1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Synopsys, Inc. All rights reserved.
4  * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
5  */
6 
7 #include <common.h>
8 #include <command.h>
9 #include <config.h>
10 #include <cpu_func.h>
11 #include <env.h>
12 #include <image.h>
13 #include <init.h>
14 #include <irq_func.h>
15 #include <log.h>
16 #include <asm/cache.h>
17 #include <linux/bitops.h>
18 #include <linux/delay.h>
19 #include <linux/printk.h>
20 #include <linux/kernel.h>
21 #include <linux/io.h>
22 #include <asm/arcregs.h>
23 #include <fdt_support.h>
24 #include <dwmmc.h>
25 #include <malloc.h>
26 #include <usb.h>
27 
28 #include "clk-lib.h"
29 #include "env-lib.h"
30 
31 DECLARE_GLOBAL_DATA_PTR;
32 
33 #define ALL_CPU_MASK		GENMASK(NR_CPUS - 1, 0)
34 #define MASTER_CPU_ID		0
35 #define APERTURE_SHIFT		28
36 #define NO_CCM			0x10
37 #define SLAVE_CPU_READY		0x12345678
38 #define BOOTSTAGE_1		1 /* after SP, FP setup, before HW init */
39 #define BOOTSTAGE_2		2 /* after HW init, before self halt */
40 #define BOOTSTAGE_3		3 /* after self halt */
41 #define BOOTSTAGE_4		4 /* before app launch */
42 #define BOOTSTAGE_5		5 /* after app launch, unreachable */
43 
44 #define RESET_VECTOR_ADDR	0x0
45 
46 #define CREG_BASE		(ARC_PERIPHERAL_BASE + 0x1000)
47 #define CREG_CPU_START		(CREG_BASE + 0x400)
48 #define CREG_CPU_START_MASK	0xF
49 #define CREG_CPU_START_POL	BIT(4)
50 
51 #define CREG_CORE_BOOT_IMAGE	GENMASK(5, 4)
52 
53 #define CREG_CPU_0_ENTRY	(CREG_BASE + 0x404)
54 
55 #define SDIO_BASE		(ARC_PERIPHERAL_BASE + 0xA000)
56 #define SDIO_UHS_REG_EXT	(SDIO_BASE + 0x108)
57 #define SDIO_UHS_REG_EXT_DIV_2	(2 << 30)
58 
59 /* Uncached access macros */
60 #define arc_read_uncached_32(ptr)	\
61 ({					\
62 	unsigned int __ret;		\
63 	__asm__ __volatile__(		\
64 	"	ld.di %0, [%1]	\n"	\
65 	: "=r"(__ret)			\
66 	: "r"(ptr));			\
67 	__ret;				\
68 })
69 
70 #define arc_write_uncached_32(ptr, data)\
71 ({					\
72 	__asm__ __volatile__(		\
73 	"	st.di %0, [%1]	\n"	\
74 	:				\
75 	: "r"(data), "r"(ptr));		\
76 })
77 
78 struct hsdk_env_core_ctl {
79 	u32_env entry[NR_CPUS];
80 	u32_env iccm[NR_CPUS];
81 	u32_env dccm[NR_CPUS];
82 };
83 
84 struct hsdk_env_common_ctl {
85 	bool halt_on_boot;
86 	u32_env core_mask;
87 	u32_env cpu_freq;
88 	u32_env axi_freq;
89 	u32_env tun_freq;
90 	u32_env nvlim;
91 	u32_env icache;
92 	u32_env dcache;
93 	u32_env csm_location;
94 	u32_env l2_cache;
95 	u32_env haps_apb;
96 };
97 
98 /*
99  * Uncached cross-cpu structure. All CPUs must access to this structure fields
100  * only with arc_read_uncached_32() / arc_write_uncached_32() accessors (which
101  * implement ld.di / st.di instructions). Simultaneous cached and uncached
102  * access to this area will lead to data loss.
103  * We flush all data caches in board_early_init_r() as we don't want to have
104  * any dirty line in L1d$ or SL$ in this area.
105  */
106 struct hsdk_cross_cpu {
107 	/* slave CPU ready flag */
108 	u32 ready_flag;
109 	/* address of the area, which can be used for stack by slave CPU */
110 	u32 stack_ptr;
111 	/* slave CPU status - bootstage number */
112 	s32 status[NR_CPUS];
113 
114 	/*
115 	 * Slave CPU data - it is copy of corresponding fields in
116 	 * hsdk_env_core_ctl and hsdk_env_common_ctl structures which are
117 	 * required for slave CPUs initialization.
118 	 * This fields can be populated by copying from hsdk_env_core_ctl
119 	 * and hsdk_env_common_ctl structures with sync_cross_cpu_data()
120 	 * function.
121 	 */
122 	u32 entry[NR_CPUS];
123 	u32 iccm[NR_CPUS];
124 	u32 dccm[NR_CPUS];
125 
126 	u32 core_mask;
127 	u32 icache;
128 	u32 dcache;
129 
130 	u8 cache_padding[ARCH_DMA_MINALIGN];
131 } __aligned(ARCH_DMA_MINALIGN);
132 
133 /* Place for slave CPUs temporary stack */
134 static u32 slave_stack[256 * NR_CPUS] __aligned(ARCH_DMA_MINALIGN);
135 
136 static struct hsdk_env_common_ctl env_common = {};
137 static struct hsdk_env_core_ctl env_core = {};
138 static struct hsdk_cross_cpu cross_cpu_data;
139 
140 static const struct env_map_common env_map_common[] = {
141 	{ "core_mask",	ENV_HEX, true,	0x1, 0xF,	&env_common.core_mask },
142 	{ "non_volatile_limit", ENV_HEX, true, 0, 0xF,	&env_common.nvlim },
143 	{ "icache_ena",	ENV_HEX, true,	0, 1,		&env_common.icache },
144 	{ "dcache_ena",	ENV_HEX, true,	0, 1,		&env_common.dcache },
145 #if defined(CONFIG_BOARD_HSDK_4XD)
146 	{ "l2_cache_ena",	ENV_HEX, true,	0, 1,		&env_common.l2_cache },
147 	{ "csm_location",	ENV_HEX, true,	0, NO_CCM,	&env_common.csm_location },
148 	{ "haps_apb_location",	ENV_HEX, true,	0, 1,		&env_common.haps_apb },
149 #endif /* CONFIG_BOARD_HSDK_4XD */
150 	{}
151 };
152 
153 static const struct env_map_common env_map_clock[] = {
154 	{ "cpu_freq",	ENV_DEC, false,	100, 1000,	&env_common.cpu_freq },
155 	{ "axi_freq",	ENV_DEC, false,	200, 800,	&env_common.axi_freq },
156 	{ "tun_freq",	ENV_DEC, false,	0, 150,		&env_common.tun_freq },
157 	{}
158 };
159 
160 static const struct env_map_percpu env_map_core[] = {
161 	{ "core_iccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.iccm },
