1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale i.MX28 SPI driver
4  *
5  * Copyright (C) 2019 DENX Software Engineering
6  * Lukasz Majewski, DENX Software Engineering, lukma@denx.de
7  *
8  * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
9  * on behalf of DENX Software Engineering GmbH
10  *
11  * NOTE: This driver only supports the SPI-controller chipselects,
12  *       GPIO driven chipselects are not supported.
13  */
14 
15 #include <common.h>
16 #include <dm.h>
17 #include <dt-structs.h>
18 #include <cpu_func.h>
19 #include <errno.h>
20 #include <log.h>
21 #include <malloc.h>
22 #include <memalign.h>
23 #include <spi.h>
24 #include <asm/cache.h>
25 #include <linux/bitops.h>
26 #include <linux/errno.h>
27 #include <asm/io.h>
28 #include <asm/arch/clock.h>
29 #include <asm/arch/imx-regs.h>
30 #include <asm/arch/sys_proto.h>
31 #include <asm/mach-imx/dma.h>
32 
33 #define	MXS_SPI_MAX_TIMEOUT	1000000
34 #define	MXS_SPI_PORT_OFFSET	0x2000
35 #define MXS_SSP_CHIPSELECT_MASK		0x00300000
36 #define MXS_SSP_CHIPSELECT_SHIFT	20
37 
38 #define MXSSSP_SMALL_TRANSFER	512
39 
40 /* Base numbers of i.MX2[38] clk for ssp0 IP block */
41 #define MXS_SSP_IMX23_CLKID_SSP0 33
42 #define MXS_SSP_IMX28_CLKID_SSP0 46
43 
44 struct mxs_spi_plat {
45 #if CONFIG_IS_ENABLED(OF_PLATDATA)
46 	struct dtd_fsl_imx23_spi dtplat;
47 #endif
48 	s32 frequency;		/* Default clock frequency, -1 for none */
49 	fdt_addr_t base;        /* SPI IP block base address */
50 	int num_cs;             /* Number of CSes supported */
51 	int dma_id;             /* ID of the DMA channel */
52 	int clk_id;             /* ID of the SSP clock */
53 };
54 
55 struct mxs_spi_priv {
56 	struct mxs_ssp_regs *regs;
57 	unsigned int dma_channel;
58 	unsigned int max_freq;
59 	unsigned int clk_id;
60 	unsigned int mode;
61 };
62 
mxs_spi_start_xfer(struct mxs_ssp_regs * ssp_regs)63 static void mxs_spi_start_xfer(struct mxs_ssp_regs *ssp_regs)
64 {
65 	writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_set);
66 	writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_clr);
67 }
68 
mxs_spi_end_xfer(struct mxs_ssp_regs * ssp_regs)69 static void mxs_spi_end_xfer(struct mxs_ssp_regs *ssp_regs)
70 {
71 	writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_clr);
72 	writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_set);
73 }
74 
mxs_spi_xfer_pio(struct mxs_spi_priv * priv,char * data,int length,int write,unsigned long flags)75 static int mxs_spi_xfer_pio(struct mxs_spi_priv *priv,
76 			    char *data, int length, int write,
77 			    unsigned long flags)
78 {
79 	struct mxs_ssp_regs *ssp_regs = priv->regs;
80 
81 	if (flags & SPI_XFER_BEGIN)
82 		mxs_spi_start_xfer(ssp_regs);
83 
84 	while (length--) {
85 		/* We transfer 1 byte */
86 #if defined(CONFIG_MX23)
87 		writel(SSP_CTRL0_XFER_COUNT_MASK, &ssp_regs->hw_ssp_ctrl0_clr);
88 		writel(1, &ssp_regs->hw_ssp_ctrl0_set);
89 #elif defined(CONFIG_MX28)
90 		writel(1, &ssp_regs->hw_ssp_xfer_size);
91 #endif
92 
93 		if ((flags & SPI_XFER_END) && !length)
94 			mxs_spi_end_xfer(ssp_regs);
95 
96 		if (write)
97 			writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_clr);
98 		else
99 			writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_set);
100 
101 		writel(SSP_CTRL0_RUN, &ssp_regs->hw_ssp_ctrl0_set);
