1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Tests for the core driver model code
4  *
5  * Copyright (c) 2013 Google, Inc
6  */
7 
8 #include <common.h>
9 #include <errno.h>
10 #include <dm.h>
11 #include <fdtdec.h>
12 #include <log.h>
13 #include <malloc.h>
14 #include <asm/global_data.h>
15 #include <dm/device-internal.h>
16 #include <dm/root.h>
17 #include <dm/util.h>
18 #include <dm/test.h>
19 #include <dm/uclass-internal.h>
20 #include <test/test.h>
21 #include <test/ut.h>
22 
23 DECLARE_GLOBAL_DATA_PTR;
24 
25 enum {
26 	TEST_INTVAL1		= 0,
27 	TEST_INTVAL2		= 3,
28 	TEST_INTVAL3		= 6,
29 	TEST_INTVAL_MANUAL	= 101112,
30 	TEST_INTVAL_PRE_RELOC	= 7,
31 };
32 
33 static const struct dm_test_pdata test_pdata[] = {
34 	{ .ping_add		= TEST_INTVAL1, },
35 	{ .ping_add		= TEST_INTVAL2, },
36 	{ .ping_add		= TEST_INTVAL3, },
37 };
38 
39 static const struct dm_test_pdata test_pdata_manual = {
40 	.ping_add		= TEST_INTVAL_MANUAL,
41 };
42 
43 static const struct dm_test_pdata test_pdata_pre_reloc = {
44 	.ping_add		= TEST_INTVAL_PRE_RELOC,
45 };
46 
47 U_BOOT_DRVINFO(dm_test_info1) = {
48 	.name = "test_drv",
49 	.plat = &test_pdata[0],
50 };
51 
52 U_BOOT_DRVINFO(dm_test_info2) = {
53 	.name = "test_drv",
54 	.plat = &test_pdata[1],
55 };
56 
57 U_BOOT_DRVINFO(dm_test_info3) = {
58 	.name = "test_drv",
59 	.plat = &test_pdata[2],
60 };
61 
62 static struct driver_info driver_info_manual = {
63 	.name = "test_manual_drv",
64 	.plat = &test_pdata_manual,
65 };
66 
67 static struct driver_info driver_info_pre_reloc = {
68 	.name = "test_pre_reloc_drv",
69 	.plat = &test_pdata_pre_reloc,
70 };
71 
72 static struct driver_info driver_info_act_dma = {
73 	.name = "test_act_dma_drv",
74 };
75 
76 static struct driver_info driver_info_vital_clk = {
77 	.name = "test_vital_clk_drv",
78 };
79 
80 static struct driver_info driver_info_act_dma_vital_clk = {
81 	.name = "test_act_dma_vital_clk_drv",
82 };
83 
dm_leak_check_start(struct unit_test_state * uts)84 void dm_leak_check_start(struct unit_test_state *uts)
85 {
86 	uts->start = mallinfo();
87 	if (!uts->start.uordblks)
88 		puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
89 }
90 
dm_leak_check_end(struct unit_test_state * uts)91 int dm_leak_check_end(struct unit_test_state *uts)
92 {
93 	struct mallinfo end;
94 	int id, diff;
95 
96 	/* Don't delete the root class, since we started with that */
97 	for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
98 		struct uclass *uc;
99 
100 		uc = uclass_find(id);
101 		if (!uc)
102 			continue;
103 		ut_assertok(uclass_destroy(uc));
104 	}
105 
106 	end = mallinfo();
107 	diff = end.uordblks - uts->start.uordblks;
108 	if (diff > 0)
109 		printf("Leak: lost %#xd bytes\n", diff);
110 	else if (diff < 0)
111 		printf("Leak: gained %#xd bytes\n", -diff);
112 	ut_asserteq(uts->start.uordblks, end.uordblks);
113 
114 	return 0;
115 }
116 
117 /* Test that binding with plat occurs correctly */
dm_test_autobind(struct unit_test_state * uts)118 static int dm_test_autobind(struct unit_test_state *uts)
119 {
120 	struct udevice *dev;
121 
122 	/*
123 	 * We should have a single class (UCLASS_ROOT) and a single root
124 	 * device with no children.
125 	 */
126 	ut_assert(uts->root);
127 	ut_asserteq(1, list_count_items(gd->uclass_root));
128 	ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
129 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
130 
131 	ut_assertok(dm_scan_plat(false));
132 
133 	/* We should have our test class now at least, plus more children */
134 	ut_assert(1 < list_count_items(gd->uclass_root));
135 	ut_assert(0 < list_count_items(&gd->dm_root->child_head));
136 
137 	/* Our 3 dm_test_infox children should be bound to the test uclass */
138 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
139 
140 	/* No devices should be probed */
141 	list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
142 		ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED));
143 
144 	/* Our test driver should have been bound 3 times */
145 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
146 
147 	return 0;
148 }
149 DM_TEST(dm_test_autobind, 0);
150 
151 /* Test that binding with uclass plat allocation occurs correctly */
dm_test_autobind_uclass_pdata_alloc(struct unit_test_state * uts)152 static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
153 {
154 	struct dm_test_perdev_uc_pdata *uc_pdata;
155 	struct udevice *dev;
156 	struct uclass *uc;
157 
158 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
159 	ut_assert(uc);
160 
161 	/**
162 	 * Test if test uclass driver requires allocation for the uclass
163 	 * platform data and then check the dev->uclass_plat pointer.
