1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
4  *
5  * U-Boot version:
6  * Copyright (C) 2014-2015 Stefan Roese <sr@denx.de>
7  *
8  * Based on the Linux version which is:
9  * Copyright (C) 2012 Marvell
10  *
11  * Rami Rosen <rosenr@marvell.com>
12  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
13  */
14 
15 #include <common.h>
16 #include <cpu_func.h>
17 #include <dm.h>
18 #include <log.h>
19 #include <net.h>
20 #include <netdev.h>
21 #include <config.h>
22 #include <malloc.h>
23 #include <asm/cache.h>
24 #include <asm/io.h>
25 #include <dm/device_compat.h>
26 #include <dm/devres.h>
27 #include <linux/bitops.h>
28 #include <linux/bug.h>
29 #include <linux/delay.h>
30 #include <linux/errno.h>
31 #include <phy.h>
32 #include <miiphy.h>
33 #include <watchdog.h>
34 #include <asm/arch/cpu.h>
35 #include <asm/arch/soc.h>
36 #include <linux/compat.h>
37 #include <linux/mbus.h>
38 #include <asm-generic/gpio.h>
39 
40 DECLARE_GLOBAL_DATA_PTR;
41 
42 #if !defined(CONFIG_PHYLIB)
43 # error Marvell mvneta requires PHYLIB
44 #endif
45 
46 #define CONFIG_NR_CPUS		1
47 #define ETH_HLEN		14	/* Total octets in header */
48 
49 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
50 #define WRAP			(2 + ETH_HLEN + 4 + 32)
51 #define MTU			1500
52 #define RX_BUFFER_SIZE		(ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
53 
54 #define MVNETA_SMI_TIMEOUT			10000
55 
56 /* Registers */
57 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
58 #define	     MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
59 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
60 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
61 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
62 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
63 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
64 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
65 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
66 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
67 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
68 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
69 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
70 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
71 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
72 #define MVNETA_PORT_RX_RESET                    0x1cc0
73 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
74 #define MVNETA_PHY_ADDR                         0x2000
75 #define      MVNETA_PHY_ADDR_MASK               0x1f
76 #define MVNETA_SMI                              0x2004
77 #define      MVNETA_PHY_REG_MASK                0x1f
78 /* SMI register fields */
79 #define     MVNETA_SMI_DATA_OFFS		0	/* Data */
80 #define     MVNETA_SMI_DATA_MASK		(0xffff << MVNETA_SMI_DATA_OFFS)
81 #define     MVNETA_SMI_DEV_ADDR_OFFS		16	/* PHY device address */
82 #define     MVNETA_SMI_REG_ADDR_OFFS		21	/* PHY device reg addr*/
83 #define     MVNETA_SMI_OPCODE_OFFS		26	/* Write/Read opcode */
84 #define     MVNETA_SMI_OPCODE_READ		(1 << MVNETA_SMI_OPCODE_OFFS)
85 #define     MVNETA_SMI_READ_VALID		(1 << 27)	/* Read Valid */
86 #define     MVNETA_SMI_BUSY			(1 << 28)	/* Busy */
87 #define MVNETA_MBUS_RETRY                       0x2010
88 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
89 #define MVNETA_UNIT_CONTROL                     0x20B0
90 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
91 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
92 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
93 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
94 #define MVNETA_WIN_SIZE_MASK			(0xffff0000)
95 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
96 #define      MVNETA_BASE_ADDR_ENABLE_BIT	0x1
97 #define MVNETA_PORT_ACCESS_PROTECT              0x2294
98 #define      MVNETA_PORT_ACCESS_PROTECT_WIN0_RW	0x3
99 #define MVNETA_PORT_CONFIG                      0x2400
100 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
101 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
102 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
103 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
104 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
105 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
106 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
107 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
108 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
109 						 MVNETA_DEF_RXQ_ARP(q)	 | \
110 						 MVNETA_DEF_RXQ_TCP(q)	 | \
111 						 MVNETA_DEF_RXQ_UDP(q)	 | \
112 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
113 						 MVNETA_TX_UNSET_ERR_SUM | \
114 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
115 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
116 #define MVNETA_MAC_ADDR_LOW                      0x2414
117 #define MVNETA_MAC_ADDR_HIGH                     0x2418
118 #define MVNETA_SDMA_CONFIG                       0x241c
119 #define      MVNETA_SDMA_BRST_SIZE_16            4
120 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
121 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
122 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
123 #define      MVNETA_DESC_SWAP                    BIT(6)
124 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
125 #define MVNETA_PORT_STATUS                       0x2444
126 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
127 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
128 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
129 #define MVNETA_SERDES_CFG			 0x24A0
130 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
131 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
132 #define MVNETA_TYPE_PRIO                         0x24bc
133 #define      MVNETA_FORCE_UNI                    BIT(21)
134 #define MVNETA_TXQ_CMD_1                         0x24e4
135 #define MVNETA_TXQ_CMD                           0x2448
136 #define      MVNETA_TXQ_DISABLE_SHIFT            8
137 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
138 #define MVNETA_ACC_MODE                          0x2500
139 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
140 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
141 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
142 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
143 
144 /* Exception Interrupt Port/Queue Cause register */
145 
146 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
147 #define MVNETA_INTR_NEW_MASK                     0x25a4
148 
149 /* bits  0..7  = TXQ SENT, one bit per queue.
150  * bits  8..15 = RXQ OCCUP, one bit per queue.
151  * bits 16..23 = RXQ FREE, one bit per queue.
152  * bit  29 = OLD_REG_SUM, see old reg ?
153  * bit  30 = TX_ERR_SUM, one bit for 4 ports
154  * bit  31 = MISC_SUM,   one bit for 4 ports
155  */
156 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
157 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
158 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
159 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
160 
161 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
162 #define MVNETA_INTR_OLD_MASK                     0x25ac
163 
164 /* Data Path Port/Queue Cause Register */
165 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
166 #define MVNETA_INTR_MISC_MASK                    0x25b4
167 #define MVNETA_INTR_ENABLE                       0x25b8
168 
169 #define MVNETA_RXQ_CMD                           0x2680
170 #define      MVNETA_RXQ_DISABLE_SHIFT            8
171 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
172 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
173 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
174 #define MVNETA_GMAC_CTRL_0                       0x2c00
175 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
176 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
177 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
178 #define MVNETA_GMAC_CTRL_2                       0x2c08
179 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
180 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
181 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
182 #define MVNETA_GMAC_STATUS                       0x2c10
183 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
184 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
185 #define      MVNETA_GMAC_SPEED_100               BIT(2)
186 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
187 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
188 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
189 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
190 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
191 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
192 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
193 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
194 #define      MVNETA_GMAC_FORCE_LINK_UP           (BIT(0) | BIT(1))
195 #define      MVNETA_GMAC_IB_BYPASS_AN_EN         BIT(3)
196 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
197 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
198 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
199 #define      MVNETA_GMAC_SET_FC_EN               BIT(8)
200 #define      MVNETA_GMAC_ADVERT_FC_EN            BIT(9)
201 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
202 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
203 #define      MVNETA_GMAC_SAMPLE_TX_CFG_EN        BIT(15)
204 #define MVNETA_MIB_COUNTERS_BASE                 0x3080
205 #define      MVNETA_MIB_LATE_COLLISION           0x7c
206 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
207 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
208 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
209 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
210 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
211 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
212 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
213 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
214 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
215 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
216 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
217 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
218 #define MVNETA_PORT_TX_RESET                     0x3cf0
219 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
220 #define MVNETA_TX_MTU                            0x3e0c
221 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
222 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
223 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
224 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
225 
226 /* Descriptor ring Macros */
227 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
228 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
229 
230 /* Various constants */
231 
232 /* Coalescing */
233 #define MVNETA_TXDONE_COAL_PKTS		16
234 #define MVNETA_RX_COAL_PKTS		32
235 #define MVNETA_RX_COAL_USEC		100
236 
237 /* The two bytes Marvell header. Either contains a special value used
238  * by Marvell switches when a specific hardware mode is enabled (not
239  * supported by this driver) or is filled automatically by zeroes on
240  * the RX side. Those two bytes being at the front of the Ethernet
241  * header, they allow to have the IP header aligned on a 4 bytes
242  * boundary automatically: the hardware skips those two bytes on its
243  * own.
