this level, so it is the root */
764 		if (cnt == 1)
765 			break;
766 		/* Update the information about the level below */
767 		bcnt = cnt;
768 		bsz = c->nnode_sz;
769 		row -= 1;
770 	}
771 
772 	if (*big_lpt) {
773 		/* Need to add LPT's save table */
774 		if (len + c->lsave_sz > c->leb_size) {
775 			alen = ALIGN(len, c->min_io_size);
776 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
777 			memset(p, 0xff, alen - len);
778 			err = ubifs_leb_change(c, lnum++, buf, alen);
779 			if (err)
780 				goto out;
781 			p = buf;
782 			len = 0;
783 		}
784 
785 		c->lsave_lnum = lnum;
786 		c->lsave_offs = len;
787 
788 		for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
789 			lsave[i] = c->main_first + i;
790 		for (; i < c->lsave_cnt; i++)
791 			lsave[i] = c->main_first;
792 
793 		ubifs_pack_lsave(c, p, lsave);
794 		p += c->lsave_sz;
795 		len += c->lsave_sz;
796 	}
797 
798 	/* Need to add LPT's own LEB properties table */
799 	if (len + c->ltab_sz > c->leb_size) {
800 		alen = ALIGN(len, c->min_io_size);
801 		set_ltab(c, lnum, c->leb_size - alen, alen - len);
802 		memset(p, 0xff, alen - len);
803 		err = ubifs_leb_change(c, lnum++, buf, alen);
804 		if (err)
805 			goto out;
806 		p = buf;
807 		len = 0;
808 	}
809 
810 	c->ltab_lnum = lnum;
811 	c->ltab_offs = len;
812 
813 	/* Update ltab before packing it */
814 	len += c->ltab_sz;
815 	alen = ALIGN(len, c->min_io_size);
816 	set_ltab(c, lnum, c->leb_size - alen, alen - len);
817 
818 	ubifs_pack_ltab(c, p, ltab);
819 	p += c->ltab_sz;
820 
821 	/* Write remaining buffer */
822 	memset(p, 0xff, alen - len);
823 	err = ubifs_leb_change(c, lnum, buf, alen);
824 	if (err)
825 		goto out;
826 
827 	c->nhead_lnum = lnum;
828 	c->nhead_offs = ALIGN(len, c->min_io_size);
829 
830 	dbg_lp("space_bits %d", c->space_bits);
831 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
832 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
833 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
834 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
835 	dbg_lp("lnum_bits %d", c->lnum_bits);
836 	dbg_lp("pnode_sz %d", c->pnode_sz);
837 	dbg_lp("nnode_sz %d", c->nnode_sz);
838 	dbg_lp("ltab_sz %d", c->ltab_sz);
839 	dbg_lp("lsave_sz %d", c->lsave_sz);
840 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
841 	dbg_lp("lpt_hght %d", c->lpt_hght);
842 	dbg_lp("big_lpt %d", c->big_lpt);
843 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
844 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
845 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
846 	if (c->big_lpt)
847 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
848 out:
849 	c->ltab = NULL;
850 	kfree(lsave);
851 	vfree(ltab);
852 	vfree(buf);
853 	kfree(nnode);
854 	kfree(pnode);
855 	return err;
856 }
857 
858 /**
859  * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
860  * @c: UBIFS file-system description object
861  * @pnode: pnode
862  *
863  * When a pnode is loaded into memory, the LEB properties it contains are added,
864  * by this function, to the LEB category lists and heaps.
865  */
update_cats(struct ubifs_info * c,struct ubifs_pnode * pnode)866 static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
867 {
868 	int i;
869 
870 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
871 		int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
872 		int lnum = pnode->lprops[i].lnum;
873 
874 		if (!lnum)
875 			return;
876 		ubifs_add_to_cat(c, &pnode->lprops[i], cat);
877 	}
878 }
879 
880 /**
881  * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
882  * @c: UBIFS file-system description object
883  * @old_pnode: pnode copied
884  * @new_pnode: pnode copy
885  *
886  * During commit it is sometimes necessary to copy a pnode
887  * (see dirty_cow_pnode).  When that happens, references in
888  * category lists and heaps must be replaced.  This function does that.
889  */
replace_cats(struct ubifs_info * c,struct ubifs_pnode * old_pnode,struct ubifs_pnode * new_pnode)890 static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
891 			 struct ubifs_pnode *new_pnode)
892 {
893 	int i;
894 
895 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
896 		if (!new_pnode->lprops[i].lnum)
897 			return;
898 		ubifs_replace_cat(c, &old_pnode->lprops[i],
899 				  &new_pnode->lprops[i]);
900 	}
901 }
902 
903 /**
904  * check_lpt_crc - check LPT node crc is correct.
905  * @c: UBIFS file-system description object
906  * @buf: buffer containing node
907  * @len: length of node
908  *
909  * This function returns %0 on success and a negative error code on failure.
910  */
check_lpt_crc(const struct ubifs_info * c,void * buf,int len)911 static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len)
912 {
913 	int pos = 0;
914 	uint8_t *addr = buf;
915 	uint16_t crc, calc_crc;
916 
917 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
918 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
919 			 len - UBIFS_LPT_CRC_BYTES);
920 	if (crc != calc_crc) {
921 		ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx",
922 			  crc, calc_crc);
923 		dump_stack();
924 		return -EINVAL;
925 	}
926 	return 0;
927 }
928 
929 /**
930  * check_lpt_type - check LPT node type is correct.
931  * @c: UBIFS file-system description object
932  * @addr: address of type bit field is passed and returned updated here
933  * @pos: position of type bit field is passed and returned updated here
934  * @type: expected type
935  *
936  * This function returns %0 on success and a negative error code on failure.
937  */
check_lpt_type(const struct ubifs_info * c,uint8_t ** addr,int * pos,int type)938 static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr,
939 			  int *pos, int type)
940 {
941 	int node_type;
942 
943 	node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
944 	if (node_type != type) {
945 		ubifs_err(c, "invalid type (%d) in LPT node type %d",
946 			  node_type, type);
947 		dump_stack();
948 		return -EINVAL;
949 	}
950 	return 0;
951 }
952 
953 /**
954  * unpack_pnode - unpack a pnode.
955  * @c: UBIFS file-system description object
956  * @buf: buffer containing packed pnode to unpack
957  * @pnode: pnode structure to fill
958  *
959  * This function returns %0 on success and a negative error code on failure.
