1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  * Copyright (c) Nokia Corporation, 2007
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём),
7  *         Frank Haverkamp
8  */
9 
10 /*
11  * This file includes UBI initialization and building of UBI devices.
12  *
13  * When UBI is initialized, it attaches all the MTD devices specified as the
14  * module load parameters or the kernel boot parameters. If MTD devices were
15  * specified, UBI does not attach any MTD device, but it is possible to do
16  * later using the "UBI control device".
17  */
18 
19 #ifndef __UBOOT__
20 #include <log.h>
21 #include <dm/devres.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/stringify.h>
25 #include <linux/namei.h>
26 #include <linux/stat.h>
27 #include <linux/miscdevice.h>
28 #include <linux/log2.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/major.h>
33 #else
34 #include <linux/bug.h>
35 #include <linux/log2.h>
36 #endif
37 #include <linux/err.h>
38 #include <ubi_uboot.h>
39 #include <linux/mtd/partitions.h>
40 
41 #include "ubi.h"
42 
43 /* Maximum length of the 'mtd=' parameter */
44 #define MTD_PARAM_LEN_MAX 64
45 
46 /* Maximum number of comma-separated items in the 'mtd=' parameter */
47 #define MTD_PARAM_MAX_COUNT 4
48 
49 /* Maximum value for the number of bad PEBs per 1024 PEBs */
50 #define MAX_MTD_UBI_BEB_LIMIT 768
51 
52 #ifdef CONFIG_MTD_UBI_MODULE
53 #define ubi_is_module() 1
54 #else
55 #define ubi_is_module() 0
56 #endif
57 
58 #if (CONFIG_SYS_MALLOC_LEN < (512 << 10))
59 #error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k
60 #endif
61 
62 /**
63  * struct mtd_dev_param - MTD device parameter description data structure.
64  * @name: MTD character device node path, MTD device name, or MTD device number
65  *        string
66  * @vid_hdr_offs: VID header offset
67  * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
68  */
69 struct mtd_dev_param {
70 	char name[MTD_PARAM_LEN_MAX];
71 	int ubi_num;
72 	int vid_hdr_offs;
73 	int max_beb_per1024;
74 };
75 
76 /* Numbers of elements set in the @mtd_dev_param array */
77 static int __initdata mtd_devs;
78 
79 /* MTD devices specification parameters */
80 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
81 #ifndef __UBOOT__
82 #ifdef CONFIG_MTD_UBI_FASTMAP
83 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
84 static bool fm_autoconvert;
85 static bool fm_debug;
86 #endif
87 #else
88 #ifdef CONFIG_MTD_UBI_FASTMAP
89 #if !defined(CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT)
90 #define CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT 0
91 #endif
92 static bool fm_autoconvert = CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT;
93 #if !defined(CONFIG_MTD_UBI_FM_DEBUG)
94 #define CONFIG_MTD_UBI_FM_DEBUG 0
95 #endif
96 static bool fm_debug = CONFIG_MTD_UBI_FM_DEBUG;
97 #endif
98 #endif
99 
100 /* Slab cache for wear-leveling entries */
101 struct kmem_cache *ubi_wl_entry_slab;
102 
103 #ifndef __UBOOT__
104 /* UBI control character device */
105 static struct miscdevice ubi_ctrl_cdev = {
106 	.minor = MISC_DYNAMIC_MINOR,
107 	.name = "ubi_ctrl",
108 	.fops = &ubi_ctrl_cdev_operations,
109 };
110 #endif
111 
112 /* All UBI devices in system */
113 #ifndef __UBOOT__
114 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
115 #else
116 struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
117 #endif
118 
119 #ifndef __UBOOT__
120 /* Serializes UBI devices creations and removals */
121 DEFINE_MUTEX(ubi_devices_mutex);
122 
123 /* Protects @ubi_devices and @ubi->ref_count */
124 static DEFINE_SPINLOCK(ubi_devices_lock);
125 
126 /* "Show" method for files in '/<sysfs>/class/ubi/' */
ubi_version_show(struct class * class,struct class_attribute * attr,char * buf)127 static ssize_t ubi_version_show(struct class *class,
128 				struct class_attribute *attr, char *buf)
129 {
130 	return sprintf(buf, "%d\n", UBI_VERSION);
131 }
132 
133 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
134 static struct class_attribute ubi_class_attrs[] = {
135 	__ATTR(version, S_IRUGO, ubi_version_show, NULL),
136 	__ATTR_NULL
137 };
138 
139 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
140 struct class ubi_class = {
141 	.name		= UBI_NAME_STR,
142 	.owner		= THIS_MODULE,
143 	.class_attrs	= ubi_class_attrs,
144 };
145 
146 static ssize_t dev_attribute_show(struct device *dev,
147 				  struct device_attribute *attr, char *buf);
148 
149 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
150 static struct device_attribute dev_eraseblock_size =
151 	__ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
152 static struct device_attribute dev_avail_eraseblocks =
153 	__ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
154 static struct device_attribute dev_total_eraseblocks =
155 	__ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
156 static struct device_attribute dev_volumes_count =
157 	__ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
158 static struct device_attribute dev_max_ec =
159 	__ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
160 static struct device_attribute dev_reserved_for_bad =
161 	__ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
162 static struct device_attribute dev_bad_peb_count =
163 	__ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
164 static struct device_attribute dev_max_vol_count =
165 	__ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
166 static struct device_attribute dev_min_io_size =
167 	__ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
168 static struct device_attribute dev_bgt_enabled =
169 	__ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
170 static struct device_attribute dev_mtd_num =
171 	__ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
172 #endif
173 
174 /**
175  * ubi_volume_notify - send a volume change notification.
176  * @ubi: UBI device description object
177  * @vol: volume description object of the changed volume
178  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
179  *
180  * This is a helper function which notifies all subscribers about a volume
181  * change event (creation, removal, re-sizing, re-naming, updating). Returns
182  * zero in case of success and a negative error code in case of failure.
183  */
ubi_volume_notify(struct ubi_device * ubi,struct ubi_volume * vol,int ntype)184 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
185 {
186 	int ret;
187 	struct ubi_notification nt;
188 
189 	ubi_do_get_device_info(ubi, &nt.di);
190 	ubi_do_get_volume_info(ubi, vol, &nt.vi);
191 
192 	switch (ntype) {
193 	case UBI_VOLUME_ADDED:
194 	case UBI_VOLUME_REMOVED:
195 	case UBI_VOLUME_RESIZED:
196 	case UBI_VOLUME_RENAMED:
197 		ret = ubi_update_fastmap(ubi);
198 		if (ret)
199 			ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
200 	}
201 
202 	return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
203 }
204 
205 /**
206  * ubi_notify_all - send a notification to all volumes.