164 	 */
165 	ut_assert(uc->uc_drv->per_device_plat_auto);
166 
167 	for (uclass_find_first_device(UCLASS_TEST, &dev);
168 	     dev;
169 	     uclass_find_next_device(&dev)) {
170 		ut_assertnonnull(dev);
171 
172 		uc_pdata = dev_get_uclass_plat(dev);
173 		ut_assert(uc_pdata);
174 	}
175 
176 	return 0;
177 }
178 DM_TEST(dm_test_autobind_uclass_pdata_alloc, UT_TESTF_SCAN_PDATA);
179 
180 /* Test that binding with uclass plat setting occurs correctly */
dm_test_autobind_uclass_pdata_valid(struct unit_test_state * uts)181 static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
182 {
183 	struct dm_test_perdev_uc_pdata *uc_pdata;
184 	struct udevice *dev;
185 
186 	/**
187 	 * In the test_postbind() method of test uclass driver, the uclass
188 	 * platform data should be set to three test int values - test it.
189 	 */
190 	for (uclass_find_first_device(UCLASS_TEST, &dev);
191 	     dev;
192 	     uclass_find_next_device(&dev)) {
193 		ut_assertnonnull(dev);
194 
195 		uc_pdata = dev_get_uclass_plat(dev);
196 		ut_assert(uc_pdata);
197 		ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
198 		ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
199 		ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
200 	}
201 
202 	return 0;
203 }
204 DM_TEST(dm_test_autobind_uclass_pdata_valid, UT_TESTF_SCAN_PDATA);
205 
206 /* Test that autoprobe finds all the expected devices */
dm_test_autoprobe(struct unit_test_state * uts)207 static int dm_test_autoprobe(struct unit_test_state *uts)
208 {
209 	int expected_base_add;
210 	struct udevice *dev;
211 	struct uclass *uc;
212 	int i;
213 
214 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
215 	ut_assert(uc);
216 
217 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
218 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
219 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
220 
221 	/* The root device should not be activated until needed */
222 	ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED);
223 
224 	/*
225 	 * We should be able to find the three test devices, and they should
226 	 * all be activated as they are used (lazy activation, required by
227 	 * U-Boot)
228 	 */
229 	for (i = 0; i < 3; i++) {
230 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
231 		ut_assert(dev);
232 		ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
233 			   "Driver %d/%s already activated", i, dev->name);
234 
235 		/* This should activate it */
236 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
237 		ut_assert(dev);
238 		ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED);
239 
240 		/* Activating a device should activate the root device */
241 		if (!i)
242 			ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED);
243 	}
244 
245 	/*
246 	 * Our 3 dm_test_info children should be passed to pre_probe and
247 	 * post_probe
248 	 */
249 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
250 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
251 
252 	/* Also we can check the per-device data */
253 	expected_base_add = 0;
254 	for (i = 0; i < 3; i++) {
255 		struct dm_test_uclass_perdev_priv *priv;
256 		struct dm_test_pdata *pdata;
257 
258 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
259 		ut_assert(dev);
260 
261 		priv = dev_get_uclass_priv(dev);
262 		ut_assert(priv);
263 		ut_asserteq(expected_base_add, priv->base_add);
264 
265 		pdata = dev_get_plat(dev);
266 		expected_base_add += pdata->ping_add;
267 	}
268 
269 	return 0;
270 }
271 DM_TEST(dm_test_autoprobe, UT_TESTF_SCAN_PDATA);
272 
273 /* Check that we see the correct plat in each device */
dm_test_plat(struct unit_test_state * uts)274 static int dm_test_plat(struct unit_test_state *uts)
275 {
276 	const struct dm_test_pdata *pdata;
277 	struct udevice *dev;
278 	int i;
279 
280 	for (i = 0; i < 3; i++) {
281 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
282 		ut_assert(dev);
283 		pdata = dev_get_plat(dev);
284 		ut_assert(pdata->ping_add == test_pdata[i].ping_add);
285 	}
286 
287 	return 0;
288 }
289 DM_TEST(dm_test_plat, UT_TESTF_SCAN_PDATA);
290 
291 /* Test that we can bind, probe, remove, unbind a driver */
dm_test_lifecycle(struct unit_test_state * uts)292 static int dm_test_lifecycle(struct unit_test_state *uts)
293 {
294 	int op_count[DM_TEST_OP_COUNT];
295 	struct udevice *dev, *test_dev;
296 	int pingret;
297 	int ret;
298 
299 	memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
300 
301 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
302 					&dev));
303 	ut_assert(dev);
304 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
305 			== op_count[DM_TEST_OP_BIND] + 1);
306 	ut_assert(!dev_get_priv(dev));
307 
308 	/* Probe the device - it should fail allocating private data */
309 	uts->force_fail_alloc = 1;
310 	ret = device_probe(dev);
