1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
4 * Copyright (c) Nokia Corporation, 2007
5 *
6 * Author: Artem Bityutskiy (Битюцкий Артём),
7 * Frank Haverkamp
8 */
9
10 /*
11 * This file includes UBI initialization and building of UBI devices.
12 *
13 * When UBI is initialized, it attaches all the MTD devices specified as the
14 * module load parameters or the kernel boot parameters. If MTD devices were
15 * specified, UBI does not attach any MTD device, but it is possible to do
16 * later using the "UBI control device".
17 */
18
19 #ifndef __UBOOT__
20 #include <log.h>
21 #include <dm/devres.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/stringify.h>
25 #include <linux/namei.h>
26 #include <linux/stat.h>
27 #include <linux/miscdevice.h>
28 #include <linux/log2.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/major.h>
33 #else
34 #include <linux/bug.h>
35 #include <linux/log2.h>
36 #endif
37 #include <linux/err.h>
38 #include <ubi_uboot.h>
39 #include <linux/mtd/partitions.h>
40
41 #include "ubi.h"
42
43 /* Maximum length of the 'mtd=' parameter */
44 #define MTD_PARAM_LEN_MAX 64
45
46 /* Maximum number of comma-separated items in the 'mtd=' parameter */
47 #define MTD_PARAM_MAX_COUNT 4
48
49 /* Maximum value for the number of bad PEBs per 1024 PEBs */
50 #define MAX_MTD_UBI_BEB_LIMIT 768
51
52 #ifdef CONFIG_MTD_UBI_MODULE
53 #define ubi_is_module() 1
54 #else
55 #define ubi_is_module() 0
56 #endif
57
58 #if (CONFIG_SYS_MALLOC_LEN < (512 << 10))
59 #error Malloc area too small for UBI, increase CONFIG_SYS_MALLOC_LEN to >= 512k
60 #endif
61
62 /**
63 * struct mtd_dev_param - MTD device parameter description data structure.
64 * @name: MTD character device node path, MTD device name, or MTD device number
65 * string
66 * @vid_hdr_offs: VID header offset
67 * @max_beb_per1024: maximum expected number of bad PEBs per 1024 PEBs
68 */
69 struct mtd_dev_param {
70 char name[MTD_PARAM_LEN_MAX];
71 int ubi_num;
72 int vid_hdr_offs;
73 int max_beb_per1024;
74 };
75
76 /* Numbers of elements set in the @mtd_dev_param array */
77 static int __initdata mtd_devs;
78
79 /* MTD devices specification parameters */
80 static struct mtd_dev_param __initdata mtd_dev_param[UBI_MAX_DEVICES];
81 #ifndef __UBOOT__
82 #ifdef CONFIG_MTD_UBI_FASTMAP
83 /* UBI module parameter to enable fastmap automatically on non-fastmap images */
84 static bool fm_autoconvert;
85 static bool fm_debug;
86 #endif
87 #else
88 #ifdef CONFIG_MTD_UBI_FASTMAP
89 #if !defined(CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT)
90 #define CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT 0
91 #endif
92 static bool fm_autoconvert = CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT;
93 #if !defined(CONFIG_MTD_UBI_FM_DEBUG)
94 #define CONFIG_MTD_UBI_FM_DEBUG 0
95 #endif
96 static bool fm_debug = CONFIG_MTD_UBI_FM_DEBUG;
97 #endif
98 #endif
99
100 /* Slab cache for wear-leveling entries */
101 struct kmem_cache *ubi_wl_entry_slab;
102
103 #ifndef __UBOOT__
104 /* UBI control character device */
105 static struct miscdevice ubi_ctrl_cdev = {
106 .minor = MISC_DYNAMIC_MINOR,
107 .name = "ubi_ctrl",
108 .fops = &ubi_ctrl_cdev_operations,
109 };
110 #endif
111
112 /* All UBI devices in system */
113 #ifndef __UBOOT__
114 static struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
115 #else
116 struct ubi_device *ubi_devices[UBI_MAX_DEVICES];
117 #endif
118
119 #ifndef __UBOOT__
120 /* Serializes UBI devices creations and removals */
121 DEFINE_MUTEX(ubi_devices_mutex);
122
123 /* Protects @ubi_devices and @ubi->ref_count */
124 static DEFINE_SPINLOCK(ubi_devices_lock);
125
126 /* "Show" method for files in '/<sysfs>/class/ubi/' */
ubi_version_show(struct class * class,struct class_attribute * attr,char * buf)127 static ssize_t ubi_version_show(struct class *class,
128 struct class_attribute *attr, char *buf)
129 {
130 return sprintf(buf, "%d\n", UBI_VERSION);
131 }
132
133 /* UBI version attribute ('/<sysfs>/class/ubi/version') */
134 static struct class_attribute ubi_class_attrs[] = {
135 __ATTR(version, S_IRUGO, ubi_version_show, NULL),
136 __ATTR_NULL
137 };
138
139 /* Root UBI "class" object (corresponds to '/<sysfs>/class/ubi/') */
140 struct class ubi_class = {
141 .name = UBI_NAME_STR,
142 .owner = THIS_MODULE,
143 .class_attrs = ubi_class_attrs,
144 };
145
146 static ssize_t dev_attribute_show(struct device *dev,
147 struct device_attribute *attr, char *buf);
148
149 /* UBI device attributes (correspond to files in '/<sysfs>/class/ubi/ubiX') */
150 static struct device_attribute dev_eraseblock_size =
151 __ATTR(eraseblock_size, S_IRUGO, dev_attribute_show, NULL);
152 static struct device_attribute dev_avail_eraseblocks =
153 __ATTR(avail_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
154 static struct device_attribute dev_total_eraseblocks =
155 __ATTR(total_eraseblocks, S_IRUGO, dev_attribute_show, NULL);
156 static struct device_attribute dev_volumes_count =
157 __ATTR(volumes_count, S_IRUGO, dev_attribute_show, NULL);
158 static struct device_attribute dev_max_ec =
159 __ATTR(max_ec, S_IRUGO, dev_attribute_show, NULL);
160 static struct device_attribute dev_reserved_for_bad =
161 __ATTR(reserved_for_bad, S_IRUGO, dev_attribute_show, NULL);
162 static struct device_attribute dev_bad_peb_count =
163 __ATTR(bad_peb_count, S_IRUGO, dev_attribute_show, NULL);
164 static struct device_attribute dev_max_vol_count =
165 __ATTR(max_vol_count, S_IRUGO, dev_attribute_show, NULL);
166 static struct device_attribute dev_min_io_size =
167 __ATTR(min_io_size, S_IRUGO, dev_attribute_show, NULL);
168 static struct device_attribute dev_bgt_enabled =
169 __ATTR(bgt_enabled, S_IRUGO, dev_attribute_show, NULL);
170 static struct device_attribute dev_mtd_num =
171 __ATTR(mtd_num, S_IRUGO, dev_attribute_show, NULL);
172 #endif
173
174 /**
175 * ubi_volume_notify - send a volume change notification.
176 * @ubi: UBI device description object
177 * @vol: volume description object of the changed volume
178 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
179 *
180 * This is a helper function which notifies all subscribers about a volume
181 * change event (creation, removal, re-sizing, re-naming, updating). Returns
182 * zero in case of success and a negative error code in case of failure.
183 */
ubi_volume_notify(struct ubi_device * ubi,struct ubi_volume * vol,int ntype)184 int ubi_volume_notify(struct ubi_device *ubi, struct ubi_volume *vol, int ntype)
185 {
186 int ret;
187 struct ubi_notification nt;
188
189 ubi_do_get_device_info(ubi, &nt.di);
190 ubi_do_get_volume_info(ubi, vol, &nt.vi);
191
192 switch (ntype) {
193 case UBI_VOLUME_ADDED:
194 case UBI_VOLUME_REMOVED:
195 case UBI_VOLUME_RESIZED:
196 case UBI_VOLUME_RENAMED:
197 ret = ubi_update_fastmap(ubi);
198 if (ret)
199 ubi_msg(ubi, "Unable to write a new fastmap: %i", ret);
200 }
201
202 return blocking_notifier_call_chain(&ubi_notifiers, ntype, &nt);
203 }
204
205 /**
206 * ubi_notify_all - send a notification to all volumes.
