1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2014-2016 Stefan Roese <sr@denx.de>
4  */
5 
6 #include <common.h>
7 #include <ahci.h>
8 #include <cpu_func.h>
9 #include <init.h>
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/mbus.h>
13 #include <asm/io.h>
14 #include <asm/pl310.h>
15 #include <asm/arch/cpu.h>
16 #include <asm/arch/soc.h>
17 #include <sdhci.h>
18 
19 #define DDR_BASE_CS_OFF(n)	(0x0000 + ((n) << 3))
20 #define DDR_SIZE_CS_OFF(n)	(0x0004 + ((n) << 3))
21 
22 static struct mbus_win windows[] = {
23 	/* SPI */
24 	{ MBUS_SPI_BASE, MBUS_SPI_SIZE,
25 	  CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_SPIFLASH },
26 
27 	/* NOR */
28 	{ MBUS_BOOTROM_BASE, MBUS_BOOTROM_SIZE,
29 	  CPU_TARGET_DEVICEBUS_BOOTROM_SPI, CPU_ATTR_BOOTROM },
30 
31 #ifdef CONFIG_ARMADA_MSYS
32 	/* DFX */
33 	{ MBUS_DFX_BASE, MBUS_DFX_SIZE, CPU_TARGET_DFX, 0 },
34 #endif
35 };
36 
lowlevel_init(void)37 void lowlevel_init(void)
38 {
39 	/*
40 	 * Dummy implementation, we only need LOWLEVEL_INIT
41 	 * on Armada to configure CP15 in start.S / cpu_init_cp15()
42 	 */
43 }
44 
reset_cpu(void)45 void reset_cpu(void)
46 {
47 	struct mvebu_system_registers *reg =
48 		(struct mvebu_system_registers *)MVEBU_SYSTEM_REG_BASE;
49 
50 	writel(readl(&reg->rstoutn_mask) | 1, &reg->rstoutn_mask);
51 	writel(readl(&reg->sys_soft_rst) | 1, &reg->sys_soft_rst);
52 	while (1)
53 		;
54 }
55 
mvebu_soc_family(void)56 int mvebu_soc_family(void)
57 {
58 	u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
59 
60 	switch (devid) {
61 	case SOC_MV78230_ID:
62 	case SOC_MV78260_ID:
63 	case SOC_MV78460_ID:
64 		return MVEBU_SOC_AXP;
65 
66 	case SOC_88F6720_ID:
67 		return MVEBU_SOC_A375;
68 
69 	case SOC_88F6810_ID:
70 	case SOC_88F6820_ID:
71 	case SOC_88F6828_ID:
72 		return MVEBU_SOC_A38X;
73 
74 	case SOC_98DX3236_ID:
75 	case SOC_98DX3336_ID:
76 	case SOC_98DX4251_ID:
77 		return MVEBU_SOC_MSYS;
78 	}
79 
80 	return MVEBU_SOC_UNKNOWN;
81 }
82 
83 #if defined(CONFIG_DISPLAY_CPUINFO)
84 
85 #if defined(CONFIG_ARMADA_375)
86 /* SAR frequency values for Armada 375 */
87 static const struct sar_freq_modes sar_freq_tab[] = {
88 	{  0,  0x0,  266,  133,  266 },
89 	{  1,  0x0,  333,  167,  167 },
90 	{  2,  0x0,  333,  167,  222 },
91 	{  3,  0x0,  333,  167,  333 },
92 	{  4,  0x0,  400,  200,  200 },
93 	{  5,  0x0,  400,  200,  267 },
94 	{  6,  0x0,  400,  200,  400 },
95 	{  7,  0x0,  500,  250,  250 },
96 	{  8,  0x0,  500,  250,  334 },
97 	{  9,  0x0,  500,  250,  500 },
98 	{ 10,  0x0,  533,  267,  267 },
99 	{ 11,  0x0,  533,  267,  356 },
100 	{ 12,  0x0,  533,  267,  533 },
101 	{ 13,  0x0,  600,  300,  300 },
102 	{ 14,  0x0,  600,  300,  400 },
103 	{ 15,  0x0,  600,  300,  600 },
104 	{ 16,  0x0,  666,  333,  333 },
