1 /*
2 * Copyright 2017-2019 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright 2015-2016 Cryptography Research, Inc.
4 *
5 * Licensed under the OpenSSL license (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 *
10 * Originally written by Mike Hamburg
11 */
12 #include <openssl/crypto.h>
13 #include "word.h"
14 #include "field.h"
15
16 #include "point_448.h"
17 #include "ed448.h"
18 #include "curve448_local.h"
19
20 #define COFACTOR 4
21
22 #define C448_WNAF_FIXED_TABLE_BITS 5
23 #define C448_WNAF_VAR_TABLE_BITS 3
24
25 #define EDWARDS_D (-39081)
26
27 static const curve448_scalar_t precomputed_scalarmul_adjustment = {
28 {
29 {
30 SC_LIMB(0xc873d6d54a7bb0cfULL), SC_LIMB(0xe933d8d723a70aadULL),
31 SC_LIMB(0xbb124b65129c96fdULL), SC_LIMB(0x00000008335dc163ULL)
32 }
33 }
34 };
35
36 #define TWISTED_D (EDWARDS_D - 1)
37
38 #define WBITS C448_WORD_BITS /* NB this may be different from ARCH_WORD_BITS */
39
40 /* Inverse. */
gf_invert(gf y,const gf x,int assert_nonzero)41 static void gf_invert(gf y, const gf x, int assert_nonzero)
42 {
43 mask_t ret;
44 gf t1, t2;
45
46 gf_sqr(t1, x); /* o^2 */
47 ret = gf_isr(t2, t1); /* +-1/sqrt(o^2) = +-1/o */
48 (void)ret;
49 if (assert_nonzero)
50 assert(ret);
51 gf_sqr(t1, t2);
52 gf_mul(t2, t1, x); /* not direct to y in case of alias. */
53 gf_copy(y, t2);
54 }
55
56 /** identity = (0,1) */
57 const curve448_point_t curve448_point_identity =
58 { {{{{0}}}, {{{1}}}, {{{1}}}, {{{0}}}} };
59
point_double_internal(curve448_point_t p,const curve448_point_t q,int before_double)60 static void point_double_internal(curve448_point_t p, const curve448_point_t q,
61 int before_double)
62 {
63 gf a, b, c, d;
64
65 gf_sqr(c, q->x);
66 gf_sqr(a, q->y);
67 gf_add_nr(d, c, a); /* 2+e */
68 gf_add_nr(p->t, q->y, q->x); /* 2+e */
69 gf_sqr(b, p->t);
70 gf_subx_nr(b, b, d, 3); /* 4+e */
71 gf_sub_nr(p->t, a, c); /* 3+e */
72 gf_sqr(p->x, q->z);
73 gf_add_nr(p->z, p->x, p->x); /* 2+e */
74 gf_subx_nr(a, p->z, p->t, 4); /* 6+e */
75 if (GF_HEADROOM == 5)
76 gf_weak_reduce(a); /* or 1+e */
77 gf_mul(p->x, a, b);
78 gf_mul(p->z, p->t, a);
79 gf_mul(p->y, p->t, d);
80 if (!before_double)
81 gf_mul(p->t, b, d);
82 }
83
curve448_point_double(curve448_point_t p,const curve448_point_t q)84 void curve448_point_double(curve448_point_t p, const curve448_point_t q)
85 {
86 point_double_internal(p, q, 0);
87 }
88
89 /* Operations on [p]niels */
cond_neg_niels(niels_t n,mask_t neg)90 static ossl_inline void cond_neg_niels(niels_t n, mask_t neg)
91 {
92 gf_cond_swap(n->a, n->b, neg);
93 gf_cond_neg(n->c, neg);
94 }
95
pt_to_pniels(pniels_t b,const curve448_point_t a)96 static void pt_to_pniels(pniels_t b, const curve448_point_t a)
97 {
98 gf_sub(b->n->a, a->y, a->x);
99 gf_add(b->n->b, a->x, a->y);
100 gf_mulw(b->n->c, a->t, 2 * TWISTED_D);
101 gf_add(b->z, a->z, a->z);
102 }
103
pniels_to_pt(curve448_point_t e,const pniels_t d)104 static void pniels_to_pt(curve448_point_t e, const pniels_t d)