162 	{ "core_dccm", ENV_HEX, true, {NO_CCM, 0, NO_CCM, 0}, {NO_CCM, 0xF, NO_CCM, 0xF}, &env_core.dccm },
163 	{}
164 };
165 
166 static const struct env_map_common env_map_mask[] = {
167 	{ "core_mask",	ENV_HEX, false,	0x1, 0xF,	&env_common.core_mask },
168 	{}
169 };
170 
171 static const struct env_map_percpu env_map_go[] = {
172 	{ "core_entry", ENV_HEX, true, {0, 0, 0, 0}, {U32_MAX, U32_MAX, U32_MAX, U32_MAX}, &env_core.entry },
173 	{}
174 };
175 
176 enum board_type {
177 	T_BOARD_NONE,
178 	T_BOARD_HSDK,
179 	T_BOARD_HSDK_4XD
180 };
181 
get_board_type_runtime(void)182 static inline enum board_type get_board_type_runtime(void)
183 {
184 	u32 arc_id = read_aux_reg(ARC_AUX_IDENTITY) & 0xFF;
185 
186 	if (arc_id == 0x52)
187 		return T_BOARD_HSDK;
188 	else if (arc_id == 0x54)
189 		return T_BOARD_HSDK_4XD;
190 	else
191 		return T_BOARD_NONE;
192 }
193 
get_board_type_config(void)194 static inline enum board_type get_board_type_config(void)
195 {
196 	if (IS_ENABLED(CONFIG_BOARD_HSDK))
197 		return T_BOARD_HSDK;
198 	else if (IS_ENABLED(CONFIG_BOARD_HSDK_4XD))
199 		return T_BOARD_HSDK_4XD;
200 	else
201 		return T_BOARD_NONE;
202 }
203 
is_board_match_runtime(enum board_type type_req)204 static bool is_board_match_runtime(enum board_type type_req)
205 {
206 	return get_board_type_runtime() == type_req;
207 }
208 
is_board_match_config(enum board_type type_req)209 static bool is_board_match_config(enum board_type type_req)
210 {
211 	return get_board_type_config() == type_req;
212 }
213 
board_name(enum board_type type)214 static const char * board_name(enum board_type type)
215 {
216 	switch (type) {
217 		case T_BOARD_HSDK:
218 			return "ARC HS Development Kit";
219 		case T_BOARD_HSDK_4XD:
220 			return "ARC HS4x/HS4xD Development Kit";
221 		default:
222 			return "?";
223 	}
224 }
225 
board_mismatch(void)226 static bool board_mismatch(void)
227 {
228 	return get_board_type_config() != get_board_type_runtime();
229 }
230 
sync_cross_cpu_data(void)231 static void sync_cross_cpu_data(void)
232 {
233 	u32 value;
234 
235 	for (u32 i = 0; i < NR_CPUS; i++) {
236 		value = env_core.entry[i].val;
237 		arc_write_uncached_32(&cross_cpu_data.entry[i], value);
238 	}
239 
240 	for (u32 i = 0; i < NR_CPUS; i++) {
241 		value = env_core.iccm[i].val;
242 		arc_write_uncached_32(&cross_cpu_data.iccm[i], value);
243 	}
244 
245 	for (u32 i = 0; i < NR_CPUS; i++) {
246 		value = env_core.dccm[i].val;
247 		arc_write_uncached_32(&cross_cpu_data.dccm[i], value);
248 	}
249 
250 	value = env_common.core_mask.val;
251 	arc_write_uncached_32(&cross_cpu_data.core_mask, value);
252 
253 	value = env_common.icache.val;
254 	arc_write_uncached_32(&cross_cpu_data.icache, value);
255 
256 	value = env_common.dcache.val;
257 	arc_write_uncached_32(&cross_cpu_data.dcache, value);
258 }
259 
260 /* Can be used only on master CPU */
is_cpu_used(u32 cpu_id)261 static bool is_cpu_used(u32 cpu_id)
262 {
263 	return !!(env_common.core_mask.val & BIT(cpu_id));
264 }
265 
266 /* TODO: add ICCM BCR and DCCM BCR runtime check */
init_slave_cpu_func(u32 core)267 static void init_slave_cpu_func(u32 core)
268 {
269 	u32 val;
270 
271 	/* Remap ICCM to another memory region if it exists */
272 	val = arc_read_uncached_32(&cross_cpu_data.iccm[core]);
273 	if (val != NO_CCM)
274 		write_aux_reg(ARC_AUX_ICCM_BASE, val << APERTURE_SHIFT);
275 
276 	/* Remap DCCM to another memory region if it exists */
277 	val = arc_read_uncached_32(&cross_cpu_data.dccm[core]);
278 	if (val != NO_CCM)
279 		write_aux_reg(ARC_AUX_DCCM_BASE, val << APERTURE_SHIFT);
280 
281 	if (arc_read_uncached_32(&cross_cpu_data.icache))
282 		icache_enable();
283 	else
284 		icache_disable();
285 
286 	if (arc_read_uncached_32(&cross_cpu_data.dcache))
287 		dcache_enable();
288 	else
289 		dcache_disable();
290 }
291 
init_cluster_nvlim(void)292 static void init_cluster_nvlim(void)
293 {
294 	u32 val = env_common.nvlim.val << APERTURE_SHIFT;
295 
296 	flush_dcache_all();
297 	write_aux_reg(ARC_AUX_NON_VOLATILE_LIMIT, val);
298 	/* AUX_AUX_CACHE_LIMIT reg is missing starting from HS48 */
299 	if (is_board_match_runtime(T_BOARD_HSDK))
300 		write_aux_reg(AUX_AUX_CACHE_LIMIT, val);
301 	flush_n_invalidate_dcache_all();
302 }
303 
init_cluster_slc(void)304 static void init_cluster_slc(void)
305 {
306 	/* ARC HS38 doesn't support SLC disabling */
307 	if (!is_board_match_config(T_BOARD_HSDK_4XD))
308 		return;
309 
310 	if (env_common.l2_cache.val)
311 		slc_enable();
312 	else
313 		slc_disable();
314 }
315 
316 #define CREG_CSM_BASE		(CREG_BASE + 0x210)
317 
init_cluster_csm(void)318 static void init_cluster_csm(void)
319 {
320 	/* ARC HS38 in HSDK SoC doesn't include CSM */
321 	if (!is_board_match_config(T_BOARD_HSDK_4XD))
322 		return;
323 
324 	if (env_common.csm_location.val == NO_CCM) {
325 		write_aux_reg(ARC_AUX_CSM_ENABLE, 0);
326 	} else {
327 		/*
328 		 * CSM base address is 256kByte aligned but we allow to map
329 		 * CSM only to aperture start (256MByte aligned)
330 		 * The field in CREG_CSM_BASE is in 17:2 bits itself so we need
331 		 * to shift it.