207  * @ubi: UBI device description object
208  * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
209  * @nb: the notifier to call
210  *
211  * This function walks all volumes of UBI device @ubi and sends the @ntype
212  * notification for each volume. If @nb is %NULL, then all registered notifiers
213  * are called, otherwise only the @nb notifier is called. Returns the number of
214  * sent notifications.
215  */
ubi_notify_all(struct ubi_device * ubi,int ntype,struct notifier_block * nb)216 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
217 {
218 	struct ubi_notification nt;
219 	int i, count = 0;
220 #ifndef __UBOOT__
221 	int ret;
222 #endif
223 
224 	ubi_do_get_device_info(ubi, &nt.di);
225 
226 	mutex_lock(&ubi->device_mutex);
227 	for (i = 0; i < ubi->vtbl_slots; i++) {
228 		/*
229 		 * Since the @ubi->device is locked, and we are not going to
230 		 * change @ubi->volumes, we do not have to lock
231 		 * @ubi->volumes_lock.
232 		 */
233 		if (!ubi->volumes[i])
234 			continue;
235 
236 		ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
237 #ifndef __UBOOT__
238 		if (nb)
239 			nb->notifier_call(nb, ntype, &nt);
240 		else
241 			ret = blocking_notifier_call_chain(&ubi_notifiers, ntype,
242 						     &nt);
243 #endif
244 		count += 1;
245 	}
246 	mutex_unlock(&ubi->device_mutex);
247 
248 	return count;
249 }
250 
251 /**
252  * ubi_enumerate_volumes - send "add" notification for all existing volumes.
253  * @nb: the notifier to call
254  *
255  * This function walks all UBI devices and volumes and sends the
256  * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
257  * registered notifiers are called, otherwise only the @nb notifier is called.
258  * Returns the number of sent notifications.
259  */
ubi_enumerate_volumes(struct notifier_block * nb)260 int ubi_enumerate_volumes(struct notifier_block *nb)
261 {
262 	int i, count = 0;
263 
264 	/*
265 	 * Since the @ubi_devices_mutex is locked, and we are not going to
266 	 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
267 	 */
268 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
269 		struct ubi_device *ubi = ubi_devices[i];
270 
271 		if (!ubi)
272 			continue;
273 		count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
274 	}
275 
276 	return count;
277 }
278 
279 /**
280  * ubi_get_device - get UBI device.
281  * @ubi_num: UBI device number
282  *
283  * This function returns UBI device description object for UBI device number
284  * @ubi_num, or %NULL if the device does not exist. This function increases the
285  * device reference count to prevent removal of the device. In other words, the
286  * device cannot be removed if its reference count is not zero.
287  */
ubi_get_device(int ubi_num)288 struct ubi_device *ubi_get_device(int ubi_num)
289 {
290 	struct ubi_device *ubi;
291 
292 	spin_lock(&ubi_devices_lock);
293 	ubi = ubi_devices[ubi_num];
294 	if (ubi) {
295 		ubi_assert(ubi->ref_count >= 0);
296 		ubi->ref_count += 1;
297 		get_device(&ubi->dev);
298 	}
299 	spin_unlock(&ubi_devices_lock);
300 
301 	return ubi;
302 }
303 
304 /**
305  * ubi_put_device - drop an UBI device reference.
306  * @ubi: UBI device description object
307  */
ubi_put_device(struct ubi_device * ubi)308 void ubi_put_device(struct ubi_device *ubi)
309 {
310 	spin_lock(&ubi_devices_lock);
311 	ubi->ref_count -= 1;
312 	put_device(&ubi->dev);
313 	spin_unlock(&ubi_devices_lock);
314 }
315 
316 /**
317  * ubi_get_by_major - get UBI device by character device major number.
318  * @major: major number
319  *
320  * This function is similar to 'ubi_get_device()', but it searches the device
321  * by its major number.
322  */
ubi_get_by_major(int major)323 struct ubi_device *ubi_get_by_major(int major)
324 {
325 	int i;
326 	struct ubi_device *ubi;
327 
328 	spin_lock(&ubi_devices_lock);
329 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
330 		ubi = ubi_devices[i];
331 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
332 			ubi_assert(ubi->ref_count >= 0);
333 			ubi->ref_count += 1;
334 			get_device(&ubi->dev);
335 			spin_unlock(&ubi_devices_lock);
336 			return ubi;
337 		}
338 	}
339 	spin_unlock(&ubi_devices_lock);
340 
341 	return NULL;
342 }
343 
344 /**
345  * ubi_major2num - get UBI device number by character device major number.
346  * @major: major number
347  *
348  * This function searches UBI device number object by its major number. If UBI
349  * device was not found, this function returns -ENODEV, otherwise the UBI device
350  * number is returned.
351  */
ubi_major2num(int major)352 int ubi_major2num(int major)
353 {
354 	int i, ubi_num = -ENODEV;
355 
356 	spin_lock(&ubi_devices_lock);
357 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
358 		struct ubi_device *ubi = ubi_devices[i];
359 
360 		if (ubi && MAJOR(ubi->cdev.dev) == major) {
361 			ubi_num = ubi->ubi_num;
362 			break;
363 		}
364 	}
365 	spin_unlock(&ubi_devices_lock);
366 
367 	return ubi_num;
368 }
369 
370 #ifndef __UBOOT__
371 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
dev_attribute_show(struct device * dev,struct device_attribute * attr,char * buf)372 static ssize_t dev_attribute_show(struct device *dev,
373 				  struct device_attribute *attr, char *buf)
374 {
375 	ssize_t ret;
376 	struct ubi_device *ubi;
377 
378 	/*
379 	 * The below code looks weird, but it actually makes sense. We get the
380 	 * UBI device reference from the contained 'struct ubi_device'. But it
381 	 * is unclear if the device was removed or not yet. Indeed, if the
382 	 * device was removed before we increased its reference count,
383 	 * 'ubi_get_device()' will return -ENODEV and we fail.
384 	 *
385 	 * Remember, 'struct ubi_device' is freed in the release function, so
386 	 * we still can use 'ubi->ubi_num'.