105 {
106 gf eu;
107
108 gf_add(eu, d->n->b, d->n->a);
109 gf_sub(e->y, d->n->b, d->n->a);
110 gf_mul(e->t, e->y, eu);
111 gf_mul(e->x, d->z, e->y);
112 gf_mul(e->y, d->z, eu);
113 gf_sqr(e->z, d->z);
114 }
115
niels_to_pt(curve448_point_t e,const niels_t n)116 static void niels_to_pt(curve448_point_t e, const niels_t n)
117 {
118 gf_add(e->y, n->b, n->a);
119 gf_sub(e->x, n->b, n->a);
120 gf_mul(e->t, e->y, e->x);
121 gf_copy(e->z, ONE);
122 }
123
add_niels_to_pt(curve448_point_t d,const niels_t e,int before_double)124 static void add_niels_to_pt(curve448_point_t d, const niels_t e,
125 int before_double)
126 {
127 gf a, b, c;
128
129 gf_sub_nr(b, d->y, d->x); /* 3+e */
130 gf_mul(a, e->a, b);
131 gf_add_nr(b, d->x, d->y); /* 2+e */
132 gf_mul(d->y, e->b, b);
133 gf_mul(d->x, e->c, d->t);
134 gf_add_nr(c, a, d->y); /* 2+e */
135 gf_sub_nr(b, d->y, a); /* 3+e */
136 gf_sub_nr(d->y, d->z, d->x); /* 3+e */
137 gf_add_nr(a, d->x, d->z); /* 2+e */
138 gf_mul(d->z, a, d->y);
139 gf_mul(d->x, d->y, b);
140 gf_mul(d->y, a, c);
141 if (!before_double)
142 gf_mul(d->t, b, c);
143 }
144
sub_niels_from_pt(curve448_point_t d,const niels_t e,int before_double)145 static void sub_niels_from_pt(curve448_point_t d, const niels_t e,
146 int before_double)
147 {
148 gf a, b, c;
149
150 gf_sub_nr(b, d->y, d->x); /* 3+e */
151 gf_mul(a, e->b, b);
152 gf_add_nr(b, d->x, d->y); /* 2+e */
153 gf_mul(d->y, e->a, b);
154 gf_mul(d->x, e->c, d->t);
155 gf_add_nr(c, a, d->y); /* 2+e */
156 gf_sub_nr(b, d->y, a); /* 3+e */
157 gf_add_nr(d->y, d->z, d->x); /* 2+e */
158 gf_sub_nr(a, d->z, d->x); /* 3+e */
159 gf_mul(d->z, a, d->y);
160 gf_mul(d->x, d->y, b);
161 gf_mul(d->y, a, c);
162 if (!before_double)
163 gf_mul(d->t, b, c);
164 }
165
add_pniels_to_pt(curve448_point_t p,const pniels_t pn,int before_double)166 static void add_pniels_to_pt(curve448_point_t p, const pniels_t pn,
167 int before_double)
168 {
169 gf L0;
170
171 gf_mul(L0, p->z, pn->z);
172 gf_copy(p->z, L0);
173 add_niels_to_pt(p, pn->n, before_double);
174 }
175
sub_pniels_from_pt(curve448_point_t p,const pniels_t pn,int before_double)176 static void sub_pniels_from_pt(curve448_point_t p, const pniels_t pn,
177 int before_double)
178 {
179 gf L0;
180
181 gf_mul(L0, p->z, pn->z);
182 gf_copy(p->z, L0);
183 sub_niels_from_pt(p, pn->n, before_double);
184 }
185
curve448_point_eq(const curve448_point_t p,const curve448_point_t q)186 c448_bool_t curve448_point_eq(const curve448_point_t p,
187 const curve448_point_t q)
188 {
189 mask_t succ;
190 gf a, b;
191
192 /* equality mod 2-torsion compares x/y */
193 gf_mul(a, p->y, q->x);
194 gf_mul(b, q->y, p->x);
195 succ = gf_eq(a, b);
196
197 return mask_to_bool(succ);
198 }
199
curve448_point_valid(const curve448_point_t p)200 c448_bool_t curve448_point_valid(const curve448_point_t p)
201 {
202 mask_t out;
203 gf a, b, c;
204
205 gf_mul(a, p->x, p->y);
206 gf_mul(b, p->z, p->t);
207 out = gf_eq(a, b);
208 gf_sqr(a, p->x);