207 * @ubi: UBI device description object
208 * @ntype: notification type to send (%UBI_VOLUME_ADDED, etc)
209 * @nb: the notifier to call
210 *
211 * This function walks all volumes of UBI device @ubi and sends the @ntype
212 * notification for each volume. If @nb is %NULL, then all registered notifiers
213 * are called, otherwise only the @nb notifier is called. Returns the number of
214 * sent notifications.
215 */
ubi_notify_all(struct ubi_device * ubi,int ntype,struct notifier_block * nb)216 int ubi_notify_all(struct ubi_device *ubi, int ntype, struct notifier_block *nb)
217 {
218 struct ubi_notification nt;
219 int i, count = 0;
220 #ifndef __UBOOT__
221 int ret;
222 #endif
223
224 ubi_do_get_device_info(ubi, &nt.di);
225
226 mutex_lock(&ubi->device_mutex);
227 for (i = 0; i < ubi->vtbl_slots; i++) {
228 /*
229 * Since the @ubi->device is locked, and we are not going to
230 * change @ubi->volumes, we do not have to lock
231 * @ubi->volumes_lock.
232 */
233 if (!ubi->volumes[i])
234 continue;
235
236 ubi_do_get_volume_info(ubi, ubi->volumes[i], &nt.vi);
237 #ifndef __UBOOT__
238 if (nb)
239 nb->notifier_call(nb, ntype, &nt);
240 else
241 ret = blocking_notifier_call_chain(&ubi_notifiers, ntype,
242 &nt);
243 #endif
244 count += 1;
245 }
246 mutex_unlock(&ubi->device_mutex);
247
248 return count;
249 }
250
251 /**
252 * ubi_enumerate_volumes - send "add" notification for all existing volumes.
253 * @nb: the notifier to call
254 *
255 * This function walks all UBI devices and volumes and sends the
256 * %UBI_VOLUME_ADDED notification for each volume. If @nb is %NULL, then all
257 * registered notifiers are called, otherwise only the @nb notifier is called.
258 * Returns the number of sent notifications.
259 */
ubi_enumerate_volumes(struct notifier_block * nb)260 int ubi_enumerate_volumes(struct notifier_block *nb)
261 {
262 int i, count = 0;
263
264 /*
265 * Since the @ubi_devices_mutex is locked, and we are not going to
266 * change @ubi_devices, we do not have to lock @ubi_devices_lock.
267 */
268 for (i = 0; i < UBI_MAX_DEVICES; i++) {
269 struct ubi_device *ubi = ubi_devices[i];
270
271 if (!ubi)
272 continue;
273 count += ubi_notify_all(ubi, UBI_VOLUME_ADDED, nb);
274 }
275
276 return count;
277 }
278
279 /**
280 * ubi_get_device - get UBI device.
281 * @ubi_num: UBI device number
282 *
283 * This function returns UBI device description object for UBI device number
284 * @ubi_num, or %NULL if the device does not exist. This function increases the
285 * device reference count to prevent removal of the device. In other words, the
286 * device cannot be removed if its reference count is not zero.
287 */
ubi_get_device(int ubi_num)288 struct ubi_device *ubi_get_device(int ubi_num)
289 {
290 struct ubi_device *ubi;
291
292 spin_lock(&ubi_devices_lock);
293 ubi = ubi_devices[ubi_num];
294 if (ubi) {
295 ubi_assert(ubi->ref_count >= 0);
296 ubi->ref_count += 1;
297 get_device(&ubi->dev);
298 }
299 spin_unlock(&ubi_devices_lock);
300
301 return ubi;
302 }
303
304 /**
305 * ubi_put_device - drop an UBI device reference.
306 * @ubi: UBI device description object
307 */
ubi_put_device(struct ubi_device * ubi)308 void ubi_put_device(struct ubi_device *ubi)
309 {
310 spin_lock(&ubi_devices_lock);
311 ubi->ref_count -= 1;
312 put_device(&ubi->dev);
313 spin_unlock(&ubi_devices_lock);
314 }
315
316 /**
317 * ubi_get_by_major - get UBI device by character device major number.
318 * @major: major number
319 *
320 * This function is similar to 'ubi_get_device()', but it searches the device
321 * by its major number.
322 */
ubi_get_by_major(int major)323 struct ubi_device *ubi_get_by_major(int major)
324 {
325 int i;
326 struct ubi_device *ubi;
327
328 spin_lock(&ubi_devices_lock);
329 for (i = 0; i < UBI_MAX_DEVICES; i++) {
330 ubi = ubi_devices[i];
331 if (ubi && MAJOR(ubi->cdev.dev) == major) {
332 ubi_assert(ubi->ref_count >= 0);
333 ubi->ref_count += 1;
334 get_device(&ubi->dev);
335 spin_unlock(&ubi_devices_lock);
336 return ubi;
337 }
338 }
339 spin_unlock(&ubi_devices_lock);
340
341 return NULL;
342 }
343
344 /**
345 * ubi_major2num - get UBI device number by character device major number.
346 * @major: major number
347 *
348 * This function searches UBI device number object by its major number. If UBI
349 * device was not found, this function returns -ENODEV, otherwise the UBI device
350 * number is returned.
351 */
ubi_major2num(int major)352 int ubi_major2num(int major)
353 {
354 int i, ubi_num = -ENODEV;
355
356 spin_lock(&ubi_devices_lock);
357 for (i = 0; i < UBI_MAX_DEVICES; i++) {
358 struct ubi_device *ubi = ubi_devices[i];
359
360 if (ubi && MAJOR(ubi->cdev.dev) == major) {
361 ubi_num = ubi->ubi_num;
362 break;
363 }
364 }
365 spin_unlock(&ubi_devices_lock);
366
367 return ubi_num;
368 }
369
370 #ifndef __UBOOT__
371 /* "Show" method for files in '/<sysfs>/class/ubi/ubiX/' */
dev_attribute_show(struct device * dev,struct device_attribute * attr,char * buf)372 static ssize_t dev_attribute_show(struct device *dev,
373 struct device_attribute *attr, char *buf)
374 {
375 ssize_t ret;
376 struct ubi_device *ubi;
377
378 /*
379 * The below code looks weird, but it actually makes sense. We get the
380 * UBI device reference from the contained 'struct ubi_device'. But it
381 * is unclear if the device was removed or not yet. Indeed, if the
382 * device was removed before we increased its reference count,
383 * 'ubi_get_device()' will return -ENODEV and we fail.
384 *
385 * Remember, 'struct ubi_device' is freed in the release function, so
386 * we still can use 'ubi->ubi_num'.
