1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2008-2014 Freescale Semiconductor, Inc.
4  * Copyright 2018 NXP
5  *
6  * Based on CAAM driver in drivers/crypto/caam in Linux
7  */
8 
9 #include <common.h>
10 #include <cpu_func.h>
11 #include <linux/kernel.h>
12 #include <log.h>
13 #include <malloc.h>
14 #include "fsl_sec.h"
15 #include "jr.h"
16 #include "jobdesc.h"
17 #include "desc_constr.h"
18 #include <time.h>
19 #include <asm/cache.h>
20 #ifdef CONFIG_FSL_CORENET
21 #include <asm/cache.h>
22 #include <asm/fsl_pamu.h>
23 #endif
24 #include <dm/lists.h>
25 #include <linux/delay.h>
26 
27 #define CIRC_CNT(head, tail, size)	(((head) - (tail)) & (size - 1))
28 #define CIRC_SPACE(head, tail, size)	CIRC_CNT((tail), (head) + 1, (size))
29 
30 uint32_t sec_offset[CONFIG_SYS_FSL_MAX_NUM_OF_SEC] = {
31 	0,
32 #if defined(CONFIG_ARCH_C29X)
33 	CONFIG_SYS_FSL_SEC_IDX_OFFSET,
34 	2 * CONFIG_SYS_FSL_SEC_IDX_OFFSET
35 #endif
36 };
37 
38 #define SEC_ADDR(idx)	\
39 	(ulong)((CONFIG_SYS_FSL_SEC_ADDR + sec_offset[idx]))
40 
41 #define SEC_JR0_ADDR(idx)	\
42 	(ulong)(SEC_ADDR(idx) +	\
43 	 (CONFIG_SYS_FSL_JR0_OFFSET - CONFIG_SYS_FSL_SEC_OFFSET))
44 
45 struct jobring jr0[CONFIG_SYS_FSL_MAX_NUM_OF_SEC];
46 
start_jr0(uint8_t sec_idx)47 static inline void start_jr0(uint8_t sec_idx)
48 {
49 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
50 	u32 ctpr_ms = sec_in32(&sec->ctpr_ms);
51 	u32 scfgr = sec_in32(&sec->scfgr);
52 
53 	if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_INCL) {
54 		/* VIRT_EN_INCL = 1 & VIRT_EN_POR = 1 or
55 		 * VIRT_EN_INCL = 1 & VIRT_EN_POR = 0 & SEC_SCFGR_VIRT_EN = 1
56 		 */
57 		if ((ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR) ||
58 		    (scfgr & SEC_SCFGR_VIRT_EN))
59 			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
60 	} else {
61 		/* VIRT_EN_INCL = 0 && VIRT_EN_POR_VALUE = 1 */
62 		if (ctpr_ms & SEC_CTPR_MS_VIRT_EN_POR)
63 			sec_out32(&sec->jrstartr, CONFIG_JRSTARTR_JR0);
64 	}
65 }
66 
jr_reset_liodn(uint8_t sec_idx)67 static inline void jr_reset_liodn(uint8_t sec_idx)
68 {
69 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
70 	sec_out32(&sec->jrliodnr[0].ls, 0);
71 }
72 
jr_disable_irq(uint8_t sec_idx)73 static inline void jr_disable_irq(uint8_t sec_idx)
74 {
75 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
76 	uint32_t jrcfg = sec_in32(&regs->jrcfg1);
77 
78 	jrcfg = jrcfg | JR_INTMASK;
79 
80 	sec_out32(&regs->jrcfg1, jrcfg);
81 }
82 
jr_initregs(uint8_t sec_idx)83 static void jr_initregs(uint8_t sec_idx)
84 {
85 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
86 	struct jobring *jr = &jr0[sec_idx];
87 	caam_dma_addr_t ip_base = virt_to_phys((void *)jr->input_ring);
88 	caam_dma_addr_t op_base = virt_to_phys((void *)jr->output_ring);
89 
90 #ifdef CONFIG_CAAM_64BIT
91 	sec_out32(&regs->irba_h, ip_base >> 32);
92 #else
93 	sec_out32(&regs->irba_h, 0x0);
94 #endif
95 	sec_out32(&regs->irba_l, (uint32_t)ip_base);
96 #ifdef CONFIG_CAAM_64BIT
97 	sec_out32(&regs->orba_h, op_base >> 32);
98 #else
99 	sec_out32(&regs->orba_h, 0x0);