387 	 */
388 	ubi = container_of(dev, struct ubi_device, dev);
389 	ubi = ubi_get_device(ubi->ubi_num);
390 	if (!ubi)
391 		return -ENODEV;
392 
393 	if (attr == &dev_eraseblock_size)
394 		ret = sprintf(buf, "%d\n", ubi->leb_size);
395 	else if (attr == &dev_avail_eraseblocks)
396 		ret = sprintf(buf, "%d\n", ubi->avail_pebs);
397 	else if (attr == &dev_total_eraseblocks)
398 		ret = sprintf(buf, "%d\n", ubi->good_peb_count);
399 	else if (attr == &dev_volumes_count)
400 		ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
401 	else if (attr == &dev_max_ec)
402 		ret = sprintf(buf, "%d\n", ubi->max_ec);
403 	else if (attr == &dev_reserved_for_bad)
404 		ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
405 	else if (attr == &dev_bad_peb_count)
406 		ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
407 	else if (attr == &dev_max_vol_count)
408 		ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
409 	else if (attr == &dev_min_io_size)
410 		ret = sprintf(buf, "%d\n", ubi->min_io_size);
411 	else if (attr == &dev_bgt_enabled)
412 		ret = sprintf(buf, "%d\n", ubi->thread_enabled);
413 	else if (attr == &dev_mtd_num)
414 		ret = sprintf(buf, "%d\n", ubi->mtd->index);
415 	else
416 		ret = -EINVAL;
417 
418 	ubi_put_device(ubi);
419 	return ret;
420 }
421 
422 static struct attribute *ubi_dev_attrs[] = {
423 	&dev_eraseblock_size.attr,
424 	&dev_avail_eraseblocks.attr,
425 	&dev_total_eraseblocks.attr,
426 	&dev_volumes_count.attr,
427 	&dev_max_ec.attr,
428 	&dev_reserved_for_bad.attr,
429 	&dev_bad_peb_count.attr,
430 	&dev_max_vol_count.attr,
431 	&dev_min_io_size.attr,
432 	&dev_bgt_enabled.attr,
433 	&dev_mtd_num.attr,
434 	NULL
435 };
436 ATTRIBUTE_GROUPS(ubi_dev);
437 
dev_release(struct device * dev)438 static void dev_release(struct device *dev)
439 {
440 	struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
441 
442 	kfree(ubi);
443 }
444 
445 /**
446  * ubi_sysfs_init - initialize sysfs for an UBI device.
447  * @ubi: UBI device description object
448  * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
449  *       taken
450  *
451  * This function returns zero in case of success and a negative error code in
452  * case of failure.
453  */
ubi_sysfs_init(struct ubi_device * ubi,int * ref)454 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
455 {
456 	int err;
457 
458 	ubi->dev.release = dev_release;
459 	ubi->dev.devt = ubi->cdev.dev;
460 	ubi->dev.class = &ubi_class;
461 	ubi->dev.groups = ubi_dev_groups;
462 	dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
463 	err = device_register(&ubi->dev);
464 	if (err)
465 		return err;
466 
467 	*ref = 1;
468 	return 0;
469 }
470 
471 /**
472  * ubi_sysfs_close - close sysfs for an UBI device.
473  * @ubi: UBI device description object
474  */
ubi_sysfs_close(struct ubi_device * ubi)475 static void ubi_sysfs_close(struct ubi_device *ubi)
476 {
477 	device_unregister(&ubi->dev);
478 }
479 #endif
480 
481 /**
482  * kill_volumes - destroy all user volumes.
483  * @ubi: UBI device description object
484  */
kill_volumes(struct ubi_device * ubi)485 static void kill_volumes(struct ubi_device *ubi)
486 {
487 	int i;
488 
489 	for (i = 0; i < ubi->vtbl_slots; i++)
490 		if (ubi->volumes[i])
491 			ubi_free_volume(ubi, ubi->volumes[i]);
492 }
493 
494 /**
495  * uif_init - initialize user interfaces for an UBI device.
496  * @ubi: UBI device description object
497  * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
498  *       taken, otherwise set to %0
499  *
500  * This function initializes various user interfaces for an UBI device. If the
501  * initialization fails at an early stage, this function frees all the
502  * resources it allocated, returns an error, and @ref is set to %0. However,
503  * if the initialization fails after the UBI device was registered in the
504  * driver core subsystem, this function takes a reference to @ubi->dev, because
505  * otherwise the release function ('dev_release()') would free whole @ubi
506  * object. The @ref argument is set to %1 in this case. The caller has to put
507  * this reference.
508  *
509  * This function returns zero in case of success and a negative error code in
510  * case of failure.
511  */
uif_init(struct ubi_device * ubi,int * ref)512 static int uif_init(struct ubi_device *ubi, int *ref)
513 {
514 	int i, err;
515 #ifndef __UBOOT__
516 	dev_t dev;
517 #endif
518 
519 	*ref = 0;
520 	sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
521 
522 	/*
523 	 * Major numbers for the UBI character devices are allocated
524 	 * dynamically. Major numbers of volume character devices are
525 	 * equivalent to ones of the corresponding UBI character device. Minor
526 	 * numbers of UBI character devices are 0, while minor numbers of
527 	 * volume character devices start from 1. Thus, we allocate one major
528 	 * number and ubi->vtbl_slots + 1 minor numbers.
529 	 */
530 	err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
531 	if (err) {
532 		ubi_err(ubi, "cannot register UBI character devices");
533 		return err;
534 	}
535 
536 	ubi_assert(MINOR(dev) == 0);
537 	cdev_init(&ubi->cdev, &ubi_cdev_operations);
538 	dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
539 	ubi->cdev.owner = THIS_MODULE;
540 
541 	err = cdev_add(&ubi->cdev, dev, 1);
542 	if (err) {
543 		ubi_err(ubi, "cannot add character device");
544 		goto out_unreg;
545 	}
546 
547 	err = ubi_sysfs_init(ubi, ref);
548 	if (err)
549 		goto out_sysfs;
550 
551 	for (i = 0; i < ubi->vtbl_slots; i++)
552 		if (ubi->volumes[i]) {
553 			err = ubi_add_volume(ubi, ubi->volumes[i]);
554 			if (err) {
555 				ubi_err(ubi, "cannot add volume %d", i);
556 				goto out_volumes;
557 			}
558 		}
559 
560 	return 0;
561 
562 out_volumes:
563 	kill_volumes(ubi);
564 out_sysfs:
565 	if (*ref)
566 		get_device(&ubi->dev);
567 	ubi_sysfs_close(ubi);
568 	cdev_del(&ubi->cdev);
569 out_unreg:
570 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
571 	ubi_err(ubi, "cannot initialize UBI %s, error %d",
572 		ubi->ubi_name, err);
573 	return err;
574 }
575 
576 /**
577  * uif_close - close user interfaces for an UBI device.
578  * @ubi: UBI device description object
579  *
580  * Note, since this function un-registers UBI volume device objects (@vol->dev),
581  * the memory allocated voe the volumes is freed as well (in the release
582  * function).