387 */
388 ubi = container_of(dev, struct ubi_device, dev);
389 ubi = ubi_get_device(ubi->ubi_num);
390 if (!ubi)
391 return -ENODEV;
392
393 if (attr == &dev_eraseblock_size)
394 ret = sprintf(buf, "%d\n", ubi->leb_size);
395 else if (attr == &dev_avail_eraseblocks)
396 ret = sprintf(buf, "%d\n", ubi->avail_pebs);
397 else if (attr == &dev_total_eraseblocks)
398 ret = sprintf(buf, "%d\n", ubi->good_peb_count);
399 else if (attr == &dev_volumes_count)
400 ret = sprintf(buf, "%d\n", ubi->vol_count - UBI_INT_VOL_COUNT);
401 else if (attr == &dev_max_ec)
402 ret = sprintf(buf, "%d\n", ubi->max_ec);
403 else if (attr == &dev_reserved_for_bad)
404 ret = sprintf(buf, "%d\n", ubi->beb_rsvd_pebs);
405 else if (attr == &dev_bad_peb_count)
406 ret = sprintf(buf, "%d\n", ubi->bad_peb_count);
407 else if (attr == &dev_max_vol_count)
408 ret = sprintf(buf, "%d\n", ubi->vtbl_slots);
409 else if (attr == &dev_min_io_size)
410 ret = sprintf(buf, "%d\n", ubi->min_io_size);
411 else if (attr == &dev_bgt_enabled)
412 ret = sprintf(buf, "%d\n", ubi->thread_enabled);
413 else if (attr == &dev_mtd_num)
414 ret = sprintf(buf, "%d\n", ubi->mtd->index);
415 else
416 ret = -EINVAL;
417
418 ubi_put_device(ubi);
419 return ret;
420 }
421
422 static struct attribute *ubi_dev_attrs[] = {
423 &dev_eraseblock_size.attr,
424 &dev_avail_eraseblocks.attr,
425 &dev_total_eraseblocks.attr,
426 &dev_volumes_count.attr,
427 &dev_max_ec.attr,
428 &dev_reserved_for_bad.attr,
429 &dev_bad_peb_count.attr,
430 &dev_max_vol_count.attr,
431 &dev_min_io_size.attr,
432 &dev_bgt_enabled.attr,
433 &dev_mtd_num.attr,
434 NULL
435 };
436 ATTRIBUTE_GROUPS(ubi_dev);
437
dev_release(struct device * dev)438 static void dev_release(struct device *dev)
439 {
440 struct ubi_device *ubi = container_of(dev, struct ubi_device, dev);
441
442 kfree(ubi);
443 }
444
445 /**
446 * ubi_sysfs_init - initialize sysfs for an UBI device.
447 * @ubi: UBI device description object
448 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
449 * taken
450 *
451 * This function returns zero in case of success and a negative error code in
452 * case of failure.
453 */
ubi_sysfs_init(struct ubi_device * ubi,int * ref)454 static int ubi_sysfs_init(struct ubi_device *ubi, int *ref)
455 {
456 int err;
457
458 ubi->dev.release = dev_release;
459 ubi->dev.devt = ubi->cdev.dev;
460 ubi->dev.class = &ubi_class;
461 ubi->dev.groups = ubi_dev_groups;
462 dev_set_name(&ubi->dev, UBI_NAME_STR"%d", ubi->ubi_num);
463 err = device_register(&ubi->dev);
464 if (err)
465 return err;
466
467 *ref = 1;
468 return 0;
469 }
470
471 /**
472 * ubi_sysfs_close - close sysfs for an UBI device.
473 * @ubi: UBI device description object
474 */
ubi_sysfs_close(struct ubi_device * ubi)475 static void ubi_sysfs_close(struct ubi_device *ubi)
476 {
477 device_unregister(&ubi->dev);
478 }
479 #endif
480
481 /**
482 * kill_volumes - destroy all user volumes.
483 * @ubi: UBI device description object
484 */
kill_volumes(struct ubi_device * ubi)485 static void kill_volumes(struct ubi_device *ubi)
486 {
487 int i;
488
489 for (i = 0; i < ubi->vtbl_slots; i++)
490 if (ubi->volumes[i])
491 ubi_free_volume(ubi, ubi->volumes[i]);
492 }
493
494 /**
495 * uif_init - initialize user interfaces for an UBI device.
496 * @ubi: UBI device description object
497 * @ref: set to %1 on exit in case of failure if a reference to @ubi->dev was
498 * taken, otherwise set to %0
499 *
500 * This function initializes various user interfaces for an UBI device. If the
501 * initialization fails at an early stage, this function frees all the
502 * resources it allocated, returns an error, and @ref is set to %0. However,
503 * if the initialization fails after the UBI device was registered in the
504 * driver core subsystem, this function takes a reference to @ubi->dev, because
505 * otherwise the release function ('dev_release()') would free whole @ubi
506 * object. The @ref argument is set to %1 in this case. The caller has to put
507 * this reference.
508 *
509 * This function returns zero in case of success and a negative error code in
510 * case of failure.
511 */
uif_init(struct ubi_device * ubi,int * ref)512 static int uif_init(struct ubi_device *ubi, int *ref)
513 {
514 int i, err;
515 #ifndef __UBOOT__
516 dev_t dev;
517 #endif
518
519 *ref = 0;
520 sprintf(ubi->ubi_name, UBI_NAME_STR "%d", ubi->ubi_num);
521
522 /*
523 * Major numbers for the UBI character devices are allocated
524 * dynamically. Major numbers of volume character devices are
525 * equivalent to ones of the corresponding UBI character device. Minor
526 * numbers of UBI character devices are 0, while minor numbers of
527 * volume character devices start from 1. Thus, we allocate one major
528 * number and ubi->vtbl_slots + 1 minor numbers.
529 */
530 err = alloc_chrdev_region(&dev, 0, ubi->vtbl_slots + 1, ubi->ubi_name);
531 if (err) {
532 ubi_err(ubi, "cannot register UBI character devices");
533 return err;
534 }
535
536 ubi_assert(MINOR(dev) == 0);
537 cdev_init(&ubi->cdev, &ubi_cdev_operations);
538 dbg_gen("%s major is %u", ubi->ubi_name, MAJOR(dev));
539 ubi->cdev.owner = THIS_MODULE;
540
541 err = cdev_add(&ubi->cdev, dev, 1);
542 if (err) {
543 ubi_err(ubi, "cannot add character device");
544 goto out_unreg;
545 }
546
547 err = ubi_sysfs_init(ubi, ref);
548 if (err)
549 goto out_sysfs;
550
551 for (i = 0; i < ubi->vtbl_slots; i++)
552 if (ubi->volumes[i]) {
553 err = ubi_add_volume(ubi, ubi->volumes[i]);
554 if (err) {
555 ubi_err(ubi, "cannot add volume %d", i);
556 goto out_volumes;
557 }
558 }
559
560 return 0;
561
562 out_volumes:
563 kill_volumes(ubi);
564 out_sysfs:
565 if (*ref)
566 get_device(&ubi->dev);
567 ubi_sysfs_close(ubi);
568 cdev_del(&ubi->cdev);
569 out_unreg:
570 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
571 ubi_err(ubi, "cannot initialize UBI %s, error %d",
572 ubi->ubi_name, err);
573 return err;
574 }
575
576 /**
577 * uif_close - close user interfaces for an UBI device.
578 * @ubi: UBI device description object
579 *
580 * Note, since this function un-registers UBI volume device objects (@vol->dev),
581 * the memory allocated voe the volumes is freed as well (in the release
582 * function).
583 */
uif_close(struct ubi_device * ubi)584 static void uif_close(struct ubi_device *ubi)
585 {
586 kill_volumes(ubi);
587 ubi_sysfs_close(ubi);
588 cdev_del(&ubi->cdev);
589 unregister_chrdev_region(ubi->cdev.dev, ubi->vtbl_slots + 1);
590 }
591
592 /**
593 * ubi_free_internal_volumes - free internal volumes.
594 * @ubi: UBI device description object
595 */
ubi_free_internal_volumes(struct ubi_device * ubi)596 void ubi_free_internal_volumes(struct ubi_device *ubi)
597 {
598 int i;
599
600 for (i = ubi->vtbl_slots;
601 i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
602 kfree(ubi->volumes[i]->eba_tbl);
603 kfree(ubi->volumes[i]);
604 }
605 }
606
get_bad_peb_limit(const struct ubi_device * ubi,int max_beb_per1024)607 static int get_bad_peb_limit(const struct ubi_device *ubi, int max_beb_per1024)
608 {
609 int limit, device_pebs;
610 uint64_t device_size;
611
612 if (!max_beb_per1024)
613 return 0;
614
615 /*
616 * Here we are using size of the entire flash chip and
617 * not just the MTD partition size because the maximum
618 * number of bad eraseblocks is a percentage of the
619 * whole device and bad eraseblocks are not fairly
620 * distributed over the flash chip. So the worst case
621 * is that all the bad eraseblocks of the chip are in
622 * the MTD partition we are attaching (ubi->mtd).