244  */
245 #define MVNETA_MH_SIZE			2
246 
247 #define MVNETA_VLAN_TAG_LEN             4
248 
249 #define MVNETA_CPU_D_CACHE_LINE_SIZE    32
250 #define MVNETA_TX_CSUM_MAX_SIZE		9800
251 #define MVNETA_ACC_MODE_EXT		1
252 
253 /* Timeout constants */
254 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
255 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
256 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
257 
258 #define MVNETA_TX_MTU_MAX		0x3ffff
259 
260 /* Max number of Rx descriptors */
261 #define MVNETA_MAX_RXD 16
262 
263 /* Max number of Tx descriptors */
264 #define MVNETA_MAX_TXD 16
265 
266 /* descriptor aligned size */
267 #define MVNETA_DESC_ALIGNED_SIZE	32
268 
269 struct mvneta_port {
270 	void __iomem *base;
271 	struct mvneta_rx_queue *rxqs;
272 	struct mvneta_tx_queue *txqs;
273 
274 	u8 mcast_count[256];
275 	u16 tx_ring_size;
276 	u16 rx_ring_size;
277 
278 	phy_interface_t phy_interface;
279 	unsigned int link;
280 	unsigned int duplex;
281 	unsigned int speed;
282 
283 	int init;
284 	int phyaddr;
285 	struct phy_device *phydev;
286 #if CONFIG_IS_ENABLED(DM_GPIO)
287 	struct gpio_desc phy_reset_gpio;
288 #endif
289 	struct mii_dev *bus;
290 };
291 
292 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
293  * layout of the transmit and reception DMA descriptors, and their
294  * layout is therefore defined by the hardware design
295  */
296 
297 #define MVNETA_TX_L3_OFF_SHIFT	0
298 #define MVNETA_TX_IP_HLEN_SHIFT	8
299 #define MVNETA_TX_L4_UDP	BIT(16)
300 #define MVNETA_TX_L3_IP6	BIT(17)
301 #define MVNETA_TXD_IP_CSUM	BIT(18)
302 #define MVNETA_TXD_Z_PAD	BIT(19)
303 #define MVNETA_TXD_L_DESC	BIT(20)
304 #define MVNETA_TXD_F_DESC	BIT(21)
305 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
306 				 MVNETA_TXD_L_DESC | \
307 				 MVNETA_TXD_F_DESC)
308 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
309 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
310 
311 #define MVNETA_RXD_ERR_CRC		0x0
312 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
313 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
314 #define MVNETA_RXD_ERR_LEN		BIT(18)
315 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
316 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
317 #define MVNETA_RXD_L3_IP4		BIT(25)
318 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
319 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
320 
321 struct mvneta_tx_desc {
322 	u32  command;		/* Options used by HW for packet transmitting.*/
323 	u16  reserverd1;	/* csum_l4 (for future use)		*/
324 	u16  data_size;		/* Data size of transmitted packet in bytes */
325 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
326 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
327 	u32  reserved3[4];	/* Reserved - (for future use)		*/
328 };
329 
330 struct mvneta_rx_desc {
331 	u32  status;		/* Info about received packet		*/
332 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
333 	u16  data_size;		/* Size of received packet in bytes	*/
334 
335 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
336 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
337 
338 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
339 	u16  reserved3;		/* prefetch_cmd, for future use		*/
340 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
341 
342 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
343 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
344 };
345 
346 struct mvneta_tx_queue {
347 	/* Number of this TX queue, in the range 0-7 */
348 	u8 id;
349 
350 	/* Number of TX DMA descriptors in the descriptor ring */
351 	int size;
352 
353 	/* Index of last TX DMA descriptor that was inserted */
354 	int txq_put_index;
355 
356 	/* Index of the TX DMA descriptor to be cleaned up */
357 	int txq_get_index;
358 
359 	/* Virtual address of the TX DMA descriptors array */
360 	struct mvneta_tx_desc *descs;
361 
362 	/* DMA address of the TX DMA descriptors array */
363 	dma_addr_t descs_phys;
364 
365 	/* Index of the last TX DMA descriptor */
366 	int last_desc;
367 
368 	/* Index of the next TX DMA descriptor to process */
369 	int next_desc_to_proc;
370 };
371 
372 struct mvneta_rx_queue {
373 	/* rx queue number, in the range 0-7 */
374 	u8 id;
375 
376 	/* num of rx descriptors in the rx descriptor ring */
377 	int size;
378 
379 	/* Virtual address of the RX DMA descriptors array */
380 	struct mvneta_rx_desc *descs;
381 
382 	/* DMA address of the RX DMA descriptors array */
383 	dma_addr_t descs_phys;
384 
385 	/* Index of the last RX DMA descriptor */
386 	int last_desc;
387 
388 	/* Index of the next RX DMA descriptor to process */
389 	int next_desc_to_proc;
390 };
391 
392 /* U-Boot doesn't use the queues, so set the number to 1 */
393 static int rxq_number = 1;
394 static int txq_number = 1;
395 static int rxq_def;
396 
397 struct buffer_location {
398 	struct mvneta_tx_desc *tx_descs;
399 	struct mvneta_rx_desc *rx_descs;
400 	u32 rx_buffers;
401 };
402 
403 /*
404  * All 4 interfaces use the same global buffer, since only one interface
405  * can be enabled at once
406  */
407 static struct buffer_location buffer_loc;
408 
409 /*
410  * Page table entries are set to 1MB, or multiples of 1MB
411  * (not < 1MB). driver uses less bd's so use 1MB bdspace.
412  */
413 #define BD_SPACE	(1 << 20)
414 
415 /*
416  * Dummy implementation that can be overwritten by a board
417  * specific function
418  */
board_network_enable(struct mii_dev * bus)419 __weak int board_network_enable(struct mii_dev *bus)
420 {
421 	return 0;
422 }
423 
424 /* Utility/helper methods */
425 
426 /* Write helper method */
mvreg_write(struct mvneta_port * pp,u32 offset,u32 data)427 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
428 {
429 	writel(data, pp->base + offset);
430 }
431 
432 /* Read helper method */
mvreg_read(struct mvneta_port * pp,u32 offset)433 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
434 {
435 	return readl(pp->base + offset);
436 }
437 
438 /* Clear all MIB counters */
mvneta_mib_counters_clear(struct mvneta_port * pp)439 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
440 {
441 	int i;
442 
443 	/* Perform dummy reads from MIB counters */
444 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
445 		mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
446 }
447 
448 /* Rx descriptors helper methods */
449 
450 /* Checks whether the RX descriptor having this status is both the first
451  * and the last descriptor for the RX packet. Each RX packet is currently
452  * received through a single RX descriptor, so not having each RX
453  * descriptor with its first and last bits set is an error
454  */
mvneta_rxq_desc_is_first_last(u32 status)455 static int mvneta_rxq_desc_is_first_last(u32 status)
456 {
457 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
458 		MVNETA_RXD_FIRST_LAST_DESC;
459 }
460 
461 /* Add number of descriptors ready to receive new packets */
mvneta_rxq_non_occup_desc_add(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int ndescs)462 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
463 					  struct mvneta_rx_queue *rxq,
464 					  int ndescs)
465 {
466 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
467 	 * be added at once
468 	 */
469 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
470 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
471 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
472 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
473 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
474 	}
475 
476 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
477 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
478 }
479 
480 /* Get number of RX descriptors occupied by received packets */
mvneta_rxq_busy_desc_num_get(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)481 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
482 					struct mvneta_rx_queue *rxq)
483 {
484 	u32 val;
485 
486 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
487 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
488 }
489 
490 /* Update num of rx desc called upon return from rx path or
491  * from mvneta_rxq_drop_pkts().
