1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) 2018, STMicroelectronics - All Rights Reserved
4  */
5 
6 #define LOG_CATEGORY UCLASS_CLK
7 
8 #include <common.h>
9 #include <clk-uclass.h>
10 #include <div64.h>
11 #include <dm.h>
12 #include <init.h>
13 #include <log.h>
14 #include <regmap.h>
15 #include <spl.h>
16 #include <syscon.h>
17 #include <time.h>
18 #include <vsprintf.h>
19 #include <asm/arch/sys_proto.h>
20 #include <asm/global_data.h>
21 #include <dm/device_compat.h>
22 #include <dt-bindings/clock/stm32mp1-clks.h>
23 #include <dt-bindings/clock/stm32mp1-clksrc.h>
24 #include <linux/bitops.h>
25 #include <linux/io.h>
26 #include <linux/iopoll.h>
27 
28 DECLARE_GLOBAL_DATA_PTR;
29 
30 #ifndef CONFIG_TFABOOT
31 #if !defined(CONFIG_SPL) || defined(CONFIG_SPL_BUILD)
32 /* activate clock tree initialization in the driver */
33 #define STM32MP1_CLOCK_TREE_INIT
34 #endif
35 #endif
36 
37 #define MAX_HSI_HZ		64000000
38 
39 /* TIMEOUT */
40 #define TIMEOUT_200MS		200000
41 #define TIMEOUT_1S		1000000
42 
43 /* STGEN registers */
44 #define STGENC_CNTCR		0x00
45 #define STGENC_CNTSR		0x04
46 #define STGENC_CNTCVL		0x08
47 #define STGENC_CNTCVU		0x0C
48 #define STGENC_CNTFID0		0x20
49 
50 #define STGENC_CNTCR_EN		BIT(0)
51 
52 /* RCC registers */
53 #define RCC_OCENSETR		0x0C
54 #define RCC_OCENCLRR		0x10
55 #define RCC_HSICFGR		0x18
56 #define RCC_MPCKSELR		0x20
57 #define RCC_ASSCKSELR		0x24
58 #define RCC_RCK12SELR		0x28
59 #define RCC_MPCKDIVR		0x2C
60 #define RCC_AXIDIVR		0x30
61 #define RCC_APB4DIVR		0x3C
62 #define RCC_APB5DIVR		0x40
63 #define RCC_RTCDIVR		0x44
64 #define RCC_MSSCKSELR		0x48
65 #define RCC_PLL1CR		0x80
66 #define RCC_PLL1CFGR1		0x84
67 #define RCC_PLL1CFGR2		0x88
68 #define RCC_PLL1FRACR		0x8C
69 #define RCC_PLL1CSGR		0x90
70 #define RCC_PLL2CR		0x94
71 #define RCC_PLL2CFGR1		0x98
72 #define RCC_PLL2CFGR2		0x9C
73 #define RCC_PLL2FRACR		0xA0
74 #define RCC_PLL2CSGR		0xA4
75 #define RCC_I2C46CKSELR		0xC0
76 #define RCC_CPERCKSELR		0xD0
77 #define RCC_STGENCKSELR		0xD4
78 #define RCC_DDRITFCR		0xD8
79 #define RCC_BDCR		0x140
80 #define RCC_RDLSICR		0x144
81 #define RCC_MP_APB4ENSETR	0x200
82 #define RCC_MP_APB5ENSETR	0x208
83 #define RCC_MP_AHB5ENSETR	0x210
84 #define RCC_MP_AHB6ENSETR	0x218
85 #define RCC_OCRDYR		0x808
86 #define RCC_DBGCFGR		0x80C
87 #define RCC_RCK3SELR		0x820
88 #define RCC_RCK4SELR		0x824
89 #define RCC_MCUDIVR		0x830
90 #define RCC_APB1DIVR		0x834
91 #define RCC_APB2DIVR		0x838
92 #define RCC_APB3DIVR		0x83C
93 #define RCC_PLL3CR		0x880
94 #define RCC_PLL3CFGR1		0x884
95 #define RCC_PLL3CFGR2		0x888
96 #define RCC_PLL3FRACR		0x88C
97 #define RCC_PLL3CSGR		0x890
98 #define RCC_PLL4CR		0x894
99 #define RCC_PLL4CFGR1		0x898
100 #define RCC_PLL4CFGR2		0x89C
101 #define RCC_PLL4FRACR		0x8A0
102 #define RCC_PLL4CSGR		0x8A4
103 #define RCC_I2C12CKSELR		0x8C0
104 #define RCC_I2C35CKSELR		0x8C4
105 #define RCC_SPI2S1CKSELR	0x8D8
106 #define RCC_SPI45CKSELR		0x8E0
107 #define RCC_UART6CKSELR		0x8E4
108 #define RCC_UART24CKSELR	0x8E8
109 #define RCC_UART35CKSELR	0x8EC
110 #define RCC_UART78CKSELR	0x8F0
111 #define RCC_SDMMC12CKSELR	0x8F4
112 #define RCC_SDMMC3CKSELR	0x8F8
113 #define RCC_ETHCKSELR		0x8FC
114 #define RCC_QSPICKSELR		0x900
115 #define RCC_FMCCKSELR		0x904
116 #define RCC_USBCKSELR		0x91C
117 #define RCC_DSICKSELR		0x924
118 #define RCC_ADCCKSELR		0x928
119 #define RCC_MP_APB1ENSETR	0xA00
120 #define RCC_MP_APB2ENSETR	0XA08
121 #define RCC_MP_APB3ENSETR	0xA10
122 #define RCC_MP_AHB2ENSETR	0xA18
123 #define RCC_MP_AHB3ENSETR	0xA20
124 #define RCC_MP_AHB4ENSETR	0xA28
125 
126 /* used for most of SELR register */
127 #define RCC_SELR_SRC_MASK	GENMASK(2, 0)
128 #define RCC_SELR_SRCRDY		BIT(31)
129 
130 /* Values of RCC_MPCKSELR register */
131 #define RCC_MPCKSELR_HSI	0
132 #define RCC_MPCKSELR_HSE	1
133 #define RCC_MPCKSELR_PLL	2
134 #define RCC_MPCKSELR_PLL_MPUDIV	3
135 
136 /* Values of RCC_ASSCKSELR register */
137 #define RCC_ASSCKSELR_HSI	0
138 #define RCC_ASSCKSELR_HSE	1
139 #define RCC_ASSCKSELR_PLL	2
140 
141 /* Values of RCC_MSSCKSELR register */
142 #define RCC_MSSCKSELR_HSI	0
143 #define RCC_MSSCKSELR_HSE	1
144 #define RCC_MSSCKSELR_CSI	2
145 #define RCC_MSSCKSELR_PLL	3
146 
147 /* Values of RCC_CPERCKSELR register */
148 #define RCC_CPERCKSELR_HSI	0
149 #define RCC_CPERCKSELR_CSI	1
150 #define RCC_CPERCKSELR_HSE	2
151 
152 /* used for most of DIVR register : max div for RTC */
153 #define RCC_DIVR_DIV_MASK	GENMASK(5, 0)
154 #define RCC_DIVR_DIVRDY		BIT(31)
155 
156 /* Masks for specific DIVR registers */
157 #define RCC_APBXDIV_MASK	GENMASK(2, 0)
158 #define RCC_MPUDIV_MASK		GENMASK(2, 0)
159 #define RCC_AXIDIV_MASK		GENMASK(2, 0)
160 #define RCC_MCUDIV_MASK		GENMASK(3, 0)
161 
162 /*  offset between RCC_MP_xxxENSETR and RCC_MP_xxxENCLRR registers */
163 #define RCC_MP_ENCLRR_OFFSET	4
164 
165 /* Fields of RCC_BDCR register */
166 #define RCC_BDCR_LSEON		BIT(0)
167 #define RCC_BDCR_LSEBYP		BIT(1)
168 #define RCC_BDCR_LSERDY		BIT(2)
169 #define RCC_BDCR_DIGBYP		BIT(3)
170 #define RCC_BDCR_LSEDRV_MASK	GENMASK(5, 4)
171 #define RCC_BDCR_LSEDRV_SHIFT	4
172 #define RCC_BDCR_LSECSSON	BIT(8)
173 #define RCC_BDCR_RTCCKEN	BIT(20)
174 #define RCC_BDCR_RTCSRC_MASK	GENMASK(17, 16)
175 #define RCC_BDCR_RTCSRC_SHIFT	16
176 
177 /* Fields of RCC_RDLSICR register */
178 #define RCC_RDLSICR_LSION	BIT(0)
179 #define RCC_RDLSICR_LSIRDY	BIT(1)
180 
181 /* used for ALL PLLNCR registers */
182 #define RCC_PLLNCR_PLLON	BIT(0)
183 #define RCC_PLLNCR_PLLRDY	BIT(1)
184 #define RCC_PLLNCR_SSCG_CTRL	BIT(2)
185 #define RCC_PLLNCR_DIVPEN	BIT(4)
186 #define RCC_PLLNCR_DIVQEN	BIT(5)
187 #define RCC_PLLNCR_DIVREN	BIT(6)
188 #define RCC_PLLNCR_DIVEN_SHIFT	4
189 
190 /* used for ALL PLLNCFGR1 registers */
191 #define RCC_PLLNCFGR1_DIVM_SHIFT	16
192 #define RCC_PLLNCFGR1_DIVM_MASK		GENMASK(21, 16)
193 #define RCC_PLLNCFGR1_DIVN_SHIFT	0
194 #define RCC_PLLNCFGR1_DIVN_MASK		GENMASK(8, 0)
195 /* only for PLL3 and PLL4 */
196 #define RCC_PLLNCFGR1_IFRGE_SHIFT	24
197 #define RCC_PLLNCFGR1_IFRGE_MASK	GENMASK(25, 24)
198 
199 /* used for ALL PLLNCFGR2 registers , using stm32mp1_div_id */
200 #define RCC_PLLNCFGR2_SHIFT(div_id)	((div_id) * 8)
201 #define RCC_PLLNCFGR2_DIVX_MASK		GENMASK(6, 0)
202 #define RCC_PLLNCFGR2_DIVP_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_P)
203 #define RCC_PLLNCFGR2_DIVP_MASK		GENMASK(6, 0)
204 #define RCC_PLLNCFGR2_DIVQ_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_Q)
205 #define RCC_PLLNCFGR2_DIVQ_MASK		GENMASK(14, 8)
206 #define RCC_PLLNCFGR2_DIVR_SHIFT	RCC_PLLNCFGR2_SHIFT(_DIV_R)
207 #define RCC_PLLNCFGR2_DIVR_MASK		GENMASK(22, 16)
208 
209 /* used for ALL PLLNFRACR registers */
210 #define RCC_PLLNFRACR_FRACV_SHIFT	3
211 #define RCC_PLLNFRACR_FRACV_MASK	GENMASK(15, 3)
212 #define RCC_PLLNFRACR_FRACLE		BIT(16)
213 
214 /* used for ALL PLLNCSGR registers */
215 #define RCC_PLLNCSGR_INC_STEP_SHIFT	16
216 #define RCC_PLLNCSGR_INC_STEP_MASK	GENMASK(30, 16)
217 #define RCC_PLLNCSGR_MOD_PER_SHIFT	0
218 #define RCC_PLLNCSGR_MOD_PER_MASK	GENMASK(12, 0)
219 #define RCC_PLLNCSGR_SSCG_MODE_SHIFT	15
220 #define RCC_PLLNCSGR_SSCG_MODE_MASK	BIT(15)
221 
222 /* used for RCC_OCENSETR and RCC_OCENCLRR registers */
223 #define RCC_OCENR_HSION			BIT(0)
224 #define RCC_OCENR_CSION			BIT(4)
225 #define RCC_OCENR_DIGBYP		BIT(7)
226 #define RCC_OCENR_HSEON			BIT(8)
227 #define RCC_OCENR_HSEBYP		BIT(10)
228 #define RCC_OCENR_HSECSSON		BIT(11)
229 
230 /* Fields of RCC_OCRDYR register */
231 #define RCC_OCRDYR_HSIRDY		BIT(0)
232 #define RCC_OCRDYR_HSIDIVRDY		BIT(2)
233 #define RCC_OCRDYR_CSIRDY		BIT(4)
234 #define RCC_OCRDYR_HSERDY		BIT(8)
235 
236 /* Fields of DDRITFCR register */
237 #define RCC_DDRITFCR_DDRCKMOD_MASK	GENMASK(22, 20)
238 #define RCC_DDRITFCR_DDRCKMOD_SHIFT	20
239 #define RCC_DDRITFCR_DDRCKMOD_SSR	0
240 
241 /* Fields of RCC_HSICFGR register */
242 #define RCC_HSICFGR_HSIDIV_MASK		GENMASK(1, 0)
243 
244 /* used for MCO related operations */
245 #define RCC_MCOCFG_MCOON		BIT(12)
246 #define RCC_MCOCFG_MCODIV_MASK		GENMASK(7, 4)
247 #define RCC_MCOCFG_MCODIV_SHIFT		4
248 #define RCC_MCOCFG_MCOSRC_MASK		GENMASK(2, 0)
249 
250 enum stm32mp1_parent_id {
251 /*
252  * _HSI, _HSE, _CSI, _LSI, _LSE should not be moved
253  * they are used as index in osc_clk[] as clock reference
254  */
255 	_HSI,
256 	_HSE,
257 	_CSI,
258 	_LSI,
259 	_LSE,
260 	_I2S_CKIN,
261 	NB_OSC,
262 
263 /* other parent source */
264 	_HSI_KER = NB_OSC,
265 	_HSE_KER,
266 	_HSE_KER_DIV2,
267 	_CSI_KER,
268 	_PLL1_P,
269 	_PLL1_Q,
270 	_PLL1_R,
271 	_PLL2_P,
272 	_PLL2_Q,
273 	_PLL2_R,
274 	_PLL3_P,
275 	_PLL3_Q,
276 	_PLL3_R,
277 	_PLL4_P,
278 	_PLL4_Q,
279 	_PLL4_R,
280 	_ACLK,
281 	_PCLK1,
282 	_PCLK2,
283 	_PCLK3,
284 	_PCLK4,
285 	_PCLK5,
286 	_HCLK6,
287 	_HCLK2,
288 	_CK_PER,
289 	_CK_MPU,
290 	_CK_MCU,
291 	_DSI_PHY,
292 	_USB_PHY_48,
293 	_PARENT_NB,
294 	_UNKNOWN_ID = 0xff,
295 };
296 
297 enum stm32mp1_parent_sel {
298 	_I2C12_SEL,
299 	_I2C35_SEL,
300 	_I2C46_SEL,
301 	_UART6_SEL,
302 	_UART24_SEL,
303 	_UART35_SEL,
304 	_UART78_SEL,
305 	_SDMMC12_SEL,
306 	_SDMMC3_SEL,
307 	_ETH_SEL,
308 	_QSPI_SEL,
309 	_FMC_SEL,
310 	_USBPHY_SEL,
311 	_USBO_SEL,
312 	_STGEN_SEL,
313 	_DSI_SEL,
314 	_ADC12_SEL,
315 	_SPI1_SEL,
316 	_SPI45_SEL,
317 	_RTC_SEL,
318 	_PARENT_SEL_NB,
319 	_UNKNOWN_SEL = 0xff,
320 };
321 
322 enum stm32mp1_pll_id {
323 	_PLL1,
324 	_PLL2,
325 	_PLL3,
326 	_PLL4,
327 	_PLL_NB
328 };
329 
330 enum stm32mp1_div_id {
331 	_DIV_P,
332 	_DIV_Q,
333 	_DIV_R,
334 	_DIV_NB,
335 };
336 
337 enum stm32mp1_clksrc_id {
338 	CLKSRC_MPU,
339 	CLKSRC_AXI,
340 	CLKSRC_MCU,
341 	CLKSRC_PLL12,
342 	CLKSRC_PLL3,
343 	CLKSRC_PLL4,
344 	CLKSRC_RTC,
345 	CLKSRC_MCO1,
346 	CLKSRC_MCO2,
347 	CLKSRC_NB
348 };
349 
350 enum stm32mp1_clkdiv_id {