100 #endif
101 	sec_out32(&regs->orba_l, (uint32_t)op_base);
102 	sec_out32(&regs->ors, JR_SIZE);
103 	sec_out32(&regs->irs, JR_SIZE);
104 
105 	if (!jr->irq)
106 		jr_disable_irq(sec_idx);
107 }
108 
jr_init(uint8_t sec_idx)109 static int jr_init(uint8_t sec_idx)
110 {
111 	struct jobring *jr = &jr0[sec_idx];
112 
113 	memset(jr, 0, sizeof(struct jobring));
114 
115 	jr->jq_id = DEFAULT_JR_ID;
116 	jr->irq = DEFAULT_IRQ;
117 
118 #ifdef CONFIG_FSL_CORENET
119 	jr->liodn = DEFAULT_JR_LIODN;
120 #endif
121 	jr->size = JR_SIZE;
122 	jr->input_ring = (caam_dma_addr_t *)memalign(ARCH_DMA_MINALIGN,
123 				JR_SIZE * sizeof(caam_dma_addr_t));
124 	if (!jr->input_ring)
125 		return -1;
126 
127 	jr->op_size = roundup(JR_SIZE * sizeof(struct op_ring),
128 			      ARCH_DMA_MINALIGN);
129 	jr->output_ring =
130 	    (struct op_ring *)memalign(ARCH_DMA_MINALIGN, jr->op_size);
131 	if (!jr->output_ring)
132 		return -1;
133 
134 	memset(jr->input_ring, 0, JR_SIZE * sizeof(caam_dma_addr_t));
135 	memset(jr->output_ring, 0, jr->op_size);
136 
137 	start_jr0(sec_idx);
138 
139 	jr_initregs(sec_idx);
140 
141 	return 0;
142 }
143 
jr_sw_cleanup(uint8_t sec_idx)144 static int jr_sw_cleanup(uint8_t sec_idx)
145 {
146 	struct jobring *jr = &jr0[sec_idx];
147 
148 	jr->head = 0;
149 	jr->tail = 0;
150 	jr->read_idx = 0;
151 	jr->write_idx = 0;
152 	memset(jr->info, 0, sizeof(jr->info));
153 	memset(jr->input_ring, 0, jr->size * sizeof(caam_dma_addr_t));
154 	memset(jr->output_ring, 0, jr->size * sizeof(struct op_ring));
155 
156 	return 0;
157 }
158 
jr_hw_reset(uint8_t sec_idx)159 static int jr_hw_reset(uint8_t sec_idx)
160 {
161 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
162 	uint32_t timeout = 100000;
163 	uint32_t jrint, jrcr;
164 
165 	sec_out32(&regs->jrcr, JRCR_RESET);
166 	do {
167 		jrint = sec_in32(&regs->jrint);
168 	} while (((jrint & JRINT_ERR_HALT_MASK) ==
169 		  JRINT_ERR_HALT_INPROGRESS) && --timeout);
170 
171 	jrint = sec_in32(&regs->jrint);
172 	if (((jrint & JRINT_ERR_HALT_MASK) !=
173 	     JRINT_ERR_HALT_INPROGRESS) && timeout == 0)
174 		return -1;
175 
176 	timeout = 100000;
177 	sec_out32(&regs->jrcr, JRCR_RESET);
178 	do {
179 		jrcr = sec_in32(&regs->jrcr);
180 	} while ((jrcr & JRCR_RESET) && --timeout);
181 
182 	if (timeout == 0)
183 		return -1;
184 
185 	return 0;
186 }
187 
188 /* -1 --- error, can't enqueue -- no space available */
jr_enqueue(uint32_t * desc_addr,void (* callback)(uint32_t status,void * arg),void * arg,uint8_t sec_idx)189 static int jr_enqueue(uint32_t *desc_addr,
190 	       void (*callback)(uint32_t status, void *arg),
191 	       void *arg, uint8_t sec_idx)
192 {
193 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
194 	struct jobring *jr = &jr0[sec_idx];
195 	int head = jr->head;
196 	uint32_t desc_word;
197 	int length = desc_len(desc_addr);
198 	int i;
199 #ifdef CONFIG_CAAM_64BIT
200 	uint32_t *addr_hi, *addr_lo;
201 #endif
202 
203 	/* The descriptor must be submitted to SEC block as per endianness
204 	 * of the SEC Block.