105 	{ 17,  0x0,  666,  333,  444 },
106 	{ 18,  0x0,  666,  333,  666 },
107 	{ 19,  0x0,  800,  400,  267 },
108 	{ 20,  0x0,  800,  400,  400 },
109 	{ 21,  0x0,  800,  400,  534 },
110 	{ 22,  0x0,  900,  450,  300 },
111 	{ 23,  0x0,  900,  450,  450 },
112 	{ 24,  0x0,  900,  450,  600 },
113 	{ 25,  0x0, 1000,  500,  500 },
114 	{ 26,  0x0, 1000,  500,  667 },
115 	{ 27,  0x0, 1000,  333,  500 },
116 	{ 28,  0x0,  400,  400,  400 },
117 	{ 29,  0x0, 1100,  550,  550 },
118 	{ 0xff, 0xff,    0,   0,   0 }	/* 0xff marks end of array */
119 };
120 #elif defined(CONFIG_ARMADA_38X)
121 /* SAR frequency values for Armada 38x */
122 static const struct sar_freq_modes sar_freq_tab[] = {
123 	{  0x0,  0x0,  666,  333, 333 },
124 	{  0x2,  0x0,  800,  400, 400 },
125 	{  0x4,  0x0, 1066,  533, 533 },
126 	{  0x6,  0x0, 1200,  600, 600 },
127 	{  0x8,  0x0, 1332,  666, 666 },
128 	{  0xc,  0x0, 1600,  800, 800 },
129 	{ 0x10,  0x0, 1866,  933, 933 },
130 	{ 0x13,  0x0, 2000, 1000, 933 },
131 	{ 0xff, 0xff,    0,    0,   0 }	/* 0xff marks end of array */
132 };
133 #elif defined(CONFIG_ARMADA_MSYS)
134 static const struct sar_freq_modes sar_freq_tab[] = {
135 	{  0x0,	0x0,  400,  400, 400 },
136 	{  0x2, 0x0,  667,  333, 667 },
137 	{  0x3, 0x0,  800,  400, 800 },
138 	{  0x5, 0x0,  800,  400, 800 },
139 	{ 0xff, 0xff,    0,   0,   0 }	/* 0xff marks end of array */
140 };
141 #else
142 /* SAR frequency values for Armada XP */
143 static const struct sar_freq_modes sar_freq_tab[] = {
144 	{  0xa,  0x5,  800, 400, 400 },
145 	{  0x1,  0x5, 1066, 533, 533 },
146 	{  0x2,  0x5, 1200, 600, 600 },
147 	{  0x2,  0x9, 1200, 600, 400 },
148 	{  0x3,  0x5, 1333, 667, 667 },
149 	{  0x4,  0x5, 1500, 750, 750 },
150 	{  0x4,  0x9, 1500, 750, 500 },
151 	{  0xb,  0x9, 1600, 800, 533 },
152 	{  0xb,  0xa, 1600, 800, 640 },
153 	{  0xb,  0x5, 1600, 800, 800 },
154 	{ 0xff, 0xff,    0,   0,   0 }	/* 0xff marks end of array */
155 };
156 #endif
157 
get_sar_freq(struct sar_freq_modes * sar_freq)158 void get_sar_freq(struct sar_freq_modes *sar_freq)
159 {
160 	u32 val;
161 	u32 freq;
162 	int i;
163 
164 #if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_MSYS)
165 	val = readl(CONFIG_SAR2_REG);	/* SAR - Sample At Reset */
166 #else
167 	val = readl(CONFIG_SAR_REG);	/* SAR - Sample At Reset */
168 #endif
169 	freq = (val & SAR_CPU_FREQ_MASK) >> SAR_CPU_FREQ_OFFS;
170 #if defined(SAR2_CPU_FREQ_MASK)
171 	/*
172 	 * Shift CPU0 clock frequency select bit from SAR2 register
173 	 * into correct position
174 	 */
175 	freq |= ((readl(CONFIG_SAR2_REG) & SAR2_CPU_FREQ_MASK)
176 		 >> SAR2_CPU_FREQ_OFFS) << 3;
177 #endif
178 	for (i = 0; sar_freq_tab[i].val != 0xff; i++) {
179 		if (sar_freq_tab[i].val == freq) {
180 #if defined(CONFIG_ARMADA_375) || defined(CONFIG_ARMADA_38X) || defined(CONFIG_ARMADA_MSYS)