960  */
unpack_pnode(const struct ubifs_info * c,void * buf,struct ubifs_pnode * pnode)961 static int unpack_pnode(const struct ubifs_info *c, void *buf,
962 			struct ubifs_pnode *pnode)
963 {
964 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
965 	int i, pos = 0, err;
966 
967 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE);
968 	if (err)
969 		return err;
970 	if (c->big_lpt)
971 		pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
972 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
973 		struct ubifs_lprops * const lprops = &pnode->lprops[i];
974 
975 		lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
976 		lprops->free <<= 3;
977 		lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
978 		lprops->dirty <<= 3;
979 
980 		if (ubifs_unpack_bits(&addr, &pos, 1))
981 			lprops->flags = LPROPS_INDEX;
982 		else
983 			lprops->flags = 0;
984 		lprops->flags |= ubifs_categorize_lprops(c, lprops);
985 	}
986 	err = check_lpt_crc(c, buf, c->pnode_sz);
987 	return err;
988 }
989 
990 /**
991  * ubifs_unpack_nnode - unpack a nnode.
992  * @c: UBIFS file-system description object
993  * @buf: buffer containing packed nnode to unpack
994  * @nnode: nnode structure to fill
995  *
996  * This function returns %0 on success and a negative error code on failure.
997  */
ubifs_unpack_nnode(const struct ubifs_info * c,void * buf,struct ubifs_nnode * nnode)998 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
999 		       struct ubifs_nnode *nnode)
1000 {
1001 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1002 	int i, pos = 0, err;
1003 
1004 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE);
1005 	if (err)
1006 		return err;
1007 	if (c->big_lpt)
1008 		nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1009 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1010 		int lnum;
1011 
1012 		lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
1013 		       c->lpt_first;
1014 		if (lnum == c->lpt_last + 1)
1015 			lnum = 0;
1016 		nnode->nbranch[i].lnum = lnum;
1017 		nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
1018 						     c->lpt_offs_bits);
1019 	}
1020 	err = check_lpt_crc(c, buf, c->nnode_sz);
1021 	return err;
1022 }
1023 
1024 /**
1025  * unpack_ltab - unpack the LPT's own lprops table.
1026  * @c: UBIFS file-system description object
1027  * @buf: buffer from which to unpack
1028  *
1029  * This function returns %0 on success and a negative error code on failure.
1030  */
unpack_ltab(const struct ubifs_info * c,void * buf)1031 static int unpack_ltab(const struct ubifs_info *c, void *buf)
1032 {
1033 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1034 	int i, pos = 0, err;
1035 
1036 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB);
1037 	if (err)
1038 		return err;
1039 	for (i = 0; i < c->lpt_lebs; i++) {
1040 		int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1041 		int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1042 
1043 		if (free < 0 || free > c->leb_size || dirty < 0 ||
1044 		    dirty > c->leb_size || free + dirty > c->leb_size)
1045 			return -EINVAL;
1046 
1047 		c->ltab[i].free = free;
1048 		c->ltab[i].dirty = dirty;
1049 		c->ltab[i].tgc = 0;
1050 		c->ltab[i].cmt = 0;
1051 	}
1052 	err = check_lpt_crc(c, buf, c->ltab_sz);
1053 	return err;
1054 }
1055 
1056 #ifndef __UBOOT__
1057 /**
1058  * unpack_lsave - unpack the LPT's save table.
1059  * @c: UBIFS file-system description object
1060  * @buf: buffer from which to unpack
1061  *
1062  * This function returns %0 on success and a negative error code on failure.
1063  */
unpack_lsave(const struct ubifs_info * c,void * buf)1064 static int unpack_lsave(const struct ubifs_info *c, void *buf)
1065 {
1066 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1067 	int i, pos = 0, err;
1068 
1069 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE);
1070 	if (err)
1071 		return err;
1072 	for (i = 0; i < c->lsave_cnt; i++) {
1073 		int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
1074 
1075 		if (lnum < c->main_first || lnum >= c->leb_cnt)
1076 			return -EINVAL;
1077 		c->lsave[i] = lnum;
1078 	}
1079 	err = check_lpt_crc(c, buf, c->lsave_sz);
1080 	return err;
1081 }
1082 #endif
1083 
1084 /**
1085  * validate_nnode - validate a nnode.
1086  * @c: UBIFS file-system description object
1087  * @nnode: nnode to validate
1088  * @parent: parent nnode (or NULL for the root nnode)
1089  * @iip: index in parent
1090  *
1091  * This function returns %0 on success and a negative error code on failure.
1092  */
validate_nnode(const struct ubifs_info * c,struct ubifs_nnode * nnode,struct ubifs_nnode * parent,int iip)1093 static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1094 			  struct ubifs_nnode *parent, int iip)
1095 {
1096 	int i, lvl, max_offs;
1097 
1098 	if (c->big_lpt) {
1099 		int num = calc_nnode_num_from_parent(c, parent, iip);
1100 
1101 		if (nnode->num != num)
1102 			return -EINVAL;
1103 	}
1104 	lvl = parent ? parent->level - 1 : c->lpt_hght;
1105 	if (lvl < 1)
1106 		return -EINVAL;
1107 	if (lvl == 1)
1108 		max_offs = c->leb_size - c->pnode_sz;
1109 	else
1110 		max_offs = c->leb_size - c->nnode_sz;
1111 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1112 		int lnum = nnode->nbranch[i].lnum;
1113 		int offs = nnode->nbranch[i].offs;
1114 
1115 		if (lnum == 0) {
1116 			if (offs != 0)
1117 				return -EINVAL;
1118 			continue;
1119 		}
1120 		if (lnum < c->lpt_first || lnum > c->lpt_last)
1121 			return -EINVAL;
1122 		if (offs < 0 || offs > max_offs)
1123 			return -EINVAL;
1124 	}
1125 	return 0;
1126 }
1127 
1128 /**
1129  * validate_pnode - validate a pnode.
1130  * @c: UBIFS file-system description object
1131  * @pnode: pnode to validate
1132  * @parent: parent nnode
1133  * @iip: index in parent
1134  *
1135  * This function returns %0 on success and a negative error code on failure.
1136  */
validate_pnode(const struct ubifs_info * c,struct ubifs_pnode * pnode,struct ubifs_nnode * parent,int iip)1137 static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1138 			  struct ubifs_nnode *parent, int iip)
1139 {
1140 	int i;
1141 
1142 	if (c->big_lpt) {
1143 		int num = calc_pnode_num_from_parent(c, parent, iip);
1144 
1145 		if (pnode->num != num)
1146 			return -EINVAL;
1147 	}
1148 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1149 		int free = pnode->lprops[i].free;
1150 		int dirty = pnode->lprops[i].dirty;
1151 
1152 		if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1153 		    (free & 7))
1154 			return -EINVAL;
1155 		if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1156 			return -EINVAL;
1157 		if (dirty + free > c->leb_size)
1158 			return -EINVAL;
1159 	}
1160 	return 0;
1161 }
1162 
1163 /**
1164  * set_pnode_lnum - set LEB numbers on a pnode.
