1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Function to read values from the device tree node attached to a udevice.
4 *
5 * Copyright (c) 2017 Google, Inc
6 * Written by Simon Glass <sjg@chromium.org>
7 */
8
9 #ifndef _DM_READ_H
10 #define _DM_READ_H
11
12 #include <linux/errno.h>
13
14 #include <dm/device.h>
15 #include <dm/fdtaddr.h>
16 #include <dm/ofnode.h>
17 #include <dm/uclass.h>
18
19 struct resource;
20
21 #if CONFIG_IS_ENABLED(OF_LIVE)
dev_np(const struct udevice * dev)22 static inline const struct device_node *dev_np(const struct udevice *dev)
23 {
24 return ofnode_to_np(dev_ofnode(dev));
25 }
26 #else
dev_np(const struct udevice * dev)27 static inline const struct device_node *dev_np(const struct udevice *dev)
28 {
29 return NULL;
30 }
31 #endif
32
33 #if !defined(CONFIG_DM_DEV_READ_INLINE) || CONFIG_IS_ENABLED(OF_PLATDATA)
34 /**
35 * dev_read_u32() - read a 32-bit integer from a device's DT property
36 *
37 * @dev: device to read DT property from
38 * @propname: name of the property to read from
39 * @outp: place to put value (if found)
40 * @return 0 if OK, -ve on error
41 */
42 int dev_read_u32(const struct udevice *dev, const char *propname, u32 *outp);
43
44 /**
45 * dev_read_u32_default() - read a 32-bit integer from a device's DT property
46 *
47 * @dev: device to read DT property from
48 * @propname: name of the property to read from
49 * @def: default value to return if the property has no value
50 * @return property value, or @def if not found
51 */
52 int dev_read_u32_default(const struct udevice *dev, const char *propname,
53 int def);
54
55 /**
56 * dev_read_u32_index() - read an indexed 32-bit integer from a device's DT
57 * property
58 *
59 * @dev: device to read DT property from
60 * @propname: name of the property to read from
61 * @index: index of the integer to return
62 * @outp: place to put value (if found)
63 * @return 0 if OK, -ve on error
64 */
65 int dev_read_u32_index(struct udevice *dev, const char *propname, int index,
66 u32 *outp);
67
68 /**
69 * dev_read_u32_index_default() - read an indexed 32-bit integer from a device's
70 * DT property
71 *
72 * @dev: device to read DT property from
73 * @propname: name of the property to read from
74 * @index: index of the integer to return
75 * @def: default value to return if the property has no value
76 * @return property value, or @def if not found
77 */
78 u32 dev_read_u32_index_default(struct udevice *dev, const char *propname,
79 int index, u32 def);
80
81 /**
82 * dev_read_s32() - read a signed 32-bit integer from a device's DT property
83 *
84 * @dev: device to read DT property from
85 * @propname: name of the property to read from
86 * @outp: place to put value (if found)
87 * @return 0 if OK, -ve on error
88 */
89 int dev_read_s32(const struct udevice *dev, const char *propname, s32 *outp);
90
91 /**
92 * dev_read_s32_default() - read a signed 32-bit int from a device's DT property
93 *
94 * @dev: device to read DT property from
95 * @propname: name of the property to read from
96 * @def: default value to return if the property has no value
97 * @return property value, or @def if not found
98 */
99 int dev_read_s32_default(const struct udevice *dev, const char *propname,
100 int def);
101
102 /**
103 * dev_read_u32u() - read a 32-bit integer from a device's DT property
104 *
105 * This version uses a standard uint type.
106 *
107 * @dev: device to read DT property from
108 * @propname: name of the property to read from
109 * @outp: place to put value (if found)
110 * @return 0 if OK, -ve on error
111 */
112 int dev_read_u32u(const struct udevice *dev, const char *propname, uint *outp);
113
114 /**
115 * dev_read_u64() - read a 64-bit integer from a device's DT property
116 *
117 * @dev: device to read DT property from
118 * @propname: name of the property to read from
119 * @outp: place to put value (if found)
120 * @return 0 if OK, -ve on error
121 */
122 int dev_read_u64(const struct udevice *dev, const char *propname, u64 *outp);
123
124 /**
125 * dev_read_u64_default() - read a 64-bit integer from a device's DT property
126 *
127 * @dev: device to read DT property from
128 * @propname: name of the property to read from
129 * @def: default value to return if the property has no value
130 * @return property value, or @def if not found
131 */
132 u64 dev_read_u64_default(const struct udevice *dev, const char *propname,
133 u64 def);
134
135 /**
136 * dev_read_string() - Read a string from a device's DT property
137 *
138 * @dev: device to read DT property from
139 * @propname: name of the property to read
140 * @return string from property value, or NULL if there is no such property
141 */
142 const char *dev_read_string(const struct udevice *dev, const char *propname);
143
144 /**
145 * dev_read_bool() - read a boolean value from a device's DT property
146 *
147 * @dev: device to read DT property from
148 * @propname: name of property to read
149 * @return true if property is present (meaning true), false if not present
150 */
151 bool dev_read_bool(const struct udevice *dev, const char *propname);
152
153 /**