209 gf_sqr(b, p->y);
210 gf_sub(a, b, a);
211 gf_sqr(b, p->t);
212 gf_mulw(c, b, TWISTED_D);
213 gf_sqr(b, p->z);
214 gf_add(b, b, c);
215 out &= gf_eq(a, b);
216 out &= ~gf_eq(p->z, ZERO);
217 return mask_to_bool(out);
218 }
219
constant_time_lookup_niels(niels_s * RESTRICT ni,const niels_t * table,int nelts,int idx)220 static ossl_inline void constant_time_lookup_niels(niels_s * RESTRICT ni,
221 const niels_t * table,
222 int nelts, int idx)
223 {
224 constant_time_lookup(ni, table, sizeof(niels_s), nelts, idx);
225 }
226
curve448_precomputed_scalarmul(curve448_point_t out,const curve448_precomputed_s * table,const curve448_scalar_t scalar)227 void curve448_precomputed_scalarmul(curve448_point_t out,
228 const curve448_precomputed_s * table,
229 const curve448_scalar_t scalar)
230 {
231 unsigned int i, j, k;
232 const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S;
233 niels_t ni;
234 curve448_scalar_t scalar1x;
235
236 curve448_scalar_add(scalar1x, scalar, precomputed_scalarmul_adjustment);
237 curve448_scalar_halve(scalar1x, scalar1x);
238
239 for (i = s; i > 0; i--) {
240 if (i != s)
241 point_double_internal(out, out, 0);
242
243 for (j = 0; j < n; j++) {
244 int tab = 0;
245 mask_t invert;
246
247 for (k = 0; k < t; k++) {
248 unsigned int bit = (i - 1) + s * (k + j * t);
249
250 if (bit < C448_SCALAR_BITS)
251 tab |=
252 (scalar1x->limb[bit / WBITS] >> (bit % WBITS) & 1) << k;
253 }
254
255 invert = (tab >> (t - 1)) - 1;
256 tab ^= invert;
257 tab &= (1 << (t - 1)) - 1;
258
259 constant_time_lookup_niels(ni, &table->table[j << (t - 1)],
260 1 << (t - 1), tab);
261
262 cond_neg_niels(ni, invert);
263 if ((i != s) || j != 0)
264 add_niels_to_pt(out, ni, j == n - 1 && i != 1);
265 else
266 niels_to_pt(out, ni);
267 }
268 }
269
270 OPENSSL_cleanse(ni, sizeof(ni));
271 OPENSSL_cleanse(scalar1x, sizeof(scalar1x));
272 }
273
curve448_point_mul_by_ratio_and_encode_like_eddsa(uint8_t enc[EDDSA_448_PUBLIC_BYTES],const curve448_point_t p)274 void curve448_point_mul_by_ratio_and_encode_like_eddsa(
275 uint8_t enc[EDDSA_448_PUBLIC_BYTES],
276 const curve448_point_t p)
277 {
278 gf x, y, z, t;
279 curve448_point_t q;
280
281 /* The point is now on the twisted curve. Move it to untwisted. */
282 curve448_point_copy(q, p);
283
284 {
285 /* 4-isogeny: 2xy/(y^+x^2), (y^2-x^2)/(2z^2-y^2+x^2) */
286 gf u;
287
288 gf_sqr(x, q->x);
289 gf_sqr(t, q->y);
290 gf_add(u, x, t);
291 gf_add(z, q->y, q->x);
292 gf_sqr(y, z);
293 gf_sub(y, y, u);
294 gf_sub(z, t, x);
295 gf_sqr(x, q->z);
296 gf_add(t, x, x);
297 gf_sub(t, t, z);
298 gf_mul(x, t, y);
299 gf_mul(y, z, u);
300 gf_mul(z, u, t);
301 OPENSSL_cleanse(u, sizeof(u));
302 }
303
304 /* Affinize */
305 gf_invert(z, z, 1);
306 gf_mul(t, x, z);
307 gf_mul(x, y, z);
308
309 /* Encode */
310 enc[EDDSA_448_PRIVATE_BYTES - 1] = 0;
311 gf_serialize(enc, x, 1);
312 enc[EDDSA_448_PRIVATE_BYTES - 1] |= 0x80 & gf_lobit(t);
313
314 OPENSSL_cleanse(x, sizeof(x));
