1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) 2019, STMicroelectronics - All Rights Reserved
4  */
5 
6 #define LOG_CATEGORY UCLASS_RAM
7 
8 #include <common.h>
9 #include <console.h>
10 #include <clk.h>
11 #include <log.h>
12 #include <ram.h>
13 #include <rand.h>
14 #include <reset.h>
15 #include <asm/io.h>
16 #include <linux/bitops.h>
17 #include <linux/delay.h>
18 #include <linux/iopoll.h>
19 
20 #include "stm32mp1_ddr_regs.h"
21 #include "stm32mp1_ddr.h"
22 #include "stm32mp1_tests.h"
23 
24 #define MAX_DQS_PHASE_IDX _144deg
25 #define MAX_DQS_UNIT_IDX 7
26 #define MAX_GSL_IDX 5
27 #define MAX_GPS_IDX 3
28 
29 /* Number of bytes used in this SW. ( min 1--> max 4). */
30 #define NUM_BYTES 4
31 
32 enum dqs_phase_enum {
33 	_36deg = 0,
34 	_54deg = 1,
35 	_72deg = 2,
36 	_90deg = 3,
37 	_108deg = 4,
38 	_126deg = 5,
39 	_144deg = 6
40 };
41 
42 /* BIST Result struct */
43 struct BIST_result {
44 	/* Overall test result:
45 	 * 0 Fail (any bit failed) ,
46 	 * 1 Success (All bits success)
47 	 */
48 	bool test_result;
49 	/* 1: true, all fail /  0: False, not all bits fail */
50 	bool all_bits_fail;
51 	bool bit_i_test_result[8];  /* 0 fail / 1 success */
52 };
53 
54 /* a struct that defines tuning parameters of a byte. */
55 struct tuning_position {
56 	u8 phase; /* DQS phase */
57 	u8 unit; /* DQS unit delay */
58 	u32 bits_delay; /* Bits deskew in this byte */
59 };
60 
61 /* 36deg, 54deg, 72deg, 90deg, 108deg, 126deg, 144deg */
62 const u8 dx_dll_phase[7] = {3, 2, 1, 0, 14, 13, 12};
63 
64 static u8 BIST_error_max = 1;
65 static u32 BIST_seed = 0x1234ABCD;
66 
get_nb_bytes(struct stm32mp1_ddrctl * ctl)67 static u8 get_nb_bytes(struct stm32mp1_ddrctl *ctl)
68 {
69 	u32 data_bus = readl(&ctl->mstr) & DDRCTRL_MSTR_DATA_BUS_WIDTH_MASK;
70 	u8 nb_bytes = NUM_BYTES;
71 
72 	switch (data_bus) {
73 	case DDRCTRL_MSTR_DATA_BUS_WIDTH_HALF:
74 		nb_bytes /= 2;
75 		break;
76 	case DDRCTRL_MSTR_DATA_BUS_WIDTH_QUARTER:
77 		nb_bytes /= 4;
78 		break;
79 	default:
80 		break;
81 	}
82 
83 	return nb_bytes;
84 }
85 
get_nb_bank(struct stm32mp1_ddrctl * ctl)86 static u8 get_nb_bank(struct stm32mp1_ddrctl *ctl)
87 {
88 	/* Count bank address bits */
89 	u8 bits = 0;
90 	u32 reg, val;
91 
92 	reg = readl(&ctl->addrmap1);
93 	/* addrmap1.addrmap_bank_b1 */
94 	val = (reg & GENMASK(5, 0)) >> 0;
95 	if (val <= 31)
96 		bits++;
97 	/* addrmap1.addrmap_bank_b2 */
98 	val = (reg & GENMASK(13, 8)) >> 8;
99 	if (val <= 31)
100 		bits++;
101 	/* addrmap1.addrmap_bank_b3 */
102 	val = (reg & GENMASK(21, 16)) >> 16;
103 	if (val <= 31)
104 		bits++;
105 
106 	return bits;
107 }
108 
get_nb_col(struct stm32mp1_ddrctl * ctl)109 static u8 get_nb_col(struct stm32mp1_ddrctl *ctl)
110 {
111 	u8 bits;
112 	u32 reg, val;
113 
114 	/* Count column address bits, start at 2 for b0 and b1 (fixed) */
115 	bits = 2;
116 
117 	reg = readl(&ctl->addrmap2);
118 	/* addrmap2.addrmap_col_b2 */
119 	val = (reg & GENMASK(3, 0)) >> 0;
120 	if (val <= 7)
121 		bits++;
122 	/* addrmap2.addrmap_col_b3 */
123 	val = (reg & GENMASK(11, 8)) >> 8;
124 	if (val <= 7)
125 		bits++;
126 	/* addrmap2.addrmap_col_b4 */
127 	val = (reg & GENMASK(19, 16)) >> 16;
128 	if (val <= 7)
129 		bits++;
130 	/* addrmap2.addrmap_col_b5 */
131 	val = (reg & GENMASK(27, 24)) >> 24;
132 	if (val <= 7)
133 		bits++;
134 
135 	reg = readl(&ctl->addrmap3);
136 	/* addrmap3.addrmap_col_b6 */
137 	val = (reg & GENMASK(3, 0)) >> 0;
138 	if (val <= 7)
139 		bits++;
140 	/* addrmap3.addrmap_col_b7 */
141 	val = (reg & GENMASK(11, 8)) >> 8;
142 	if (val <= 7)
143 		bits++;
144 	/* addrmap3.addrmap_col_b8 */
145 	val = (reg & GENMASK(19, 16)) >> 16;
146 	if (val <= 7)
147 		bits++;
148 	/* addrmap3.addrmap_col_b9 */
149 	val = (reg & GENMASK(27, 24)) >> 24;
150 	if (val <= 7)
151 		bits++;
152 
153 	reg = readl(&ctl->addrmap4);
154 	/* addrmap4.addrmap_col_b10 */
155 	val = (reg & GENMASK(3, 0)) >> 0;
156 	if (val <= 7)
157 		bits++;
158 	/* addrmap4.addrmap_col_b11 */
159 	val = (reg & GENMASK(11, 8)) >> 8;
160 	if (val <= 7)
161 		bits++;
162 
163 	return bits;
164 }
165 
get_nb_row(struct stm32mp1_ddrctl * ctl)166 static u8 get_nb_row(struct stm32mp1_ddrctl *ctl)
167 {
168 	/* Count row address bits */
169 	u8 bits = 0;
170 	u32 reg, val;
171 
172 	reg = readl(&ctl->addrmap5);
173 	/* addrmap5.addrmap_row_b0 */
174 	val = (reg & GENMASK(3, 0)) >> 0;
175 	if (val <= 11)
176 		bits++;
177 	/* addrmap5.addrmap_row_b1 */
178 	val = (reg & GENMASK(11, 8)) >> 8;
179 	if (val <= 11)
180 		bits++;
181 	/* addrmap5.addrmap_row_b2_10 */
182 	val = (reg & GENMASK(19, 16)) >> 16;
183 	if (val <= 11)
184 		bits += 9;
185 	else
186 		printf("warning: addrmap5.addrmap_row_b2_10 not supported\n");
187 	/* addrmap5.addrmap_row_b11 */
188 	val = (reg & GENMASK(27, 24)) >> 24;
189 	if (val <= 11)
190 		bits++;
191 
192 	reg = readl(&ctl->addrmap6);
193 	/* addrmap6.addrmap_row_b12 */
194 	val = (reg & GENMASK(3, 0)) >> 0;
195 	if (val <= 7)
196 		bits++;
197 	/* addrmap6.addrmap_row_b13 */
198 	val = (reg & GENMASK(11, 8)) >> 8;
199 	if (val <= 7)
200 		bits++;
201 	/* addrmap6.addrmap_row_b14 */
202 	val = (reg & GENMASK(19, 16)) >> 16;
203 	if (val <= 7)
204 		bits++;
205 	/* addrmap6.addrmap_row_b15 */
206 	val = (reg & GENMASK(27, 24)) >> 24;
207 	if (val <= 7)
208 		bits++;
209 
210 	return bits;
211 }
212 
itm_soft_reset(struct stm32mp1_ddrphy * phy)213 static void itm_soft_reset(struct stm32mp1_ddrphy *phy)
214 {
215 	stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
216 }
217 
218 /* Read DQ unit delay register and provides the retrieved value for DQS
219  * We are assuming that we have the same delay when clocking
220  * by DQS and when clocking by DQSN
221  */
DQ_unit_index(struct stm32mp1_ddrphy * phy,u8 byte,u8 bit)222 static u8 DQ_unit_index(struct stm32mp1_ddrphy *phy, u8 byte, u8 bit)
223 {
224 	u32 index;
225 	u32 addr = DXNDQTR(phy, byte);
226 
227 	/* We are assuming that we have the same delay when clocking by DQS
228 	 * and when clocking by DQSN : use only the low bits
229 	 */
230 	index = (readl(addr) >> DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit))
231 		& DDRPHYC_DXNDQTR_DQDLY_LOW_MASK;
232 
233 	log_debug("[%x]: %x => DQ unit index = %x\n", addr, readl(addr), index);
234 
235 	return index;
236 }
237 
238 /* Sets the DQS phase delay for a byte lane.