492  */
mvneta_rxq_desc_num_update(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int rx_done,int rx_filled)493 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
494 				       struct mvneta_rx_queue *rxq,
495 				       int rx_done, int rx_filled)
496 {
497 	u32 val;
498 
499 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
500 		val = rx_done |
501 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
502 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
503 		return;
504 	}
505 
506 	/* Only 255 descriptors can be added at once */
507 	while ((rx_done > 0) || (rx_filled > 0)) {
508 		if (rx_done <= 0xff) {
509 			val = rx_done;
510 			rx_done = 0;
511 		} else {
512 			val = 0xff;
513 			rx_done -= 0xff;
514 		}
515 		if (rx_filled <= 0xff) {
516 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
517 			rx_filled = 0;
518 		} else {
519 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
520 			rx_filled -= 0xff;
521 		}
522 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
523 	}
524 }
525 
526 /* Get pointer to next RX descriptor to be processed by SW */
527 static struct mvneta_rx_desc *
mvneta_rxq_next_desc_get(struct mvneta_rx_queue * rxq)528 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
529 {
530 	int rx_desc = rxq->next_desc_to_proc;
531 
532 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
533 	return rxq->descs + rx_desc;
534 }
535 
536 /* Tx descriptors helper methods */
537 
538 /* Update HW with number of TX descriptors to be sent */
mvneta_txq_pend_desc_add(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int pend_desc)539 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
540 				     struct mvneta_tx_queue *txq,
541 				     int pend_desc)
542 {
543 	u32 val;
544 
545 	/* Only 255 descriptors can be added at once ; Assume caller
546 	 * process TX descriptors in quanta less than 256
547 	 */
548 	val = pend_desc;
549 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
550 }
551 
552 /* Get pointer to next TX descriptor to be processed (send) by HW */
553 static struct mvneta_tx_desc *
mvneta_txq_next_desc_get(struct mvneta_tx_queue * txq)554 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
555 {
556 	int tx_desc = txq->next_desc_to_proc;
557 
558 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
559 	return txq->descs + tx_desc;
560 }
561 
562 /* Set rxq buf size */
mvneta_rxq_buf_size_set(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int buf_size)563 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
564 				    struct mvneta_rx_queue *rxq,
565 				    int buf_size)
566 {
567 	u32 val;
568 
569 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
570 
571 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
572 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
573 
574 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
575 }
576 
mvneta_port_is_fixed_link(struct mvneta_port * pp)577 static int mvneta_port_is_fixed_link(struct mvneta_port *pp)
578 {
579 	/* phy_addr is set to invalid value for fixed link */
580 	return pp->phyaddr > PHY_MAX_ADDR;
581 }
582 
583 
584 /* Start the Ethernet port RX and TX activity */
mvneta_port_up(struct mvneta_port * pp)585 static void mvneta_port_up(struct mvneta_port *pp)
586 {
587 	int queue;
588 	u32 q_map;
589 
590 	/* Enable all initialized TXs. */
591 	mvneta_mib_counters_clear(pp);
592 	q_map = 0;
593 	for (queue = 0; queue < txq_number; queue++) {
594 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
595 		if (txq->descs != NULL)
596 			q_map |= (1 << queue);
597 	}
598 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
599 
600 	/* Enable all initialized RXQs. */
601 	q_map = 0;
602 	for (queue = 0; queue < rxq_number; queue++) {
603 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
604 		if (rxq->descs != NULL)
605 			q_map |= (1 << queue);
606 	}
607 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
608 }
609 
610 /* Stop the Ethernet port activity */
mvneta_port_down(struct mvneta_port * pp)611 static void mvneta_port_down(struct mvneta_port *pp)
612 {
613 	u32 val;
614 	int count;
615 
616 	/* Stop Rx port activity. Check port Rx activity. */
617 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
618 
619 	/* Issue stop command for active channels only */
620 	if (val != 0)
621 		mvreg_write(pp, MVNETA_RXQ_CMD,
622 			    val << MVNETA_RXQ_DISABLE_SHIFT);
623 
624 	/* Wait for all Rx activity to terminate. */
625 	count = 0;
626 	do {
627 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
628 			netdev_warn(pp->dev,
629 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
630 				    val);
631 			break;
632 		}
633 		mdelay(1);
634 
635 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
636 	} while (val & 0xff);
637 
638 	/* Stop Tx port activity. Check port Tx activity. Issue stop
639 	 * command for active channels only
640 	 */
641 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
642 
643 	if (val != 0)
644 		mvreg_write(pp, MVNETA_TXQ_CMD,
645 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
646 
647 	/* Wait for all Tx activity to terminate. */
648 	count = 0;
649 	do {
650 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
651 			netdev_warn(pp->dev,
652 				    "TIMEOUT for TX stopped status=0x%08x\n",
653 				    val);
654 			break;
655 		}
656 		mdelay(1);
657 
658 		/* Check TX Command reg that all Txqs are stopped */
659 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
660 
661 	} while (val & 0xff);
662 
663 	/* Double check to verify that TX FIFO is empty */
664 	count = 0;
665 	do {
666 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
667 			netdev_warn(pp->dev,
668 				    "TX FIFO empty timeout status=0x08%x\n",
669 				    val);
670 			break;
671 		}
672 		mdelay(1);
673 
674 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
675 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
676 		 (val & MVNETA_TX_IN_PRGRS));
677 
678 	udelay(200);
679 }
680 
681 /* Enable the port by setting the port enable bit of the MAC control register */
mvneta_port_enable(struct mvneta_port * pp)682 static void mvneta_port_enable(struct mvneta_port *pp)
683 {
684 	u32 val;
685 
686 	/* Enable port */
687 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
688 	val |= MVNETA_GMAC0_PORT_ENABLE;
689 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
690 }
691 
692 /* Disable the port and wait for about 200 usec before retuning */
mvneta_port_disable(struct mvneta_port * pp)693 static void mvneta_port_disable(struct mvneta_port *pp)
694 {
695 	u32 val;
696 
697 	/* Reset the Enable bit in the Serial Control Register */
698 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
699 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
700 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
701 
702 	udelay(200);
703 }
704 
705 /* Multicast tables methods */
706 
707 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
mvneta_set_ucast_table(struct mvneta_port * pp,int queue)708 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
709 {
710 	int offset;
711 	u32 val;
712 
713 	if (queue == -1) {
714 		val = 0;
715 	} else {
716 		val = 0x1 | (queue << 1);
717 		val |= (val << 24) | (val << 16) | (val << 8);
718 	}
719 
720 	for (offset = 0; offset <= 0xc; offset += 4)
721 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
722 }
723 
724 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
mvneta_set_special_mcast_table(struct mvneta_port * pp,int queue)725 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
726 {
727 	int offset;
728 	u32 val;
729 
730 	if (queue == -1) {
731 		val = 0;
732 	} else {
733 		val = 0x1 | (queue << 1);
734 		val |= (val << 24) | (val << 16) | (val << 8);
735 	}
736 
737 	for (offset = 0; offset <= 0xfc; offset += 4)
738 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
739 }
740 
741 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
mvneta_set_other_mcast_table(struct mvneta_port * pp,int queue)742 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
743 {
744 	int offset;
745 	u32 val;
746 
747 	if (queue == -1) {
748 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
749 		val = 0;
750 	} else {
751 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
752 		val = 0x1 | (queue << 1);
753 		val |= (val << 24) | (val << 16) | (val << 8);
754 	}
755 
756 	for (offset = 0; offset <= 0xfc; offset += 4)
757 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
758 }
759 
760 /* This method sets defaults to the NETA port:
761  *	Clears interrupt Cause and Mask registers.
