1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2015
4  * Elecsys Corporation <www.elecsyscorp.com>
5  * Kevin Smith <kevin.smith@elecsyscorp.com>
6  *
7  * Original driver:
8  * (C) Copyright 2009
9  * Marvell Semiconductor <www.marvell.com>
10  * Prafulla Wadaskar <prafulla@marvell.com>
11  */
12 
13 /*
14  * PHY driver for mv88e61xx ethernet switches.
15  *
16  * This driver configures the mv88e61xx for basic use as a PHY.  The switch
17  * supports a VLAN configuration that determines how traffic will be routed
18  * between the ports.  This driver uses a simple configuration that routes
19  * traffic from each PHY port only to the CPU port, and from the CPU port to
20  * any PHY port.
21  *
22  * The configuration determines which PHY ports to activate using the
23  * CONFIG_MV88E61XX_PHY_PORTS bitmask.  Setting bit 0 will activate port 0, bit
24  * 1 activates port 1, etc.  Do not set the bit for the port the CPU is
25  * connected to unless it is connected over a PHY interface (not MII).
26  *
27  * This driver was written for and tested on the mv88e6176 with an SGMII
28  * connection.  Other configurations should be supported, but some additions or
29  * changes may be required.
30  */
31 
32 #include <common.h>
33 #include <log.h>
34 #include <linux/bitops.h>
35 #include <linux/delay.h>
36 
37 #include <bitfield.h>
38 #include <errno.h>
39 #include <malloc.h>
40 #include <miiphy.h>
41 #include <netdev.h>
42 
43 #define PHY_AUTONEGOTIATE_TIMEOUT	5000
44 
45 #define PORT_MASK(port_count)		((1 << (port_count)) - 1)
46 
47 /* Device addresses */
48 #define DEVADDR_PHY(p)			(p)
49 #define DEVADDR_SERDES			0x0F
50 
51 /* SMI indirection registers for multichip addressing mode */
52 #define SMI_CMD_REG			0x00
53 #define SMI_DATA_REG			0x01
54 
55 /* Global registers */
56 #define GLOBAL1_STATUS			0x00
57 #define GLOBAL1_CTRL			0x04
58 #define GLOBAL1_MON_CTRL		0x1A
59 
60 /* Global 2 registers */
61 #define GLOBAL2_REG_PHY_CMD		0x18
62 #define GLOBAL2_REG_PHY_DATA		0x19
63 
64 /* Port registers */
65 #define PORT_REG_STATUS			0x00
66 #define PORT_REG_PHYS_CTRL		0x01
67 #define PORT_REG_SWITCH_ID		0x03
68 #define PORT_REG_CTRL			0x04
69 #define PORT_REG_VLAN_MAP		0x06
70 #define PORT_REG_VLAN_ID		0x07
71 
72 /* Phy registers */
73 #define PHY_REG_CTRL1			0x10
74 #define PHY_REG_STATUS1			0x11
75 #define PHY_REG_PAGE			0x16
76 
77 /* Serdes registers */
78 #define SERDES_REG_CTRL_1		0x10
79 
80 /* Phy page numbers */
81 #define PHY_PAGE_COPPER			0
82 #define PHY_PAGE_SERDES			1
83 
84 /* Register fields */
85 #define GLOBAL1_CTRL_SWRESET		BIT(15)
86 
87 #define GLOBAL1_MON_CTRL_CPUDEST_SHIFT	4
88 #define GLOBAL1_MON_CTRL_CPUDEST_WIDTH	4
89 
90 #define PORT_REG_STATUS_SPEED_SHIFT	8
91 #define PORT_REG_STATUS_SPEED_10	0
92 #define PORT_REG_STATUS_SPEED_100	1
93 #define PORT_REG_STATUS_SPEED_1000	2
94 
95 #define PORT_REG_STATUS_CMODE_MASK		0xF
96 #define PORT_REG_STATUS_CMODE_100BASE_X		0x8
97 #define PORT_REG_STATUS_CMODE_1000BASE_X	0x9
98 #define PORT_REG_STATUS_CMODE_SGMII		0xa
99 
100 #define PORT_REG_PHYS_CTRL_PCS_AN_EN	BIT(10)
101 #define PORT_REG_PHYS_CTRL_PCS_AN_RST	BIT(9)
102 #define PORT_REG_PHYS_CTRL_FC_VALUE	BIT(7)
103 #define PORT_REG_PHYS_CTRL_FC_FORCE	BIT(6)
104 #define PORT_REG_PHYS_CTRL_LINK_VALUE	BIT(5)
105 #define PORT_REG_PHYS_CTRL_LINK_FORCE	BIT(4)
106 #define PORT_REG_PHYS_CTRL_DUPLEX_VALUE	BIT(3)
107 #define PORT_REG_PHYS_CTRL_DUPLEX_FORCE	BIT(2)
108 #define PORT_REG_PHYS_CTRL_SPD1000	BIT(1)
109 #define PORT_REG_PHYS_CTRL_SPD100	BIT(0)
110 #define PORT_REG_PHYS_CTRL_SPD_MASK	(BIT(1) | BIT(0))
111 
112 #define PORT_REG_CTRL_PSTATE_SHIFT	0
113 #define PORT_REG_CTRL_PSTATE_WIDTH	2
114 
115 #define PORT_REG_VLAN_ID_DEF_VID_SHIFT	0
116 #define PORT_REG_VLAN_ID_DEF_VID_WIDTH	12
117 
118 #define PORT_REG_VLAN_MAP_TABLE_SHIFT	0
119 #define PORT_REG_VLAN_MAP_TABLE_WIDTH	11
120 
121 #define SERDES_REG_CTRL_1_FORCE_LINK	BIT(10)
122 
123 /* Field values */
124 #define PORT_REG_CTRL_PSTATE_DISABLED	0
125 #define PORT_REG_CTRL_PSTATE_FORWARD	3
126 
127 #define PHY_REG_CTRL1_ENERGY_DET_OFF	0
128 #define PHY_REG_CTRL1_ENERGY_DET_SENSE_PULSE	1
129 #define PHY_REG_CTRL1_ENERGY_DET_SENSE_ONLY	2
130 #define PHY_REG_CTRL1_ENERGY_DET_SENSE_XMIT	3
131 
132 /* PHY Status Register */
133 #define PHY_REG_STATUS1_SPEED		0xc000
134 #define PHY_REG_STATUS1_GBIT		0x8000
135 #define PHY_REG_STATUS1_100		0x4000
136 #define PHY_REG_STATUS1_DUPLEX		0x2000
137 #define PHY_REG_STATUS1_SPDDONE		0x0800
138 #define PHY_REG_STATUS1_LINK		0x0400
139 #define PHY_REG_STATUS1_ENERGY		0x0010
140 
141 /*
142  * Macros for building commands for indirect addressing modes.  These are valid
143  * for both the indirect multichip addressing mode and the PHY indirection
144  * required for the writes to any PHY register.