205 	 * So, if the endianness of Core and SEC block is different, each word
206 	 * of the descriptor will be byte-swapped.
207 	 */
208 	for (i = 0; i < length; i++) {
209 		desc_word = desc_addr[i];
210 		sec_out32((uint32_t *)&desc_addr[i], desc_word);
211 	}
212 
213 	caam_dma_addr_t desc_phys_addr = virt_to_phys(desc_addr);
214 
215 	jr->info[head].desc_phys_addr = desc_phys_addr;
216 	jr->info[head].callback = (void *)callback;
217 	jr->info[head].arg = arg;
218 	jr->info[head].op_done = 0;
219 
220 	unsigned long start = (unsigned long)&jr->info[head] &
221 					~(ARCH_DMA_MINALIGN - 1);
222 	unsigned long end = ALIGN((unsigned long)&jr->info[head] +
223 				  sizeof(struct jr_info), ARCH_DMA_MINALIGN);
224 	flush_dcache_range(start, end);
225 
226 #ifdef CONFIG_CAAM_64BIT
227 	/* Write the 64 bit Descriptor address on Input Ring.
228 	 * The 32 bit hign and low part of the address will
229 	 * depend on endianness of SEC block.
230 	 */
231 #ifdef CONFIG_SYS_FSL_SEC_LE
232 	addr_lo = (uint32_t *)(&jr->input_ring[head]);
233 	addr_hi = (uint32_t *)(&jr->input_ring[head]) + 1;
234 #elif defined(CONFIG_SYS_FSL_SEC_BE)
235 	addr_hi = (uint32_t *)(&jr->input_ring[head]);
236 	addr_lo = (uint32_t *)(&jr->input_ring[head]) + 1;
237 #endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
238 
239 	sec_out32(addr_hi, (uint32_t)(desc_phys_addr >> 32));
240 	sec_out32(addr_lo, (uint32_t)(desc_phys_addr));
241 
242 #else
243 	/* Write the 32 bit Descriptor address on Input Ring. */
244 	sec_out32(&jr->input_ring[head], desc_phys_addr);
245 #endif /* ifdef CONFIG_CAAM_64BIT */
246 
247 	start = (unsigned long)&jr->input_ring[head] & ~(ARCH_DMA_MINALIGN - 1);
248 	end = ALIGN((unsigned long)&jr->input_ring[head] +
249 		     sizeof(caam_dma_addr_t), ARCH_DMA_MINALIGN);
250 	flush_dcache_range(start, end);
251 
252 	jr->head = (head + 1) & (jr->size - 1);
253 
254 	/* Invalidate output ring */
255 	start = (unsigned long)jr->output_ring &
256 					~(ARCH_DMA_MINALIGN - 1);
257 	end = ALIGN((unsigned long)jr->output_ring + jr->op_size,
258 		    ARCH_DMA_MINALIGN);
259 	invalidate_dcache_range(start, end);
260 
261 	sec_out32(&regs->irja, 1);
262 
263 	return 0;
264 }
265 
jr_dequeue(int sec_idx)266 static int jr_dequeue(int sec_idx)
267 {
268 	struct jr_regs *regs = (struct jr_regs *)SEC_JR0_ADDR(sec_idx);
269 	struct jobring *jr = &jr0[sec_idx];
270 	int head = jr->head;
271 	int tail = jr->tail;
272 	int idx, i, found;
273 	void (*callback)(uint32_t status, void *arg);
274 	void *arg = NULL;
275 #ifdef CONFIG_CAAM_64BIT
276 	uint32_t *addr_hi, *addr_lo;
277 #else
278 	uint32_t *addr;
279 #endif
280 
281 	while (sec_in32(&regs->orsf) && CIRC_CNT(jr->head, jr->tail,
282 						 jr->size)) {
283 
284 		found = 0;
285 
286 		caam_dma_addr_t op_desc;
287 	#ifdef CONFIG_CAAM_64BIT
288 		/* Read the 64 bit Descriptor address from Output Ring.