762  *	Clears all MAC tables.
763  *	Sets defaults to all registers.
764  *	Resets RX and TX descriptor rings.
765  *	Resets PHY.
766  * This method can be called after mvneta_port_down() to return the port
767  *	settings to defaults.
768  */
mvneta_defaults_set(struct mvneta_port * pp)769 static void mvneta_defaults_set(struct mvneta_port *pp)
770 {
771 	int cpu;
772 	int queue;
773 	u32 val;
774 
775 	/* Clear all Cause registers */
776 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
777 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
778 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
779 
780 	/* Mask all interrupts */
781 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
782 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
783 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
784 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
785 
786 	/* Enable MBUS Retry bit16 */
787 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
788 
789 	/* Set CPU queue access map - all CPUs have access to all RX
790 	 * queues and to all TX queues
791 	 */
792 	for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
793 		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
794 			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
795 			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
796 
797 	/* Reset RX and TX DMAs */
798 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
799 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
800 
801 	/* Disable Legacy WRR, Disable EJP, Release from reset */
802 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
803 	for (queue = 0; queue < txq_number; queue++) {
804 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
805 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
806 	}
807 
808 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
809 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
810 
811 	/* Set Port Acceleration Mode */
812 	val = MVNETA_ACC_MODE_EXT;
813 	mvreg_write(pp, MVNETA_ACC_MODE, val);
814 
815 	/* Update val of portCfg register accordingly with all RxQueue types */
816 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
817 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
818 
819 	val = 0;
820 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
821 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
822 
823 	/* Build PORT_SDMA_CONFIG_REG */
824 	val = 0;
825 
826 	/* Default burst size */
827 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
828 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
829 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
830 
831 	/* Assign port SDMA configuration */
832 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
833 
834 	/* Enable PHY polling in hardware if not in fixed-link mode */
835 	if (!mvneta_port_is_fixed_link(pp)) {
836 		val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
837 		val |= MVNETA_PHY_POLLING_ENABLE;
838 		mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
839 	}
840 
841 	mvneta_set_ucast_table(pp, -1);
842 	mvneta_set_special_mcast_table(pp, -1);
843 	mvneta_set_other_mcast_table(pp, -1);
844 }
845 
846 /* Set unicast address */
mvneta_set_ucast_addr(struct mvneta_port * pp,u8 last_nibble,int queue)847 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
848 				  int queue)
849 {
850 	unsigned int unicast_reg;
851 	unsigned int tbl_offset;
852 	unsigned int reg_offset;
853 
854 	/* Locate the Unicast table entry */
855 	last_nibble = (0xf & last_nibble);
856 
857 	/* offset from unicast tbl base */
858 	tbl_offset = (last_nibble / 4) * 4;
859 
860 	/* offset within the above reg  */
861 	reg_offset = last_nibble % 4;
862 
863 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
864 
865 	if (queue == -1) {
866 		/* Clear accepts frame bit at specified unicast DA tbl entry */
867 		unicast_reg &= ~(0xff << (8 * reg_offset));
868 	} else {
869 		unicast_reg &= ~(0xff << (8 * reg_offset));
870 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
871 	}
872 
873 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
874 }
875 
876 /* Set mac address */
mvneta_mac_addr_set(struct mvneta_port * pp,unsigned char * addr,int queue)877 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
878 				int queue)
879 {
880 	unsigned int mac_h;
881 	unsigned int mac_l;
882 
883 	if (queue != -1) {
884 		mac_l = (addr[4] << 8) | (addr[5]);
885 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
886 			(addr[2] << 8) | (addr[3] << 0);
887 
888 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
889 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
890 	}
891 
892 	/* Accept frames of this address */
893 	mvneta_set_ucast_addr(pp, addr[5], queue);
894 }
895 
mvneta_write_hwaddr(struct udevice * dev)896 static int mvneta_write_hwaddr(struct udevice *dev)
897 {
898 	mvneta_mac_addr_set(dev_get_priv(dev),
899 		((struct eth_pdata *)dev_get_platdata(dev))->enetaddr,
900 		rxq_def);
901 
902 	return 0;
903 }
904 
905 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
mvneta_rx_desc_fill(struct mvneta_rx_desc * rx_desc,u32 phys_addr,u32 cookie)906 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
907 				u32 phys_addr, u32 cookie)
908 {
909 	rx_desc->buf_cookie = cookie;
910 	rx_desc->buf_phys_addr = phys_addr;
911 }
912 
913 /* Decrement sent descriptors counter */
mvneta_txq_sent_desc_dec(struct mvneta_port * pp,struct mvneta_tx_queue * txq,int sent_desc)914 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
915 				     struct mvneta_tx_queue *txq,
916 				     int sent_desc)
917 {
918 	u32 val;
919 
920 	/* Only 255 TX descriptors can be updated at once */
921 	while (sent_desc > 0xff) {
922 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
923 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
924 		sent_desc = sent_desc - 0xff;
925 	}
926 
927 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
928 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
929 }
930 
931 /* Get number of TX descriptors already sent by HW */
mvneta_txq_sent_desc_num_get(struct mvneta_port * pp,struct mvneta_tx_queue * txq)932 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
933 					struct mvneta_tx_queue *txq)
934 {
935 	u32 val;
936 	int sent_desc;
937 
938 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
939 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
940 		MVNETA_TXQ_SENT_DESC_SHIFT;
941 
942 	return sent_desc;
943 }
944 
945 /* Display more error info */
mvneta_rx_error(struct mvneta_port * pp,struct mvneta_rx_desc * rx_desc)946 static void mvneta_rx_error(struct mvneta_port *pp,
947 			    struct mvneta_rx_desc *rx_desc)
948 {
949 	u32 status = rx_desc->status;
950 
951 	if (!mvneta_rxq_desc_is_first_last(status)) {
952 		netdev_err(pp->dev,
953 			   "bad rx status %08x (buffer oversize), size=%d\n",
954 			   status, rx_desc->data_size);
955 		return;
956 	}
957 
958 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
959 	case MVNETA_RXD_ERR_CRC:
960 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
961 			   status, rx_desc->data_size);
962 		break;
963 	case MVNETA_RXD_ERR_OVERRUN:
964 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
965 			   status, rx_desc->data_size);
966 		break;
967 	case MVNETA_RXD_ERR_LEN:
968 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
969 			   status, rx_desc->data_size);
970 		break;
971 	case MVNETA_RXD_ERR_RESOURCE:
972 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
973 			   status, rx_desc->data_size);
974 		break;
975 	}
976 }
977 
mvneta_rxq_handle_get(struct mvneta_port * pp,int rxq)978 static struct mvneta_rx_queue *mvneta_rxq_handle_get(struct mvneta_port *pp,
979 						     int rxq)
980 {
981 	return &pp->rxqs[rxq];
982 }
983 
984 
985 /* Drop packets received by the RXQ and free buffers */
mvneta_rxq_drop_pkts(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)986 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
987 				 struct mvneta_rx_queue *rxq)
988 {
989 	int rx_done;
990 
991 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
992 	if (rx_done)
993 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
994 }
995 
996 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
mvneta_rxq_fill(struct mvneta_port * pp,struct mvneta_rx_queue * rxq,int num)997 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
998 			   int num)
999 {
1000 	int i;
1001 
1002 	for (i = 0; i < num; i++) {
1003 		u32 addr;
1004 
1005 		/* U-Boot special: Fill in the rx buffer addresses */
1006 		addr = buffer_loc.rx_buffers + (i * RX_BUFFER_SIZE);
1007 		mvneta_rx_desc_fill(rxq->descs + i, addr, addr);
1008 	}
1009 
1010 	/* Add this number of RX descriptors as non occupied (ready to