181 			*sar_freq = sar_freq_tab[i];
182 			return;
183 #else
184 			int k;
185 			u8 ffc;
186 
187 			ffc = (val & SAR_FFC_FREQ_MASK) >>
188 				SAR_FFC_FREQ_OFFS;
189 			for (k = i; sar_freq_tab[k].ffc != 0xff; k++) {
190 				if (sar_freq_tab[k].ffc == ffc) {
191 					*sar_freq = sar_freq_tab[k];
192 					return;
193 				}
194 			}
195 			i = k;
196 #endif
197 		}
198 	}
199 
200 	/* SAR value not found, return 0 for frequencies */
201 	*sar_freq = sar_freq_tab[i - 1];
202 }
203 
print_cpuinfo(void)204 int print_cpuinfo(void)
205 {
206 	u16 devid = (readl(MVEBU_REG_PCIE_DEVID) >> 16) & 0xffff;
207 	u8 revid = readl(MVEBU_REG_PCIE_REVID) & 0xff;
208 	struct sar_freq_modes sar_freq;
209 
210 	puts("SoC:   ");
211 
212 	switch (devid) {
213 	case SOC_MV78230_ID:
214 		puts("MV78230-");
215 		break;
216 	case SOC_MV78260_ID:
217 		puts("MV78260-");
218 		break;
219 	case SOC_MV78460_ID:
220 		puts("MV78460-");
221 		break;
222 	case SOC_88F6720_ID:
223 		puts("MV88F6720-");
224 		break;
225 	case SOC_88F6810_ID:
226 		puts("MV88F6810-");
227 		break;
228 	case SOC_88F6820_ID:
229 		puts("MV88F6820-");
230 		break;
231 	case SOC_88F6828_ID:
232 		puts("MV88F6828-");
233 		break;
234 	case SOC_98DX3236_ID:
235 		puts("98DX3236-");
236 		break;
237 	case SOC_98DX3336_ID:
238 		puts("98DX3336-");
239 		break;
240 	case SOC_98DX4251_ID:
241 		puts("98DX4251-");
242 		break;
243 	default:
244 		puts("Unknown-");
245 		break;
246 	}
247 
248 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
249 		switch (revid) {
250 		case 1:
251 			puts("A0");
252 			break;
253 		case 2:
254 			puts("B0");
255 			break;
256 		default:
257 			printf("?? (%x)", revid);
258 			break;
259 		}
260 	}
261 
262 	if (mvebu_soc_family() == MVEBU_SOC_A375) {
263 		switch (revid) {
264 		case MV_88F67XX_A0_ID:
265 			puts("A0");
266 			break;
267 		default:
268 			printf("?? (%x)", revid);
269 			break;
270 		}
271 	}
272 
273 	if (mvebu_soc_family() == MVEBU_SOC_A38X) {
274 		switch (revid) {
275 		case MV_88F68XX_Z1_ID:
276 			puts("Z1");
277 			break;
278 		case MV_88F68XX_A0_ID:
279 			puts("A0");
280 			break;
281 		case MV_88F68XX_B0_ID:
282 			puts("B0");
283 			break;
284 		default:
285 			printf("?? (%x)", revid);
286 			break;
287 		}
288 	}
289 
290 	if (mvebu_soc_family() == MVEBU_SOC_MSYS) {
291 		switch (revid) {
292 		case 3:
293 			puts("A0");
294 			break;
295 		case 4:
296 			puts("A1");
297 			break;
298 		default:
299 			printf("?? (%x)", revid);
300 			break;
301 		}
302 	}
303 
304 	get_sar_freq(&sar_freq);
305 	printf(" at %d MHz\n", sar_freq.p_clk);
306 
307 	return 0;
308 }
309 #endif /* CONFIG_DISPLAY_CPUINFO */
310 
311 /*
312  * This function initialize Controller DRAM Fastpath windows.