1165  * @c: UBIFS file-system description object
1166  * @pnode: pnode to update
1167  *
1168  * This function calculates the LEB numbers for the LEB properties it contains
1169  * based on the pnode number.
1170  */
set_pnode_lnum(const struct ubifs_info * c,struct ubifs_pnode * pnode)1171 static void set_pnode_lnum(const struct ubifs_info *c,
1172 			   struct ubifs_pnode *pnode)
1173 {
1174 	int i, lnum;
1175 
1176 	lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1177 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1178 		if (lnum >= c->leb_cnt)
1179 			return;
1180 		pnode->lprops[i].lnum = lnum++;
1181 	}
1182 }
1183 
1184 /**
1185  * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1186  * @c: UBIFS file-system description object
1187  * @parent: parent nnode (or NULL for the root)
1188  * @iip: index in parent
1189  *
1190  * This function returns %0 on success and a negative error code on failure.
1191  */
ubifs_read_nnode(struct ubifs_info * c,struct ubifs_nnode * parent,int iip)1192 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1193 {
1194 	struct ubifs_nbranch *branch = NULL;
1195 	struct ubifs_nnode *nnode = NULL;
1196 	void *buf = c->lpt_nod_buf;
1197 	int err, lnum, offs;
1198 
1199 	if (parent) {
1200 		branch = &parent->nbranch[iip];
1201 		lnum = branch->lnum;
1202 		offs = branch->offs;
1203 	} else {
1204 		lnum = c->lpt_lnum;
1205 		offs = c->lpt_offs;
1206 	}
1207 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1208 	if (!nnode) {
1209 		err = -ENOMEM;
1210 		goto out;
1211 	}
1212 	if (lnum == 0) {
1213 		/*
1214 		 * This nnode was not written which just means that the LEB
1215 		 * properties in the subtree below it describe empty LEBs. We
1216 		 * make the nnode as though we had read it, which in fact means
1217 		 * doing almost nothing.
1218 		 */
1219 		if (c->big_lpt)
1220 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1221 	} else {
1222 		err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
1223 		if (err)
1224 			goto out;
1225 		err = ubifs_unpack_nnode(c, buf, nnode);
1226 		if (err)
1227 			goto out;
1228 	}
1229 	err = validate_nnode(c, nnode, parent, iip);
1230 	if (err)
1231 		goto out;
1232 	if (!c->big_lpt)
1233 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1234 	if (parent) {
1235 		branch->nnode = nnode;
1236 		nnode->level = parent->level - 1;
1237 	} else {
1238 		c->nroot = nnode;
1239 		nnode->level = c->lpt_hght;
1240 	}
1241 	nnode->parent = parent;
1242 	nnode->iip = iip;
1243 	return 0;
1244 
1245 out:
1246 	ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs);
1247 	dump_stack();
1248 	kfree(nnode);
1249 	return err;
1250 }
1251 
1252 /**
1253  * read_pnode - read a pnode from flash and link it to the tree in memory.
1254  * @c: UBIFS file-system description object
1255  * @parent: parent nnode
1256  * @iip: index in parent
1257  *
1258  * This function returns %0 on success and a negative error code on failure.
1259  */
read_pnode(struct ubifs_info * c,struct ubifs_nnode * parent,int iip)1260 static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1261 {
1262 	struct ubifs_nbranch *branch;
1263 	struct ubifs_pnode *pnode = NULL;
1264 	void *buf = c->lpt_nod_buf;
1265 	int err, lnum, offs;
1266 
1267 	branch = &parent->nbranch[iip];
1268 	lnum = branch->lnum;
1269 	offs = branch->offs;
1270 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1271 	if (!pnode)
1272 		return -ENOMEM;
1273 
1274 	if (lnum == 0) {
1275 		/*
1276 		 * This pnode was not written which just means that the LEB
1277 		 * properties in it describe empty LEBs. We make the pnode as
1278 		 * though we had read it.
1279 		 */
1280 		int i;
1281 
1282 		if (c->big_lpt)
1283 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1284 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1285 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1286 
1287 			lprops->free = c->leb_size;
1288 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1289 		}
1290 	} else {
1291 		err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
1292 		if (err)
1293 			goto out;
1294 		err = unpack_pnode(c, buf, pnode);
1295 		if (err)
1296 			goto out;
1297 	}
1298 	err = validate_pnode(c, pnode, parent, iip);
1299 	if (err)
1300 		goto out;
1301 	if (!c->big_lpt)
1302 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1303 	branch->pnode = pnode;
1304 	pnode->parent = parent;
1305 	pnode->iip = iip;
1306 	set_pnode_lnum(c, pnode);
1307 	c->pnodes_have += 1;
1308 	return 0;
1309 
1310 out:
1311 	ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs);
1312 	ubifs_dump_pnode(c, pnode, parent, iip);
1313 	dump_stack();
1314 	ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1315 	kfree(pnode);
1316 	return err;
1317 }
1318 
1319 /**
1320  * read_ltab - read LPT's own lprops table.
1321  * @c: UBIFS file-system description object
1322  *
1323  * This function returns %0 on success and a negative error code on failure.
1324  */
read_ltab(struct ubifs_info * c)1325 static int read_ltab(struct ubifs_info *c)
1326 {
1327 	int err;
1328 	void *buf;
1329 
1330 	buf = vmalloc(c->ltab_sz);
1331 	if (!buf)
1332 		return -ENOMEM;
1333 	err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
1334 	if (err)
1335 		goto out;
1336 	err = unpack_ltab(c, buf);
1337 out:
1338 	vfree(buf);
1339 	return err;
1340 }
1341 
1342 #ifndef __UBOOT__
1343 /**
1344  * read_lsave - read LPT's save table.
1345  * @c: UBIFS file-system description object
1346  *
1347  * This function returns %0 on success and a negative error code on failure.
