1 /*
2  * (C) Copyright 2007
3  * Sascha Hauer, Pengutronix
4  *
5  * (C) Copyright 2009 Freescale Semiconductor, Inc.
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  */
9 
10 #include <common.h>
11 #include <asm/io.h>
12 #include <asm/errno.h>
13 #include <asm/arch/imx-regs.h>
14 #include <asm/arch/crm_regs.h>
15 #include <asm/arch/clock.h>
16 #include <div64.h>
17 #include <asm/arch/sys_proto.h>
18 
19 enum pll_clocks {
20 	PLL1_CLOCK = 0,
21 	PLL2_CLOCK,
22 	PLL3_CLOCK,
23 #ifdef CONFIG_MX53
24 	PLL4_CLOCK,
25 #endif
26 	PLL_CLOCKS,
27 };
28 
29 struct mxc_pll_reg *mxc_plls[PLL_CLOCKS] = {
30 	[PLL1_CLOCK] = (struct mxc_pll_reg *)PLL1_BASE_ADDR,
31 	[PLL2_CLOCK] = (struct mxc_pll_reg *)PLL2_BASE_ADDR,
32 	[PLL3_CLOCK] = (struct mxc_pll_reg *)PLL3_BASE_ADDR,
33 #ifdef	CONFIG_MX53
34 	[PLL4_CLOCK] = (struct mxc_pll_reg *)PLL4_BASE_ADDR,
35 #endif
36 };
37 
38 #define AHB_CLK_ROOT    133333333
39 #define SZ_DEC_1M       1000000
40 #define PLL_PD_MAX      16      /* Actual pd+1 */
41 #define PLL_MFI_MAX     15
42 #define PLL_MFI_MIN     5
43 #define ARM_DIV_MAX     8
44 #define IPG_DIV_MAX     4
45 #define AHB_DIV_MAX     8
46 #define EMI_DIV_MAX     8
47 #define NFC_DIV_MAX     8
48 
49 #define MX5_CBCMR	0x00015154
50 #define MX5_CBCDR	0x02888945
51 
52 struct fixed_pll_mfd {
53 	u32 ref_clk_hz;
54 	u32 mfd;
55 };
56 
57 const struct fixed_pll_mfd fixed_mfd[] = {
58 	{MXC_HCLK, 24 * 16},
59 };
60 
61 struct pll_param {
62 	u32 pd;
63 	u32 mfi;
64 	u32 mfn;
65 	u32 mfd;
66 };
67 
68 #define PLL_FREQ_MAX(ref_clk)  (4 * (ref_clk) * PLL_MFI_MAX)
69 #define PLL_FREQ_MIN(ref_clk) \
70 		((2 * (ref_clk) * (PLL_MFI_MIN - 1)) / PLL_PD_MAX)
71 #define MAX_DDR_CLK     420000000
72 #define NFC_CLK_MAX     34000000
73 
74 struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)MXC_CCM_BASE;
75 
set_usboh3_clk(void)76 void set_usboh3_clk(void)
77 {
78 	clrsetbits_le32(&mxc_ccm->cscmr1,
79 			MXC_CCM_CSCMR1_USBOH3_CLK_SEL_MASK,
80 			MXC_CCM_CSCMR1_USBOH3_CLK_SEL(1));
81 	clrsetbits_le32(&mxc_ccm->cscdr1,
82 			MXC_CCM_CSCDR1_USBOH3_CLK_PODF_MASK |
83 			MXC_CCM_CSCDR1_USBOH3_CLK_PRED_MASK,
84 			MXC_CCM_CSCDR1_USBOH3_CLK_PRED(4) |
85 			MXC_CCM_CSCDR1_USBOH3_CLK_PODF(1));
86 }
87 
enable_usboh3_clk(bool enable)88 void enable_usboh3_clk(bool enable)
89 {
90 	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
91 
92 	clrsetbits_le32(&mxc_ccm->CCGR2,
93 			MXC_CCM_CCGR2_USBOH3_60M(MXC_CCM_CCGR_CG_MASK),
94 			MXC_CCM_CCGR2_USBOH3_60M(cg));
95 }
96 
97 #ifdef CONFIG_SYS_I2C_MXC
98 /* i2c_num can be from 0, to 1 for i.MX51 and 2 for i.MX53 */
enable_i2c_clk(unsigned char enable,unsigned i2c_num)99 int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
100 {
101 	u32 mask;
102 
103 #if defined(CONFIG_MX51)
104 	if (i2c_num > 1)
105 #elif defined(CONFIG_MX53)
106 	if (i2c_num > 2)
107 #endif
108 		return -EINVAL;
109 	mask = MXC_CCM_CCGR_CG_MASK <<
110 			(MXC_CCM_CCGR1_I2C1_OFFSET + (i2c_num << 1));
111 	if (enable)