289 		 * The 32 bit hign and low part of the address will
290 		 * depend on endianness of SEC block.
291 		 */
292 	#ifdef CONFIG_SYS_FSL_SEC_LE
293 		addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc);
294 		addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
295 	#elif defined(CONFIG_SYS_FSL_SEC_BE)
296 		addr_hi = (uint32_t *)(&jr->output_ring[jr->tail].desc);
297 		addr_lo = (uint32_t *)(&jr->output_ring[jr->tail].desc) + 1;
298 	#endif /* ifdef CONFIG_SYS_FSL_SEC_LE */
299 
300 		op_desc = ((u64)sec_in32(addr_hi) << 32) |
301 			  ((u64)sec_in32(addr_lo));
302 
303 	#else
304 		/* Read the 32 bit Descriptor address from Output Ring. */
305 		addr = (uint32_t *)&jr->output_ring[jr->tail].desc;
306 		op_desc = sec_in32(addr);
307 	#endif /* ifdef CONFIG_CAAM_64BIT */
308 
309 		uint32_t status = sec_in32(&jr->output_ring[jr->tail].status);
310 
311 		for (i = 0; CIRC_CNT(head, tail + i, jr->size) >= 1; i++) {
312 			idx = (tail + i) & (jr->size - 1);
313 			if (op_desc == jr->info[idx].desc_phys_addr) {
314 				found = 1;
315 				break;
316 			}
317 		}
318 
319 		/* Error condition if match not found */
320 		if (!found)
321 			return -1;
322 
323 		jr->info[idx].op_done = 1;
324 		callback = (void *)jr->info[idx].callback;
325 		arg = jr->info[idx].arg;
326 
327 		/* When the job on tail idx gets done, increment
328 		 * tail till the point where job completed out of oredr has
329 		 * been taken into account
330 		 */
331 		if (idx == tail)
332 			do {
333 				tail = (tail + 1) & (jr->size - 1);
334 			} while (jr->info[tail].op_done);
335 
336 		jr->tail = tail;
337 		jr->read_idx = (jr->read_idx + 1) & (jr->size - 1);
338 
339 		sec_out32(&regs->orjr, 1);
340 		jr->info[idx].op_done = 0;
341 
342 		callback(status, arg);
343 	}
344 
345 	return 0;
346 }
347 
desc_done(uint32_t status,void * arg)348 static void desc_done(uint32_t status, void *arg)
349 {
350 	struct result *x = arg;
351 	x->status = status;
352 #ifndef CONFIG_SPL_BUILD
353 	caam_jr_strstatus(status);
354 #endif
355 	x->done = 1;
356 }
357 
run_descriptor_jr_idx(uint32_t * desc,uint8_t sec_idx)358 static inline int run_descriptor_jr_idx(uint32_t *desc, uint8_t sec_idx)
359 {
360 	unsigned long long timeval = 0;
361 	unsigned long long timeout = CONFIG_USEC_DEQ_TIMEOUT;
362 	struct result op;
363 	int ret = 0;
364 
365 	memset(&op, 0, sizeof(op));
366 
367 	ret = jr_enqueue(desc, desc_done, &op, sec_idx);
368 	if (ret) {
369 		debug("Error in SEC enq\n");
370 		ret = JQ_ENQ_ERR;
371 		goto out;
372 	}
373 
374 	while (op.done != 1) {