583  */
uif_close(struct ubi_device * ubi)584 static void uif_close(struct ubi_device *ubi)
585 {
586 	kill_volumes(ubi);
587 	ubi_sysfs_close(ubi);
588 	cdev_del(&ubi->cdev);
589 	unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
590 }
591 
592 /**
593  * ubi_free_internal_volumes - free internal volumes.
594  * @ubi: UBI device description object
595  */
ubi_free_internal_volumes(struct ubi_device * ubi)596 void ubi_free_internal_volumes(struct ubi_device *ubi)
597 {
598 	int i;
599 
600 	for (i = ubi->vtbl_slots;
601 	     i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
602 		kfree(ubi->volumes[i]->eba_tbl);
603 		kfree(ubi->volumes[i]);
604 	}
605 }
606 
get_bad_peb_limit(const struct ubi_device * ubi,int max_beb_per1024)607 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
608 {
609 	int limit, device_pebs;
610 	uint64_t device_size;
611 
612 	if (!max_beb_per1024)
613 		return 0;
614 
615 	/*
616 	 * Here we are using size of the entire flash chip and
617 	 * not just the MTD partition size because the maximum
618 	 * number of bad eraseblocks is a percentage of the
619 	 * whole device and bad eraseblocks are not fairly
620 	 * distributed over the flash chip. So the worst case
621 	 * is that all the bad eraseblocks of the chip are in
622 	 * the MTD partition we are attaching (ubi->mtd).
623 	 */
624 	device_size = mtd_get_device_size(ubi->mtd);
625 	device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
626 	limit = mult_frac(device_pebs, max_beb_per1024, 1024);
627 
628 	/* Round it up */
629 	if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
630 		limit += 1;
631 
632 	return limit;
633 }
634 
635 /**
636  * io_init - initialize I/O sub-system for a given UBI device.
637  * @ubi: UBI device description object
638  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
639  *
640  * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
641  * assumed:
642  *   o EC header is always at offset zero - this cannot be changed;
643  *   o VID header starts just after the EC header at the closest address
644  *     aligned to @io->hdrs_min_io_size;
645  *   o data starts just after the VID header at the closest address aligned to
646  *     @io->min_io_size
647  *
648  * This function returns zero in case of success and a negative error code in
649  * case of failure.
650  */
io_init(struct ubi_device * ubi,int max_beb_per1024)651 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
652 {
653 	dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
654 	dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
655 
656 	if (ubi->mtd->numeraseregions != 0) {
657 		/*
658 		 * Some flashes have several erase regions. Different regions
659 		 * may have different eraseblock size and other
660 		 * characteristics. It looks like mostly multi-region flashes
661 		 * have one "main" region and one or more small regions to
662 		 * store boot loader code or boot parameters or whatever. I
663 		 * guess we should just pick the largest region. But this is
664 		 * not implemented.
665 		 */
666 		ubi_err(ubi, "multiple regions, not implemented");
667 		return -EINVAL;
668 	}
669 
670 	if (ubi->vid_hdr_offset < 0)
671 		return -EINVAL;
672 
673 	/*
674 	 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
675 	 * physical eraseblocks maximum.
676 	 */
677 
678 	ubi->peb_size   = ubi->mtd->erasesize;
679 	ubi->peb_count  = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
680 	ubi->flash_size = ubi->mtd->size;
681 
682 	if (mtd_can_have_bb(ubi->mtd)) {
683 		ubi->bad_allowed = 1;
684 		ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
685 	}
686 
687 	if (ubi->mtd->type == MTD_NORFLASH) {
688 		ubi_assert(ubi->mtd->writesize == 1);
689 		ubi->nor_flash = 1;
690 	}
691 
692 	ubi->min_io_size = ubi->mtd->writesize;
693 	ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
694 
695 	/*
696 	 * Make sure minimal I/O unit is power of 2. Note, there is no
697 	 * fundamental reason for this assumption. It is just an optimization
698 	 * which allows us to avoid costly division operations.
699 	 */
700 	if (!is_power_of_2(ubi->min_io_size)) {
701 		ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
702 			ubi->min_io_size);
703 		return -EINVAL;
704 	}
705 
706 	ubi_assert(ubi->hdrs_min_io_size > 0);
707 	ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
708 	ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
709 
710 	ubi->max_write_size = ubi->mtd->writebufsize;
711 	/*
712 	 * Maximum write size has to be greater or equivalent to min. I/O
713 	 * size, and be multiple of min. I/O size.
714 	 */
715 	if (ubi->max_write_size < ubi->min_io_size ||
716 	    ubi->max_write_size % ubi->min_io_size ||
717 	    !is_power_of_2(ubi->max_write_size)) {
718 		ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
719 			ubi->max_write_size, ubi->min_io_size);
720 		return -EINVAL;
721 	}
722 
723 	/* Calculate default aligned sizes of EC and VID headers */
724 	ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
725 	ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
726 
727 	dbg_gen("min_io_size      %d", ubi->min_io_size);
728 	dbg_gen("max_write_size   %d", ubi->max_write_size);
729 	dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
730 	dbg_gen("ec_hdr_alsize    %d", ubi->ec_hdr_alsize);
731 	dbg_gen("vid_hdr_alsize   %d", ubi->vid_hdr_alsize);
732 
733 	if (ubi->vid_hdr_offset == 0)
734 		/* Default offset */
735 		ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
736 				      ubi->ec_hdr_alsize;
737 	else {
738 		ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
739 						~(ubi->hdrs_min_io_size - 1);
740 		ubi->vid_hdr_shift = ubi->vid_hdr_offset -
741 						ubi->vid_hdr_aloffset;
742 	}
743 
744 	/* Similar for the data offset */
745 	ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
746 	ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
747 
748 	dbg_gen("vid_hdr_offset   %d", ubi->vid_hdr_offset);
749 	dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
750 	dbg_gen("vid_hdr_shift    %d", ubi->vid_hdr_shift);
751 	dbg_gen("leb_start        %d", ubi->leb_start);
752 
753 	/* The shift must be aligned to 32-bit boundary */
754 	if (ubi->vid_hdr_shift % 4) {
755 		ubi_err(ubi, "unaligned VID header shift %d",
756 			ubi->vid_hdr_shift);
757 		return -EINVAL;
758 	}
759 
760 	/* Check sanity */
761 	if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
762 	    ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
763 	    ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
764 	    ubi->leb_start & (ubi->min_io_size - 1)) {
765 		ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
766 			ubi->vid_hdr_offset, ubi->leb_start);
767 		return -EINVAL;
768 	}
769 
770 	/*
771 	 * Set maximum amount of physical erroneous eraseblocks to be 10%.
772 	 * Erroneous PEB are those which have read errors.