239  *phase delay is specified by giving the index of the desired delay
240  * in the dx_dll_phase array.
241  */
DQS_phase_delay(struct stm32mp1_ddrphy * phy,u8 byte,u8 phase_idx)242 static void DQS_phase_delay(struct stm32mp1_ddrphy *phy, u8 byte, u8 phase_idx)
243 {
244 	u8 sdphase_val = 0;
245 
246 	/*	Write DXNDLLCR.SDPHASE = dx_dll_phase(phase_index); */
247 	sdphase_val = dx_dll_phase[phase_idx];
248 	clrsetbits_le32(DXNDLLCR(phy, byte),
249 			DDRPHYC_DXNDLLCR_SDPHASE_MASK,
250 			sdphase_val << DDRPHYC_DXNDLLCR_SDPHASE_SHIFT);
251 }
252 
253 /* Sets the DQS unit delay for a byte lane.
254  * unit delay is specified by giving the index of the desired delay
255  * for dgsdly and dqsndly (same value).
256  */
DQS_unit_delay(struct stm32mp1_ddrphy * phy,u8 byte,u8 unit_dly_idx)257 static void DQS_unit_delay(struct stm32mp1_ddrphy *phy,
258 			   u8 byte, u8 unit_dly_idx)
259 {
260 	/* Write the same value in DXNDQSTR.DQSDLY and DXNDQSTR.DQSNDLY */
261 	clrsetbits_le32(DXNDQSTR(phy, byte),
262 			DDRPHYC_DXNDQSTR_DQSDLY_MASK |
263 			DDRPHYC_DXNDQSTR_DQSNDLY_MASK,
264 			(unit_dly_idx << DDRPHYC_DXNDQSTR_DQSDLY_SHIFT) |
265 			(unit_dly_idx << DDRPHYC_DXNDQSTR_DQSNDLY_SHIFT));
266 
267 	/* After changing this value, an ITM soft reset (PIR.ITMSRST=1,
268 	 * plus PIR.INIT=1) must be issued.
269 	 */
270 	stm32mp1_ddrphy_init(phy, DDRPHYC_PIR_ITMSRST);
271 }
272 
273 /* Sets the DQ unit delay for a bit line in particular byte lane.
274  * unit delay is specified by giving the desired delay
275  */
set_DQ_unit_delay(struct stm32mp1_ddrphy * phy,u8 byte,u8 bit,u8 dq_delay_index)276 static void set_DQ_unit_delay(struct stm32mp1_ddrphy *phy,
277 			      u8 byte, u8 bit,
278 			      u8 dq_delay_index)
279 {
280 	u8 dq_bit_delay_val = dq_delay_index | (dq_delay_index << 2);
281 
282 	/* same value on delay for clock DQ an DQS_b */
283 	clrsetbits_le32(DXNDQTR(phy, byte),
284 			DDRPHYC_DXNDQTR_DQDLY_MASK
285 			<< DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit),
286 			dq_bit_delay_val << DDRPHYC_DXNDQTR_DQDLY_SHIFT(bit));
287 }
288 
set_r0dgsl_delay(struct stm32mp1_ddrphy * phy,u8 byte,u8 r0dgsl_idx)289 static void set_r0dgsl_delay(struct stm32mp1_ddrphy *phy,
290 			     u8 byte, u8 r0dgsl_idx)
291 {
292 	clrsetbits_le32(DXNDQSTR(phy, byte),
293 			DDRPHYC_DXNDQSTR_R0DGSL_MASK,
294 			r0dgsl_idx << DDRPHYC_DXNDQSTR_R0DGSL_SHIFT);
295 }
296 
set_r0dgps_delay(struct stm32mp1_ddrphy * phy,u8 byte,u8 r0dgps_idx)297 static void set_r0dgps_delay(struct stm32mp1_ddrphy *phy,
298 			     u8 byte, u8 r0dgps_idx)
299 {
300 	clrsetbits_le32(DXNDQSTR(phy, byte),
301 			DDRPHYC_DXNDQSTR_R0DGPS_MASK,
302 			r0dgps_idx << DDRPHYC_DXNDQSTR_R0DGPS_SHIFT);
303 }
304 
305 /* Basic BIST configuration for data lane tests. */
config_BIST(struct stm32mp1_ddrctl * ctl,struct stm32mp1_ddrphy * phy)306 static void config_BIST(struct stm32mp1_ddrctl *ctl,
307 			struct stm32mp1_ddrphy *phy)
308 {
309 	u8 nb_bank = get_nb_bank(ctl);
310 	u8 nb_row = get_nb_row(ctl);
311 	u8 nb_col = get_nb_col(ctl);
312 
313 	/* Selects the SDRAM bank address to be used during BIST. */
314 	u32 bbank = 0;
315 	/* Selects the SDRAM row address to be used during BIST. */
316 	u32 brow = 0;
317 	/* Selects the SDRAM column address to be used during BIST. */
318 	u32 bcol = 0;
319 	/* Selects the value by which the SDRAM address is incremented
320 	 * for each write/read access.
321 	 */
322 	u32 bainc = 0x00000008;
323 	/* Specifies the maximum SDRAM rank to be used during BIST.
324 	 * The default value is set to maximum ranks minus 1.
325 	 * must be 0 with single rank
326 	 */
327 	u32 bmrank = 0;
328 	/* Selects the SDRAM rank to be used during BIST.
329 	 * must be 0 with single rank
330 	 */
331 	u32 brank = 0;
332 
333 	/* Specifies the maximum SDRAM bank address to be used during
334 	 * BIST before the address & increments to the next rank.
335 	 */
336 	u32 bmbank = (1 << nb_bank) - 1;
337 	/* Specifies the maximum SDRAM row address to be used during
338 	 * BIST before the address & increments to the next bank.
339 	 */
340 	u32 bmrow = (1 << nb_row) - 1;
341 	/* Specifies the maximum SDRAM column address to be used during
342 	 * BIST before the address & increments to the next row.