313  * It takes the CS size information from the 0x1500 scratch registers
314  * and sets the correct windows sizes and base addresses accordingly.
315  *
316  * These values are set in the scratch registers by the Marvell
317  * DDR3 training code, which is executed by the SPL before the
318  * main payload (U-Boot) is executed.
319  */
update_sdram_window_sizes(void)320 static void update_sdram_window_sizes(void)
321 {
322 	u64 base = 0;
323 	u32 size, temp;
324 	int i;
325 
326 	for (i = 0; i < SDRAM_MAX_CS; i++) {
327 		size = readl((MVEBU_SDRAM_SCRATCH + (i * 8))) & SDRAM_ADDR_MASK;
328 		if (size != 0) {
329 			size |= ~(SDRAM_ADDR_MASK);
330 
331 			/* Set Base Address */
332 			temp = (base & 0xFF000000ll) | ((base >> 32) & 0xF);
333 			writel(temp, MVEBU_SDRAM_BASE + DDR_BASE_CS_OFF(i));
334 
335 			/*
336 			 * Check if out of max window size and resize
337 			 * the window
338 			 */
339 			temp = (readl(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i)) &
340 				~(SDRAM_ADDR_MASK)) | 1;
341 			temp |= (size & SDRAM_ADDR_MASK);
342 			writel(temp, MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i));
343 
344 			base += ((u64)size + 1);
345 		} else {
346 			/*
347 			 * Disable window if not used, otherwise this
348 			 * leads to overlapping enabled windows with
349 			 * pretty strange results
350 			 */
351 			clrbits_le32(MVEBU_SDRAM_BASE + DDR_SIZE_CS_OFF(i), 1);
352 		}
353 	}
354 }
355 
mmu_disable(void)356 void mmu_disable(void)
357 {
358 	asm volatile(
359 		"mrc p15, 0, r0, c1, c0, 0\n"
360 		"bic r0, #1\n"
361 		"mcr p15, 0, r0, c1, c0, 0\n");
362 }
363 
364 #ifdef CONFIG_ARCH_CPU_INIT
set_cbar(u32 addr)365 static void set_cbar(u32 addr)
366 {
367 	asm("mcr p15, 4, %0, c15, c0" : : "r" (addr));
368 }
369 
370 #define MV_USB_PHY_BASE			(MVEBU_AXP_USB_BASE + 0x800)
371 #define MV_USB_PHY_PLL_REG(reg)		(MV_USB_PHY_BASE | (((reg) & 0xF) << 2))
372 #define MV_USB_X3_BASE(addr)		(MVEBU_AXP_USB_BASE | BIT(11) | \
373 					 (((addr) & 0xF) << 6))
374 #define MV_USB_X3_PHY_CHANNEL(dev, reg)	(MV_USB_X3_BASE((dev) + 1) |	\
375 					 (((reg) & 0xF) << 2))
376 
setup_usb_phys(void)377 static void setup_usb_phys(void)
378 {
379 	int dev;
380 
381 	/*
382 	 * USB PLL init
383 	 */
384 
385 	/* Setup PLL frequency */
386 	/* USB REF frequency = 25 MHz */
387 	clrsetbits_le32(MV_USB_PHY_PLL_REG(1), 0x3ff, 0x605);
388 
389 	/* Power up PLL and PHY channel */
390 	setbits_le32(MV_USB_PHY_PLL_REG(2), BIT(9));
391 
392 	/* Assert VCOCAL_START */
393 	setbits_le32(MV_USB_PHY_PLL_REG(1), BIT(21));
394 
395 	mdelay(1);
396 
397 	/*
398 	 * USB PHY init (change from defaults) specific for 40nm (78X30 78X60)
399 	 */
400 
401 	for (dev = 0; dev < 3; dev++) {
402 		setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 3), BIT(15));
403 
404 		/* Assert REG_RCAL_START in channel REG 1 */
405 		setbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
406 		udelay(40);
407 		clrbits_le32(MV_USB_X3_PHY_CHANNEL(dev, 1), BIT(12));
408 	}
409 }
410 
411 /*
412  * This function is not called from the SPL U-Boot version
413  */
arch_cpu_init(void)414 int arch_cpu_init(void)
415 {
416 	struct pl310_regs *const pl310 =
417 		(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
418 
419 	/*
420 	 * Only with disabled MMU its possible to switch the base
421 	 * register address on Armada 38x. Without this the SDRAM
422 	 * located at >= 0x4000.0000 is also not accessible, as its
423 	 * still locked to cache.