375 		udelay(1);
376 		timeval += 1;
377 
378 		ret = jr_dequeue(sec_idx);
379 		if (ret) {
380 			debug("Error in SEC deq\n");
381 			ret = JQ_DEQ_ERR;
382 			goto out;
383 		}
384 
385 		if (timeval > timeout) {
386 			debug("SEC Dequeue timed out\n");
387 			ret = JQ_DEQ_TO_ERR;
388 			goto out;
389 		}
390 	}
391 
392 	if (op.status) {
393 		debug("Error %x\n", op.status);
394 		ret = op.status;
395 	}
396 out:
397 	return ret;
398 }
399 
run_descriptor_jr(uint32_t * desc)400 int run_descriptor_jr(uint32_t *desc)
401 {
402 	return run_descriptor_jr_idx(desc, 0);
403 }
404 
jr_reset_sec(uint8_t sec_idx)405 static inline int jr_reset_sec(uint8_t sec_idx)
406 {
407 	if (jr_hw_reset(sec_idx) < 0)
408 		return -1;
409 
410 	/* Clean up the jobring structure maintained by software */
411 	jr_sw_cleanup(sec_idx);
412 
413 	return 0;
414 }
415 
jr_reset(void)416 int jr_reset(void)
417 {
418 	return jr_reset_sec(0);
419 }
420 
sec_reset_idx(uint8_t sec_idx)421 static inline int sec_reset_idx(uint8_t sec_idx)
422 {
423 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
424 	uint32_t mcfgr = sec_in32(&sec->mcfgr);
425 	uint32_t timeout = 100000;
426 
427 	mcfgr |= MCFGR_SWRST;
428 	sec_out32(&sec->mcfgr, mcfgr);
429 
430 	mcfgr |= MCFGR_DMA_RST;
431 	sec_out32(&sec->mcfgr, mcfgr);
432 	do {
433 		mcfgr = sec_in32(&sec->mcfgr);
434 	} while ((mcfgr & MCFGR_DMA_RST) == MCFGR_DMA_RST && --timeout);
435 
436 	if (timeout == 0)
437 		return -1;
438 
439 	timeout = 100000;
440 	do {
441 		mcfgr = sec_in32(&sec->mcfgr);
442 	} while ((mcfgr & MCFGR_SWRST) == MCFGR_SWRST && --timeout);
443 
444 	if (timeout == 0)
445 		return -1;
446 
447 	return 0;
448 }
sec_reset(void)449 int sec_reset(void)
450 {
451 	return sec_reset_idx(0);
452 }
453 #ifndef CONFIG_SPL_BUILD
deinstantiate_rng(u8 sec_idx,int state_handle_mask)454 static int deinstantiate_rng(u8 sec_idx, int state_handle_mask)
455 {
456 	u32 *desc;
457 	int sh_idx, ret = 0;
458 	int desc_size = ALIGN(sizeof(u32) * 2, ARCH_DMA_MINALIGN);
459 
460 	desc = memalign(ARCH_DMA_MINALIGN, desc_size);
461 	if (!desc) {
462 		debug("cannot allocate RNG init descriptor memory\n");
463 		return -ENOMEM;
464 	}
465 
466 	for (sh_idx = 0; sh_idx < RNG4_MAX_HANDLES; sh_idx++) {
467 		/*
468 		 * If the corresponding bit is set, then it means the state
469 		 * handle was initialized by us, and thus it needs to be
470 		 * deinitialized as well
471 		 */
472 
473 		if (state_handle_mask & RDSTA_IF(sh_idx)) {
474 			/*
475 			 * Create the descriptor for deinstantating this state
476 			 * handle.
