1 #ifndef _I386_BITOPS_H
2 #define _I386_BITOPS_H
3 
4 /*
5  * Copyright 1992, Linus Torvalds.
6  */
7 
8 
9 /*
10  * These have to be done with inline assembly: that way the bit-setting
11  * is guaranteed to be atomic. All bit operations return 0 if the bit
12  * was cleared before the operation and != 0 if it was not.
13  *
14  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
15  */
16 
17 #ifdef CONFIG_SMP
18 #define LOCK_PREFIX "lock ; "
19 #else
20 #define LOCK_PREFIX ""
21 #endif
22 
23 #define ADDR (*(volatile long *) addr)
24 
25 /**
26  * set_bit - Atomically set a bit in memory
27  * @nr: the bit to set
28  * @addr: the address to start counting from
29  *
30  * This function is atomic and may not be reordered.  See __set_bit()
31  * if you do not require the atomic guarantees.
32  * Note that @nr may be almost arbitrarily large; this function is not
33  * restricted to acting on a single-word quantity.
34  */
set_bit(int nr,volatile void * addr)35 static __inline__ void set_bit(int nr, volatile void * addr)
36 {
37 	__asm__ __volatile__( LOCK_PREFIX
38 		"btsl %1,%0"
39 		:"=m" (ADDR)
40 		:"Ir" (nr));
41 }
42 
43 /**
44  * __set_bit - Set a bit in memory
45  * @nr: the bit to set
46  * @addr: the address to start counting from
47  *
48  * Unlike set_bit(), this function is non-atomic and may be reordered.
49  * If it's called on the same region of memory simultaneously, the effect
50  * may be that only one operation succeeds.
51  */
__set_bit(int nr,volatile void * addr)52 static __inline__ void __set_bit(int nr, volatile void * addr)
53 {
54 	__asm__(
55 		"btsl %1,%0"
56 		:"=m" (ADDR)
57 		:"Ir" (nr));
58 }
59 
60 /**
61  * clear_bit - Clears a bit in memory
62  * @nr: Bit to clear
63  * @addr: Address to start counting from
64  *
65  * clear_bit() is atomic and may not be reordered.  However, it does
66  * not contain a memory barrier, so if it is used for locking purposes,
67  * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
68  * in order to ensure changes are visible on other processors.
69  */
clear_bit(int nr,volatile void * addr)70 static __inline__ void clear_bit(int nr, volatile void * addr)
71 {
72 	__asm__ __volatile__( LOCK_PREFIX
73 		"btrl %1,%0"
74 		:"=m" (ADDR)
75 		:"Ir" (nr));
76 }
77 #define smp_mb__before_clear_bit()	barrier()
78 #define smp_mb__after_clear_bit()	barrier()
79 
80 /**
81  * __change_bit - Toggle a bit in memory
82  * @nr: the bit to set
83  * @addr: the address to start counting from
84  *
85  * Unlike change_bit(), this function is non-atomic and may be reordered.
86  * If it's called on the same region of memory simultaneously, the effect
87  * may be that only one operation succeeds.
88  */
__change_bit(int nr,volatile void * addr)89 static __inline__ void __change_bit(int nr, volatile void * addr)
90 {
91 	__asm__ __volatile__(
92 		"btcl %1,%0"
93 		:"=m" (ADDR)
94 		:"Ir" (nr));
95 }
96 
97 /**
98  * change_bit - Toggle a bit in memory
99  * @nr: Bit to clear
100  * @addr: Address to start counting from
101  *
102  * change_bit() is atomic and may not be reordered.
103  * Note that @nr may be almost arbitrarily large; this function is not
104  * restricted to acting on a single-word quantity.
105  */
change_bit(int nr,volatile void * addr)106 static __inline__ void change_bit(int nr, volatile void * addr)
107 {
108 	__asm__ __volatile__( LOCK_PREFIX
109 		"btcl %1,%0"
110 		:"=m" (ADDR)
111 		:"Ir" (nr));
112 }
113 
114 /**
115  * test_and_set_bit - Set a bit and return its old value
116  * @nr: Bit to set
117  * @addr: Address to count from
118  *
119  * This operation is atomic and cannot be reordered.
120  * It also implies a memory barrier.