332 		 */
333 		u32 csm_base = (env_common.csm_location.val * SZ_1K) << 2;
334 
335 		write_aux_reg(ARC_AUX_CSM_ENABLE, 1);
336 		writel(csm_base, (void __iomem *)CREG_CSM_BASE);
337 	}
338 }
339 
init_master_icache(void)340 static void init_master_icache(void)
341 {
342 	if (icache_status()) {
343 		/* I$ is enabled - we need to disable it */
344 		if (!env_common.icache.val)
345 			icache_disable();
346 	} else {
347 		/* I$ is disabled - we need to enable it */
348 		if (env_common.icache.val) {
349 			icache_enable();
350 
351 			/* invalidate I$ right after enable */
352 			invalidate_icache_all();
353 		}
354 	}
355 }
356 
init_master_dcache(void)357 static void init_master_dcache(void)
358 {
359 	if (dcache_status()) {
360 		/* D$ is enabled - we need to disable it */
361 		if (!env_common.dcache.val)
362 			dcache_disable();
363 	} else {
364 		/* D$ is disabled - we need to enable it */
365 		if (env_common.dcache.val)
366 			dcache_enable();
367 
368 		/* TODO: probably we need ti invalidate D$ right after enable */
369 	}
370 }
371 
cleanup_before_go(void)372 static int cleanup_before_go(void)
373 {
374 	disable_interrupts();
375 	sync_n_cleanup_cache_all();
376 
377 	return 0;
378 }
379 
slave_cpu_set_boot_addr(u32 addr)380 void slave_cpu_set_boot_addr(u32 addr)
381 {
382 	/* All cores have reset vector pointing to 0 */
383 	writel(addr, (void __iomem *)RESET_VECTOR_ADDR);
384 
385 	/* Make sure other cores see written value in memory */
386 	sync_n_cleanup_cache_all();
387 }
388 
halt_this_cpu(void)389 static inline void halt_this_cpu(void)
390 {
391 	__builtin_arc_flag(1);
392 }
393 
get_masked_cpu_ctart_reg(void)394 static u32 get_masked_cpu_ctart_reg(void)
395 {
396 	int cmd = readl((void __iomem *)CREG_CPU_START);
397 
398 	/*
399 	 * Quirk for HSDK-4xD - due to HW issues HSDK can use any pulse polarity
400 	 * and HSDK-4xD require active low polarity of cpu_start pulse.
401 	 */
402 	cmd &= ~CREG_CPU_START_POL;
403 
404 	cmd &= ~CREG_CPU_START_MASK;
405 
406 	return cmd;
407 }
408 
smp_kick_cpu_x(u32 cpu_id)409 static void smp_kick_cpu_x(u32 cpu_id)
410 {
411 	int cmd;
412 
413 	if (cpu_id > NR_CPUS)
414 		return;
415 
416 	cmd = get_masked_cpu_ctart_reg();
417 	cmd |= (1 << cpu_id);
418 	writel(cmd, (void __iomem *)CREG_CPU_START);
419 }
420 
prepare_cpu_ctart_reg(void)421 static u32 prepare_cpu_ctart_reg(void)
422 {
423 	return get_masked_cpu_ctart_reg() | env_common.core_mask.val;
424 }
425 
426 /* slave CPU entry for configuration */
hsdk_core_init_f(void)427 __attribute__((naked, noreturn, flatten)) noinline void hsdk_core_init_f(void)
428 {
429 	__asm__ __volatile__(
430 		"ld.di	r8,	[%0]\n"
431 		"mov	%%sp,	r8\n"
432 		"mov	%%fp,	%%sp\n"
433 		: /* no output */
434 		: "r" (&cross_cpu_data.stack_ptr));
435 
436 	invalidate_icache_all();
437 
438 	arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_1);
439 	init_slave_cpu_func(CPU_ID_GET());
440 
441 	arc_write_uncached_32(&cross_cpu_data.ready_flag, SLAVE_CPU_READY);
442 	arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_2);
443 
444 	/* Halt the processor until the master kick us again */
445 	halt_this_cpu();
446 
447 	/*
448 	 * 3 NOPs after FLAG 1 instruction are no longer required for ARCv2
449 	 * cores but we leave them for gebug purposes.
450 	 */
451 	__builtin_arc_nop();
452 	__builtin_arc_nop();
453 	__builtin_arc_nop();
454 
455 	arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_3);
456 
457 	/* get the updated entry - invalidate i$ */
458 	invalidate_icache_all();
459 
460 	arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_4);
461 
462 	/* Run our program */
463 	((void (*)(void))(arc_read_uncached_32(&cross_cpu_data.entry[CPU_ID_GET()])))();
464 
465 	/* This bootstage is unreachable as we don't return from app we launch */
466 	arc_write_uncached_32(&cross_cpu_data.status[CPU_ID_GET()], BOOTSTAGE_5);
467 
468 	/* Something went terribly wrong */
469 	while (true)
470 		halt_this_cpu();
471 }
472 
clear_cross_cpu_data(void)473 static void clear_cross_cpu_data(void)
474 {
475 	arc_write_uncached_32(&cross_cpu_data.ready_flag, 0);
476 	arc_write_uncached_32(&cross_cpu_data.stack_ptr, 0);
477 
478 	for (u32 i = 0; i < NR_CPUS; i++)
479 		arc_write_uncached_32(&cross_cpu_data.status[i], 0);
480 }
481 
do_init_slave_cpu(u32 cpu_id)482 static noinline void do_init_slave_cpu(u32 cpu_id)
483 {
484 	/* attempts number for check clave CPU ready_flag */
485 	u32 attempts = 100;
486 	u32 stack_ptr = (u32)(slave_stack + (64 * cpu_id));
487 
488 	if (cpu_id >= NR_CPUS)
489 		return;
490 
491 	arc_write_uncached_32(&cross_cpu_data.ready_flag, 0);
492 
493 	/* Use global unique place for each slave cpu stack */
494 	arc_write_uncached_32(&cross_cpu_data.stack_ptr, stack_ptr);
495 
496 	debug("CPU %u: stack pool base: %p\n", cpu_id, slave_stack);
497 	debug("CPU %u: current slave stack base: %x\n", cpu_id, stack_ptr);
498 	slave_cpu_set_boot_addr((u32)hsdk_core_init_f);
499 
500 	smp_kick_cpu_x(cpu_id);
501 
502 	debug("CPU %u: cross-cpu flag: %x [before timeout]\n", cpu_id,
503 	      arc_read_uncached_32(&cross_cpu_data.ready_flag));
504 
505 	while (!arc_read_uncached_32(&cross_cpu_data.ready_flag) && attempts--)
506 		mdelay(10);
507 
508 	/* Just to be sure that slave cpu is halted after it set ready_flag */
509 	mdelay(20);
510 
511 	/*
512 	 * Only print error here if we reach timeout as there is no option to
513 	 * halt slave cpu (or check that slave cpu is halted)
514 	 */
515 	if (!attempts)
516 		pr_err("CPU %u is not responding after init!\n", cpu_id);
517 
518 	/* Check current stage of slave cpu */
519 	if (arc_read_uncached_32(&cross_cpu_data.status[cpu_id]) != BOOTSTAGE_2)
520 		pr_err("CPU %u status is unexpected: %d\n", cpu_id,
521 		       arc_read_uncached_32(&cross_cpu_data.status[cpu_id]));
522 
523 	debug("CPU %u: cross-cpu flag: %x [after timeout]\n", cpu_id,
524 	      arc_read_uncached_32(&cross_cpu_data.ready_flag));
525 	debug("CPU %u: status: %d [after timeout]\n", cpu_id,
526 	      arc_read_uncached_32(&cross_cpu_data.status[cpu_id]));
527 }
528 
do_init_slave_cpus(void)529 static void do_init_slave_cpus(void)
530 {
531 	clear_cross_cpu_data();
532 	sync_cross_cpu_data();
533 
534 	debug("cross_cpu_data location: %#x\n", (u32)&cross_cpu_data);
535 
536 	for (u32 i = MASTER_CPU_ID + 1; i < NR_CPUS; i++)
537 		if (is_cpu_used(i))
538 			do_init_slave_cpu(i);
539 }
540 