145  */
146 #define SMI_BUSY			BIT(15)
147 #define SMI_CMD_CLAUSE_22		BIT(12)
148 #define SMI_CMD_CLAUSE_22_OP_READ	(2 << 10)
149 #define SMI_CMD_CLAUSE_22_OP_WRITE	(1 << 10)
150 
151 #define SMI_CMD_READ			(SMI_BUSY | SMI_CMD_CLAUSE_22 | \
152 					 SMI_CMD_CLAUSE_22_OP_READ)
153 #define SMI_CMD_WRITE			(SMI_BUSY | SMI_CMD_CLAUSE_22 | \
154 					 SMI_CMD_CLAUSE_22_OP_WRITE)
155 
156 #define SMI_CMD_ADDR_SHIFT		5
157 #define SMI_CMD_ADDR_WIDTH		5
158 #define SMI_CMD_REG_SHIFT		0
159 #define SMI_CMD_REG_WIDTH		5
160 
161 /* Check for required macros */
162 #ifndef CONFIG_MV88E61XX_PHY_PORTS
163 #error Define CONFIG_MV88E61XX_PHY_PORTS to indicate which physical ports \
164 	to activate
165 #endif
166 #ifndef CONFIG_MV88E61XX_CPU_PORT
167 #error Define CONFIG_MV88E61XX_CPU_PORT to the port the CPU is attached to
168 #endif
169 
170 /*
171  *  These are ports without PHYs that may be wired directly
172  * to other serdes interfaces
173  */
174 #ifndef CONFIG_MV88E61XX_FIXED_PORTS
175 #define CONFIG_MV88E61XX_FIXED_PORTS 0
176 #endif
177 
178 /* ID register values for different switch models */
179 #define PORT_SWITCH_ID_6020		0x0200
180 #define PORT_SWITCH_ID_6070		0x0700
181 #define PORT_SWITCH_ID_6071		0x0710
182 #define PORT_SWITCH_ID_6096		0x0980
183 #define PORT_SWITCH_ID_6097		0x0990
184 #define PORT_SWITCH_ID_6172		0x1720
185 #define PORT_SWITCH_ID_6176		0x1760
186 #define PORT_SWITCH_ID_6220		0x2200
187 #define PORT_SWITCH_ID_6240		0x2400
188 #define PORT_SWITCH_ID_6250		0x2500
189 #define PORT_SWITCH_ID_6352		0x3520
190 
191 struct mv88e61xx_phy_priv {
192 	struct mii_dev *mdio_bus;
193 	int smi_addr;
194 	int id;
195 	int port_count;		/* Number of switch ports */
196 	int port_reg_base;	/* Base of the switch port registers */
197 	u16 port_stat_link_mask;/* Bitmask for port link status bits */
198 	u16 port_stat_dup_mask; /* Bitmask for port duplex status bits */
199 	u8 port_stat_speed_width;/* Width of speed status bitfield */
200 	u8 global1;	/* Offset of Switch Global 1 registers */
201 	u8 global2;	/* Offset of Switch Global 2 registers */
202 	u8 phy_ctrl1_en_det_shift; /* 'EDet' bit field offset */
203 	u8 phy_ctrl1_en_det_width; /* Width of 'EDet' bit field */
204 	u8 phy_ctrl1_en_det_ctrl;  /* 'EDet' control value */
205 };
206 
smi_cmd(int cmd,int addr,int reg)207 static inline int smi_cmd(int cmd, int addr, int reg)
208 {
209 	cmd = bitfield_replace(cmd, SMI_CMD_ADDR_SHIFT, SMI_CMD_ADDR_WIDTH,
210 			       addr);
211 	cmd = bitfield_replace(cmd, SMI_CMD_REG_SHIFT, SMI_CMD_REG_WIDTH, reg);
212 	return cmd;
213 }
214 
smi_cmd_read(int addr,int reg)215 static inline int smi_cmd_read(int addr, int reg)
216 {
217 	return smi_cmd(SMI_CMD_READ, addr, reg);
218 }
219 
smi_cmd_write(int addr,int reg)220 static inline int smi_cmd_write(int addr, int reg)
221 {
222 	return smi_cmd(SMI_CMD_WRITE, addr, reg);
223 }
224 
mv88e61xx_hw_reset(struct phy_device * phydev)225 __weak int mv88e61xx_hw_reset(struct phy_device *phydev)
226 {
227 	return 0;
228 }
229 
230 /* Wait for the current SMI indirect command to complete */
mv88e61xx_smi_wait(struct mii_dev * bus,int smi_addr)231 static int mv88e61xx_smi_wait(struct mii_dev *bus, int smi_addr)
232 {
233 	int val;
234 	u32 timeout = 100;
235 
236 	do {
237 		val = bus->read(bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG);
238 		if (val >= 0 && (val & SMI_BUSY) == 0)
239 			return 0;
240 
241 		mdelay(1);
242 	} while (--timeout);
243 
244 	puts("SMI busy timeout\n");
245 	return -ETIMEDOUT;
246 }
247 
248 /*
249  * The mv88e61xx has three types of addresses: the smi bus address, the device
250  * address, and the register address.  The smi bus address distinguishes it on
251  * the smi bus from other PHYs or switches.  The device address determines
252  * which on-chip register set you are reading/writing (the various PHYs, their
253  * associated ports, or global configuration registers).  The register address
254  * is the offset of the register you are reading/writing.
255  *
256  * When the mv88e61xx is hardware configured to have address zero, it behaves in
257  * single-chip addressing mode, where it responds to all SMI addresses, using
258  * the smi address as its device address.  This obviously only works when this
259  * is the only chip on the SMI bus.  This allows the driver to access device
260  * registers without using indirection.  When the chip is configured to a
261  * non-zero address, it only responds to that SMI address and requires indirect
262  * writes to access the different device addresses.