154 * dev_read_subnode() - find a named subnode of a device
155 *
156 * @dev: device whose DT node contains the subnode
157 * @subnode_name: name of subnode to find
158 * @return reference to subnode (which can be invalid if there is no such
159 * subnode)
160 */
161 ofnode dev_read_subnode(const struct udevice *dev, const char *subbnode_name);
162
163 /**
164 * dev_read_size() - read the size of a property
165 *
166 * @dev: device to check
167 * @propname: property to check
168 * @return size of property if present, or -EINVAL if not
169 */
170 int dev_read_size(const struct udevice *dev, const char *propname);
171
172 /**
173 * dev_read_addr_index() - Get the indexed reg property of a device
174 *
175 * @dev: Device to read from
176 * @index: the 'reg' property can hold a list of <addr, size> pairs
177 * and @index is used to select which one is required
178 *
179 * @return address or FDT_ADDR_T_NONE if not found
180 */
181 fdt_addr_t dev_read_addr_index(const struct udevice *dev, int index);
182
183 /**
184 * dev_read_addr_size_index() - Get the indexed reg property of a device
185 *
186 * @dev: Device to read from
187 * @index: the 'reg' property can hold a list of <addr, size> pairs
188 * and @index is used to select which one is required
189 * @size: place to put size value (on success)
190 *
191 * @return address or FDT_ADDR_T_NONE if not found
192 */
193 fdt_addr_t dev_read_addr_size_index(const struct udevice *dev, int index,
194 fdt_size_t *size);
195
196 /**
197 * dev_remap_addr_index() - Get the indexed reg property of a device
198 * as a memory-mapped I/O pointer
199 *
200 * @dev: Device to read from
201 * @index: the 'reg' property can hold a list of <addr, size> pairs
202 * and @index is used to select which one is required
203 *
204 * @return pointer or NULL if not found
205 */
206 void *dev_remap_addr_index(const struct udevice *dev, int index);
207
208 /**
209 * dev_read_addr_name() - Get the reg property of a device, indexed by name
210 *
211 * @dev: Device to read from
212 * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
213 * 'reg-names' property providing named-based identification. @index
214 * indicates the value to search for in 'reg-names'.
215 *
216 * @return address or FDT_ADDR_T_NONE if not found
217 */
218 fdt_addr_t dev_read_addr_name(const struct udevice *dev, const char *name);
219
220 /**
221 * dev_read_addr_size_name() - Get the reg property of a device, indexed by name
222 *
223 * @dev: Device to read from
224 * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
225 * 'reg-names' property providing named-based identification. @index
226 * indicates the value to search for in 'reg-names'.
227 * @size: place to put size value (on success)
228 *
229 * @return address or FDT_ADDR_T_NONE if not found
230 */
231 fdt_addr_t dev_read_addr_size_name(const struct udevice *dev, const char *name,
232 fdt_size_t *size);
233
234 /**
235 * dev_remap_addr_name() - Get the reg property of a device, indexed by name,
236 * as a memory-mapped I/O pointer
237 *
238 * @dev: Device to read from
239 * @name: the 'reg' property can hold a list of <addr, size> pairs, with the
240 * 'reg-names' property providing named-based identification. @index
241 * indicates the value to search for in 'reg-names'.
242 *
243 * @return pointer or NULL if not found
244 */
245 void *dev_remap_addr_name(const struct udevice *dev, const char *name);
246
247 /**
248 * dev_read_addr() - Get the reg property of a device
249 *
250 * @dev: Device to read from
251 *
252 * @return address or FDT_ADDR_T_NONE if not found
253 */
254 fdt_addr_t dev_read_addr(const struct udevice *dev);
255
256 /**
257 * dev_read_addr_ptr() - Get the reg property of a device
258 * as a pointer
259 *
260 * @dev: Device to read from
261 *
262 * @return pointer or NULL if not found
263 */
264 void *dev_read_addr_ptr(const struct udevice *dev);
265
266 /**
267 * dev_read_addr_pci() - Read an address and handle PCI address translation
268 *
269 * At present U-Boot does not have address translation logic for PCI in the
270 * livetree implementation (of_addr.c). This special function supports this for
271 * the flat tree implementation.
272 *
273 * This function should be removed (and code should use dev_read() instead)
274 * once:
275 *
276 * 1. PCI address translation is added; and either
277 * 2. everything uses livetree where PCI translation is used (which is feasible
278 * in SPL and U-Boot proper) or PCI address translation is added to
279 * fdtdec_get_addr() and friends.
280 *
281 * @dev: Device to read from
282 * @return address or FDT_ADDR_T_NONE if not found
283 */
284 fdt_addr_t dev_read_addr_pci(const struct udevice *dev);
285
286 /**
287 * dev_remap_addr() - Get the reg property of a device as a
288 * memory-mapped I/O pointer
289 *
290 * @dev: Device to read from
291 *
292 * @return pointer or NULL if not found
293 */
294 void *dev_remap_addr(const struct udevice *dev);
295
296 /**
297 * dev_read_addr_size() - get address and size from a device property
298 *
299 * This does no address translation. It simply reads an property that contains
300 * an address and a size value, one after the other.