311 	ut_assert(ret == -ENOMEM);
312 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
313 			== op_count[DM_TEST_OP_PROBE] + 1);
314 	ut_assert(!dev_get_priv(dev));
315 
316 	/* Try again without the alloc failure */
317 	uts->force_fail_alloc = 0;
318 	ut_assertok(device_probe(dev));
319 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
320 			== op_count[DM_TEST_OP_PROBE] + 2);
321 	ut_assert(dev_get_priv(dev));
322 
323 	/* This should be device 3 in the uclass */
324 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
325 	ut_assert(dev == test_dev);
326 
327 	/* Try ping */
328 	ut_assertok(test_ping(dev, 100, &pingret));
329 	ut_assert(pingret == 102);
330 
331 	/* Now remove device 3 */
332 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
333 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
334 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
335 
336 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
337 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
338 	ut_assertok(device_unbind(dev));
339 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
340 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
341 
342 	return 0;
343 }
344 DM_TEST(dm_test_lifecycle, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
345 
346 /* Test that we can bind/unbind and the lists update correctly */
dm_test_ordering(struct unit_test_state * uts)347 static int dm_test_ordering(struct unit_test_state *uts)
348 {
349 	struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
350 	int pingret;
351 
352 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
353 					&dev));
354 	ut_assert(dev);
355 
356 	/* Bind two new devices (numbers 4 and 5) */
357 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
358 					&dev_penultimate));
359 	ut_assert(dev_penultimate);
360 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
361 					&dev_last));
362 	ut_assert(dev_last);
363 
364 	/* Now remove device 3 */
365 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
366 	ut_assertok(device_unbind(dev));
367 
368 	/* The device numbering should have shifted down one */
369 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
370 	ut_assert(dev_penultimate == test_dev);
371 	ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
372 	ut_assert(dev_last == test_dev);
373 
374 	/* Add back the original device 3, now in position 5 */
375 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
376 					&dev));
377 	ut_assert(dev);
378 
379 	/* Try ping */
380 	ut_assertok(test_ping(dev, 100, &pingret));
381 	ut_assert(pingret == 102);
382 
383 	/* Remove 3 and 4 */
384 	ut_assertok(device_remove(dev_penultimate, DM_REMOVE_NORMAL));
385 	ut_assertok(device_unbind(dev_penultimate));
386 	ut_assertok(device_remove(dev_last, DM_REMOVE_NORMAL));
387 	ut_assertok(device_unbind(dev_last));
388 
389 	/* Our device should now be in position 3 */
390 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
391 	ut_assert(dev == test_dev);
392 
393 	/* Now remove device 3 */
394 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
395 	ut_assertok(device_unbind(dev));
396 
397 	return 0;
398 }
399 DM_TEST(dm_test_ordering, UT_TESTF_SCAN_PDATA);
400 
401 /* Check that we can perform operations on a device (do a ping) */
dm_check_operations(struct unit_test_state * uts,struct udevice * dev,uint32_t base,struct dm_test_priv * priv)402 int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
403 			uint32_t base, struct dm_test_priv *priv)
404 {
405 	int expected;
406 	int pingret;
407 
408 	/* Getting the child device should allocate plat / priv */
409 	ut_assertok(testfdt_ping(dev, 10, &pingret));
410 	ut_assert(dev_get_priv(dev));
411 	ut_assert(dev_get_plat(dev));
412 
413 	expected = 10 + base;
414 	ut_asserteq(expected, pingret);
415 
416 	/* Do another ping */
417 	ut_assertok(testfdt_ping(dev, 20, &pingret));
418 	expected = 20 + base;
419 	ut_asserteq(expected, pingret);
420 
421 	/* Now check the ping_total */
422 	priv = dev_get_priv(dev);
423 	ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
424 		    priv->ping_total);
425 
426 	return 0;
427 }
428 
429 /* Check that we can perform operations on devices */
dm_test_operations(struct unit_test_state * uts)430 static int dm_test_operations(struct unit_test_state *uts)
431 {
432 	struct udevice *dev;
433 	int i;
434 
435 	/*
436 	 * Now check that the ping adds are what we expect. This is using the
437 	 * ping-add property in each node.
438 	 */
439 	for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
440 		uint32_t base;
441 
442 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
443 
444 		/*
445 		 * Get the 'reg' property, which tells us what the ping add
446 		 * should be. We don't use the plat because we want
447 		 * to test the code that sets that up (testfdt_drv_probe()).