351 	CLKDIV_MPU,
352 	CLKDIV_AXI,
353 	CLKDIV_MCU,
354 	CLKDIV_APB1,
355 	CLKDIV_APB2,
356 	CLKDIV_APB3,
357 	CLKDIV_APB4,
358 	CLKDIV_APB5,
359 	CLKDIV_RTC,
360 	CLKDIV_MCO1,
361 	CLKDIV_MCO2,
362 	CLKDIV_NB
363 };
364 
365 enum stm32mp1_pllcfg {
366 	PLLCFG_M,
367 	PLLCFG_N,
368 	PLLCFG_P,
369 	PLLCFG_Q,
370 	PLLCFG_R,
371 	PLLCFG_O,
372 	PLLCFG_NB
373 };
374 
375 enum stm32mp1_pllcsg {
376 	PLLCSG_MOD_PER,
377 	PLLCSG_INC_STEP,
378 	PLLCSG_SSCG_MODE,
379 	PLLCSG_NB
380 };
381 
382 enum stm32mp1_plltype {
383 	PLL_800,
384 	PLL_1600,
385 	PLL_TYPE_NB
386 };
387 
388 struct stm32mp1_pll {
389 	u8 refclk_min;
390 	u8 refclk_max;
391 	u8 divn_max;
392 };
393 
394 struct stm32mp1_clk_gate {
395 	u16 offset;
396 	u8 bit;
397 	u8 index;
398 	u8 set_clr;
399 	u8 sel;
400 	u8 fixed;
401 };
402 
403 struct stm32mp1_clk_sel {
404 	u16 offset;
405 	u8 src;
406 	u8 msk;
407 	u8 nb_parent;
408 	const u8 *parent;
409 };
410 
411 #define REFCLK_SIZE 4
412 struct stm32mp1_clk_pll {
413 	enum stm32mp1_plltype plltype;
414 	u16 rckxselr;
415 	u16 pllxcfgr1;
416 	u16 pllxcfgr2;
417 	u16 pllxfracr;
418 	u16 pllxcr;
419 	u16 pllxcsgr;
420 	u8 refclk[REFCLK_SIZE];
421 };
422 
423 struct stm32mp1_clk_data {
424 	const struct stm32mp1_clk_gate *gate;
425 	const struct stm32mp1_clk_sel *sel;
426 	const struct stm32mp1_clk_pll *pll;
427 	const int nb_gate;
428 };
429 
430 struct stm32mp1_clk_priv {
431 	fdt_addr_t base;
432 	const struct stm32mp1_clk_data *data;
433 	struct clk osc_clk[NB_OSC];
434 };
435 
436 #define STM32MP1_CLK(off, b, idx, s)		\
437 	{					\
438 		.offset = (off),		\
439 		.bit = (b),			\
440 		.index = (idx),			\
441 		.set_clr = 0,			\
442 		.sel = (s),			\
443 		.fixed = _UNKNOWN_ID,		\
444 	}
445 
446 #define STM32MP1_CLK_F(off, b, idx, f)		\
447 	{					\
448 		.offset = (off),		\
449 		.bit = (b),			\
450 		.index = (idx),			\
451 		.set_clr = 0,			\
452 		.sel = _UNKNOWN_SEL,		\
453 		.fixed = (f),			\
454 	}
455 
456 #define STM32MP1_CLK_SET_CLR(off, b, idx, s)	\
457 	{					\
458 		.offset = (off),		\
459 		.bit = (b),			\
460 		.index = (idx),			\
461 		.set_clr = 1,			\
462 		.sel = (s),			\
463 		.fixed = _UNKNOWN_ID,		\
464 	}
465 
466 #define STM32MP1_CLK_SET_CLR_F(off, b, idx, f)	\
467 	{					\
468 		.offset = (off),		\
469 		.bit = (b),			\
470 		.index = (idx),			\
471 		.set_clr = 1,			\
472 		.sel = _UNKNOWN_SEL,		\
473 		.fixed = (f),			\
474 	}
475 
476 #define STM32MP1_CLK_PARENT(idx, off, s, m, p)   \
477 	[(idx)] = {				\
478 		.offset = (off),		\
479 		.src = (s),			\
480 		.msk = (m),			\
481 		.parent = (p),			\
482 		.nb_parent = ARRAY_SIZE((p))	\
483 	}
484 
485 #define STM32MP1_CLK_PLL(idx, type, off1, off2, off3, off4, off5, off6,\
486 			p1, p2, p3, p4) \
487 	[(idx)] = {				\
488 		.plltype = (type),			\
489 		.rckxselr = (off1),		\
490 		.pllxcfgr1 = (off2),		\
491 		.pllxcfgr2 = (off3),		\
492 		.pllxfracr = (off4),		\
493 		.pllxcr = (off5),		\
494 		.pllxcsgr = (off6),		\
495 		.refclk[0] = (p1),		\
496 		.refclk[1] = (p2),		\
497 		.refclk[2] = (p3),		\
498 		.refclk[3] = (p4),		\
499 	}
500 
501 static const u8 stm32mp1_clks[][2] = {
502 	{CK_PER, _CK_PER},
503 	{CK_MPU, _CK_MPU},
504 	{CK_AXI, _ACLK},
505 	{CK_MCU, _CK_MCU},
506 	{CK_HSE, _HSE},
507 	{CK_CSI, _CSI},
508 	{CK_LSI, _LSI},
509 	{CK_LSE, _LSE},
510 	{CK_HSI, _HSI},
511 	{CK_HSE_DIV2, _HSE_KER_DIV2},
512 };
513 
514 static const struct stm32mp1_clk_gate stm32mp1_clk_gate[] = {
515 	STM32MP1_CLK(RCC_DDRITFCR, 0, DDRC1, _UNKNOWN_SEL),
516 	STM32MP1_CLK(RCC_DDRITFCR, 1, DDRC1LP, _UNKNOWN_SEL),
517 	STM32MP1_CLK(RCC_DDRITFCR, 2, DDRC2, _UNKNOWN_SEL),
518 	STM32MP1_CLK(RCC_DDRITFCR, 3, DDRC2LP, _UNKNOWN_SEL),
519 	STM32MP1_CLK_F(RCC_DDRITFCR, 4, DDRPHYC, _PLL2_R),
520 	STM32MP1_CLK(RCC_DDRITFCR, 5, DDRPHYCLP, _UNKNOWN_SEL),
521 	STM32MP1_CLK(RCC_DDRITFCR, 6, DDRCAPB, _UNKNOWN_SEL),
522 	STM32MP1_CLK(RCC_DDRITFCR, 7, DDRCAPBLP, _UNKNOWN_SEL),
523 	STM32MP1_CLK(RCC_DDRITFCR, 8, AXIDCG, _UNKNOWN_SEL),
524 	STM32MP1_CLK(RCC_DDRITFCR, 9, DDRPHYCAPB, _UNKNOWN_SEL),
525 	STM32MP1_CLK(RCC_DDRITFCR, 10, DDRPHYCAPBLP, _UNKNOWN_SEL),
526 
527 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 14, USART2_K, _UART24_SEL),
528 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 15, USART3_K, _UART35_SEL),
529 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 16, UART4_K, _UART24_SEL),
530 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 17, UART5_K, _UART35_SEL),
531 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 18, UART7_K, _UART78_SEL),
532 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 19, UART8_K, _UART78_SEL),
533 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 21, I2C1_K, _I2C12_SEL),
534 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 22, I2C2_K, _I2C12_SEL),
535 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 23, I2C3_K, _I2C35_SEL),
536 	STM32MP1_CLK_SET_CLR(RCC_MP_APB1ENSETR, 24, I2C5_K, _I2C35_SEL),
537 
538 	STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 8, SPI1_K, _SPI1_SEL),
539 	STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 10, SPI5_K, _SPI45_SEL),
540 	STM32MP1_CLK_SET_CLR(RCC_MP_APB2ENSETR, 13, USART6_K, _UART6_SEL),
541 
542 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB3ENSETR, 13, VREF, _PCLK3),
543 
544 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 0, LTDC_PX, _PLL4_Q),
545 	STM32MP1_CLK_SET_CLR_F(RCC_MP_APB4ENSETR, 4, DSI_PX, _PLL4_Q),
546 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 4, DSI_K, _DSI_SEL),
547 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 8, DDRPERFM, _UNKNOWN_SEL),
548 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 15, IWDG2, _UNKNOWN_SEL),
549 	STM32MP1_CLK_SET_CLR(RCC_MP_APB4ENSETR, 16, USBPHY_K, _USBPHY_SEL),
550 
551 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 2, I2C4_K, _I2C46_SEL),
552 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 3, I2C6_K, _I2C46_SEL),
553 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 8, RTCAPB, _PCLK5),
554 	STM32MP1_CLK_SET_CLR(RCC_MP_APB5ENSETR, 20, STGEN_K, _STGEN_SEL),
555 
556 	STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB2ENSETR, 5, ADC12, _HCLK2),
557 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 5, ADC12_K, _ADC12_SEL),
558 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 8, USBO_K, _USBO_SEL),
559 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB2ENSETR, 16, SDMMC3_K, _SDMMC3_SEL),
560 
561 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 11, HSEM, _UNKNOWN_SEL),
562 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB3ENSETR, 12, IPCC, _UNKNOWN_SEL),
563 
564 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 0, GPIOA, _UNKNOWN_SEL),
565 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 1, GPIOB, _UNKNOWN_SEL),
566 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 2, GPIOC, _UNKNOWN_SEL),
567 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 3, GPIOD, _UNKNOWN_SEL),
568 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 4, GPIOE, _UNKNOWN_SEL),
569 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 5, GPIOF, _UNKNOWN_SEL),
570 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 6, GPIOG, _UNKNOWN_SEL),
571 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 7, GPIOH, _UNKNOWN_SEL),
572 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 8, GPIOI, _UNKNOWN_SEL),
573 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 9, GPIOJ, _UNKNOWN_SEL),
574 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB4ENSETR, 10, GPIOK, _UNKNOWN_SEL),
575 
576 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 0, GPIOZ, _UNKNOWN_SEL),
577 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB5ENSETR, 6, RNG1_K, _UNKNOWN_SEL),
578 
579 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 7, ETHCK_K, _ETH_SEL),
580 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 8, ETHTX, _UNKNOWN_SEL),
581 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 9, ETHRX, _UNKNOWN_SEL),
582 	STM32MP1_CLK_SET_CLR_F(RCC_MP_AHB6ENSETR, 10, ETHMAC, _ACLK),
583 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 12, FMC_K, _FMC_SEL),
584 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 14, QSPI_K, _QSPI_SEL),
585 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 16, SDMMC1_K, _SDMMC12_SEL),
586 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 17, SDMMC2_K, _SDMMC12_SEL),
587 	STM32MP1_CLK_SET_CLR(RCC_MP_AHB6ENSETR, 24, USBH, _UNKNOWN_SEL),
588 
589 	STM32MP1_CLK(RCC_DBGCFGR, 8, CK_DBG, _UNKNOWN_SEL),
590 
591 	STM32MP1_CLK(RCC_BDCR, 20, RTC, _RTC_SEL),
592 };
593 
594 static const u8 i2c12_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
595 static const u8 i2c35_parents[] = {_PCLK1, _PLL4_R, _HSI_KER, _CSI_KER};
596 static const u8 i2c46_parents[] = {_PCLK5, _PLL3_Q, _HSI_KER, _CSI_KER};
597 static const u8 uart6_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
598 					_HSE_KER};
599 static const u8 uart24_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
600 					 _HSE_KER};
601 static const u8 uart35_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
602 					 _HSE_KER};
603 static const u8 uart78_parents[] = {_PCLK1, _PLL4_Q, _HSI_KER, _CSI_KER,
604 					 _HSE_KER};
605 static const u8 sdmmc12_parents[] = {_HCLK6, _PLL3_R, _PLL4_P, _HSI_KER};
606 static const u8 sdmmc3_parents[] = {_HCLK2, _PLL3_R, _PLL4_P, _HSI_KER};
607 static const u8 eth_parents[] = {_PLL4_P, _PLL3_Q};
608 static const u8 qspi_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
609 static const u8 fmc_parents[] = {_ACLK, _PLL3_R, _PLL4_P, _CK_PER};
610 static const u8 usbphy_parents[] = {_HSE_KER, _PLL4_R, _HSE_KER_DIV2};
611 static const u8 usbo_parents[] = {_PLL4_R, _USB_PHY_48};
612 static const u8 stgen_parents[] = {_HSI_KER, _HSE_KER};