623 */
624 device_size = mtd_get_device_size(ubi->mtd);
625 device_pebs = mtd_div_by_eb(device_size, ubi->mtd);
626 limit = mult_frac(device_pebs, max_beb_per1024, 1024);
627
628 /* Round it up */
629 if (mult_frac(limit, 1024, max_beb_per1024) < device_pebs)
630 limit += 1;
631
632 return limit;
633 }
634
635 /**
636 * io_init - initialize I/O sub-system for a given UBI device.
637 * @ubi: UBI device description object
638 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
639 *
640 * If @ubi->vid_hdr_offset or @ubi->leb_start is zero, default offsets are
641 * assumed:
642 * o EC header is always at offset zero - this cannot be changed;
643 * o VID header starts just after the EC header at the closest address
644 * aligned to @io->hdrs_min_io_size;
645 * o data starts just after the VID header at the closest address aligned to
646 * @io->min_io_size
647 *
648 * This function returns zero in case of success and a negative error code in
649 * case of failure.
650 */
io_init(struct ubi_device * ubi,int max_beb_per1024)651 static int io_init(struct ubi_device *ubi, int max_beb_per1024)
652 {
653 dbg_gen("sizeof(struct ubi_ainf_peb) %zu", sizeof(struct ubi_ainf_peb));
654 dbg_gen("sizeof(struct ubi_wl_entry) %zu", sizeof(struct ubi_wl_entry));
655
656 if (ubi->mtd->numeraseregions != 0) {
657 /*
658 * Some flashes have several erase regions. Different regions
659 * may have different eraseblock size and other
660 * characteristics. It looks like mostly multi-region flashes
661 * have one "main" region and one or more small regions to
662 * store boot loader code or boot parameters or whatever. I
663 * guess we should just pick the largest region. But this is
664 * not implemented.
665 */
666 ubi_err(ubi, "multiple regions, not implemented");
667 return -EINVAL;
668 }
669
670 if (ubi->vid_hdr_offset < 0)
671 return -EINVAL;
672
673 /*
674 * Note, in this implementation we support MTD devices with 0x7FFFFFFF
675 * physical eraseblocks maximum.
676 */
677
678 ubi->peb_size = ubi->mtd->erasesize;
679 ubi->peb_count = mtd_div_by_eb(ubi->mtd->size, ubi->mtd);
680 ubi->flash_size = ubi->mtd->size;
681
682 if (mtd_can_have_bb(ubi->mtd)) {
683 ubi->bad_allowed = 1;
684 ubi->bad_peb_limit = get_bad_peb_limit(ubi, max_beb_per1024);
685 }
686
687 if (ubi->mtd->type == MTD_NORFLASH) {
688 ubi_assert(ubi->mtd->writesize == 1);
689 ubi->nor_flash = 1;
690 }
691
692 ubi->min_io_size = ubi->mtd->writesize;
693 ubi->hdrs_min_io_size = ubi->mtd->writesize >> ubi->mtd->subpage_sft;
694
695 /*
696 * Make sure minimal I/O unit is power of 2. Note, there is no
697 * fundamental reason for this assumption. It is just an optimization
698 * which allows us to avoid costly division operations.
699 */
700 if (!is_power_of_2(ubi->min_io_size)) {
701 ubi_err(ubi, "min. I/O unit (%d) is not power of 2",
702 ubi->min_io_size);
703 return -EINVAL;
704 }
705
706 ubi_assert(ubi->hdrs_min_io_size > 0);
707 ubi_assert(ubi->hdrs_min_io_size <= ubi->min_io_size);
708 ubi_assert(ubi->min_io_size % ubi->hdrs_min_io_size == 0);
709
710 ubi->max_write_size = ubi->mtd->writebufsize;
711 /*
712 * Maximum write size has to be greater or equivalent to min. I/O
713 * size, and be multiple of min. I/O size.
714 */
715 if (ubi->max_write_size < ubi->min_io_size ||
716 ubi->max_write_size % ubi->min_io_size ||
717 !is_power_of_2(ubi->max_write_size)) {
718 ubi_err(ubi, "bad write buffer size %d for %d min. I/O unit",
719 ubi->max_write_size, ubi->min_io_size);
720 return -EINVAL;
721 }
722
723 /* Calculate default aligned sizes of EC and VID headers */
724 ubi->ec_hdr_alsize = ALIGN(UBI_EC_HDR_SIZE, ubi->hdrs_min_io_size);
725 ubi->vid_hdr_alsize = ALIGN(UBI_VID_HDR_SIZE, ubi->hdrs_min_io_size);
726
727 dbg_gen("min_io_size %d", ubi->min_io_size);
728 dbg_gen("max_write_size %d", ubi->max_write_size);
729 dbg_gen("hdrs_min_io_size %d", ubi->hdrs_min_io_size);
730 dbg_gen("ec_hdr_alsize %d", ubi->ec_hdr_alsize);
731 dbg_gen("vid_hdr_alsize %d", ubi->vid_hdr_alsize);
732
733 if (ubi->vid_hdr_offset == 0)
734 /* Default offset */
735 ubi->vid_hdr_offset = ubi->vid_hdr_aloffset =
736 ubi->ec_hdr_alsize;
737 else {
738 ubi->vid_hdr_aloffset = ubi->vid_hdr_offset &
739 ~(ubi->hdrs_min_io_size - 1);
740 ubi->vid_hdr_shift = ubi->vid_hdr_offset -
741 ubi->vid_hdr_aloffset;
742 }
743
744 /* Similar for the data offset */
745 ubi->leb_start = ubi->vid_hdr_offset + UBI_VID_HDR_SIZE;
746 ubi->leb_start = ALIGN(ubi->leb_start, ubi->min_io_size);
747
748 dbg_gen("vid_hdr_offset %d", ubi->vid_hdr_offset);
749 dbg_gen("vid_hdr_aloffset %d", ubi->vid_hdr_aloffset);
750 dbg_gen("vid_hdr_shift %d", ubi->vid_hdr_shift);
751 dbg_gen("leb_start %d", ubi->leb_start);
752
753 /* The shift must be aligned to 32-bit boundary */
754 if (ubi->vid_hdr_shift % 4) {
755 ubi_err(ubi, "unaligned VID header shift %d",
756 ubi->vid_hdr_shift);
757 return -EINVAL;
758 }
759
760 /* Check sanity */
761 if (ubi->vid_hdr_offset < UBI_EC_HDR_SIZE ||
762 ubi->leb_start < ubi->vid_hdr_offset + UBI_VID_HDR_SIZE ||
763 ubi->leb_start > ubi->peb_size - UBI_VID_HDR_SIZE ||
764 ubi->leb_start & (ubi->min_io_size - 1)) {
765 ubi_err(ubi, "bad VID header (%d) or data offsets (%d)",
766 ubi->vid_hdr_offset, ubi->leb_start);
767 return -EINVAL;
768 }
769
770 /*
771 * Set maximum amount of physical erroneous eraseblocks to be 10%.
772 * Erroneous PEB are those which have read errors.
773 */
774 ubi->max_erroneous = ubi->peb_count / 10;
775 if (ubi->max_erroneous < 16)
776 ubi->max_erroneous = 16;
777 dbg_gen("max_erroneous %d", ubi->max_erroneous);
778
779 /*
780 * It may happen that EC and VID headers are situated in one minimal
781 * I/O unit. In this case we can only accept this UBI image in
782 * read-only mode.