448 		 */
449 		base = test_pdata[i].ping_add;
450 		debug("dev=%d, base=%d\n", i, base);
451 
452 		ut_assert(!dm_check_operations(uts, dev, base, dev_get_priv(dev)));
453 	}
454 
455 	return 0;
456 }
457 DM_TEST(dm_test_operations, UT_TESTF_SCAN_PDATA);
458 
459 /* Remove all drivers and check that things work */
dm_test_remove(struct unit_test_state * uts)460 static int dm_test_remove(struct unit_test_state *uts)
461 {
462 	struct udevice *dev;
463 	int i;
464 
465 	for (i = 0; i < 3; i++) {
466 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
467 		ut_assert(dev);
468 		ut_assertf(dev_get_flags(dev) & DM_FLAG_ACTIVATED,
469 			   "Driver %d/%s not activated", i, dev->name);
470 		ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
471 		ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
472 			   "Driver %d/%s should have deactivated", i,
473 			   dev->name);
474 		ut_assert(!dev_get_priv(dev));
475 	}
476 
477 	return 0;
478 }
479 DM_TEST(dm_test_remove, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
480 
481 /* Remove and recreate everything, check for memory leaks */
dm_test_leak(struct unit_test_state * uts)482 static int dm_test_leak(struct unit_test_state *uts)
483 {
484 	int i;
485 
486 	for (i = 0; i < 2; i++) {
487 		struct udevice *dev;
488 		int ret;
489 		int id;
490 
491 		dm_leak_check_start(uts);
492 
493 		ut_assertok(dm_scan_plat(false));
494 		ut_assertok(dm_scan_fdt(false));
495 
496 		/* Scanning the uclass is enough to probe all the devices */
497 		for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
498 			for (ret = uclass_first_device(UCLASS_TEST, &dev);
499 			     dev;
500 			     ret = uclass_next_device(&dev))
501 				;
502 			ut_assertok(ret);
503 		}
504 
505 		ut_assertok(dm_leak_check_end(uts));
506 	}
507 
508 	return 0;
509 }
510 DM_TEST(dm_test_leak, 0);
511 
512 /* Test uclass init/destroy methods */
dm_test_uclass(struct unit_test_state * uts)513 static int dm_test_uclass(struct unit_test_state *uts)
514 {
515 	struct uclass *uc;
516 
517 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
518 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
519 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
520 	ut_assert(uclass_get_priv(uc));
521 
522 	ut_assertok(uclass_destroy(uc));
523 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
524 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
525 
526 	return 0;
527 }
528 DM_TEST(dm_test_uclass, 0);
529 
530 /**
531  * create_children() - Create children of a parent node
532  *
533  * @dms:	Test system state
534  * @parent:	Parent device
535  * @count:	Number of children to create
536  * @key:	Key value to put in first child. Subsequence children
537  *		receive an incrementing value
538  * @child:	If not NULL, then the child device pointers are written into
539  *		this array.
540  * @return 0 if OK, -ve on error
541  */
create_children(struct unit_test_state * uts,struct udevice * parent,int count,int key,struct udevice * child[])542 static int create_children(struct unit_test_state *uts, struct udevice *parent,
543 			   int count, int key, struct udevice *child[])
544 {
545 	struct udevice *dev;
546 	int i;
547 
548 	for (i = 0; i < count; i++) {
549 		struct dm_test_pdata *pdata;
550 
551 		ut_assertok(device_bind_by_name(parent, false,
552 						&driver_info_manual, &dev));
553 		pdata = calloc(1, sizeof(*pdata));
554 		pdata->ping_add = key + i;
555 		dev_set_plat(dev, pdata);
556 		if (child)
557 			child[i] = dev;
558 	}
559 
560 	return 0;
561 }
562 
563 #define NODE_COUNT	10
564 
dm_test_children(struct unit_test_state * uts)565 static int dm_test_children(struct unit_test_state *uts)
566 {
567 	struct udevice *top[NODE_COUNT];
568 	struct udevice *child[NODE_COUNT];
569 	struct udevice *grandchild[NODE_COUNT];
570 	struct udevice *dev;
571 	int total;
572 	int ret;
573 	int i;
574 
575 	/* We don't care about the numbering for this test */
576 	uts->skip_post_probe = 1;
577 
578 	ut_assert(NODE_COUNT > 5);
579 
580 	/* First create 10 top-level children */
581 	ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top));
582 
583 	/* Now a few have their own children */
584 	ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
585 	ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
586 
587 	/* And grandchildren */
588 	for (i = 0; i < NODE_COUNT; i++)
589 		ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
590 					    i == 2 ? grandchild : NULL));
591 
592 	/* Check total number of devices */
593 	total = NODE_COUNT * (3 + NODE_COUNT);
594 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
595 
596 	/* Try probing one of the grandchildren */
597 	ut_assertok(uclass_get_device(UCLASS_TEST,
598 				      NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
599 	ut_asserteq_ptr(grandchild[0], dev);
600 
601 	/*
602 	 * This should have probed the child and top node also, for a total
603 	 * of 3 nodes.