263  */
mv88e61xx_reg_read(struct phy_device * phydev,int dev,int reg)264 static int mv88e61xx_reg_read(struct phy_device *phydev, int dev, int reg)
265 {
266 	struct mv88e61xx_phy_priv *priv = phydev->priv;
267 	struct mii_dev *mdio_bus = priv->mdio_bus;
268 	int smi_addr = priv->smi_addr;
269 	int res;
270 
271 	/* In single-chip mode, the device can be addressed directly */
272 	if (smi_addr == 0)
273 		return mdio_bus->read(mdio_bus, dev, MDIO_DEVAD_NONE, reg);
274 
275 	/* Wait for the bus to become free */
276 	res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
277 	if (res < 0)
278 		return res;
279 
280 	/* Issue the read command */
281 	res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG,
282 			 smi_cmd_read(dev, reg));
283 	if (res < 0)
284 		return res;
285 
286 	/* Wait for the read command to complete */
287 	res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
288 	if (res < 0)
289 		return res;
290 
291 	/* Read the data */
292 	res = mdio_bus->read(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_DATA_REG);
293 	if (res < 0)
294 		return res;
295 
296 	return bitfield_extract(res, 0, 16);
297 }
298 
299 /* See the comment above mv88e61xx_reg_read */
mv88e61xx_reg_write(struct phy_device * phydev,int dev,int reg,u16 val)300 static int mv88e61xx_reg_write(struct phy_device *phydev, int dev, int reg,
301 			       u16 val)
302 {
303 	struct mv88e61xx_phy_priv *priv = phydev->priv;
304 	struct mii_dev *mdio_bus = priv->mdio_bus;
305 	int smi_addr = priv->smi_addr;
306 	int res;
307 
308 	/* In single-chip mode, the device can be addressed directly */
309 	if (smi_addr == 0) {
310 		return mdio_bus->write(mdio_bus, dev, MDIO_DEVAD_NONE, reg,
311 				val);
312 	}
313 
314 	/* Wait for the bus to become free */
315 	res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
316 	if (res < 0)
317 		return res;
318 
319 	/* Set the data to write */
320 	res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE,
321 				SMI_DATA_REG, val);
322 	if (res < 0)
323 		return res;
324 
325 	/* Issue the write command */
326 	res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG,
327 				smi_cmd_write(dev, reg));
328 	if (res < 0)
329 		return res;
330 
331 	/* Wait for the write command to complete */
332 	res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
333 	if (res < 0)
334 		return res;
335 
336 	return 0;
337 }
338 
mv88e61xx_phy_wait(struct phy_device * phydev)339 static int mv88e61xx_phy_wait(struct phy_device *phydev)
340 {
341 	struct mv88e61xx_phy_priv *priv = phydev->priv;
342 	int val;
343 	u32 timeout = 100;
344 
345 	do {
346 		val = mv88e61xx_reg_read(phydev, priv->global2,
347 					 GLOBAL2_REG_PHY_CMD);
348 		if (val >= 0 && (val & SMI_BUSY) == 0)
349 			return 0;
350 
351 		mdelay(1);
352 	} while (--timeout);
353 
354 	return -ETIMEDOUT;
355 }
356 
mv88e61xx_phy_read_indirect(struct mii_dev * smi_wrapper,int dev,int devad,int reg)357 static int mv88e61xx_phy_read_indirect(struct mii_dev *smi_wrapper, int dev,
358 		int devad, int reg)
359 {
360 	struct mv88e61xx_phy_priv *priv;
361 	struct phy_device *phydev;
362 	int res;
363 
364 	phydev = (struct phy_device *)smi_wrapper->priv;
365 	priv = phydev->priv;
366 
367 	/* Issue command to read */
368 	res = mv88e61xx_reg_write(phydev, priv->global2,
369 				  GLOBAL2_REG_PHY_CMD,
370 				  smi_cmd_read(dev, reg));
371 
372 	/* Wait for data to be read */
373 	res = mv88e61xx_phy_wait(phydev);
374 	if (res < 0)
375 		return res;
376 
377 	/* Read retrieved data */
378 	return mv88e61xx_reg_read(phydev, priv->global2,
379 				  GLOBAL2_REG_PHY_DATA);
380 }
381 
mv88e61xx_phy_write_indirect(struct mii_dev * smi_wrapper,int dev,int devad,int reg,u16 data)382 static int mv88e61xx_phy_write_indirect(struct mii_dev *smi_wrapper, int dev,
383 		int devad, int reg, u16 data)
384 {
385 	struct mv88e61xx_phy_priv *priv;
386 	struct phy_device *phydev;
387 	int res;
388 
389 	phydev = (struct phy_device *)smi_wrapper->priv;
390 	priv = phydev->priv;
391 
392 	/* Set the data to write */
393 	res = mv88e61xx_reg_write(phydev, priv->global2,
394 				  GLOBAL2_REG_PHY_DATA, data);
395 	if (res < 0)
396 		return res;
397 	/* Issue the write command */
398 	res = mv88e61xx_reg_write(phydev, priv->global2,
399 				  GLOBAL2_REG_PHY_CMD,
400 				  smi_cmd_write(dev, reg));
401 	if (res < 0)
402 		return res;
403 
404 	/* Wait for command to complete */
405 	return mv88e61xx_phy_wait(phydev);
406 }
407 
408 /* Wrapper function to make calls to phy_read_indirect simpler */
mv88e61xx_phy_read(struct phy_device * phydev,int phy,int reg)409 static int mv88e61xx_phy_read(struct phy_device *phydev, int phy, int reg)
410 {
411 	return mv88e61xx_phy_read_indirect(phydev->bus, DEVADDR_PHY(phy),
412 					   MDIO_DEVAD_NONE, reg);
413 }
414 
415 /* Wrapper function to make calls to phy_read_indirect simpler */