301 *
302 * @dev: Device to read from
303 * @propname: property to read
304 * @sizep: place to put size value (on success)
305 * @return address value, or FDT_ADDR_T_NONE on error
306 */
307 fdt_addr_t dev_read_addr_size(const struct udevice *dev, const char *propname,
308 fdt_size_t *sizep);
309
310 /**
311 * dev_read_name() - get the name of a device's node
312 *
313 * @dev: Device to read from
314 * @return name of node
315 */
316 const char *dev_read_name(const struct udevice *dev);
317
318 /**
319 * dev_read_stringlist_search() - find string in a string list and return index
320 *
321 * Note that it is possible for this function to succeed on property values
322 * that are not NUL-terminated. That's because the function will stop after
323 * finding the first occurrence of @string. This can for example happen with
324 * small-valued cell properties, such as #address-cells, when searching for
325 * the empty string.
326 *
327 * @dev: device to check
328 * @propname: name of the property containing the string list
329 * @string: string to look up in the string list
330 *
331 * @return:
332 * the index of the string in the list of strings
333 * -ENODATA if the property is not found
334 * -EINVAL on some other error
335 */
336 int dev_read_stringlist_search(const struct udevice *dev, const char *property,
337 const char *string);
338
339 /**
340 * dev_read_string_index() - obtain an indexed string from a string list
341 *
342 * @dev: device to examine
343 * @propname: name of the property containing the string list
344 * @index: index of the string to return
345 * @out: return location for the string
346 *
347 * @return:
348 * length of string, if found or -ve error value if not found
349 */
350 int dev_read_string_index(const struct udevice *dev, const char *propname,
351 int index, const char **outp);
352
353 /**
354 * dev_read_string_count() - find the number of strings in a string list
355 *
356 * @dev: device to examine
357 * @propname: name of the property containing the string list
358 * @return:
359 * number of strings in the list, or -ve error value if not found
360 */
361 int dev_read_string_count(const struct udevice *dev, const char *propname);
362 /**
363 * dev_read_phandle_with_args() - Find a node pointed by phandle in a list
364 *
365 * This function is useful to parse lists of phandles and their arguments.
366 * Returns 0 on success and fills out_args, on error returns appropriate
367 * errno value.
368 *
369 * Caller is responsible to call of_node_put() on the returned out_args->np
370 * pointer.
371 *
372 * Example:
373 *
374 * phandle1: node1 {
375 * #list-cells = <2>;
376 * }
377 *
378 * phandle2: node2 {
379 * #list-cells = <1>;
380 * }
381 *
382 * node3 {
383 * list = <&phandle1 1 2 &phandle2 3>;
384 * }
385 *
386 * To get a device_node of the `node2' node you may call this:
387 * dev_read_phandle_with_args(dev, "list", "#list-cells", 0, 1, &args);
388 *
389 * @dev: device whose node containing a list
390 * @list_name: property name that contains a list
391 * @cells_name: property name that specifies phandles' arguments count
392 * @cells_count: Cell count to use if @cells_name is NULL
393 * @index: index of a phandle to parse out
394 * @out_args: optional pointer to output arguments structure (will be filled)
395 * @return 0 on success (with @out_args filled out if not NULL), -ENOENT if
396 * @list_name does not exist, -EINVAL if a phandle was not found,
397 * @cells_name could not be found, the arguments were truncated or there
398 * were too many arguments.
399 */
400 int dev_read_phandle_with_args(const struct udevice *dev, const char *list_name,
401 const char *cells_name, int cell_count,
402 int index, struct ofnode_phandle_args *out_args);
403
404 /**
405 * dev_count_phandle_with_args() - Return phandle number in a list
406 *
407 * This function is usefull to get phandle number contained in a property list.
408 * For example, this allows to allocate the right amount of memory to keep
409 * clock's reference contained into the "clocks" property.
410 *
411 *
412 * @dev: device whose node containing a list
413 * @list_name: property name that contains a list
414 * @cells_name: property name that specifies phandles' arguments count
415 * @cells_count: Cell count to use if @cells_name is NULL
416 * @Returns number of phandle found on success, on error returns appropriate
417 * errno value.
418 */
419
420 int dev_count_phandle_with_args(const struct udevice *dev,
421 const char *list_name, const char *cells_name,
422 int cell_count);
423
424 /**
425 * dev_read_addr_cells() - Get the number of address cells for a device's node
426 *
427 * This walks back up the tree to find the closest #address-cells property
428 * which controls the given node.
429 *
430 * @dev: device to check
431 * @return number of address cells this node uses
432 */
433 int dev_read_addr_cells(const struct udevice *dev);
434
435 /**
436 * dev_read_size_cells() - Get the number of size cells for a device's node
437 *
438 * This walks back up the tree to find the closest #size-cells property
439 * which controls the given node.
440 *
441 * @dev: device to check
442 * @return number of size cells this node uses
443 */
444 int dev_read_size_cells(const struct udevice *dev);
445
446 /**
447 * dev_read_addr_cells() - Get the address cells property in a node
448 *
449 * This function matches fdt_address_cells().