do_init_master_cpu(void)541 static void do_init_master_cpu(void)
542 {
543 	/*
544 	 * Setup master caches even if master isn't used as we want to use
545 	 * same cache configuration on all running CPUs
546 	 */
547 	init_master_icache();
548 	init_master_dcache();
549 }
550 
551 enum hsdk_axi_masters {
552 	M_HS_CORE = 0,
553 	M_HS_RTT,
554 	M_AXI_TUN,
555 	M_HDMI_VIDEO,
556 	M_HDMI_AUDIO,
557 	M_USB_HOST,
558 	M_ETHERNET,
559 	M_SDIO,
560 	M_GPU,
561 	M_DMAC_0,
562 	M_DMAC_1,
563 	M_DVFS
564 };
565 
566 #define UPDATE_VAL	1
567 
568 /*
569  * m	master		AXI_M_m_SLV0	AXI_M_m_SLV1	AXI_M_m_OFFSET0	AXI_M_m_OFFSET1
570  * 0	HS (CBU)	0x11111111	0x63111111	0xFEDCBA98	0x0E543210
571  * 1	HS (RTT)	0x77777777	0x77777777	0xFEDCBA98	0x76543210
572  * 2	AXI Tunnel	0x88888888	0x88888888	0xFEDCBA98	0x76543210
573  * 3	HDMI-VIDEO	0x77777777	0x77777777	0xFEDCBA98	0x76543210
574  * 4	HDMI-ADUIO	0x77777777	0x77777777	0xFEDCBA98	0x76543210
575  * 5	USB-HOST	0x77777777	0x77999999	0xFEDCBA98	0x76DCBA98
576  * 6	ETHERNET	0x77777777	0x77999999	0xFEDCBA98	0x76DCBA98
577  * 7	SDIO		0x77777777	0x77999999	0xFEDCBA98	0x76DCBA98
578  * 8	GPU		0x77777777	0x77777777	0xFEDCBA98	0x76543210
579  * 9	DMAC (port #1)	0x77777777	0x77777777	0xFEDCBA98	0x76543210
580  * 10	DMAC (port #2)	0x77777777	0x77777777	0xFEDCBA98	0x76543210
581  * 11	DVFS		0x00000000	0x60000000	0x00000000	0x00000000
582  *
583  * Please read ARC HS Development IC Specification, section 17.2 for more
584  * information about apertures configuration.
585  * NOTE: we intentionally modify default settings in U-boot. Default settings
586  * are specified in "Table 111 CREG Address Decoder register reset values".
587  */
588 
589 #define CREG_AXI_M_SLV0(m)  ((void __iomem *)(CREG_BASE + 0x020 * (m)))
590 #define CREG_AXI_M_SLV1(m)  ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x004))
591 #define CREG_AXI_M_OFT0(m)  ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x008))
592 #define CREG_AXI_M_OFT1(m)  ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x00C))
593 #define CREG_AXI_M_UPDT(m)  ((void __iomem *)(CREG_BASE + 0x020 * (m) + 0x014))
594 
595 #define CREG_AXI_M_HS_CORE_BOOT	((void __iomem *)(CREG_BASE + 0x010))
596 
597 #define CREG_PAE	((void __iomem *)(CREG_BASE + 0x180))
598 #define CREG_PAE_UPDT	((void __iomem *)(CREG_BASE + 0x194))
599 
init_memory_bridge(void)600 void init_memory_bridge(void)
601 {
602 	u32 reg;
603 
604 	/*
605 	 * M_HS_CORE has one unic register - BOOT.
606 	 * We need to clean boot mirror (BOOT[1:0]) bits in them.
607 	 */
608 	reg = readl(CREG_AXI_M_HS_CORE_BOOT) & (~0x3);
609 	writel(reg, CREG_AXI_M_HS_CORE_BOOT);
610 	writel(0x11111111, CREG_AXI_M_SLV0(M_HS_CORE));
611 	writel(0x63111111, CREG_AXI_M_SLV1(M_HS_CORE));
612 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_CORE));
613 	writel(0x0E543210, CREG_AXI_M_OFT1(M_HS_CORE));
614 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_CORE));
615 
616 	writel(0x77777777, CREG_AXI_M_SLV0(M_HS_RTT));
617 	writel(0x77777777, CREG_AXI_M_SLV1(M_HS_RTT));
618 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HS_RTT));
619 	writel(0x76543210, CREG_AXI_M_OFT1(M_HS_RTT));
620 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_RTT));
621 
622 	writel(0x88888888, CREG_AXI_M_SLV0(M_AXI_TUN));
623 	writel(0x88888888, CREG_AXI_M_SLV1(M_AXI_TUN));
624 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_AXI_TUN));
625 	writel(0x76543210, CREG_AXI_M_OFT1(M_AXI_TUN));
626 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_AXI_TUN));
627 
628 	writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_VIDEO));
629 	writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_VIDEO));
630 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_VIDEO));
631 	writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_VIDEO));
632 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_VIDEO));
633 
634 	writel(0x77777777, CREG_AXI_M_SLV0(M_HDMI_AUDIO));
635 	writel(0x77777777, CREG_AXI_M_SLV1(M_HDMI_AUDIO));
636 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_HDMI_AUDIO));
637 	writel(0x76543210, CREG_AXI_M_OFT1(M_HDMI_AUDIO));
638 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HDMI_AUDIO));
639 
640 	writel(0x77777777, CREG_AXI_M_SLV0(M_USB_HOST));
641 	writel(0x77999999, CREG_AXI_M_SLV1(M_USB_HOST));
642 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_USB_HOST));
643 	writel(0x76DCBA98, CREG_AXI_M_OFT1(M_USB_HOST));
644 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_USB_HOST));
645 
646 	writel(0x77777777, CREG_AXI_M_SLV0(M_ETHERNET));
647 	writel(0x77999999, CREG_AXI_M_SLV1(M_ETHERNET));
648 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_ETHERNET));
649 	writel(0x76DCBA98, CREG_AXI_M_OFT1(M_ETHERNET));
650 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_ETHERNET));
651 
652 	writel(0x77777777, CREG_AXI_M_SLV0(M_SDIO));
653 	writel(0x77999999, CREG_AXI_M_SLV1(M_SDIO));
654 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_SDIO));
655 	writel(0x76DCBA98, CREG_AXI_M_OFT1(M_SDIO));
656 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_SDIO));
657 
658 	writel(0x77777777, CREG_AXI_M_SLV0(M_GPU));
659 	writel(0x77777777, CREG_AXI_M_SLV1(M_GPU));
660 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_GPU));
661 	writel(0x76543210, CREG_AXI_M_OFT1(M_GPU));
662 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_GPU));
663 
664 	writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_0));
665 	writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_0));
666 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_0));
667 	writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_0));
668 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_0));
669 
670 	writel(0x77777777, CREG_AXI_M_SLV0(M_DMAC_1));
671 	writel(0x77777777, CREG_AXI_M_SLV1(M_DMAC_1));
672 	writel(0xFEDCBA98, CREG_AXI_M_OFT0(M_DMAC_1));
673 	writel(0x76543210, CREG_AXI_M_OFT1(M_DMAC_1));
674 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DMAC_1));
675 
676 	writel(0x00000000, CREG_AXI_M_SLV0(M_DVFS));
677 	writel(0x60000000, CREG_AXI_M_SLV1(M_DVFS));
678 	writel(0x00000000, CREG_AXI_M_OFT0(M_DVFS));
679 	writel(0x00000000, CREG_AXI_M_OFT1(M_DVFS));
680 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_DVFS));
681 
682 	writel(0x00000000, CREG_PAE);
683 	writel(UPDATE_VAL, CREG_PAE_UPDT);
684 }
685 
686 /*
687  * For HSDK-4xD we do additional AXI bridge tweaking in hsdk_init command:
688  * - we shrink IOC region.