121  */
test_and_set_bit(int nr,volatile void * addr)122 static __inline__ int test_and_set_bit(int nr, volatile void * addr)
123 {
124 	int oldbit;
125 
126 	__asm__ __volatile__( LOCK_PREFIX
127 		"btsl %2,%1\n\tsbbl %0,%0"
128 		:"=r" (oldbit),"=m" (ADDR)
129 		:"Ir" (nr) : "memory");
130 	return oldbit;
131 }
132 
133 /**
134  * __test_and_set_bit - Set a bit and return its old value
135  * @nr: Bit to set
136  * @addr: Address to count from
137  *
138  * This operation is non-atomic and can be reordered.
139  * If two examples of this operation race, one can appear to succeed
140  * but actually fail.  You must protect multiple accesses with a lock.
141  */
__test_and_set_bit(int nr,volatile void * addr)142 static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
143 {
144 	int oldbit;
145 
146 	__asm__(
147 		"btsl %2,%1\n\tsbbl %0,%0"
148 		:"=r" (oldbit),"=m" (ADDR)
149 		:"Ir" (nr));
150 	return oldbit;
151 }
152 
153 /**
154  * test_and_clear_bit - Clear a bit and return its old value
155  * @nr: Bit to set
156  * @addr: Address to count from
157  *
158  * This operation is atomic and cannot be reordered.
159  * It also implies a memory barrier.
160  */
test_and_clear_bit(int nr,volatile void * addr)161 static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
162 {
163 	int oldbit;
164 
165 	__asm__ __volatile__( LOCK_PREFIX
166 		"btrl %2,%1\n\tsbbl %0,%0"
167 		:"=r" (oldbit),"=m" (ADDR)
168 		:"Ir" (nr) : "memory");
169 	return oldbit;
170 }
171 
172 /**
173  * __test_and_clear_bit - Clear a bit and return its old value
174  * @nr: Bit to set
175  * @addr: Address to count from
176  *
177  * This operation is non-atomic and can be reordered.
178  * If two examples of this operation race, one can appear to succeed
179  * but actually fail.  You must protect multiple accesses with a lock.
180  */
__test_and_clear_bit(int nr,volatile void * addr)181 static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
182 {
183 	int oldbit;
184 
185 	__asm__(
186 		"btrl %2,%1\n\tsbbl %0,%0"
187 		:"=r" (oldbit),"=m" (ADDR)
188 		:"Ir" (nr));
189 	return oldbit;
190 }
191 
192 /* WARNING: non atomic and it can be reordered! */
__test_and_change_bit(int nr,volatile void * addr)193 static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
194 {
195 	int oldbit;
196 
197 	__asm__ __volatile__(
198 		"btcl %2,%1\n\tsbbl %0,%0"
199 		:"=r" (oldbit),"=m" (ADDR)
200 		:"Ir" (nr) : "memory");
201 	return oldbit;
202 }
203 
204 /**
205  * test_and_change_bit - Change a bit and return its new value
206  * @nr: Bit to set
207  * @addr: Address to count from
208  *
209  * This operation is atomic and cannot be reordered.
210  * It also implies a memory barrier.
211  */
test_and_change_bit(int nr,volatile void * addr)212 static __inline__ int test_and_change_bit(int nr, volatile void * addr)
213 {
214 	int oldbit;
215 
216 	__asm__ __volatile__( LOCK_PREFIX
217 		"btcl %2,%1\n\tsbbl %0,%0"
218 		:"=r" (oldbit),"=m" (ADDR)
219 		:"Ir" (nr) : "memory");
220 	return oldbit;
221 }
222 
223 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
224 /**
225  * test_bit - Determine whether a bit is set
226  * @nr: bit number to test
227  * @addr: Address to start counting from
228  */
229 static int test_bit(int nr, const volatile void * addr);
230 #endif
231 
constant_test_bit(int nr,const volatile void * addr)232 static __inline__ int constant_test_bit(int nr, const volatile void * addr)
233 {
234 	return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
235 }
236 
variable_test_bit(int nr,volatile void * addr)237 static __inline__ int variable_test_bit(int nr, volatile void * addr)
238 {
239 	int oldbit;
240 
241 	__asm__ __volatile__(
242 		"btl %2,%1\n\tsbbl %0,%0"
243 		:"=r" (oldbit)
244 		:"m" (ADDR),"Ir" (nr));
245 	return oldbit;
246 }
247 
248 #define test_bit(nr,addr) \
249 (__builtin_constant_p(nr) ? \
250  constant_test_bit((nr),(addr)) : \
251  variable_test_bit((nr),(addr)))
252 
253 /**
254  * find_first_zero_bit - find the first zero bit in a memory region
255  * @addr: The address to start the search at
256  * @size: The maximum size to search
257  *
258  * Returns the bit-number of the first zero bit, not the number of the byte
259  * containing a bit.