450 *
451 * @dev: device to check
452 * @return number of address cells this node uses
453 */
454 int dev_read_simple_addr_cells(const struct udevice *dev);
455
456 /**
457 * dev_read_size_cells() - Get the size cells property in a node
458 *
459 * This function matches fdt_size_cells().
460 *
461 * @dev: device to check
462 * @return number of size cells this node uses
463 */
464 int dev_read_simple_size_cells(const struct udevice *dev);
465
466 /**
467 * dev_read_phandle() - Get the phandle from a device
468 *
469 * @dev: device to check
470 * @return phandle (1 or greater), or 0 if no phandle or other error
471 */
472 int dev_read_phandle(const struct udevice *dev);
473
474 /**
475 * dev_read_prop()- - read a property from a device's node
476 *
477 * @dev: device to check
478 * @propname: property to read
479 * @lenp: place to put length on success
480 * @return pointer to property, or NULL if not found
481 */
482 const void *dev_read_prop(const struct udevice *dev, const char *propname,
483 int *lenp);
484
485 /**
486 * dev_read_first_prop()- get the reference of the first property
487 *
488 * Get reference to the first property of the node, it is used to iterate
489 * and read all the property with dev_read_prop_by_prop().
490 *
491 * @dev: device to check
492 * @prop: place to put argument reference
493 * @return 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
494 */
495 int dev_read_first_prop(const struct udevice *dev, struct ofprop *prop);
496
497 /**
498 * ofnode_get_next_property() - get the reference of the next property
499 *
500 * Get reference to the next property of the node, it is used to iterate
501 * and read all the property with dev_read_prop_by_prop().
502 *
503 * @prop: reference of current argument and place to put reference of next one
504 * @return 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
505 */
506 int dev_read_next_prop(struct ofprop *prop);
507
508 /**
509 * dev_read_prop_by_prop() - get a pointer to the value of a property
510 *
511 * Get value for the property identified by the provided reference.
512 *
513 * @prop: reference on property
514 * @propname: If non-NULL, place to property name on success,
515 * @lenp: If non-NULL, place to put length on success
516 * @return 0 if OK, -ve on error. -FDT_ERR_NOTFOUND if not found
517 */
518 const void *dev_read_prop_by_prop(struct ofprop *prop,
519 const char **propname, int *lenp);
520
521 /**
522 * dev_read_alias_seq() - Get the alias sequence number of a node
523 *
524 * This works out whether a node is pointed to by an alias, and if so, the
525 * sequence number of that alias. Aliases are of the form <base><num> where
526 * <num> is the sequence number. For example spi2 would be sequence number 2.
527 *
528 * @dev: device to look up
529 * @devnump: set to the sequence number if one is found
530 * @return 0 if a sequence was found, -ve if not
531 */
532 int dev_read_alias_seq(const struct udevice *dev, int *devnump);
533
534 /**
535 * dev_read_u32_array() - Find and read an array of 32 bit integers
536 *
537 * Search for a property in a device node and read 32-bit value(s) from
538 * it.
539 *
540 * The out_values is modified only if a valid u32 value can be decoded.
541 *
542 * @dev: device to look up
543 * @propname: name of the property to read
544 * @out_values: pointer to return value, modified only if return value is 0
545 * @sz: number of array elements to read
546 * @return 0 on success, -EINVAL if the property does not exist, -ENODATA if
547 * property does not have a value, and -EOVERFLOW if the property data isn't
548 * large enough.
549 */
550 int dev_read_u32_array(const struct udevice *dev, const char *propname,
551 u32 *out_values, size_t sz);
552
553 /**
554 * dev_read_first_subnode() - find the first subnode of a device's node
555 *
556 * @dev: device to look up
557 * @return reference to the first subnode (which can be invalid if the device's
558 * node has no subnodes)
559 */
560 ofnode dev_read_first_subnode(const struct udevice *dev);
561
562 /**
563 * ofnode_next_subnode() - find the next sibling of a subnode
564 *
565 * @node: valid reference to previous node (sibling)
566 * @return reference to the next subnode (which can be invalid if the node
567 * has no more siblings)
568 */
569 ofnode dev_read_next_subnode(ofnode node);
570
571 /**
572 * dev_read_u8_array_ptr() - find an 8-bit array
573 *
574 * Look up a device's node property and return a pointer to its contents as a
575 * byte array of given length. The property must have at least enough data
576 * for the array (count bytes). It may have more, but this will be ignored.
577 * The data is not copied.
578 *
579 * @dev: device to look up
580 * @propname: name of property to find
581 * @sz: number of array elements
582 * @return pointer to byte array if found, or NULL if the property is not
583 * found or there is not enough data
584 */
585 const uint8_t *dev_read_u8_array_ptr(const struct udevice *dev,
586 const char *propname, size_t sz);
587
588 /**
589 * dev_read_enabled() - check whether a node is enabled
590 *
591 * This looks for a 'status' property. If this exists, then returns 1 if
592 * the status is 'ok' and 0 otherwise. If there is no status property,
593 * it returns 1 on the assumption that anything mentioned should be enabled
594 * by default.