783 */
784 if (ubi->vid_hdr_offset + UBI_VID_HDR_SIZE <= ubi->hdrs_min_io_size) {
785 ubi_warn(ubi, "EC and VID headers are in the same minimal I/O unit, switch to read-only mode");
786 ubi->ro_mode = 1;
787 }
788
789 ubi->leb_size = ubi->peb_size - ubi->leb_start;
790
791 if (!(ubi->mtd->flags & MTD_WRITEABLE)) {
792 ubi_msg(ubi, "MTD device %d is write-protected, attach in read-only mode",
793 ubi->mtd->index);
794 ubi->ro_mode = 1;
795 }
796
797 /*
798 * Note, ideally, we have to initialize @ubi->bad_peb_count here. But
799 * unfortunately, MTD does not provide this information. We should loop
800 * over all physical eraseblocks and invoke mtd->block_is_bad() for
801 * each physical eraseblock. So, we leave @ubi->bad_peb_count
802 * uninitialized so far.
803 */
804
805 return 0;
806 }
807
808 /**
809 * autoresize - re-size the volume which has the "auto-resize" flag set.
810 * @ubi: UBI device description object
811 * @vol_id: ID of the volume to re-size
812 *
813 * This function re-sizes the volume marked by the %UBI_VTBL_AUTORESIZE_FLG in
814 * the volume table to the largest possible size. See comments in ubi-header.h
815 * for more description of the flag. Returns zero in case of success and a
816 * negative error code in case of failure.
817 */
autoresize(struct ubi_device * ubi,int vol_id)818 static int autoresize(struct ubi_device *ubi, int vol_id)
819 {
820 struct ubi_volume_desc desc;
821 struct ubi_volume *vol = ubi->volumes[vol_id];
822 int err, old_reserved_pebs = vol->reserved_pebs;
823
824 if (ubi->ro_mode) {
825 ubi_warn(ubi, "skip auto-resize because of R/O mode");
826 return 0;
827 }
828
829 /*
830 * Clear the auto-resize flag in the volume in-memory copy of the
831 * volume table, and 'ubi_resize_volume()' will propagate this change
832 * to the flash.
833 */
834 ubi->vtbl[vol_id].flags &= ~UBI_VTBL_AUTORESIZE_FLG;
835
836 if (ubi->avail_pebs == 0) {
837 struct ubi_vtbl_record vtbl_rec;
838
839 /*
840 * No available PEBs to re-size the volume, clear the flag on
841 * flash and exit.
842 */
843 vtbl_rec = ubi->vtbl[vol_id];
844 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
845 if (err)
846 ubi_err(ubi, "cannot clean auto-resize flag for volume %d",
847 vol_id);
848 } else {
849 desc.vol = vol;
850 err = ubi_resize_volume(&desc,
851 old_reserved_pebs + ubi->avail_pebs);
852 if (err)
853 ubi_err(ubi, "cannot auto-resize volume %d",
854 vol_id);
855 }
856
857 if (err)
858 return err;
859
860 ubi_msg(ubi, "volume %d (\"%s\") re-sized from %d to %d LEBs",
861 vol_id, vol->name, old_reserved_pebs, vol->reserved_pebs);
862 return 0;
863 }
864
865 /**
866 * ubi_attach_mtd_dev - attach an MTD device.
867 * @mtd: MTD device description object
868 * @ubi_num: number to assign to the new UBI device
869 * @vid_hdr_offset: VID header offset
870 * @max_beb_per1024: maximum expected number of bad PEB per 1024 PEBs
871 *
872 * This function attaches MTD device @mtd_dev to UBI and assign @ubi_num number
873 * to the newly created UBI device, unless @ubi_num is %UBI_DEV_NUM_AUTO, in
874 * which case this function finds a vacant device number and assigns it
875 * automatically. Returns the new UBI device number in case of success and a
876 * negative error code in case of failure.
877 *
878 * Note, the invocations of this function has to be serialized by the
879 * @ubi_devices_mutex.
880 */
ubi_attach_mtd_dev(struct mtd_info * mtd,int ubi_num,int vid_hdr_offset,int max_beb_per1024)881 int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num,
882 int vid_hdr_offset, int max_beb_per1024)
883 {
884 struct ubi_device *ubi;
885 int i, err, ref = 0;
886
887 if (max_beb_per1024 < 0 || max_beb_per1024 > MAX_MTD_UBI_BEB_LIMIT)
888 return -EINVAL;
889
890 if (!max_beb_per1024)
891 max_beb_per1024 = CONFIG_MTD_UBI_BEB_LIMIT;
892
893 /*
894 * Check if we already have the same MTD device attached.
895 *
896 * Note, this function assumes that UBI devices creations and deletions
897 * are serialized, so it does not take the &ubi_devices_lock.
898 */
899 for (i = 0; i < UBI_MAX_DEVICES; i++) {
900 ubi = ubi_devices[i];
901 if (ubi && mtd->index == ubi->mtd->index) {
902 ubi_err(ubi, "mtd%d is already attached to ubi%d",
903 mtd->index, i);
904 return -EEXIST;
905 }
906 }
907
908 /*
909 * Make sure this MTD device is not emulated on top of an UBI volume
910 * already. Well, generally this recursion works fine, but there are
911 * different problems like the UBI module takes a reference to itself
912 * by attaching (and thus, opening) the emulated MTD device. This
913 * results in inability to unload the module. And in general it makes
914 * no sense to attach emulated MTD devices, so we prohibit this.
915 */
916 if (mtd->type == MTD_UBIVOLUME) {
917 ubi_err(ubi, "refuse attaching mtd%d - it is already emulated on top of UBI",
918 mtd->index);
919 return -EINVAL;
920 }
921
922 if (ubi_num == UBI_DEV_NUM_AUTO) {
923 /* Search for an empty slot in the @ubi_devices array */
924 for (ubi_num = 0; ubi_num < UBI_MAX_DEVICES; ubi_num++)
925 if (!ubi_devices[ubi_num])
926 break;
927 if (ubi_num == UBI_MAX_DEVICES) {
928 ubi_err(ubi, "only %d UBI devices may be created",
929 UBI_MAX_DEVICES);
930 return -ENFILE;
931 }
932 } else {
933 if (ubi_num >= UBI_MAX_DEVICES)
934 return -EINVAL;
935
936 /* Make sure ubi_num is not busy */
937 if (ubi_devices[ubi_num]) {
938 ubi_err(ubi, "already exists");
939 return -EEXIST;
940 }
941 }
942
943 ubi = kzalloc(sizeof(struct ubi_device), GFP_KERNEL);
944 if (!ubi)
945 return -ENOMEM;
946
947 ubi->mtd = mtd;
948 ubi->ubi_num = ubi_num;
949 ubi->vid_hdr_offset = vid_hdr_offset;
950 ubi->autoresize_vol_id = -1;
951
952 #ifdef CONFIG_MTD_UBI_FASTMAP
953 ubi->fm_pool.used = ubi->fm_pool.size = 0;
954 ubi->fm_wl_pool.used = ubi->fm_wl_pool.size = 0;
955
956 /*
957 * fm_pool.max_size is 5% of the total number of PEBs but it's also
958 * between UBI_FM_MAX_POOL_SIZE and UBI_FM_MIN_POOL_SIZE.