1011 	 * get packets)
1012 	 */
1013 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
1014 
1015 	return 0;
1016 }
1017 
1018 /* Rx/Tx queue initialization/cleanup methods */
1019 
1020 /* Create a specified RX queue */
mvneta_rxq_init(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1021 static int mvneta_rxq_init(struct mvneta_port *pp,
1022 			   struct mvneta_rx_queue *rxq)
1023 
1024 {
1025 	rxq->size = pp->rx_ring_size;
1026 
1027 	/* Allocate memory for RX descriptors */
1028 	rxq->descs_phys = (dma_addr_t)rxq->descs;
1029 	if (rxq->descs == NULL)
1030 		return -ENOMEM;
1031 
1032 	WARN_ON(rxq->descs != PTR_ALIGN(rxq->descs, ARCH_DMA_MINALIGN));
1033 
1034 	rxq->last_desc = rxq->size - 1;
1035 
1036 	/* Set Rx descriptors queue starting address */
1037 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
1038 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
1039 
1040 	/* Fill RXQ with buffers from RX pool */
1041 	mvneta_rxq_buf_size_set(pp, rxq, RX_BUFFER_SIZE);
1042 	mvneta_rxq_fill(pp, rxq, rxq->size);
1043 
1044 	return 0;
1045 }
1046 
1047 /* Cleanup Rx queue */
mvneta_rxq_deinit(struct mvneta_port * pp,struct mvneta_rx_queue * rxq)1048 static void mvneta_rxq_deinit(struct mvneta_port *pp,
1049 			      struct mvneta_rx_queue *rxq)
1050 {
1051 	mvneta_rxq_drop_pkts(pp, rxq);
1052 
1053 	rxq->descs             = NULL;
1054 	rxq->last_desc         = 0;
1055 	rxq->next_desc_to_proc = 0;
1056 	rxq->descs_phys        = 0;
1057 }
1058 
1059 /* Create and initialize a tx queue */
mvneta_txq_init(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1060 static int mvneta_txq_init(struct mvneta_port *pp,
1061 			   struct mvneta_tx_queue *txq)
1062 {
1063 	txq->size = pp->tx_ring_size;
1064 
1065 	/* Allocate memory for TX descriptors */
1066 	txq->descs_phys = (dma_addr_t)txq->descs;
1067 	if (txq->descs == NULL)
1068 		return -ENOMEM;
1069 
1070 	WARN_ON(txq->descs != PTR_ALIGN(txq->descs, ARCH_DMA_MINALIGN));
1071 
1072 	txq->last_desc = txq->size - 1;
1073 
1074 	/* Set maximum bandwidth for enabled TXQs */
1075 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
1076 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
1077 
1078 	/* Set Tx descriptors queue starting address */
1079 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
1080 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
1081 
1082 	return 0;
1083 }
1084 
1085 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
mvneta_txq_deinit(struct mvneta_port * pp,struct mvneta_tx_queue * txq)1086 static void mvneta_txq_deinit(struct mvneta_port *pp,
1087 			      struct mvneta_tx_queue *txq)
1088 {
1089 	txq->descs             = NULL;
1090 	txq->last_desc         = 0;
1091 	txq->next_desc_to_proc = 0;
1092 	txq->descs_phys        = 0;
1093 
1094 	/* Set minimum bandwidth for disabled TXQs */
1095 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
1096 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
1097 
1098 	/* Set Tx descriptors queue starting address and size */
1099 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
1100 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
1101 }
1102 
1103 /* Cleanup all Tx queues */
mvneta_cleanup_txqs(struct mvneta_port * pp)1104 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
1105 {
1106 	int queue;
1107 
1108 	for (queue = 0; queue < txq_number; queue++)
1109 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
1110 }
1111 
1112 /* Cleanup all Rx queues */
mvneta_cleanup_rxqs(struct mvneta_port * pp)1113 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
1114 {
1115 	int queue;
1116 
1117 	for (queue = 0; queue < rxq_number; queue++)
1118 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
1119 }
1120 
1121 
1122 /* Init all Rx queues */
mvneta_setup_rxqs(struct mvneta_port * pp)1123 static int mvneta_setup_rxqs(struct mvneta_port *pp)
1124 {
1125 	int queue;
1126 
1127 	for (queue = 0; queue < rxq_number; queue++) {
1128 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
1129 		if (err) {
1130 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
1131 				   __func__, queue);
1132 			mvneta_cleanup_rxqs(pp);
1133 			return err;
1134 		}
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 /* Init all tx queues */
mvneta_setup_txqs(struct mvneta_port * pp)1141 static int mvneta_setup_txqs(struct mvneta_port *pp)
1142 {
1143 	int queue;
1144 
1145 	for (queue = 0; queue < txq_number; queue++) {
1146 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
1147 		if (err) {
1148 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
1149 				   __func__, queue);
1150 			mvneta_cleanup_txqs(pp);
1151 			return err;
1152 		}
1153 	}
1154 
1155 	return 0;
1156 }
1157 
mvneta_start_dev(struct mvneta_port * pp)1158 static void mvneta_start_dev(struct mvneta_port *pp)
1159 {
1160 	/* start the Rx/Tx activity */
1161 	mvneta_port_enable(pp);
1162 }
1163 
mvneta_adjust_link(struct udevice * dev)1164 static void mvneta_adjust_link(struct udevice *dev)
1165 {
1166 	struct mvneta_port *pp = dev_get_priv(dev);
1167 	struct phy_device *phydev = pp->phydev;
1168 	int status_change = 0;
1169 
1170 	if (mvneta_port_is_fixed_link(pp)) {
1171 		debug("Using fixed link, skip link adjust\n");
1172 		return;
1173 	}
1174 
1175 	if (phydev->link) {
1176 		if ((pp->speed != phydev->speed) ||
1177 		    (pp->duplex != phydev->duplex)) {
1178 			u32 val;
1179 
1180 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1181 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
1182 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
1183 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
1184 				 MVNETA_GMAC_AN_SPEED_EN |
1185 				 MVNETA_GMAC_AN_DUPLEX_EN);
1186 
1187 			if (phydev->duplex)
1188 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
1189 
1190 			if (phydev->speed == SPEED_1000)
1191 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
1192 			else
1193 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
1194 
1195 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1196 
1197 			pp->duplex = phydev->duplex;
1198 			pp->speed  = phydev->speed;
1199 		}
1200 	}
1201 
1202 	if (phydev->link != pp->link) {
1203 		if (!phydev->link) {
1204 			pp->duplex = -1;
1205 			pp->speed = 0;
1206 		}
1207 
1208 		pp->link = phydev->link;
1209 		status_change = 1;
1210 	}
1211 
1212 	if (status_change) {
1213 		if (phydev->link) {
1214 			u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1215 			val |= (MVNETA_GMAC_FORCE_LINK_PASS |
1216 				MVNETA_GMAC_FORCE_LINK_DOWN);
1217 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1218 			mvneta_port_up(pp);
1219 		} else {
1220 			mvneta_port_down(pp);
1221 		}
1222 	}
1223 }
1224 
mvneta_open(struct udevice * dev)1225 static int mvneta_open(struct udevice *dev)
1226 {
1227 	struct mvneta_port *pp = dev_get_priv(dev);
1228 	int ret;
1229 
1230 	ret = mvneta_setup_rxqs(pp);
1231 	if (ret)
1232 		return ret;
1233 
1234 	ret = mvneta_setup_txqs(pp);
1235 	if (ret)
1236 		return ret;
1237 
1238 	mvneta_adjust_link(dev);
1239 
1240 	mvneta_start_dev(pp);
1241 
1242 	return 0;
1243 }
1244 
1245 /* Initialize hw */
mvneta_init2(struct mvneta_port * pp)1246 static int mvneta_init2(struct mvneta_port *pp)
1247 {
1248 	int queue;
1249 
1250 	/* Disable port */
1251 	mvneta_port_disable(pp);
1252 
1253 	/* Set port default values */
1254 	mvneta_defaults_set(pp);
1255 
1256 	pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
1257 			   GFP_KERNEL);
1258 	if (!pp->txqs)
1259 		return -ENOMEM;
1260 
1261 	/* U-Boot special: use preallocated area */
1262 	pp->txqs[0].descs = buffer_loc.tx_descs;
1263 
1264 	/* Initialize TX descriptor rings */
1265 	for (queue = 0; queue < txq_number; queue++) {
1266 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1267 		txq->id = queue;
1268 		txq->size = pp->tx_ring_size;
1269 	}
1270 
1271 	pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
1272 			   GFP_KERNEL);
1273 	if (!pp->rxqs) {
1274 		kfree(pp->txqs);
1275 		return -ENOMEM;
1276 	}
1277 
1278 	/* U-Boot special: use preallocated area */
1279 	pp->rxqs[0].descs = buffer_loc.rx_descs;
1280 
1281 	/* Create Rx descriptor rings */
1282 	for (queue = 0; queue < rxq_number; queue++) {
1283 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1284 		rxq->id = queue;
1285 		rxq->size = pp->rx_ring_size;
1286 	}
1287 
1288 	return 0;
1289 }
1290 
1291 /* platform glue : initialize decoding windows */
1292 
1293 /*
1294  * Not like A380, in Armada3700, there are two layers of decode windows for GBE:
1295  * First layer is:  GbE Address window that resides inside the GBE unit,
1296  * Second layer is: Fabric address window which is located in the NIC400
1297  *                  (South Fabric).