595 *
596 * @dev: device to examine
597 * @return integer value 0 (not enabled) or 1 (enabled)
598 */
599 int dev_read_enabled(const struct udevice *dev);
600
601 /**
602 * dev_read_resource() - obtain an indexed resource from a device.
603 *
604 * @dev: device to examine
605 * @index index of the resource to retrieve (0 = first)
606 * @res returns the resource
607 * @return 0 if ok, negative on error
608 */
609 int dev_read_resource(const struct udevice *dev, uint index,
610 struct resource *res);
611
612 /**
613 * dev_read_resource_byname() - obtain a named resource from a device.
614 *
615 * @dev: device to examine
616 * @name: name of the resource to retrieve
617 * @res: returns the resource
618 * @return 0 if ok, negative on error
619 */
620 int dev_read_resource_byname(const struct udevice *dev, const char *name,
621 struct resource *res);
622
623 /**
624 * dev_translate_address() - Translate a device-tree address
625 *
626 * Translate an address from the device-tree into a CPU physical address. This
627 * function walks up the tree and applies the various bus mappings along the
628 * way.
629 *
630 * @dev: device giving the context in which to translate the address
631 * @in_addr: pointer to the address to translate
632 * @return the translated address; OF_BAD_ADDR on error
633 */
634 u64 dev_translate_address(const struct udevice *dev, const fdt32_t *in_addr);
635
636 /**
637 * dev_translate_dma_address() - Translate a device-tree DMA address
638 *
639 * Translate a DMA address from the device-tree into a CPU physical address.
640 * This function walks up the tree and applies the various bus mappings along
641 * the way.
642 *
643 * @dev: device giving the context in which to translate the DMA address
644 * @in_addr: pointer to the DMA address to translate
645 * @return the translated DMA address; OF_BAD_ADDR on error
646 */
647 u64 dev_translate_dma_address(const struct udevice *dev,
648 const fdt32_t *in_addr);
649
650 /**
651 * dev_get_dma_range() - Get a device's DMA constraints
652 *
653 * Provide the address bases and size of the linear mapping between the CPU and
654 * a device's BUS address space.
655 *
656 * @dev: device giving the context in which to translate the DMA address
657 * @cpu: base address for CPU's view of memory
658 * @bus: base address for BUS's view of memory
659 * @size: size of the address space
660 * @return 0 if ok, negative on error
661 */
662 int dev_get_dma_range(const struct udevice *dev, phys_addr_t *cpu,
663 dma_addr_t *bus, u64 *size);
664
665 /**
666 * dev_read_alias_highest_id - Get highest alias id for the given stem
667 * @stem: Alias stem to be examined
668 *
669 * The function travels the lookup table to get the highest alias id for the
670 * given alias stem.
671 * @return alias ID, if found, else -1
672 */
673 int dev_read_alias_highest_id(const char *stem);
674
675 /**
676 * dev_get_child_count() - get the child count of a device
677 *
678 * @dev: device to use for interation (struct udevice *)
679 * @return the count of child subnode
680 */
681 int dev_get_child_count(const struct udevice *dev);
682
683 /**
684 * dev_read_pci_bus_range - Read PCI bus-range resource
685 *
686 * Look at the bus range property of a device node and return the pci bus
687 * range for this node.
688 *
689 * @dev: device to examine
690 * @res returns the resource
691 * @return 0 if ok, negative on error
692 */
693 int dev_read_pci_bus_range(const struct udevice *dev, struct resource *res);
694
695 /**
696 * dev_decode_display_timing() - decode display timings
697 *
698 * Decode display timings from the supplied 'display-timings' node.
699 * See doc/device-tree-bindings/video/display-timing.txt for binding
700 * information.
701 *
702 * @dev: device to read DT display timings from. The node linked to the device
703 * contains a child node called 'display-timings' which in turn contains
704 * one or more display timing nodes.