102 
103 		if (mxs_wait_mask_set(&ssp_regs->hw_ssp_ctrl0_reg,
104 			SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
105 			printf("MXS SPI: Timeout waiting for start\n");
106 			return -ETIMEDOUT;
107 		}
108 
109 		if (write)
110 			writel(*data++, &ssp_regs->hw_ssp_data);
111 
112 		writel(SSP_CTRL0_DATA_XFER, &ssp_regs->hw_ssp_ctrl0_set);
113 
114 		if (!write) {
115 			if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_status_reg,
116 				SSP_STATUS_FIFO_EMPTY, MXS_SPI_MAX_TIMEOUT)) {
117 				printf("MXS SPI: Timeout waiting for data\n");
118 				return -ETIMEDOUT;
119 			}
120 
121 			*data = readl(&ssp_regs->hw_ssp_data);
122 			data++;
123 		}
124 
125 		if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_ctrl0_reg,
126 			SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
127 			printf("MXS SPI: Timeout waiting for finish\n");
128 			return -ETIMEDOUT;
129 		}
130 	}
131 
132 	return 0;
133 }
134 
mxs_spi_xfer_dma(struct mxs_spi_priv * priv,char * data,int length,int write,unsigned long flags)135 static int mxs_spi_xfer_dma(struct mxs_spi_priv *priv,
136 			    char *data, int length, int write,
137 			    unsigned long flags)
138 {	struct mxs_ssp_regs *ssp_regs = priv->regs;
139 	const int xfer_max_sz = 0xff00;
140 	const int desc_count = DIV_ROUND_UP(length, xfer_max_sz) + 1;
141 	struct mxs_dma_desc *dp;
142 	uint32_t ctrl0;
143 	uint32_t cache_data_count;
144 	const uint32_t dstart = (uint32_t)data;
145 	int dmach;
146 	int tl;
147 	int ret = 0;
148 
149 #if defined(CONFIG_MX23)
150 	const int mxs_spi_pio_words = 1;
151 #elif defined(CONFIG_MX28)
152 	const int mxs_spi_pio_words = 4;
153 #endif
154 
155 	ALLOC_CACHE_ALIGN_BUFFER(struct mxs_dma_desc, desc, desc_count);
156 
157 	memset(desc, 0, sizeof(struct mxs_dma_desc) * desc_count);
158 
159 	ctrl0 = readl(&ssp_regs->hw_ssp_ctrl0);
160 	ctrl0 |= SSP_CTRL0_DATA_XFER;
161 
162 	if (flags & SPI_XFER_BEGIN)
163 		ctrl0 |= SSP_CTRL0_LOCK_CS;
164 	if (!write)
165 		ctrl0 |= SSP_CTRL0_READ;
166 
167 	if (length % ARCH_DMA_MINALIGN)
168 		cache_data_count = roundup(length, ARCH_DMA_MINALIGN);
169 	else
170 		cache_data_count = length;
171 
172 	/* Flush data to DRAM so DMA can pick them up */
173 	if (write)
174 		flush_dcache_range(dstart, dstart + cache_data_count);
175 
176 	/* Invalidate the area, so no writeback into the RAM races with DMA */
177 	invalidate_dcache_range(dstart, dstart + cache_data_count);
178 
179 	dmach = priv->dma_channel;
180 
181 	dp = desc;
182 	while (length) {
183 		dp->address = (dma_addr_t)dp;
184 		dp->cmd.address = (dma_addr_t)data;
185 
186 		/*
187 		 * This is correct, even though it does indeed look insane.
188 		 * I hereby have to, wholeheartedly, thank Freescale Inc.,
189 		 * for always inventing insane hardware and keeping me busy
190 		 * and employed ;-)
191 		 */
192 		if (write)
193 			dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_READ;
194 		else
195 			dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_WRITE;
196 
197 		/*
198 		 * The DMA controller can transfer large chunks (64kB) at
199 		 * time by setting the transfer length to 0. Setting tl to
200 		 * 0x10000 will overflow below and make .data contain 0.
201 		 * Otherwise, 0xff00 is the transfer maximum.