613 static const u8 dsi_parents[] = {_DSI_PHY, _PLL4_P};
614 static const u8 adc_parents[] = {_PLL4_R, _CK_PER, _PLL3_Q};
615 static const u8 spi_parents[] = {_PLL4_P, _PLL3_Q, _I2S_CKIN, _CK_PER,
616 				 _PLL3_R};
617 static const u8 spi45_parents[] = {_PCLK2, _PLL4_Q, _HSI_KER, _CSI_KER,
618 				   _HSE_KER};
619 static const u8 rtc_parents[] = {_UNKNOWN_ID, _LSE, _LSI, _HSE};
620 
621 static const struct stm32mp1_clk_sel stm32mp1_clk_sel[_PARENT_SEL_NB] = {
622 	STM32MP1_CLK_PARENT(_I2C12_SEL, RCC_I2C12CKSELR, 0, 0x7, i2c12_parents),
623 	STM32MP1_CLK_PARENT(_I2C35_SEL, RCC_I2C35CKSELR, 0, 0x7, i2c35_parents),
624 	STM32MP1_CLK_PARENT(_I2C46_SEL, RCC_I2C46CKSELR, 0, 0x7, i2c46_parents),
625 	STM32MP1_CLK_PARENT(_UART6_SEL, RCC_UART6CKSELR, 0, 0x7, uart6_parents),
626 	STM32MP1_CLK_PARENT(_UART24_SEL, RCC_UART24CKSELR, 0, 0x7,
627 			    uart24_parents),
628 	STM32MP1_CLK_PARENT(_UART35_SEL, RCC_UART35CKSELR, 0, 0x7,
629 			    uart35_parents),
630 	STM32MP1_CLK_PARENT(_UART78_SEL, RCC_UART78CKSELR, 0, 0x7,
631 			    uart78_parents),
632 	STM32MP1_CLK_PARENT(_SDMMC12_SEL, RCC_SDMMC12CKSELR, 0, 0x7,
633 			    sdmmc12_parents),
634 	STM32MP1_CLK_PARENT(_SDMMC3_SEL, RCC_SDMMC3CKSELR, 0, 0x7,
635 			    sdmmc3_parents),
636 	STM32MP1_CLK_PARENT(_ETH_SEL, RCC_ETHCKSELR, 0, 0x3, eth_parents),
637 	STM32MP1_CLK_PARENT(_QSPI_SEL, RCC_QSPICKSELR, 0, 0x3, qspi_parents),
638 	STM32MP1_CLK_PARENT(_FMC_SEL, RCC_FMCCKSELR, 0, 0x3, fmc_parents),
639 	STM32MP1_CLK_PARENT(_USBPHY_SEL, RCC_USBCKSELR, 0, 0x3, usbphy_parents),
640 	STM32MP1_CLK_PARENT(_USBO_SEL, RCC_USBCKSELR, 4, 0x1, usbo_parents),
641 	STM32MP1_CLK_PARENT(_STGEN_SEL, RCC_STGENCKSELR, 0, 0x3, stgen_parents),
642 	STM32MP1_CLK_PARENT(_DSI_SEL, RCC_DSICKSELR, 0, 0x1, dsi_parents),
643 	STM32MP1_CLK_PARENT(_ADC12_SEL, RCC_ADCCKSELR, 0, 0x3, adc_parents),
644 	STM32MP1_CLK_PARENT(_SPI1_SEL, RCC_SPI2S1CKSELR, 0, 0x7, spi_parents),
645 	STM32MP1_CLK_PARENT(_SPI45_SEL, RCC_SPI45CKSELR, 0, 0x7, spi45_parents),
646 	STM32MP1_CLK_PARENT(_RTC_SEL, RCC_BDCR, RCC_BDCR_RTCSRC_SHIFT,
647 			    (RCC_BDCR_RTCSRC_MASK >> RCC_BDCR_RTCSRC_SHIFT),
648 			    rtc_parents),
649 };
650 
651 #ifdef STM32MP1_CLOCK_TREE_INIT
652 
653 /* define characteristic of PLL according type */
654 #define DIVM_MIN	0
655 #define DIVM_MAX	63
656 #define DIVN_MIN	24
657 #define DIVP_MIN	0
658 #define DIVP_MAX	127
659 #define FRAC_MAX	8192
660 
661 #define PLL1600_VCO_MIN	800000000
662 #define PLL1600_VCO_MAX	1600000000
663 
664 static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = {
665 	[PLL_800] = {
666 		.refclk_min = 4,
667 		.refclk_max = 16,
668 		.divn_max = 99,
669 		},
670 	[PLL_1600] = {
671 		.refclk_min = 8,
672 		.refclk_max = 16,
673 		.divn_max = 199,
674 		},
675 };
676 #endif /* STM32MP1_CLOCK_TREE_INIT */
677 
678 static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = {
679 	STM32MP1_CLK_PLL(_PLL1, PLL_1600,
680 			 RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2,
681 			 RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR,
682 			 _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
683 	STM32MP1_CLK_PLL(_PLL2, PLL_1600,
684 			 RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2,
685 			 RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR,
686 			 _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID),
687 	STM32MP1_CLK_PLL(_PLL3, PLL_800,
688 			 RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2,
689 			 RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR,
690 			 _HSI, _HSE, _CSI, _UNKNOWN_ID),
691 	STM32MP1_CLK_PLL(_PLL4, PLL_800,
692 			 RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2,
693 			 RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR,
694 			 _HSI, _HSE, _CSI, _I2S_CKIN),
695 };
696 
697 /* Prescaler table lookups for clock computation */
698 /* div = /1 /2 /4 /8 / 16 /64 /128 /512 */
699 static const u8 stm32mp1_mcu_div[16] = {
700 	0, 1, 2, 3, 4, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9
701 };
702 
703 /* div = /1 /2 /4 /8 /16 : same divider for pmu and apbx*/
704 #define stm32mp1_mpu_div stm32mp1_mpu_apbx_div
705 #define stm32mp1_apbx_div stm32mp1_mpu_apbx_div
706 static const u8 stm32mp1_mpu_apbx_div[8] = {
707 	0, 1, 2, 3, 4, 4, 4, 4
708 };
709 
710 /* div = /1 /2 /3 /4 */
711 static const u8 stm32mp1_axi_div[8] = {
712 	1, 2, 3, 4, 4, 4, 4, 4
713 };
714 
715 static const __maybe_unused
716 char * const stm32mp1_clk_parent_name[_PARENT_NB] = {
717 	[_HSI] = "HSI",
718 	[_HSE] = "HSE",
719 	[_CSI] = "CSI",
720 	[_LSI] = "LSI",
721 	[_LSE] = "LSE",
722 	[_I2S_CKIN] = "I2S_CKIN",
723 	[_HSI_KER] = "HSI_KER",
724 	[_HSE_KER] = "HSE_KER",
725 	[_HSE_KER_DIV2] = "HSE_KER_DIV2",
726 	[_CSI_KER] = "CSI_KER",
727 	[_PLL1_P] = "PLL1_P",
728 	[_PLL1_Q] = "PLL1_Q",
729 	[_PLL1_R] = "PLL1_R",
730 	[_PLL2_P] = "PLL2_P",
731 	[_PLL2_Q] = "PLL2_Q",
732 	[_PLL2_R] = "PLL2_R",
733 	[_PLL3_P] = "PLL3_P",
734 	[_PLL3_Q] = "PLL3_Q",
735 	[_PLL3_R] = "PLL3_R",
736 	[_PLL4_P] = "PLL4_P",
737 	[_PLL4_Q] = "PLL4_Q",
738 	[_PLL4_R] = "PLL4_R",
739 	[_ACLK] = "ACLK",
740 	[_PCLK1] = "PCLK1",
741 	[_PCLK2] = "PCLK2",
742 	[_PCLK3] = "PCLK3",
743 	[_PCLK4] = "PCLK4",
744 	[_PCLK5] = "PCLK5",
745 	[_HCLK6] = "KCLK6",
746 	[_HCLK2] = "HCLK2",
747 	[_CK_PER] = "CK_PER",
748 	[_CK_MPU] = "CK_MPU",
749 	[_CK_MCU] = "CK_MCU",
750 	[_USB_PHY_48] = "USB_PHY_48",
751 	[_DSI_PHY] = "DSI_PHY_PLL",
752 };
753 
754 static const __maybe_unused
755 char * const stm32mp1_clk_parent_sel_name[_PARENT_SEL_NB] = {
756 	[_I2C12_SEL] = "I2C12",
757 	[_I2C35_SEL] = "I2C35",
758 	[_I2C46_SEL] = "I2C46",
759 	[_UART6_SEL] = "UART6",
760 	[_UART24_SEL] = "UART24",
761 	[_UART35_SEL] = "UART35",
762 	[_UART78_SEL] = "UART78",
763 	[_SDMMC12_SEL] = "SDMMC12",
764 	[_SDMMC3_SEL] = "SDMMC3",
765 	[_ETH_SEL] = "ETH",
766 	[_QSPI_SEL] = "QSPI",
767 	[_FMC_SEL] = "FMC",
768 	[_USBPHY_SEL] = "USBPHY",
769 	[_USBO_SEL] = "USBO",
770 	[_STGEN_SEL] = "STGEN",
771 	[_DSI_SEL] = "DSI",
772 	[_ADC12_SEL] = "ADC12",
773 	[_SPI1_SEL] = "SPI1",
774 	[_SPI45_SEL] = "SPI45",
775 	[_RTC_SEL] = "RTC",
776 };
777 
778 static const struct stm32mp1_clk_data stm32mp1_data = {
779 	.gate = stm32mp1_clk_gate,
780 	.sel = stm32mp1_clk_sel,
781 	.pll = stm32mp1_clk_pll,
782 	.nb_gate = ARRAY_SIZE(stm32mp1_clk_gate),
783 };
784 
stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv * priv,int idx)785 static ulong stm32mp1_clk_get_fixed(struct stm32mp1_clk_priv *priv, int idx)
786 {
787 	if (idx >= NB_OSC) {
788 		log_debug("clk id %d not found\n", idx);
789 		return 0;
790 	}
791 
792 	return clk_get_rate(&priv->osc_clk[idx]);
793 }
794 
stm32mp1_clk_get_id(struct stm32mp1_clk_priv * priv,unsigned long id)795 static int stm32mp1_clk_get_id(struct stm32mp1_clk_priv *priv, unsigned long id)
796 {
797 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
798 	int i, nb_clks = priv->data->nb_gate;
799 
800 	for (i = 0; i < nb_clks; i++) {
801 		if (gate[i].index == id)
802 			break;
803 	}
804 
805 	if (i == nb_clks) {
806 		log_err("clk id %d not found\n", (u32)id);
807 		return -EINVAL;
808 	}
809 
810 	return i;
811 }
812 
stm32mp1_clk_get_sel(struct stm32mp1_clk_priv * priv,int i)813 static int stm32mp1_clk_get_sel(struct stm32mp1_clk_priv *priv,
814 				int i)
815 {
816 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
817 
818 	if (gate[i].sel > _PARENT_SEL_NB) {
819 		log_err("parents for clk id %d not found\n", i);
820 		return -EINVAL;
821 	}
822 
823 	return gate[i].sel;
824 }
825 
stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv * priv,int i)826 static int stm32mp1_clk_get_fixed_parent(struct stm32mp1_clk_priv *priv,
827 					 int i)
828 {
829 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
830 
831 	if (gate[i].fixed == _UNKNOWN_ID)
832 		return -ENOENT;
833 
834 	return gate[i].fixed;
835 }
836 
stm32mp1_clk_get_parent(struct stm32mp1_clk_priv * priv,unsigned long id)837 static int stm32mp1_clk_get_parent(struct stm32mp1_clk_priv *priv,
838 				   unsigned long id)
839 {
840 	const struct stm32mp1_clk_sel *sel = priv->data->sel;
841 	int i;
842 	int s, p;
843 	unsigned int idx;
844 
845 	for (idx = 0; idx < ARRAY_SIZE(stm32mp1_clks); idx++)
846 		if (stm32mp1_clks[idx][0] == id)
847 			return stm32mp1_clks[idx][1];
848 
849 	i = stm32mp1_clk_get_id(priv, id);
850 	if (i < 0)
851 		return i;
852 
853 	p = stm32mp1_clk_get_fixed_parent(priv, i);
854 	if (p >= 0 && p < _PARENT_NB)
855 		return p;
856 
857 	s = stm32mp1_clk_get_sel(priv, i);
858 	if (s < 0)
859 		return s;
860 
861 	p = (readl(priv->base + sel[s].offset) >> sel[s].src) & sel[s].msk;
862 
863 	if (p < sel[s].nb_parent) {
864 		log_content("%s clock is the parent %s of clk id %d\n",
865 			    stm32mp1_clk_parent_name[sel[s].parent[p]],
866 			    stm32mp1_clk_parent_sel_name[s],
867 			    (u32)id);
868 		return sel[s].parent[p];
869 	}
870 
871 	log_err("no parents defined for clk id %d\n", (u32)id);
872 
873 	return -EINVAL;
874 }
875 
pll_get_fref_ck(struct stm32mp1_clk_priv * priv,int pll_id)876 static ulong  pll_get_fref_ck(struct stm32mp1_clk_priv *priv,
877 			      int pll_id)
878 {
879 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
880 	u32 selr;
881 	int src;
882 	ulong refclk;
883 
884 	/* Get current refclk */
885 	selr = readl(priv->base + pll[pll_id].rckxselr);
886 	src = selr & RCC_SELR_SRC_MASK;
887 
888 	refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]);
889 
890 	return refclk;
891 }
892 
893 /*
894  * pll_get_fvco() : return the VCO or (VCO / 2) frequency for the requested PLL
895  * - PLL1 & PLL2 => return VCO / 2 with Fpll_y_ck = FVCO / 2 * (DIVy + 1)
896  * - PLL3 & PLL4 => return VCO     with Fpll_y_ck = FVCO / (DIVy + 1)
897  * => in all the case Fpll_y_ck = pll_get_fvco() / (DIVy + 1)
898  */