343 	 */
344 	u32 bmcol = (1 << nb_col) - 1;
345 
346 	u32 bmode_conf = 0x00000001;  /* DRam mode */
347 	u32 bdxen_conf = 0x00000001;  /* BIST on Data byte */
348 	u32 bdpat_conf = 0x00000002;  /* Select LFSR pattern */
349 
350 	/*Setup BIST for DRAM mode,  and LFSR-random data pattern.*/
351 	/*Write BISTRR.BMODE = 1?b1;*/
352 	/*Write BISTRR.BDXEN = 1?b1;*/
353 	/*Write BISTRR.BDPAT = 2?b10;*/
354 
355 	/* reset BIST */
356 	writel(0x3, &phy->bistrr);
357 
358 	writel((bmode_conf << 3) | (bdxen_conf << 14) | (bdpat_conf << 17),
359 	       &phy->bistrr);
360 
361 	/*Setup BIST Word Count*/
362 	/*Write BISTWCR.BWCNT = 16?b0008;*/
363 	writel(0x00000200, &phy->bistwcr); /* A multiple of BL/2 */
364 
365 	writel(bcol | (brow << 12) | (bbank << 28), &phy->bistar0);
366 	writel(brank | (bmrank << 2) | (bainc << 4), &phy->bistar1);
367 	writel(bmcol | (bmrow << 12) | (bmbank << 28), &phy->bistar2);
368 }
369 
370 /* Select the Byte lane to be tested by BIST. */
BIST_datx8_sel(struct stm32mp1_ddrphy * phy,u8 datx8)371 static void BIST_datx8_sel(struct stm32mp1_ddrphy *phy, u8 datx8)
372 {
373 	clrsetbits_le32(&phy->bistrr,
374 			DDRPHYC_BISTRR_BDXSEL_MASK,
375 			datx8 << DDRPHYC_BISTRR_BDXSEL_SHIFT);
376 
377 	/*(For example, selecting Byte Lane 3, BISTRR.BDXSEL = 4?b0011)*/
378 	/* Write BISTRR.BDXSEL = datx8; */
379 }
380 
381 /* Perform BIST Write_Read test on a byte lane and return test result. */
BIST_test(struct stm32mp1_ddrphy * phy,u8 byte,struct BIST_result * bist)382 static void BIST_test(struct stm32mp1_ddrphy *phy, u8 byte,
383 		      struct BIST_result *bist)
384 {
385 	bool result = true; /* BIST_SUCCESS */
386 	u32 cnt = 0;
387 	u32 error = 0;
388 	u32 val;
389 	int ret;
390 
391 	bist->test_result = true;
392 
393 run:
394 	itm_soft_reset(phy);
395 
396 	/*Perform BIST Reset*/
397 	/* Write BISTRR.BINST = 3?b011; */
398 	clrsetbits_le32(&phy->bistrr,
399 			0x00000007,
400 			0x00000003);
401 
402 	/*Re-seed LFSR*/
403 	/* Write BISTLSR.SEED = 32'h1234ABCD; */
404 	if (BIST_seed)
405 		writel(BIST_seed, &phy->bistlsr);
406 	else
407 		writel(rand(), &phy->bistlsr);
408 
409 	/* some delay to reset BIST */
410 	udelay(10);
411 
412 	/*Perform BIST Run*/
413 	clrsetbits_le32(&phy->bistrr,
414 			0x00000007,
415 			0x00000001);
416 	/* Write BISTRR.BINST = 3?b001; */
417 
418 	/* poll on BISTGSR.BDONE and wait max 1000 us */
419 	ret = readl_poll_timeout(&phy->bistgsr, val,
420 				 val & DDRPHYC_BISTGSR_BDDONE, 1000);
421 
422 	if (ret < 0) {
423 		printf("warning: BIST timeout\n");
424 		result = false; /* BIST_FAIL; */
425 		/*Perform BIST Stop */
426 		clrsetbits_le32(&phy->bistrr, 0x00000007, 0x00000002);
427 	} else {
428 		/*Check if received correct number of words*/
429 		/* if (Read BISTWCSR.DXWCNT = Read BISTWCR.BWCNT) */
430 		if (((readl(&phy->bistwcsr)) >> DDRPHYC_BISTWCSR_DXWCNT_SHIFT)
431 		    == readl(&phy->bistwcr)) {
432 			/*Determine if there is a data comparison error*/
433 			/* if (Read BISTGSR.BDXERR = 1?b0) */
434 			if (readl(&phy->bistgsr) & DDRPHYC_BISTGSR_BDXERR)
435 				result = false; /* BIST_FAIL; */
436 			else
437 				result = true; /* BIST_SUCCESS; */
438 		} else {
439 			result = false; /* BIST_FAIL; */
440 		}
441 	}
442 
443 	/* loop while success */
444 	cnt++;
445 	if (result && cnt != 1000)
446 		goto run;
447 
448 	if (!result)
449 		error++;
450 
451 	if (error < BIST_error_max) {
452 		if (cnt != 1000)
453 			goto run;
454 		bist->test_result = true;
455 	} else {
456 		bist->test_result = false;
457 	}
458 }
459 
460 /* After running the deskew algo, this function applies the new DQ delays
461  * by reading them from the array "deskew_delay"and writing in PHY registers.
462  * The bits that are not deskewed parfectly (too much skew on them,
463  * or data eye very wide) are marked in the array deskew_non_converge.
464  */
apply_deskew_results(struct stm32mp1_ddrphy * phy,u8 byte,u8 deskew_delay[NUM_BYTES][8],u8 deskew_non_converge[NUM_BYTES][8])465 static void apply_deskew_results(struct stm32mp1_ddrphy *phy, u8 byte,
466 				 u8 deskew_delay[NUM_BYTES][8],
467 				 u8 deskew_non_converge[NUM_BYTES][8])
468 {
469 	u8  bit_i;
470 	u8  index;
471 
472 	for (bit_i = 0; bit_i < 8; bit_i++) {
473 		set_DQ_unit_delay(phy, byte, bit_i, deskew_delay[byte][bit_i]);
474 		index = DQ_unit_index(phy, byte, bit_i);
475 		log_debug("Byte %d ; bit %d : The new DQ delay (%d) index=%d [delta=%d, 3 is the default]",
476 			  byte, bit_i, deskew_delay[byte][bit_i],
477 			  index, index - 3);
478 		printf("Byte %d, bit %d, DQ delay = %d",
479 		       byte, bit_i, deskew_delay[byte][bit_i]);
480 		if (deskew_non_converge[byte][bit_i] == 1)
481 			log_debug(" - not converged : still more skew");
482 		printf("\n");
483 	}
484 }
485 
486 /* DQ Bit de-skew algorithm.
487  * Deskews data lines as much as possible.
488  * 1. Add delay to DQS line until finding the failure
489  *    (normally a hold time violation)
490  * 2. Reduce DQS line by small steps until finding the very first time
491  *    we go back to "Pass" condition.
492  * 3. For each DQ line, Reduce DQ delay until finding the very first failure
493  *    (normally a hold time fail)
494  * 4. When all bits are at their first failure delay, we can consider them
495  *    aligned.
496  * Handle conrer situation (Can't find Pass-fail, or fail-pass transitions
497  * at any step)
498  * TODO Provide a return Status. Improve doc
499  */
bit_deskew(struct stm32mp1_ddrctl * ctl,struct stm32mp1_ddrphy * phy,char * string)500 static enum test_result bit_deskew(struct stm32mp1_ddrctl *ctl,
501 				   struct stm32mp1_ddrphy *phy, char *string)
502 {
503 	/* New DQ delay value (index), set during Deskew algo */
504 	u8 deskew_delay[NUM_BYTES][8];
505 	/*If there is still skew on a bit, mark this bit. */
506 	u8 deskew_non_converge[NUM_BYTES][8];
507 	struct BIST_result result;
508 	s8 dqs_unit_delay_index = 0;
509 	u8 datx8 = 0;
510 	u8 bit_i = 0;
511 	s8 phase_idx = 0;
512 	s8 bit_i_delay_index = 0;
513 	u8 success = 0;
514 	struct tuning_position last_right_ok;
515 	u8 force_stop = 0;
516 	u8 fail_found;
517 	u8 error = 0;
518 	u8 nb_bytes = get_nb_bytes(ctl);
519 	/* u8 last_pass_dqs_unit = 0; */
520 
521 	memset(deskew_delay, 0, sizeof(deskew_delay));
522 	memset(deskew_non_converge, 0, sizeof(deskew_non_converge));
523 
524 	/*Disable DQS Drift Compensation*/
525 	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
526 	/*Disable all bytes*/
527 	/* Disable automatic power down of DLL and IOs when disabling
528 	 * a byte (To avoid having to add programming and  delay
529 	 * for a DLL re-lock when later re-enabling a disabled Byte Lane)
530 	 */
531 	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
532 
533 	/* Disable all data bytes */
534 	clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
535 	clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
536 	clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
537 	clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
538 
539 	/* Config the BIST block */
540 	config_BIST(ctl, phy);
541 	log_debug("BIST Config done.\n");
542 
543 	/* Train each byte */
544 	for (datx8 = 0; datx8 < nb_bytes; datx8++) {
545 		if (ctrlc()) {
546 			sprintf(string, "interrupted at byte %d/%d, error=%d",
547 				datx8 + 1, nb_bytes, error);
548 			return TEST_FAILED;
549 		}
550 		log_debug("\n======================\n");
551 		log_debug("Start deskew byte %d .\n", datx8);
552 		log_debug("======================\n");
553 		/* Enable Byte (DXNGCR, bit DXEN) */
554 		setbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
555 
556 		/* Select the byte lane for comparison of read data */
557 		BIST_datx8_sel(phy, datx8);
558 
559 		/* Set all DQDLYn to maximum value. All bits within the byte
560 		 * will be delayed with DQSTR = 2 instead of max = 3
561 		 * to avoid inter bits fail influence
562 		 */
563 		writel(0xAAAAAAAA, DXNDQTR(phy, datx8));
564 
565 		/* Set the DQS phase delay to 90 DEG (default).