315 OPENSSL_cleanse(y, sizeof(y));
316 OPENSSL_cleanse(z, sizeof(z));
317 OPENSSL_cleanse(t, sizeof(t));
318 curve448_point_destroy(q);
319 }
320
curve448_point_decode_like_eddsa_and_mul_by_ratio(curve448_point_t p,const uint8_t enc[EDDSA_448_PUBLIC_BYTES])321 c448_error_t curve448_point_decode_like_eddsa_and_mul_by_ratio(
322 curve448_point_t p,
323 const uint8_t enc[EDDSA_448_PUBLIC_BYTES])
324 {
325 uint8_t enc2[EDDSA_448_PUBLIC_BYTES];
326 mask_t low;
327 mask_t succ;
328
329 memcpy(enc2, enc, sizeof(enc2));
330
331 low = ~word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1] & 0x80);
332 enc2[EDDSA_448_PRIVATE_BYTES - 1] &= ~0x80;
333
334 succ = gf_deserialize(p->y, enc2, 1, 0);
335 succ &= word_is_zero(enc2[EDDSA_448_PRIVATE_BYTES - 1]);
336
337 gf_sqr(p->x, p->y);
338 gf_sub(p->z, ONE, p->x); /* num = 1-y^2 */
339 gf_mulw(p->t, p->x, EDWARDS_D); /* dy^2 */
340 gf_sub(p->t, ONE, p->t); /* denom = 1-dy^2 or 1-d + dy^2 */
341
342 gf_mul(p->x, p->z, p->t);
343 succ &= gf_isr(p->t, p->x); /* 1/sqrt(num * denom) */
344
345 gf_mul(p->x, p->t, p->z); /* sqrt(num / denom) */
346 gf_cond_neg(p->x, gf_lobit(p->x) ^ low);
347 gf_copy(p->z, ONE);
348
349 {
350 gf a, b, c, d;
351
352 /* 4-isogeny 2xy/(y^2-ax^2), (y^2+ax^2)/(2-y^2-ax^2) */
353 gf_sqr(c, p->x);
354 gf_sqr(a, p->y);
355 gf_add(d, c, a);
356 gf_add(p->t, p->y, p->x);
357 gf_sqr(b, p->t);
358 gf_sub(b, b, d);
359 gf_sub(p->t, a, c);
360 gf_sqr(p->x, p->z);
361 gf_add(p->z, p->x, p->x);
362 gf_sub(a, p->z, d);
363 gf_mul(p->x, a, b);
364 gf_mul(p->z, p->t, a);
365 gf_mul(p->y, p->t, d);
366 gf_mul(p->t, b, d);
367 OPENSSL_cleanse(a, sizeof(a));
368 OPENSSL_cleanse(b, sizeof(b));
369 OPENSSL_cleanse(c, sizeof(c));
370 OPENSSL_cleanse(d, sizeof(d));
371 }
372
373 OPENSSL_cleanse(enc2, sizeof(enc2));
374 assert(curve448_point_valid(p) || ~succ);
375
376 return c448_succeed_if(mask_to_bool(succ));
377 }
378
x448_int(uint8_t out[X_PUBLIC_BYTES],const uint8_t base[X_PUBLIC_BYTES],const uint8_t scalar[X_PRIVATE_BYTES])379 c448_error_t x448_int(uint8_t out[X_PUBLIC_BYTES],
380 const uint8_t base[X_PUBLIC_BYTES],
381 const uint8_t scalar[X_PRIVATE_BYTES])
382 {
383 gf x1, x2, z2, x3, z3, t1, t2;
384 int t;
385 mask_t swap = 0;
386 mask_t nz;
387
388 (void)gf_deserialize(x1, base, 1, 0);
389 gf_copy(x2, ONE);
390 gf_copy(z2, ZERO);
391 gf_copy(x3, x1);
392 gf_copy(z3, ONE);
393
394 for (t = X_PRIVATE_BITS - 1; t >= 0; t--) {
395 uint8_t sb = scalar[t / 8];
396 mask_t k_t;
397
398 /* Scalar conditioning */
399 if (t / 8 == 0)
400 sb &= -(uint8_t)COFACTOR;
401 else if (t == X_PRIVATE_BITS - 1)
402 sb = -1;
403
404 k_t = (sb >> (t % 8)) & 1;
405 k_t = 0 - k_t; /* set to all 0s or all 1s */
406
407 swap ^= k_t;
408 gf_cond_swap(x2, x3, swap);
409 gf_cond_swap(z2, z3, swap);
410 swap = k_t;
411
412 /*
413 * The "_nr" below skips coefficient reduction. In the following
414 * comments, "2+e" is saying that the coefficients are at most 2+epsilon
415 * times the reduction limit.