pll_get_fvco(struct stm32mp1_clk_priv * priv,int pll_id)899 static ulong pll_get_fvco(struct stm32mp1_clk_priv *priv,
900 			  int pll_id)
901 {
902 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
903 	int divm, divn;
904 	ulong refclk, fvco;
905 	u32 cfgr1, fracr;
906 
907 	cfgr1 = readl(priv->base + pll[pll_id].pllxcfgr1);
908 	fracr = readl(priv->base + pll[pll_id].pllxfracr);
909 
910 	divm = (cfgr1 & (RCC_PLLNCFGR1_DIVM_MASK)) >> RCC_PLLNCFGR1_DIVM_SHIFT;
911 	divn = cfgr1 & RCC_PLLNCFGR1_DIVN_MASK;
912 
913 	refclk = pll_get_fref_ck(priv, pll_id);
914 
915 	/* with FRACV :
916 	 *   Fvco = Fck_ref * ((DIVN + 1) + FRACV / 2^13) / (DIVM + 1)
917 	 * without FRACV
918 	 *   Fvco = Fck_ref * ((DIVN + 1) / (DIVM + 1)
919 	 */
920 	if (fracr & RCC_PLLNFRACR_FRACLE) {
921 		u32 fracv = (fracr & RCC_PLLNFRACR_FRACV_MASK)
922 			    >> RCC_PLLNFRACR_FRACV_SHIFT;
923 		fvco = (ulong)lldiv((unsigned long long)refclk *
924 				     (((divn + 1) << 13) + fracv),
925 				     ((unsigned long long)(divm + 1)) << 13);
926 	} else {
927 		fvco = (ulong)(refclk * (divn + 1) / (divm + 1));
928 	}
929 
930 	return fvco;
931 }
932 
stm32mp1_read_pll_freq(struct stm32mp1_clk_priv * priv,int pll_id,int div_id)933 static ulong stm32mp1_read_pll_freq(struct stm32mp1_clk_priv *priv,
934 				    int pll_id, int div_id)
935 {
936 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
937 	int divy;
938 	ulong dfout;
939 	u32 cfgr2;
940 
941 	if (div_id >= _DIV_NB)
942 		return 0;
943 
944 	cfgr2 = readl(priv->base + pll[pll_id].pllxcfgr2);
945 	divy = (cfgr2 >> RCC_PLLNCFGR2_SHIFT(div_id)) & RCC_PLLNCFGR2_DIVX_MASK;
946 
947 	dfout = pll_get_fvco(priv, pll_id) / (divy + 1);
948 
949 	return dfout;
950 }
951 
stm32mp1_clk_get(struct stm32mp1_clk_priv * priv,int p)952 static ulong stm32mp1_clk_get(struct stm32mp1_clk_priv *priv, int p)
953 {
954 	u32 reg;
955 	ulong clock = 0;
956 
957 	switch (p) {
958 	case _CK_MPU:
959 	/* MPU sub system */
960 		reg = readl(priv->base + RCC_MPCKSELR);
961 		switch (reg & RCC_SELR_SRC_MASK) {
962 		case RCC_MPCKSELR_HSI:
963 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
964 			break;
965 		case RCC_MPCKSELR_HSE:
966 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
967 			break;
968 		case RCC_MPCKSELR_PLL:
969 		case RCC_MPCKSELR_PLL_MPUDIV:
970 			clock = stm32mp1_read_pll_freq(priv, _PLL1, _DIV_P);
971 			if ((reg & RCC_SELR_SRC_MASK) ==
972 			    RCC_MPCKSELR_PLL_MPUDIV) {
973 				reg = readl(priv->base + RCC_MPCKDIVR);
974 				clock >>= stm32mp1_mpu_div[reg &
975 					RCC_MPUDIV_MASK];
976 			}
977 			break;
978 		}
979 		break;
980 	/* AXI sub system */
981 	case _ACLK:
982 	case _HCLK2:
983 	case _HCLK6:
984 	case _PCLK4:
985 	case _PCLK5:
986 		reg = readl(priv->base + RCC_ASSCKSELR);
987 		switch (reg & RCC_SELR_SRC_MASK) {
988 		case RCC_ASSCKSELR_HSI:
989 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
990 			break;
991 		case RCC_ASSCKSELR_HSE:
992 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
993 			break;
994 		case RCC_ASSCKSELR_PLL:
995 			clock = stm32mp1_read_pll_freq(priv, _PLL2, _DIV_P);
996 			break;
997 		}
998 
999 		/* System clock divider */
1000 		reg = readl(priv->base + RCC_AXIDIVR);
1001 		clock /= stm32mp1_axi_div[reg & RCC_AXIDIV_MASK];
1002 
1003 		switch (p) {
1004 		case _PCLK4:
1005 			reg = readl(priv->base + RCC_APB4DIVR);
1006 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1007 			break;
1008 		case _PCLK5:
1009 			reg = readl(priv->base + RCC_APB5DIVR);
1010 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1011 			break;
1012 		default:
1013 			break;
1014 		}
1015 		break;
1016 	/* MCU sub system */
1017 	case _CK_MCU:
1018 	case _PCLK1:
1019 	case _PCLK2:
1020 	case _PCLK3:
1021 		reg = readl(priv->base + RCC_MSSCKSELR);
1022 		switch (reg & RCC_SELR_SRC_MASK) {
1023 		case RCC_MSSCKSELR_HSI:
1024 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
1025 			break;
1026 		case RCC_MSSCKSELR_HSE:
1027 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
1028 			break;
1029 		case RCC_MSSCKSELR_CSI:
1030 			clock = stm32mp1_clk_get_fixed(priv, _CSI);
1031 			break;
1032 		case RCC_MSSCKSELR_PLL:
1033 			clock = stm32mp1_read_pll_freq(priv, _PLL3, _DIV_P);
1034 			break;
1035 		}
1036 
1037 		/* MCU clock divider */
1038 		reg = readl(priv->base + RCC_MCUDIVR);
1039 		clock >>= stm32mp1_mcu_div[reg & RCC_MCUDIV_MASK];
1040 
1041 		switch (p) {
1042 		case _PCLK1:
1043 			reg = readl(priv->base + RCC_APB1DIVR);
1044 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1045 			break;
1046 		case _PCLK2:
1047 			reg = readl(priv->base + RCC_APB2DIVR);
1048 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1049 			break;
1050 		case _PCLK3:
1051 			reg = readl(priv->base + RCC_APB3DIVR);
1052 			clock >>= stm32mp1_apbx_div[reg & RCC_APBXDIV_MASK];
1053 			break;
1054 		case _CK_MCU:
1055 		default:
1056 			break;
1057 		}
1058 		break;
1059 	case _CK_PER:
1060 		reg = readl(priv->base + RCC_CPERCKSELR);
1061 		switch (reg & RCC_SELR_SRC_MASK) {
1062 		case RCC_CPERCKSELR_HSI:
1063 			clock = stm32mp1_clk_get_fixed(priv, _HSI);
1064 			break;
1065 		case RCC_CPERCKSELR_HSE:
1066 			clock = stm32mp1_clk_get_fixed(priv, _HSE);
1067 			break;
1068 		case RCC_CPERCKSELR_CSI:
1069 			clock = stm32mp1_clk_get_fixed(priv, _CSI);
1070 			break;
1071 		}
1072 		break;
1073 	case _HSI:
1074 	case _HSI_KER:
1075 		clock = stm32mp1_clk_get_fixed(priv, _HSI);
1076 		break;
1077 	case _CSI:
1078 	case _CSI_KER:
1079 		clock = stm32mp1_clk_get_fixed(priv, _CSI);
1080 		break;
1081 	case _HSE:
1082 	case _HSE_KER:
1083 	case _HSE_KER_DIV2:
1084 		clock = stm32mp1_clk_get_fixed(priv, _HSE);
1085 		if (p == _HSE_KER_DIV2)
1086 			clock >>= 1;
1087 		break;
1088 	case _LSI:
1089 		clock = stm32mp1_clk_get_fixed(priv, _LSI);
1090 		break;
1091 	case _LSE:
1092 		clock = stm32mp1_clk_get_fixed(priv, _LSE);
1093 		break;
1094 	/* PLL */
1095 	case _PLL1_P:
1096 	case _PLL1_Q:
1097 	case _PLL1_R:
1098 		clock = stm32mp1_read_pll_freq(priv, _PLL1, p - _PLL1_P);
1099 		break;
1100 	case _PLL2_P:
1101 	case _PLL2_Q:
1102 	case _PLL2_R:
1103 		clock = stm32mp1_read_pll_freq(priv, _PLL2, p - _PLL2_P);
1104 		break;
1105 	case _PLL3_P:
1106 	case _PLL3_Q:
1107 	case _PLL3_R:
1108 		clock = stm32mp1_read_pll_freq(priv, _PLL3, p - _PLL3_P);
1109 		break;
1110 	case _PLL4_P:
1111 	case _PLL4_Q:
1112 	case _PLL4_R:
1113 		clock = stm32mp1_read_pll_freq(priv, _PLL4, p - _PLL4_P);
1114 		break;
1115 	/* other */
1116 	case _USB_PHY_48:
1117 		clock = 48000000;
1118 		break;
1119 	case _DSI_PHY:
1120 	{
1121 		struct clk clk;
1122 		struct udevice *dev = NULL;
1123 
1124 		if (!uclass_get_device_by_name(UCLASS_CLK, "ck_dsi_phy",
1125 					       &dev)) {
1126 			if (clk_request(dev, &clk)) {
1127 				log_err("ck_dsi_phy request");
1128 			} else {
1129 				clk.id = 0;
1130 				clock = clk_get_rate(&clk);
1131 			}
1132 		}
1133 		break;
1134 	}
1135 	default:
1136 		break;
1137 	}
1138 
1139 	log_debug("id=%d clock = %lx : %ld kHz\n", p, clock, clock / 1000);
1140 
1141 	return clock;
1142 }
1143 
stm32mp1_clk_enable(struct clk * clk)1144 static int stm32mp1_clk_enable(struct clk *clk)
1145 {
1146 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1147 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
1148 	int i = stm32mp1_clk_get_id(priv, clk->id);
1149 
1150 	if (i < 0)
1151 		return i;
1152 
1153 	if (gate[i].set_clr)
1154 		writel(BIT(gate[i].bit), priv->base + gate[i].offset);
1155 	else
1156 		setbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1157 
1158 	dev_dbg(clk->dev, "%s: id clock %d has been enabled\n", __func__, (u32)clk->id);
1159 
1160 	return 0;
1161 }
1162 
stm32mp1_clk_disable(struct clk * clk)1163 static int stm32mp1_clk_disable(struct clk *clk)
1164 {
1165 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1166 	const struct stm32mp1_clk_gate *gate = priv->data->gate;
1167 	int i = stm32mp1_clk_get_id(priv, clk->id);
1168 
1169 	if (i < 0)
1170 		return i;
1171 
1172 	if (gate[i].set_clr)
1173 		writel(BIT(gate[i].bit),
1174 		       priv->base + gate[i].offset
1175 		       + RCC_MP_ENCLRR_OFFSET);
1176 	else
1177 		clrbits_le32(priv->base + gate[i].offset, BIT(gate[i].bit));
1178 
1179 	dev_dbg(clk->dev, "%s: id clock %d has been disabled\n", __func__, (u32)clk->id);
1180 
1181 	return 0;
1182 }
1183 
stm32mp1_clk_get_rate(struct clk * clk)1184 static ulong stm32mp1_clk_get_rate(struct clk *clk)
1185 {
1186 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
1187 	int p = stm32mp1_clk_get_parent(priv, clk->id);
1188 	ulong rate;
1189 
1190 	if (p < 0)
1191 		return 0;
1192 
1193 	rate = stm32mp1_clk_get(priv, p);
1194 
1195 	dev_vdbg(clk->dev, "computed rate for id clock %d is %d (parent is %s)\n",
1196 		 (u32)clk->id, (u32)rate, stm32mp1_clk_parent_name[p]);
1197 
1198 	return rate;
1199 }
1200 
1201 #ifdef STM32MP1_CLOCK_TREE_INIT
1202 
stm32mp1_supports_opp(u32 opp_id,u32 cpu_type)1203 bool stm32mp1_supports_opp(u32 opp_id, u32 cpu_type)
1204 {
1205 	unsigned int id;
1206 
1207 	switch (opp_id) {
1208 	case 1:
1209 	case 2:
1210 		id = opp_id;
1211 		break;
1212 	default:
1213 		id = 1; /* default value */
1214 		break;
1215 	}
1216 
1217 	switch (cpu_type) {
1218 	case CPU_STM32MP157Fxx:
1219 	case CPU_STM32MP157Dxx:
1220 	case CPU_STM32MP153Fxx:
1221 	case CPU_STM32MP153Dxx:
1222 	case CPU_STM32MP151Fxx:
1223 	case CPU_STM32MP151Dxx:
1224 		return true;
1225 	default:
1226 		return id == 1;
1227 	}
1228 }
1229 
board_vddcore_init(u32 voltage_mv)1230 __weak void board_vddcore_init(u32 voltage_mv)
1231 {
1232 }
1233 
1234 /*
1235  * gets OPP parameters (frequency in KHz and voltage in mV) from
1236  * an OPP table subnode. Platform HW support capabilities are also checked.
