1 /*
2 ***************************************************************************
3 *   Copyright (C) 1999-2014 International Business Machines Corporation
4 *   and others. All rights reserved.
5 ***************************************************************************
6 */
7 //
8 //  file:  rbbi.c    Contains the implementation of the rule based break iterator
9 //                   runtime engine and the API implementation for
10 //                   class RuleBasedBreakIterator
11 //
12 
13 #include "utypeinfo.h"  // for 'typeid' to work
14 
15 #include "unicode/utypes.h"
16 
17 #if !UCONFIG_NO_BREAK_ITERATION
18 
19 #include "unicode/rbbi.h"
20 #include "unicode/schriter.h"
21 #include "unicode/uchriter.h"
22 #include "unicode/udata.h"
23 #include "unicode/uclean.h"
24 #include "rbbidata.h"
25 #include "rbbirb.h"
26 #include "cmemory.h"
27 #include "cstring.h"
28 #include "umutex.h"
29 #include "ucln_cmn.h"
30 #include "brkeng.h"
31 
32 #include "uassert.h"
33 #include "uvector.h"
34 
35 // if U_LOCAL_SERVICE_HOOK is defined, then localsvc.cpp is expected to be included.
36 #if U_LOCAL_SERVICE_HOOK
37 #include "localsvc.h"
38 #endif
39 
40 #ifdef RBBI_DEBUG
41 static UBool fTrace = FALSE;
42 #endif
43 
44 U_NAMESPACE_BEGIN
45 
46 // The state number of the starting state
47 #define START_STATE 1
48 
49 // The state-transition value indicating "stop"
50 #define STOP_STATE  0
51 
52 
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator)53 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator)
54 
55 
56 //=======================================================================
57 // constructors
58 //=======================================================================
59 
60 /**
61  * Constructs a RuleBasedBreakIterator that uses the already-created
62  * tables object that is passed in as a parameter.
63  */
64 RuleBasedBreakIterator::RuleBasedBreakIterator(RBBIDataHeader* data, UErrorCode &status)
65 {
66     init();
67     fData = new RBBIDataWrapper(data, status); // status checked in constructor
68     if (U_FAILURE(status)) {return;}
69     if(fData == 0) {
70         status = U_MEMORY_ALLOCATION_ERROR;
71         return;
72     }
73 }
74 
75 /**
76  * Same as above but does not adopt memory
77  */
RuleBasedBreakIterator(const RBBIDataHeader * data,enum EDontAdopt,UErrorCode & status)78 RuleBasedBreakIterator::RuleBasedBreakIterator(const RBBIDataHeader* data, enum EDontAdopt, UErrorCode &status)
79 {
80     init();
81     fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status); // status checked in constructor
82     if (U_FAILURE(status)) {return;}
83     if(fData == 0) {
84         status = U_MEMORY_ALLOCATION_ERROR;
85         return;
86     }
87 }
88 
89 
90 //
91 //  Construct from precompiled binary rules (tables).  This constructor is public API,
92 //  taking the rules as a (const uint8_t *) to match the type produced by getBinaryRules().
93 //
RuleBasedBreakIterator(const uint8_t * compiledRules,uint32_t ruleLength,UErrorCode & status)94 RuleBasedBreakIterator::RuleBasedBreakIterator(const uint8_t *compiledRules,
95                        uint32_t       ruleLength,
96                        UErrorCode     &status) {
97     init();
98     if (U_FAILURE(status)) {
99         return;
100     }
101     if (compiledRules == NULL || ruleLength < sizeof(RBBIDataHeader)) {
102         status = U_ILLEGAL_ARGUMENT_ERROR;
103         return;
104     }
105     const RBBIDataHeader *data = (const RBBIDataHeader *)compiledRules;
106     if (data->fLength > ruleLength) {
107         status = U_ILLEGAL_ARGUMENT_ERROR;
108         return;
109     }
110     fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status);
111     if (U_FAILURE(status)) {return;}
112     if(fData == 0) {
113         status = U_MEMORY_ALLOCATION_ERROR;
114         return;
115     }
116 }
117 
118 
119 //-------------------------------------------------------------------------------
120 //
121 //   Constructor   from a UDataMemory handle to precompiled break rules
122 //                 stored in an ICU data file.