1348  */
read_lsave(struct ubifs_info * c)1349 static int read_lsave(struct ubifs_info *c)
1350 {
1351 	int err, i;
1352 	void *buf;
1353 
1354 	buf = vmalloc(c->lsave_sz);
1355 	if (!buf)
1356 		return -ENOMEM;
1357 	err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
1358 			     c->lsave_sz, 1);
1359 	if (err)
1360 		goto out;
1361 	err = unpack_lsave(c, buf);
1362 	if (err)
1363 		goto out;
1364 	for (i = 0; i < c->lsave_cnt; i++) {
1365 		int lnum = c->lsave[i];
1366 		struct ubifs_lprops *lprops;
1367 
1368 		/*
1369 		 * Due to automatic resizing, the values in the lsave table
1370 		 * could be beyond the volume size - just ignore them.
1371 		 */
1372 		if (lnum >= c->leb_cnt)
1373 			continue;
1374 		lprops = ubifs_lpt_lookup(c, lnum);
1375 		if (IS_ERR(lprops)) {
1376 			err = PTR_ERR(lprops);
1377 			goto out;
1378 		}
1379 	}
1380 out:
1381 	vfree(buf);
1382 	return err;
1383 }
1384 #endif
1385 
1386 /**
1387  * ubifs_get_nnode - get a nnode.
1388  * @c: UBIFS file-system description object
1389  * @parent: parent nnode (or NULL for the root)
1390  * @iip: index in parent
1391  *
1392  * This function returns a pointer to the nnode on success or a negative error
1393  * code on failure.
1394  */
ubifs_get_nnode(struct ubifs_info * c,struct ubifs_nnode * parent,int iip)1395 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1396 				    struct ubifs_nnode *parent, int iip)
1397 {
1398 	struct ubifs_nbranch *branch;
1399 	struct ubifs_nnode *nnode;
1400 	int err;
1401 
1402 	branch = &parent->nbranch[iip];
1403 	nnode = branch->nnode;
1404 	if (nnode)
1405 		return nnode;
1406 	err = ubifs_read_nnode(c, parent, iip);
1407 	if (err)
1408 		return ERR_PTR(err);
1409 	return branch->nnode;
1410 }
1411 
1412 /**
1413  * ubifs_get_pnode - get a pnode.
1414  * @c: UBIFS file-system description object
1415  * @parent: parent nnode
1416  * @iip: index in parent
1417  *
1418  * This function returns a pointer to the pnode on success or a negative error
1419  * code on failure.
1420  */
ubifs_get_pnode(struct ubifs_info * c,struct ubifs_nnode * parent,int iip)1421 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1422 				    struct ubifs_nnode *parent, int iip)
1423 {
1424 	struct ubifs_nbranch *branch;
1425 	struct ubifs_pnode *pnode;
1426 	int err;
1427 
1428 	branch = &parent->nbranch[iip];
1429 	pnode = branch->pnode;
1430 	if (pnode)
1431 		return pnode;
1432 	err = read_pnode(c, parent, iip);
1433 	if (err)
1434 		return ERR_PTR(err);
1435 	update_cats(c, branch->pnode);
1436 	return branch->pnode;
1437 }
1438 
1439 /**
1440  * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1441  * @c: UBIFS file-system description object
1442  * @lnum: LEB number to lookup
1443  *
1444  * This function returns a pointer to the LEB properties on success or a
1445  * negative error code on failure.
1446  */
ubifs_lpt_lookup(struct ubifs_info * c,int lnum)1447 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1448 {
1449 	int err, i, h, iip, shft;
1450 	struct ubifs_nnode *nnode;
1451 	struct ubifs_pnode *pnode;
1452 
1453 	if (!c->nroot) {
1454 		err = ubifs_read_nnode(c, NULL, 0);
1455 		if (err)
1456 			return ERR_PTR(err);
1457 	}
1458 	nnode = c->nroot;
1459 	i = lnum - c->main_first;
1460 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1461 	for (h = 1; h < c->lpt_hght; h++) {
1462 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1463 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1464 		nnode = ubifs_get_nnode(c, nnode, iip);
1465 		if (IS_ERR(nnode))
1466 			return ERR_CAST(nnode);
1467 	}
1468 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1469 	pnode = ubifs_get_pnode(c, nnode, iip);
1470 	if (IS_ERR(pnode))
1471 		return ERR_CAST(pnode);
1472 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1473 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1474 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1475 	       pnode->lprops[iip].flags);
1476 	return &pnode->lprops[iip];
1477 }
1478 
1479 /**
1480  * dirty_cow_nnode - ensure a nnode is not being committed.
1481  * @c: UBIFS file-system description object
1482  * @nnode: nnode to check
1483  *
1484  * Returns dirtied nnode on success or negative error code on failure.
1485  */
dirty_cow_nnode(struct ubifs_info * c,struct ubifs_nnode * nnode)1486 static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1487 					   struct ubifs_nnode *nnode)
1488 {
1489 	struct ubifs_nnode *n;
1490 	int i;
1491 
1492 	if (!test_bit(COW_CNODE, &nnode->flags)) {
1493 		/* nnode is not being committed */
1494 		if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1495 			c->dirty_nn_cnt += 1;
1496 			ubifs_add_nnode_dirt(c, nnode);
1497 		}
1498 		return nnode;
1499 	}
1500 
1501 	/* nnode is being committed, so copy it */
1502 	n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1503 	if (unlikely(!n))
1504 		return ERR_PTR(-ENOMEM);
1505 
1506 	memcpy(n, nnode, sizeof(struct ubifs_nnode));
1507 	n->cnext = NULL;
1508 	__set_bit(DIRTY_CNODE, &n->flags);
1509 	__clear_bit(COW_CNODE, &n->flags);
1510 
1511 	/* The children now have new parent */
1512 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1513 		struct ubifs_nbranch *branch = &n->nbranch[i];
1514 
1515 		if (branch->cnode)
1516 			branch->cnode->parent = n;
1517 	}
1518 
1519 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
1520 	__set_bit(OBSOLETE_CNODE, &nnode->flags);
1521 
1522 	c->dirty_nn_cnt += 1;
1523 	ubifs_add_nnode_dirt(c, nnode);
1524 	if (nnode->parent)
1525 		nnode->parent->nbranch[n->iip].nnode = n;
1526 	else
1527 		c->nroot = n;
1528 	return n;
1529 }
1530 
1531 /**
1532  * dirty_cow_pnode - ensure a pnode is not being committed.
1533  * @c: UBIFS file-system description object
1534  * @pnode: pnode to check
1535  *
1536  * Returns dirtied pnode on success or negative error code on failure.