604 	 */
605 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
606 
607 	/* Probe the other grandchildren */
608 	for (i = 1; i < NODE_COUNT; i++)
609 		ut_assertok(device_probe(grandchild[i]));
610 
611 	ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
612 
613 	/* Probe everything */
614 	for (ret = uclass_first_device(UCLASS_TEST, &dev);
615 	     dev;
616 	     ret = uclass_next_device(&dev))
617 		;
618 	ut_assertok(ret);
619 
620 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
621 
622 	/* Remove a top-level child and check that the children are removed */
623 	ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
624 	ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
625 	dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
626 
627 	/* Try one with grandchildren */
628 	ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
629 	ut_asserteq_ptr(dev, top[5]);
630 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
631 	ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
632 		    dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
633 
634 	/* Try the same with unbind */
635 	ut_assertok(device_unbind(top[2]));
636 	ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
637 	dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
638 
639 	/* Try one with grandchildren */
640 	ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
641 	ut_asserteq_ptr(dev, top[6]);
642 	ut_assertok(device_unbind(top[5]));
643 	ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
644 		    dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
645 
646 	return 0;
647 }
648 DM_TEST(dm_test_children, 0);
649 
dm_test_device_reparent(struct unit_test_state * uts)650 static int dm_test_device_reparent(struct unit_test_state *uts)
651 {
652 	struct udevice *top[NODE_COUNT];
653 	struct udevice *child[NODE_COUNT];
654 	struct udevice *grandchild[NODE_COUNT];
655 	struct udevice *dev;
656 	int total;
657 	int ret;
658 	int i;
659 
660 	/* We don't care about the numbering for this test */
661 	uts->skip_post_probe = 1;
662 
663 	ut_assert(NODE_COUNT > 5);
664 
665 	/* First create 10 top-level children */
666 	ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top));
667 
668 	/* Now a few have their own children */
669 	ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
670 	ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
671 
672 	/* And grandchildren */
673 	for (i = 0; i < NODE_COUNT; i++)
674 		ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
675 					    i == 2 ? grandchild : NULL));
676 
677 	/* Check total number of devices */
678 	total = NODE_COUNT * (3 + NODE_COUNT);
679 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
680 
681 	/* Probe everything */
682 	for (i = 0; i < total; i++)
683 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
684 
685 	/* Re-parent top-level children with no grandchildren. */
686 	ut_assertok(device_reparent(top[3], top[0]));
687 	/* try to get devices */
688 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
689 	     dev;
690 	     ret = uclass_find_next_device(&dev)) {
691 		ut_assert(!ret);
692 		ut_assertnonnull(dev);
693 	}
694 
695 	ut_assertok(device_reparent(top[4], top[0]));
696 	/* try to get devices */
697 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
698 	     dev;
699 	     ret = uclass_find_next_device(&dev)) {
700 		ut_assert(!ret);
701 		ut_assertnonnull(dev);
702 	}
703 
704 	/* Re-parent top-level children with grandchildren. */
705 	ut_assertok(device_reparent(top[2], top[0]));
706 	/* try to get devices */
707 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
708 	     dev;
709 	     ret = uclass_find_next_device(&dev)) {
710 		ut_assert(!ret);
711 		ut_assertnonnull(dev);
712 	}
713 
714 	ut_assertok(device_reparent(top[5], top[2]));
715 	/* try to get devices */
716 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
717 	     dev;
718 	     ret = uclass_find_next_device(&dev)) {
719 		ut_assert(!ret);
720 		ut_assertnonnull(dev);
721 	}
722 
723 	/* Re-parent grandchildren. */
724 	ut_assertok(device_reparent(grandchild[0], top[1]));
725 	/* try to get devices */
726 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
727 	     dev;
728 	     ret = uclass_find_next_device(&dev)) {
729 		ut_assert(!ret);
730 		ut_assertnonnull(dev);
731 	}
732 
733 	ut_assertok(device_reparent(grandchild[1], top[1]));
734 	/* try to get devices */
735 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
736 	     dev;
737 	     ret = uclass_find_next_device(&dev)) {
738 		ut_assert(!ret);
739 		ut_assertnonnull(dev);
740 	}
741 
742 	/* Remove re-pareneted devices. */
743 	ut_assertok(device_remove(top[3], DM_REMOVE_NORMAL));
744 	/* try to get devices */
745 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
746 	     dev;
747 	     ret = uclass_find_next_device(&dev)) {
748 		ut_assert(!ret);
749 		ut_assertnonnull(dev);
750 	}
751 
752 	ut_assertok(device_remove(top[4], DM_REMOVE_NORMAL));
753 	/* try to get devices */
754 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
755 	     dev;
756 	     ret = uclass_find_next_device(&dev)) {
757 		ut_assert(!ret);
758 		ut_assertnonnull(dev);
759 	}
760 
761 	ut_assertok(device_remove(top[5], DM_REMOVE_NORMAL));
762 	/* try to get devices */
763 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