202 		 */
203 		if (length >= 0x10000)
204 			tl = 0x10000;
205 		else
206 			tl = min(length, xfer_max_sz);
207 
208 		dp->cmd.data |=
209 			((tl & 0xffff) << MXS_DMA_DESC_BYTES_OFFSET) |
210 			(mxs_spi_pio_words << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
211 			MXS_DMA_DESC_HALT_ON_TERMINATE |
212 			MXS_DMA_DESC_TERMINATE_FLUSH;
213 
214 		data += tl;
215 		length -= tl;
216 
217 		if (!length) {
218 			dp->cmd.data |= MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM;
219 
220 			if (flags & SPI_XFER_END) {
221 				ctrl0 &= ~SSP_CTRL0_LOCK_CS;
222 				ctrl0 |= SSP_CTRL0_IGNORE_CRC;
223 			}
224 		}
225 
226 		/*
227 		 * Write CTRL0, CMD0, CMD1 and XFER_SIZE registers in
228 		 * case of MX28, write only CTRL0 in case of MX23 due
229 		 * to the difference in register layout. It is utterly
230 		 * essential that the XFER_SIZE register is written on
231 		 * a per-descriptor basis with the same size as is the
232 		 * descriptor!
233 		 */
234 		dp->cmd.pio_words[0] = ctrl0;
235 #ifdef CONFIG_MX28
236 		dp->cmd.pio_words[1] = 0;
237 		dp->cmd.pio_words[2] = 0;
238 		dp->cmd.pio_words[3] = tl;
239 #endif
240 
241 		mxs_dma_desc_append(dmach, dp);
242 
243 		dp++;
244 	}
245 
246 	if (mxs_dma_go(dmach))
247 		ret = -EINVAL;
248 
249 	/* The data arrived into DRAM, invalidate cache over them */
250 	if (!write)
251 		invalidate_dcache_range(dstart, dstart + cache_data_count);
252 
253 	return ret;
254 }
255 
mxs_spi_xfer(struct udevice * dev,unsigned int bitlen,const void * dout,void * din,unsigned long flags)256 int mxs_spi_xfer(struct udevice *dev, unsigned int bitlen,
257 		 const void *dout, void *din, unsigned long flags)
258 {
259 	struct udevice *bus = dev_get_parent(dev);
260 	struct mxs_spi_priv *priv = dev_get_priv(bus);
261 	struct mxs_ssp_regs *ssp_regs = priv->regs;
262 	int len = bitlen / 8;
263 	char dummy;
264 	int write = 0;
265 	char *data = NULL;
266 	int dma = 1;
267 
268 	if (bitlen == 0) {
269 		if (flags & SPI_XFER_END) {
270 			din = (void *)&dummy;
271 			len = 1;
272 		} else
273 			return 0;
274 	}
275 
276 	/* Half-duplex only */
277 	if (din && dout)
278 		return -EINVAL;
279 	/* No data */
280 	if (!din && !dout)
281 		return 0;
282 
283 	if (dout) {
284 		data = (char *)dout;
285 		write = 1;
286 	} else if (din) {
287 		data = (char *)din;
288 		write = 0;
289 	}
290 
291 	/*
292 	 * Check for alignment, if the buffer is aligned, do DMA transfer,
293 	 * PIO otherwise. This is a temporary workaround until proper bounce
294 	 * buffer is in place.