1537  */
dirty_cow_pnode(struct ubifs_info * c,struct ubifs_pnode * pnode)1538 static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1539 					   struct ubifs_pnode *pnode)
1540 {
1541 	struct ubifs_pnode *p;
1542 
1543 	if (!test_bit(COW_CNODE, &pnode->flags)) {
1544 		/* pnode is not being committed */
1545 		if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1546 			c->dirty_pn_cnt += 1;
1547 			add_pnode_dirt(c, pnode);
1548 		}
1549 		return pnode;
1550 	}
1551 
1552 	/* pnode is being committed, so copy it */
1553 	p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1554 	if (unlikely(!p))
1555 		return ERR_PTR(-ENOMEM);
1556 
1557 	memcpy(p, pnode, sizeof(struct ubifs_pnode));
1558 	p->cnext = NULL;
1559 	__set_bit(DIRTY_CNODE, &p->flags);
1560 	__clear_bit(COW_CNODE, &p->flags);
1561 	replace_cats(c, pnode, p);
1562 
1563 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
1564 	__set_bit(OBSOLETE_CNODE, &pnode->flags);
1565 
1566 	c->dirty_pn_cnt += 1;
1567 	add_pnode_dirt(c, pnode);
1568 	pnode->parent->nbranch[p->iip].pnode = p;
1569 	return p;
1570 }
1571 
1572 /**
1573  * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1574  * @c: UBIFS file-system description object
1575  * @lnum: LEB number to lookup
1576  *
1577  * This function returns a pointer to the LEB properties on success or a
1578  * negative error code on failure.
1579  */
ubifs_lpt_lookup_dirty(struct ubifs_info * c,int lnum)1580 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1581 {
1582 	int err, i, h, iip, shft;
1583 	struct ubifs_nnode *nnode;
1584 	struct ubifs_pnode *pnode;
1585 
1586 	if (!c->nroot) {
1587 		err = ubifs_read_nnode(c, NULL, 0);
1588 		if (err)
1589 			return ERR_PTR(err);
1590 	}
1591 	nnode = c->nroot;
1592 	nnode = dirty_cow_nnode(c, nnode);
1593 	if (IS_ERR(nnode))
1594 		return ERR_CAST(nnode);
1595 	i = lnum - c->main_first;
1596 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1597 	for (h = 1; h < c->lpt_hght; h++) {
1598 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1599 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1600 		nnode = ubifs_get_nnode(c, nnode, iip);
1601 		if (IS_ERR(nnode))
1602 			return ERR_CAST(nnode);
1603 		nnode = dirty_cow_nnode(c, nnode);
1604 		if (IS_ERR(nnode))
1605 			return ERR_CAST(nnode);
1606 	}
1607 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1608 	pnode = ubifs_get_pnode(c, nnode, iip);
1609 	if (IS_ERR(pnode))
1610 		return ERR_CAST(pnode);
1611 	pnode = dirty_cow_pnode(c, pnode);
1612 	if (IS_ERR(pnode))
1613 		return ERR_CAST(pnode);
1614 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1615 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1616 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1617 	       pnode->lprops[iip].flags);
1618 	ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
1619 	return &pnode->lprops[iip];
1620 }
1621 
1622 /**
1623  * lpt_init_rd - initialize the LPT for reading.
1624  * @c: UBIFS file-system description object
1625  *
1626  * This function returns %0 on success and a negative error code on failure.
1627  */
lpt_init_rd(struct ubifs_info * c)1628 static int lpt_init_rd(struct ubifs_info *c)
1629 {
1630 	int err, i;
1631 
1632 	c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1633 	if (!c->ltab)
1634 		return -ENOMEM;
1635 
1636 	i = max_t(int, c->nnode_sz, c->pnode_sz);
1637 	c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1638 	if (!c->lpt_nod_buf)
1639 		return -ENOMEM;
1640 
1641 	for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1642 		c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
1643 					     GFP_KERNEL);
1644 		if (!c->lpt_heap[i].arr)
1645 			return -ENOMEM;
1646 		c->lpt_heap[i].cnt = 0;
1647 		c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1648 	}
1649 
1650 	c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
1651 	if (!c->dirty_idx.arr)
1652 		return -ENOMEM;
1653 	c->dirty_idx.cnt = 0;
1654 	c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1655 
1656 	err = read_ltab(c);
1657 	if (err)
1658 		return err;
1659 
1660 	dbg_lp("space_bits %d", c->space_bits);
1661 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1662 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1663 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1664 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
1665 	dbg_lp("lnum_bits %d", c->lnum_bits);
1666 	dbg_lp("pnode_sz %d", c->pnode_sz);
1667 	dbg_lp("nnode_sz %d", c->nnode_sz);
1668 	dbg_lp("ltab_sz %d", c->ltab_sz);
1669 	dbg_lp("lsave_sz %d", c->lsave_sz);
1670 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
1671 	dbg_lp("lpt_hght %d", c->lpt_hght);
1672 	dbg_lp("big_lpt %d", c->big_lpt);
1673 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1674 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1675 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1676 	if (c->big_lpt)
1677 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1678 
1679 	return 0;
1680 }
1681 
1682 #ifndef __UBOOT__
1683 /**
1684  * lpt_init_wr - initialize the LPT for writing.
1685  * @c: UBIFS file-system description object
1686  *
1687  * 'lpt_init_rd()' must have been called already.
1688  *
1689  * This function returns %0 on success and a negative error code on failure.
1690  */
lpt_init_wr(struct ubifs_info * c)1691 static int lpt_init_wr(struct ubifs_info *c)
1692 {
1693 	int err, i;
1694 
1695 	c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1696 	if (!c->ltab_cmt)
1697 		return -ENOMEM;
1698 
1699 	c->lpt_buf = vmalloc(c->leb_size);
1700 	if (!c->lpt_buf)
1701 		return -ENOMEM;
1702 
1703 	if (c->big_lpt) {
1704 		c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
1705 		if (!c->lsave)
1706 			return -ENOMEM;
1707 		err = read_lsave(c);
1708 		if (err)
1709 			return err;
1710 	}
1711 
1712 	for (i = 0; i < c->lpt_lebs; i++)
1713 		if (c->ltab[i].free == c->leb_size) {
1714 			err = ubifs_leb_unmap(c, i + c->lpt_first);
1715 			if (err)
1716 				return err;
1717 		}
1718 
1719 	return 0;
1720 }
1721 #endif
1722 
1723 /**
1724  * ubifs_lpt_init - initialize the LPT.
1725  * @c: UBIFS file-system description object
1726  * @rd: whether to initialize lpt for reading
1727  * @wr: whether to initialize lpt for writing
1728  *
1729  * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1730  * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1731  * true.
1732  *
1733  * This function returns %0 on success and a negative error code on failure.