424 	 */
425 	mmu_disable();
426 
427 	/* Linux expects the internal registers to be at 0xf1000000 */
428 	writel(SOC_REGS_PHY_BASE, INTREG_BASE_ADDR_REG);
429 	set_cbar(SOC_REGS_PHY_BASE + 0xC000);
430 
431 	/*
432 	 * From this stage on, the SoC detection is working. As we have
433 	 * configured the internal register base to the value used
434 	 * in the macros / defines in the U-Boot header (soc.h).
435 	 */
436 
437 	if (mvebu_soc_family() == MVEBU_SOC_A38X) {
438 		/*
439 		 * To fully release / unlock this area from cache, we need
440 		 * to flush all caches and disable the L2 cache.
441 		 */
442 		icache_disable();
443 		dcache_disable();
444 		clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
445 	}
446 
447 	/*
448 	 * We need to call mvebu_mbus_probe() before calling
449 	 * update_sdram_window_sizes() as it disables all previously
450 	 * configured mbus windows and then configures them as
451 	 * required for U-Boot. Calling update_sdram_window_sizes()
452 	 * without this configuration will not work, as the internal
453 	 * registers can't be accessed reliably because of potenial
454 	 * double mapping.
455 	 * After updating the SDRAM access windows we need to call
456 	 * mvebu_mbus_probe() again, as this now correctly configures
457 	 * the SDRAM areas that are later used by the MVEBU drivers
458 	 * (e.g. USB, NETA).
459 	 */
460 
461 	/*
462 	 * First disable all windows
463 	 */
464 	mvebu_mbus_probe(NULL, 0);
465 
466 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
467 		/*
468 		 * Now the SDRAM access windows can be reconfigured using
469 		 * the information in the SDRAM scratch pad registers
470 		 */
471 		update_sdram_window_sizes();
472 	}
473 
474 	/*
475 	 * Finally the mbus windows can be configured with the
476 	 * updated SDRAM sizes
477 	 */
478 	mvebu_mbus_probe(windows, ARRAY_SIZE(windows));
479 
480 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
481 		/* Enable GBE0, GBE1, LCD and NFC PUP */
482 		clrsetbits_le32(ARMADA_XP_PUP_ENABLE, 0,
483 				GE0_PUP_EN | GE1_PUP_EN | LCD_PUP_EN |
484 				NAND_PUP_EN | SPI_PUP_EN);
485 
486 		/* Configure USB PLL and PHYs on AXP */
487 		setup_usb_phys();
488 	}
489 
490 	/* Enable NAND and NAND arbiter */
491 	clrsetbits_le32(MVEBU_SOC_DEV_MUX_REG, 0, NAND_EN | NAND_ARBITER_EN);
492 
493 	/* Disable MBUS error propagation */
494 	clrsetbits_le32(SOC_COHERENCY_FABRIC_CTRL_REG, MBUS_ERR_PROP_EN, 0);
495 
496 	return 0;
497 }
498 #endif /* CONFIG_ARCH_CPU_INIT */
499 
mvebu_get_nand_clock(void)500 u32 mvebu_get_nand_clock(void)
501 {
502 	u32 reg;
503 
504 	if (mvebu_soc_family() == MVEBU_SOC_A38X)
505 		reg = MVEBU_DFX_DIV_CLK_CTRL(1);
506 	else if (mvebu_soc_family() == MVEBU_SOC_MSYS)
507 		reg = MVEBU_DFX_DIV_CLK_CTRL(8);
508 	else