416 */
417 gf_add_nr(t1, x2, z2); /* A = x2 + z2 */ /* 2+e */
418 gf_sub_nr(t2, x2, z2); /* B = x2 - z2 */ /* 3+e */
419 gf_sub_nr(z2, x3, z3); /* D = x3 - z3 */ /* 3+e */
420 gf_mul(x2, t1, z2); /* DA */
421 gf_add_nr(z2, z3, x3); /* C = x3 + z3 */ /* 2+e */
422 gf_mul(x3, t2, z2); /* CB */
423 gf_sub_nr(z3, x2, x3); /* DA-CB */ /* 3+e */
424 gf_sqr(z2, z3); /* (DA-CB)^2 */
425 gf_mul(z3, x1, z2); /* z3 = x1(DA-CB)^2 */
426 gf_add_nr(z2, x2, x3); /* (DA+CB) */ /* 2+e */
427 gf_sqr(x3, z2); /* x3 = (DA+CB)^2 */
428
429 gf_sqr(z2, t1); /* AA = A^2 */
430 gf_sqr(t1, t2); /* BB = B^2 */
431 gf_mul(x2, z2, t1); /* x2 = AA*BB */
432 gf_sub_nr(t2, z2, t1); /* E = AA-BB */ /* 3+e */
433
434 gf_mulw(t1, t2, -EDWARDS_D); /* E*-d = a24*E */
435 gf_add_nr(t1, t1, z2); /* AA + a24*E */ /* 2+e */
436 gf_mul(z2, t2, t1); /* z2 = E(AA+a24*E) */
437 }
438
439 /* Finish */
440 gf_cond_swap(x2, x3, swap);
441 gf_cond_swap(z2, z3, swap);
442 gf_invert(z2, z2, 0);
443 gf_mul(x1, x2, z2);
444 gf_serialize(out, x1, 1);
445 nz = ~gf_eq(x1, ZERO);
446
447 OPENSSL_cleanse(x1, sizeof(x1));
448 OPENSSL_cleanse(x2, sizeof(x2));
449 OPENSSL_cleanse(z2, sizeof(z2));
450 OPENSSL_cleanse(x3, sizeof(x3));
451 OPENSSL_cleanse(z3, sizeof(z3));
452 OPENSSL_cleanse(t1, sizeof(t1));
453 OPENSSL_cleanse(t2, sizeof(t2));
454
455 return c448_succeed_if(mask_to_bool(nz));
456 }
457
curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t out[X_PUBLIC_BYTES],const curve448_point_t p)458 void curve448_point_mul_by_ratio_and_encode_like_x448(uint8_t
459 out[X_PUBLIC_BYTES],
460 const curve448_point_t p)
461 {
462 curve448_point_t q;
463
464 curve448_point_copy(q, p);
465 gf_invert(q->t, q->x, 0); /* 1/x */
466 gf_mul(q->z, q->t, q->y); /* y/x */
467 gf_sqr(q->y, q->z); /* (y/x)^2 */
468 gf_serialize(out, q->y, 1);
469 curve448_point_destroy(q);
470 }
471
x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES],const uint8_t scalar[X_PRIVATE_BYTES])472 void x448_derive_public_key(uint8_t out[X_PUBLIC_BYTES],
473 const uint8_t scalar[X_PRIVATE_BYTES])
474 {
475 /* Scalar conditioning */
476 uint8_t scalar2[X_PRIVATE_BYTES];
477 curve448_scalar_t the_scalar;
478 curve448_point_t p;
479 unsigned int i;
480
481 memcpy(scalar2, scalar, sizeof(scalar2));
482 scalar2[0] &= -(uint8_t)COFACTOR;
483
484 scalar2[X_PRIVATE_BYTES - 1] &= ~((0u - 1u) << ((X_PRIVATE_BITS + 7) % 8));
485 scalar2[X_PRIVATE_BYTES - 1] |= 1 << ((X_PRIVATE_BITS + 7) % 8);
486
487 curve448_scalar_decode_long(the_scalar, scalar2, sizeof(scalar2));
488
489 /* Compensate for the encoding ratio */
490 for (i = 1; i < X448_ENCODE_RATIO; i <<= 1)
491 curve448_scalar_halve(the_scalar, the_scalar);
492
493 curve448_precomputed_scalarmul(p, curve448_precomputed_base, the_scalar);
494 curve448_point_mul_by_ratio_and_encode_like_x448(out, p);
495 curve448_point_destroy(p);
496 }
497
498 /* Control for variable-time scalar multiply algorithms. */
499 struct smvt_control {
500 int power, addend;
501 };
502
503 #if defined(__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 3))
504 # define NUMTRAILINGZEROS __builtin_ctz
505 #else
506 # define NUMTRAILINGZEROS numtrailingzeros
numtrailingzeros(uint32_t i)507 static uint32_t numtrailingzeros(uint32_t i)