1734  */
ubifs_lpt_init(struct ubifs_info * c,int rd,int wr)1735 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1736 {
1737 	int err;
1738 
1739 	if (rd) {
1740 		err = lpt_init_rd(c);
1741 		if (err)
1742 			goto out_err;
1743 	}
1744 
1745 #ifndef __UBOOT__
1746 	if (wr) {
1747 		err = lpt_init_wr(c);
1748 		if (err)
1749 			goto out_err;
1750 	}
1751 #endif
1752 
1753 	return 0;
1754 
1755 out_err:
1756 #ifndef __UBOOT__
1757 	if (wr)
1758 		ubifs_lpt_free(c, 1);
1759 #endif
1760 	if (rd)
1761 		ubifs_lpt_free(c, 0);
1762 	return err;
1763 }
1764 
1765 /**
1766  * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1767  * @nnode: where to keep a nnode
1768  * @pnode: where to keep a pnode
1769  * @cnode: where to keep a cnode
1770  * @in_tree: is the node in the tree in memory
1771  * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1772  * the tree
1773  * @ptr.pnode: ditto for pnode
1774  * @ptr.cnode: ditto for cnode
1775  */
1776 struct lpt_scan_node {
1777 	union {
1778 		struct ubifs_nnode nnode;
1779 		struct ubifs_pnode pnode;
1780 		struct ubifs_cnode cnode;
1781 	};
1782 	int in_tree;
1783 	union {
1784 		struct ubifs_nnode *nnode;
1785 		struct ubifs_pnode *pnode;
1786 		struct ubifs_cnode *cnode;
1787 	} ptr;
1788 };
1789 
1790 /**
1791  * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1792  * @c: the UBIFS file-system description object
1793  * @path: where to put the nnode
1794  * @parent: parent of the nnode
1795  * @iip: index in parent of the nnode
1796  *
1797  * This function returns a pointer to the nnode on success or a negative error
1798  * code on failure.
1799  */
scan_get_nnode(struct ubifs_info * c,struct lpt_scan_node * path,struct ubifs_nnode * parent,int iip)1800 static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1801 					  struct lpt_scan_node *path,
1802 					  struct ubifs_nnode *parent, int iip)
1803 {
1804 	struct ubifs_nbranch *branch;
1805 	struct ubifs_nnode *nnode;
1806 	void *buf = c->lpt_nod_buf;
1807 	int err;
1808 
1809 	branch = &parent->nbranch[iip];
1810 	nnode = branch->nnode;
1811 	if (nnode) {
1812 		path->in_tree = 1;
1813 		path->ptr.nnode = nnode;
1814 		return nnode;
1815 	}
1816 	nnode = &path->nnode;
1817 	path->in_tree = 0;
1818 	path->ptr.nnode = nnode;
1819 	memset(nnode, 0, sizeof(struct ubifs_nnode));
1820 	if (branch->lnum == 0) {
1821 		/*
1822 		 * This nnode was not written which just means that the LEB
1823 		 * properties in the subtree below it describe empty LEBs. We
1824 		 * make the nnode as though we had read it, which in fact means
1825 		 * doing almost nothing.
1826 		 */
1827 		if (c->big_lpt)
1828 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1829 	} else {
1830 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1831 				     c->nnode_sz, 1);
1832 		if (err)
1833 			return ERR_PTR(err);
1834 		err = ubifs_unpack_nnode(c, buf, nnode);
1835 		if (err)
1836 			return ERR_PTR(err);
1837 	}
1838 	err = validate_nnode(c, nnode, parent, iip);
1839 	if (err)
1840 		return ERR_PTR(err);
1841 	if (!c->big_lpt)
1842 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1843 	nnode->level = parent->level - 1;
1844 	nnode->parent = parent;
1845 	nnode->iip = iip;
1846 	return nnode;
1847 }
1848 
1849 /**
1850  * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1851  * @c: the UBIFS file-system description object
1852  * @path: where to put the pnode
1853  * @parent: parent of the pnode
1854  * @iip: index in parent of the pnode
1855  *
1856  * This function returns a pointer to the pnode on success or a negative error
1857  * code on failure.
1858  */
scan_get_pnode(struct ubifs_info * c,struct lpt_scan_node * path,struct ubifs_nnode * parent,int iip)1859 static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1860 					  struct lpt_scan_node *path,
1861 					  struct ubifs_nnode *parent, int iip)
1862 {
1863 	struct ubifs_nbranch *branch;
1864 	struct ubifs_pnode *pnode;
1865 	void *buf = c->lpt_nod_buf;
1866 	int err;
1867 
1868 	branch = &parent->nbranch[iip];
1869 	pnode = branch->pnode;
1870 	if (pnode) {
1871 		path->in_tree = 1;
1872 		path->ptr.pnode = pnode;
1873 		return pnode;
1874 	}
1875 	pnode = &path->pnode;
1876 	path->in_tree = 0;
1877 	path->ptr.pnode = pnode;
1878 	memset(pnode, 0, sizeof(struct ubifs_pnode));
1879 	if (branch->lnum == 0) {
1880 		/*
1881 		 * This pnode was not written which just means that the LEB
1882 		 * properties in it describe empty LEBs. We make the pnode as
1883 		 * though we had read it.
1884 		 */
1885 		int i;
1886 
1887 		if (c->big_lpt)
1888 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1889 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1890 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1891 
1892 			lprops->free = c->leb_size;
1893 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1894 		}
1895 	} else {
1896 		ubifs_assert(branch->lnum >= c->lpt_first &&
1897 			     branch->lnum <= c->lpt_last);
1898 		ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
1899 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1900 				     c->pnode_sz, 1);
1901 		if (err)
1902 			return ERR_PTR(err);
1903 		err = unpack_pnode(c, buf, pnode);
1904 		if (err)
1905 			return ERR_PTR(err);
1906 	}
1907 	err = validate_pnode(c, pnode, parent, iip);
1908 	if (err)
1909 		return ERR_PTR(err);
1910 	if (!c->big_lpt)
1911 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1912 	pnode->parent = parent;
1913 	pnode->iip = iip;
1914 	set_pnode_lnum(c, pnode);
1915 	return pnode;
1916 }
1917 
1918 /**
1919  * ubifs_lpt_scan_nolock - scan the LPT.
1920  * @c: the UBIFS file-system description object
1921  * @start_lnum: LEB number from which to start scanning
1922  * @end_lnum: LEB number at which to stop scanning
1923  * @scan_cb: callback function called for each lprops
1924  * @data: data to be passed to the callback function
1925  *
1926  * This function returns %0 on success and a negative error code on failure.