566 		 * What is defined here is the index of the desired config
567 		 * in the PHASE array.
568 		 */
569 		phase_idx = _90deg;
570 
571 		/* Set DQS unit delay to the max value. */
572 		dqs_unit_delay_index = MAX_DQS_UNIT_IDX;
573 		DQS_unit_delay(phy, datx8, dqs_unit_delay_index);
574 		DQS_phase_delay(phy, datx8, phase_idx);
575 
576 		/* Issue a DLL soft reset */
577 		clrbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
578 		setbits_le32(DXNDLLCR(phy, datx8), DDRPHYC_DXNDLLCR_DLLSRST);
579 
580 		/* Test this typical init condition */
581 		BIST_test(phy, datx8, &result);
582 		success = result.test_result;
583 
584 		/* If the test pass in this typical condition,
585 		 * start the algo with it.
586 		 * Else, look for Pass init condition
587 		 */
588 		if (!success) {
589 			log_debug("Fail at init condtion. Let's look for a good init condition.\n");
590 			success = 0; /* init */
591 			/* Make sure we start with a PASS condition before
592 			 * looking for a fail condition.
593 			 * Find the first PASS PHASE condition
594 			 */
595 
596 			/* escape if we find a PASS */
597 			log_debug("increase Phase idx\n");
598 			while (!success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
599 				DQS_phase_delay(phy, datx8, phase_idx);
600 				BIST_test(phy, datx8, &result);
601 				success = result.test_result;
602 				phase_idx++;
603 			}
604 			/* if ended with success
605 			 * ==>> Restore the fist success condition
606 			 */
607 			if (success)
608 				phase_idx--; /* because it ended with ++ */
609 		}
610 		if (ctrlc()) {
611 			sprintf(string, "interrupted at byte %d/%d, error=%d",
612 				datx8 + 1, nb_bytes, error);
613 			return TEST_FAILED;
614 		}
615 		/* We couldn't find a successful condition, its seems
616 		 * we have hold violation, lets try reduce DQS_unit Delay
617 		 */
618 		if (!success) {
619 			/* We couldn't find a successful condition, its seems
620 			 * we have hold violation, lets try reduce DQS_unit
621 			 * Delay
622 			 */
623 			log_debug("Still fail. Try decrease DQS Unit delay\n");
624 
625 			phase_idx = 0;
626 			dqs_unit_delay_index = 0;
627 			DQS_phase_delay(phy, datx8, phase_idx);
628 
629 			/* escape if we find a PASS */
630 			while (!success &&
631 			       (dqs_unit_delay_index <=
632 				MAX_DQS_UNIT_IDX)) {
633 				DQS_unit_delay(phy, datx8,
634 					       dqs_unit_delay_index);
635 				BIST_test(phy, datx8, &result);
636 				success = result.test_result;
637 				dqs_unit_delay_index++;
638 			}
639 			if (success) {
640 				/* Restore the first success condition*/
641 				dqs_unit_delay_index--;
642 				/* last_pass_dqs_unit = dqs_unit_delay_index;*/
643 				DQS_unit_delay(phy, datx8,
644 					       dqs_unit_delay_index);
645 			} else {
646 				/* No need to continue,
647 				 * there is no pass region.
648 				 */
649 				force_stop = 1;
650 			}
651 		}
652 
653 		/* There is an initial PASS condition
654 		 * Look for the first failing condition by PHASE stepping.
655 		 * This part of the algo can finish without converging.
656 		 */
657 		if (force_stop) {
658 			printf("Result: Failed ");
659 			printf("[Cannot Deskew lines, ");
660 			printf("there is no PASS region]\n");
661 			error++;
662 			continue;
663 		}
664 		if (ctrlc()) {
665 			sprintf(string, "interrupted at byte %d/%d, error=%d",
666 				datx8 + 1, nb_bytes, error);
667 			return TEST_FAILED;
668 		}
669 
670 		log_debug("there is a pass region for phase idx %d\n",
671 			  phase_idx);
672 		log_debug("Step1: Find the first failing condition\n");
673 		/* Look for the first failing condition by PHASE stepping.
674 		 * This part of the algo can finish without converging.
675 		 */
676 
677 		/* escape if we find a fail (hold time violation)
678 		 * condition at any bit or if out of delay range.
679 		 */
680 		while (success && (phase_idx <= MAX_DQS_PHASE_IDX)) {
681 			DQS_phase_delay(phy, datx8, phase_idx);
682 			BIST_test(phy, datx8, &result);
683 			success = result.test_result;
684 			phase_idx++;
685 		}
686 		if (ctrlc()) {
687 			sprintf(string, "interrupted at byte %d/%d, error=%d",
688 				datx8 + 1, nb_bytes, error);
689 			return TEST_FAILED;
690 		}
691 
692 		/* if the loop ended with a failing condition at any bit,
693 		 * lets look for the first previous success condition by unit
694 		 * stepping (minimal delay)
695 		 */
696 		if (!success) {
697 			log_debug("Fail region (PHASE) found phase idx %d\n",
698 				  phase_idx);
699 			log_debug("Let's look for first success by DQS Unit steps\n");
700 			/* This part, the algo always converge */
701 			phase_idx--;
702 
703 			/* escape if we find a success condition
704 			 * or if out of delay range.
705 			 */
706 			while (!success && dqs_unit_delay_index >= 0) {
707 				DQS_unit_delay(phy, datx8,
708 					       dqs_unit_delay_index);
709 				BIST_test(phy, datx8, &result);
710 				success = result.test_result;
711 				dqs_unit_delay_index--;
712 			}
713 			/* if the loop ended with a success condition,
714 			 * the last delay Right OK (before hold violation)
715 			 *  condition is then defined as following:
716 			 */
717 			if (success) {
718 				/* Hold the dely parameters of the the last
719 				 * delay Right OK condition.
720 				 * -1 to get back to current condition
721 				 */
722 				last_right_ok.phase = phase_idx;
723 				/*+1 to get back to current condition */
724 				last_right_ok.unit = dqs_unit_delay_index + 1;
725 				last_right_ok.bits_delay = 0xFFFFFFFF;
726 				log_debug("Found %d\n", dqs_unit_delay_index);
727 			} else {
728 				/* the last OK condition is then with the
729 				 * previous phase_idx.
730 				 * -2 instead of -1 because at the last
731 				 * iteration of the while(),
732 				 * we incremented phase_idx
733 				 */
734 				last_right_ok.phase = phase_idx - 1;
735 				/* Nominal+1. Because we want the previous
736 				 * delay after reducing the phase delay.
737 				 */
738 				last_right_ok.unit = 1;
739 				last_right_ok.bits_delay = 0xFFFFFFFF;
740 				log_debug("Not Found : try previous phase %d\n",
741 					  phase_idx - 1);
742 
743 				DQS_phase_delay(phy, datx8, phase_idx - 1);
744 				dqs_unit_delay_index = 0;
745 				success = true;
746 				while (success &&
747 				       (dqs_unit_delay_index <
748 					MAX_DQS_UNIT_IDX)) {
749 					DQS_unit_delay(phy, datx8,
750 						       dqs_unit_delay_index);
751 					BIST_test(phy, datx8, &result);
752 					success = result.test_result;
753 					dqs_unit_delay_index++;
754 					log_debug("dqs_unit_delay_index = %d, result = %d\n",
755 						  dqs_unit_delay_index, success);
756 				}
757 
758 				if (!success) {
759 					last_right_ok.unit =
760 						 dqs_unit_delay_index - 1;
761 				} else {
762 					last_right_ok.unit = 0;
763 					log_debug("ERROR: failed region not FOUND");
764 				}
765 			}
766 		} else {
767 			/* we can't find a failing  condition at all bits
768 			 * ==> Just hold the last test condition
769 			 * (the max DQS delay)
770 			 * which is the most likely,
771 			 * the closest to a hold violation
772 			 * If we can't find a Fail condition after
773 			 * the Pass region, stick at this position
774 			 * In order to have max chances to find a fail
775 			 * when reducing DQ delays.