508 {
509 uint32_t tmp;
510 uint32_t num = 31;
511
512 if (i == 0)
513 return 32;
514
515 tmp = i << 16;
516 if (tmp != 0) {
517 i = tmp;
518 num -= 16;
519 }
520 tmp = i << 8;
521 if (tmp != 0) {
522 i = tmp;
523 num -= 8;
524 }
525 tmp = i << 4;
526 if (tmp != 0) {
527 i = tmp;
528 num -= 4;
529 }
530 tmp = i << 2;
531 if (tmp != 0) {
532 i = tmp;
533 num -= 2;
534 }
535 tmp = i << 1;
536 if (tmp != 0)
537 num--;
538
539 return num;
540 }
541 #endif
542
recode_wnaf(struct smvt_control * control,const curve448_scalar_t scalar,unsigned int table_bits)543 static int recode_wnaf(struct smvt_control *control,
544 /* [nbits/(table_bits + 1) + 3] */
545 const curve448_scalar_t scalar,
546 unsigned int table_bits)
547 {
548 unsigned int table_size = C448_SCALAR_BITS / (table_bits + 1) + 3;
549 int position = table_size - 1; /* at the end */
550 uint64_t current = scalar->limb[0] & 0xFFFF;
551 uint32_t mask = (1 << (table_bits + 1)) - 1;
552 unsigned int w;
553 const unsigned int B_OVER_16 = sizeof(scalar->limb[0]) / 2;
554 unsigned int n, i;
555
556 /* place the end marker */
557 control[position].power = -1;
558 control[position].addend = 0;
559 position--;
560
561 /*
562 * PERF: Could negate scalar if it's large. But then would need more cases
563 * in the actual code that uses it, all for an expected reduction of like
564 * 1/5 op. Probably not worth it.
565 */
566
567 for (w = 1; w < (C448_SCALAR_BITS - 1) / 16 + 3; w++) {
568 if (w < (C448_SCALAR_BITS - 1) / 16 + 1) {
569 /* Refill the 16 high bits of current */
570 current += (uint32_t)((scalar->limb[w / B_OVER_16]
571 >> (16 * (w % B_OVER_16))) << 16);
572 }
573
574 while (current & 0xFFFF) {
575 uint32_t pos = NUMTRAILINGZEROS((uint32_t)current);
576 uint32_t odd = (uint32_t)current >> pos;
577 int32_t delta = odd & mask;
578
579 assert(position >= 0);
580 if (odd & (1 << (table_bits + 1)))
581 delta -= (1 << (table_bits + 1));
582 current -= delta * (1 << pos);
583 control[position].power = pos + 16 * (w - 1);
584 control[position].addend = delta;
585 position--;
586 }
587 current >>= 16;
588 }
589 assert(current == 0);
590
591 position++;
592 n = table_size - position;
593 for (i = 0; i < n; i++)
594 control[i] = control[i + position];
595
596 return n - 1;
597 }
598
prepare_wnaf_table(pniels_t * output,const curve448_point_t working,unsigned int tbits)599 static void prepare_wnaf_table(pniels_t * output,
600 const curve448_point_t working,
601 unsigned int tbits)
602 {
603 curve448_point_t tmp;
604 int i;
605 pniels_t twop;
606
607 pt_to_pniels(output[0], working);
608
609 if (tbits == 0)
610 return;
611
612 curve448_point_double(tmp, working);
613 pt_to_pniels(twop, tmp);
614
615 add_pniels_to_pt(tmp, output[0], 0);
616 pt_to_pniels(output[1], tmp);
617
618 for (i = 2; i < 1 << tbits; i++) {
619 add_pniels_to_pt(tmp, twop, 0);
620 pt_to_pniels(output[i], tmp);
621 }
622
623 curve448_point_destroy(tmp);
624 OPENSSL_cleanse(twop, sizeof(twop));
625 }
626
curve448_base_double_scalarmul_non_secret(curve448_point_t combo,const curve448_scalar_t scalar1,const curve448_point_t base2,const curve448_scalar_t scalar2)627 void curve448_base_double_scalarmul_non_secret(curve448_point_t combo,