705 * @index: index number to read (0=first timing subnode)
706 * @config: place to put timings
707 * @return 0 if OK, -FDT_ERR_NOTFOUND if not found
708 */
709 int dev_decode_display_timing(const struct udevice *dev, int index,
710 struct display_timing *config);
711
712 #else /* CONFIG_DM_DEV_READ_INLINE is enabled */
713 #include <asm/global_data.h>
714
dev_read_u32(const struct udevice * dev,const char * propname,u32 * outp)715 static inline int dev_read_u32(const struct udevice *dev,
716 const char *propname, u32 *outp)
717 {
718 return ofnode_read_u32(dev_ofnode(dev), propname, outp);
719 }
720
dev_read_u32_default(const struct udevice * dev,const char * propname,int def)721 static inline int dev_read_u32_default(const struct udevice *dev,
722 const char *propname, int def)
723 {
724 return ofnode_read_u32_default(dev_ofnode(dev), propname, def);
725 }
726
dev_read_u32_index(struct udevice * dev,const char * propname,int index,u32 * outp)727 static inline int dev_read_u32_index(struct udevice *dev,
728 const char *propname, int index, u32 *outp)
729 {
730 return ofnode_read_u32_index(dev_ofnode(dev), propname, index, outp);
731 }
732
dev_read_u32_index_default(struct udevice * dev,const char * propname,int index,u32 def)733 static inline u32 dev_read_u32_index_default(struct udevice *dev,
734 const char *propname, int index,
735 u32 def)
736 {
737 return ofnode_read_u32_index_default(dev_ofnode(dev), propname, index,
738 def);
739 }
740
dev_read_s32(const struct udevice * dev,const char * propname,s32 * outp)741 static inline int dev_read_s32(const struct udevice *dev,
742 const char *propname, s32 *outp)
743 {
744 return ofnode_read_s32(dev_ofnode(dev), propname, outp);
745 }
746
dev_read_s32_default(const struct udevice * dev,const char * propname,int def)747 static inline int dev_read_s32_default(const struct udevice *dev,
748 const char *propname, int def)
749 {
750 return ofnode_read_s32_default(dev_ofnode(dev), propname, def);
751 }
752
dev_read_u32u(const struct udevice * dev,const char * propname,uint * outp)753 static inline int dev_read_u32u(const struct udevice *dev,
754 const char *propname, uint *outp)
755 {
756 u32 val;
757 int ret;
758
759 ret = ofnode_read_u32(dev_ofnode(dev), propname, &val);
760 if (ret)
761 return ret;
762 *outp = val;
763
764 return 0;
765 }
766
dev_read_u64(const struct udevice * dev,const char * propname,u64 * outp)767 static inline int dev_read_u64(const struct udevice *dev,
768 const char *propname, u64 *outp)
769 {
770 return ofnode_read_u64(dev_ofnode(dev), propname, outp);
771 }
772
dev_read_u64_default(const struct udevice * dev,const char * propname,u64 def)773 static inline u64 dev_read_u64_default(const struct udevice *dev,
774 const char *propname, u64 def)
775 {
776 return ofnode_read_u64_default(dev_ofnode(dev), propname, def);
777 }
778
dev_read_string(const struct udevice * dev,const char * propname)779 static inline const char *dev_read_string(const struct udevice *dev,
780 const char *propname)
781 {
782 return ofnode_read_string(dev_ofnode(dev), propname);
783 }
784
dev_read_bool(const struct udevice * dev,const char * propname)785 static inline bool dev_read_bool(const struct udevice *dev,
786 const char *propname)
787 {
788 return ofnode_read_bool(dev_ofnode(dev), propname);
789 }
790
dev_read_subnode(const struct udevice * dev,const char * subbnode_name)791 static inline ofnode dev_read_subnode(const struct udevice *dev,
792 const char *subbnode_name)
793 {
794 return ofnode_find_subnode(dev_ofnode(dev), subbnode_name);
795 }
796
dev_read_size(const struct udevice * dev,const char * propname)797 static inline int dev_read_size(const struct udevice *dev, const char *propname)
798 {
799 return ofnode_read_size(dev_ofnode(dev), propname);
800 }
801
dev_read_addr_index(const struct udevice * dev,int index)802 static inline fdt_addr_t dev_read_addr_index(const struct udevice *dev,
803 int index)
804 {
805 return devfdt_get_addr_index(dev, index);
806 }
807
dev_read_addr_size_index(const struct udevice * dev,int index,fdt_size_t * size)808 static inline fdt_addr_t dev_read_addr_size_index(const struct udevice *dev,
809 int index,
810 fdt_size_t *size)
811 {
812 return devfdt_get_addr_size_index(dev, index, size);
813 }
814
dev_read_addr_name(const struct udevice * dev,const char * name)815 static inline fdt_addr_t dev_read_addr_name(const struct udevice *dev,
816 const char *name)
817 {
818 return devfdt_get_addr_name(dev, name);
819 }
820
dev_read_addr_size_name(const struct udevice * dev,const char * name,fdt_size_t * size)821 static inline fdt_addr_t dev_read_addr_size_name(const struct udevice *dev,
822 const char *name,
823 fdt_size_t *size)
824 {
825 return devfdt_get_addr_size_name(dev, name, size);
826 }
827
dev_read_addr(const struct udevice * dev)828 static inline fdt_addr_t dev_read_addr(const struct udevice *dev)
829 {
830 return devfdt_get_addr(dev);
831 }
832