112 		setbits_le32(&mxc_ccm->CCGR1, mask);
113 	else
114 		clrbits_le32(&mxc_ccm->CCGR1, mask);
115 	return 0;
116 }
117 #endif
118 
set_usb_phy_clk(void)119 void set_usb_phy_clk(void)
120 {
121 	clrbits_le32(&mxc_ccm->cscmr1, MXC_CCM_CSCMR1_USB_PHY_CLK_SEL);
122 }
123 
124 #if defined(CONFIG_MX51)
enable_usb_phy1_clk(bool enable)125 void enable_usb_phy1_clk(bool enable)
126 {
127 	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
128 
129 	clrsetbits_le32(&mxc_ccm->CCGR2,
130 			MXC_CCM_CCGR2_USB_PHY(MXC_CCM_CCGR_CG_MASK),
131 			MXC_CCM_CCGR2_USB_PHY(cg));
132 }
133 
enable_usb_phy2_clk(bool enable)134 void enable_usb_phy2_clk(bool enable)
135 {
136 	/* i.MX51 has a single USB PHY clock, so do nothing here. */
137 }
138 #elif defined(CONFIG_MX53)
enable_usb_phy1_clk(bool enable)139 void enable_usb_phy1_clk(bool enable)
140 {
141 	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
142 
143 	clrsetbits_le32(&mxc_ccm->CCGR4,
144 			MXC_CCM_CCGR4_USB_PHY1(MXC_CCM_CCGR_CG_MASK),
145 			MXC_CCM_CCGR4_USB_PHY1(cg));
146 }
147 
enable_usb_phy2_clk(bool enable)148 void enable_usb_phy2_clk(bool enable)
149 {
150 	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
151 
152 	clrsetbits_le32(&mxc_ccm->CCGR4,
153 			MXC_CCM_CCGR4_USB_PHY2(MXC_CCM_CCGR_CG_MASK),
154 			MXC_CCM_CCGR4_USB_PHY2(cg));
155 }
156 #endif
157 
158 /*
159  * Calculate the frequency of PLLn.
160  */
decode_pll(struct mxc_pll_reg * pll,uint32_t infreq)161 static uint32_t decode_pll(struct mxc_pll_reg *pll, uint32_t infreq)
162 {
163 	uint32_t ctrl, op, mfd, mfn, mfi, pdf, ret;
164 	uint64_t refclk, temp;
165 	int32_t mfn_abs;
166 
167 	ctrl = readl(&pll->ctrl);
168 
169 	if (ctrl & MXC_DPLLC_CTL_HFSM) {
170 		mfn = readl(&pll->hfs_mfn);
171 		mfd = readl(&pll->hfs_mfd);
172 		op = readl(&pll->hfs_op);
173 	} else {
174 		mfn = readl(&pll->mfn);
175 		mfd = readl(&pll->mfd);
176 		op = readl(&pll->op);
177 	}
178 
179 	mfd &= MXC_DPLLC_MFD_MFD_MASK;
180 	mfn &= MXC_DPLLC_MFN_MFN_MASK;
181 	pdf = op & MXC_DPLLC_OP_PDF_MASK;
182 	mfi = MXC_DPLLC_OP_MFI_RD(op);
183 
184 	/* 21.2.3 */
185 	if (mfi < 5)
186 		mfi = 5;
187 
188 	/* Sign extend */
189 	if (mfn >= 0x04000000) {
190 		mfn |= 0xfc000000;
191 		mfn_abs = -mfn;
192 	} else
193 		mfn_abs = mfn;
194 
195 	refclk = infreq * 2;
196 	if (ctrl & MXC_DPLLC_CTL_DPDCK0_2_EN)
197 		refclk *= 2;
198 
199 	do_div(refclk, pdf + 1);
200 	temp = refclk * mfn_abs;
201 	do_div(temp, mfd + 1);
202 	ret = refclk * mfi;
203 
204 	if ((int)mfn < 0)
205 		ret -= temp;
206 	else
207 		ret += temp;
208 
209 	return ret;
210 }
211 
212 #ifdef CONFIG_MX51
213 /*
214  * This function returns the Frequency Pre-Multiplier clock.
215  */
get_fpm(void)216 static u32 get_fpm(void)
217 {
218 	u32 mult;
219 	u32 ccr = readl(&mxc_ccm->ccr);
220 
221 	if (ccr & MXC_CCM_CCR_FPM_MULT)
222 		mult = 1024;
223 	else
224 		mult = 512;
225 
226 	return MXC_CLK32 * mult;
227 }
228 #endif
229 
230 /*
231  * This function returns the low power audio clock.