959 */
960 ubi->fm_pool.max_size = min(((int)mtd_div_by_eb(ubi->mtd->size,
961 ubi->mtd) / 100) * 5, UBI_FM_MAX_POOL_SIZE);
962 ubi->fm_pool.max_size = max(ubi->fm_pool.max_size,
963 UBI_FM_MIN_POOL_SIZE);
964
965 ubi->fm_wl_pool.max_size = ubi->fm_pool.max_size / 2;
966 ubi->fm_disabled = !fm_autoconvert;
967 if (fm_debug)
968 ubi_enable_dbg_chk_fastmap(ubi);
969
970 if (!ubi->fm_disabled && (int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd)
971 <= UBI_FM_MAX_START) {
972 ubi_err(ubi, "More than %i PEBs are needed for fastmap, sorry.",
973 UBI_FM_MAX_START);
974 ubi->fm_disabled = 1;
975 }
976
977 ubi_msg(ubi, "default fastmap pool size: %d", ubi->fm_pool.max_size);
978 ubi_msg(ubi, "default fastmap WL pool size: %d",
979 ubi->fm_wl_pool.max_size);
980 #else
981 ubi->fm_disabled = 1;
982 #endif
983 mutex_init(&ubi->buf_mutex);
984 mutex_init(&ubi->ckvol_mutex);
985 mutex_init(&ubi->device_mutex);
986 spin_lock_init(&ubi->volumes_lock);
987 init_rwsem(&ubi->fm_protect);
988 init_rwsem(&ubi->fm_eba_sem);
989
990 ubi_msg(ubi, "attaching mtd%d", mtd->index);
991
992 err = io_init(ubi, max_beb_per1024);
993 if (err)
994 goto out_free;
995
996 err = -ENOMEM;
997 ubi->peb_buf = vmalloc(ubi->peb_size);
998 if (!ubi->peb_buf)
999 goto out_free;
1000
1001 #ifdef CONFIG_MTD_UBI_FASTMAP
1002 ubi->fm_size = ubi_calc_fm_size(ubi);
1003 ubi->fm_buf = vzalloc(ubi->fm_size);
1004 if (!ubi->fm_buf)
1005 goto out_free;
1006 #endif
1007 err = ubi_attach(ubi, 0);
1008 if (err) {
1009 ubi_err(ubi, "failed to attach mtd%d, error %d",
1010 mtd->index, err);
1011 goto out_free;
1012 }
1013
1014 if (ubi->autoresize_vol_id != -1) {
1015 err = autoresize(ubi, ubi->autoresize_vol_id);
1016 if (err)
1017 goto out_detach;
1018 }
1019
1020 err = uif_init(ubi, &ref);
1021 if (err)
1022 goto out_detach;
1023
1024 err = ubi_debugfs_init_dev(ubi);
1025 if (err)
1026 goto out_uif;
1027
1028 ubi->bgt_thread = kthread_create(ubi_thread, ubi, "%s", ubi->bgt_name);
1029 if (IS_ERR(ubi->bgt_thread)) {
1030 err = PTR_ERR(ubi->bgt_thread);
1031 ubi_err(ubi, "cannot spawn \"%s\", error %d",
1032 ubi->bgt_name, err);
1033 goto out_debugfs;
1034 }
1035
1036 ubi_msg(ubi, "attached mtd%d (name \"%s\", size %llu MiB)",
1037 mtd->index, mtd->name, ubi->flash_size >> 20);
1038 ubi_msg(ubi, "PEB size: %d bytes (%d KiB), LEB size: %d bytes",
1039 ubi->peb_size, ubi->peb_size >> 10, ubi->leb_size);
1040 ubi_msg(ubi, "min./max. I/O unit sizes: %d/%d, sub-page size %d",
1041 ubi->min_io_size, ubi->max_write_size, ubi->hdrs_min_io_size);
1042 ubi_msg(ubi, "VID header offset: %d (aligned %d), data offset: %d",
1043 ubi->vid_hdr_offset, ubi->vid_hdr_aloffset, ubi->leb_start);
1044 ubi_msg(ubi, "good PEBs: %d, bad PEBs: %d, corrupted PEBs: %d",
1045 ubi->good_peb_count, ubi->bad_peb_count, ubi->corr_peb_count);
1046 ubi_msg(ubi, "user volume: %d, internal volumes: %d, max. volumes count: %d",
1047 ubi->vol_count - UBI_INT_VOL_COUNT, UBI_INT_VOL_COUNT,
1048 ubi->vtbl_slots);
1049 ubi_msg(ubi, "max/mean erase counter: %d/%d, WL threshold: %d, image sequence number: %u",
1050 ubi->max_ec, ubi->mean_ec, CONFIG_MTD_UBI_WL_THRESHOLD,
1051 ubi->image_seq);
1052 ubi_msg(ubi, "available PEBs: %d, total reserved PEBs: %d, PEBs reserved for bad PEB handling: %d",
1053 ubi->avail_pebs, ubi->rsvd_pebs, ubi->beb_rsvd_pebs);
1054
1055 /*
1056 * The below lock makes sure we do not race with 'ubi_thread()' which
1057 * checks @ubi->thread_enabled. Otherwise we may fail to wake it up.
1058 */
1059 spin_lock(&ubi->wl_lock);
1060 ubi->thread_enabled = 1;
1061 #ifndef __UBOOT__
1062 wake_up_process(ubi->bgt_thread);
1063 #else
1064 ubi_do_worker(ubi);
1065 #endif
1066
1067 spin_unlock(&ubi->wl_lock);
1068
1069 ubi_devices[ubi_num] = ubi;
1070 ubi_notify_all(ubi, UBI_VOLUME_ADDED, NULL);
1071 return ubi_num;
1072
1073 out_debugfs:
1074 ubi_debugfs_exit_dev(ubi);
1075 out_uif:
1076 get_device(&ubi->dev);
1077 ubi_assert(ref);
1078 uif_close(ubi);
1079 out_detach:
1080 ubi_wl_close(ubi);
1081 ubi_free_internal_volumes(ubi);
1082 vfree(ubi->vtbl);
1083 out_free:
1084 vfree(ubi->peb_buf);
1085 vfree(ubi->fm_buf);
1086 if (ref)
1087 put_device(&ubi->dev);
1088 else
1089 kfree(ubi);
1090 return err;
1091 }
1092
1093 /**
1094 * ubi_detach_mtd_dev - detach an MTD device.
1095 * @ubi_num: UBI device number to detach from
1096 * @anyway: detach MTD even if device reference count is not zero
1097 *
1098 * This function destroys an UBI device number @ubi_num and detaches the
1099 * underlying MTD device. Returns zero in case of success and %-EBUSY if the
1100 * UBI device is busy and cannot be destroyed, and %-EINVAL if it does not
1101 * exist.
1102 *
1103 * Note, the invocations of this function has to be serialized by the
1104 * @ubi_devices_mutex.
1105 */
ubi_detach_mtd_dev(int ubi_num,int anyway)1106 int ubi_detach_mtd_dev(int ubi_num, int anyway)
1107 {
1108 struct ubi_device *ubi;
1109
1110 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
1111 return -EINVAL;
1112
1113 ubi = ubi_get_device(ubi_num);
1114 if (!ubi)
1115 return -EINVAL;
1116
1117 spin_lock(&ubi_devices_lock);
1118 put_device(&ubi->dev);
1119 ubi->ref_count -= 1;
1120 if (ubi->ref_count) {
1121 if (!anyway) {
1122 spin_unlock(&ubi_devices_lock);
1123 return -EBUSY;
1124 }
1125 /* This may only happen if there is a bug */
1126 ubi_err(ubi, "%s reference count %d, destroy anyway",
1127 ubi->ubi_name, ubi->ref_count);
1128 }
1129 ubi_devices[ubi_num] = NULL;
1130 spin_unlock(&ubi_devices_lock);
1131
1132 ubi_assert(ubi_num == ubi->ubi_num);
1133 ubi_notify_all(ubi, UBI_VOLUME_REMOVED, NULL);
1134 ubi_msg(ubi, "detaching mtd%d", ubi->mtd->index);
1135 #ifdef CONFIG_MTD_UBI_FASTMAP
1136 /* If we don't write a new fastmap at detach time we lose all
1137 * EC updates that have been made since the last written fastmap.
1138 * In case of fastmap debugging we omit the update to simulate an
1139 * unclean shutdown. */
1140 if (!ubi_dbg_chk_fastmap(ubi))
1141 ubi_update_fastmap(ubi);
1142 #endif
1143 /*
1144 * Before freeing anything, we have to stop the background thread to
1145 * prevent it from doing anything on this device while we are freeing.
1146 */
1147 if (ubi->bgt_thread)
1148 kthread_stop(ubi->bgt_thread);
1149
1150 /*
1151 * Get a reference to the device in order to prevent 'dev_release()'
1152 * from freeing the @ubi object.