dev_read_addr_ptr(const struct udevice * dev)833 static inline void *dev_read_addr_ptr(const struct udevice *dev)
834 {
835 return devfdt_get_addr_ptr(dev);
836 }
837
dev_read_addr_pci(const struct udevice * dev)838 static inline fdt_addr_t dev_read_addr_pci(const struct udevice *dev)
839 {
840 return devfdt_get_addr_pci(dev);
841 }
842
dev_remap_addr(const struct udevice * dev)843 static inline void *dev_remap_addr(const struct udevice *dev)
844 {
845 return devfdt_remap_addr(dev);
846 }
847
dev_remap_addr_index(const struct udevice * dev,int index)848 static inline void *dev_remap_addr_index(const struct udevice *dev, int index)
849 {
850 return devfdt_remap_addr_index(dev, index);
851 }
852
dev_remap_addr_name(const struct udevice * dev,const char * name)853 static inline void *dev_remap_addr_name(const struct udevice *dev,
854 const char *name)
855 {
856 return devfdt_remap_addr_name(dev, name);
857 }
858
dev_read_addr_size(const struct udevice * dev,const char * propname,fdt_size_t * sizep)859 static inline fdt_addr_t dev_read_addr_size(const struct udevice *dev,
860 const char *propname,
861 fdt_size_t *sizep)
862 {
863 return ofnode_get_addr_size(dev_ofnode(dev), propname, sizep);
864 }
865
dev_read_name(const struct udevice * dev)866 static inline const char *dev_read_name(const struct udevice *dev)
867 {
868 return ofnode_get_name(dev_ofnode(dev));
869 }
870
dev_read_stringlist_search(const struct udevice * dev,const char * propname,const char * string)871 static inline int dev_read_stringlist_search(const struct udevice *dev,
872 const char *propname,
873 const char *string)
874 {
875 return ofnode_stringlist_search(dev_ofnode(dev), propname, string);
876 }
877
dev_read_string_index(const struct udevice * dev,const char * propname,int index,const char ** outp)878 static inline int dev_read_string_index(const struct udevice *dev,
879 const char *propname, int index,
880 const char **outp)
881 {
882 return ofnode_read_string_index(dev_ofnode(dev), propname, index, outp);
883 }
884
dev_read_string_count(const struct udevice * dev,const char * propname)885 static inline int dev_read_string_count(const struct udevice *dev,
886 const char *propname)
887 {
888 return ofnode_read_string_count(dev_ofnode(dev), propname);
889 }
890
dev_read_phandle_with_args(const struct udevice * dev,const char * list_name,const char * cells_name,int cell_count,int index,struct ofnode_phandle_args * out_args)891 static inline int dev_read_phandle_with_args(const struct udevice *dev,
892 const char *list_name, const char *cells_name, int cell_count,
893 int index, struct ofnode_phandle_args *out_args)
894 {
895 return ofnode_parse_phandle_with_args(dev_ofnode(dev), list_name,
896 cells_name, cell_count, index,
897 out_args);
898 }
899
dev_count_phandle_with_args(const struct udevice * dev,const char * list_name,const char * cells_name,int cell_count)900 static inline int dev_count_phandle_with_args(const struct udevice *dev,
901 const char *list_name, const char *cells_name, int cell_count)
902 {
903 return ofnode_count_phandle_with_args(dev_ofnode(dev), list_name,
904 cells_name, cell_count);
905 }
906
dev_read_addr_cells(const struct udevice * dev)907 static inline int dev_read_addr_cells(const struct udevice *dev)
908 {
909 int parent = fdt_parent_offset(gd->fdt_blob, dev_of_offset(dev));
910
911 return fdt_address_cells(gd->fdt_blob, parent);
912 }
913
dev_read_size_cells(const struct udevice * dev)914 static inline int dev_read_size_cells(const struct udevice *dev)
915 {
916 int parent = fdt_parent_offset(gd->fdt_blob, dev_of_offset(dev));
917
918 return fdt_size_cells(gd->fdt_blob, parent);
919 }
920
dev_read_simple_addr_cells(const struct udevice * dev)921 static inline int dev_read_simple_addr_cells(const struct udevice *dev)
922 {
923 return fdt_address_cells(gd->fdt_blob, dev_of_offset(dev));
924 }
925
dev_read_simple_size_cells(const struct udevice * dev)926 static inline int dev_read_simple_size_cells(const struct udevice *dev)
927 {
928 return fdt_size_cells(gd->fdt_blob, dev_of_offset(dev));
929 }
930
dev_read_phandle(const struct udevice * dev)931 static inline int dev_read_phandle(const struct udevice *dev)
932 {
933 return fdt_get_phandle(gd->fdt_blob, dev_of_offset(dev));
934 }
935
dev_read_prop(const struct udevice * dev,const char * propname,int * lenp)936 static inline const void *dev_read_prop(const struct udevice *dev,
937 const char *propname, int *lenp)
938 {
939 return ofnode_get_property(dev_ofnode(dev), propname, lenp);
940 }
941
dev_read_first_prop(const struct udevice * dev,struct ofprop * prop)942 static inline int dev_read_first_prop(const struct udevice *dev, struct ofprop *prop)
943 {
944 return ofnode_get_first_property(dev_ofnode(dev), prop);
945 }
946
dev_read_next_prop(struct ofprop * prop)947 static inline int dev_read_next_prop(struct ofprop *prop)
948 {
949 return ofnode_get_next_property(prop);
950 }
951