509 		reg = MVEBU_CORE_DIV_CLK_CTRL(1);
510 
511 	return CONFIG_SYS_MVEBU_PLL_CLOCK /
512 		((readl(reg) &
513 		  NAND_ECC_DIVCKL_RATIO_MASK) >> NAND_ECC_DIVCKL_RATIO_OFFS);
514 }
515 
516 /*
517  * SOC specific misc init
518  */
519 #if defined(CONFIG_ARCH_MISC_INIT)
arch_misc_init(void)520 int arch_misc_init(void)
521 {
522 	/* Nothing yet, perhaps we need something here later */
523 	return 0;
524 }
525 #endif /* CONFIG_ARCH_MISC_INIT */
526 
527 #if defined(CONFIG_MMC_SDHCI_MV) && !defined(CONFIG_DM_MMC)
board_mmc_init(struct bd_info * bis)528 int board_mmc_init(struct bd_info *bis)
529 {
530 	mv_sdh_init(MVEBU_SDIO_BASE, 0, 0,
531 		    SDHCI_QUIRK_32BIT_DMA_ADDR | SDHCI_QUIRK_WAIT_SEND_CMD);
532 
533 	return 0;
534 }
535 #endif
536 
537 #define AHCI_VENDOR_SPECIFIC_0_ADDR	0xa0
538 #define AHCI_VENDOR_SPECIFIC_0_DATA	0xa4
539 
540 #define AHCI_WINDOW_CTRL(win)		(0x60 + ((win) << 4))
541 #define AHCI_WINDOW_BASE(win)		(0x64 + ((win) << 4))
542 #define AHCI_WINDOW_SIZE(win)		(0x68 + ((win) << 4))
543 
ahci_mvebu_mbus_config(void __iomem * base)544 static void ahci_mvebu_mbus_config(void __iomem *base)
545 {
546 	const struct mbus_dram_target_info *dram;
547 	int i;
548 
549 	/* mbus is not initialized in SPL; keep the ROM settings */
550 	if (IS_ENABLED(CONFIG_SPL_BUILD))
551 		return;
552 
553 	dram = mvebu_mbus_dram_info();
554 
555 	for (i = 0; i < 4; i++) {
556 		writel(0, base + AHCI_WINDOW_CTRL(i));
557 		writel(0, base + AHCI_WINDOW_BASE(i));
558 		writel(0, base + AHCI_WINDOW_SIZE(i));
559 	}
560 
561 	for (i = 0; i < dram->num_cs; i++) {
562 		const struct mbus_dram_window *cs = dram->cs + i;
563 
564 		writel((cs->mbus_attr << 8) |
565 		       (dram->mbus_dram_target_id << 4) | 1,
566 		       base + AHCI_WINDOW_CTRL(i));
567 		writel(cs->base >> 16, base + AHCI_WINDOW_BASE(i));
568 		writel(((cs->size - 1) & 0xffff0000),
569 		       base + AHCI_WINDOW_SIZE(i));
570 	}
571 }
572 
ahci_mvebu_regret_option(void __iomem * base)573 static void ahci_mvebu_regret_option(void __iomem *base)
574 {
575 	/*
576 	 * Enable the regret bit to allow the SATA unit to regret a
577 	 * request that didn't receive an acknowlegde and avoid a
578 	 * deadlock
579 	 */
580 	writel(0x4, base + AHCI_VENDOR_SPECIFIC_0_ADDR);
581 	writel(0x80, base + AHCI_VENDOR_SPECIFIC_0_DATA);
582 }
583 
board_ahci_enable(void)584 int board_ahci_enable(void)
585 {
586 	ahci_mvebu_mbus_config((void __iomem *)MVEBU_SATA0_BASE);
587 	ahci_mvebu_regret_option((void __iomem *)MVEBU_SATA0_BASE);
588 
589 	return 0;
590 }
591 
592 #ifdef CONFIG_SCSI_AHCI_PLAT
scsi_init(void)593 void scsi_init(void)
594 {
595 	printf("MVEBU SATA INIT\n");
596 	board_ahci_enable();
597 	ahci_init((void __iomem *)MVEBU_SATA0_BASE);
598 }
599 #endif
600 
601 #ifdef CONFIG_USB_XHCI_MVEBU