1153 */
1154 get_device(&ubi->dev);
1155
1156 ubi_debugfs_exit_dev(ubi);
1157 uif_close(ubi);
1158
1159 ubi_wl_close(ubi);
1160 ubi_free_internal_volumes(ubi);
1161 vfree(ubi->vtbl);
1162 put_mtd_device(ubi->mtd);
1163 vfree(ubi->peb_buf);
1164 vfree(ubi->fm_buf);
1165 ubi_msg(ubi, "mtd%d is detached", ubi->mtd->index);
1166 put_device(&ubi->dev);
1167 return 0;
1168 }
1169
1170 #ifndef __UBOOT__
1171 /**
1172 * open_mtd_by_chdev - open an MTD device by its character device node path.
1173 * @mtd_dev: MTD character device node path
1174 *
1175 * This helper function opens an MTD device by its character node device path.
1176 * Returns MTD device description object in case of success and a negative
1177 * error code in case of failure.
1178 */
open_mtd_by_chdev(const char * mtd_dev)1179 static struct mtd_info * __init open_mtd_by_chdev(const char *mtd_dev)
1180 {
1181 int err, major, minor, mode;
1182 struct path path;
1183
1184 /* Probably this is an MTD character device node path */
1185 err = kern_path(mtd_dev, LOOKUP_FOLLOW, &path);
1186 if (err)
1187 return ERR_PTR(err);
1188
1189 /* MTD device number is defined by the major / minor numbers */
1190 major = imajor(d_backing_inode(path.dentry));
1191 minor = iminor(d_backing_inode(path.dentry));
1192 mode = d_backing_inode(path.dentry)->i_mode;
1193 path_put(&path);
1194 if (major != MTD_CHAR_MAJOR || !S_ISCHR(mode))
1195 return ERR_PTR(-EINVAL);
1196
1197 if (minor & 1)
1198 /*
1199 * Just do not think the "/dev/mtdrX" devices support is need,
1200 * so do not support them to avoid doing extra work.
1201 */
1202 return ERR_PTR(-EINVAL);
1203
1204 return get_mtd_device(NULL, minor / 2);
1205 }
1206 #endif
1207
1208 /**
1209 * open_mtd_device - open MTD device by name, character device path, or number.
1210 * @mtd_dev: name, character device node path, or MTD device device number
1211 *
1212 * This function tries to open and MTD device described by @mtd_dev string,
1213 * which is first treated as ASCII MTD device number, and if it is not true, it
1214 * is treated as MTD device name, and if that is also not true, it is treated
1215 * as MTD character device node path. Returns MTD device description object in
1216 * case of success and a negative error code in case of failure.
1217 */
open_mtd_device(const char * mtd_dev)1218 static struct mtd_info * __init open_mtd_device(const char *mtd_dev)
1219 {
1220 struct mtd_info *mtd;
1221 int mtd_num;
1222 char *endp;
1223
1224 mtd_num = simple_strtoul(mtd_dev, &endp, 0);
1225 if (*endp != '\0' || mtd_dev == endp) {
1226 /*
1227 * This does not look like an ASCII integer, probably this is
1228 * MTD device name.
1229 */
1230 mtd = get_mtd_device_nm(mtd_dev);
1231 #ifndef __UBOOT__
1232 if (IS_ERR(mtd) && PTR_ERR(mtd) == -ENODEV)
1233 /* Probably this is an MTD character device node path */
1234 mtd = open_mtd_by_chdev(mtd_dev);
1235 #endif
1236 } else
1237 mtd = get_mtd_device(NULL, mtd_num);
1238
1239 return mtd;
1240 }
1241
1242 #ifndef __UBOOT__
ubi_init(void)1243 static int __init ubi_init(void)
1244 #else
1245 int ubi_init(void)
1246 #endif
1247 {
1248 int err, i, k;
1249
1250 /* Ensure that EC and VID headers have correct size */
1251 BUILD_BUG_ON(sizeof(struct ubi_ec_hdr) != 64);
1252 BUILD_BUG_ON(sizeof(struct ubi_vid_hdr) != 64);
1253
1254 if (mtd_devs > UBI_MAX_DEVICES) {
1255 pr_err("UBI error: too many MTD devices, maximum is %d\n",
1256 UBI_MAX_DEVICES);
1257 return -EINVAL;
1258 }
1259
1260 /* Create base sysfs directory and sysfs files */
1261 err = class_register(&ubi_class);
1262 if (err < 0)
1263 return err;
1264
1265 err = misc_register(&ubi_ctrl_cdev);
1266 if (err) {
1267 pr_err("UBI error: cannot register device\n");
1268 goto out;
1269 }
1270
1271 ubi_wl_entry_slab = kmem_cache_create("ubi_wl_entry_slab",
1272 sizeof(struct ubi_wl_entry),
1273 0, 0, NULL);
1274 if (!ubi_wl_entry_slab) {
1275 err = -ENOMEM;
1276 goto out_dev_unreg;
1277 }
1278
1279 err = ubi_debugfs_init();
1280 if (err)
1281 goto out_slab;
1282
1283
1284 /* Attach MTD devices */
1285 for (i = 0; i < mtd_devs; i++) {
1286 struct mtd_dev_param *p = &mtd_dev_param[i];
1287 struct mtd_info *mtd;
1288
1289 cond_resched();
1290
1291 mtd = open_mtd_device(p->name);
1292 if (IS_ERR(mtd)) {
1293 err = PTR_ERR(mtd);
1294 pr_err("UBI error: cannot open mtd %s, error %d\n",
1295 p->name, err);
1296 /* See comment below re-ubi_is_module(). */
1297 if (ubi_is_module())
1298 goto out_detach;
1299 continue;
1300 }
1301
1302 mutex_lock(&ubi_devices_mutex);
1303 err = ubi_attach_mtd_dev(mtd, p->ubi_num,
1304 p->vid_hdr_offs, p->max_beb_per1024);
1305 mutex_unlock(&ubi_devices_mutex);
1306 if (err < 0) {
1307 pr_err("UBI error: cannot attach mtd%d\n",
1308 mtd->index);
1309 put_mtd_device(mtd);
1310
1311 /*
1312 * Originally UBI stopped initializing on any error.
1313 * However, later on it was found out that this
1314 * behavior is not very good when UBI is compiled into
1315 * the kernel and the MTD devices to attach are passed
1316 * through the command line. Indeed, UBI failure
1317 * stopped whole boot sequence.
1318 *
1319 * To fix this, we changed the behavior for the
1320 * non-module case, but preserved the old behavior for
1321 * the module case, just for compatibility. This is a
1322 * little inconsistent, though.
1323 */
1324 if (ubi_is_module())
1325 goto out_detach;
1326 }
1327 }
1328
1329 err = ubiblock_init();
1330 if (err) {
1331 pr_err("UBI error: block: cannot initialize, error %d\n", err);
1332
1333 /* See comment above re-ubi_is_module(). */
1334 if (ubi_is_module())
1335 goto out_detach;
1336 }
1337
1338 return 0;
1339
1340 out_detach:
1341 for (k = 0; k < i; k++)
1342 if (ubi_devices[k]) {
1343 mutex_lock(&ubi_devices_mutex);
1344 ubi_detach_mtd_dev(ubi_devices[k]->ubi_num, 1);
1345 mutex_unlock(&ubi_devices_mutex);
1346 }
1347 ubi_debugfs_exit();
1348 out_slab:
1349 kmem_cache_destroy(ubi_wl_entry_slab);
1350 out_dev_unreg:
1351 misc_deregister(&ubi_ctrl_cdev);
1352 out:
1353 #ifdef __UBOOT__
1354 /* Reset any globals that the driver depends on being zeroed */
1355 mtd_devs = 0;
1356 #endif
1357 class_unregister(&ubi_class);
1358 pr_err("UBI error: cannot initialize UBI, error %d\n", err);
1359 return err;
1360 }
1361 late_initcall(ubi_init);
1362
1363 #ifndef __UBOOT__
ubi_exit(void)1364 static void __exit ubi_exit(void)
1365 #else
1366 void ubi_exit(void)
1367 #endif
1368 {
1369 int i;
1370
1371 ubiblock_exit();
1372
1373 for (i = 0; i < UBI_MAX_DEVICES; i++)
1374 if (ubi_devices[i]) {
1375 mutex_lock(&ubi_devices_mutex);
1376 ubi_detach_mtd_dev(ubi_devices[i]->ubi_num, 1);
1377 mutex_unlock(&ubi_devices_mutex);
1378 }
1379 ubi_debugfs_exit();
1380 kmem_cache_destroy(ubi_wl_entry_slab);
1381 misc_deregister(&ubi_ctrl_cdev);
1382 class_unregister(&ubi_class);
1383 #ifdef __UBOOT__
1384 /* Reset any globals that the driver depends on being zeroed */
1385 mtd_devs = 0;
1386 #endif
1387 }
1388 module_exit(ubi_exit);
1389
1390 /**
1391 * bytes_str_to_int - convert a number of bytes string into an integer.