260  */
find_first_zero_bit(void * addr,unsigned size)261 static __inline__ int find_first_zero_bit(void * addr, unsigned size)
262 {
263 	int d0, d1, d2;
264 	int res;
265 
266 	if (!size)
267 		return 0;
268 	/* This looks at memory. Mark it volatile to tell gcc not to move it around */
269 	__asm__ __volatile__(
270 		"movl $-1,%%eax\n\t"
271 		"xorl %%edx,%%edx\n\t"
272 		"repe; scasl\n\t"
273 		"je 1f\n\t"
274 		"xorl -4(%%edi),%%eax\n\t"
275 		"subl $4,%%edi\n\t"
276 		"bsfl %%eax,%%edx\n"
277 		"1:\tsubl %%ebx,%%edi\n\t"
278 		"shll $3,%%edi\n\t"
279 		"addl %%edi,%%edx"
280 		:"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
281 		:"1" ((size + 31) >> 5), "2" (addr), "b" (addr));
282 	return res;
283 }
284 
285 /**
286  * find_next_zero_bit - find the first zero bit in a memory region
287  * @addr: The address to base the search on
288  * @offset: The bitnumber to start searching at
289  * @size: The maximum size to search
290  */
find_next_zero_bit(void * addr,int size,int offset)291 static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
292 {
293 	unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
294 	int set = 0, bit = offset & 31, res;
295 
296 	if (bit) {
297 		/*
298 		 * Look for zero in first byte
299 		 */
300 		__asm__("bsfl %1,%0\n\t"
301 			"jne 1f\n\t"
302 			"movl $32, %0\n"
303 			"1:"
304 			: "=r" (set)
305 			: "r" (~(*p >> bit)));
306 		if (set < (32 - bit))
307 			return set + offset;
308 		set = 32 - bit;
309 		p++;
310 	}
311 	/*
312 	 * No zero yet, search remaining full bytes for a zero
313 	 */
314 	res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
315 	return (offset + set + res);
316 }
317 
318 /**
319  * ffz - find first zero in word.
320  * @word: The word to search
321  *
322  * Undefined if no zero exists, so code should check against ~0UL first.
323  */
ffz(unsigned long word)324 static __inline__ unsigned long ffz(unsigned long word)
325 {
326 	__asm__("bsfl %1,%0"
327 		:"=r" (word)
328 		:"r" (~word));
329 	return word;
330 }
331 
332 #ifdef __KERNEL__
333 
334 /**
335  * ffs - find first bit set
336  * @x: the word to search
337  *
338  * This is defined the same way as
339  * the libc and compiler builtin ffs routines, therefore
340  * differs in spirit from the above ffz (man ffs).
341  */
ffs(int x)342 static __inline__ int ffs(int x)
343 {
344 	int r;
345 
346 	__asm__("bsfl %1,%0\n\t"
347 		"jnz 1f\n\t"
348 		"movl $-1,%0\n"
349 		"1:" : "=r" (r) : "g" (x));
350 	return r+1;
351 }
352 #define PLATFORM_FFS
353 
__ilog2(unsigned int x)354 static inline int __ilog2(unsigned int x)
355 {
356 	return generic_fls(x) - 1;
357 }
358 
359 /**
360  * hweightN - returns the hamming weight of a N-bit word
361  * @x: the word to weigh
362  *
363  * The Hamming Weight of a number is the total number of bits set in it.
364  */
365 
366 #define hweight32(x) generic_hweight32(x)
367 #define hweight16(x) generic_hweight16(x)
368 #define hweight8(x) generic_hweight8(x)
369 
370 #endif /* __KERNEL__ */
371 
372 #ifdef __KERNEL__
373 
374 #define ext2_set_bit                 __test_and_set_bit
375 #define ext2_clear_bit               __test_and_clear_bit
376 #define ext2_test_bit                test_bit
377 #define ext2_find_first_zero_bit     find_first_zero_bit
378 #define ext2_find_next_zero_bit      find_next_zero_bit
379 
380 /* Bitmap functions for the minix filesystem.  */
381 #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
382 #define minix_set_bit(nr,addr) __set_bit(nr,addr)
383 #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
384 #define minix_test_bit(nr,addr) test_bit(nr,addr)
385 #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
386 
387 #endif /* __KERNEL__ */
388 
389 #endif /* _I386_BITOPS_H */
390