232  */
get_lp_apm(void)233 static u32 get_lp_apm(void)
234 {
235 	u32 ret_val = 0;
236 	u32 ccsr = readl(&mxc_ccm->ccsr);
237 
238 	if (ccsr & MXC_CCM_CCSR_LP_APM)
239 #if defined(CONFIG_MX51)
240 		ret_val = get_fpm();
241 #elif defined(CONFIG_MX53)
242 		ret_val = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
243 #endif
244 	else
245 		ret_val = MXC_HCLK;
246 
247 	return ret_val;
248 }
249 
250 /*
251  * Get mcu main rate
252  */
get_mcu_main_clk(void)253 u32 get_mcu_main_clk(void)
254 {
255 	u32 reg, freq;
256 
257 	reg = MXC_CCM_CACRR_ARM_PODF_RD(readl(&mxc_ccm->cacrr));
258 	freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
259 	return freq / (reg + 1);
260 }
261 
262 /*
263  * Get the rate of peripheral's root clock.
264  */
get_periph_clk(void)265 u32 get_periph_clk(void)
266 {
267 	u32 reg;
268 
269 	reg = readl(&mxc_ccm->cbcdr);
270 	if (!(reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL))
271 		return decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
272 	reg = readl(&mxc_ccm->cbcmr);
273 	switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(reg)) {
274 	case 0:
275 		return decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
276 	case 1:
277 		return decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
278 	case 2:
279 		return get_lp_apm();
280 	default:
281 		return 0;
282 	}
283 	/* NOTREACHED */
284 }
285 
286 /*
287  * Get the rate of ipg clock.
288  */
get_ipg_clk(void)289 static u32 get_ipg_clk(void)
290 {
291 	uint32_t freq, reg, div;
292 
293 	freq = get_ahb_clk();
294 
295 	reg = readl(&mxc_ccm->cbcdr);
296 	div = MXC_CCM_CBCDR_IPG_PODF_RD(reg) + 1;
297 
298 	return freq / div;
299 }
300 
301 /*
302  * Get the rate of ipg_per clock.
303  */
get_ipg_per_clk(void)304 static u32 get_ipg_per_clk(void)
305 {
306 	u32 freq, pred1, pred2, podf;
307 
308 	if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL)
309 		return get_ipg_clk();
310 
311 	if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_LP_APM_CLK_SEL)
312 		freq = get_lp_apm();
313 	else
314 		freq = get_periph_clk();
315 	podf = readl(&mxc_ccm->cbcdr);
316 	pred1 = MXC_CCM_CBCDR_PERCLK_PRED1_RD(podf);
317 	pred2 = MXC_CCM_CBCDR_PERCLK_PRED2_RD(podf);
318 	podf = MXC_CCM_CBCDR_PERCLK_PODF_RD(podf);
319 	return freq / ((pred1 + 1) * (pred2 + 1) * (podf + 1));
320 }
321 
322 /* Get the output clock rate of a standard PLL MUX for peripherals. */
get_standard_pll_sel_clk(u32 clk_sel)323 static u32 get_standard_pll_sel_clk(u32 clk_sel)
324 {
325 	u32 freq = 0;
326 
327 	switch (clk_sel & 0x3) {
328 	case 0:
329 		freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
330 		break;
331 	case 1:
332 		freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
333 		break;
334 	case 2:
335 		freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
336 		break;
337 	case 3:
338 		freq = get_lp_apm();
339 		break;
340 	}
341 
342 	return freq;
343 }
344 
345 /*
346  * Get the rate of uart clk.
347  */
get_uart_clk(void)348 static u32 get_uart_clk(void)
349 {
350 	unsigned int clk_sel, freq, reg, pred, podf;
351 
352 	reg = readl(&mxc_ccm->cscmr1);
353 	clk_sel = MXC_CCM_CSCMR1_UART_CLK_SEL_RD(reg);
354 	freq = get_standard_pll_sel_clk(clk_sel);
355 
356 	reg = readl(&mxc_ccm->cscdr1);
357 	pred = MXC_CCM_CSCDR1_UART_CLK_PRED_RD(reg);
358 	podf = MXC_CCM_CSCDR1_UART_CLK_PODF_RD(reg);
359 	freq /= (pred + 1) * (podf + 1);
360 
361 	return freq;
362 }
363 
364 /*
365  * get cspi clock rate.