689  * - we configure HS CORE SLV1 aperture depending on haps_apb_location
690  *   environment variable.
691  *
692  * As we've already configured AXI bridge in init_memory_bridge we don't
693  * do full configuration here but reconfigure changed part.
694  *
695  * m	master		AXI_M_m_SLV0	AXI_M_m_SLV1	AXI_M_m_OFFSET0	AXI_M_m_OFFSET1
696  * 0	HS (CBU)	0x11111111	0x63111111	0xFEDCBA98	0x0E543210	[haps_apb_location = 0]
697  * 0	HS (CBU)	0x11111111	0x61111111	0xFEDCBA98	0x06543210	[haps_apb_location = 1]
698  * 1	HS (RTT)	0x77777777	0x77777777	0xFEDCBA98	0x76543210
699  * 2	AXI Tunnel	0x88888888	0x88888888	0xFEDCBA98	0x76543210
700  * 3	HDMI-VIDEO	0x77777777	0x77777777	0xFEDCBA98	0x76543210
701  * 4	HDMI-ADUIO	0x77777777	0x77777777	0xFEDCBA98	0x76543210
702  * 5	USB-HOST	0x77777777	0x77779999	0xFEDCBA98	0x7654BA98
703  * 6	ETHERNET	0x77777777	0x77779999	0xFEDCBA98	0x7654BA98
704  * 7	SDIO		0x77777777	0x77779999	0xFEDCBA98	0x7654BA98
705  * 8	GPU		0x77777777	0x77777777	0xFEDCBA98	0x76543210
706  * 9	DMAC (port #1)	0x77777777	0x77777777	0xFEDCBA98	0x76543210
707  * 10	DMAC (port #2)	0x77777777	0x77777777	0xFEDCBA98	0x76543210
708  * 11	DVFS		0x00000000	0x60000000	0x00000000	0x00000000
709  */
tweak_memory_bridge_cfg(void)710 void tweak_memory_bridge_cfg(void)
711 {
712 	/*
713 	 * Only HSDK-4xD requre additional AXI bridge tweaking depending on
714 	 * haps_apb_location environment variable
715 	 */
716 	if (!is_board_match_config(T_BOARD_HSDK_4XD))
717 		return;
718 
719 	if (env_common.haps_apb.val) {
720 		writel(0x61111111, CREG_AXI_M_SLV1(M_HS_CORE));
721 		writel(0x06543210, CREG_AXI_M_OFT1(M_HS_CORE));
722 	} else {
723 		writel(0x63111111, CREG_AXI_M_SLV1(M_HS_CORE));
724 		writel(0x0E543210, CREG_AXI_M_OFT1(M_HS_CORE));
725 	}
726 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_HS_CORE));
727 
728 	writel(0x77779999, CREG_AXI_M_SLV1(M_USB_HOST));
729 	writel(0x7654BA98, CREG_AXI_M_OFT1(M_USB_HOST));
730 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_USB_HOST));
731 
732 	writel(0x77779999, CREG_AXI_M_SLV1(M_ETHERNET));;
733 	writel(0x7654BA98, CREG_AXI_M_OFT1(M_ETHERNET));
734 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_ETHERNET));
735 
736 	writel(0x77779999, CREG_AXI_M_SLV1(M_SDIO));
737 	writel(0x7654BA98, CREG_AXI_M_OFT1(M_SDIO));
738 	writel(UPDATE_VAL, CREG_AXI_M_UPDT(M_SDIO));
739 }
740 
setup_clocks(void)741 static void setup_clocks(void)
742 {
743 	ulong rate;
744 
745 	/* Setup CPU clock */
746 	if (env_common.cpu_freq.set) {
747 		rate = env_common.cpu_freq.val;
748 		soc_clk_ctl("cpu-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ);
749 	}
750 
751 	/* Setup TUN clock */
752 	if (env_common.tun_freq.set) {
753 		rate = env_common.tun_freq.val;
754 		if (rate)
755 			soc_clk_ctl("tun-clk", &rate, CLK_ON | CLK_SET | CLK_MHZ);
756 		else
757 			soc_clk_ctl("tun-clk", NULL, CLK_OFF);
758 	}
759 
760 	if (env_common.axi_freq.set) {
761 		rate = env_common.axi_freq.val;
762 		soc_clk_ctl("axi-clk", &rate, CLK_SET | CLK_ON | CLK_MHZ);
763 	}
764 }
765 
do_init_cluster(void)766 static void do_init_cluster(void)
767 {
768 	/*
769 	 * A multi-core ARC HS configuration always includes only one
770 	 * ARC_AUX_NON_VOLATILE_LIMIT register, which is shared by all the
771 	 * cores.