776 			 */
777 			last_right_ok.phase = MAX_DQS_PHASE_IDX;
778 			last_right_ok.unit = MAX_DQS_UNIT_IDX;
779 			last_right_ok.bits_delay = 0xFFFFFFFF;
780 			log_debug("Can't find the a fail condition\n");
781 		}
782 
783 		/* step 2:
784 		 * if we arrive at this stage, it means that we found the last
785 		 * Right OK condition (by tweeking the DQS delay). Or we simply
786 		 * pushed DQS delay to the max
787 		 * This means that by reducing the delay on some DQ bits,
788 		 * we should find a failing condition.
789 		 */
790 		printf("Byte %d, DQS unit = %d, phase = %d\n",
791 		       datx8, last_right_ok.unit, last_right_ok.phase);
792 		log_debug("Step2, unit = %d, phase = %d, bits delay=%x\n",
793 			  last_right_ok.unit, last_right_ok.phase,
794 			  last_right_ok.bits_delay);
795 
796 		/* Restore the last_right_ok condtion. */
797 		DQS_unit_delay(phy, datx8, last_right_ok.unit);
798 		DQS_phase_delay(phy, datx8, last_right_ok.phase);
799 		writel(last_right_ok.bits_delay, DXNDQTR(phy, datx8));
800 
801 		/* train each bit
802 		 * reduce delay on each bit, and perform a write/read test
803 		 * and stop at the very first time it fails.
804 		 * the goal is the find the first failing condition
805 		 * for each bit.
806 		 * When we achieve this condition<  for all the bits,
807 		 * we are sure they are aligned (+/- step resolution)
808 		 */
809 		fail_found = 0;
810 		for (bit_i = 0; bit_i < 8; bit_i++) {
811 			if (ctrlc()) {
812 				sprintf(string,
813 					"interrupted at byte %d/%d, error=%d",
814 					datx8 + 1, nb_bytes, error);
815 				return error;
816 			}
817 			log_debug("deskewing bit %d:\n", bit_i);
818 			success = 1; /* init */
819 			/* Set all DQDLYn to maximum value.
820 			 * Only bit_i will be down-delayed
821 			 * ==> if we have a fail, it will be definitely
822 			 *     from bit_i
823 			 */
824 			writel(0xFFFFFFFF, DXNDQTR(phy, datx8));
825 			/* Arriving at this stage,
826 			 * we have a success condition with delay = 3;
827 			 */
828 			bit_i_delay_index = 3;
829 
830 			/* escape if bit delay is out of range or
831 			 * if a fatil occurs
832 			 */
833 			while ((bit_i_delay_index >= 0) && success) {
834 				set_DQ_unit_delay(phy, datx8,
835 						  bit_i,
836 						  bit_i_delay_index);
837 				BIST_test(phy, datx8, &result);
838 				success = result.test_result;
839 				bit_i_delay_index--;
840 			}
841 
842 			/* if escape with a fail condition
843 			 * ==> save this position for bit_i
844 			 */
845 			if (!success) {
846 				/* save the delay position.
847 				 * Add 1 because the while loop ended with a --,
848 				 * and that we need to hold the last success
849 				 *  delay
850 				 */
851 				deskew_delay[datx8][bit_i] =
852 					bit_i_delay_index + 2;
853 				if (deskew_delay[datx8][bit_i] > 3)
854 					deskew_delay[datx8][bit_i] = 3;
855 
856 				/* A flag that states we found at least a fail
857 				 * at one bit.
858 				 */
859 				fail_found = 1;
860 				log_debug("Fail found on bit %d, for delay = %d => deskew[%d][%d] = %d\n",
861 					  bit_i, bit_i_delay_index + 1,
862 					  datx8, bit_i,
863 					  deskew_delay[datx8][bit_i]);
864 			} else {
865 				/* if we can find a success condition by
866 				 * back-delaying this bit, just set the delay
867 				 * to 0 (the best deskew
868 				 * possible) and mark the bit.
869 				 */
870 				deskew_delay[datx8][bit_i] = 0;
871 				/* set a flag that will be used later
872 				 * in the report.
873 				 */
874 				deskew_non_converge[datx8][bit_i] = 1;
875 				log_debug("Fail not found on bit %d => deskew[%d][%d] = %d\n",
876 					  bit_i, datx8, bit_i,
877 					  deskew_delay[datx8][bit_i]);
878 			}
879 		}
880 		log_debug("**********byte %d tuning complete************\n",
881 			  datx8);
882 		/* If we can't find any failure by back delaying DQ lines,
883 		 * hold the default values
884 		 */
885 		if (!fail_found) {
886 			for (bit_i = 0; bit_i < 8; bit_i++)
887 				deskew_delay[datx8][bit_i] = 0;
888 			log_debug("The Deskew algorithm can't converge, there is too much margin in your design. Good job!\n");
889 		}
890 
891 		apply_deskew_results(phy, datx8, deskew_delay,
892 				     deskew_non_converge);
893 		/* Restore nominal value for DQS delay */
894 		DQS_phase_delay(phy, datx8, 3);
895 		DQS_unit_delay(phy, datx8, 3);
896 		/* disable byte after byte bits deskew */
897 		clrbits_le32(DXNGCR(phy, datx8), DDRPHYC_DXNGCR_DXEN);
898 	}  /* end of byte deskew */
899 
900 	/* re-enable all data bytes */
901 	setbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
902 	setbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
903 	setbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
904 	setbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
905 
906 	if (error) {
907 		sprintf(string, "error = %d", error);
908 		return TEST_FAILED;
909 	}
910 
911 	return TEST_PASSED;
912 } /* end function */
913 
914 /* Trim DQS timings and set it in the centre of data eye.
915  * Look for a PPPPF region, then look for a FPPP region and finally select
916  * the mid of the FPPPPPF region
917  */
eye_training(struct stm32mp1_ddrctl * ctl,struct stm32mp1_ddrphy * phy,char * string)918 static enum test_result eye_training(struct stm32mp1_ddrctl *ctl,
919 				     struct stm32mp1_ddrphy *phy, char *string)
920 {
921 	/*Stores the DQS trim values (PHASE index, unit index) */
922 	u8 eye_training_val[NUM_BYTES][2];
923 	u8 byte = 0;
924 	struct BIST_result result;
925 	s8 dqs_unit_delay_index = 0;
926 	s8 phase_idx = 0;
927 	s8 dqs_unit_delay_index_pass = 0;
928 	s8 phase_idx_pass = 0;
929 	u8 success = 0;
930 	u8 left_phase_bound_found, right_phase_bound_found;
931 	u8 left_unit_bound_found, right_unit_bound_found;
932 	u8 left_bound_found, right_bound_found;
933 	struct tuning_position left_bound, right_bound;
934 	u8 error = 0;
935 	u8 nb_bytes = get_nb_bytes(ctl);
936 
937 	/*Disable DQS Drift Compensation*/
938 	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
939 	/*Disable all bytes*/
940 	/* Disable automatic power down of DLL and IOs when disabling a byte
941 	 * (To avoid having to add programming and  delay
942 	 * for a DLL re-lock when later re-enabling a disabled Byte Lane)
943 	 */
944 	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
945 
946 	/*Disable all data bytes */
947 	clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
948 	clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
949 	clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
950 	clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
951 
952 	/* Config the BIST block */
953 	config_BIST(ctl, phy);
954 
955 	for (byte = 0; byte < nb_bytes; byte++) {
956 		if (ctrlc()) {
957 			sprintf(string, "interrupted at byte %d/%d, error=%d",
958 				byte + 1, nb_bytes, error);
959 			return TEST_FAILED;
960 		}
961 		right_bound.phase = 0;
962 		right_bound.unit = 0;
963 
964 		left_bound.phase = 0;
965 		left_bound.unit = 0;
966 
967 		left_phase_bound_found = 0;
968 		right_phase_bound_found = 0;
969 
970 		left_unit_bound_found = 0;
971 		right_unit_bound_found = 0;