366  */
imx_get_cspiclk(void)367 static u32 imx_get_cspiclk(void)
368 {
369 	u32 ret_val = 0, pdf, pre_pdf, clk_sel, freq;
370 	u32 cscmr1 = readl(&mxc_ccm->cscmr1);
371 	u32 cscdr2 = readl(&mxc_ccm->cscdr2);
372 
373 	pre_pdf = MXC_CCM_CSCDR2_CSPI_CLK_PRED_RD(cscdr2);
374 	pdf = MXC_CCM_CSCDR2_CSPI_CLK_PODF_RD(cscdr2);
375 	clk_sel = MXC_CCM_CSCMR1_CSPI_CLK_SEL_RD(cscmr1);
376 	freq = get_standard_pll_sel_clk(clk_sel);
377 	ret_val = freq / ((pre_pdf + 1) * (pdf + 1));
378 	return ret_val;
379 }
380 
381 /*
382  * get esdhc clock rate.
383  */
get_esdhc_clk(u32 port)384 static u32 get_esdhc_clk(u32 port)
385 {
386 	u32 clk_sel = 0, pred = 0, podf = 0, freq = 0;
387 	u32 cscmr1 = readl(&mxc_ccm->cscmr1);
388 	u32 cscdr1 = readl(&mxc_ccm->cscdr1);
389 
390 	switch (port) {
391 	case 0:
392 		clk_sel = MXC_CCM_CSCMR1_ESDHC1_MSHC1_CLK_SEL_RD(cscmr1);
393 		pred = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PRED_RD(cscdr1);
394 		podf = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PODF_RD(cscdr1);
395 		break;
396 	case 1:
397 		clk_sel = MXC_CCM_CSCMR1_ESDHC2_MSHC2_CLK_SEL_RD(cscmr1);
398 		pred = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PRED_RD(cscdr1);
399 		podf = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PODF_RD(cscdr1);
400 		break;
401 	case 2:
402 		if (cscmr1 & MXC_CCM_CSCMR1_ESDHC3_CLK_SEL)
403 			return get_esdhc_clk(1);
404 		else
405 			return get_esdhc_clk(0);
406 	case 3:
407 		if (cscmr1 & MXC_CCM_CSCMR1_ESDHC4_CLK_SEL)
408 			return get_esdhc_clk(1);
409 		else
410 			return get_esdhc_clk(0);
411 	default:
412 		break;
413 	}
414 
415 	freq = get_standard_pll_sel_clk(clk_sel) / ((pred + 1) * (podf + 1));
416 	return freq;
417 }
418 
get_axi_a_clk(void)419 static u32 get_axi_a_clk(void)
420 {
421 	u32 cbcdr = readl(&mxc_ccm->cbcdr);
422 	u32 pdf = MXC_CCM_CBCDR_AXI_A_PODF_RD(cbcdr);
423 
424 	return  get_periph_clk() / (pdf + 1);
425 }
426 
get_axi_b_clk(void)427 static u32 get_axi_b_clk(void)
428 {
429 	u32 cbcdr = readl(&mxc_ccm->cbcdr);
430 	u32 pdf = MXC_CCM_CBCDR_AXI_B_PODF_RD(cbcdr);
431 
432 	return  get_periph_clk() / (pdf + 1);
433 }
434 
get_emi_slow_clk(void)435 static u32 get_emi_slow_clk(void)
436 {
437 	u32 cbcdr = readl(&mxc_ccm->cbcdr);
438 	u32 emi_clk_sel = cbcdr & MXC_CCM_CBCDR_EMI_CLK_SEL;
439 	u32 pdf = MXC_CCM_CBCDR_EMI_PODF_RD(cbcdr);
440 
441 	if (emi_clk_sel)
442 		return  get_ahb_clk() / (pdf + 1);
443 
444 	return  get_periph_clk() / (pdf + 1);
445 }
446 
get_ddr_clk(void)447 static u32 get_ddr_clk(void)
448 {
449 	u32 ret_val = 0;
450 	u32 cbcmr = readl(&mxc_ccm->cbcmr);
451 	u32 ddr_clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
452 #ifdef CONFIG_MX51
453 	u32 cbcdr = readl(&mxc_ccm->cbcdr);
454 	if (cbcdr & MXC_CCM_CBCDR_DDR_HIFREQ_SEL) {
455 		u32 ddr_clk_podf = MXC_CCM_CBCDR_DDR_PODF_RD(cbcdr);
456 
457 		ret_val = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
458 		ret_val /= ddr_clk_podf + 1;
459 
460 		return ret_val;
461 	}
462 #endif
463 	switch (ddr_clk_sel) {
464 	case 0:
465 		ret_val = get_axi_a_clk();
466 		break;
467 	case 1:
468 		ret_val = get_axi_b_clk();
469 		break;
470 	case 2:
471 		ret_val = get_emi_slow_clk();
472 		break;
473 	case 3:
474 		ret_val = get_ahb_clk();
475 		break;
476 	default:
477 		break;
478 	}
479 
480 	return ret_val;
481 }
482 
483 /*
484  * The API of get mxc clocks.