1298  * To simplify the address decode configuration for Armada3700, we bypass the
1299  * first layer of GBE decode window by setting the first window to 4GB.
1300  */
mvneta_bypass_mbus_windows(struct mvneta_port * pp)1301 static void mvneta_bypass_mbus_windows(struct mvneta_port *pp)
1302 {
1303 	/*
1304 	 * Set window size to 4GB, to bypass GBE address decode, leave the
1305 	 * work to MBUS decode window
1306 	 */
1307 	mvreg_write(pp, MVNETA_WIN_SIZE(0), MVNETA_WIN_SIZE_MASK);
1308 
1309 	/* Enable GBE address decode window 0 by set bit 0 to 0 */
1310 	clrbits_le32(pp->base + MVNETA_BASE_ADDR_ENABLE,
1311 		     MVNETA_BASE_ADDR_ENABLE_BIT);
1312 
1313 	/* Set GBE address decode window 0 to full Access (read or write) */
1314 	setbits_le32(pp->base + MVNETA_PORT_ACCESS_PROTECT,
1315 		     MVNETA_PORT_ACCESS_PROTECT_WIN0_RW);
1316 }
1317 
mvneta_conf_mbus_windows(struct mvneta_port * pp)1318 static void mvneta_conf_mbus_windows(struct mvneta_port *pp)
1319 {
1320 	const struct mbus_dram_target_info *dram;
1321 	u32 win_enable;
1322 	u32 win_protect;
1323 	int i;
1324 
1325 	dram = mvebu_mbus_dram_info();
1326 	for (i = 0; i < 6; i++) {
1327 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1328 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1329 
1330 		if (i < 4)
1331 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1332 	}
1333 
1334 	win_enable = 0x3f;
1335 	win_protect = 0;
1336 
1337 	for (i = 0; i < dram->num_cs; i++) {
1338 		const struct mbus_dram_window *cs = dram->cs + i;
1339 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
1340 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
1341 
1342 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
1343 			    (cs->size - 1) & 0xffff0000);
1344 
1345 		win_enable &= ~(1 << i);
1346 		win_protect |= 3 << (2 * i);
1347 	}
1348 
1349 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1350 }
1351 
1352 /* Power up the port */
mvneta_port_power_up(struct mvneta_port * pp,int phy_mode)1353 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
1354 {
1355 	u32 ctrl;
1356 
1357 	/* MAC Cause register should be cleared */
1358 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
1359 
1360 	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1361 
1362 	/* Even though it might look weird, when we're configured in
1363 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
1364 	 */
1365 	switch (phy_mode) {
1366 	case PHY_INTERFACE_MODE_QSGMII:
1367 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
1368 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1369 		break;
1370 	case PHY_INTERFACE_MODE_SGMII:
1371 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
1372 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
1373 		break;
1374 	case PHY_INTERFACE_MODE_RGMII:
1375 	case PHY_INTERFACE_MODE_RGMII_ID:
1376 		ctrl |= MVNETA_GMAC2_PORT_RGMII;
1377 		break;
1378 	default:
1379 		return -EINVAL;
1380 	}
1381 
1382 	/* Cancel Port Reset */
1383 	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
1384 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
1385 
1386 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
1387 		MVNETA_GMAC2_PORT_RESET) != 0)
1388 		continue;
1389 
1390 	return 0;
1391 }
1392 
1393 /* Device initialization routine */
mvneta_init(struct udevice * dev)1394 static int mvneta_init(struct udevice *dev)
1395 {
1396 	struct eth_pdata *pdata = dev_get_platdata(dev);
1397 	struct mvneta_port *pp = dev_get_priv(dev);
1398 	int err;
1399 
1400 	pp->tx_ring_size = MVNETA_MAX_TXD;
1401 	pp->rx_ring_size = MVNETA_MAX_RXD;
1402 
1403 	err = mvneta_init2(pp);
1404 	if (err < 0) {
1405 		dev_err(&pdev->dev, "can't init eth hal\n");
1406 		return err;
1407 	}
1408 
1409 	mvneta_mac_addr_set(pp, pdata->enetaddr, rxq_def);
1410 
1411 	err = mvneta_port_power_up(pp, pp->phy_interface);
1412 	if (err < 0) {
1413 		dev_err(&pdev->dev, "can't power up port\n");
1414 		return err;
1415 	}
1416 
1417 	/* Call open() now as it needs to be done before runing send() */
1418 	mvneta_open(dev);
1419 
1420 	return 0;
1421 }
1422 
1423 /* U-Boot only functions follow here */
1424 
1425 /* SMI / MDIO functions */
1426 
smi_wait_ready(struct mvneta_port * pp)1427 static int smi_wait_ready(struct mvneta_port *pp)
1428 {
1429 	u32 timeout = MVNETA_SMI_TIMEOUT;
1430 	u32 smi_reg;
1431 
1432 	/* wait till the SMI is not busy */
1433 	do {
1434 		/* read smi register */
1435 		smi_reg = mvreg_read(pp, MVNETA_SMI);
1436 		if (timeout-- == 0) {
1437 			printf("Error: SMI busy timeout\n");
1438 			return -EFAULT;
1439 		}
1440 	} while (smi_reg & MVNETA_SMI_BUSY);
1441 
1442 	return 0;
1443 }
1444 
1445 /*
1446  * mvneta_mdio_read - miiphy_read callback function.