602 #define USB3_MAX_WINDOWS        4
603 #define USB3_WIN_CTRL(w)        (0x0 + ((w) * 8))
604 #define USB3_WIN_BASE(w)        (0x4 + ((w) * 8))
605 
xhci_mvebu_mbus_config(void __iomem * base,const struct mbus_dram_target_info * dram)606 static void xhci_mvebu_mbus_config(void __iomem *base,
607 			const struct mbus_dram_target_info *dram)
608 {
609 	int i;
610 
611 	for (i = 0; i < USB3_MAX_WINDOWS; i++) {
612 		writel(0, base + USB3_WIN_CTRL(i));
613 		writel(0, base + USB3_WIN_BASE(i));
614 	}
615 
616 	for (i = 0; i < dram->num_cs; i++) {
617 		const struct mbus_dram_window *cs = dram->cs + i;
618 
619 		/* Write size, attributes and target id to control register */
620 		writel(((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) |
621 			(dram->mbus_dram_target_id << 4) | 1,
622 			base + USB3_WIN_CTRL(i));
623 
624 		/* Write base address to base register */
625 		writel((cs->base & 0xffff0000), base + USB3_WIN_BASE(i));
626 	}
627 }
628 
board_xhci_enable(fdt_addr_t base)629 int board_xhci_enable(fdt_addr_t base)
630 {
631 	const struct mbus_dram_target_info *dram;
632 
633 	printf("MVEBU XHCI INIT controller @ 0x%lx\n", base);
634 
635 	dram = mvebu_mbus_dram_info();
636 	xhci_mvebu_mbus_config((void __iomem *)base, dram);
637 
638 	return 0;
639 }
640 #endif
641 
enable_caches(void)642 void enable_caches(void)
643 {
644 	/* Avoid problem with e.g. neta ethernet driver */
645 	invalidate_dcache_all();
646 
647 	/*
648 	 * Armada 375 still has some problems with d-cache enabled in the
649 	 * ethernet driver (mvpp2). So lets keep the d-cache disabled
650 	 * until this is solved.
651 	 */
652 	if (mvebu_soc_family() != MVEBU_SOC_A375) {
653 		/* Enable D-cache. I-cache is already enabled in start.S */
654 		dcache_enable();
655 	}
656 }
657 
v7_outer_cache_enable(void)658 void v7_outer_cache_enable(void)
659 {
660 	if (mvebu_soc_family() == MVEBU_SOC_AXP) {
661 		struct pl310_regs *const pl310 =
662 			(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
663 		u32 u;
664 
665 		/* The L2 cache is already disabled at this point */
666 
667 		/*
668 		 * For Aurora cache in no outer mode, enable via the CP15
669 		 * coprocessor broadcasting of cache commands to L2.
670 		 */
671 		asm volatile("mrc p15, 1, %0, c15, c2, 0" : "=r" (u));
672 		u |= BIT(8);		/* Set the FW bit */
673 		asm volatile("mcr p15, 1, %0, c15, c2, 0" : : "r" (u));
674 
675 		isb();
676 
677 		/* Enable the L2 cache */
678 		setbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
679 	}
680 }
681 
v7_outer_cache_disable(void)682 void v7_outer_cache_disable(void)
683 {
684 	struct pl310_regs *const pl310 =
685 		(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
686 
687 	clrbits_le32(&pl310->pl310_ctrl, L2X0_CTRL_EN);
688 }
689