mv88e61xx_phy_write(struct phy_device * phydev,int phy,int reg,u16 val)416 static int mv88e61xx_phy_write(struct phy_device *phydev, int phy,
417 		int reg, u16 val)
418 {
419 	return mv88e61xx_phy_write_indirect(phydev->bus, DEVADDR_PHY(phy),
420 					    MDIO_DEVAD_NONE, reg, val);
421 }
422 
mv88e61xx_port_read(struct phy_device * phydev,u8 port,u8 reg)423 static int mv88e61xx_port_read(struct phy_device *phydev, u8 port, u8 reg)
424 {
425 	struct mv88e61xx_phy_priv *priv = phydev->priv;
426 
427 	return mv88e61xx_reg_read(phydev, priv->port_reg_base + port, reg);
428 }
429 
mv88e61xx_port_write(struct phy_device * phydev,u8 port,u8 reg,u16 val)430 static int mv88e61xx_port_write(struct phy_device *phydev, u8 port, u8 reg,
431 								u16 val)
432 {
433 	struct mv88e61xx_phy_priv *priv = phydev->priv;
434 
435 	return mv88e61xx_reg_write(phydev, priv->port_reg_base + port,
436 				   reg, val);
437 }
438 
mv88e61xx_set_page(struct phy_device * phydev,u8 phy,u8 page)439 static int mv88e61xx_set_page(struct phy_device *phydev, u8 phy, u8 page)
440 {
441 	return mv88e61xx_phy_write(phydev, phy, PHY_REG_PAGE, page);
442 }
443 
mv88e61xx_get_switch_id(struct phy_device * phydev)444 static int mv88e61xx_get_switch_id(struct phy_device *phydev)
445 {
446 	int res;
447 
448 	res = mv88e61xx_port_read(phydev, 0, PORT_REG_SWITCH_ID);
449 	if (res < 0)
450 		return res;
451 	return res & 0xfff0;
452 }
453 
mv88e61xx_6352_family(struct phy_device * phydev)454 static bool mv88e61xx_6352_family(struct phy_device *phydev)
455 {
456 	struct mv88e61xx_phy_priv *priv = phydev->priv;
457 
458 	switch (priv->id) {
459 	case PORT_SWITCH_ID_6172:
460 	case PORT_SWITCH_ID_6176:
461 	case PORT_SWITCH_ID_6240:
462 	case PORT_SWITCH_ID_6352:
463 		return true;
464 	}
465 	return false;
466 }
467 
mv88e61xx_get_cmode(struct phy_device * phydev,u8 port)468 static int mv88e61xx_get_cmode(struct phy_device *phydev, u8 port)
469 {
470 	int res;
471 
472 	res = mv88e61xx_port_read(phydev, port, PORT_REG_STATUS);
473 	if (res < 0)
474 		return res;
475 	return res & PORT_REG_STATUS_CMODE_MASK;
476 }
477 
mv88e61xx_parse_status(struct phy_device * phydev)478 static int mv88e61xx_parse_status(struct phy_device *phydev)
479 {
480 	unsigned int speed;
481 	unsigned int mii_reg;
482 
483 	mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, PHY_REG_STATUS1);
484 
485 	if ((mii_reg & PHY_REG_STATUS1_LINK) &&
486 	    !(mii_reg & PHY_REG_STATUS1_SPDDONE)) {
487 		int i = 0;
488 
489 		puts("Waiting for PHY realtime link");
490 		while (!(mii_reg & PHY_REG_STATUS1_SPDDONE)) {
491 			/* Timeout reached ? */
492 			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
493 				puts(" TIMEOUT !\n");
494 				phydev->link = 0;
495 				break;
496 			}
497 
498 			if ((i++ % 1000) == 0)
499 				putc('.');
500 			udelay(1000);
501 			mii_reg = phy_read(phydev, MDIO_DEVAD_NONE,
502 					PHY_REG_STATUS1);
503 		}
504 		puts(" done\n");
505 		udelay(500000);	/* another 500 ms (results in faster booting) */
506 	} else {
507 		if (mii_reg & PHY_REG_STATUS1_LINK)
508 			phydev->link = 1;
509 		else
510 			phydev->link = 0;
511 	}
512 
513 	if (mii_reg & PHY_REG_STATUS1_DUPLEX)
514 		phydev->duplex = DUPLEX_FULL;
515 	else
516 		phydev->duplex = DUPLEX_HALF;
517 
518 	speed = mii_reg & PHY_REG_STATUS1_SPEED;
519 
520 	switch (speed) {
521 	case PHY_REG_STATUS1_GBIT:
522 		phydev->speed = SPEED_1000;
523 		break;
524 	case PHY_REG_STATUS1_100:
525 		phydev->speed = SPEED_100;
526 		break;
527 	default:
528 		phydev->speed = SPEED_10;
529 		break;
530 	}
531 
532 	return 0;
533 }
534 
mv88e61xx_switch_reset(struct phy_device * phydev)535 static int mv88e61xx_switch_reset(struct phy_device *phydev)
536 {
537 	struct mv88e61xx_phy_priv *priv = phydev->priv;
538 	int time;
539 	int val;
540 	u8 port;
541 
542 	/* Disable all ports */
543 	for (port = 0; port < priv->port_count; port++) {
544 		val = mv88e61xx_port_read(phydev, port, PORT_REG_CTRL);
545 		if (val < 0)
546 			return val;
547 		val = bitfield_replace(val, PORT_REG_CTRL_PSTATE_SHIFT,
548 				       PORT_REG_CTRL_PSTATE_WIDTH,
549 				       PORT_REG_CTRL_PSTATE_DISABLED);
550 		val = mv88e61xx_port_write(phydev, port, PORT_REG_CTRL, val);
551 		if (val < 0)
552 			return val;
553 	}
554 
555 	/* Wait 2 ms for queues to drain */
556 	udelay(2000);
557 
558 	/* Reset switch */
559 	val = mv88e61xx_reg_read(phydev, priv->global1, GLOBAL1_CTRL);
560 	if (val < 0)
561 		return val;
562 	val |= GLOBAL1_CTRL_SWRESET;
563 	val = mv88e61xx_reg_write(phydev, priv->global1,
564 				  GLOBAL1_CTRL, val);
565 	if (val < 0)
566 		return val;
567 
568 	/* Wait up to 1 second for switch reset complete */
569 	for (time = 1000; time; time--) {
570 		val = mv88e61xx_reg_read(phydev, priv->global1,
571 					 GLOBAL1_CTRL);
572 		if (val >= 0 && ((val & GLOBAL1_CTRL_SWRESET) == 0))
573 			break;
574 		udelay(1000);
575 	}
576 	if (!time)