1927  */
ubifs_lpt_scan_nolock(struct ubifs_info * c,int start_lnum,int end_lnum,ubifs_lpt_scan_callback scan_cb,void * data)1928 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1929 			  ubifs_lpt_scan_callback scan_cb, void *data)
1930 {
1931 	int err = 0, i, h, iip, shft;
1932 	struct ubifs_nnode *nnode;
1933 	struct ubifs_pnode *pnode;
1934 	struct lpt_scan_node *path;
1935 
1936 	if (start_lnum == -1) {
1937 		start_lnum = end_lnum + 1;
1938 		if (start_lnum >= c->leb_cnt)
1939 			start_lnum = c->main_first;
1940 	}
1941 
1942 	ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1943 	ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1944 
1945 	if (!c->nroot) {
1946 		err = ubifs_read_nnode(c, NULL, 0);
1947 		if (err)
1948 			return err;
1949 	}
1950 
1951 	path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
1952 		       GFP_NOFS);
1953 	if (!path)
1954 		return -ENOMEM;
1955 
1956 	path[0].ptr.nnode = c->nroot;
1957 	path[0].in_tree = 1;
1958 again:
1959 	/* Descend to the pnode containing start_lnum */
1960 	nnode = c->nroot;
1961 	i = start_lnum - c->main_first;
1962 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1963 	for (h = 1; h < c->lpt_hght; h++) {
1964 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1965 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1966 		nnode = scan_get_nnode(c, path + h, nnode, iip);
1967 		if (IS_ERR(nnode)) {
1968 			err = PTR_ERR(nnode);
1969 			goto out;
1970 		}
1971 	}
1972 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1973 	pnode = scan_get_pnode(c, path + h, nnode, iip);
1974 	if (IS_ERR(pnode)) {
1975 		err = PTR_ERR(pnode);
1976 		goto out;
1977 	}
1978 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1979 
1980 	/* Loop for each lprops */
1981 	while (1) {
1982 		struct ubifs_lprops *lprops = &pnode->lprops[iip];
1983 		int ret, lnum = lprops->lnum;
1984 
1985 		ret = scan_cb(c, lprops, path[h].in_tree, data);
1986 		if (ret < 0) {
1987 			err = ret;
1988 			goto out;
1989 		}
1990 		if (ret & LPT_SCAN_ADD) {
1991 			/* Add all the nodes in path to the tree in memory */
1992 			for (h = 1; h < c->lpt_hght; h++) {
1993 				const size_t sz = sizeof(struct ubifs_nnode);
1994 				struct ubifs_nnode *parent;
1995 
1996 				if (path[h].in_tree)
1997 					continue;
1998 				nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
1999 				if (!nnode) {
2000 					err = -ENOMEM;
2001 					goto out;
2002 				}
2003 				parent = nnode->parent;
2004 				parent->nbranch[nnode->iip].nnode = nnode;
2005 				path[h].ptr.nnode = nnode;
2006 				path[h].in_tree = 1;
2007 				path[h + 1].cnode.parent = nnode;
2008 			}
2009 			if (path[h].in_tree)
2010 				ubifs_ensure_cat(c, lprops);
2011 			else {
2012 				const size_t sz = sizeof(struct ubifs_pnode);
2013 				struct ubifs_nnode *parent;
2014 
2015 				pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
2016 				if (!pnode) {
2017 					err = -ENOMEM;
2018 					goto out;
2019 				}
2020 				parent = pnode->parent;
2021 				parent->nbranch[pnode->iip].pnode = pnode;
2022 				path[h].ptr.pnode = pnode;
2023 				path[h].in_tree = 1;
2024 				update_cats(c, pnode);
2025 				c->pnodes_have += 1;
2026 			}
2027 			err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2028 						  c->nroot, 0, 0);
2029 			if (err)
2030 				goto out;
2031 			err = dbg_check_cats(c);
2032 			if (err)
2033 				goto out;
2034 		}
2035 		if (ret & LPT_SCAN_STOP) {
2036 			err = 0;
2037 			break;
2038 		}
2039 		/* Get the next lprops */
2040 		if (lnum == end_lnum) {
2041 			/*
2042 			 * We got to the end without finding what we were
2043 			 * looking for
2044 			 */
2045 			err = -ENOSPC;
2046 			goto out;
2047 		}
2048 		if (lnum + 1 >= c->leb_cnt) {
2049 			/* Wrap-around to the beginning */
2050 			start_lnum = c->main_first;
2051 			goto again;
2052 		}
2053 		if (iip + 1 < UBIFS_LPT_FANOUT) {
2054 			/* Next lprops is in the same pnode */
2055 			iip += 1;
2056 			continue;
2057 		}
2058 		/* We need to get the next pnode. Go up until we can go right */
2059 		iip = pnode->iip;
2060 		while (1) {
2061 			h -= 1;
2062 			ubifs_assert(h >= 0);
2063 			nnode = path[h].ptr.nnode;
2064 			if (iip + 1 < UBIFS_LPT_FANOUT)
2065 				break;
2066 			iip = nnode->iip;
2067 		}
2068 		/* Go right */
2069 		iip += 1;
2070 		/* Descend to the pnode */
2071 		h += 1;
2072 		for (; h < c->lpt_hght; h++) {
2073 			nnode = scan_get_nnode(c, path + h, nnode, iip);
2074 			if (IS_ERR(nnode)) {
2075 				err = PTR_ERR(nnode);
2076 				goto out;
2077 			}
2078 			iip = 0;
2079 		}
2080 		pnode = scan_get_pnode(c, path + h, nnode, iip);
2081 		if (IS_ERR(pnode)) {
2082 			err = PTR_ERR(pnode);
2083 			goto out;
2084 		}
2085 		iip = 0;
2086 	}
2087 out:
2088 	kfree(path);
2089 	return err;
2090 }
2091 
2092 /**
2093  * dbg_chk_pnode - check a pnode.
2094  * @c: the UBIFS file-system description object
2095  * @pnode: pnode to check
2096  * @col: pnode column
2097  *
2098  * This function returns %0 on success and a negative error code on failure.