972 
973 		left_bound_found = 0;
974 		right_bound_found = 0;
975 
976 		/* Enable Byte (DXNGCR, bit DXEN) */
977 		setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
978 
979 		/* Select the byte lane for comparison of read data */
980 		BIST_datx8_sel(phy, byte);
981 
982 		/* Set DQS phase delay to the nominal value. */
983 		phase_idx = _90deg;
984 		phase_idx_pass = phase_idx;
985 
986 		/* Set DQS unit delay to the nominal value. */
987 		dqs_unit_delay_index = 3;
988 		dqs_unit_delay_index_pass = dqs_unit_delay_index;
989 		success = 0;
990 
991 		log_debug("STEP0: Find Init delay\n");
992 		/* STEP0: Find Init delay: a delay that put the system
993 		 * in a "Pass" condition then (TODO) update
994 		 * dqs_unit_delay_index_pass & phase_idx_pass
995 		 */
996 		DQS_unit_delay(phy, byte, dqs_unit_delay_index);
997 		DQS_phase_delay(phy, byte, phase_idx);
998 		BIST_test(phy, byte, &result);
999 		success = result.test_result;
1000 		/* If we have a fail in the nominal condition */
1001 		if (!success) {
1002 			/* Look at the left */
1003 			while (phase_idx >= 0 && !success) {
1004 				phase_idx--;
1005 				DQS_phase_delay(phy, byte, phase_idx);
1006 				BIST_test(phy, byte, &result);
1007 				success = result.test_result;
1008 			}
1009 		}
1010 		if (!success) {
1011 			/* if we can't find pass condition,
1012 			 * then look at the right
1013 			 */
1014 			phase_idx = _90deg;
1015 			while (phase_idx <= MAX_DQS_PHASE_IDX &&
1016 			       !success) {
1017 				phase_idx++;
1018 				DQS_phase_delay(phy, byte,
1019 						phase_idx);
1020 				BIST_test(phy, byte, &result);
1021 				success = result.test_result;
1022 			}
1023 		}
1024 		/* save the pass condition */
1025 		if (success) {
1026 			phase_idx_pass = phase_idx;
1027 		} else {
1028 			printf("Result: Failed ");
1029 			printf("[Cannot DQS timings, ");
1030 			printf("there is no PASS region]\n");
1031 			error++;
1032 			continue;
1033 		}
1034 
1035 		if (ctrlc()) {
1036 			sprintf(string, "interrupted at byte %d/%d, error=%d",
1037 				byte + 1, nb_bytes, error);
1038 			return TEST_FAILED;
1039 		}
1040 		log_debug("STEP1: Find LEFT PHASE DQS Bound\n");
1041 		/* STEP1: Find LEFT PHASE DQS Bound */
1042 		while ((phase_idx >= 0) &&
1043 		       (phase_idx <= MAX_DQS_PHASE_IDX) &&
1044 		       !left_phase_bound_found) {
1045 			DQS_unit_delay(phy, byte,
1046 				       dqs_unit_delay_index);
1047 			DQS_phase_delay(phy, byte,
1048 					phase_idx);
1049 			BIST_test(phy, byte, &result);
1050 			success = result.test_result;
1051 
1052 			/*TODO: Manage the case were at the beginning
1053 			 * there is already a fail
1054 			 */
1055 			if (!success) {
1056 				/* the last pass condition */
1057 				left_bound.phase = ++phase_idx;
1058 				left_phase_bound_found = 1;
1059 			} else if (success) {
1060 				phase_idx--;
1061 			}
1062 		}
1063 		if (!left_phase_bound_found) {
1064 			left_bound.phase = 0;
1065 			phase_idx = 0;
1066 		}
1067 		/* If not found, lets take 0 */
1068 
1069 		if (ctrlc()) {
1070 			sprintf(string, "interrupted at byte %d/%d, error=%d",
1071 				byte + 1, nb_bytes, error);
1072 			return TEST_FAILED;
1073 		}
1074 		log_debug("STEP2: Find UNIT left bound\n");
1075 		/* STEP2: Find UNIT left bound */
1076 		while ((dqs_unit_delay_index >= 0) &&
1077 		       !left_unit_bound_found) {
1078 			DQS_unit_delay(phy, byte,
1079 				       dqs_unit_delay_index);
1080 			DQS_phase_delay(phy, byte, phase_idx);
1081 			BIST_test(phy, byte, &result);
1082 			success = result.test_result;
1083 			if (!success) {
1084 				left_bound.unit =
1085 					++dqs_unit_delay_index;
1086 				left_unit_bound_found = 1;
1087 				left_bound_found = 1;
1088 			} else if (success) {
1089 				dqs_unit_delay_index--;
1090 			}
1091 		}
1092 
1093 		/* If not found, lets take 0 */
1094 		if (!left_unit_bound_found)
1095 			left_bound.unit = 0;
1096 
1097 		if (ctrlc()) {
1098 			sprintf(string, "interrupted at byte %d/%d, error=%d",
1099 				byte + 1, nb_bytes, error);
1100 			return TEST_FAILED;
1101 		}
1102 		log_debug("STEP3: Find PHase right bound\n");
1103 		/* STEP3: Find PHase right bound, start with "pass"
1104 		 * condition
1105 		 */
1106 
1107 		/* Set DQS phase delay to the pass value. */
1108 		phase_idx = phase_idx_pass;
1109 
1110 		/* Set DQS unit delay to the pass value. */
1111 		dqs_unit_delay_index = dqs_unit_delay_index_pass;
1112 
1113 		while ((phase_idx <= MAX_DQS_PHASE_IDX) &&
1114 		       !right_phase_bound_found) {
1115 			DQS_unit_delay(phy, byte,
1116 				       dqs_unit_delay_index);
1117 			DQS_phase_delay(phy, byte, phase_idx);
1118 			BIST_test(phy, byte, &result);
1119 			success = result.test_result;
1120 			if (!success) {
1121 				/* the last pass condition */
1122 				right_bound.phase = --phase_idx;
1123 				right_phase_bound_found = 1;
1124 			} else if (success) {
1125 				phase_idx++;
1126 			}
1127 		}
1128 
1129 		/* If not found, lets take the max value */
1130 		if (!right_phase_bound_found) {
1131 			right_bound.phase = MAX_DQS_PHASE_IDX;
1132 			phase_idx = MAX_DQS_PHASE_IDX;
1133 		}
1134 
1135 		if (ctrlc()) {
1136 			sprintf(string, "interrupted at byte %d/%d, error=%d",
1137 				byte + 1, nb_bytes, error);
1138 			return TEST_FAILED;
1139 		}
1140 		log_debug("STEP4: Find UNIT right bound\n");
1141 		/* STEP4: Find UNIT right bound */
1142 		while ((dqs_unit_delay_index <= MAX_DQS_UNIT_IDX) &&
1143 		       !right_unit_bound_found) {
1144 			DQS_unit_delay(phy, byte,
1145 				       dqs_unit_delay_index);
1146 			DQS_phase_delay(phy, byte, phase_idx);
1147 			BIST_test(phy, byte, &result);
1148 			success = result.test_result;
1149 			if (!success) {
1150 				right_bound.unit =
1151 					--dqs_unit_delay_index;
1152 				right_unit_bound_found = 1;
1153 				right_bound_found = 1;
1154 			} else if (success) {
1155 				dqs_unit_delay_index++;
1156 			}
1157 		}
1158 		/* If not found, lets take the max value */
1159 		if (!right_unit_bound_found)
1160 			right_bound.unit = MAX_DQS_UNIT_IDX;
1161 
1162 		/* If we found a regular FAil Pass FAil pattern
1163 		 * FFPPPPPPFF
1164 		 * OR PPPPPFF  Or FFPPPPP
1165 		 */
1166 
1167 		if (left_bound_found || right_bound_found) {
1168 			eye_training_val[byte][0] = (right_bound.phase +
1169 						 left_bound.phase) / 2;
1170 			eye_training_val[byte][1] = (right_bound.unit +
1171 						 left_bound.unit) / 2;
1172 
1173 			/* If we already lost 1/2PHASE Tuning,
1174 			 * let's try to recover by ++ on unit
1175 			 */
1176 			if (((right_bound.phase + left_bound.phase) % 2 == 1) &&
1177 			    eye_training_val[byte][1] != MAX_DQS_UNIT_IDX)
1178 				eye_training_val[byte][1]++;
1179 			log_debug("** found phase : %d -  %d & unit %d - %d\n",
1180 				  right_bound.phase, left_bound.phase,
1181 				  right_bound.unit, left_bound.unit);
1182 			log_debug("** calculating mid region: phase: %d  unit: %d (nominal is 3)\n",
1183 				  eye_training_val[byte][0],
1184 				  eye_training_val[byte][1]);
1185 		} else {
1186 			/* PPPPPPPPPP, we're already good.
1187 			 * Set nominal values.