577 		return -ETIMEDOUT;
578 
579 	return 0;
580 }
581 
mv88e61xx_serdes_init(struct phy_device * phydev)582 static int mv88e61xx_serdes_init(struct phy_device *phydev)
583 {
584 	int val;
585 
586 	val = mv88e61xx_set_page(phydev, DEVADDR_SERDES, PHY_PAGE_SERDES);
587 	if (val < 0)
588 		return val;
589 
590 	/* Power up serdes module */
591 	val = mv88e61xx_phy_read(phydev, DEVADDR_SERDES, MII_BMCR);
592 	if (val < 0)
593 		return val;
594 	val &= ~(BMCR_PDOWN);
595 	val = mv88e61xx_phy_write(phydev, DEVADDR_SERDES, MII_BMCR, val);
596 	if (val < 0)
597 		return val;
598 
599 	return 0;
600 }
601 
mv88e61xx_port_enable(struct phy_device * phydev,u8 port)602 static int mv88e61xx_port_enable(struct phy_device *phydev, u8 port)
603 {
604 	int val;
605 
606 	val = mv88e61xx_port_read(phydev, port, PORT_REG_CTRL);
607 	if (val < 0)
608 		return val;
609 	val = bitfield_replace(val, PORT_REG_CTRL_PSTATE_SHIFT,
610 			       PORT_REG_CTRL_PSTATE_WIDTH,
611 			       PORT_REG_CTRL_PSTATE_FORWARD);
612 	val = mv88e61xx_port_write(phydev, port, PORT_REG_CTRL, val);
613 	if (val < 0)
614 		return val;
615 
616 	return 0;
617 }
618 
mv88e61xx_port_set_vlan(struct phy_device * phydev,u8 port,u16 mask)619 static int mv88e61xx_port_set_vlan(struct phy_device *phydev, u8 port,
620 							u16 mask)
621 {
622 	int val;
623 
624 	/* Set VID to port number plus one */
625 	val = mv88e61xx_port_read(phydev, port, PORT_REG_VLAN_ID);
626 	if (val < 0)
627 		return val;
628 	val = bitfield_replace(val, PORT_REG_VLAN_ID_DEF_VID_SHIFT,
629 			       PORT_REG_VLAN_ID_DEF_VID_WIDTH,
630 			       port + 1);
631 	val = mv88e61xx_port_write(phydev, port, PORT_REG_VLAN_ID, val);
632 	if (val < 0)
633 		return val;
634 
635 	/* Set VID mask */
636 	val = mv88e61xx_port_read(phydev, port, PORT_REG_VLAN_MAP);
637 	if (val < 0)
638 		return val;
639 	val = bitfield_replace(val, PORT_REG_VLAN_MAP_TABLE_SHIFT,
640 			       PORT_REG_VLAN_MAP_TABLE_WIDTH,
641 			       mask);
642 	val = mv88e61xx_port_write(phydev, port, PORT_REG_VLAN_MAP, val);
643 	if (val < 0)
644 		return val;
645 
646 	return 0;
647 }
648 
mv88e61xx_read_port_config(struct phy_device * phydev,u8 port)649 static int mv88e61xx_read_port_config(struct phy_device *phydev, u8 port)
650 {
651 	struct mv88e61xx_phy_priv *priv = phydev->priv;
652 	int res;
653 	int val;
654 	bool forced = false;
655 
656 	val = mv88e61xx_port_read(phydev, port, PORT_REG_STATUS);
657 	if (val < 0)
658 		return val;
659 	if (!(val & priv->port_stat_link_mask)) {
660 		/* Temporarily force link to read port configuration */
661 		u32 timeout = 100;
662 		forced = true;
663 
664 		val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
665 		if (val < 0)
666 			return val;
667 		val |= (PORT_REG_PHYS_CTRL_LINK_FORCE |
668 				PORT_REG_PHYS_CTRL_LINK_VALUE);
669 		val = mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
670 					   val);
671 		if (val < 0)
672 			return val;
673 
674 		/* Wait for status register to reflect forced link */
675 		do {
676 			val = mv88e61xx_port_read(phydev, port,
677 						  PORT_REG_STATUS);
678 			if (val < 0) {
679 				res = -EIO;
680 				goto unforce;
681 			}
682 			if (val & priv->port_stat_link_mask)
683 				break;
684 		} while (--timeout);
685 
686 		if (timeout == 0) {
687 			res = -ETIMEDOUT;
688 			goto unforce;
689 		}
690 	}
691 
692 	if (val & priv->port_stat_dup_mask)
693 		phydev->duplex = DUPLEX_FULL;
694 	else
695 		phydev->duplex = DUPLEX_HALF;
696 
697 	val = bitfield_extract(val, PORT_REG_STATUS_SPEED_SHIFT,
698 			       priv->port_stat_speed_width);
699 	switch (val) {
700 	case PORT_REG_STATUS_SPEED_1000:
701 		phydev->speed = SPEED_1000;
702 		break;
703 	case PORT_REG_STATUS_SPEED_100:
704 		phydev->speed = SPEED_100;
705 		break;
706 	default:
707 		phydev->speed = SPEED_10;
708 		break;
709 	}
710 
711 	res = 0;
712 
713 unforce:
714 	if (forced) {
715 		val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
716 		if (val < 0)
717 			return val;
718 		val &= ~(PORT_REG_PHYS_CTRL_LINK_FORCE |
719 				PORT_REG_PHYS_CTRL_LINK_VALUE);
720 		val = mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
721 					   val);
722 		if (val < 0)
723 			return val;
724 	}
725 
726 	return res;
727 }
728 
mv88e61xx_fixed_port_setup(struct phy_device * phydev,u8 port)729 static int mv88e61xx_fixed_port_setup(struct phy_device *phydev, u8 port)
730 {
731 	struct mv88e61xx_phy_priv *priv = phydev->priv;
732 	int val;
733 
734 	val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
735 	if (val < 0)
736 		return val;
737 
738 	val &= ~(PORT_REG_PHYS_CTRL_SPD_MASK |
739 		 PORT_REG_PHYS_CTRL_FC_VALUE |
740 		 PORT_REG_PHYS_CTRL_FC_FORCE);
741 	val |= PORT_REG_PHYS_CTRL_FC_FORCE |
742 	       PORT_REG_PHYS_CTRL_DUPLEX_VALUE |
743 	       PORT_REG_PHYS_CTRL_DUPLEX_FORCE;
744 
745 	if (priv->id == PORT_SWITCH_ID_6071) {
746 		val |= PORT_REG_PHYS_CTRL_SPD100;