123 //
124 //-------------------------------------------------------------------------------
RuleBasedBreakIterator(UDataMemory * udm,UErrorCode & status)125 RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UErrorCode &status)
126 {
127     init();
128     fData = new RBBIDataWrapper(udm, status); // status checked in constructor
129     if (U_FAILURE(status)) {return;}
130     if(fData == 0) {
131         status = U_MEMORY_ALLOCATION_ERROR;
132         return;
133     }
134 }
135 
136 
137 
138 //-------------------------------------------------------------------------------
139 //
140 //   Constructor       from a set of rules supplied as a string.
141 //
142 //-------------------------------------------------------------------------------
RuleBasedBreakIterator(const UnicodeString & rules,UParseError & parseError,UErrorCode & status)143 RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString  &rules,
144                                                 UParseError          &parseError,
145                                                 UErrorCode           &status)
146 {
147     init();
148     if (U_FAILURE(status)) {return;}
149     RuleBasedBreakIterator *bi = (RuleBasedBreakIterator *)
150         RBBIRuleBuilder::createRuleBasedBreakIterator(rules, &parseError, status);
151     // Note:  This is a bit awkward.  The RBBI ruleBuilder has a factory method that
152     //        creates and returns a complete RBBI.  From here, in a constructor, we
153     //        can't just return the object created by the builder factory, hence
154     //        the assignment of the factory created object to "this".
155     if (U_SUCCESS(status)) {
156         *this = *bi;
157         delete bi;
158     }
159 }
160 
161 
162 //-------------------------------------------------------------------------------
163 //
164 // Default Constructor.      Create an empty shell that can be set up later.
165 //                           Used when creating a RuleBasedBreakIterator from a set
166 //                           of rules.
167 //-------------------------------------------------------------------------------
RuleBasedBreakIterator()168 RuleBasedBreakIterator::RuleBasedBreakIterator() {
169     init();
170 }
171 
172 
173 //-------------------------------------------------------------------------------
174 //
175 //   Copy constructor.  Will produce a break iterator with the same behavior,
176 //                      and which iterates over the same text, as the one passed in.
177 //
178 //-------------------------------------------------------------------------------
RuleBasedBreakIterator(const RuleBasedBreakIterator & other)179 RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& other)
180 : BreakIterator(other)
181 {
182     this->init();
183     *this = other;
184 }
185 
186 
187 /**
188  * Destructor
189  */
~RuleBasedBreakIterator()190 RuleBasedBreakIterator::~RuleBasedBreakIterator() {
191     if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
192         // fCharIter was adopted from the outside.
193         delete fCharIter;
194     }
195     fCharIter = NULL;
196     delete fSCharIter;
197     fCharIter = NULL;
198     delete fDCharIter;
199     fDCharIter = NULL;
200 
201     utext_close(fText);
202 
203     if (fData != NULL) {
204         fData->removeReference();
205         fData = NULL;
206     }
207     if (fCachedBreakPositions) {
208         uprv_free(fCachedBreakPositions);
209         fCachedBreakPositions = NULL;
210     }
211     if (fLanguageBreakEngines) {
212         delete fLanguageBreakEngines;
213         fLanguageBreakEngines = NULL;
214     }
215     if (fUnhandledBreakEngine) {
216         delete fUnhandledBreakEngine;
217         fUnhandledBreakEngine = NULL;
218     }
219 }
220 
221 /**
222  * Assignment operator.  Sets this iterator to have the same behavior,
223  * and iterate over the same text, as the one passed in.
224  */
225 RuleBasedBreakIterator&
operator =(const RuleBasedBreakIterator & that)226 RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator& that) {
227     if (this == &that) {
228         return *this;
229     }
230     reset();    // Delete break cache information
231     fBreakType = that.fBreakType;
232     if (fLanguageBreakEngines != NULL) {
233         delete fLanguageBreakEngines;
234         fLanguageBreakEngines = NULL;   // Just rebuild for now
235     }
236     // TODO: clone fLanguageBreakEngines from "that"
237     UErrorCode status = U_ZERO_ERROR;
238     fText = utext_clone(fText, that.fText, FALSE, TRUE, &status);
239 
240     if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
241         delete fCharIter;
242     }
243     fCharIter = NULL;
244 
245     if (that.fCharIter != NULL ) {
246         // This is a little bit tricky - it will intially appear that
247         //  this->fCharIter is adopted, even if that->fCharIter was
248         //  not adopted.  That's ok.