477 			 */
478 			inline_cnstr_jobdesc_rng_deinstantiation(desc, sh_idx);
479 			flush_dcache_range((unsigned long)desc,
480 					   (unsigned long)desc + desc_size);
481 
482 			ret = run_descriptor_jr_idx(desc, sec_idx);
483 			if (ret) {
484 				printf("SEC%u:  RNG4 SH%d deinstantiation failed with error 0x%x\n",
485 				       sec_idx, sh_idx, ret);
486 				ret = -EIO;
487 				break;
488 			}
489 
490 			printf("SEC%u:  Deinstantiated RNG4 SH%d\n",
491 			       sec_idx, sh_idx);
492 		}
493 	}
494 
495 	free(desc);
496 	return ret;
497 }
498 
instantiate_rng(u8 sec_idx,int gen_sk)499 static int instantiate_rng(u8 sec_idx, int gen_sk)
500 {
501 	u32 *desc;
502 	u32 rdsta_val;
503 	int ret = 0, sh_idx, size;
504 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
505 	struct rng4tst __iomem *rng =
506 			(struct rng4tst __iomem *)&sec->rng;
507 
508 	desc = memalign(ARCH_DMA_MINALIGN, sizeof(uint32_t) * 6);
509 	if (!desc) {
510 		printf("cannot allocate RNG init descriptor memory\n");
511 		return -1;
512 	}
513 
514 	for (sh_idx = 0; sh_idx < RNG4_MAX_HANDLES; sh_idx++) {
515 		/*
516 		 * If the corresponding bit is set, this state handle
517 		 * was initialized by somebody else, so it's left alone.
518 		 */
519 		rdsta_val = sec_in32(&rng->rdsta);
520 		if (rdsta_val & (RDSTA_IF(sh_idx))) {
521 			if (rdsta_val & RDSTA_PR(sh_idx))
522 				continue;
523 
524 			printf("SEC%u:  RNG4 SH%d was instantiated w/o prediction resistance. Tearing it down\n",
525 			       sec_idx, sh_idx);
526 
527 			ret = deinstantiate_rng(sec_idx, RDSTA_IF(sh_idx));
528 			if (ret)
529 				break;
530 		}
531 
532 		inline_cnstr_jobdesc_rng_instantiation(desc, sh_idx, gen_sk);
533 		size = roundup(sizeof(uint32_t) * 6, ARCH_DMA_MINALIGN);
534 		flush_dcache_range((unsigned long)desc,
535 				   (unsigned long)desc + size);
536 
537 		ret = run_descriptor_jr_idx(desc, sec_idx);
538 
539 		if (ret)
540 			printf("SEC%u:  RNG4 SH%d instantiation failed with error 0x%x\n",
541 			       sec_idx, sh_idx, ret);
542 
543 		rdsta_val = sec_in32(&rng->rdsta);
544 		if (!(rdsta_val & RDSTA_IF(sh_idx))) {
545 			free(desc);
546 			return -1;
547 		}
548 
549 		memset(desc, 0, sizeof(uint32_t) * 6);
550 	}
551 
552 	free(desc);
553 
554 	return ret;
555 }
556 
get_rng_vid(uint8_t sec_idx)557 static u8 get_rng_vid(uint8_t sec_idx)
558 {
559 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
560 	u8 vid;
561 
562 	if (caam_get_era() < 10) {
563 		vid = (sec_in32(&sec->chavid_ls) & SEC_CHAVID_RNG_LS_MASK)
564 		       >> SEC_CHAVID_LS_RNG_SHIFT;
565 	} else {
566 		vid = (sec_in32(&sec->vreg.rng) & CHA_VER_VID_MASK)
567 		       >> CHA_VER_VID_SHIFT;
568 	}
569 
570 	return vid;
571 }
572 
573 /*
574  * By default, the TRNG runs for 200 clocks per sample;
575  * 1200 clocks per sample generates better entropy.