dev_read_prop_by_prop(struct ofprop * prop,const char ** propname,int * lenp)952 static inline const void *dev_read_prop_by_prop(struct ofprop *prop,
953 const char **propname,
954 int *lenp)
955 {
956 return ofnode_get_property_by_prop(prop, propname, lenp);
957 }
958
dev_read_alias_seq(const struct udevice * dev,int * devnump)959 static inline int dev_read_alias_seq(const struct udevice *dev, int *devnump)
960 {
961 #if CONFIG_IS_ENABLED(OF_CONTROL)
962 return fdtdec_get_alias_seq(gd->fdt_blob, dev->uclass->uc_drv->name,
963 dev_of_offset(dev), devnump);
964 #else
965 return -ENOTSUPP;
966 #endif
967 }
968
dev_read_u32_array(const struct udevice * dev,const char * propname,u32 * out_values,size_t sz)969 static inline int dev_read_u32_array(const struct udevice *dev,
970 const char *propname, u32 *out_values,
971 size_t sz)
972 {
973 return ofnode_read_u32_array(dev_ofnode(dev), propname, out_values, sz);
974 }
975
dev_read_first_subnode(const struct udevice * dev)976 static inline ofnode dev_read_first_subnode(const struct udevice *dev)
977 {
978 return ofnode_first_subnode(dev_ofnode(dev));
979 }
980
dev_read_next_subnode(ofnode node)981 static inline ofnode dev_read_next_subnode(ofnode node)
982 {
983 return ofnode_next_subnode(node);
984 }
985
dev_read_u8_array_ptr(const struct udevice * dev,const char * propname,size_t sz)986 static inline const uint8_t *dev_read_u8_array_ptr(const struct udevice *dev,
987 const char *propname,
988 size_t sz)
989 {
990 return ofnode_read_u8_array_ptr(dev_ofnode(dev), propname, sz);
991 }
992
dev_read_enabled(const struct udevice * dev)993 static inline int dev_read_enabled(const struct udevice *dev)
994 {
995 return fdtdec_get_is_enabled(gd->fdt_blob, dev_of_offset(dev));
996 }
997
dev_read_resource(const struct udevice * dev,uint index,struct resource * res)998 static inline int dev_read_resource(const struct udevice *dev, uint index,
999 struct resource *res)
1000 {
1001 return ofnode_read_resource(dev_ofnode(dev), index, res);
1002 }
1003
dev_read_resource_byname(const struct udevice * dev,const char * name,struct resource * res)1004 static inline int dev_read_resource_byname(const struct udevice *dev,
1005 const char *name,
1006 struct resource *res)
1007 {
1008 return ofnode_read_resource_byname(dev_ofnode(dev), name, res);
1009 }
1010
dev_translate_address(const struct udevice * dev,const fdt32_t * in_addr)1011 static inline u64 dev_translate_address(const struct udevice *dev,
1012 const fdt32_t *in_addr)
1013 {
1014 return ofnode_translate_address(dev_ofnode(dev), in_addr);
1015 }
1016
dev_translate_dma_address(const struct udevice * dev,const fdt32_t * in_addr)1017 static inline u64 dev_translate_dma_address(const struct udevice *dev,
1018 const fdt32_t *in_addr)
1019 {
1020 return ofnode_translate_dma_address(dev_ofnode(dev), in_addr);
1021 }
1022
dev_get_dma_range(const struct udevice * dev,phys_addr_t * cpu,dma_addr_t * bus,u64 * size)1023 static inline int dev_get_dma_range(const struct udevice *dev, phys_addr_t *cpu,
1024 dma_addr_t *bus, u64 *size)
1025 {
1026 return ofnode_get_dma_range(dev_ofnode(dev), cpu, bus, size);
1027 }
1028
dev_read_alias_highest_id(const char * stem)1029 static inline int dev_read_alias_highest_id(const char *stem)
1030 {
1031 if (!CONFIG_IS_ENABLED(OF_LIBFDT) || !gd->fdt_blob)
1032 return -1;
1033 return fdtdec_get_alias_highest_id(gd->fdt_blob, stem);
1034 }
1035
dev_get_child_count(const struct udevice * dev)1036 static inline int dev_get_child_count(const struct udevice *dev)
1037 {
1038 return ofnode_get_child_count(dev_ofnode(dev));
1039 }
1040
dev_decode_display_timing(const struct udevice * dev,int index,struct display_timing * config)1041 static inline int dev_decode_display_timing(const struct udevice *dev,
1042 int index,
1043 struct display_timing *config)
1044 {
1045 return ofnode_decode_display_timing(dev_ofnode(dev), index, config);
1046 }
1047
1048 #endif /* CONFIG_DM_DEV_READ_INLINE */
1049
1050 /**
1051 * dev_for_each_subnode() - Helper function to iterate through subnodes
1052 *
1053 * This creates a for() loop which works through the subnodes in a device's
1054 * device-tree node.
1055 *
1056 * @subnode: ofnode holding the current subnode
1057 * @dev: device to use for interation (struct udevice *)
1058 */
1059 #define dev_for_each_subnode(subnode, dev) \
1060 for (subnode = dev_read_first_subnode(dev); \
1061 ofnode_valid(subnode); \
1062 subnode = ofnode_next_subnode(subnode))
1063
1064 /**
1065 * dev_for_each_property() - Helper function to iterate through property
1066 *
1067 * This creates a for() loop which works through the property in a device's
1068 * device-tree node.
1069 *
1070 * @prop: struct ofprop holding the current property
1071 * @dev: device to use for interation (struct udevice *)
1072 */
1073 #define dev_for_each_property(prop, dev) \
1074 for (int ret_prop = dev_read_first_prop(dev, &prop); \
1075 !ret_prop; \
1076 ret_prop = dev_read_next_prop(&prop))
1077
1078 #endif
1079