773 	 */
774 	ubi->max_erroneous = ubi->peb_count / 10;
775 	if (ubi->max_erroneous < 16)
776 		ubi->max_erroneous = 16;
777 	dbg_gen("max_erroneous    %d", ubi->max_erroneous);
778 
779 	/*
780 	 * It may happen that EC and VID headers are situated in one minimal
781 	 * I/O unit. In this case we can only accept this UBI image in
782 	 * read-only mode.
783 	 */
784 	if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
785 		ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
786 		ubi->ro_mode = 1;
787 	}
788 
789 	ubi->leb_size = ubi->peb_size - ubi->leb_start;
790 
791 	if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
792 		ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
793 			ubi->mtd->index);
794 		ubi->ro_mode = 1;
795 	}
796 
797 	/*
798 	 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
799 	 * unfortunately, MTD does not provide this information. We should loop
800 	 * over all physical eraseblocks and invoke mtd->block_is_bad() for
801 	 * each physical eraseblock. So, we leave @ubi->bad_peb_count
802 	 * uninitialized so far.
803 	 */
804 
805 	return 0;
806 }
807 
808 /**
809  * autoresize - re-size the volume which has the "auto-resize" flag set.
810  * @ubi: UBI device description object
811  * @vol_id: ID of the volume to re-size
812  *
813  * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
814  * the volume table to the largest possible size. See comments in ubi-header.h
815  * for more description of the flag. Returns zero in case of success and a
816  * negative error code in case of failure.
817  */
autoresize(struct ubi_device * ubi,int vol_id)818 static int autoresize(struct ubi_device *ubi, int vol_id)
819 {
820 	struct ubi_volume_desc desc;
821 	struct ubi_volume *vol = ubi->volumes[vol_id];
822 	int err, old_reserved_pebs = vol->reserved_pebs;
823 
824 	if (ubi->ro_mode) {
825 		ubi_warn(ubi, "skip auto-resize because of R/O mode");
826 		return 0;
827 	}
828 
829 	/*
830 	 * Clear the auto-resize flag in the volume in-memory copy of the
831 	 * volume table, and 'ubi_resize_volume()' will propagate this change
832 	 * to the flash.
833 	 */
834 	ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
835 
836 	if (ubi->avail_pebs == 0) {
837 		struct ubi_vtbl_record vtbl_rec;
838 
839 		/*
840 		 * No available PEBs to re-size the volume, clear the flag on
841 		 * flash and exit.
842 		 */
843 		vtbl_rec = ubi->vtbl[vol_id];
844 		err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
845 		if (err)
846 			ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
847 				vol_id);
848 	} else {
849 		desc.vol = vol;
850 		err = ubi_resize_volume(&desc,
851 					old_reserved_pebs + ubi->avail_pebs);
852 		if (err)
853 			ubi_err(ubi, "cannot auto-resize volume %d",
854 				vol_id);
855 	}
856 
857 	if (err)
858 		return err;
859 
860 	ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
861 		vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
862 	return 0;
863 }
864 
865 /**
866  * ubi_attach_mtd_dev - attach an MTD device.
867  * @mtd: MTD device description object
868  * @ubi_num: number to assign to the new UBI device
869  * @vid_hdr_offset: VID header offset
870  * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
871  *
872  * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
873  * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
874  * which case this function finds a vacant device number and assigns it
875  * automatically. Returns the new UBI device number in case of success and a
876  * negative error code in case of failure.
877  *
878  * Note, the invocations of this function has to be serialized by the
879  * @ubi_devices_mutex.
880  */
ubi_attach_mtd_dev(struct mtd_info * mtd,int ubi_num,int vid_hdr_offset,int max_beb_per1024)881 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
882 		       int vid_hdr_offset, int max_beb_per1024)
883 {
884 	struct ubi_device *ubi;
885 	int i, err, ref = 0;
886 
887 	if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
888 		return -EINVAL;
889 
890 	if (!max_beb_per1024)
891 		max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
892 
893 	/*
894 	 * Check if we already have the same MTD device attached.
895 	 *
896 	 * Note, this function assumes that UBI devices creations and deletions
897 	 * are serialized, so it does not take the &ubi_devices_lock.
898 	 */
899 	for (i = 0; i < UBI_MAX_DEVICES; i++) {
900 		ubi = ubi_devices[i];
901 		if (ubi && mtd->index == ubi->mtd->index) {
902 			ubi_err(ubi, "mtd%d is already attached to ubi%d",
903 				mtd->index, i);
904 			return -EEXIST;
905 		}
906 	}
907 
908 	/*
909 	 * Make sure this MTD device is not emulated on top of an UBI volume
910 	 * already. Well, generally this recursion works fine, but there are
911 	 * different problems like the UBI module takes a reference to itself
912 	 * by attaching (and thus, opening) the emulated MTD device. This
913 	 * results in inability to unload the module. And in general it makes
914 	 * no sense to attach emulated MTD devices, so we prohibit this.