1447  *
1448  * Returns 16bit phy register value, or 0xffff on error
1449  */
mvneta_mdio_read(struct mii_dev * bus,int addr,int devad,int reg)1450 static int mvneta_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
1451 {
1452 	struct mvneta_port *pp = bus->priv;
1453 	u32 smi_reg;
1454 	u32 timeout;
1455 
1456 	/* check parameters */
1457 	if (addr > MVNETA_PHY_ADDR_MASK) {
1458 		printf("Error: Invalid PHY address %d\n", addr);
1459 		return -EFAULT;
1460 	}
1461 
1462 	if (reg > MVNETA_PHY_REG_MASK) {
1463 		printf("Err: Invalid register offset %d\n", reg);
1464 		return -EFAULT;
1465 	}
1466 
1467 	/* wait till the SMI is not busy */
1468 	if (smi_wait_ready(pp) < 0)
1469 		return -EFAULT;
1470 
1471 	/* fill the phy address and regiser offset and read opcode */
1472 	smi_reg = (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1473 		| (reg << MVNETA_SMI_REG_ADDR_OFFS)
1474 		| MVNETA_SMI_OPCODE_READ;
1475 
1476 	/* write the smi register */
1477 	mvreg_write(pp, MVNETA_SMI, smi_reg);
1478 
1479 	/* wait till read value is ready */
1480 	timeout = MVNETA_SMI_TIMEOUT;
1481 
1482 	do {
1483 		/* read smi register */
1484 		smi_reg = mvreg_read(pp, MVNETA_SMI);
1485 		if (timeout-- == 0) {
1486 			printf("Err: SMI read ready timeout\n");
1487 			return -EFAULT;
1488 		}
1489 	} while (!(smi_reg & MVNETA_SMI_READ_VALID));
1490 
1491 	/* Wait for the data to update in the SMI register */
1492 	for (timeout = 0; timeout < MVNETA_SMI_TIMEOUT; timeout++)
1493 		;
1494 
1495 	return mvreg_read(pp, MVNETA_SMI) & MVNETA_SMI_DATA_MASK;
1496 }
1497 
1498 /*
1499  * mvneta_mdio_write - miiphy_write callback function.
1500  *
1501  * Returns 0 if write succeed, -EINVAL on bad parameters
1502  * -ETIME on timeout
1503  */
mvneta_mdio_write(struct mii_dev * bus,int addr,int devad,int reg,u16 value)1504 static int mvneta_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
1505 			     u16 value)
1506 {
1507 	struct mvneta_port *pp = bus->priv;
1508 	u32 smi_reg;
1509 
1510 	/* check parameters */
1511 	if (addr > MVNETA_PHY_ADDR_MASK) {
1512 		printf("Error: Invalid PHY address %d\n", addr);
1513 		return -EFAULT;
1514 	}
1515 
1516 	if (reg > MVNETA_PHY_REG_MASK) {
1517 		printf("Err: Invalid register offset %d\n", reg);
1518 		return -EFAULT;
1519 	}
1520 
1521 	/* wait till the SMI is not busy */
1522 	if (smi_wait_ready(pp) < 0)
1523 		return -EFAULT;
1524 
1525 	/* fill the phy addr and reg offset and write opcode and data */
1526 	smi_reg = value << MVNETA_SMI_DATA_OFFS;
1527 	smi_reg |= (addr << MVNETA_SMI_DEV_ADDR_OFFS)
1528 		| (reg << MVNETA_SMI_REG_ADDR_OFFS);
1529 	smi_reg &= ~MVNETA_SMI_OPCODE_READ;
1530 
1531 	/* write the smi register */
1532 	mvreg_write(pp, MVNETA_SMI, smi_reg);
1533 
1534 	return 0;
1535 }
1536 
mvneta_start(struct udevice * dev)1537 static int mvneta_start(struct udevice *dev)
1538 {
1539 	struct mvneta_port *pp = dev_get_priv(dev);
1540 	struct phy_device *phydev;
1541 
1542 	mvneta_port_power_up(pp, pp->phy_interface);
1543 
1544 	if (!pp->init || pp->link == 0) {
1545 		if (mvneta_port_is_fixed_link(pp)) {
1546 			u32 val;
1547 
1548 			pp->init = 1;
1549 			pp->link = 1;
1550 			mvneta_init(dev);
1551 
1552 			val = MVNETA_GMAC_FORCE_LINK_UP |
1553 			      MVNETA_GMAC_IB_BYPASS_AN_EN |
1554 			      MVNETA_GMAC_SET_FC_EN |
1555 			      MVNETA_GMAC_ADVERT_FC_EN |
1556 			      MVNETA_GMAC_SAMPLE_TX_CFG_EN;
1557 
1558 			if (pp->duplex)
1559 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
1560 
1561 			if (pp->speed == SPEED_1000)
1562 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
1563 			else if (pp->speed == SPEED_100)
1564 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
1565 
1566 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1567 		} else {
1568 			/* Set phy address of the port */
1569 			mvreg_write(pp, MVNETA_PHY_ADDR, pp->phyaddr);
1570 
1571 			phydev = phy_connect(pp->bus, pp->phyaddr, dev,
1572 					     pp->phy_interface);
1573 			if (!phydev) {
1574 				printf("phy_connect failed\n");
1575 				return -ENODEV;
1576 			}
1577 
1578 			pp->phydev = phydev;
1579 			phy_config(phydev);
1580 			phy_startup(phydev);
1581 			if (!phydev->link) {
1582 				printf("%s: No link.\n", phydev->dev->name);
1583 				return -1;
1584 			}
1585 
1586 			/* Full init on first call */
1587 			mvneta_init(dev);
1588 			pp->init = 1;
1589 			return 0;
1590 		}
1591 	}
1592 
1593 	/* Upon all following calls, this is enough */
1594 	mvneta_port_up(pp);
1595 	mvneta_port_enable(pp);
1596 
1597 	return 0;
1598 }
1599 
mvneta_send(struct udevice * dev,void * packet,int length)1600 static int mvneta_send(struct udevice *dev, void *packet, int length)
1601 {
1602 	struct mvneta_port *pp = dev_get_priv(dev);
1603 	struct mvneta_tx_queue *txq = &pp->txqs[0];
1604 	struct mvneta_tx_desc *tx_desc;
1605 	int sent_desc;
1606 	u32 timeout = 0;
1607 
1608 	/* Get a descriptor for the first part of the packet */
1609 	tx_desc = mvneta_txq_next_desc_get(txq);
1610 
1611 	tx_desc->buf_phys_addr = (u32)(uintptr_t)packet;
1612 	tx_desc->data_size = length;
1613 	flush_dcache_range((ulong)packet,
1614 			   (ulong)packet + ALIGN(length, PKTALIGN));
1615 
1616 	/* First and Last descriptor */
1617 	tx_desc->command = MVNETA_TX_L4_CSUM_NOT | MVNETA_TXD_FLZ_DESC;
1618 	mvneta_txq_pend_desc_add(pp, txq, 1);
1619 
1620 	/* Wait for packet to be sent (queue might help with speed here) */
1621 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1622 	while (!sent_desc) {
1623 		if (timeout++ > 10000) {
1624 			printf("timeout: packet not sent\n");
1625 			return -1;
1626 		}
1627 		sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1628 	}
1629 
1630 	/* txDone has increased - hw sent packet */
1631 	mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1632 
1633 	return 0;
1634 }
1635 
mvneta_recv(struct udevice * dev,int flags,uchar ** packetp)1636 static int mvneta_recv(struct udevice *dev, int flags, uchar **packetp)
1637 {
1638 	struct mvneta_port *pp = dev_get_priv(dev);
1639 	int rx_done;
1640 	struct mvneta_rx_queue *rxq;
1641 	int rx_bytes = 0;
1642 
1643 	/* get rx queue */
1644 	rxq = mvneta_rxq_handle_get(pp, rxq_def);