2099  */
dbg_chk_pnode(struct ubifs_info * c,struct ubifs_pnode * pnode,int col)2100 static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2101 			 int col)
2102 {
2103 	int i;
2104 
2105 	if (pnode->num != col) {
2106 		ubifs_err(c, "pnode num %d expected %d parent num %d iip %d",
2107 			  pnode->num, col, pnode->parent->num, pnode->iip);
2108 		return -EINVAL;
2109 	}
2110 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2111 		struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2112 		int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2113 			   c->main_first;
2114 		int found, cat = lprops->flags & LPROPS_CAT_MASK;
2115 		struct ubifs_lpt_heap *heap;
2116 		struct list_head *list = NULL;
2117 
2118 		if (lnum >= c->leb_cnt)
2119 			continue;
2120 		if (lprops->lnum != lnum) {
2121 			ubifs_err(c, "bad LEB number %d expected %d",
2122 				  lprops->lnum, lnum);
2123 			return -EINVAL;
2124 		}
2125 		if (lprops->flags & LPROPS_TAKEN) {
2126 			if (cat != LPROPS_UNCAT) {
2127 				ubifs_err(c, "LEB %d taken but not uncat %d",
2128 					  lprops->lnum, cat);
2129 				return -EINVAL;
2130 			}
2131 			continue;
2132 		}
2133 		if (lprops->flags & LPROPS_INDEX) {
2134 			switch (cat) {
2135 			case LPROPS_UNCAT:
2136 			case LPROPS_DIRTY_IDX:
2137 			case LPROPS_FRDI_IDX:
2138 				break;
2139 			default:
2140 				ubifs_err(c, "LEB %d index but cat %d",
2141 					  lprops->lnum, cat);
2142 				return -EINVAL;
2143 			}
2144 		} else {
2145 			switch (cat) {
2146 			case LPROPS_UNCAT:
2147 			case LPROPS_DIRTY:
2148 			case LPROPS_FREE:
2149 			case LPROPS_EMPTY:
2150 			case LPROPS_FREEABLE:
2151 				break;
2152 			default:
2153 				ubifs_err(c, "LEB %d not index but cat %d",
2154 					  lprops->lnum, cat);
2155 				return -EINVAL;
2156 			}
2157 		}
2158 		switch (cat) {
2159 		case LPROPS_UNCAT:
2160 			list = &c->uncat_list;
2161 			break;
2162 		case LPROPS_EMPTY:
2163 			list = &c->empty_list;
2164 			break;
2165 		case LPROPS_FREEABLE:
2166 			list = &c->freeable_list;
2167 			break;
2168 		case LPROPS_FRDI_IDX:
2169 			list = &c->frdi_idx_list;
2170 			break;
2171 		}
2172 		found = 0;
2173 		switch (cat) {
2174 		case LPROPS_DIRTY:
2175 		case LPROPS_DIRTY_IDX:
2176 		case LPROPS_FREE:
2177 			heap = &c->lpt_heap[cat - 1];
2178 			if (lprops->hpos < heap->cnt &&
2179 			    heap->arr[lprops->hpos] == lprops)
2180 				found = 1;
2181 			break;
2182 		case LPROPS_UNCAT:
2183 		case LPROPS_EMPTY:
2184 		case LPROPS_FREEABLE:
2185 		case LPROPS_FRDI_IDX:
2186 			list_for_each_entry(lp, list, list)
2187 				if (lprops == lp) {
2188 					found = 1;
2189 					break;
2190 				}
2191 			break;
2192 		}
2193 		if (!found) {
2194 			ubifs_err(c, "LEB %d cat %d not found in cat heap/list",
2195 				  lprops->lnum, cat);
2196 			return -EINVAL;
2197 		}
2198 		switch (cat) {
2199 		case LPROPS_EMPTY:
2200 			if (lprops->free != c->leb_size) {
2201 				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2202 					  lprops->lnum, cat, lprops->free,
2203 					  lprops->dirty);
2204 				return -EINVAL;
2205 			}
2206 			break;
2207 		case LPROPS_FREEABLE:
2208 		case LPROPS_FRDI_IDX:
2209 			if (lprops->free + lprops->dirty != c->leb_size) {
2210 				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2211 					  lprops->lnum, cat, lprops->free,
2212 					  lprops->dirty);
2213 				return -EINVAL;
2214 			}
2215 			break;
2216 		}
2217 	}
2218 	return 0;
2219 }
2220 
2221 /**
2222  * dbg_check_lpt_nodes - check nnodes and pnodes.
2223  * @c: the UBIFS file-system description object
2224  * @cnode: next cnode (nnode or pnode) to check
2225  * @row: row of cnode (root is zero)
2226  * @col: column of cnode (leftmost is zero)
2227  *
2228  * This function returns %0 on success and a negative error code on failure.
2229  */
dbg_check_lpt_nodes(struct ubifs_info * c,struct ubifs_cnode * cnode,int row,int col)2230 int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2231 			int row, int col)
2232 {
2233 	struct ubifs_nnode *nnode, *nn;
2234 	struct ubifs_cnode *cn;
2235 	int num, iip = 0, err;
2236 
2237 	if (!dbg_is_chk_lprops(c))
2238 		return 0;
2239 
2240 	while (cnode) {
2241 		ubifs_assert(row >= 0);
2242 		nnode = cnode->parent;
2243 		if (cnode->level) {
2244 			/* cnode is a nnode */
2245 			num = calc_nnode_num(row, col);
2246 			if (cnode->num != num) {
2247 				ubifs_err(c, "nnode num %d expected %d parent num %d iip %d",
2248 					  cnode->num, num,
2249 					  (nnode ? nnode->num : 0), cnode->iip);
2250 				return -EINVAL;
2251 			}
2252 			nn = (struct ubifs_nnode *)cnode;
2253 			while (iip < UBIFS_LPT_FANOUT) {
2254 				cn = nn->nbranch[iip].cnode;
2255 				if (cn) {
2256 					/* Go down */
2257 					row += 1;
2258 					col <<= UBIFS_LPT_FANOUT_SHIFT;
2259 					col += iip;
2260 					iip = 0;
2261 					cnode = cn;
2262 					break;
2263 				}
2264 				/* Go right */
2265 				iip += 1;
2266 			}
2267 			if (iip < UBIFS_LPT_FANOUT)
2268 				continue;
2269 		} else {
2270 			struct ubifs_pnode *pnode;
2271 
2272 			/* cnode is a pnode */
2273 			pnode = (struct ubifs_pnode *)cnode;
2274 			err = dbg_chk_pnode(c, pnode, col);
2275 			if (err)
2276 				return err;
2277 		}
2278 		/* Go up and to the right */
2279 		row -= 1;
2280 		col >>= UBIFS_LPT_FANOUT_SHIFT;
2281 		iip = cnode->iip + 1;
2282 		cnode = (struct ubifs_cnode *)nnode;
2283 	}
2284 	return 0;
2285 }
2286