764 	     dev;
765 	     ret = uclass_find_next_device(&dev)) {
766 		ut_assert(!ret);
767 		ut_assertnonnull(dev);
768 	}
769 
770 	ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
771 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
772 	     dev;
773 	     ret = uclass_find_next_device(&dev)) {
774 		ut_assert(!ret);
775 		ut_assertnonnull(dev);
776 	}
777 
778 	ut_assertok(device_remove(grandchild[0], DM_REMOVE_NORMAL));
779 	/* try to get devices */
780 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
781 	     dev;
782 	     ret = uclass_find_next_device(&dev)) {
783 		ut_assert(!ret);
784 		ut_assertnonnull(dev);
785 	}
786 
787 	ut_assertok(device_remove(grandchild[1], DM_REMOVE_NORMAL));
788 	/* try to get devices */
789 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
790 	     dev;
791 	     ret = uclass_find_next_device(&dev)) {
792 		ut_assert(!ret);
793 		ut_assertnonnull(dev);
794 	}
795 
796 	/* Try the same with unbind */
797 	ut_assertok(device_unbind(top[3]));
798 	ut_assertok(device_unbind(top[4]));
799 	ut_assertok(device_unbind(top[5]));
800 	ut_assertok(device_unbind(top[2]));
801 
802 	ut_assertok(device_unbind(grandchild[0]));
803 	ut_assertok(device_unbind(grandchild[1]));
804 
805 	return 0;
806 }
807 DM_TEST(dm_test_device_reparent, 0);
808 
809 /* Test that pre-relocation devices work as expected */
dm_test_pre_reloc(struct unit_test_state * uts)810 static int dm_test_pre_reloc(struct unit_test_state *uts)
811 {
812 	struct udevice *dev;
813 
814 	/* The normal driver should refuse to bind before relocation */
815 	ut_asserteq(-EPERM, device_bind_by_name(uts->root, true,
816 						&driver_info_manual, &dev));
817 
818 	/* But this one is marked pre-reloc */
819 	ut_assertok(device_bind_by_name(uts->root, true,
820 					&driver_info_pre_reloc, &dev));
821 
822 	return 0;
823 }
824 DM_TEST(dm_test_pre_reloc, 0);
825 
826 /*
827  * Test that removal of devices, either via the "normal" device_remove()
828  * API or via the device driver selective flag works as expected
829  */
dm_test_remove_active_dma(struct unit_test_state * uts)830 static int dm_test_remove_active_dma(struct unit_test_state *uts)
831 {
832 	struct udevice *dev;
833 
834 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma,
835 					&dev));
836 	ut_assert(dev);
837 
838 	/* Probe the device */
839 	ut_assertok(device_probe(dev));
840 
841 	/* Test if device is active right now */
842 	ut_asserteq(true, device_active(dev));
843 
844 	/* Remove the device via selective remove flag */
845 	dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
846 
847 	/* Test if device is inactive right now */
848 	ut_asserteq(false, device_active(dev));
849 
850 	/* Probe the device again */
851 	ut_assertok(device_probe(dev));
852 
853 	/* Test if device is active right now */
854 	ut_asserteq(true, device_active(dev));
855 
856 	/* Remove the device via "normal" remove API */
857 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
858 
859 	/* Test if device is inactive right now */
860 	ut_asserteq(false, device_active(dev));
861 
862 	/*
863 	 * Test if a device without the active DMA flags is not removed upon
864 	 * the active DMA remove call
865 	 */
866 	ut_assertok(device_unbind(dev));
867 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
868 					&dev));
869 	ut_assert(dev);
870 
871 	/* Probe the device */
872 	ut_assertok(device_probe(dev));
873 
874 	/* Test if device is active right now */
875 	ut_asserteq(true, device_active(dev));
876 
877 	/* Remove the device via selective remove flag */
878 	dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
879 
880 	/* Test if device is still active right now */
881 	ut_asserteq(true, device_active(dev));
882 
883 	return 0;
884 }
885 DM_TEST(dm_test_remove_active_dma, 0);
886 
887 /* Test removal of 'vital' devices */
dm_test_remove_vital(struct unit_test_state * uts)888 static int dm_test_remove_vital(struct unit_test_state *uts)
889 {
890 	struct udevice *normal, *dma, *vital, *dma_vital;
891 
892 	/* Skip the behaviour in test_post_probe() */
893 	uts->skip_post_probe = 1;
894 
895 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
896 					&normal));
897 	ut_assertnonnull(normal);
898 
899 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma,
900 					&dma));
901 	ut_assertnonnull(dma);
902 
903 	ut_assertok(device_bind_by_name(uts->root, false,
904 					&driver_info_vital_clk, &vital));
905 	ut_assertnonnull(vital);
906 
907 	ut_assertok(device_bind_by_name(uts->root, false,
908 					&driver_info_act_dma_vital_clk,
909 					&dma_vital));
910 	ut_assertnonnull(dma_vital);
911 
912 	/* Probe the devices */
913 	ut_assertok(device_probe(normal));
914 	ut_assertok(device_probe(dma));
915 	ut_assertok(device_probe(vital));
916 	ut_assertok(device_probe(dma_vital));
917 
918 	/* Check that devices are active right now */
919 	ut_asserteq(true, device_active(normal));
920 	ut_asserteq(true, device_active(dma));
921 	ut_asserteq(true, device_active(vital));
922 	ut_asserteq(true, device_active(dma_vital));
923 
924 	/* Remove active devices via selective remove flag */
925 	dm_remove_devices_flags(DM_REMOVE_NON_VITAL | DM_REMOVE_ACTIVE_ALL);
926 
927 	/*
928 	 * Check that this only has an effect on the dma device, since two