772 	 */
773 	init_cluster_nvlim();
774 	init_cluster_csm();
775 	init_cluster_slc();
776 	tweak_memory_bridge_cfg();
777 }
778 
check_master_cpu_id(void)779 static int check_master_cpu_id(void)
780 {
781 	if (CPU_ID_GET() == MASTER_CPU_ID)
782 		return 0;
783 
784 	pr_err("u-boot runs on non-master cpu with id: %lu\n", CPU_ID_GET());
785 
786 	return -ENOENT;
787 }
788 
prepare_cpus(void)789 static noinline int prepare_cpus(void)
790 {
791 	int ret;
792 
793 	ret = check_master_cpu_id();
794 	if (ret)
795 		return ret;
796 
797 	ret = envs_process_and_validate(env_map_common, env_map_core, is_cpu_used);
798 	if (ret)
799 		return ret;
800 
801 	printf("CPU start mask is %#x\n", env_common.core_mask.val);
802 
803 	do_init_slave_cpus();
804 	do_init_master_cpu();
805 	do_init_cluster();
806 
807 	return 0;
808 }
809 
hsdk_go_run(u32 cpu_start_reg)810 static int hsdk_go_run(u32 cpu_start_reg)
811 {
812 	/* Cleanup caches, disable interrupts */
813 	cleanup_before_go();
814 
815 	if (env_common.halt_on_boot)
816 		halt_this_cpu();
817 
818 	/*
819 	 * 3 NOPs after FLAG 1 instruction are no longer required for ARCv2
820 	 * cores but we leave them for gebug purposes.
821 	 */
822 	__builtin_arc_nop();
823 	__builtin_arc_nop();
824 	__builtin_arc_nop();
825 
826 	/* Kick chosen slave CPUs */
827 	writel(cpu_start_reg, (void __iomem *)CREG_CPU_START);
828 
829 	if (is_cpu_used(MASTER_CPU_ID))
830 		((void (*)(void))(env_core.entry[MASTER_CPU_ID].val))();
831 	else
832 		halt_this_cpu();
833 
834 	pr_err("u-boot still runs on cpu [%ld]\n", CPU_ID_GET());
835 
836 	/*
837 	 * We will never return after executing our program if master cpu used
838 	 * otherwise halt master cpu manually.
839 	 */
840 	while (true)
841 		halt_this_cpu();
842 
843 	return 0;
844 }
845 
board_prep_linux(bootm_headers_t * images)846 int board_prep_linux(bootm_headers_t *images)
847 {
848 	int ret, ofst;
849 	char mask[15];
850 
851 	ret = envs_read_validate_common(env_map_mask);
852 	if (ret)
853 		return ret;
854 
855 	/* Rollback to default values */
856 	if (!env_common.core_mask.set) {
857 		env_common.core_mask.val = ALL_CPU_MASK;
858 		env_common.core_mask.set = true;
859 	}
860 
861 	printf("CPU start mask is %#x\n", env_common.core_mask.val);
862 
863 	if (!is_cpu_used(MASTER_CPU_ID))
864 		pr_err("ERR: try to launch linux with CPU[0] disabled! It doesn't work for ARC.\n");
865 
866 	/*
867 	 * If we want to launch linux on all CPUs we don't need to patch
868 	 * linux DTB as it is default configuration
869 	 */
870 	if (env_common.core_mask.val == ALL_CPU_MASK)
871 		return 0;
872 
873 	if (!IMAGE_ENABLE_OF_LIBFDT || !images->ft_len) {
874 		pr_err("WARN: core_mask setup will work properly only with external DTB!\n");
875 		return 0;
876 	}
877 
878 	/* patch '/possible-cpus' property according to cpu mask */
879 	ofst = fdt_path_offset(images->ft_addr, "/");
880 	sprintf(mask, "%s%s%s%s",
881 		is_cpu_used(0) ? "0," : "",
882 		is_cpu_used(1) ? "1," : "",
883 		is_cpu_used(2) ? "2," : "",
884 		is_cpu_used(3) ? "3," : "");
885 	ret = fdt_setprop_string(images->ft_addr, ofst, "possible-cpus", mask);
886 	/*
887 	 * If we failed to patch '/possible-cpus' property we don't need break
888 	 * linux loading process: kernel will handle it but linux will print
889 	 * warning like "Timeout: CPU1 FAILED to comeup !!!".
890 	 * So warn here about error, but return 0 like no error had occurred.
891 	 */
892 	if (ret)
893 		pr_err("WARN: failed to patch '/possible-cpus' property, ret=%d\n",
894 		       ret);
895 
896 	return 0;
897 }
898 
board_jump_and_run(ulong entry,int zero,int arch,uint params)899 void board_jump_and_run(ulong entry, int zero, int arch, uint params)
900 {
901 	void (*kernel_entry)(int zero, int arch, uint params);
902 	u32 cpu_start_reg;
903 
904 	kernel_entry = (void (*)(int, int, uint))entry;
905 
906 	/* Prepare CREG_CPU_START for kicking chosen CPUs */
907 	cpu_start_reg = prepare_cpu_ctart_reg();
908 
909 	/* In case of run without hsdk_init */
910 	slave_cpu_set_boot_addr(entry);
911 
912 	/* In case of run with hsdk_init */
913 	for (u32 i = 0; i < NR_CPUS; i++) {
914 		env_core.entry[i].val = entry;
915 		env_core.entry[i].set = true;
916 	}
917 	/* sync cross_cpu struct as we updated core-entry variables */
918 	sync_cross_cpu_data();
919 
920 	/* Kick chosen slave CPUs */
921 	writel(cpu_start_reg, (void __iomem *)CREG_CPU_START);
922 
923 	if (is_cpu_used(0))
924 		kernel_entry(zero, arch, params);
925 }
926 
hsdk_go_prepare_and_run(void)927 static int hsdk_go_prepare_and_run(void)
928 {
929 	/* Prepare CREG_CPU_START for kicking chosen CPUs */
930 	u32 reg = prepare_cpu_ctart_reg();
931 
932 	if (env_common.halt_on_boot)
933 		printf("CPU will halt before application start, start application with debugger.\n");
934 
935 	return hsdk_go_run(reg);
936 }
937 
do_hsdk_go(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])938 static int do_hsdk_go(struct cmd_tbl *cmdtp, int flag, int argc,
939 		      char *const argv[])
940 {
941 	int ret;
942 
943 	if (board_mismatch()) {
944 		printf("ERR: U-boot is not configured for this board!\n");
945 		return CMD_RET_FAILURE;
946 	}
947 
948 	/*
949 	 * Check for 'halt' parameter. 'halt' = enter halt-mode just before
950 	 * starting the application; can be used for debug.