915 	 */
916 	if (mtd->type == MTD_UBIVOLUME) {
917 		ubi_err(ubi, "refuse attaching mtd%d - it is already emulated on top of UBI",
918 			mtd->index);
919 		return -EINVAL;
920 	}
921 
922 	if (ubi_num == UBI_DEV_NUM_AUTO) {
923 		/* Search for an empty slot in the @ubi_devices array */
924 		for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
925 			if (!ubi_devices[ubi_num])
926 				break;
927 		if (ubi_num == UBI_MAX_DEVICES) {
928 			ubi_err(ubi, "only %d UBI devices may be created",
929 				UBI_MAX_DEVICES);
930 			return -ENFILE;
931 		}
932 	} else {
933 		if (ubi_num >= UBI_MAX_DEVICES)
934 			return -EINVAL;
935 
936 		/* Make sure ubi_num is not busy */
937 		if (ubi_devices[ubi_num]) {
938 			ubi_err(ubi, "already exists");
939 			return -EEXIST;
940 		}
941 	}
942 
943 	ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
944 	if (!ubi)
945 		return -ENOMEM;
946 
947 	ubi->mtd = mtd;
948 	ubi->ubi_num = ubi_num;
949 	ubi->vid_hdr_offset = vid_hdr_offset;
950 	ubi->autoresize_vol_id = -1;
951 
952 #ifdef CONFIG_MTD_UBI_FASTMAP
953 	ubi->fm_pool.used = ubi->fm_pool.size = 0;
954 	ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
955 
956 	/*
957 	 * fm_pool.max_size is 5% of the total number of PEBs but it's also
958 	 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
959 	 */
960 	ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
961 		ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
962 	ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
963 		UBI_FM_MIN_POOL_SIZE);
964 
965 	ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
966 	ubi->fm_disabled = !fm_autoconvert;
967 	if (fm_debug)
968 		ubi_enable_dbg_chk_fastmap(ubi);
969 
970 	if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
971 	    <= UBI_FM_MAX_START) {
972 		ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
973 			UBI_FM_MAX_START);
974 		ubi->fm_disabled = 1;
975 	}
976 
977 	ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
978 	ubi_msg(ubi, "default fastmap WL pool size: %d",
979 		ubi->fm_wl_pool.max_size);
980 #else
981 	ubi->fm_disabled = 1;
982 #endif
983 	mutex_init(&ubi->buf_mutex);
984 	mutex_init(&ubi->ckvol_mutex);
985 	mutex_init(&ubi->device_mutex);
986 	spin_lock_init(&ubi->volumes_lock);
987 	init_rwsem(&ubi->fm_protect);
988 	init_rwsem(&ubi->fm_eba_sem);
989 
990 	ubi_msg(ubi, "attaching mtd%d", mtd->index);
991 
992 	err = io_init(ubi, max_beb_per1024);
993 	if (err)
994 		goto out_free;
995 
996 	err = -ENOMEM;
997 	ubi->peb_buf = vmalloc(ubi->peb_size);
998 	if (!ubi->peb_buf)
999 		goto out_free;
1000 
1001 #ifdef CONFIG_MTD_UBI_FASTMAP
1002 	ubi->fm_size = ubi_calc_fm_size(ubi);
1003 	ubi->fm_buf = vzalloc(ubi->fm_size);
1004 	if (!ubi->fm_buf)
1005 		goto out_free;
1006 #endif
1007 	err = ubi_attach(ubi, 0);
1008 	if (err) {
1009 		ubi_err(ubi, "failed to attach mtd%d, error %d",
1010 			mtd->index, err);
1011 		goto out_free;
1012 	}
1013 
1014 	if (ubi->autoresize_vol_id != -1) {
1015 		err = autoresize(ubi, ubi->autoresize_vol_id);
1016 		if (err)
1017 			goto out_detach;
1018 	}
1019 
1020 	err = uif_init(ubi, &ref);
1021 	if (err)
1022 		goto out_detach;
1023 
1024 	err = ubi_debugfs_init_dev(ubi);
1025 	if (err)
1026 		goto out_uif;
1027 
1028 	ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1029 	if (IS_ERR(ubi->bgt_thread)) {
1030 		err = PTR_ERR(ubi->bgt_thread);
1031 		ubi_err(ubi, "cannot spawn \"%s\", error %d",
1032 			ubi->bgt_name, err);
1033 		goto out_debugfs;
1034 	}
1035 
1036 	ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1037 		mtd->index, mtd->name, ubi->flash_size >> 20);
1038 	ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1039 		ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1040 	ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1041 		ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1042 	ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1043 		ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1044 	ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1045 		ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1046 	ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1047 		ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1048 		ubi->vtbl_slots);
1049 	ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1050 		ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1051 		ubi->image_seq);
1052 	ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1053 		ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1054 
1055 	/*
1056 	 * The below lock makes sure we do not race with 'ubi_thread()' which
1057 	 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1058 	 */
1059 	spin_lock(&ubi->wl_lock);
1060 	ubi->thread_enabled = 1;
1061 #ifndef __UBOOT__
1062 	wake_up_process(ubi->bgt_thread);
1063 #else
1064 	ubi_do_worker(ubi);
1065 #endif
1066 
1067 	spin_unlock(&ubi->wl_lock);
1068 
1069 	ubi_devices[ubi_num] = ubi;
1070 	ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1071 	return ubi_num;
1072 
1073 out_debugfs:
1074 	ubi_debugfs_exit_dev(ubi);
1075 out_uif:
1076 	get_device(&ubi->dev);
1077 	ubi_assert(ref);
1078 	uif_close(ubi);
1079 out_detach:
1080 	ubi_wl_close(ubi);
1081 	ubi_free_internal_volumes(ubi);
1082 	vfree(ubi->vtbl);
1083 out_free:
1084 	vfree(ubi->peb_buf);
1085 	vfree(ubi->fm_buf);
1086 	if (ref)
1087 		put_device(&ubi->dev);
1088 	else
1089 		kfree(ubi);
1090 	return err;
1091 }
1092 
1093 /**
1094  * ubi_detach_mtd_dev - detach an MTD device.
1095  * @ubi_num: UBI device number to detach from
1096  * @anyway: detach MTD even if device reference count is not zero
1097  *
1098  * This function destroys an UBI device number @ubi_num and detaches the
1099  * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1100  * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1101  * exist.
1102  *
1103  * Note, the invocations of this function has to be serialized by the
1104  * @ubi_devices_mutex.
1105  */
ubi_detach_mtd_dev(int ubi_num,int anyway)1106 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1107 {
1108 	struct ubi_device *ubi;
1109 
1110 	if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1111 		return -EINVAL;
1112 
1113 	ubi = ubi_get_device(ubi_num);
1114 	if (!ubi)
1115 		return -EINVAL;
1116 
1117 	spin_lock(&ubi_devices_lock);
1118 	put_device(&ubi->dev);
1119 	ubi->ref_count -= 1;
1120 	if (ubi->ref_count) {
1121 		if (!anyway) {
1122 			spin_unlock(&ubi_devices_lock);
1123 			return -EBUSY;
1124 		}
1125 		/* This may only happen if there is a bug */
1126 		ubi_err(ubi, "%s reference count %d, destroy anyway",
1127 			ubi->ubi_name, ubi->ref_count);
1128 	}
1129 	ubi_devices[ubi_num] = NULL;
1130 	spin_unlock(&ubi_devices_lock);
1131 
1132 	ubi_assert(ubi_num == ubi->ubi_num);
1133 	ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1134 	ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1135 #ifdef CONFIG_MTD_UBI_FASTMAP
1136 	/* If we don't write a new fastmap at detach time we lose all
1137 	 * EC updates that have been made since the last written fastmap.
1138 	 * In case of fastmap debugging we omit the update to simulate an
1139 	 * unclean shutdown. */
1140 	if (!ubi_dbg_chk_fastmap(ubi))
1141 		ubi_update_fastmap(ubi);
1142 #endif
1143 	/*
1144 	 * Before freeing anything, we have to stop the background thread to
1145 	 * prevent it from doing anything on this device while we are freeing.
1146 	 */
1147 	if (ubi->bgt_thread)
1148 		kthread_stop(ubi->bgt_thread);
1149 
1150 	/*
1151 	 * Get a reference to the device in order to prevent 'dev_release()'
1152 	 * from freeing the @ubi object.