1237  * Returns 0 on success and a negative FDT error code on failure.
1238  */
stm32mp1_get_opp(u32 cpu_type,ofnode subnode,u32 * freq_khz,u32 * voltage_mv)1239 static int stm32mp1_get_opp(u32 cpu_type, ofnode subnode,
1240 			    u32 *freq_khz, u32 *voltage_mv)
1241 {
1242 	u32 opp_hw;
1243 	u64 read_freq_64;
1244 	u32 read_voltage_32;
1245 
1246 	*freq_khz = 0;
1247 	*voltage_mv = 0;
1248 
1249 	opp_hw = ofnode_read_u32_default(subnode, "opp-supported-hw", 0);
1250 	if (opp_hw)
1251 		if (!stm32mp1_supports_opp(opp_hw, cpu_type))
1252 			return -FDT_ERR_BADVALUE;
1253 
1254 	read_freq_64 = ofnode_read_u64_default(subnode, "opp-hz", 0) /
1255 		       1000ULL;
1256 	read_voltage_32 = ofnode_read_u32_default(subnode, "opp-microvolt", 0) /
1257 			  1000U;
1258 
1259 	if (!read_voltage_32 || !read_freq_64)
1260 		return -FDT_ERR_NOTFOUND;
1261 
1262 	/* Frequency value expressed in KHz must fit on 32 bits */
1263 	if (read_freq_64 > U32_MAX)
1264 		return -FDT_ERR_BADVALUE;
1265 
1266 	/* Millivolt value must fit on 16 bits */
1267 	if (read_voltage_32 > U16_MAX)
1268 		return -FDT_ERR_BADVALUE;
1269 
1270 	*freq_khz = (u32)read_freq_64;
1271 	*voltage_mv = read_voltage_32;
1272 
1273 	return 0;
1274 }
1275 
1276 /*
1277  * parses OPP table in DT and finds the parameters for the
1278  * highest frequency supported by the HW platform.
1279  * Returns 0 on success and a negative FDT error code on failure.
1280  */
stm32mp1_get_max_opp_freq(struct stm32mp1_clk_priv * priv,u64 * freq_hz)1281 int stm32mp1_get_max_opp_freq(struct stm32mp1_clk_priv *priv, u64 *freq_hz)
1282 {
1283 	ofnode node, subnode;
1284 	int ret;
1285 	u32 freq = 0U, voltage = 0U;
1286 	u32 cpu_type = get_cpu_type();
1287 
1288 	node = ofnode_by_compatible(ofnode_null(), "operating-points-v2");
1289 	if (!ofnode_valid(node))
1290 		return -FDT_ERR_NOTFOUND;
1291 
1292 	ofnode_for_each_subnode(subnode, node) {
1293 		unsigned int read_freq;
1294 		unsigned int read_voltage;
1295 
1296 		ret = stm32mp1_get_opp(cpu_type, subnode,
1297 				       &read_freq, &read_voltage);
1298 		if (ret)
1299 			continue;
1300 
1301 		if (read_freq > freq) {
1302 			freq = read_freq;
1303 			voltage = read_voltage;
1304 		}
1305 	}
1306 
1307 	if (!freq || !voltage)
1308 		return -FDT_ERR_NOTFOUND;
1309 
1310 	*freq_hz = (u64)1000U * freq;
1311 	board_vddcore_init(voltage);
1312 
1313 	return 0;
1314 }
1315 
stm32mp1_pll1_opp(struct stm32mp1_clk_priv * priv,int clksrc,u32 * pllcfg,u32 * fracv)1316 static int stm32mp1_pll1_opp(struct stm32mp1_clk_priv *priv, int clksrc,
1317 			     u32 *pllcfg, u32 *fracv)
1318 {
1319 	u32 post_divm;
1320 	u32 input_freq;
1321 	u64 output_freq;
1322 	u64 freq;
1323 	u64 vco;
1324 	u32 divm, divn, divp, frac;
1325 	int i, ret;
1326 	u32 diff;
1327 	u32 best_diff = U32_MAX;
1328 
1329 	/* PLL1 is 1600 */
1330 	const u32 DIVN_MAX = stm32mp1_pll[PLL_1600].divn_max;
1331 	const u32 POST_DIVM_MIN = stm32mp1_pll[PLL_1600].refclk_min * 1000000U;
1332 	const u32 POST_DIVM_MAX = stm32mp1_pll[PLL_1600].refclk_max * 1000000U;
1333 
1334 	ret = stm32mp1_get_max_opp_freq(priv, &output_freq);
1335 	if (ret) {
1336 		log_debug("PLL1 OPP configuration not found (%d).\n", ret);
1337 		return ret;
1338 	}
1339 
1340 	switch (clksrc) {
1341 	case CLK_PLL12_HSI:
1342 		input_freq = stm32mp1_clk_get_fixed(priv, _HSI);
1343 		break;
1344 	case CLK_PLL12_HSE:
1345 		input_freq = stm32mp1_clk_get_fixed(priv, _HSE);
1346 		break;
1347 	default:
1348 		return -EINTR;
1349 	}
1350 
1351 	/* Following parameters have always the same value */
1352 	pllcfg[PLLCFG_Q] = 0;
1353 	pllcfg[PLLCFG_R] = 0;
1354 	pllcfg[PLLCFG_O] = PQR(1, 0, 0);
1355 
1356 	for (divm = DIVM_MAX; divm >= DIVM_MIN; divm--)	{
1357 		post_divm = (u32)(input_freq / (divm + 1));
1358 		if (post_divm < POST_DIVM_MIN || post_divm > POST_DIVM_MAX)
1359 			continue;
1360 
1361 		for (divp = DIVP_MIN; divp <= DIVP_MAX; divp++) {
1362 			freq = output_freq * (divm + 1) * (divp + 1);
1363 			divn = (u32)((freq / input_freq) - 1);
1364 			if (divn < DIVN_MIN || divn > DIVN_MAX)
1365 				continue;
1366 
1367 			frac = (u32)(((freq * FRAC_MAX) / input_freq) -
1368 				     ((divn + 1) * FRAC_MAX));
1369 			/* 2 loops to refine the fractional part */
1370 			for (i = 2; i != 0; i--) {
1371 				if (frac > FRAC_MAX)
1372 					break;
1373 
1374 				vco = (post_divm * (divn + 1)) +
1375 				      ((post_divm * (u64)frac) /
1376 				       FRAC_MAX);
1377 				if (vco < (PLL1600_VCO_MIN / 2) ||
1378 				    vco > (PLL1600_VCO_MAX / 2)) {
1379 					frac++;
1380 					continue;
1381 				}
1382 				freq = vco / (divp + 1);
1383 				if (output_freq < freq)
1384 					diff = (u32)(freq - output_freq);
1385 				else
1386 					diff = (u32)(output_freq - freq);
1387 				if (diff < best_diff)  {
1388 					pllcfg[PLLCFG_M] = divm;
1389 					pllcfg[PLLCFG_N] = divn;
1390 					pllcfg[PLLCFG_P] = divp;
1391 					*fracv = frac;
1392 
1393 					if (diff == 0)
1394 						return 0;
1395 
1396 					best_diff = diff;
1397 				}
1398 				frac++;
1399 			}
1400 		}
1401 	}
1402 
1403 	if (best_diff == U32_MAX)
1404 		return -1;
1405 
1406 	return 0;
1407 }
1408 
stm32mp1_ls_osc_set(int enable,fdt_addr_t rcc,u32 offset,u32 mask_on)1409 static void stm32mp1_ls_osc_set(int enable, fdt_addr_t rcc, u32 offset,
1410 				u32 mask_on)
1411 {
1412 	u32 address = rcc + offset;
1413 
1414 	if (enable)
1415 		setbits_le32(address, mask_on);
1416 	else
1417 		clrbits_le32(address, mask_on);
1418 }
1419 
stm32mp1_hs_ocs_set(int enable,fdt_addr_t rcc,u32 mask_on)1420 static void stm32mp1_hs_ocs_set(int enable, fdt_addr_t rcc, u32 mask_on)
1421 {
1422 	writel(mask_on, rcc + (enable ? RCC_OCENSETR : RCC_OCENCLRR));
1423 }
1424 
stm32mp1_osc_wait(int enable,fdt_addr_t rcc,u32 offset,u32 mask_rdy)1425 static int stm32mp1_osc_wait(int enable, fdt_addr_t rcc, u32 offset,
1426 			     u32 mask_rdy)
1427 {
1428 	u32 mask_test = 0;
1429 	u32 address = rcc + offset;
1430 	u32 val;
1431 	int ret;
1432 
1433 	if (enable)
1434 		mask_test = mask_rdy;
1435 
1436 	ret = readl_poll_timeout(address, val,
1437 				 (val & mask_rdy) == mask_test,
1438 				 TIMEOUT_1S);
1439 
1440 	if (ret)
1441 		log_err("OSC %x @ %x timeout for enable=%d : 0x%x\n",
1442 			mask_rdy, address, enable, readl(address));
1443 
1444 	return ret;
1445 }
1446 
stm32mp1_lse_enable(fdt_addr_t rcc,int bypass,int digbyp,u32 lsedrv)1447 static void stm32mp1_lse_enable(fdt_addr_t rcc, int bypass, int digbyp,
1448 				u32 lsedrv)
1449 {
1450 	u32 value;
1451 
1452 	if (digbyp)
1453 		setbits_le32(rcc + RCC_BDCR, RCC_BDCR_DIGBYP);
1454 
1455 	if (bypass || digbyp)
1456 		setbits_le32(rcc + RCC_BDCR, RCC_BDCR_LSEBYP);
1457 
1458 	/*
1459 	 * warning: not recommended to switch directly from "high drive"
1460 	 * to "medium low drive", and vice-versa.