295 	 */
296 	if (dma) {
297 		if (((uint32_t)data) & (ARCH_DMA_MINALIGN - 1))
298 			dma = 0;
299 		if (((uint32_t)len) & (ARCH_DMA_MINALIGN - 1))
300 			dma = 0;
301 	}
302 
303 	if (!dma || (len < MXSSSP_SMALL_TRANSFER)) {
304 		writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_clr);
305 		return mxs_spi_xfer_pio(priv, data, len, write, flags);
306 	} else {
307 		writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_set);
308 		return mxs_spi_xfer_dma(priv, data, len, write, flags);
309 	}
310 }
311 
mxs_spi_probe(struct udevice * bus)312 static int mxs_spi_probe(struct udevice *bus)
313 {
314 	struct mxs_spi_plat *plat = dev_get_plat(bus);
315 	struct mxs_spi_priv *priv = dev_get_priv(bus);
316 	int ret;
317 
318 	debug("%s: probe\n", __func__);
319 
320 #if CONFIG_IS_ENABLED(OF_PLATDATA)
321 	struct dtd_fsl_imx23_spi *dtplat = &plat->dtplat;
322 	struct phandle_1_arg *p1a = &dtplat->clocks[0];
323 
324 	priv->regs = (struct mxs_ssp_regs *)dtplat->reg[0];
325 	priv->dma_channel = dtplat->dmas[1];
326 	priv->clk_id = p1a->arg[0];
327 	priv->max_freq = dtplat->spi_max_frequency;
328 	plat->num_cs = dtplat->num_cs;
329 
330 	debug("OF_PLATDATA: regs: 0x%x max freq: %d clkid: %d\n",
331 	      (unsigned int)priv->regs, priv->max_freq, priv->clk_id);
332 #else
333 	priv->regs = (struct mxs_ssp_regs *)plat->base;
334 	priv->max_freq = plat->frequency;
335 
336 	priv->dma_channel = plat->dma_id;
337 	priv->clk_id = plat->clk_id;
338 #endif
339 
340 	mxs_reset_block(&priv->regs->hw_ssp_ctrl0_reg);
341 
342 	ret = mxs_dma_init_channel(priv->dma_channel);
343 	if (ret) {
344 		printf("%s: DMA init channel error %d\n", __func__, ret);
345 		return ret;
346 	}
347 
348 	return 0;
349 }
350 
mxs_spi_claim_bus(struct udevice * dev)351 static int mxs_spi_claim_bus(struct udevice *dev)
352 {
353 	struct udevice *bus = dev_get_parent(dev);
354 	struct mxs_spi_priv *priv = dev_get_priv(bus);
355 	struct mxs_ssp_regs *ssp_regs = priv->regs;
356 	int cs = spi_chip_select(dev);
357 
358 	/*
359 	 * i.MX28 supports up to 3 CS (SSn0, SSn1, SSn2)
360 	 * To set them it uses following tuple (WAIT_FOR_IRQ,WAIT_FOR_CMD),
361 	 * where:
362 	 *
363 	 * WAIT_FOR_IRQ is bit 21 of HW_SSP_CTRL0
364 	 * WAIT_FOR_CMD is bit 20 (#defined as MXS_SSP_CHIPSELECT_SHIFT here) of
365 	 *                        HW_SSP_CTRL0
366 	 * SSn0 b00
367 	 * SSn1 b01
368 	 * SSn2 b10 (which require setting WAIT_FOR_IRQ)
369 	 *
370 	 * However, for now i.MX28 SPI driver will support up till 2 CSes
371 	 * (SSn0, and SSn1).
372 	 */
373 
374 	/* Ungate SSP clock and set active CS */
375 	clrsetbits_le32(&ssp_regs->hw_ssp_ctrl0,
376 			BIT(MXS_SSP_CHIPSELECT_SHIFT) |
377 			SSP_CTRL0_CLKGATE, (cs << MXS_SSP_CHIPSELECT_SHIFT));
378 
379 	return 0;
380 }
381 
mxs_spi_release_bus(struct udevice * dev)382 static int mxs_spi_release_bus(struct udevice *dev)
383 {
384 	struct udevice *bus = dev_get_parent(dev);
385 	struct mxs_spi_priv *priv = dev_get_priv(bus);
386 	struct mxs_ssp_regs *ssp_regs = priv->regs;
387 
388 	/* Gate SSP clock */
389 	setbits_le32(&ssp_regs->hw_ssp_ctrl0, SSP_CTRL0_CLKGATE);
390 
391 	return 0;
392 }
393 
mxs_spi_set_speed(struct udevice * bus,uint speed)394 static int mxs_spi_set_speed(struct udevice *bus, uint speed)