628 const curve448_scalar_t scalar1,
629 const curve448_point_t base2,
630 const curve448_scalar_t scalar2)
631 {
632 const int table_bits_var = C448_WNAF_VAR_TABLE_BITS;
633 const int table_bits_pre = C448_WNAF_FIXED_TABLE_BITS;
634 struct smvt_control control_var[C448_SCALAR_BITS /
635 (C448_WNAF_VAR_TABLE_BITS + 1) + 3];
636 struct smvt_control control_pre[C448_SCALAR_BITS /
637 (C448_WNAF_FIXED_TABLE_BITS + 1) + 3];
638 int ncb_pre = recode_wnaf(control_pre, scalar1, table_bits_pre);
639 int ncb_var = recode_wnaf(control_var, scalar2, table_bits_var);
640 pniels_t precmp_var[1 << C448_WNAF_VAR_TABLE_BITS];
641 int contp = 0, contv = 0, i;
642
643 prepare_wnaf_table(precmp_var, base2, table_bits_var);
644 i = control_var[0].power;
645
646 if (i < 0) {
647 curve448_point_copy(combo, curve448_point_identity);
648 return;
649 }
650 if (i > control_pre[0].power) {
651 pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
652 contv++;
653 } else if (i == control_pre[0].power && i >= 0) {
654 pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]);
655 add_niels_to_pt(combo, curve448_wnaf_base[control_pre[0].addend >> 1],
656 i);
657 contv++;
658 contp++;
659 } else {
660 i = control_pre[0].power;
661 niels_to_pt(combo, curve448_wnaf_base[control_pre[0].addend >> 1]);
662 contp++;
663 }
664
665 for (i--; i >= 0; i--) {
666 int cv = (i == control_var[contv].power);
667 int cp = (i == control_pre[contp].power);
668
669 point_double_internal(combo, combo, i && !(cv || cp));
670
671 if (cv) {
672 assert(control_var[contv].addend);
673
674 if (control_var[contv].addend > 0)
675 add_pniels_to_pt(combo,
676 precmp_var[control_var[contv].addend >> 1],
677 i && !cp);
678 else
679 sub_pniels_from_pt(combo,
680 precmp_var[(-control_var[contv].addend)
681 >> 1], i && !cp);
682 contv++;
683 }
684
685 if (cp) {
686 assert(control_pre[contp].addend);
687
688 if (control_pre[contp].addend > 0)
689 add_niels_to_pt(combo,
690 curve448_wnaf_base[control_pre[contp].addend
691 >> 1], i);
692 else
693 sub_niels_from_pt(combo,
694 curve448_wnaf_base[(-control_pre
695 [contp].addend) >> 1], i);
696 contp++;
697 }
698 }
699
700 /* This function is non-secret, but whatever this is cheap. */
701 OPENSSL_cleanse(control_var, sizeof(control_var));
702 OPENSSL_cleanse(control_pre, sizeof(control_pre));
703 OPENSSL_cleanse(precmp_var, sizeof(precmp_var));
704
705 assert(contv == ncb_var);
706 (void)ncb_var;
707 assert(contp == ncb_pre);
708 (void)ncb_pre;
709 }
710
curve448_point_destroy(curve448_point_t point)711 void curve448_point_destroy(curve448_point_t point)
712 {
713 OPENSSL_cleanse(point, sizeof(curve448_point_t));
714 }
715
X448(uint8_t out_shared_key[56],const uint8_t private_key[56],const uint8_t peer_public_value[56])716 int X448(uint8_t out_shared_key[56], const uint8_t private_key[56],
717 const uint8_t peer_public_value[56])
718 {
719 return x448_int(out_shared_key, peer_public_value, private_key)
720 == C448_SUCCESS;
721 }
722
X448_public_from_private(uint8_t out_public_value[56],const uint8_t private_key[56])723 void X448_public_from_private(uint8_t out_public_value[56],
724 const uint8_t private_key[56])
725 {
726 x448_derive_public_key(out_public_value, private_key);
727 }
728