576  */
kick_trng(int ent_delay,uint8_t sec_idx)577 static void kick_trng(int ent_delay, uint8_t sec_idx)
578 {
579 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
580 	struct rng4tst __iomem *rng =
581 			(struct rng4tst __iomem *)&sec->rng;
582 	u32 val;
583 
584 	/* put RNG4 into program mode */
585 	sec_setbits32(&rng->rtmctl, RTMCTL_PRGM);
586 	/* rtsdctl bits 0-15 contain "Entropy Delay, which defines the
587 	 * length (in system clocks) of each Entropy sample taken
588 	 * */
589 	val = sec_in32(&rng->rtsdctl);
590 	val = (val & ~RTSDCTL_ENT_DLY_MASK) |
591 	      (ent_delay << RTSDCTL_ENT_DLY_SHIFT);
592 	sec_out32(&rng->rtsdctl, val);
593 	/* min. freq. count, equal to 1/4 of the entropy sample length */
594 	sec_out32(&rng->rtfreqmin, ent_delay >> 2);
595 	/* disable maximum frequency count */
596 	sec_out32(&rng->rtfreqmax, RTFRQMAX_DISABLE);
597 	/*
598 	 * select raw sampling in both entropy shifter
599 	 * and statistical checker
600 	 */
601 	sec_setbits32(&rng->rtmctl, RTMCTL_SAMP_MODE_RAW_ES_SC);
602 	/* put RNG4 into run mode */
603 	sec_clrbits32(&rng->rtmctl, RTMCTL_PRGM);
604 }
605 
rng_init(uint8_t sec_idx)606 static int rng_init(uint8_t sec_idx)
607 {
608 	int ret, gen_sk, ent_delay = RTSDCTL_ENT_DLY_MIN;
609 	ccsr_sec_t __iomem *sec = (ccsr_sec_t __iomem *)SEC_ADDR(sec_idx);
610 	struct rng4tst __iomem *rng =
611 			(struct rng4tst __iomem *)&sec->rng;
612 	u32 inst_handles;
613 
614 	gen_sk = !(sec_in32(&rng->rdsta) & RDSTA_SKVN);
615 	do {
616 		inst_handles = sec_in32(&rng->rdsta) & RDSTA_MASK;
617 
618 		/*
619 		 * If either of the SH's were instantiated by somebody else
620 		 * then it is assumed that the entropy
621 		 * parameters are properly set and thus the function
622 		 * setting these (kick_trng(...)) is skipped.
623 		 * Also, if a handle was instantiated, do not change
624 		 * the TRNG parameters.
625 		 */
626 		if (!inst_handles) {
627 			kick_trng(ent_delay, sec_idx);
628 			ent_delay += 400;
629 		}
630 		/*
631 		 * if instantiate_rng(...) fails, the loop will rerun
632 		 * and the kick_trng(...) function will modfiy the
633 		 * upper and lower limits of the entropy sampling
634 		 * interval, leading to a sucessful initialization of
635 		 * the RNG.