1392 * @str: the string to convert
1393 *
1394 * This function returns positive resulting integer in case of success and a
1395 * negative error code in case of failure.
1396 */
bytes_str_to_int(const char * str)1397 static int __init bytes_str_to_int(const char *str)
1398 {
1399 char *endp;
1400 unsigned long result;
1401
1402 result = simple_strtoul(str, &endp, 0);
1403 if (str == endp || result >= INT_MAX) {
1404 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1405 return -EINVAL;
1406 }
1407
1408 switch (*endp) {
1409 case 'G':
1410 result *= 1024;
1411 case 'M':
1412 result *= 1024;
1413 case 'K':
1414 result *= 1024;
1415 if (endp[1] == 'i' && endp[2] == 'B')
1416 endp += 2;
1417 case '\0':
1418 break;
1419 default:
1420 pr_err("UBI error: incorrect bytes count: \"%s\"\n", str);
1421 return -EINVAL;
1422 }
1423
1424 return result;
1425 }
1426
kstrtoint(const char * s,unsigned int base,int * res)1427 int kstrtoint(const char *s, unsigned int base, int *res)
1428 {
1429 unsigned long long tmp;
1430
1431 tmp = simple_strtoull(s, NULL, base);
1432 if (tmp != (unsigned long long)(int)tmp)
1433 return -ERANGE;
1434
1435 return (int)tmp;
1436 }
1437
1438 /**
1439 * ubi_mtd_param_parse - parse the 'mtd=' UBI parameter.
1440 * @val: the parameter value to parse
1441 * @kp: not used
1442 *
1443 * This function returns zero in case of success and a negative error code in
1444 * case of error.
1445 */
1446 #ifndef __UBOOT__
ubi_mtd_param_parse(const char * val,struct kernel_param * kp)1447 static int __init ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1448 #else
1449 int ubi_mtd_param_parse(const char *val, struct kernel_param *kp)
1450 #endif
1451 {
1452 int i, len;
1453 struct mtd_dev_param *p;
1454 char buf[MTD_PARAM_LEN_MAX];
1455 char *pbuf = &buf[0];
1456 char *tokens[MTD_PARAM_MAX_COUNT], *token;
1457
1458 if (!val)
1459 return -EINVAL;
1460
1461 if (mtd_devs == UBI_MAX_DEVICES) {
1462 pr_err("UBI error: too many parameters, max. is %d\n",
1463 UBI_MAX_DEVICES);
1464 return -EINVAL;
1465 }
1466
1467 len = strnlen(val, MTD_PARAM_LEN_MAX);
1468 if (len == MTD_PARAM_LEN_MAX) {
1469 pr_err("UBI error: parameter \"%s\" is too long, max. is %d\n",
1470 val, MTD_PARAM_LEN_MAX);
1471 return -EINVAL;
1472 }
1473
1474 if (len == 0) {
1475 pr_warn("UBI warning: empty 'mtd=' parameter - ignored\n");
1476 return 0;
1477 }
1478
1479 strcpy(buf, val);
1480
1481 /* Get rid of the final newline */
1482 if (buf[len - 1] == '\n')
1483 buf[len - 1] = '\0';
1484
1485 for (i = 0; i < MTD_PARAM_MAX_COUNT; i++)
1486 tokens[i] = strsep(&pbuf, ",");
1487
1488 if (pbuf) {
1489 pr_err("UBI error: too many arguments at \"%s\"\n", val);
1490 return -EINVAL;
1491 }
1492
1493 p = &mtd_dev_param[mtd_devs];
1494 strcpy(&p->name[0], tokens[0]);
1495
1496 token = tokens[1];
1497 if (token) {
1498 p->vid_hdr_offs = bytes_str_to_int(token);
1499
1500 if (p->vid_hdr_offs < 0)
1501 return p->vid_hdr_offs;
1502 }
1503
1504 token = tokens[2];
1505 if (token) {
1506 int err = kstrtoint(token, 10, &p->max_beb_per1024);
1507
1508 if (err) {
1509 pr_err("UBI error: bad value for max_beb_per1024 parameter: %s",
1510 token);
1511 return -EINVAL;
1512 }
1513 }
1514
1515 token = tokens[3];
1516 if (token) {
1517 int err = kstrtoint(token, 10, &p->ubi_num);
1518
1519 if (err) {
1520 pr_err("UBI error: bad value for ubi_num parameter: %s",
1521 token);
1522 return -EINVAL;
1523 }
1524 } else
1525 p->ubi_num = UBI_DEV_NUM_AUTO;
1526
1527 mtd_devs += 1;
1528 return 0;
1529 }
1530
1531 module_param_call(mtd, ubi_mtd_param_parse, NULL, NULL, 000);
1532 MODULE_PARM_DESC(mtd, "MTD devices to attach. Parameter format: mtd=<name|num|path>[,<vid_hdr_offs>[,max_beb_per1024[,ubi_num]]].\n"
1533 "Multiple \"mtd\" parameters may be specified.\n"
1534 "MTD devices may be specified by their number, name, or path to the MTD character device node.\n"
1535 "Optional \"vid_hdr_offs\" parameter specifies UBI VID header position to be used by UBI. (default value if 0)\n"
1536 "Optional \"max_beb_per1024\" parameter specifies the maximum expected bad eraseblock per 1024 eraseblocks. (default value ("
1537 __stringify(CONFIG_MTD_UBI_BEB_LIMIT) ") if 0)\n"
1538 "Optional \"ubi_num\" parameter specifies UBI device number which have to be assigned to the newly created UBI device (assigned automatically by default)\n"
1539 "\n"
1540 "Example 1: mtd=/dev/mtd0 - attach MTD device /dev/mtd0.\n"
1541 "Example 2: mtd=content,1984 mtd=4 - attach MTD device with name \"content\" using VID header offset 1984, and MTD device number 4 with default VID header offset.\n"
1542 "Example 3: mtd=/dev/mtd1,0,25 - attach MTD device /dev/mtd1 using default VID header offset and reserve 25*nand_size_in_blocks/1024 erase blocks for bad block handling.\n"
1543 "Example 4: mtd=/dev/mtd1,0,0,5 - attach MTD device /dev/mtd1 to UBI 5 and using default values for the other fields.\n"
1544 "\t(e.g. if the NAND *chipset* has 4096 PEB, 100 will be reserved for this UBI device).");
1545 #ifdef CONFIG_MTD_UBI_FASTMAP
1546 module_param(fm_autoconvert, bool, 0644);
1547 MODULE_PARM_DESC(fm_autoconvert, "Set this parameter to enable fastmap automatically on images without a fastmap.");
1548 module_param(fm_debug, bool, 0);
1549 MODULE_PARM_DESC(fm_debug, "Set this parameter to enable fastmap debugging by default. Warning, this will make fastmap slow!");
1550 #endif
1551 MODULE_VERSION(__stringify(UBI_VERSION));
1552 MODULE_DESCRIPTION("UBI - Unsorted Block Images");
1553 MODULE_AUTHOR("Artem Bityutskiy");
1554 MODULE_LICENSE("GPL");
1555