1153 	 */
1154 	get_device(&ubi->dev);
1155 
1156 	ubi_debugfs_exit_dev(ubi);
1157 	uif_close(ubi);
1158 
1159 	ubi_wl_close(ubi);
1160 	ubi_free_internal_volumes(ubi);
1161 	vfree(ubi->vtbl);
1162 	put_mtd_device(ubi->mtd);
1163 	vfree(ubi->peb_buf);
1164 	vfree(ubi->fm_buf);
1165 	ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1166 	put_device(&ubi->dev);
1167 	return 0;
1168 }
1169 
1170 #ifndef __UBOOT__
1171 /**
1172  * open_mtd_by_chdev - open an MTD device by its character device node path.
1173  * @mtd_dev: MTD character device node path
1174  *
1175  * This helper function opens an MTD device by its character node device path.
1176  * Returns MTD device description object in case of success and a negative
1177  * error code in case of failure.
1178  */
open_mtd_by_chdev(const char * mtd_dev)1179 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1180 {
1181 	int err, major, minor, mode;
1182 	struct path path;
1183 
1184 	/* Probably this is an MTD character device node path */
1185 	err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1186 	if (err)
1187 		return ERR_PTR(err);
1188 
1189 	/* MTD device number is defined by the major / minor numbers */
1190 	major = imajor(d_backing_inode(path.dentry));
1191 	minor = iminor(d_backing_inode(path.dentry));
1192 	mode = d_backing_inode(path.dentry)->i_mode;
1193 	path_put(&path);
1194 	if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1195 		return ERR_PTR(-EINVAL);
1196 
1197 	if (minor & 1)
1198 		/*
1199 		 * Just do not think the "/dev/mtdrX" devices support is need,
1200 		 * so do not support them to avoid doing extra work.
1201 		 */
1202 		return ERR_PTR(-EINVAL);
1203 
1204 	return get_mtd_device(NULL, minor / 2);
1205 }
1206 #endif
1207 
1208 /**
1209  * open_mtd_device - open MTD device by name, character device path, or number.
1210  * @mtd_dev: name, character device node path, or MTD device device number
1211  *
1212  * This function tries to open and MTD device described by @mtd_dev string,
1213  * which is first treated as ASCII MTD device number, and if it is not true, it
1214  * is treated as MTD device name, and if that is also not true, it is treated
1215  * as MTD character device node path. Returns MTD device description object in
1216  * case of success and a negative error code in case of failure.
1217  */
open_mtd_device(const char * mtd_dev)1218 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1219 {
1220 	struct mtd_info *mtd;
1221 	int mtd_num;
1222 	char *endp;
1223 
1224 	mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1225 	if (*endp != '\0' || mtd_dev == endp) {
1226 		/*
1227 		 * This does not look like an ASCII integer, probably this is
1228 		 * MTD device name.
1229 		 */
1230 		mtd = get_mtd_device_nm(mtd_dev);
1231 #ifndef __UBOOT__
1232 		if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1233 			/* Probably this is an MTD character device node path */
1234 			mtd = open_mtd_by_chdev(mtd_dev);
1235 #endif
1236 	} else
1237 		mtd = get_mtd_device(NULL, mtd_num);
1238 
1239 	return mtd;
1240 }
1241 
1242 #ifndef __UBOOT__
ubi_init(void)1243 static int __init ubi_init(void)
1244 #else
1245 int ubi_init(void)
1246 #endif
1247 {
1248 	int err, i, k;
1249 
1250 	/* Ensure that EC and VID headers have correct size */
1251 	BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1252 	BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1253 
1254 	if (mtd_devs > UBI_MAX_DEVICES) {
1255 		pr_err("UBI error: too many MTD devices, maximum is %d\n",
1256 		       UBI_MAX_DEVICES);
1257 		return -EINVAL;
1258 	}
1259 
1260 	/* Create base sysfs directory and sysfs files */
1261 	err = class_register(&ubi_class);
1262 	if (err < 0)
1263 		return err;
1264 
1265 	err = misc_register(&ubi_ctrl_cdev);
1266 	if (err) {
1267 		pr_err("UBI error: cannot register device\n");
1268 		goto out;
1269 	}
1270 
1271 	ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1272 					      sizeof(struct ubi_wl_entry),
1273 					      0, 0, NULL);
1274 	if (!ubi_wl_entry_slab) {
1275 		err = -ENOMEM;
1276 		goto out_dev_unreg;
1277 	}
1278 
1279 	err = ubi_debugfs_init();
1280 	if (err)
1281 		goto out_slab;
1282 
1283 
1284 	/* Attach MTD devices */
1285 	for (i = 0; i < mtd_devs; i++) {
1286 		struct mtd_dev_param *p = &mtd_dev_param[i];
1287 		struct mtd_info *mtd;
1288 
1289 		cond_resched();
1290 
1291 		mtd = open_mtd_device(p->name);
1292 		if (IS_ERR(mtd)) {
1293 			err = PTR_ERR(mtd);
1294 			pr_err("UBI error: cannot open mtd %s, error %d\n",
1295 			       p->name, err);
1296 			/* See comment below re-ubi_is_module(). */
1297 			if (ubi_is_module())
1298 				goto out_detach;
1299 			continue;
1300 		}
1301 
1302 		mutex_lock(&ubi_devices_mutex);
1303 		err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1304 					 p->vid_hdr_offs, p->max_beb_per1024);
1305 		mutex_unlock(&ubi_devices_mutex);
1306 		if (err < 0) {
1307 			pr_err("UBI error: cannot attach mtd%d\n",
1308 			       mtd->index);
1309 			put_mtd_device(mtd);
1310 
1311 			/*
1312 			 * Originally UBI stopped initializing on any error.
1313 			 * However, later on it was found out that this
1314 			 * behavior is not very good when UBI is compiled into
1315 			 * the kernel and the MTD devices to attach are passed
1316 			 * through the command line. Indeed, UBI failure
1317 			 * stopped whole boot sequence.
1318 			 *
1319 			 * To fix this, we changed the behavior for the
1320 			 * non-module case, but preserved the old behavior for
1321 			 * the module case, just for compatibility. This is a
1322 			 * little inconsistent, though.