1461 	 */
1462 	value = (readl(rcc + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK)
1463 		>> RCC_BDCR_LSEDRV_SHIFT;
1464 
1465 	while (value != lsedrv) {
1466 		if (value > lsedrv)
1467 			value--;
1468 		else
1469 			value++;
1470 
1471 		clrsetbits_le32(rcc + RCC_BDCR,
1472 				RCC_BDCR_LSEDRV_MASK,
1473 				value << RCC_BDCR_LSEDRV_SHIFT);
1474 	}
1475 
1476 	stm32mp1_ls_osc_set(1, rcc, RCC_BDCR, RCC_BDCR_LSEON);
1477 }
1478 
stm32mp1_lse_wait(fdt_addr_t rcc)1479 static void stm32mp1_lse_wait(fdt_addr_t rcc)
1480 {
1481 	stm32mp1_osc_wait(1, rcc, RCC_BDCR, RCC_BDCR_LSERDY);
1482 }
1483 
stm32mp1_lsi_set(fdt_addr_t rcc,int enable)1484 static void stm32mp1_lsi_set(fdt_addr_t rcc, int enable)
1485 {
1486 	stm32mp1_ls_osc_set(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSION);
1487 	stm32mp1_osc_wait(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSIRDY);
1488 }
1489 
stm32mp1_hse_enable(fdt_addr_t rcc,int bypass,int digbyp,int css)1490 static void stm32mp1_hse_enable(fdt_addr_t rcc, int bypass, int digbyp, int css)
1491 {
1492 	if (digbyp)
1493 		writel(RCC_OCENR_DIGBYP, rcc + RCC_OCENSETR);
1494 	if (bypass || digbyp)
1495 		writel(RCC_OCENR_HSEBYP, rcc + RCC_OCENSETR);
1496 
1497 	stm32mp1_hs_ocs_set(1, rcc, RCC_OCENR_HSEON);
1498 	stm32mp1_osc_wait(1, rcc, RCC_OCRDYR, RCC_OCRDYR_HSERDY);
1499 
1500 	if (css)
1501 		writel(RCC_OCENR_HSECSSON, rcc + RCC_OCENSETR);
1502 }
1503 
stm32mp1_csi_set(fdt_addr_t rcc,int enable)1504 static void stm32mp1_csi_set(fdt_addr_t rcc, int enable)
1505 {
1506 	stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_CSION);
1507 	stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_CSIRDY);
1508 }
1509 
stm32mp1_hsi_set(fdt_addr_t rcc,int enable)1510 static void stm32mp1_hsi_set(fdt_addr_t rcc, int enable)
1511 {
1512 	stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_HSION);
1513 	stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_HSIRDY);
1514 }
1515 
stm32mp1_set_hsidiv(fdt_addr_t rcc,u8 hsidiv)1516 static int stm32mp1_set_hsidiv(fdt_addr_t rcc, u8 hsidiv)
1517 {
1518 	u32 address = rcc + RCC_OCRDYR;
1519 	u32 val;
1520 	int ret;
1521 
1522 	clrsetbits_le32(rcc + RCC_HSICFGR,
1523 			RCC_HSICFGR_HSIDIV_MASK,
1524 			RCC_HSICFGR_HSIDIV_MASK & hsidiv);
1525 
1526 	ret = readl_poll_timeout(address, val,
1527 				 val & RCC_OCRDYR_HSIDIVRDY,
1528 				 TIMEOUT_200MS);
1529 	if (ret)
1530 		log_err("HSIDIV failed @ 0x%x: 0x%x\n",
1531 			address, readl(address));
1532 
1533 	return ret;
1534 }
1535 
stm32mp1_hsidiv(fdt_addr_t rcc,ulong hsifreq)1536 static int stm32mp1_hsidiv(fdt_addr_t rcc, ulong hsifreq)
1537 {
1538 	u8 hsidiv;
1539 	u32 hsidivfreq = MAX_HSI_HZ;
1540 
1541 	for (hsidiv = 0; hsidiv < 4; hsidiv++,
1542 	     hsidivfreq = hsidivfreq / 2)
1543 		if (hsidivfreq == hsifreq)
1544 			break;
1545 
1546 	if (hsidiv == 4) {
1547 		log_err("hsi frequency invalid");
1548 		return -1;
1549 	}
1550 
1551 	if (hsidiv > 0)
1552 		return stm32mp1_set_hsidiv(rcc, hsidiv);
1553 
1554 	return 0;
1555 }
1556 
pll_start(struct stm32mp1_clk_priv * priv,int pll_id)1557 static void pll_start(struct stm32mp1_clk_priv *priv, int pll_id)
1558 {
1559 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1560 
1561 	clrsetbits_le32(priv->base + pll[pll_id].pllxcr,
1562 			RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN |
1563 			RCC_PLLNCR_DIVREN,
1564 			RCC_PLLNCR_PLLON);
1565 }
1566 
pll_output(struct stm32mp1_clk_priv * priv,int pll_id,int output)1567 static int pll_output(struct stm32mp1_clk_priv *priv, int pll_id, int output)
1568 {
1569 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1570 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1571 	u32 val;
1572 	int ret;
1573 
1574 	ret = readl_poll_timeout(pllxcr, val, val & RCC_PLLNCR_PLLRDY,
1575 				 TIMEOUT_200MS);
1576 
1577 	if (ret) {
1578 		log_err("PLL%d start failed @ 0x%x: 0x%x\n",
1579 			pll_id, pllxcr, readl(pllxcr));
1580 		return ret;
1581 	}
1582 
1583 	/* start the requested output */
1584 	setbits_le32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT);
1585 
1586 	return 0;
1587 }
1588 
pll_stop(struct stm32mp1_clk_priv * priv,int pll_id)1589 static int pll_stop(struct stm32mp1_clk_priv *priv, int pll_id)
1590 {
1591 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1592 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
1593 	u32 val;
1594 
1595 	/* stop all output */
1596 	clrbits_le32(pllxcr,
1597 		     RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN);
1598 
1599 	/* stop PLL */
1600 	clrbits_le32(pllxcr, RCC_PLLNCR_PLLON);
1601 
1602 	/* wait PLL stopped */
1603 	return readl_poll_timeout(pllxcr, val, (val & RCC_PLLNCR_PLLRDY) == 0,
1604 				  TIMEOUT_200MS);
1605 }
1606 
pll_config_output(struct stm32mp1_clk_priv * priv,int pll_id,u32 * pllcfg)1607 static void pll_config_output(struct stm32mp1_clk_priv *priv,
1608 			      int pll_id, u32 *pllcfg)
1609 {
1610 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1611 	fdt_addr_t rcc = priv->base;
1612 	u32 value;
1613 
1614 	value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT)
1615 		& RCC_PLLNCFGR2_DIVP_MASK;
1616 	value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT)
1617 		 & RCC_PLLNCFGR2_DIVQ_MASK;
1618 	value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT)
1619 		 & RCC_PLLNCFGR2_DIVR_MASK;
1620 	writel(value, rcc + pll[pll_id].pllxcfgr2);
1621 }
1622 
pll_config(struct stm32mp1_clk_priv * priv,int pll_id,u32 * pllcfg,u32 fracv)1623 static int pll_config(struct stm32mp1_clk_priv *priv, int pll_id,
1624 		      u32 *pllcfg, u32 fracv)
1625 {
1626 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1627 	fdt_addr_t rcc = priv->base;
1628 	enum stm32mp1_plltype type = pll[pll_id].plltype;
1629 	int src;
1630 	ulong refclk;
1631 	u8 ifrge = 0;
1632 	u32 value;
1633 
1634 	src = readl(priv->base + pll[pll_id].rckxselr) & RCC_SELR_SRC_MASK;
1635 
1636 	refclk = stm32mp1_clk_get_fixed(priv, pll[pll_id].refclk[src]) /
1637 		 (pllcfg[PLLCFG_M] + 1);
1638 
1639 	if (refclk < (stm32mp1_pll[type].refclk_min * 1000000) ||
1640 	    refclk > (stm32mp1_pll[type].refclk_max * 1000000)) {
1641 		log_err("invalid refclk = %x\n", (u32)refclk);
1642 		return -EINVAL;
1643 	}
1644 	if (type == PLL_800 && refclk >= 8000000)
1645 		ifrge = 1;
1646 
1647 	value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT)
1648 		 & RCC_PLLNCFGR1_DIVN_MASK;
1649 	value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT)
1650 		 & RCC_PLLNCFGR1_DIVM_MASK;
1651 	value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT)
1652 		 & RCC_PLLNCFGR1_IFRGE_MASK;
1653 	writel(value, rcc + pll[pll_id].pllxcfgr1);
1654 
1655 	/* fractional configuration: load sigma-delta modulator (SDM) */
1656 
1657 	/* Write into FRACV the new fractional value , and FRACLE to 0 */
1658 	writel(fracv << RCC_PLLNFRACR_FRACV_SHIFT,
1659 	       rcc + pll[pll_id].pllxfracr);
1660 
1661 	/* Write FRACLE to 1 : FRACV value is loaded into the SDM */
1662 	setbits_le32(rcc + pll[pll_id].pllxfracr,
1663 		     RCC_PLLNFRACR_FRACLE);
1664 
1665 	pll_config_output(priv, pll_id, pllcfg);
1666 
1667 	return 0;
1668 }
1669 
pll_csg(struct stm32mp1_clk_priv * priv,int pll_id,u32 * csg)1670 static void pll_csg(struct stm32mp1_clk_priv *priv, int pll_id, u32 *csg)
1671 {
1672 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1673 	u32 pllxcsg;
1674 
1675 	pllxcsg = ((csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) &
1676 		    RCC_PLLNCSGR_MOD_PER_MASK) |
1677 		  ((csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) &
1678 		    RCC_PLLNCSGR_INC_STEP_MASK) |
1679 		  ((csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) &
1680 		    RCC_PLLNCSGR_SSCG_MODE_MASK);
1681 
1682 	writel(pllxcsg, priv->base + pll[pll_id].pllxcsgr);
1683 
1684 	setbits_le32(priv->base + pll[pll_id].pllxcr, RCC_PLLNCR_SSCG_CTRL);
1685 }
1686 
pll_set_rate(struct udevice * dev,int pll_id,int div_id,unsigned long clk_rate)1687 static  __maybe_unused int pll_set_rate(struct udevice *dev,
1688 					int pll_id,
1689 					int div_id,
1690 					unsigned long clk_rate)
1691 {
1692 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1693 	unsigned int pllcfg[PLLCFG_NB];
1694 	ofnode plloff;
1695 	char name[12];
1696 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
1697 	enum stm32mp1_plltype type = pll[pll_id].plltype;
1698 	int divm, divn, divy;
1699 	int ret;
1700 	ulong fck_ref;
1701 	u32 fracv;
1702 	u64 value;
1703 
1704 	if (div_id > _DIV_NB)
1705 		return -EINVAL;
1706 
1707 	sprintf(name, "st,pll@%d", pll_id);
1708 	plloff = dev_read_subnode(dev, name);
1709 	if (!ofnode_valid(plloff))
1710 		return -FDT_ERR_NOTFOUND;
1711 
1712 	ret = ofnode_read_u32_array(plloff, "cfg",
1713 				    pllcfg, PLLCFG_NB);
1714 	if (ret < 0)
1715 		return -FDT_ERR_NOTFOUND;
1716 
1717 	fck_ref = pll_get_fref_ck(priv, pll_id);
1718 
1719 	divm = pllcfg[PLLCFG_M];
1720 	/* select output divider = 0: for _DIV_P, 1:_DIV_Q 2:_DIV_R */
1721 	divy = pllcfg[PLLCFG_P + div_id];
1722 
1723 	/* For: PLL1 & PLL2 => VCO is * 2 but ck_pll_y is also / 2
1724 	 * So same final result than PLL2 et 4
1725 	 * with FRACV
1726 	 * Fck_pll_y = Fck_ref * ((DIVN + 1) + FRACV / 2^13)
1727 	 *             / (DIVy + 1) * (DIVM + 1)
1728 	 * value = (DIVN + 1) * 2^13 + FRACV / 2^13
1729 	 *       = Fck_pll_y (DIVy + 1) * (DIVM + 1) * 2^13 / Fck_ref
1730 	 */
1731 	value = ((u64)clk_rate * (divy + 1) * (divm + 1)) << 13;
1732 	value = lldiv(value, fck_ref);