951 	 */
952 	if (argc > 1) {
953 		env_common.halt_on_boot = !strcmp(argv[1], "halt");
954 		if (!env_common.halt_on_boot) {
955 			pr_err("Unrecognised parameter: \'%s\'\n", argv[1]);
956 			return CMD_RET_FAILURE;
957 		}
958 	}
959 
960 	ret = check_master_cpu_id();
961 	if (ret)
962 		return ret;
963 
964 	ret = envs_process_and_validate(env_map_mask, env_map_go, is_cpu_used);
965 	if (ret)
966 		return ret;
967 
968 	/* sync cross_cpu struct as we updated core-entry variables */
969 	sync_cross_cpu_data();
970 
971 	ret = hsdk_go_prepare_and_run();
972 
973 	return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS;
974 }
975 
976 U_BOOT_CMD(
977 	hsdk_go, 3, 0, do_hsdk_go,
978 	"Synopsys HSDK specific command",
979 	"     - Boot stand-alone application on HSDK\n"
980 	"hsdk_go halt - Boot stand-alone application on HSDK, halt CPU just before application run\n"
981 );
982 
983 /*
984  * We may simply use static variable here to store init status, but we also want
985  * to avoid the situation when we reload U-boot via MDB after previous
986  * init is done but HW reset (board reset) isn't done. So let's store the
987  * init status in any unused register (i.e CREG_CPU_0_ENTRY) so status will
988  * survive after U-boot is reloaded via MDB.
989  */
990 #define INIT_MARKER_REGISTER		((void __iomem *)CREG_CPU_0_ENTRY)
991 /* must be equal to INIT_MARKER_REGISTER reset value */
992 #define INIT_MARKER_PENDING		0
993 
init_marker_get(void)994 static bool init_marker_get(void)
995 {
996 	return readl(INIT_MARKER_REGISTER) != INIT_MARKER_PENDING;
997 }
998 
init_mark_done(void)999 static void init_mark_done(void)
1000 {
1001 	writel(~INIT_MARKER_PENDING, INIT_MARKER_REGISTER);
1002 }
1003 
do_hsdk_init(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1004 static int do_hsdk_init(struct cmd_tbl *cmdtp, int flag, int argc,
1005 			char *const argv[])
1006 {
1007 	int ret;
1008 
1009 	if (board_mismatch()) {
1010 		printf("ERR: U-boot is not configured for this board!\n");
1011 		return CMD_RET_FAILURE;
1012 	}
1013 
1014 	/* hsdk_init can be run only once */
1015 	if (init_marker_get()) {
1016 		printf("HSDK HW is already initialized! Please reset the board if you want to change the configuration.\n");
1017 		return CMD_RET_FAILURE;
1018 	}
1019 
1020 	ret = prepare_cpus();
1021 	if (!ret)
1022 		init_mark_done();
1023 
1024 	return ret ? CMD_RET_FAILURE : CMD_RET_SUCCESS;
1025 }
1026 
1027 U_BOOT_CMD(
1028 	hsdk_init, 1, 0, do_hsdk_init,
1029 	"Synopsys HSDK specific command",
1030 	"- Init HSDK HW\n"
1031 );
1032 
do_hsdk_clock_set(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1033 static int do_hsdk_clock_set(struct cmd_tbl *cmdtp, int flag, int argc,
1034 			     char *const argv[])
1035 {
1036 	int ret = 0;
1037 
1038 	/* Strip off leading subcommand argument */
1039 	argc--;
1040 	argv++;
1041 
1042 	envs_cleanup_common(env_map_clock);
1043 
1044 	if (!argc) {
1045 		printf("Set clocks to values specified in environment\n");
1046 		ret = envs_read_common(env_map_clock);
1047 	} else {
1048 		printf("Set clocks to values specified in args\n");
1049 		ret = args_envs_enumerate(env_map_clock, 2, argc, argv);
1050 	}
1051 
1052 	if (ret)
1053 		return CMD_RET_FAILURE;
1054 
1055 	ret = envs_validate_common(env_map_clock);
1056 	if (ret)
1057 		return CMD_RET_FAILURE;
1058 
1059 	/* Setup clock tree HW */
1060 	setup_clocks();
1061 
1062 	return CMD_RET_SUCCESS;
1063 }
1064 
do_hsdk_clock_get(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1065 static int do_hsdk_clock_get(struct cmd_tbl *cmdtp, int flag, int argc,
1066 			     char *const argv[])
1067 {
1068 	ulong rate;
1069 
1070 	if (soc_clk_ctl("cpu-clk", &rate, CLK_GET | CLK_MHZ))
1071 		return CMD_RET_FAILURE;
1072 
1073 	if (env_set_ulong("cpu_freq", rate))
1074 		return CMD_RET_FAILURE;
1075 
1076 	if (soc_clk_ctl("tun-clk", &rate, CLK_GET | CLK_MHZ))
1077 		return CMD_RET_FAILURE;
1078 
1079 	if (env_set_ulong("tun_freq", rate))
1080 		return CMD_RET_FAILURE;
1081 
1082 	if (soc_clk_ctl("axi-clk", &rate, CLK_GET | CLK_MHZ))
1083 		return CMD_RET_FAILURE;
1084 
1085 	if (env_set_ulong("axi_freq", rate))
1086 		return CMD_RET_FAILURE;
1087 
1088 	printf("Clock values are saved to environment\n");
1089 
1090 	return CMD_RET_SUCCESS;
1091 }
1092 
do_hsdk_clock_print(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1093 static int do_hsdk_clock_print(struct cmd_tbl *cmdtp, int flag, int argc,
1094 			       char *const argv[])
1095 {
1096 	/* Main clocks */
1097 	soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ);
1098 	soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ);
1099 	soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ);
1100 	soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ);
1101 
1102 	return CMD_RET_SUCCESS;
1103 }
1104 
do_hsdk_clock_print_all(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1105 static int do_hsdk_clock_print_all(struct cmd_tbl *cmdtp, int flag, int argc,
1106 				   char *const argv[])
1107 {
1108 	/*
1109 	 * NOTE: as of today we don't use some peripherals like HDMI / EBI
1110 	 * so we don't want to print their clocks ("hdmi-sys-clk", "hdmi-pll",
1111 	 * "hdmi-clk", "ebi-clk"). Nevertheless their clock subsystems is fully
1112 	 * functional and we can print their clocks if it is required
1113 	 */
1114 
1115 	/* CPU clock domain */
1116 	soc_clk_ctl("cpu-pll", NULL, CLK_PRINT | CLK_MHZ);