747 	} else {
748 		val |= PORT_REG_PHYS_CTRL_PCS_AN_EN |
749 		       PORT_REG_PHYS_CTRL_PCS_AN_RST |
750 		       PORT_REG_PHYS_CTRL_SPD1000;
751 	}
752 
753 	if (port == CONFIG_MV88E61XX_CPU_PORT)
754 		val |= PORT_REG_PHYS_CTRL_LINK_VALUE |
755 		       PORT_REG_PHYS_CTRL_LINK_FORCE;
756 
757 	return mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
758 				   val);
759 }
760 
mv88e61xx_set_cpu_port(struct phy_device * phydev)761 static int mv88e61xx_set_cpu_port(struct phy_device *phydev)
762 {
763 	struct mv88e61xx_phy_priv *priv = phydev->priv;
764 	int val;
765 
766 	/* Set CPUDest */
767 	val = mv88e61xx_reg_read(phydev, priv->global1, GLOBAL1_MON_CTRL);
768 	if (val < 0)
769 		return val;
770 	val = bitfield_replace(val, GLOBAL1_MON_CTRL_CPUDEST_SHIFT,
771 			       GLOBAL1_MON_CTRL_CPUDEST_WIDTH,
772 			       CONFIG_MV88E61XX_CPU_PORT);
773 	val = mv88e61xx_reg_write(phydev, priv->global1,
774 				  GLOBAL1_MON_CTRL, val);
775 	if (val < 0)
776 		return val;
777 
778 	/* Allow CPU to route to any port */
779 	val = PORT_MASK(priv->port_count) & ~(1 << CONFIG_MV88E61XX_CPU_PORT);
780 	val = mv88e61xx_port_set_vlan(phydev, CONFIG_MV88E61XX_CPU_PORT, val);
781 	if (val < 0)
782 		return val;
783 
784 	/* Enable CPU port */
785 	val = mv88e61xx_port_enable(phydev, CONFIG_MV88E61XX_CPU_PORT);
786 	if (val < 0)
787 		return val;
788 
789 	val = mv88e61xx_read_port_config(phydev, CONFIG_MV88E61XX_CPU_PORT);
790 	if (val < 0)
791 		return val;
792 
793 	/* If CPU is connected to serdes, initialize serdes */
794 	if (mv88e61xx_6352_family(phydev)) {
795 		val = mv88e61xx_get_cmode(phydev, CONFIG_MV88E61XX_CPU_PORT);
796 		if (val < 0)
797 			return val;
798 		if (val == PORT_REG_STATUS_CMODE_100BASE_X ||
799 		    val == PORT_REG_STATUS_CMODE_1000BASE_X ||
800 		    val == PORT_REG_STATUS_CMODE_SGMII) {
801 			val = mv88e61xx_serdes_init(phydev);
802 			if (val < 0)
803 				return val;
804 		}
805 	} else {
806 		val = mv88e61xx_fixed_port_setup(phydev,
807 						 CONFIG_MV88E61XX_CPU_PORT);
808 		if (val < 0)
809 			return val;
810 	}
811 
812 	return 0;
813 }
814 
mv88e61xx_switch_init(struct phy_device * phydev)815 static int mv88e61xx_switch_init(struct phy_device *phydev)
816 {
817 	static int init;
818 	int res;
819 
820 	if (init)
821 		return 0;
822 
823 	res = mv88e61xx_switch_reset(phydev);
824 	if (res < 0)
825 		return res;
826 
827 	res = mv88e61xx_set_cpu_port(phydev);
828 	if (res < 0)
829 		return res;
830 
831 	init = 1;
832 
833 	return 0;
834 }
835 
mv88e61xx_phy_enable(struct phy_device * phydev,u8 phy)836 static int mv88e61xx_phy_enable(struct phy_device *phydev, u8 phy)
837 {
838 	int val;
839 
840 	val = mv88e61xx_phy_read(phydev, phy, MII_BMCR);
841 	if (val < 0)
842 		return val;
843 	val &= ~(BMCR_PDOWN);
844 	val = mv88e61xx_phy_write(phydev, phy, MII_BMCR, val);
845 	if (val < 0)
846 		return val;
847 
848 	return 0;
849 }
850 
mv88e61xx_phy_setup(struct phy_device * phydev,u8 phy)851 static int mv88e61xx_phy_setup(struct phy_device *phydev, u8 phy)
852 {
853 	struct mv88e61xx_phy_priv *priv = phydev->priv;
854 	int val;
855 
856 	/*
857 	 * Enable energy-detect sensing on PHY, used to determine when a PHY
858 	 * port is physically connected
859 	 */
860 	val = mv88e61xx_phy_read(phydev, phy, PHY_REG_CTRL1);
861 	if (val < 0)
862 		return val;
863 	val = bitfield_replace(val, priv->phy_ctrl1_en_det_shift,
864 			       priv->phy_ctrl1_en_det_width,
865 			       priv->phy_ctrl1_en_det_ctrl);
866 	val = mv88e61xx_phy_write(phydev, phy, PHY_REG_CTRL1, val);
867 	if (val < 0)
868 		return val;
869 
870 	return 0;
871 }
872 
mv88e61xx_phy_config_port(struct phy_device * phydev,u8 phy)873 static int mv88e61xx_phy_config_port(struct phy_device *phydev, u8 phy)
874 {
875 	int val;
876 
877 	val = mv88e61xx_port_enable(phydev, phy);
878 	if (val < 0)
879 		return val;
880 
881 	val = mv88e61xx_port_set_vlan(phydev, phy,
882 			1 << CONFIG_MV88E61XX_CPU_PORT);
883 	if (val < 0)
884 		return val;
885 
886 	return 0;
887 }
888 
889 /*
890  * This function is used to pre-configure the required register
891  * offsets, so that the indirect register access to the PHY registers
892  * is possible. This is necessary to be able to read the PHY ID
893  * while driver probing or in get_phy_id(). The globalN register
894  * offsets must be initialized correctly for a detected switch,
895  * otherwise detection of the PHY ID won't work!
896  */
mv88e61xx_priv_reg_offs_pre_init(struct phy_device * phydev)897 static int mv88e61xx_priv_reg_offs_pre_init(struct phy_device *phydev)
898 {
899 	struct mv88e61xx_phy_priv *priv = phydev->priv;
900 
901 	/*
902 	 * Initial 'port_reg_base' value must be an offset of existing
903 	 * port register, then reading the ID should succeed. First, try
904 	 * to read via port registers with device address 0x10 (88E6096
905 	 * and compatible switches).