929 	 * devices are vital and the third does not have active DMA
930 	 */
931 	ut_asserteq(true, device_active(normal));
932 	ut_asserteq(false, device_active(dma));
933 	ut_asserteq(true, device_active(vital));
934 	ut_asserteq(true, device_active(dma_vital));
935 
936 	/* Remove active devices via selective remove flag */
937 	ut_assertok(device_probe(dma));
938 	dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
939 
940 	/* This should have affected both active-dma devices */
941 	ut_asserteq(true, device_active(normal));
942 	ut_asserteq(false, device_active(dma));
943 	ut_asserteq(true, device_active(vital));
944 	ut_asserteq(false, device_active(dma_vital));
945 
946 	/* Remove non-vital devices */
947 	ut_assertok(device_probe(dma));
948 	ut_assertok(device_probe(dma_vital));
949 	dm_remove_devices_flags(DM_REMOVE_NON_VITAL);
950 
951 	/* This should have affected only non-vital devices */
952 	ut_asserteq(false, device_active(normal));
953 	ut_asserteq(false, device_active(dma));
954 	ut_asserteq(true, device_active(vital));
955 	ut_asserteq(true, device_active(dma_vital));
956 
957 	/* Remove vital devices via normal remove flag */
958 	ut_assertok(device_probe(normal));
959 	ut_assertok(device_probe(dma));
960 	dm_remove_devices_flags(DM_REMOVE_NORMAL);
961 
962 	/* Check that all devices are inactive right now */
963 	ut_asserteq(false, device_active(normal));
964 	ut_asserteq(false, device_active(dma));
965 	ut_asserteq(false, device_active(vital));
966 	ut_asserteq(false, device_active(dma_vital));
967 
968 	return 0;
969 }
970 DM_TEST(dm_test_remove_vital, 0);
971 
dm_test_uclass_before_ready(struct unit_test_state * uts)972 static int dm_test_uclass_before_ready(struct unit_test_state *uts)
973 {
974 	struct uclass *uc;
975 
976 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
977 
978 	gd->dm_root = NULL;
979 	gd->dm_root_f = NULL;
980 	memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
981 
982 	ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
983 
984 	return 0;
985 }
986 DM_TEST(dm_test_uclass_before_ready, 0);
987 
dm_test_uclass_devices_find(struct unit_test_state * uts)988 static int dm_test_uclass_devices_find(struct unit_test_state *uts)
989 {
990 	struct udevice *dev;
991 	int ret;
992 
993 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
994 	     dev;
995 	     ret = uclass_find_next_device(&dev)) {
996 		ut_assert(!ret);
997 		ut_assertnonnull(dev);
998 	}
999 
1000 	ut_assertok(uclass_find_first_device(UCLASS_TEST_DUMMY, &dev));
1001 	ut_assertnull(dev);
1002 
1003 	return 0;
1004 }
1005 DM_TEST(dm_test_uclass_devices_find, UT_TESTF_SCAN_PDATA);
1006 
dm_test_uclass_devices_find_by_name(struct unit_test_state * uts)1007 static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
1008 {
1009 	struct udevice *finddev;
1010 	struct udevice *testdev;
1011 	int findret, ret;
1012 
1013 	/*
1014 	 * For each test device found in fdt like: "a-test", "b-test", etc.,
1015 	 * use its name and try to find it by uclass_find_device_by_name().
1016 	 * Then, on success check if:
1017 	 * - current 'testdev' name is equal to the returned 'finddev' name
1018 	 * - current 'testdev' pointer is equal to the returned 'finddev'
1019 	 *
1020 	 * We assume that, each uclass's device name is unique, so if not, then
1021 	 * this will fail on checking condition: testdev == finddev, since the
1022 	 * uclass_find_device_by_name(), returns the first device by given name.
1023 	*/
1024 	for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
1025 	     testdev;
1026 	     ret = uclass_find_next_device(&testdev)) {
1027 		ut_assertok(ret);
1028 		ut_assertnonnull(testdev);
1029 
1030 		findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
1031 						     testdev->name,
1032 						     &finddev);
1033 
1034 		ut_assertok(findret);
1035 		ut_assert(testdev);
1036 		ut_asserteq_str(testdev->name, finddev->name);
1037 		ut_asserteq_ptr(testdev, finddev);
1038 	}
1039 
1040 	return 0;
1041 }
1042 DM_TEST(dm_test_uclass_devices_find_by_name, UT_TESTF_SCAN_FDT);
1043 
dm_test_uclass_devices_get(struct unit_test_state * uts)1044 static int dm_test_uclass_devices_get(struct unit_test_state *uts)
1045 {
1046 	struct udevice *dev;
1047 	int ret;
1048 
1049 	for (ret = uclass_first_device(UCLASS_TEST, &dev);
1050 	     dev;
1051 	     ret = uclass_next_device(&dev)) {
1052 		ut_assert(!ret);
1053 		ut_assert(dev);
1054 		ut_assert(device_active(dev));
1055 	}
1056 
1057 	return 0;
1058 }
1059 DM_TEST(dm_test_uclass_devices_get, UT_TESTF_SCAN_PDATA);
1060 
dm_test_uclass_devices_get_by_name(struct unit_test_state * uts)1061 static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
1062 {
1063 	struct udevice *finddev;
1064 	struct udevice *testdev;
1065 	int ret, findret;
1066 
1067 	/*
1068 	 * For each test device found in fdt like: "a-test", "b-test", etc.,
1069 	 * use its name and try to get it by uclass_get_device_by_name().
1070 	 * On success check if:
1071 	 * - returned finddev' is active
1072 	 * - current 'testdev' name is equal to the returned 'finddev' name
1073 	 * - current 'testdev' pointer is equal to the returned 'finddev'
1074 	 *
1075 	 * We asserts that the 'testdev' is active on each loop entry, so we
1076 	 * could be sure that the 'finddev' is activated too, but for sure
1077 	 * we check it again.