1645 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1646 
1647 	if (rx_done) {
1648 		struct mvneta_rx_desc *rx_desc;
1649 		unsigned char *data;
1650 		u32 rx_status;
1651 
1652 		/*
1653 		 * No cache invalidation needed here, since the desc's are
1654 		 * located in a uncached memory region
1655 		 */
1656 		rx_desc = mvneta_rxq_next_desc_get(rxq);
1657 
1658 		rx_status = rx_desc->status;
1659 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1660 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1661 			mvneta_rx_error(pp, rx_desc);
1662 			/* leave the descriptor untouched */
1663 			return -EIO;
1664 		}
1665 
1666 		/* 2 bytes for marvell header. 4 bytes for crc */
1667 		rx_bytes = rx_desc->data_size - 6;
1668 
1669 		/* give packet to stack - skip on first 2 bytes */
1670 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie + 2;
1671 		/*
1672 		 * No cache invalidation needed here, since the rx_buffer's are
1673 		 * located in a uncached memory region
1674 		 */
1675 		*packetp = data;
1676 
1677 		/*
1678 		 * Only mark one descriptor as free
1679 		 * since only one was processed
1680 		 */
1681 		mvneta_rxq_desc_num_update(pp, rxq, 1, 1);
1682 	}
1683 
1684 	return rx_bytes;
1685 }
1686 
mvneta_probe(struct udevice * dev)1687 static int mvneta_probe(struct udevice *dev)
1688 {
1689 	struct eth_pdata *pdata = dev_get_platdata(dev);
1690 	struct mvneta_port *pp = dev_get_priv(dev);
1691 	void *blob = (void *)gd->fdt_blob;
1692 	int node = dev_of_offset(dev);
1693 	struct mii_dev *bus;
1694 	unsigned long addr;
1695 	void *bd_space;
1696 	int ret;
1697 	int fl_node;
1698 
1699 	/*
1700 	 * Allocate buffer area for descs and rx_buffers. This is only
1701 	 * done once for all interfaces. As only one interface can
1702 	 * be active. Make this area DMA safe by disabling the D-cache
1703 	 */
1704 	if (!buffer_loc.tx_descs) {
1705 		u32 size;
1706 
1707 		/* Align buffer area for descs and rx_buffers to 1MiB */
1708 		bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
1709 		flush_dcache_range((ulong)bd_space, (ulong)bd_space + BD_SPACE);
1710 		mmu_set_region_dcache_behaviour((phys_addr_t)bd_space, BD_SPACE,
1711 						DCACHE_OFF);
1712 		buffer_loc.tx_descs = (struct mvneta_tx_desc *)bd_space;
1713 		size = roundup(MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc),
1714 				ARCH_DMA_MINALIGN);
1715 		memset(buffer_loc.tx_descs, 0, size);
1716 		buffer_loc.rx_descs = (struct mvneta_rx_desc *)
1717 			((phys_addr_t)bd_space + size);
1718 		size += roundup(MVNETA_MAX_RXD * sizeof(struct mvneta_rx_desc),
1719 				ARCH_DMA_MINALIGN);
1720 		buffer_loc.rx_buffers = (phys_addr_t)(bd_space + size);
1721 	}
1722 
1723 	pp->base = (void __iomem *)pdata->iobase;
1724 
1725 	/* Configure MBUS address windows */
1726 	if (device_is_compatible(dev, "marvell,armada-3700-neta"))
1727 		mvneta_bypass_mbus_windows(pp);
1728 	else
1729 		mvneta_conf_mbus_windows(pp);
1730 
1731 	/* PHY interface is already decoded in mvneta_ofdata_to_platdata() */
1732 	pp->phy_interface = pdata->phy_interface;
1733 
1734 	/* fetch 'fixed-link' property from 'neta' node */
1735 	fl_node = fdt_subnode_offset(blob, node, "fixed-link");
1736 	if (fl_node != -FDT_ERR_NOTFOUND) {
1737 		/* set phy_addr to invalid value for fixed link */
1738 		pp->phyaddr = PHY_MAX_ADDR + 1;
1739 		pp->duplex = fdtdec_get_bool(blob, fl_node, "full-duplex");
1740 		pp->speed = fdtdec_get_int(blob, fl_node, "speed", 0);
1741 	} else {
1742 		/* Now read phyaddr from DT */
1743 		addr = fdtdec_get_int(blob, node, "phy", 0);
1744 		addr = fdt_node_offset_by_phandle(blob, addr);
1745 		pp->phyaddr = fdtdec_get_int(blob, addr, "reg", 0);
1746 	}
1747 
1748 	bus = mdio_alloc();
1749 	if (!bus) {
1750 		printf("Failed to allocate MDIO bus\n");
1751 		return -ENOMEM;
1752 	}
1753 
1754 	bus->read = mvneta_mdio_read;
1755 	bus->write = mvneta_mdio_write;
1756 	snprintf(bus->name, sizeof(bus->name), dev->name);
1757 	bus->priv = (void *)pp;
1758 	pp->bus = bus;
1759 
1760 	ret = mdio_register(bus);
1761 	if (ret)
1762 		return ret;
1763 
1764 #if CONFIG_IS_ENABLED(DM_GPIO)
1765 	gpio_request_by_name(dev, "phy-reset-gpios", 0,
1766 			     &pp->phy_reset_gpio, GPIOD_IS_OUT);
1767 
1768 	if (dm_gpio_is_valid(&pp->phy_reset_gpio)) {
1769 		dm_gpio_set_value(&pp->phy_reset_gpio, 1);
1770 		mdelay(10);
1771 		dm_gpio_set_value(&pp->phy_reset_gpio, 0);
1772 	}
1773 #endif
1774 
1775 	return board_network_enable(bus);
1776 }
1777 
mvneta_stop(struct udevice * dev)1778 static void mvneta_stop(struct udevice *dev)
1779 {
1780 	struct mvneta_port *pp = dev_get_priv(dev);
1781 
1782 	mvneta_port_down(pp);
1783 	mvneta_port_disable(pp);
1784 }
1785 
1786 static const struct eth_ops mvneta_ops = {
1787 	.start		= mvneta_start,
1788 	.send		= mvneta_send,
1789 	.recv		= mvneta_recv,
1790 	.stop		= mvneta_stop,
1791 	.write_hwaddr	= mvneta_write_hwaddr,
1792 };
1793 
mvneta_ofdata_to_platdata(struct udevice * dev)1794 static int mvneta_ofdata_to_platdata(struct udevice *dev)
1795 {
1796 	struct eth_pdata *pdata = dev_get_platdata(dev);
1797 	const char *phy_mode;
1798 
1799 	pdata->iobase = devfdt_get_addr(dev);
1800 
1801 	/* Get phy-mode / phy_interface from DT */
1802 	pdata->phy_interface = -1;
1803 	phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1804 			       NULL);
1805 	if (phy_mode)
1806 		pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1807 	if (pdata->phy_interface == -1) {
1808 		debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1809 		return -EINVAL;
1810 	}
1811 
1812 	return 0;
1813 }
1814 
1815 static const struct udevice_id mvneta_ids[] = {
1816 	{ .compatible = "marvell,armada-370-neta" },
1817 	{ .compatible = "marvell,armada-xp-neta" },
1818 	{ .compatible = "marvell,armada-3700-neta" },
1819 	{ }
1820 };
1821 
1822 U_BOOT_DRIVER(mvneta) = {
1823 	.name	= "mvneta",
1824 	.id	= UCLASS_ETH,
1825 	.of_match = mvneta_ids,
1826 	.ofdata_to_platdata = mvneta_ofdata_to_platdata,
1827 	.probe	= mvneta_probe,
1828 	.ops	= &mvneta_ops,
1829 	.priv_auto_alloc_size = sizeof(struct mvneta_port),
1830 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
1831 };
1832