395 {
396 	struct mxs_spi_priv *priv = dev_get_priv(bus);
397 #ifdef CONFIG_MX28
398 	int clkid = priv->clk_id - MXS_SSP_IMX28_CLKID_SSP0;
399 #else /* CONFIG_MX23 */
400 	int clkid = priv->clk_id - MXS_SSP_IMX23_CLKID_SSP0;
401 #endif
402 	if (speed > priv->max_freq)
403 		speed = priv->max_freq;
404 
405 	debug("%s speed: %u [Hz] clkid: %d\n", __func__, speed, clkid);
406 	mxs_set_ssp_busclock(clkid, speed / 1000);
407 
408 	return 0;
409 }
410 
mxs_spi_set_mode(struct udevice * bus,uint mode)411 static int mxs_spi_set_mode(struct udevice *bus, uint mode)
412 {
413 	struct mxs_spi_priv *priv = dev_get_priv(bus);
414 	struct mxs_ssp_regs *ssp_regs = priv->regs;
415 	u32 reg;
416 
417 	priv->mode = mode;
418 	debug("%s: mode 0x%x\n", __func__, mode);
419 
420 	reg = SSP_CTRL1_SSP_MODE_SPI | SSP_CTRL1_WORD_LENGTH_EIGHT_BITS;
421 	reg |= (priv->mode & SPI_CPOL) ? SSP_CTRL1_POLARITY : 0;
422 	reg |= (priv->mode & SPI_CPHA) ? SSP_CTRL1_PHASE : 0;
423 	writel(reg, &ssp_regs->hw_ssp_ctrl1);
424 
425 	/* Single bit SPI support */
426 	writel(SSP_CTRL0_BUS_WIDTH_ONE_BIT, &ssp_regs->hw_ssp_ctrl0);
427 
428 	return 0;
429 }
430 
431 static const struct dm_spi_ops mxs_spi_ops = {
432 	.claim_bus	= mxs_spi_claim_bus,
433 	.release_bus    = mxs_spi_release_bus,
434 	.xfer		= mxs_spi_xfer,
435 	.set_speed	= mxs_spi_set_speed,
436 	.set_mode	= mxs_spi_set_mode,
437 	/*
438 	 * cs_info is not needed, since we require all chip selects to be
439 	 * in the device tree explicitly
440 	 */
441 };
442 
443 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
mxs_of_to_plat(struct udevice * bus)444 static int mxs_of_to_plat(struct udevice *bus)
445 {
446 	struct mxs_spi_plat *plat = dev_get_plat(bus);
447 	u32 prop[2];
448 	int ret;
449 
450 	plat->base = dev_read_addr(bus);
451 	plat->frequency =
452 		dev_read_u32_default(bus, "spi-max-frequency", 40000000);
453 	plat->num_cs = dev_read_u32_default(bus, "num-cs", 2);
454 
455 	ret = dev_read_u32_array(bus, "dmas", prop, ARRAY_SIZE(prop));
456 	if (ret) {
457 		printf("%s: Reading 'dmas' property failed!\n", __func__);
458 		return ret;
459 	}
460 	plat->dma_id = prop[1];
461 
462 	ret = dev_read_u32_array(bus, "clocks", prop, ARRAY_SIZE(prop));
463 	if (ret) {
464 		printf("%s: Reading 'clocks' property failed!\n", __func__);
465 		return ret;
466 	}
467 	plat->clk_id = prop[1];
468 
469 	debug("%s: base=0x%x, max-frequency=%d num-cs=%d dma_id=%d clk_id=%d\n",
470 	      __func__, (uint)plat->base, plat->frequency, plat->num_cs,
471 	      plat->dma_id, plat->clk_id);
472 
473 	return 0;
474 }
475 
476 static const struct udevice_id mxs_spi_ids[] = {
477 	{ .compatible = "fsl,imx23-spi" },
478 	{ .compatible = "fsl,imx28-spi" },
479 	{ }
480 };
481 #endif
482 
483 U_BOOT_DRIVER(fsl_imx23_spi) = {
484 	.name = "fsl_imx23_spi",
485 	.id	= UCLASS_SPI,
486 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
487 	.of_match = mxs_spi_ids,
488 	.of_to_plat = mxs_of_to_plat,
489 #endif
490 	.plat_auto	= sizeof(struct mxs_spi_plat),
491 	.ops	= &mxs_spi_ops,
492 	.priv_auto	= sizeof(struct mxs_spi_priv),
493 	.probe	= mxs_spi_probe,
494 };
495 
496 DM_DRIVER_ALIAS(fsl_imx23_spi, fsl_imx28_spi)
497