906 	 */
907 	priv->port_reg_base = 0x10;
908 	priv->id = mv88e61xx_get_switch_id(phydev);
909 	if (priv->id != 0xfff0) {
910 		priv->global1 = 0x1B;
911 		priv->global2 = 0x1C;
912 		return 0;
913 	}
914 
915 	/*
916 	 * Now try via port registers with device address 0x08
917 	 * (88E6020 and compatible switches).
918 	 */
919 	priv->port_reg_base = 0x08;
920 	priv->id = mv88e61xx_get_switch_id(phydev);
921 	if (priv->id != 0xfff0) {
922 		priv->global1 = 0x0F;
923 		priv->global2 = 0x07;
924 		return 0;
925 	}
926 
927 	debug("%s Unknown ID 0x%x\n", __func__, priv->id);
928 	return -ENODEV;
929 }
930 
mv88e61xx_probe(struct phy_device * phydev)931 static int mv88e61xx_probe(struct phy_device *phydev)
932 {
933 	struct mii_dev *smi_wrapper;
934 	struct mv88e61xx_phy_priv *priv;
935 	int res;
936 
937 	res = mv88e61xx_hw_reset(phydev);
938 	if (res < 0)
939 		return res;
940 
941 	priv = malloc(sizeof(*priv));
942 	if (!priv)
943 		return -ENOMEM;
944 
945 	memset(priv, 0, sizeof(*priv));
946 
947 	/*
948 	 * This device requires indirect reads/writes to the PHY registers
949 	 * which the generic PHY code can't handle.  Make a wrapper MII device
950 	 * to handle reads/writes
951 	 */
952 	smi_wrapper = mdio_alloc();
953 	if (!smi_wrapper) {
954 		free(priv);
955 		return -ENOMEM;
956 	}
957 
958 	/*
959 	 * Store the mdio bus in the private data, as we are going to replace
960 	 * the bus with the wrapper bus
961 	 */
962 	priv->mdio_bus = phydev->bus;
963 
964 	/*
965 	 * Store the smi bus address in private data.  This lets us use the
966 	 * phydev addr field for device address instead, as the genphy code
967 	 * expects.
968 	 */
969 	priv->smi_addr = phydev->addr;
970 
971 	/*
972 	 * Store the phy_device in the wrapper mii device. This lets us get it
973 	 * back when genphy functions call phy_read/phy_write.
974 	 */
975 	smi_wrapper->priv = phydev;
976 	strncpy(smi_wrapper->name, "indirect mii", sizeof(smi_wrapper->name));
977 	smi_wrapper->read = mv88e61xx_phy_read_indirect;
978 	smi_wrapper->write = mv88e61xx_phy_write_indirect;
979 
980 	/* Replace the bus with the wrapper device */
981 	phydev->bus = smi_wrapper;
982 
983 	phydev->priv = priv;
984 
985 	res = mv88e61xx_priv_reg_offs_pre_init(phydev);
986 	if (res < 0)
987 		return res;
988 
989 	debug("%s ID 0x%x\n", __func__, priv->id);
990 
991 	switch (priv->id) {
992 	case PORT_SWITCH_ID_6096:
993 	case PORT_SWITCH_ID_6097:
994 	case PORT_SWITCH_ID_6172:
995 	case PORT_SWITCH_ID_6176:
996 	case PORT_SWITCH_ID_6240:
997 	case PORT_SWITCH_ID_6352:
998 		priv->port_count = 11;
999 		priv->port_stat_link_mask = BIT(11);
1000 		priv->port_stat_dup_mask = BIT(10);
1001 		priv->port_stat_speed_width = 2;
1002 		priv->phy_ctrl1_en_det_shift = 8;
1003 		priv->phy_ctrl1_en_det_width = 2;
1004 		priv->phy_ctrl1_en_det_ctrl =
1005 			PHY_REG_CTRL1_ENERGY_DET_SENSE_XMIT;
1006 		break;
1007 	case PORT_SWITCH_ID_6020:
1008 	case PORT_SWITCH_ID_6070:
1009 	case PORT_SWITCH_ID_6071:
1010 	case PORT_SWITCH_ID_6220:
1011 	case PORT_SWITCH_ID_6250:
1012 		priv->port_count = 7;
1013 		priv->port_stat_link_mask = BIT(12);
1014 		priv->port_stat_dup_mask = BIT(9);
1015 		priv->port_stat_speed_width = 1;
1016 		priv->phy_ctrl1_en_det_shift = 14;
1017 		priv->phy_ctrl1_en_det_width = 1;
1018 		priv->phy_ctrl1_en_det_ctrl =
1019 			PHY_REG_CTRL1_ENERGY_DET_SENSE_PULSE;
1020 		break;
1021 	default:
1022 		free(priv);
1023 		return -ENODEV;
1024 	}
1025 
1026 	res = mdio_register(smi_wrapper);
1027 	if (res)
1028 		printf("Failed to register SMI bus\n");
1029 
1030 	return 0;
1031 }
1032 
mv88e61xx_phy_config(struct phy_device * phydev)1033 static int mv88e61xx_phy_config(struct phy_device *phydev)
1034 {
1035 	struct mv88e61xx_phy_priv *priv = phydev->priv;
1036 	int res;
1037 	int i;
1038 	int ret = -1;
1039 
1040 	res = mv88e61xx_switch_init(phydev);
1041 	if (res < 0)
1042 		return res;
1043 
1044 	for (i = 0; i < priv->port_count; i++) {
1045 		if ((1 << i) & CONFIG_MV88E61XX_PHY_PORTS) {
1046 			phydev->addr = i;
1047 
1048 			res = mv88e61xx_phy_enable(phydev, i);
1049 			if (res < 0) {
1050 				printf("Error enabling PHY %i\n", i);
1051 				continue;
1052 			}
1053 			res = mv88e61xx_phy_setup(phydev, i);
1054 			if (res < 0) {
1055 				printf("Error setting up PHY %i\n", i);
1056 				continue;
1057 			}
1058 			res = mv88e61xx_phy_config_port(phydev, i);
1059 			if (res < 0) {
1060 				printf("Error configuring PHY %i\n", i);
1061 				continue;
1062 			}
1063 
1064 			res = phy_reset(phydev);
1065 			if (res < 0) {
1066 				printf("Error resetting PHY %i\n", i);
1067 				continue;
1068 			}
1069 			res = genphy_config_aneg(phydev);
1070 			if (res < 0) {
1071 				printf("Error setting PHY %i autoneg\n", i);
1072 				continue;
1073 			}
1074 
1075 			/* Return success if any PHY succeeds */
1076 			ret = 0;
1077 		} else if ((1 << i) & CONFIG_MV88E61XX_FIXED_PORTS) {
1078 			res = mv88e61xx_fixed_port_setup(phydev, i);
1079 			if (res < 0) {
1080 				printf("Error configuring port %i\n", i);
1081 				continue;
1082 			}
1083 		}
1084 	}
1085 
1086 	return ret;
1087 }
1088 
mv88e61xx_phy_is_connected(struct phy_device * phydev)1089 static int mv88e61xx_phy_is_connected(struct phy_device *phydev)
1090 {
1091 	int val;
1092 
1093 	val = mv88e61xx_phy_read(phydev, phydev->addr, PHY_REG_STATUS1);
1094 	if (val < 0)
1095 		return 0;
1096 
1097 	/*
1098 	 * After reset, the energy detect signal remains high for a few seconds
1099 	 * regardless of whether a cable is connected.  This function will
1100 	 * return false positives during this time.