485  */
mxc_get_clock(enum mxc_clock clk)486 unsigned int mxc_get_clock(enum mxc_clock clk)
487 {
488 	switch (clk) {
489 	case MXC_ARM_CLK:
490 		return get_mcu_main_clk();
491 	case MXC_AHB_CLK:
492 		return get_ahb_clk();
493 	case MXC_IPG_CLK:
494 		return get_ipg_clk();
495 	case MXC_IPG_PERCLK:
496 	case MXC_I2C_CLK:
497 		return get_ipg_per_clk();
498 	case MXC_UART_CLK:
499 		return get_uart_clk();
500 	case MXC_CSPI_CLK:
501 		return imx_get_cspiclk();
502 	case MXC_ESDHC_CLK:
503 		return get_esdhc_clk(0);
504 	case MXC_ESDHC2_CLK:
505 		return get_esdhc_clk(1);
506 	case MXC_ESDHC3_CLK:
507 		return get_esdhc_clk(2);
508 	case MXC_ESDHC4_CLK:
509 		return get_esdhc_clk(3);
510 	case MXC_FEC_CLK:
511 		return get_ipg_clk();
512 	case MXC_SATA_CLK:
513 		return get_ahb_clk();
514 	case MXC_DDR_CLK:
515 		return get_ddr_clk();
516 	default:
517 		break;
518 	}
519 	return -EINVAL;
520 }
521 
imx_get_uartclk(void)522 u32 imx_get_uartclk(void)
523 {
524 	return get_uart_clk();
525 }
526 
imx_get_fecclk(void)527 u32 imx_get_fecclk(void)
528 {
529 	return get_ipg_clk();
530 }
531 
gcd(int m,int n)532 static int gcd(int m, int n)
533 {
534 	int t;
535 	while (m > 0) {
536 		if (n > m) {
537 			t = m;
538 			m = n;
539 			n = t;
540 		} /* swap */
541 		m -= n;
542 	}
543 	return n;
544 }
545 
546 /*
547  * This is to calculate various parameters based on reference clock and
548  * targeted clock based on the equation:
549  *      t_clk = 2*ref_freq*(mfi + mfn/(mfd+1))/(pd+1)
550  * This calculation is based on a fixed MFD value for simplicity.
551  */
calc_pll_params(u32 ref,u32 target,struct pll_param * pll)552 static int calc_pll_params(u32 ref, u32 target, struct pll_param *pll)
553 {
554 	u64 pd, mfi = 1, mfn, mfd, t1;
555 	u32 n_target = target;
556 	u32 n_ref = ref, i;
557 
558 	/*
559 	 * Make sure targeted freq is in the valid range.
560 	 * Otherwise the following calculation might be wrong!!!
561 	 */
562 	if (n_target < PLL_FREQ_MIN(ref) ||
563 		n_target > PLL_FREQ_MAX(ref)) {
564 		printf("Targeted peripheral clock should be"
565 			"within [%d - %d]\n",
566 			PLL_FREQ_MIN(ref) / SZ_DEC_1M,
567 			PLL_FREQ_MAX(ref) / SZ_DEC_1M);
568 		return -EINVAL;
569 	}
570 
571 	for (i = 0; i < ARRAY_SIZE(fixed_mfd); i++) {
572 		if (fixed_mfd[i].ref_clk_hz == ref) {
573 			mfd = fixed_mfd[i].mfd;
574 			break;
575 		}
576 	}
577 
578 	if (i == ARRAY_SIZE(fixed_mfd))
579 		return -EINVAL;
580 
581 	/* Use n_target and n_ref to avoid overflow */
582 	for (pd = 1; pd <= PLL_PD_MAX; pd++) {
583 		t1 = n_target * pd;
584 		do_div(t1, (4 * n_ref));
585 		mfi = t1;
586 		if (mfi > PLL_MFI_MAX)
587 			return -EINVAL;
588 		else if (mfi < 5)
589 			continue;
590 		break;
591 	}
592 	/*
593 	 * Now got pd and mfi already
594 	 *
595 	 * mfn = (((n_target * pd) / 4 - n_ref * mfi) * mfd) / n_ref;
596 	 */
597 	t1 = n_target * pd;
598 	do_div(t1, 4);
599 	t1 -= n_ref * mfi;
600 	t1 *= mfd;
601 	do_div(t1, n_ref);
602 	mfn = t1;
603 	debug("ref=%d, target=%d, pd=%d," "mfi=%d,mfn=%d, mfd=%d\n",
604 		ref, n_target, (u32)pd, (u32)mfi, (u32)mfn, (u32)mfd);
605 	i = 1;
606 	if (mfn != 0)
607 		i = gcd(mfd, mfn);
608 	pll->pd = (u32)pd;
609 	pll->mfi = (u32)mfi;
610 	do_div(mfn, i);
611 	pll->mfn = (u32)mfn;
612 	do_div(mfd, i);
613 	pll->mfd = (u32)mfd;
614 
615 	return 0;
616 }
617 