1733 
1734 	divn = (value >> 13) - 1;
1735 	if (divn < DIVN_MIN ||
1736 	    divn > stm32mp1_pll[type].divn_max) {
1737 		dev_err(dev, "divn invalid = %d", divn);
1738 		return -EINVAL;
1739 	}
1740 	fracv = value - ((divn + 1) << 13);
1741 	pllcfg[PLLCFG_N] = divn;
1742 
1743 	/* reconfigure PLL */
1744 	pll_stop(priv, pll_id);
1745 	pll_config(priv, pll_id, pllcfg, fracv);
1746 	pll_start(priv, pll_id);
1747 	pll_output(priv, pll_id, pllcfg[PLLCFG_O]);
1748 
1749 	return 0;
1750 }
1751 
set_clksrc(struct stm32mp1_clk_priv * priv,unsigned int clksrc)1752 static int set_clksrc(struct stm32mp1_clk_priv *priv, unsigned int clksrc)
1753 {
1754 	u32 address = priv->base + (clksrc >> 4);
1755 	u32 val;
1756 	int ret;
1757 
1758 	clrsetbits_le32(address, RCC_SELR_SRC_MASK, clksrc & RCC_SELR_SRC_MASK);
1759 	ret = readl_poll_timeout(address, val, val & RCC_SELR_SRCRDY,
1760 				 TIMEOUT_200MS);
1761 	if (ret)
1762 		log_err("CLKSRC %x start failed @ 0x%x: 0x%x\n",
1763 			clksrc, address, readl(address));
1764 
1765 	return ret;
1766 }
1767 
stgen_config(struct stm32mp1_clk_priv * priv)1768 static void stgen_config(struct stm32mp1_clk_priv *priv)
1769 {
1770 	int p;
1771 	u32 stgenc, cntfid0;
1772 	ulong rate;
1773 
1774 	stgenc = STM32_STGEN_BASE;
1775 	cntfid0 = readl(stgenc + STGENC_CNTFID0);
1776 	p = stm32mp1_clk_get_parent(priv, STGEN_K);
1777 	rate = stm32mp1_clk_get(priv, p);
1778 
1779 	if (cntfid0 != rate) {
1780 		u64 counter;
1781 
1782 		log_debug("System Generic Counter (STGEN) update\n");
1783 		clrbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1784 		counter = (u64)readl(stgenc + STGENC_CNTCVL);
1785 		counter |= ((u64)(readl(stgenc + STGENC_CNTCVU))) << 32;
1786 		counter = lldiv(counter * (u64)rate, cntfid0);
1787 		writel((u32)counter, stgenc + STGENC_CNTCVL);
1788 		writel((u32)(counter >> 32), stgenc + STGENC_CNTCVU);
1789 		writel(rate, stgenc + STGENC_CNTFID0);
1790 		setbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN);
1791 
1792 		__asm__ volatile("mcr p15, 0, %0, c14, c0, 0" : : "r" (rate));
1793 
1794 		/* need to update gd->arch.timer_rate_hz with new frequency */
1795 		timer_init();
1796 	}
1797 }
1798 
set_clkdiv(unsigned int clkdiv,u32 address)1799 static int set_clkdiv(unsigned int clkdiv, u32 address)
1800 {
1801 	u32 val;
1802 	int ret;
1803 
1804 	clrsetbits_le32(address, RCC_DIVR_DIV_MASK, clkdiv & RCC_DIVR_DIV_MASK);
1805 	ret = readl_poll_timeout(address, val, val & RCC_DIVR_DIVRDY,
1806 				 TIMEOUT_200MS);
1807 	if (ret)
1808 		log_err("CLKDIV %x start failed @ 0x%x: 0x%x\n",
1809 			clkdiv, address, readl(address));
1810 
1811 	return ret;
1812 }
1813 
stm32mp1_mco_csg(struct stm32mp1_clk_priv * priv,u32 clksrc,u32 clkdiv)1814 static void stm32mp1_mco_csg(struct stm32mp1_clk_priv *priv,
1815 			     u32 clksrc, u32 clkdiv)
1816 {
1817 	u32 address = priv->base + (clksrc >> 4);
1818 
1819 	/*
1820 	 * binding clksrc : bit15-4 offset
1821 	 *                  bit3:   disable
1822 	 *                  bit2-0: MCOSEL[2:0]
1823 	 */
1824 	if (clksrc & 0x8) {
1825 		clrbits_le32(address, RCC_MCOCFG_MCOON);
1826 	} else {
1827 		clrsetbits_le32(address,
1828 				RCC_MCOCFG_MCOSRC_MASK,
1829 				clksrc & RCC_MCOCFG_MCOSRC_MASK);
1830 		clrsetbits_le32(address,
1831 				RCC_MCOCFG_MCODIV_MASK,
1832 				clkdiv << RCC_MCOCFG_MCODIV_SHIFT);
1833 		setbits_le32(address, RCC_MCOCFG_MCOON);
1834 	}
1835 }
1836 
set_rtcsrc(struct stm32mp1_clk_priv * priv,unsigned int clksrc,int lse_css)1837 static void set_rtcsrc(struct stm32mp1_clk_priv *priv,
1838 		       unsigned int clksrc,
1839 		       int lse_css)
1840 {
1841 	u32 address = priv->base + RCC_BDCR;
1842 
1843 	if (readl(address) & RCC_BDCR_RTCCKEN)
1844 		goto skip_rtc;
1845 
1846 	if (clksrc == CLK_RTC_DISABLED)
1847 		goto skip_rtc;
1848 
1849 	clrsetbits_le32(address,
1850 			RCC_BDCR_RTCSRC_MASK,
1851 			clksrc << RCC_BDCR_RTCSRC_SHIFT);
1852 
1853 	setbits_le32(address, RCC_BDCR_RTCCKEN);
1854 
1855 skip_rtc:
1856 	if (lse_css)
1857 		setbits_le32(address, RCC_BDCR_LSECSSON);
1858 }
1859 
pkcs_config(struct stm32mp1_clk_priv * priv,u32 pkcs)1860 static void pkcs_config(struct stm32mp1_clk_priv *priv, u32 pkcs)
1861 {
1862 	u32 address = priv->base + ((pkcs >> 4) & 0xFFF);
1863 	u32 value = pkcs & 0xF;
1864 	u32 mask = 0xF;
1865 
1866 	if (pkcs & BIT(31)) {
1867 		mask <<= 4;
1868 		value <<= 4;
1869 	}
1870 	clrsetbits_le32(address, mask, value);
1871 }
1872 
stm32mp1_clktree(struct udevice * dev)1873 static int stm32mp1_clktree(struct udevice *dev)
1874 {
1875 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
1876 	fdt_addr_t rcc = priv->base;
1877 	unsigned int clksrc[CLKSRC_NB];
1878 	unsigned int clkdiv[CLKDIV_NB];
1879 	unsigned int pllcfg[_PLL_NB][PLLCFG_NB];
1880 	unsigned int pllfracv[_PLL_NB];
1881 	unsigned int pllcsg[_PLL_NB][PLLCSG_NB];
1882 	bool pllcfg_valid[_PLL_NB];
1883 	bool pllcsg_set[_PLL_NB];
1884 	int ret;
1885 	int i, len;
1886 	int lse_css = 0;
1887 	const u32 *pkcs_cell;
1888 
1889 	/* check mandatory field */
1890 	ret = dev_read_u32_array(dev, "st,clksrc", clksrc, CLKSRC_NB);
1891 	if (ret < 0) {
1892 		dev_dbg(dev, "field st,clksrc invalid: error %d\n", ret);
1893 		return -FDT_ERR_NOTFOUND;
1894 	}
1895 
1896 	ret = dev_read_u32_array(dev, "st,clkdiv", clkdiv, CLKDIV_NB);
1897 	if (ret < 0) {
1898 		dev_dbg(dev, "field st,clkdiv invalid: error %d\n", ret);
1899 		return -FDT_ERR_NOTFOUND;
1900 	}
1901 
1902 	/* check mandatory field in each pll */
1903 	for (i = 0; i < _PLL_NB; i++) {
1904 		char name[12];
1905 		ofnode node;
1906 
1907 		sprintf(name, "st,pll@%d", i);
1908 		node = dev_read_subnode(dev, name);
1909 		pllcfg_valid[i] = ofnode_valid(node);
1910 		pllcsg_set[i] = false;
1911 		if (pllcfg_valid[i]) {
1912 			dev_dbg(dev, "DT for PLL %d @ %s\n", i, name);
1913 			ret = ofnode_read_u32_array(node, "cfg",
1914 						    pllcfg[i], PLLCFG_NB);
1915 			if (ret < 0) {
1916 				dev_dbg(dev, "field cfg invalid: error %d\n", ret);
1917 				return -FDT_ERR_NOTFOUND;
1918 			}
1919 			pllfracv[i] = ofnode_read_u32_default(node, "frac", 0);
1920 
1921 			ret = ofnode_read_u32_array(node, "csg", pllcsg[i],
1922 						    PLLCSG_NB);
1923 			if (!ret) {
1924 				pllcsg_set[i] = true;
1925 			} else if (ret != -FDT_ERR_NOTFOUND) {
1926 				dev_dbg(dev, "invalid csg node for pll@%d res=%d\n",
1927 					i, ret);
1928 				return ret;
1929 			}
1930 		} else if (i == _PLL1)	{
1931 			/* use OPP for PLL1 for A7 CPU */
1932 			dev_dbg(dev, "DT for PLL %d with OPP\n", i);
1933 			ret = stm32mp1_pll1_opp(priv,
1934 						clksrc[CLKSRC_PLL12],
1935 						pllcfg[i],
1936 						&pllfracv[i]);
1937 			if (ret) {
1938 				dev_dbg(dev, "PLL %d with OPP error = %d\n", i, ret);
1939 				return ret;
1940 			}
1941 			pllcfg_valid[i] = true;
1942 		}
1943 	}
1944 
1945 	dev_dbg(dev, "configuration MCO\n");
1946 	stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO1], clkdiv[CLKDIV_MCO1]);
1947 	stm32mp1_mco_csg(priv, clksrc[CLKSRC_MCO2], clkdiv[CLKDIV_MCO2]);
1948 
1949 	dev_dbg(dev, "switch ON osillator\n");
1950 	/*
1951 	 * switch ON oscillator found in device-tree,
1952 	 * HSI already ON after bootrom
1953 	 */
1954 	if (clk_valid(&priv->osc_clk[_LSI]))
1955 		stm32mp1_lsi_set(rcc, 1);
1956 
1957 	if (clk_valid(&priv->osc_clk[_LSE])) {
1958 		int bypass, digbyp;
1959 		u32 lsedrv;
1960 		struct udevice *dev = priv->osc_clk[_LSE].dev;
1961 
1962 		bypass = dev_read_bool(dev, "st,bypass");
1963 		digbyp = dev_read_bool(dev, "st,digbypass");
1964 		lse_css = dev_read_bool(dev, "st,css");
1965 		lsedrv = dev_read_u32_default(dev, "st,drive",
1966 					      LSEDRV_MEDIUM_HIGH);
1967 
1968 		stm32mp1_lse_enable(rcc, bypass, digbyp, lsedrv);
1969 	}
1970 
1971 	if (clk_valid(&priv->osc_clk[_HSE])) {
1972 		int bypass, digbyp, css;
1973 		struct udevice *dev = priv->osc_clk[_HSE].dev;
1974 
1975 		bypass = dev_read_bool(dev, "st,bypass");
1976 		digbyp = dev_read_bool(dev, "st,digbypass");
1977 		css = dev_read_bool(dev, "st,css");
1978 
1979 		stm32mp1_hse_enable(rcc, bypass, digbyp, css);
1980 	}
1981 	/* CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR)
1982 	 * => switch on CSI even if node is not present in device tree
1983 	 */
1984 	stm32mp1_csi_set(rcc, 1);
1985 
1986 	/* come back to HSI */
1987 	dev_dbg(dev, "come back to HSI\n");
1988 	set_clksrc(priv, CLK_MPU_HSI);
1989 	set_clksrc(priv, CLK_AXI_HSI);
1990 	set_clksrc(priv, CLK_MCU_HSI);
1991 
1992 	dev_dbg(dev, "pll stop\n");
1993 	for (i = 0; i < _PLL_NB; i++)
1994 		pll_stop(priv, i);
1995 
1996 	/* configure HSIDIV */
1997 	dev_dbg(dev, "configure HSIDIV\n");
1998 	if (clk_valid(&priv->osc_clk[_HSI])) {
1999 		stm32mp1_hsidiv(rcc, clk_get_rate(&priv->osc_clk[_HSI]));
2000 		stgen_config(priv);
2001 	}
2002 
2003 	/* select DIV */
2004 	dev_dbg(dev, "select DIV\n");
2005 	/* no ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */
2006 	writel(clkdiv[CLKDIV_MPU] & RCC_DIVR_DIV_MASK, rcc + RCC_MPCKDIVR);
2007 	set_clkdiv(clkdiv[CLKDIV_AXI], rcc + RCC_AXIDIVR);
2008 	set_clkdiv(clkdiv[CLKDIV_APB4], rcc + RCC_APB4DIVR);
2009 	set_clkdiv(clkdiv[CLKDIV_APB5], rcc + RCC_APB5DIVR);
2010 	set_clkdiv(clkdiv[CLKDIV_MCU], rcc + RCC_MCUDIVR);
2011 	set_clkdiv(clkdiv[CLKDIV_APB1], rcc + RCC_APB1DIVR);
2012 	set_clkdiv(clkdiv[CLKDIV_APB2], rcc + RCC_APB2DIVR);
2013 	set_clkdiv(clkdiv[CLKDIV_APB3], rcc + RCC_APB3DIVR);
2014 
2015 	/* no ready bit for RTC */