1101 	 */
1102 	return (val & PHY_REG_STATUS1_ENERGY) == 0;
1103 }
1104 
mv88e61xx_phy_startup(struct phy_device * phydev)1105 static int mv88e61xx_phy_startup(struct phy_device *phydev)
1106 {
1107 	struct mv88e61xx_phy_priv *priv = phydev->priv;
1108 	int i;
1109 	int link = 0;
1110 	int res;
1111 	int speed = phydev->speed;
1112 	int duplex = phydev->duplex;
1113 
1114 	for (i = 0; i < priv->port_count; i++) {
1115 		if ((1 << i) & CONFIG_MV88E61XX_PHY_PORTS) {
1116 			phydev->addr = i;
1117 			if (!mv88e61xx_phy_is_connected(phydev))
1118 				continue;
1119 			res = genphy_update_link(phydev);
1120 			if (res < 0)
1121 				continue;
1122 			res = mv88e61xx_parse_status(phydev);
1123 			if (res < 0)
1124 				continue;
1125 			link = (link || phydev->link);
1126 		}
1127 	}
1128 	phydev->link = link;
1129 
1130 	/* Restore CPU interface speed and duplex after it was changed for
1131 	 * other ports */
1132 	phydev->speed = speed;
1133 	phydev->duplex = duplex;
1134 
1135 	return 0;
1136 }
1137 
1138 static struct phy_driver mv88e61xx_driver = {
1139 	.name = "Marvell MV88E61xx",
1140 	.uid = 0x01410eb1,
1141 	.mask = 0xfffffff0,
1142 	.features = PHY_GBIT_FEATURES,
1143 	.probe = mv88e61xx_probe,
1144 	.config = mv88e61xx_phy_config,
1145 	.startup = mv88e61xx_phy_startup,
1146 	.shutdown = &genphy_shutdown,
1147 };
1148 
1149 static struct phy_driver mv88e609x_driver = {
1150 	.name = "Marvell MV88E609x",
1151 	.uid = 0x1410c89,
1152 	.mask = 0xfffffff0,
1153 	.features = PHY_GBIT_FEATURES,
1154 	.probe = mv88e61xx_probe,
1155 	.config = mv88e61xx_phy_config,
1156 	.startup = mv88e61xx_phy_startup,
1157 	.shutdown = &genphy_shutdown,
1158 };
1159 
1160 static struct phy_driver mv88e6071_driver = {
1161 	.name = "Marvell MV88E6071",
1162 	.uid = 0x1410db0,
1163 	.mask = 0xfffffff0,
1164 	.features = PHY_BASIC_FEATURES | SUPPORTED_MII,
1165 	.probe = mv88e61xx_probe,
1166 	.config = mv88e61xx_phy_config,
1167 	.startup = mv88e61xx_phy_startup,
1168 	.shutdown = &genphy_shutdown,
1169 };
1170 
phy_mv88e61xx_init(void)1171 int phy_mv88e61xx_init(void)
1172 {
1173 	phy_register(&mv88e61xx_driver);
1174 	phy_register(&mv88e609x_driver);
1175 	phy_register(&mv88e6071_driver);
1176 
1177 	return 0;
1178 }
1179 
1180 /*
1181  * Overload weak get_phy_id definition since we need non-standard functions
1182  * to read PHY registers
1183  */
get_phy_id(struct mii_dev * bus,int smi_addr,int devad,u32 * phy_id)1184 int get_phy_id(struct mii_dev *bus, int smi_addr, int devad, u32 *phy_id)
1185 {
1186 	struct phy_device temp_phy;
1187 	struct mv88e61xx_phy_priv temp_priv;
1188 	struct mii_dev temp_mii;
1189 	int val;
1190 
1191 	/*
1192 	 * Buid temporary data structures that the chip reading code needs to
1193 	 * read the ID
1194 	 */
1195 	temp_priv.mdio_bus = bus;
1196 	temp_priv.smi_addr = smi_addr;
1197 	temp_phy.priv = &temp_priv;
1198 	temp_mii.priv = &temp_phy;
1199 
1200 	/*
1201 	 * get_phy_id() can be called by framework before mv88e61xx driver
1202 	 * probing, in this case the global register offsets are not
1203 	 * initialized yet. Do this initialization here before indirect
1204 	 * PHY register access.
1205 	 */
1206 	val = mv88e61xx_priv_reg_offs_pre_init(&temp_phy);
1207 	if (val < 0)
1208 		return val;
1209 
1210 	val = mv88e61xx_phy_read_indirect(&temp_mii, 0, devad, MII_PHYSID1);
1211 	if (val < 0)
1212 		return -EIO;
1213 
1214 	*phy_id = val << 16;
1215 
1216 	val = mv88e61xx_phy_read_indirect(&temp_mii, 0, devad, MII_PHYSID2);
1217 	if (val < 0)
1218 		return -EIO;
1219 
1220 	*phy_id |= (val & 0xffff);
1221 
1222 	return 0;
1223 }
1224