249         fCharIter = that.fCharIter->clone();
250     }
251 
252     if (fData != NULL) {
253         fData->removeReference();
254         fData = NULL;
255     }
256     if (that.fData != NULL) {
257         fData = that.fData->addReference();
258     }
259 
260     return *this;
261 }
262 
263 
264 
265 //-----------------------------------------------------------------------------
266 //
267 //    init()      Shared initialization routine.   Used by all the constructors.
268 //                Initializes all fields, leaving the object in a consistent state.
269 //
270 //-----------------------------------------------------------------------------
init()271 void RuleBasedBreakIterator::init() {
272     UErrorCode  status    = U_ZERO_ERROR;
273     fText                 = utext_openUChars(NULL, NULL, 0, &status);
274     fCharIter             = NULL;
275     fSCharIter            = NULL;
276     fDCharIter            = NULL;
277     fData                 = NULL;
278     fLastRuleStatusIndex  = 0;
279     fLastStatusIndexValid = TRUE;
280     fDictionaryCharCount  = 0;
281     fBreakType            = UBRK_WORD;  // Defaulting BreakType to word gives reasonable
282                                         //   dictionary behavior for Break Iterators that are
283                                         //   built from rules.  Even better would be the ability to
284                                         //   declare the type in the rules.
285 
286     fCachedBreakPositions    = NULL;
287     fLanguageBreakEngines    = NULL;
288     fUnhandledBreakEngine    = NULL;
289     fNumCachedBreakPositions = 0;
290     fPositionInCache         = 0;
291 
292 #ifdef RBBI_DEBUG
293     static UBool debugInitDone = FALSE;
294     if (debugInitDone == FALSE) {
295         char *debugEnv = getenv("U_RBBIDEBUG");
296         if (debugEnv && uprv_strstr(debugEnv, "trace")) {
297             fTrace = TRUE;
298         }
299         debugInitDone = TRUE;
300     }
301 #endif
302 }
303 
304 
305 
306 //-----------------------------------------------------------------------------
307 //
308 //    clone - Returns a newly-constructed RuleBasedBreakIterator with the same
309 //            behavior, and iterating over the same text, as this one.
310 //            Virtual function: does the right thing with subclasses.
311 //
312 //-----------------------------------------------------------------------------
313 BreakIterator*
clone(void) const314 RuleBasedBreakIterator::clone(void) const {
315     return new RuleBasedBreakIterator(*this);
316 }
317 
318 /**
319  * Equality operator.  Returns TRUE if both BreakIterators are of the
320  * same class, have the same behavior, and iterate over the same text.
321  */
322 UBool
operator ==(const BreakIterator & that) const323 RuleBasedBreakIterator::operator==(const BreakIterator& that) const {
324     if (typeid(*this) != typeid(that)) {
325         return FALSE;
326     }
327 
328     const RuleBasedBreakIterator& that2 = (const RuleBasedBreakIterator&) that;
329 
330     if (!utext_equals(fText, that2.fText)) {
331         // The two break iterators are operating on different text,
332         //   or have a different interation position.
333         return FALSE;
334     };
335 
336     // TODO:  need a check for when in a dictionary region at different offsets.
337 
338     if (that2.fData == fData ||
339         (fData != NULL && that2.fData != NULL && *that2.fData == *fData)) {
340             // The two break iterators are using the same rules.
341             return TRUE;
342         }
343     return FALSE;
344 }
345 
346 /**
347  * Compute a hash code for this BreakIterator
348  * @return A hash code
349  */
350 int32_t
hashCode(void) const351 RuleBasedBreakIterator::hashCode(void) const {
352     int32_t   hash = 0;
353     if (fData != NULL) {
354         hash = fData->hashCode();
355     }
356     return hash;
357 }
358 
359 
setText(UText * ut,UErrorCode & status)360 void RuleBasedBreakIterator::setText(UText *ut, UErrorCode &status) {
361     if (U_FAILURE(status)) {
362         return;
363     }
364     reset();
365     fText = utext_clone(fText, ut, FALSE, TRUE, &status);
366 
367     // Set up a dummy CharacterIterator to be returned if anyone
368     //   calls getText().  With input from UText, there is no reasonable
369     //   way to return a characterIterator over the actual input text.
370     //   Return one over an empty string instead - this is the closest
371     //   we can come to signaling a failure.
372     //   (GetText() is obsolete, this failure is sort of OK)
373     if (fDCharIter == NULL) {
374         static const UChar c = 0;
375         fDCharIter = new UCharCharacterIterator(&c, 0);
376         if (fDCharIter == NULL) {
377             status = U_MEMORY_ALLOCATION_ERROR;
378             return;
379         }
380     }
381 
382     if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
383         // existing fCharIter was adopted from the outside.  Delete it now.