1117 	soc_clk_ctl("cpu-clk", NULL, CLK_PRINT | CLK_MHZ);
1118 	printf("\n");
1119 
1120 	/* SYS clock domain */
1121 	soc_clk_ctl("sys-pll", NULL, CLK_PRINT | CLK_MHZ);
1122 	soc_clk_ctl("apb-clk", NULL, CLK_PRINT | CLK_MHZ);
1123 	soc_clk_ctl("axi-clk", NULL, CLK_PRINT | CLK_MHZ);
1124 	soc_clk_ctl("eth-clk", NULL, CLK_PRINT | CLK_MHZ);
1125 	soc_clk_ctl("usb-clk", NULL, CLK_PRINT | CLK_MHZ);
1126 	soc_clk_ctl("sdio-clk", NULL, CLK_PRINT | CLK_MHZ);
1127 	if (is_board_match_runtime(T_BOARD_HSDK_4XD))
1128 		soc_clk_ctl("hdmi-sys-clk", NULL, CLK_PRINT | CLK_MHZ);
1129 	soc_clk_ctl("gfx-core-clk", NULL, CLK_PRINT | CLK_MHZ);
1130 	if (is_board_match_runtime(T_BOARD_HSDK)) {
1131 		soc_clk_ctl("gfx-dma-clk", NULL, CLK_PRINT | CLK_MHZ);
1132 		soc_clk_ctl("gfx-cfg-clk", NULL, CLK_PRINT | CLK_MHZ);
1133 	}
1134 	soc_clk_ctl("dmac-core-clk", NULL, CLK_PRINT | CLK_MHZ);
1135 	soc_clk_ctl("dmac-cfg-clk", NULL, CLK_PRINT | CLK_MHZ);
1136 	soc_clk_ctl("sdio-ref-clk", NULL, CLK_PRINT | CLK_MHZ);
1137 	soc_clk_ctl("spi-clk", NULL, CLK_PRINT | CLK_MHZ);
1138 	soc_clk_ctl("i2c-clk", NULL, CLK_PRINT | CLK_MHZ);
1139 /*	soc_clk_ctl("ebi-clk", NULL, CLK_PRINT | CLK_MHZ); */
1140 	soc_clk_ctl("uart-clk", NULL, CLK_PRINT | CLK_MHZ);
1141 	printf("\n");
1142 
1143 	/* DDR clock domain */
1144 	soc_clk_ctl("ddr-clk", NULL, CLK_PRINT | CLK_MHZ);
1145 	printf("\n");
1146 
1147 	/* HDMI clock domain */
1148 	if (is_board_match_runtime(T_BOARD_HSDK_4XD)) {
1149 		soc_clk_ctl("hdmi-pll", NULL, CLK_PRINT | CLK_MHZ);
1150 		soc_clk_ctl("hdmi-clk", NULL, CLK_PRINT | CLK_MHZ);
1151 		printf("\n");
1152 	}
1153 
1154 	/* TUN clock domain */
1155 	soc_clk_ctl("tun-pll", NULL, CLK_PRINT | CLK_MHZ);
1156 	soc_clk_ctl("tun-clk", NULL, CLK_PRINT | CLK_MHZ);
1157 	soc_clk_ctl("rom-clk", NULL, CLK_PRINT | CLK_MHZ);
1158 	soc_clk_ctl("pwm-clk", NULL, CLK_PRINT | CLK_MHZ);
1159 	if (is_board_match_runtime(T_BOARD_HSDK_4XD))
1160 		soc_clk_ctl("timer-clk", NULL, CLK_PRINT | CLK_MHZ);
1161 	printf("\n");
1162 
1163 	return CMD_RET_SUCCESS;
1164 }
1165 
1166 struct cmd_tbl cmd_hsdk_clock[] = {
1167 	U_BOOT_CMD_MKENT(set, 3, 0, do_hsdk_clock_set, "", ""),
1168 	U_BOOT_CMD_MKENT(get, 3, 0, do_hsdk_clock_get, "", ""),
1169 	U_BOOT_CMD_MKENT(print, 4, 0, do_hsdk_clock_print, "", ""),
1170 	U_BOOT_CMD_MKENT(print_all, 4, 0, do_hsdk_clock_print_all, "", ""),
1171 };
1172 
do_hsdk_clock(struct cmd_tbl * cmdtp,int flag,int argc,char * const argv[])1173 static int do_hsdk_clock(struct cmd_tbl *cmdtp, int flag, int argc,
1174 			 char *const argv[])
1175 {
1176 	struct cmd_tbl *c;
1177 
1178 	if (argc < 2)
1179 		return CMD_RET_USAGE;
1180 
1181 	/* Strip off leading 'hsdk_clock' command argument */
1182 	argc--;
1183 	argv++;
1184 
1185 	c = find_cmd_tbl(argv[0], cmd_hsdk_clock, ARRAY_SIZE(cmd_hsdk_clock));
1186 	if (!c)
1187 		return CMD_RET_USAGE;
1188 
1189 	return c->cmd(cmdtp, flag, argc, argv);
1190 }
1191 
1192 U_BOOT_CMD(
1193 	hsdk_clock, CONFIG_SYS_MAXARGS, 0, do_hsdk_clock,
1194 	"Synopsys HSDK specific clock command",
1195 	"set   - Set clock to values specified in environment / command line arguments\n"
1196 	"hsdk_clock get   - Save clock values to environment\n"
1197 	"hsdk_clock print - Print main clock values to console\n"
1198 	"hsdk_clock print_all - Print all clock values to console\n"
1199 );
1200 
1201 /* init calls */
board_early_init_f(void)1202 int board_early_init_f(void)
1203 {
1204 	/*
1205 	 * Setup AXI apertures unconditionally as we want to have DDR
1206 	 * in 0x00000000 region when we are kicking slave cpus.
1207 	 */
1208 	init_memory_bridge();
1209 
1210 	/*
1211 	 * Switch SDIO external ciu clock divider from default div-by-8 to
1212 	 * minimum possible div-by-2.
1213 	 */
1214 	writel(SDIO_UHS_REG_EXT_DIV_2, (void __iomem *)SDIO_UHS_REG_EXT);
1215 
1216 	return 0;
1217 }
1218 
board_early_init_r(void)1219 int board_early_init_r(void)
1220 {
1221 	/*
1222 	 * TODO: Init USB here to be able read environment from USB MSD.
1223 	 * It can be done with usb_init() call. We can't do it right now
1224 	 * due to brocken USB IP SW reset and lack of USB IP HW reset in
1225 	 * linux kernel (if we init USB here we will break USB in linux)
1226 	 */
1227 
1228 	/*
1229 	 * Flush all d$ as we want to use uncached area with st.di / ld.di
1230 	 * instructions and we don't want to have any dirty line in L1d$ or SL$
1231 	 * in this area. It is enough to flush all d$ once here as we access to
1232 	 * uncached area with regular st (non .di) instruction only when we copy
1233 	 * data during u-boot relocation.
1234 	 */
1235 	flush_dcache_all();
1236 
1237 	printf("Relocation Offset is: %08lx\n", gd->reloc_off);
1238 
1239 	return 0;
1240 }
1241 
board_late_init(void)1242 int board_late_init(void)
1243 {
1244 	/*
1245 	 * Populate environment with clock frequency values -
1246 	 * run hsdk_clock get callback without uboot command run.
1247 	 */
1248 	do_hsdk_clock_get(NULL, 0, 0, NULL);
1249 
1250 	return 0;
1251 }
1252 
checkboard(void)1253 int checkboard(void)
1254 {
1255 	u32 reg;
1256 
1257 	printf("Board: Synopsys %s\n", board_name(get_board_type_runtime()));
1258 
1259 	if (board_mismatch())
1260 		printf("WARN: U-boot is configured NOT for this board but for %s!\n",
1261 		       board_name(get_board_type_config()));
1262 
1263 	reg = readl(CREG_AXI_M_HS_CORE_BOOT) & CREG_CORE_BOOT_IMAGE;
1264 	printf("U-boot autostart: %s\n", reg ? "enabled" : "disabled");
1265 
1266 	return 0;
1267 };
1268