618 #define calc_div(tgt_clk, src_clk, limit) ({		\
619 		u32 v = 0;				\
620 		if (((src_clk) % (tgt_clk)) <= 100)	\
621 			v = (src_clk) / (tgt_clk);	\
622 		else					\
623 			v = ((src_clk) / (tgt_clk)) + 1;\
624 		if (v > limit)				\
625 			v = limit;			\
626 		(v - 1);				\
627 	})
628 
629 #define CHANGE_PLL_SETTINGS(pll, pd, fi, fn, fd) \
630 	{	\
631 		writel(0x1232, &pll->ctrl);		\
632 		writel(0x2, &pll->config);		\
633 		writel((((pd) - 1) << 0) | ((fi) << 4),	\
634 			&pll->op);			\
635 		writel(fn, &(pll->mfn));		\
636 		writel((fd) - 1, &pll->mfd);		\
637 		writel((((pd) - 1) << 0) | ((fi) << 4),	\
638 			&pll->hfs_op);			\
639 		writel(fn, &pll->hfs_mfn);		\
640 		writel((fd) - 1, &pll->hfs_mfd);	\
641 		writel(0x1232, &pll->ctrl);		\
642 		while (!readl(&pll->ctrl) & 0x1)	\
643 			;\
644 	}
645 
config_pll_clk(enum pll_clocks index,struct pll_param * pll_param)646 static int config_pll_clk(enum pll_clocks index, struct pll_param *pll_param)
647 {
648 	u32 ccsr = readl(&mxc_ccm->ccsr);
649 	struct mxc_pll_reg *pll = mxc_plls[index];
650 
651 	switch (index) {
652 	case PLL1_CLOCK:
653 		/* Switch ARM to PLL2 clock */
654 		writel(ccsr | MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
655 				&mxc_ccm->ccsr);
656 		CHANGE_PLL_SETTINGS(pll, pll_param->pd,
657 					pll_param->mfi, pll_param->mfn,
658 					pll_param->mfd);
659 		/* Switch back */
660 		writel(ccsr & ~MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
661 				&mxc_ccm->ccsr);
662 		break;
663 	case PLL2_CLOCK:
664 		/* Switch to pll2 bypass clock */
665 		writel(ccsr | MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
666 				&mxc_ccm->ccsr);
667 		CHANGE_PLL_SETTINGS(pll, pll_param->pd,
668 					pll_param->mfi, pll_param->mfn,
669 					pll_param->mfd);
670 		/* Switch back */
671 		writel(ccsr & ~MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
672 				&mxc_ccm->ccsr);
673 		break;
674 	case PLL3_CLOCK:
675 		/* Switch to pll3 bypass clock */
676 		writel(ccsr | MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
677 				&mxc_ccm->ccsr);
678 		CHANGE_PLL_SETTINGS(pll, pll_param->pd,
679 					pll_param->mfi, pll_param->mfn,
680 					pll_param->mfd);
681 		/* Switch back */
682 		writel(ccsr & ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
683 				&mxc_ccm->ccsr);
684 		break;
685 #ifdef CONFIG_MX53
686 	case PLL4_CLOCK:
687 		/* Switch to pll4 bypass clock */
688 		writel(ccsr | MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
689 				&mxc_ccm->ccsr);
690 		CHANGE_PLL_SETTINGS(pll, pll_param->pd,
691 					pll_param->mfi, pll_param->mfn,
692 					pll_param->mfd);
693 		/* Switch back */
694 		writel(ccsr & ~MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
695 				&mxc_ccm->ccsr);
696 		break;
697 #endif
698 	default:
699 		return -EINVAL;
700 	}
701 
702 	return 0;
703 }
704 
705 /* Config CPU clock */
config_core_clk(u32 ref,u32 freq)706 static int config_core_clk(u32 ref, u32 freq)
707 {
708 	int ret = 0;
709 	struct pll_param pll_param;
710 
711 	memset(&pll_param, 0, sizeof(struct pll_param));
712 
713 	/* The case that periph uses PLL1 is not considered here */
714 	ret = calc_pll_params(ref, freq, &pll_param);
715 	if (ret != 0) {
716 		printf("Error:Can't find pll parameters: %d\n", ret);
717 		return ret;
718 	}
719 
720 	return config_pll_clk(PLL1_CLOCK, &pll_param);
721 }
722 