1323 			 */
1324 			if (ubi_is_module())
1325 				goto out_detach;
1326 		}
1327 	}
1328 
1329 	err = ubiblock_init();
1330 	if (err) {
1331 		pr_err("UBI error: block: cannot initialize, error %d\n", err);
1332 
1333 		/* See comment above re-ubi_is_module(). */
1334 		if (ubi_is_module())
1335 			goto out_detach;
1336 	}
1337 
1338 	return 0;
1339 
1340 out_detach:
1341 	for (k = 0; k < i; k++)
1342 		if (ubi_devices[k]) {
1343 			mutex_lock(&ubi_devices_mutex);
1344 			ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1345 			mutex_unlock(&ubi_devices_mutex);
1346 		}
1347 	ubi_debugfs_exit();
1348 out_slab:
1349 	kmem_cache_destroy(ubi_wl_entry_slab);
1350 out_dev_unreg:
1351 	misc_deregister(&ubi_ctrl_cdev);
1352 out:
1353 #ifdef __UBOOT__
1354 	/* Reset any globals that the driver depends on being zeroed */
1355 	mtd_devs = 0;
1356 #endif
1357 	class_unregister(&ubi_class);
1358 	pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1359 	return err;
1360 }
1361 late_initcall(ubi_init);
1362 
1363 #ifndef __UBOOT__
ubi_exit(void)1364 static void __exit ubi_exit(void)
1365 #else
1366 void ubi_exit(void)
1367 #endif
1368 {
1369 	int i;
1370 
1371 	ubiblock_exit();
1372 
1373 	for (i = 0; i < UBI_MAX_DEVICES; i++)
1374 		if (ubi_devices[i]) {
1375 			mutex_lock(&ubi_devices_mutex);
1376 			ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1377 			mutex_unlock(&ubi_devices_mutex);
1378 		}
1379 	ubi_debugfs_exit();
1380 	kmem_cache_destroy(ubi_wl_entry_slab);
1381 	misc_deregister(&ubi_ctrl_cdev);
1382 	class_unregister(&ubi_class);
1383 #ifdef __UBOOT__
1384 	/* Reset any globals that the driver depends on being zeroed */
1385 	mtd_devs = 0;
1386 #endif
1387 }
1388 module_exit(ubi_exit);
1389 
1390 /**
1391  * bytes_str_to_int - convert a number of bytes string into an integer.
1392  * @str: the string to convert
1393  *
1394  * This function returns positive resulting integer in case of success and a
1395  * negative error code in case of failure.
1396  */
bytes_str_to_int(const char * str)1397 static int __init bytes_str_to_int(const char *str)
1398 {
1399 	char *endp;
1400 	unsigned long result;
1401 
1402 	result = simple_strtoul(str, &endp, 0);
1403 	if (str == endp || result >= INT_MAX) {
1404 		pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1405 		return -EINVAL;
1406 	}
1407 
1408 	switch (*endp) {
1409 	case 'G':
1410 		result *= 1024;
1411 	case 'M':
1412 		result *= 1024;
1413 	case 'K':
1414 		result *= 1024;
1415 		if (endp[1] == 'i' && endp[2] == 'B')
1416 			endp += 2;
1417 	case '\0':
1418 		break;
1419 	default:
1420 		pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1421 		return -EINVAL;
1422 	}
1423 
1424 	return result;
1425 }
1426 
kstrtoint(const char * s,unsigned int base,int * res)1427 int kstrtoint(const char *s, unsigned int base, int *res)
1428 {
1429 	unsigned long long tmp;
1430 
1431 	tmp = simple_strtoull(s, NULL, base);
1432 	if (tmp != (unsigned long long)(int)tmp)
1433 		return -ERANGE;
1434 
1435 	return (int)tmp;
1436 }
1437 
1438 /**
1439  * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1440  * @val: the parameter value to parse
1441  * @kp: not used
1442  *
1443  * This function returns zero in case of success and a negative error code in
1444  * case of error.
1445  */
1446 #ifndef __UBOOT__
ubi_mtd_param_parse(const char * val,struct kernel_param * kp)1447 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1448 #else
1449 int ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1450 #endif
1451 {
1452 	int i, len;
1453 	struct mtd_dev_param *p;
1454 	char buf[MTD_PARAM_LEN_MAX];
1455 	char *pbuf = &buf[0];
1456 	char *tokens[MTD_PARAM_MAX_COUNT], *token;
1457 
1458 	if (!val)
1459 		return -EINVAL;
1460 
1461 	if (mtd_devs == UBI_MAX_DEVICES) {
1462 		pr_err("UBI error: too many parameters, max. is %d\n",
1463 		       UBI_MAX_DEVICES);
1464 		return -EINVAL;
1465 	}
1466 
1467 	len = strnlen(val, MTD_PARAM_LEN_MAX);
1468 	if (len == MTD_PARAM_LEN_MAX) {
1469 		pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1470 		       val, MTD_PARAM_LEN_MAX);
1471 		return -EINVAL;
1472 	}
1473 
1474 	if (len == 0) {
1475 		pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1476 		return 0;
1477 	}
1478 
1479 	strcpy(buf, val);
1480 
1481 	/* Get rid of the final newline */
1482 	if (buf[len - 1] == '\n')
1483 		buf[len - 1] = '\0';
1484 
1485 	for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1486 		tokens[i] = strsep(&pbuf, ",");
1487 
1488 	if (pbuf) {
1489 		pr_err("UBI error: too many arguments at \"%s\"\n", val);
1490 		return -EINVAL;
1491 	}
1492 
1493 	p = &mtd_dev_param[mtd_devs];
1494 	strcpy(&p->name[0], tokens[0]);
1495 
1496 	token = tokens[1];
1497 	if (token) {
1498 		p->vid_hdr_offs = bytes_str_to_int(token);
1499 
1500 		if (p->vid_hdr_offs < 0)
1501 			return p->vid_hdr_offs;
1502 	}
1503 
1504 	token = tokens[2];
1505 	if (token) {
1506 		int err = kstrtoint(token, 10, &p->max_beb_per1024);
1507 
1508 		if (err) {
1509 			pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1510 			       token);
1511 			return -EINVAL;
1512 		}
1513 	}
1514 
1515 	token = tokens[3];
1516 	if (token) {
1517 		int err = kstrtoint(token, 10, &p->ubi_num);
1518 
1519 		if (err) {
1520 			pr_err("UBI error: bad value for ubi_num parameter: %s",
1521 			       token);
1522 			return -EINVAL;
1523 		}
1524 	} else
1525 		p->ubi_num = UBI_DEV_NUM_AUTO;
1526 
1527 	mtd_devs += 1;
1528 	return 0;
1529 }
1530 
1531 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1532 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1533 		      "Multiple \"mtd\" parameters may be specified.\n"
1534 		      "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1535 		      "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1536 		      "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1537 		      __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1538 		      "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1539 		      "\n"
1540 		      "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1541 		      "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1542 		      "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1543 		      "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1544 		      "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1545 #ifdef CONFIG_MTD_UBI_FASTMAP
1546 module_param(fm_autoconvert, bool, 0644);
1547 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1548 module_param(fm_debug, bool, 0);
1549 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1550 #endif
1551 MODULE_VERSION(__stringify(UBI_VERSION));
1552 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1553 MODULE_AUTHOR("Artem Bityutskiy");
1554 MODULE_LICENSE("GPL");
1555