1188 			 */
1189 			eye_training_val[byte][0] = 3;
1190 			eye_training_val[byte][1] = 3;
1191 		}
1192 		DQS_phase_delay(phy, byte, eye_training_val[byte][0]);
1193 		DQS_unit_delay(phy, byte, eye_training_val[byte][1]);
1194 
1195 		printf("Byte %d, DQS unit = %d, phase = %d\n",
1196 		       byte,
1197 		       eye_training_val[byte][1],
1198 		       eye_training_val[byte][0]);
1199 	}
1200 
1201 	if (error) {
1202 		sprintf(string, "error = %d", error);
1203 		return TEST_FAILED;
1204 	}
1205 
1206 	return TEST_PASSED;
1207 }
1208 
display_reg_results(struct stm32mp1_ddrphy * phy,u8 byte)1209 static void display_reg_results(struct stm32mp1_ddrphy *phy, u8 byte)
1210 {
1211 	u8 i = 0;
1212 
1213 	printf("Byte %d Dekew result, bit0 delay, bit1 delay...bit8 delay\n  ",
1214 	       byte);
1215 
1216 	for (i = 0; i < 8; i++)
1217 		printf("%d ", DQ_unit_index(phy, byte, i));
1218 	printf("\n");
1219 
1220 	printf("dxndllcr: [%08x] val:%08x\n",
1221 	       DXNDLLCR(phy, byte),
1222 	       readl(DXNDLLCR(phy, byte)));
1223 	printf("dxnqdstr: [%08x] val:%08x\n",
1224 	       DXNDQSTR(phy, byte),
1225 	       readl(DXNDQSTR(phy, byte)));
1226 	printf("dxndqtr: [%08x] val:%08x\n",
1227 	       DXNDQTR(phy, byte),
1228 	       readl(DXNDQTR(phy, byte)));
1229 }
1230 
1231 /* analyse the dgs gating log table, and determine the midpoint.*/
set_midpoint_read_dqs_gating(struct stm32mp1_ddrphy * phy,u8 byte,u8 dqs_gating[NUM_BYTES][MAX_GSL_IDX+1][MAX_GPS_IDX+1])1232 static u8 set_midpoint_read_dqs_gating(struct stm32mp1_ddrphy *phy, u8 byte,
1233 				       u8 dqs_gating[NUM_BYTES]
1234 						    [MAX_GSL_IDX + 1]
1235 						    [MAX_GPS_IDX + 1])
1236 {
1237 	/* stores the dqs gate values (gsl index, gps index) */
1238 	u8 dqs_gate_values[NUM_BYTES][2];
1239 	u8 gsl_idx, gps_idx = 0;
1240 	u8 left_bound_idx[2] = {0, 0};
1241 	u8 right_bound_idx[2] = {0, 0};
1242 	u8 left_bound_found = 0;
1243 	u8 right_bound_found = 0;
1244 	u8 intermittent = 0;
1245 	u8 value;
1246 
1247 	for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
1248 		for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
1249 			value = dqs_gating[byte][gsl_idx][gps_idx];
1250 			if (value == 1 && left_bound_found == 0) {
1251 				left_bound_idx[0] = gsl_idx;
1252 				left_bound_idx[1] = gps_idx;
1253 				left_bound_found = 1;
1254 			} else if (value == 0 &&
1255 				   left_bound_found == 1 &&
1256 				   !right_bound_found) {
1257 				if (gps_idx == 0) {
1258 					right_bound_idx[0] = gsl_idx - 1;
1259 					right_bound_idx[1] = MAX_GPS_IDX;
1260 				} else {
1261 					right_bound_idx[0] = gsl_idx;
1262 					right_bound_idx[1] = gps_idx - 1;
1263 				}
1264 				right_bound_found = 1;
1265 			} else if (value == 1 &&
1266 				   right_bound_found == 1) {
1267 				intermittent = 1;
1268 			}
1269 		}
1270 	}
1271 
1272 	/* if only ppppppp is found, there is no mid region. */
1273 	if (left_bound_idx[0] == 0 && left_bound_idx[1] == 0 &&
1274 	    right_bound_idx[0] == 0 && right_bound_idx[1] == 0)
1275 		intermittent = 1;
1276 
1277 	/*if we found a regular fail pass fail pattern ffppppppff
1278 	 * or pppppff  or ffppppp
1279 	 */
1280 	if (!intermittent) {
1281 		/*if we found a regular fail pass fail pattern ffppppppff
1282 		 * or pppppff  or ffppppp
1283 		 */
1284 		if (left_bound_found || right_bound_found) {
1285 			log_debug("idx0(%d): %d %d      idx1(%d) : %d %d\n",
1286 				  left_bound_found,
1287 				  right_bound_idx[0], left_bound_idx[0],
1288 				  right_bound_found,
1289 				  right_bound_idx[1], left_bound_idx[1]);
1290 			dqs_gate_values[byte][0] =
1291 				(right_bound_idx[0] + left_bound_idx[0]) / 2;
1292 			dqs_gate_values[byte][1] =
1293 				(right_bound_idx[1] + left_bound_idx[1]) / 2;
1294 			/* if we already lost 1/2gsl tuning,
1295 			 * let's try to recover by ++ on gps
1296 			 */
1297 			if (((right_bound_idx[0] +
1298 			      left_bound_idx[0]) % 2 == 1) &&
1299 			    dqs_gate_values[byte][1] != MAX_GPS_IDX)
1300 				dqs_gate_values[byte][1]++;
1301 			/* if we already lost 1/2gsl tuning and gps is on max*/
1302 			else if (((right_bound_idx[0] +
1303 				   left_bound_idx[0]) % 2 == 1) &&
1304 				 dqs_gate_values[byte][1] == MAX_GPS_IDX) {
1305 				dqs_gate_values[byte][1] = 0;
1306 				dqs_gate_values[byte][0]++;
1307 			}
1308 			/* if we have gsl left and write limit too close
1309 			 * (difference=1)
1310 			 */
1311 			if (((right_bound_idx[0] - left_bound_idx[0]) == 1)) {
1312 				dqs_gate_values[byte][1] = (left_bound_idx[1] +
1313 							    right_bound_idx[1] +
1314 							    4) / 2;
1315 				if (dqs_gate_values[byte][1] >= 4) {
1316 					dqs_gate_values[byte][0] =
1317 						right_bound_idx[0];
1318 					dqs_gate_values[byte][1] -= 4;
1319 				} else {
1320 					dqs_gate_values[byte][0] =
1321 						left_bound_idx[0];
1322 				}
1323 			}
1324 			log_debug("*******calculating mid region: system latency: %d  phase: %d********\n",
1325 				  dqs_gate_values[byte][0],
1326 				  dqs_gate_values[byte][1]);
1327 			log_debug("*******the nominal values were system latency: 0  phase: 2*******\n");
1328 		}
1329 	} else {
1330 		/* if intermitant, restore defaut values */
1331 		log_debug("dqs gating:no regular fail/pass/fail found. defaults values restored.\n");
1332 		dqs_gate_values[byte][0] = 0;
1333 		dqs_gate_values[byte][1] = 2;
1334 	}
1335 	set_r0dgsl_delay(phy, byte, dqs_gate_values[byte][0]);
1336 	set_r0dgps_delay(phy, byte, dqs_gate_values[byte][1]);
1337 	printf("Byte %d, R0DGSL = %d, R0DGPS = %d\n",
1338 	       byte, dqs_gate_values[byte][0], dqs_gate_values[byte][1]);
1339 
1340 	/* return 0 if intermittent or if both left_bound
1341 	 * and right_bound are not found
1342 	 */
1343 	return !(intermittent || (left_bound_found && right_bound_found));
1344 }
1345 
read_dqs_gating(struct stm32mp1_ddrctl * ctl,struct stm32mp1_ddrphy * phy,char * string)1346 static enum test_result read_dqs_gating(struct stm32mp1_ddrctl *ctl,
1347 					struct stm32mp1_ddrphy *phy,
1348 					char *string)
1349 {
1350 	/* stores the log of pass/fail */
1351 	u8 dqs_gating[NUM_BYTES][MAX_GSL_IDX + 1][MAX_GPS_IDX + 1];
1352 	u8 byte, gsl_idx, gps_idx = 0;
1353 	struct BIST_result result;
1354 	u8 success = 0;
1355 	u8 nb_bytes = get_nb_bytes(ctl);
1356 
1357 	memset(dqs_gating, 0x0, sizeof(dqs_gating));
1358 
1359 	/*disable dqs drift compensation*/