config_nfc_clk(u32 nfc_clk)723 static int config_nfc_clk(u32 nfc_clk)
724 {
725 	u32 parent_rate = get_emi_slow_clk();
726 	u32 div;
727 
728 	if (nfc_clk == 0)
729 		return -EINVAL;
730 	div = parent_rate / nfc_clk;
731 	if (div == 0)
732 		div++;
733 	if (parent_rate / div > NFC_CLK_MAX)
734 		div++;
735 	clrsetbits_le32(&mxc_ccm->cbcdr,
736 			MXC_CCM_CBCDR_NFC_PODF_MASK,
737 			MXC_CCM_CBCDR_NFC_PODF(div - 1));
738 	while (readl(&mxc_ccm->cdhipr) != 0)
739 		;
740 	return 0;
741 }
742 
enable_nfc_clk(unsigned char enable)743 void enable_nfc_clk(unsigned char enable)
744 {
745 	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
746 
747 	clrsetbits_le32(&mxc_ccm->CCGR5,
748 		MXC_CCM_CCGR5_EMI_ENFC(MXC_CCM_CCGR_CG_MASK),
749 		MXC_CCM_CCGR5_EMI_ENFC(cg));
750 }
751 
752 #ifdef CONFIG_FSL_IIM
enable_efuse_prog_supply(bool enable)753 void enable_efuse_prog_supply(bool enable)
754 {
755 	if (enable)
756 		setbits_le32(&mxc_ccm->cgpr,
757 			     MXC_CCM_CGPR_EFUSE_PROG_SUPPLY_GATE);
758 	else
759 		clrbits_le32(&mxc_ccm->cgpr,
760 			     MXC_CCM_CGPR_EFUSE_PROG_SUPPLY_GATE);
761 }
762 #endif
763 
764 /* Config main_bus_clock for periphs */
config_periph_clk(u32 ref,u32 freq)765 static int config_periph_clk(u32 ref, u32 freq)
766 {
767 	int ret = 0;
768 	struct pll_param pll_param;
769 
770 	memset(&pll_param, 0, sizeof(struct pll_param));
771 
772 	if (readl(&mxc_ccm->cbcdr) & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
773 		ret = calc_pll_params(ref, freq, &pll_param);
774 		if (ret != 0) {
775 			printf("Error:Can't find pll parameters: %d\n",
776 				ret);
777 			return ret;
778 		}
779 		switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(
780 				readl(&mxc_ccm->cbcmr))) {
781 		case 0:
782 			return config_pll_clk(PLL1_CLOCK, &pll_param);
783 			break;
784 		case 1:
785 			return config_pll_clk(PLL3_CLOCK, &pll_param);
786 			break;
787 		default:
788 			return -EINVAL;
789 		}
790 	}
791 
792 	return 0;
793 }
794 
config_ddr_clk(u32 emi_clk)795 static int config_ddr_clk(u32 emi_clk)
796 {
797 	u32 clk_src;
798 	s32 shift = 0, clk_sel, div = 1;
799 	u32 cbcmr = readl(&mxc_ccm->cbcmr);
800 
801 	if (emi_clk > MAX_DDR_CLK) {
802 		printf("Warning:DDR clock should not exceed %d MHz\n",
803 			MAX_DDR_CLK / SZ_DEC_1M);
804 		emi_clk = MAX_DDR_CLK;
805 	}
806 
807 	clk_src = get_periph_clk();
808 	/* Find DDR clock input */
809 	clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
810 	switch (clk_sel) {
811 	case 0:
812 		shift = 16;
813 		break;
814 	case 1:
815 		shift = 19;
816 		break;
817 	case 2:
818 		shift = 22;
819 		break;
820 	case 3:
821 		shift = 10;
822 		break;
823 	default:
824 		return -EINVAL;
825 	}
826 
827 	if ((clk_src % emi_clk) < 10000000)
828 		div = clk_src / emi_clk;
829 	else
830 		div = (clk_src / emi_clk) + 1;
831 	if (div > 8)
832 		div = 8;
833 
834 	clrsetbits_le32(&mxc_ccm->cbcdr, 0x7 << shift, (div - 1) << shift);
835 	while (readl(&mxc_ccm->cdhipr) != 0)
836 		;
837 	writel(0x0, &mxc_ccm->ccdr);
838 
839 	return 0;
840 }
841 
842 /*
843  * This function assumes the expected core clock has to be changed by
844  * modifying the PLL. This is NOT true always but for most of the times,
845  * it is. So it assumes the PLL output freq is the same as the expected
846  * core clock (presc=1) unless the core clock is less than PLL_FREQ_MIN.