636 		 */
637 		ret = instantiate_rng(sec_idx, gen_sk);
638 	} while ((ret == -1) && (ent_delay < RTSDCTL_ENT_DLY_MAX));
639 	if (ret) {
640 		printf("SEC%u:  Failed to instantiate RNG\n", sec_idx);
641 		return ret;
642 	}
643 
644 	 /* Enable RDB bit so that RNG works faster */
645 	sec_setbits32(&sec->scfgr, SEC_SCFGR_RDBENABLE);
646 
647 	return ret;
648 }
649 #endif
sec_init_idx(uint8_t sec_idx)650 int sec_init_idx(uint8_t sec_idx)
651 {
652 	ccsr_sec_t *sec = (void *)SEC_ADDR(sec_idx);
653 	uint32_t mcr = sec_in32(&sec->mcfgr);
654 	int ret = 0;
655 
656 #ifdef CONFIG_FSL_CORENET
657 	uint32_t liodnr;
658 	uint32_t liodn_ns;
659 	uint32_t liodn_s;
660 #endif
661 
662 	if (!(sec_idx < CONFIG_SYS_FSL_MAX_NUM_OF_SEC)) {
663 		printf("SEC%u:  initialization failed\n", sec_idx);
664 		return -1;
665 	}
666 
667 	/*
668 	 * Modifying CAAM Read/Write Attributes
669 	 * For LS2080A
670 	 * For AXI Write - Cacheable, Write Back, Write allocate
671 	 * For AXI Read - Cacheable, Read allocate
672 	 * Only For LS2080a, to solve CAAM coherency issues
673 	 */
674 #ifdef CONFIG_ARCH_LS2080A
675 	mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0xb << MCFGR_AWCACHE_SHIFT);
676 	mcr = (mcr & ~MCFGR_ARCACHE_MASK) | (0x6 << MCFGR_ARCACHE_SHIFT);
677 #else
678 	mcr = (mcr & ~MCFGR_AWCACHE_MASK) | (0x2 << MCFGR_AWCACHE_SHIFT);
679 #endif
680 
681 #ifdef CONFIG_CAAM_64BIT
682 	mcr |= (1 << MCFGR_PS_SHIFT);
683 #endif
684 	sec_out32(&sec->mcfgr, mcr);
685 
686 #ifdef CONFIG_FSL_CORENET
687 #ifdef CONFIG_SPL_BUILD
688 	/*
689 	 * For SPL Build, Set the Liodns in SEC JR0 for
690 	 * creating PAMU entries corresponding to these.
691 	 * For normal build, these are set in set_liodns().
692 	 */
693 	liodn_ns = CONFIG_SPL_JR0_LIODN_NS & JRNSLIODN_MASK;
694 	liodn_s = CONFIG_SPL_JR0_LIODN_S & JRSLIODN_MASK;
695 
696 	liodnr = sec_in32(&sec->jrliodnr[0].ls) &
697 		 ~(JRNSLIODN_MASK | JRSLIODN_MASK);
698 	liodnr = liodnr |
699 		 (liodn_ns << JRNSLIODN_SHIFT) |
700 		 (liodn_s << JRSLIODN_SHIFT);
701 	sec_out32(&sec->jrliodnr[0].ls, liodnr);
702 #else
703 	liodnr = sec_in32(&sec->jrliodnr[0].ls);
704 	liodn_ns = (liodnr & JRNSLIODN_MASK) >> JRNSLIODN_SHIFT;
705 	liodn_s = (liodnr & JRSLIODN_MASK) >> JRSLIODN_SHIFT;
706 #endif
707 #endif
708 
709 	ret = jr_init(sec_idx);
710 	if (ret < 0) {
711 		printf("SEC%u:  initialization failed\n", sec_idx);
712 		return -1;
713 	}
714 
715 #ifdef CONFIG_FSL_CORENET
716 	ret = sec_config_pamu_table(liodn_ns, liodn_s);
717 	if (ret < 0)
718 		return -1;
719 
720 	pamu_enable();
721 #endif
722 #ifndef CONFIG_SPL_BUILD
723 	if (get_rng_vid(sec_idx) >= 4) {
724 		if (rng_init(sec_idx) < 0) {
725 			printf("SEC%u:  RNG instantiation failed\n", sec_idx);
726 			return -1;
727 		}
728 
729 		if (IS_ENABLED(CONFIG_DM_RNG)) {
730 			ret = device_bind_driver(NULL, "caam-rng", "caam-rng",
731 						 NULL);
732 			if (ret)
733 				printf("Couldn't bind rng driver (%d)\n", ret);
734 		}
735 
736 		printf("SEC%u:  RNG instantiated\n", sec_idx);
737 	}
738 #endif
739 	return ret;
740 }
741 
sec_init(void)742 int sec_init(void)
743 {
744 	return sec_init_idx(0);
745 }
746