2016 	writel(clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK, rcc + RCC_RTCDIVR);
2017 
2018 	/* configure PLLs source */
2019 	dev_dbg(dev, "configure PLLs source\n");
2020 	set_clksrc(priv, clksrc[CLKSRC_PLL12]);
2021 	set_clksrc(priv, clksrc[CLKSRC_PLL3]);
2022 	set_clksrc(priv, clksrc[CLKSRC_PLL4]);
2023 
2024 	/* configure and start PLLs */
2025 	dev_dbg(dev, "configure PLLs\n");
2026 	for (i = 0; i < _PLL_NB; i++) {
2027 		if (!pllcfg_valid[i])
2028 			continue;
2029 		dev_dbg(dev, "configure PLL %d\n", i);
2030 		pll_config(priv, i, pllcfg[i], pllfracv[i]);
2031 		if (pllcsg_set[i])
2032 			pll_csg(priv, i, pllcsg[i]);
2033 		pll_start(priv, i);
2034 	}
2035 
2036 	/* wait and start PLLs ouptut when ready */
2037 	for (i = 0; i < _PLL_NB; i++) {
2038 		if (!pllcfg_valid[i])
2039 			continue;
2040 		dev_dbg(dev, "output PLL %d\n", i);
2041 		pll_output(priv, i, pllcfg[i][PLLCFG_O]);
2042 	}
2043 
2044 	/* wait LSE ready before to use it */
2045 	if (clk_valid(&priv->osc_clk[_LSE]))
2046 		stm32mp1_lse_wait(rcc);
2047 
2048 	/* configure with expected clock source */
2049 	dev_dbg(dev, "CLKSRC\n");
2050 	set_clksrc(priv, clksrc[CLKSRC_MPU]);
2051 	set_clksrc(priv, clksrc[CLKSRC_AXI]);
2052 	set_clksrc(priv, clksrc[CLKSRC_MCU]);
2053 	set_rtcsrc(priv, clksrc[CLKSRC_RTC], lse_css);
2054 
2055 	/* configure PKCK */
2056 	dev_dbg(dev, "PKCK\n");
2057 	pkcs_cell = dev_read_prop(dev, "st,pkcs", &len);
2058 	if (pkcs_cell) {
2059 		bool ckper_disabled = false;
2060 
2061 		for (i = 0; i < len / sizeof(u32); i++) {
2062 			u32 pkcs = (u32)fdt32_to_cpu(pkcs_cell[i]);
2063 
2064 			if (pkcs == CLK_CKPER_DISABLED) {
2065 				ckper_disabled = true;
2066 				continue;
2067 			}
2068 			pkcs_config(priv, pkcs);
2069 		}
2070 		/* CKPER is source for some peripheral clock
2071 		 * (FMC-NAND / QPSI-NOR) and switching source is allowed
2072 		 * only if previous clock is still ON
2073 		 * => deactivated CKPER only after switching clock
2074 		 */
2075 		if (ckper_disabled)
2076 			pkcs_config(priv, CLK_CKPER_DISABLED);
2077 	}
2078 
2079 	/* STGEN clock source can change with CLK_STGEN_XXX */
2080 	stgen_config(priv);
2081 
2082 	dev_dbg(dev, "oscillator off\n");
2083 	/* switch OFF HSI if not found in device-tree */
2084 	if (!clk_valid(&priv->osc_clk[_HSI]))
2085 		stm32mp1_hsi_set(rcc, 0);
2086 
2087 	/* Software Self-Refresh mode (SSR) during DDR initilialization */
2088 	clrsetbits_le32(priv->base + RCC_DDRITFCR,
2089 			RCC_DDRITFCR_DDRCKMOD_MASK,
2090 			RCC_DDRITFCR_DDRCKMOD_SSR <<
2091 			RCC_DDRITFCR_DDRCKMOD_SHIFT);
2092 
2093 	return 0;
2094 }
2095 #endif /* STM32MP1_CLOCK_TREE_INIT */
2096 
pll_set_output_rate(struct udevice * dev,int pll_id,int div_id,unsigned long clk_rate)2097 static int pll_set_output_rate(struct udevice *dev,
2098 			       int pll_id,
2099 			       int div_id,
2100 			       unsigned long clk_rate)
2101 {
2102 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
2103 	const struct stm32mp1_clk_pll *pll = priv->data->pll;
2104 	u32 pllxcr = priv->base + pll[pll_id].pllxcr;
2105 	int div;
2106 	ulong fvco;
2107 
2108 	if (div_id > _DIV_NB)
2109 		return -EINVAL;
2110 
2111 	fvco = pll_get_fvco(priv, pll_id);
2112 
2113 	if (fvco <= clk_rate)
2114 		div = 1;
2115 	else
2116 		div = DIV_ROUND_UP(fvco, clk_rate);
2117 
2118 	if (div > 128)
2119 		div = 128;
2120 
2121 	/* stop the requested output */
2122 	clrbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
2123 	/* change divider */
2124 	clrsetbits_le32(priv->base + pll[pll_id].pllxcfgr2,
2125 			RCC_PLLNCFGR2_DIVX_MASK << RCC_PLLNCFGR2_SHIFT(div_id),
2126 			(div - 1) << RCC_PLLNCFGR2_SHIFT(div_id));
2127 	/* start the requested output */
2128 	setbits_le32(pllxcr, 0x1 << div_id << RCC_PLLNCR_DIVEN_SHIFT);
2129 
2130 	return 0;
2131 }
2132 
stm32mp1_clk_set_rate(struct clk * clk,unsigned long clk_rate)2133 static ulong stm32mp1_clk_set_rate(struct clk *clk, unsigned long clk_rate)
2134 {
2135 	struct stm32mp1_clk_priv *priv = dev_get_priv(clk->dev);
2136 	int p;
2137 
2138 	switch (clk->id) {
2139 #if defined(STM32MP1_CLOCK_TREE_INIT) && \
2140 	defined(CONFIG_STM32MP1_DDR_INTERACTIVE)
2141 	case DDRPHYC:
2142 		break;
2143 #endif
2144 	case LTDC_PX:
2145 	case DSI_PX:
2146 		break;
2147 	default:
2148 		dev_err(clk->dev, "Set of clk %ld not supported", clk->id);
2149 		return -EINVAL;
2150 	}
2151 
2152 	p = stm32mp1_clk_get_parent(priv, clk->id);
2153 	dev_vdbg(clk->dev, "parent = %d:%s\n", p, stm32mp1_clk_parent_name[p]);
2154 	if (p < 0)
2155 		return -EINVAL;
2156 
2157 	switch (p) {
2158 #if defined(STM32MP1_CLOCK_TREE_INIT) && \
2159 	defined(CONFIG_STM32MP1_DDR_INTERACTIVE)
2160 	case _PLL2_R: /* DDRPHYC */
2161 	{
2162 		/* only for change DDR clock in interactive mode */
2163 		ulong result;
2164 
2165 		set_clksrc(priv, CLK_AXI_HSI);
2166 		result = pll_set_rate(clk->dev,  _PLL2, _DIV_R, clk_rate);
2167 		set_clksrc(priv, CLK_AXI_PLL2P);
2168 		return result;
2169 	}
2170 #endif
2171 
2172 	case _PLL4_Q:
2173 		/* for LTDC_PX and DSI_PX case */
2174 		return pll_set_output_rate(clk->dev, _PLL4, _DIV_Q, clk_rate);
2175 	}
2176 
2177 	return -EINVAL;
2178 }
2179 
stm32mp1_osc_init(struct udevice * dev)2180 static void stm32mp1_osc_init(struct udevice *dev)
2181 {
2182 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
2183 	int i;
2184 	const char *name[NB_OSC] = {
2185 		[_LSI] = "lsi",
2186 		[_LSE] = "lse",
2187 		[_HSI] = "hsi",
2188 		[_HSE] = "hse",
2189 		[_CSI] = "csi",
2190 		[_I2S_CKIN] = "i2s_ckin",
2191 	};
2192 
2193 	for (i = 0; i < NB_OSC; i++) {
2194 		if (clk_get_by_name(dev, name[i], &priv->osc_clk[i]))
2195 			dev_dbg(dev, "No source clock \"%s\"", name[i]);
2196 		else
2197 			dev_dbg(dev, "%s clock rate: %luHz\n",
2198 				name[i], clk_get_rate(&priv->osc_clk[i]));
2199 	}
2200 }
2201 
stm32mp1_clk_dump(struct stm32mp1_clk_priv * priv)2202 static void  __maybe_unused stm32mp1_clk_dump(struct stm32mp1_clk_priv *priv)
2203 {
2204 	char buf[32];
2205 	int i, s, p;
2206 
2207 	printf("Clocks:\n");
2208 	for (i = 0; i < _PARENT_NB; i++) {
2209 		printf("- %s : %s MHz\n",
2210 		       stm32mp1_clk_parent_name[i],
2211 		       strmhz(buf, stm32mp1_clk_get(priv, i)));
2212 	}
2213 	printf("Source Clocks:\n");
2214 	for (i = 0; i < _PARENT_SEL_NB; i++) {
2215 		p = (readl(priv->base + priv->data->sel[i].offset) >>
2216 		     priv->data->sel[i].src) & priv->data->sel[i].msk;
2217 		if (p < priv->data->sel[i].nb_parent) {
2218 			s = priv->data->sel[i].parent[p];
2219 			printf("- %s(%d) => parent %s(%d)\n",
2220 			       stm32mp1_clk_parent_sel_name[i], i,
2221 			       stm32mp1_clk_parent_name[s], s);
2222 		} else {
2223 			printf("- %s(%d) => parent index %d is invalid\n",
2224 			       stm32mp1_clk_parent_sel_name[i], i, p);
2225 		}
2226 	}
2227 }
2228 
2229 #ifdef CONFIG_CMD_CLK
soc_clk_dump(void)2230 int soc_clk_dump(void)
2231 {
2232 	struct udevice *dev;
2233 	struct stm32mp1_clk_priv *priv;
2234 	int ret;
2235 
2236 	ret = uclass_get_device_by_driver(UCLASS_CLK,
2237 					  DM_DRIVER_GET(stm32mp1_clock),
2238 					  &dev);
2239 	if (ret)
2240 		return ret;
2241 
2242 	priv = dev_get_priv(dev);
2243 
2244 	stm32mp1_clk_dump(priv);
2245 
2246 	return 0;
2247 }
2248 #endif
2249 
stm32mp1_clk_probe(struct udevice * dev)2250 static int stm32mp1_clk_probe(struct udevice *dev)
2251 {
2252 	int result = 0;
2253 	struct stm32mp1_clk_priv *priv = dev_get_priv(dev);
2254 
2255 	priv->base = dev_read_addr(dev->parent);
2256 	if (priv->base == FDT_ADDR_T_NONE)
2257 		return -EINVAL;
2258 
2259 	priv->data = (void *)&stm32mp1_data;
2260 
2261 	if (!priv->data->gate || !priv->data->sel ||
2262 	    !priv->data->pll)
2263 		return -EINVAL;
2264 
2265 	stm32mp1_osc_init(dev);
2266 
2267 #ifdef STM32MP1_CLOCK_TREE_INIT
2268 	/* clock tree init is done only one time, before relocation */
2269 	if (!(gd->flags & GD_FLG_RELOC))
2270 		result = stm32mp1_clktree(dev);
2271 	if (result)
2272 		dev_err(dev, "clock tree initialization failed (%d)\n", result);
2273 #endif
2274 
2275 #ifndef CONFIG_SPL_BUILD
2276 #if defined(VERBOSE_DEBUG)
2277 	/* display debug information for probe after relocation */
2278 	if (gd->flags & GD_FLG_RELOC)
2279 		stm32mp1_clk_dump(priv);
2280 #endif
2281 
2282 	gd->cpu_clk = stm32mp1_clk_get(priv, _CK_MPU);
2283 	gd->bus_clk = stm32mp1_clk_get(priv, _ACLK);
2284 	/* DDRPHYC father */
2285 	gd->mem_clk = stm32mp1_clk_get(priv, _PLL2_R);
2286 #if defined(CONFIG_DISPLAY_CPUINFO)
2287 	if (gd->flags & GD_FLG_RELOC) {
2288 		char buf[32];
2289 
2290 		log_info("Clocks:\n");
2291 		log_info("- MPU : %s MHz\n", strmhz(buf, gd->cpu_clk));
2292 		log_info("- MCU : %s MHz\n",
2293 			 strmhz(buf, stm32mp1_clk_get(priv, _CK_MCU)));
2294 		log_info("- AXI : %s MHz\n", strmhz(buf, gd->bus_clk));
2295 		log_info("- PER : %s MHz\n",
2296 			 strmhz(buf, stm32mp1_clk_get(priv, _CK_PER)));
2297 		log_info("- DDR : %s MHz\n", strmhz(buf, gd->mem_clk));
2298 	}
2299 #endif /* CONFIG_DISPLAY_CPUINFO */
2300 #endif
2301 
2302 	return result;
2303 }
2304 
2305 static const struct clk_ops stm32mp1_clk_ops = {
2306 	.enable = stm32mp1_clk_enable,
2307 	.disable = stm32mp1_clk_disable,
2308 	.get_rate = stm32mp1_clk_get_rate,
2309 	.set_rate = stm32mp1_clk_set_rate,
2310 };
2311 
2312 U_BOOT_DRIVER(stm32mp1_clock) = {
2313 	.name = "stm32mp1_clk",
2314 	.id = UCLASS_CLK,
2315 	.ops = &stm32mp1_clk_ops,
2316 	.priv_auto	= sizeof(struct stm32mp1_clk_priv),
2317 	.probe = stm32mp1_clk_probe,
2318 };
2319