847  * In the latter case, it will try to increase the presc value until
848  * (presc*core_clk) is greater than PLL_FREQ_MIN. It then makes call to
849  * calc_pll_params() and obtains the values of PD, MFI,MFN, MFD based
850  * on the targeted PLL and reference input clock to the PLL. Lastly,
851  * it sets the register based on these values along with the dividers.
852  * Note 1) There is no value checking for the passed-in divider values
853  *         so the caller has to make sure those values are sensible.
854  *      2) Also adjust the NFC divider such that the NFC clock doesn't
855  *         exceed NFC_CLK_MAX.
856  *      3) IPU HSP clock is independent of AHB clock. Even it can go up to
857  *         177MHz for higher voltage, this function fixes the max to 133MHz.
858  *      4) This function should not have allowed diag_printf() calls since
859  *         the serial driver has been stoped. But leave then here to allow
860  *         easy debugging by NOT calling the cyg_hal_plf_serial_stop().
861  */
mxc_set_clock(u32 ref,u32 freq,enum mxc_clock clk)862 int mxc_set_clock(u32 ref, u32 freq, enum mxc_clock clk)
863 {
864 	freq *= SZ_DEC_1M;
865 
866 	switch (clk) {
867 	case MXC_ARM_CLK:
868 		if (config_core_clk(ref, freq))
869 			return -EINVAL;
870 		break;
871 	case MXC_PERIPH_CLK:
872 		if (config_periph_clk(ref, freq))
873 			return -EINVAL;
874 		break;
875 	case MXC_DDR_CLK:
876 		if (config_ddr_clk(freq))
877 			return -EINVAL;
878 		break;
879 	case MXC_NFC_CLK:
880 		if (config_nfc_clk(freq))
881 			return -EINVAL;
882 		break;
883 	default:
884 		printf("Warning:Unsupported or invalid clock type\n");
885 	}
886 
887 	return 0;
888 }
889 
890 #ifdef CONFIG_MX53
891 /*
892  * The clock for the external interface can be set to use internal clock
893  * if fuse bank 4, row 3, bit 2 is set.
894  * This is an undocumented feature and it was confirmed by Freescale's support:
895  * Fuses (but not pins) may be used to configure SATA clocks.
896  * Particularly the i.MX53 Fuse_Map contains the next information
897  * about configuring SATA clocks :  SATA_ALT_REF_CLK[1:0] (offset 0x180C)
898  * '00' - 100MHz (External)
899  * '01' - 50MHz (External)
900  * '10' - 120MHz, internal (USB PHY)
901  * '11' - Reserved
902 */
mxc_set_sata_internal_clock(void)903 void mxc_set_sata_internal_clock(void)
904 {
905 	u32 *tmp_base =
906 		(u32 *)(IIM_BASE_ADDR + 0x180c);
907 
908 	set_usb_phy_clk();
909 
910 	clrsetbits_le32(tmp_base, 0x6, 0x4);
911 }
912 #endif
913 
914 /*
915  * Dump some core clockes.
916  */
do_mx5_showclocks(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])917 int do_mx5_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
918 {
919 	u32 freq;
920 
921 	freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
922 	printf("PLL1       %8d MHz\n", freq / 1000000);
923 	freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
924 	printf("PLL2       %8d MHz\n", freq / 1000000);
925 	freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
926 	printf("PLL3       %8d MHz\n", freq / 1000000);
927 #ifdef	CONFIG_MX53
928 	freq = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
929 	printf("PLL4       %8d MHz\n", freq / 1000000);
930 #endif
931 
932 	printf("\n");
933 	printf("AHB        %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
934 	printf("IPG        %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
935 	printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
936 	printf("DDR        %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
937 #ifdef CONFIG_MXC_SPI
938 	printf("CSPI       %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
939 #endif
940 	return 0;
941 }
942 
943 /***************************************************/
944 
945 U_BOOT_CMD(
946 	clocks,	CONFIG_SYS_MAXARGS, 1, do_mx5_showclocks,
947 	"display clocks",
948 	""
949 );
950