1360 	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP);
1361 	/*disable all bytes*/
1362 	/* disable automatic power down of dll and ios when disabling a byte
1363 	 * (to avoid having to add programming and  delay
1364 	 * for a dll re-lock when later re-enabling a disabled byte lane)
1365 	 */
1366 	clrbits_le32(&phy->pgcr, DDRPHYC_PGCR_PDDISDX);
1367 
1368 	/* disable all data bytes */
1369 	clrbits_le32(&phy->dx0gcr, DDRPHYC_DXNGCR_DXEN);
1370 	clrbits_le32(&phy->dx1gcr, DDRPHYC_DXNGCR_DXEN);
1371 	clrbits_le32(&phy->dx2gcr, DDRPHYC_DXNGCR_DXEN);
1372 	clrbits_le32(&phy->dx3gcr, DDRPHYC_DXNGCR_DXEN);
1373 
1374 	/* config the bist block */
1375 	config_BIST(ctl, phy);
1376 
1377 	for (byte = 0; byte < nb_bytes; byte++) {
1378 		if (ctrlc()) {
1379 			sprintf(string, "interrupted at byte %d/%d",
1380 				byte + 1, nb_bytes);
1381 			return TEST_FAILED;
1382 		}
1383 		/* enable byte x (dxngcr, bit dxen) */
1384 		setbits_le32(DXNGCR(phy, byte), DDRPHYC_DXNGCR_DXEN);
1385 
1386 		/* select the byte lane for comparison of read data */
1387 		BIST_datx8_sel(phy, byte);
1388 		for (gsl_idx = 0; gsl_idx <= MAX_GSL_IDX; gsl_idx++) {
1389 			for (gps_idx = 0; gps_idx <= MAX_GPS_IDX; gps_idx++) {
1390 				if (ctrlc()) {
1391 					sprintf(string,
1392 						"interrupted at byte %d/%d",
1393 						byte + 1, nb_bytes);
1394 					return TEST_FAILED;
1395 				}
1396 				/* write cfg to dxndqstr */
1397 				set_r0dgsl_delay(phy, byte, gsl_idx);
1398 				set_r0dgps_delay(phy, byte, gps_idx);
1399 
1400 				BIST_test(phy, byte, &result);
1401 				success = result.test_result;
1402 				if (success)
1403 					dqs_gating[byte][gsl_idx][gps_idx] = 1;
1404 				itm_soft_reset(phy);
1405 			}
1406 		}
1407 		set_midpoint_read_dqs_gating(phy, byte, dqs_gating);
1408 		/* dummy reads */
1409 		readl(0xc0000000);
1410 		readl(0xc0000000);
1411 	}
1412 
1413 	/* re-enable drift compensation */
1414 	/* setbits_le32(&phy->pgcr, DDRPHYC_PGCR_DFTCMP); */
1415 	return TEST_PASSED;
1416 }
1417 
1418 /****************************************************************
1419  * TEST
1420  ****************************************************************
1421  */
do_read_dqs_gating(struct stm32mp1_ddrctl * ctl,struct stm32mp1_ddrphy * phy,char * string,int argc,char * argv[])1422 static enum test_result do_read_dqs_gating(struct stm32mp1_ddrctl *ctl,
1423 					   struct stm32mp1_ddrphy *phy,
1424 					   char *string, int argc,
1425 					   char *argv[])
1426 {
1427 	u32 rfshctl3 = readl(&ctl->rfshctl3);
1428 	u32 pwrctl = readl(&ctl->pwrctl);
1429 	u32 derateen = readl(&ctl->derateen);
1430 	enum test_result res;
1431 
1432 	writel(0x0, &ctl->derateen);
1433 	stm32mp1_refresh_disable(ctl);
1434 
1435 	res = read_dqs_gating(ctl, phy, string);
1436 
1437 	stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
1438 	writel(derateen, &ctl->derateen);
1439 
1440 	return res;
1441 }
1442 
do_bit_deskew(struct stm32mp1_ddrctl * ctl,struct stm32mp1_ddrphy * phy,char * string,int argc,char * argv[])1443 static enum test_result do_bit_deskew(struct stm32mp1_ddrctl *ctl,
1444 				      struct stm32mp1_ddrphy *phy,
1445 				      char *string, int argc, char *argv[])
1446 {
1447 	u32 rfshctl3 = readl(&ctl->rfshctl3);
1448 	u32 pwrctl = readl(&ctl->pwrctl);
1449 	u32 derateen = readl(&ctl->derateen);
1450 	enum test_result res;
1451 
1452 	writel(0x0, &ctl->derateen);
1453 	stm32mp1_refresh_disable(ctl);
1454 
1455 	res = bit_deskew(ctl, phy, string);
1456 
1457 	stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
1458 	writel(derateen, &ctl->derateen);
1459 
1460 	return res;
1461 }
1462 
do_eye_training(struct stm32mp1_ddrctl * ctl,struct stm32mp1_ddrphy * phy,char * string,int argc,char * argv[])1463 static enum test_result do_eye_training(struct stm32mp1_ddrctl *ctl,
1464 					struct stm32mp1_ddrphy *phy,
1465 					char *string, int argc, char *argv[])
1466 {
1467 	u32 rfshctl3 = readl(&ctl->rfshctl3);
1468 	u32 pwrctl = readl(&ctl->pwrctl);
1469 	u32 derateen = readl(&ctl->derateen);
1470 	enum test_result res;
1471 
1472 	writel(0x0, &ctl->derateen);
1473 	stm32mp1_refresh_disable(ctl);
1474 
1475 	res = eye_training(ctl, phy, string);
1476 
1477 	stm32mp1_refresh_restore(ctl, rfshctl3, pwrctl);
1478 	writel(derateen, &ctl->derateen);
1479 
1480 	return res;
1481 }
1482 
do_display(struct stm32mp1_ddrctl * ctl,struct stm32mp1_ddrphy * phy,char * string,int argc,char * argv[])1483 static enum test_result do_display(struct stm32mp1_ddrctl *ctl,
1484 				   struct stm32mp1_ddrphy *phy,
1485 				   char *string, int argc, char *argv[])
1486 {
1487 	int byte;
1488 	u8 nb_bytes = get_nb_bytes(ctl);
1489 
1490 	for (byte = 0; byte < nb_bytes; byte++)
1491 		display_reg_results(phy, byte);
1492 
1493 	return TEST_PASSED;
1494 }
1495 
do_bist_config(struct stm32mp1_ddrctl * ctl,struct stm32mp1_ddrphy * phy,char * string,int argc,char * argv[])1496 static enum test_result do_bist_config(struct stm32mp1_ddrctl *ctl,
1497 				       struct stm32mp1_ddrphy *phy,
1498 				       char *string, int argc, char *argv[])
1499 {
1500 	unsigned long value;
1501 
1502 	if (argc > 0) {
1503 		if (strict_strtoul(argv[0], 0, &value) < 0) {
1504 			sprintf(string, "invalid nbErr %s", argv[0]);
1505 			return TEST_FAILED;
1506 		}
1507 		BIST_error_max = value;
1508 	}
1509 	if (argc > 1) {
1510 		if (strict_strtoul(argv[1], 0, &value) < 0) {
1511 			sprintf(string, "invalid Seed %s", argv[1]);
1512 			return TEST_FAILED;
1513 		}
1514 		BIST_seed = value;
1515 	}
1516 	printf("Bist.nbErr = %d\n", BIST_error_max);
1517 	if (BIST_seed)
1518 		printf("Bist.Seed = 0x%x\n", BIST_seed);
1519 	else
1520 		printf("Bist.Seed = random\n");
1521 
1522 	return TEST_PASSED;
1523 }
1524 
1525 /****************************************************************
1526  * TEST Description
1527  ****************************************************************
1528  */
1529 
1530 const struct test_desc tuning[] = {
1531 	{do_read_dqs_gating, "Read DQS gating",
1532 		"software read DQS Gating", "", 0 },
1533 	{do_bit_deskew, "Bit de-skew", "", "", 0 },
1534 	{do_eye_training, "Eye Training", "or DQS training", "", 0 },
1535 	{do_display, "Display registers", "", "", 0 },
1536 	{do_bist_config, "Bist config", "[nbErr] [seed]",
1537 	 "configure Bist test", 2},
1538 };
1539 
1540 const int tuning_nb = ARRAY_SIZE(tuning);
1541