1078 	 *
1079 	 * We assume that, each uclass's device name is unique, so if not, then
1080 	 * this will fail on checking condition: testdev == finddev, since the
1081 	 * uclass_get_device_by_name(), returns the first device by given name.
1082 	*/
1083 	for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev);
1084 	     testdev;
1085 	     ret = uclass_next_device(&testdev)) {
1086 		ut_assertok(ret);
1087 		ut_assert(testdev);
1088 		ut_assert(device_active(testdev));
1089 
1090 		findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
1091 						    testdev->name,
1092 						    &finddev);
1093 
1094 		ut_assertok(findret);
1095 		ut_assert(finddev);
1096 		ut_assert(device_active(finddev));
1097 		ut_asserteq_str(testdev->name, finddev->name);
1098 		ut_asserteq_ptr(testdev, finddev);
1099 	}
1100 
1101 	return 0;
1102 }
1103 DM_TEST(dm_test_uclass_devices_get_by_name, UT_TESTF_SCAN_FDT);
1104 
dm_test_device_get_uclass_id(struct unit_test_state * uts)1105 static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
1106 {
1107 	struct udevice *dev;
1108 
1109 	ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
1110 	ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
1111 
1112 	return 0;
1113 }
1114 DM_TEST(dm_test_device_get_uclass_id, UT_TESTF_SCAN_PDATA);
1115 
dm_test_uclass_names(struct unit_test_state * uts)1116 static int dm_test_uclass_names(struct unit_test_state *uts)
1117 {
1118 	ut_asserteq_str("test", uclass_get_name(UCLASS_TEST));
1119 	ut_asserteq(UCLASS_TEST, uclass_get_by_name("test"));
1120 
1121 	return 0;
1122 }
1123 DM_TEST(dm_test_uclass_names, UT_TESTF_SCAN_PDATA);
1124 
dm_test_inactive_child(struct unit_test_state * uts)1125 static int dm_test_inactive_child(struct unit_test_state *uts)
1126 {
1127 	struct udevice *parent, *dev1, *dev2;
1128 
1129 	/* Skip the behaviour in test_post_probe() */
1130 	uts->skip_post_probe = 1;
1131 
1132 	ut_assertok(uclass_first_device_err(UCLASS_TEST, &parent));
1133 
1134 	/*
1135 	 * Create a child but do not activate it. Calling the function again
1136 	 * should return the same child.
1137 	 */
1138 	ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
1139 							UCLASS_TEST, &dev1));
1140 	ut_assertok(device_bind(parent, DM_DRIVER_GET(test_drv),
1141 				"test_child", 0, ofnode_null(), &dev1));
1142 
1143 	ut_assertok(device_find_first_inactive_child(parent, UCLASS_TEST,
1144 						     &dev2));
1145 	ut_asserteq_ptr(dev1, dev2);
1146 
1147 	ut_assertok(device_probe(dev1));
1148 	ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
1149 							UCLASS_TEST, &dev2));
1150 
1151 	return 0;
1152 }
1153 DM_TEST(dm_test_inactive_child, UT_TESTF_SCAN_PDATA);
1154 
1155 /* Make sure all bound devices have a sequence number */
dm_test_all_have_seq(struct unit_test_state * uts)1156 static int dm_test_all_have_seq(struct unit_test_state *uts)
1157 {
1158 	struct udevice *dev;
1159 	struct uclass *uc;
1160 
1161 	list_for_each_entry(uc, gd->uclass_root, sibling_node) {
1162 		list_for_each_entry(dev, &uc->dev_head, uclass_node) {
1163 			if (dev->seq_ == -1)
1164 				printf("Device '%s' has no seq (%d)\n",
1165 				       dev->name, dev->seq_);
1166 			ut_assert(dev->seq_ != -1);
1167 		}
1168 	}
1169 
1170 	return 0;
1171 }
1172 DM_TEST(dm_test_all_have_seq, UT_TESTF_SCAN_PDATA);
1173 
dm_test_dma_offset(struct unit_test_state * uts)1174 static int dm_test_dma_offset(struct unit_test_state *uts)
1175 {
1176        struct udevice *dev;
1177        ofnode node;
1178 
1179        /* Make sure the bus's dma-ranges aren't taken into account here */
1180        node = ofnode_path("/mmio-bus@0");
1181        ut_assert(ofnode_valid(node));
1182        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
1183        ut_asserteq_64(0, dev->dma_offset);
1184 
1185        /* Device behind a bus with dma-ranges */
1186        node = ofnode_path("/mmio-bus@0/subnode@0");
1187        ut_assert(ofnode_valid(node));
1188        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
1189        ut_asserteq_64(-0x10000000ULL, dev->dma_offset);
1190 
1191        /* This one has no dma-ranges */
1192        node = ofnode_path("/mmio-bus@1");
1193        ut_assert(ofnode_valid(node));
1194        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
1195        node = ofnode_path("/mmio-bus@1/subnode@0");
1196        ut_assert(ofnode_valid(node));
1197        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
1198        ut_asserteq_64(0, dev->dma_offset);
1199 
1200        return 0;
1201 }
1202 DM_TEST(dm_test_dma_offset, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
1203