384         delete fCharIter;
385     }
386     fCharIter = fDCharIter;
387 
388     this->first();
389 }
390 
391 
getUText(UText * fillIn,UErrorCode & status) const392 UText *RuleBasedBreakIterator::getUText(UText *fillIn, UErrorCode &status) const {
393     UText *result = utext_clone(fillIn, fText, FALSE, TRUE, &status);
394     return result;
395 }
396 
397 
398 
399 /**
400  * Returns the description used to create this iterator
401  */
402 const UnicodeString&
getRules() const403 RuleBasedBreakIterator::getRules() const {
404     if (fData != NULL) {
405         return fData->getRuleSourceString();
406     } else {
407         static const UnicodeString *s;
408         if (s == NULL) {
409             // TODO:  something more elegant here.
410             //        perhaps API should return the string by value.
411             //        Note:  thread unsafe init & leak are semi-ok, better than
412             //               what was before.  Sould be cleaned up, though.
413             s = new UnicodeString;
414         }
415         return *s;
416     }
417 }
418 
419 //=======================================================================
420 // BreakIterator overrides
421 //=======================================================================
422 
423 /**
424  * Return a CharacterIterator over the text being analyzed.
425  */
426 CharacterIterator&
getText() const427 RuleBasedBreakIterator::getText() const {
428     return *fCharIter;
429 }
430 
431 /**
432  * Set the iterator to analyze a new piece of text.  This function resets
433  * the current iteration position to the beginning of the text.
434  * @param newText An iterator over the text to analyze.
435  */
436 void
adoptText(CharacterIterator * newText)437 RuleBasedBreakIterator::adoptText(CharacterIterator* newText) {
438     // If we are holding a CharacterIterator adopted from a
439     //   previous call to this function, delete it now.
440     if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
441         delete fCharIter;
442     }
443 
444     fCharIter = newText;
445     UErrorCode status = U_ZERO_ERROR;
446     reset();
447     if (newText==NULL || newText->startIndex() != 0) {
448         // startIndex !=0 wants to be an error, but there's no way to report it.
449         // Make the iterator text be an empty string.
450         fText = utext_openUChars(fText, NULL, 0, &status);
451     } else {
452         fText = utext_openCharacterIterator(fText, newText, &status);
453     }
454     this->first();
455 }
456 
457 /**
458  * Set the iterator to analyze a new piece of text.  This function resets
459  * the current iteration position to the beginning of the text.
460  * @param newText An iterator over the text to analyze.
461  */
462 void
setText(const UnicodeString & newText)463 RuleBasedBreakIterator::setText(const UnicodeString& newText) {
464     UErrorCode status = U_ZERO_ERROR;
465     reset();
466     fText = utext_openConstUnicodeString(fText, &newText, &status);
467 
468     // Set up a character iterator on the string.
469     //   Needed in case someone calls getText().
470     //  Can not, unfortunately, do this lazily on the (probably never)
471     //  call to getText(), because getText is const.
472     if (fSCharIter == NULL) {
473         fSCharIter = new StringCharacterIterator(newText);
474     } else {
475         fSCharIter->setText(newText);
476     }
477 
478     if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) {
479         // old fCharIter was adopted from the outside.  Delete it.
480         delete fCharIter;
481     }
482     fCharIter = fSCharIter;
483 
484     this->first();
485 }
486 
487 
488 /**
489  *  Provide a new UText for the input text.  Must reference text with contents identical
490  *  to the original.
491  *  Intended for use with text data originating in Java (garbage collected) environments
492  *  where the data may be moved in memory at arbitrary times.
493  */
refreshInputText(UText * input,UErrorCode & status)494 RuleBasedBreakIterator &RuleBasedBreakIterator::refreshInputText(UText *input, UErrorCode &status) {
495     if (U_FAILURE(status)) {
496         return *this;
497     }
498     if (input == NULL) {
499         status = U_ILLEGAL_ARGUMENT_ERROR;
500         return *this;
501     }
502     int64_t pos = utext_getNativeIndex(fText);
503     //  Shallow read-only clone of the new UText into the existing input UText
504     fText = utext_clone(fText, input, FALSE, TRUE, &status);
505     if (U_FAILURE(status)) {
506         return *this;
507     }
508     utext_setNativeIndex(fText, pos);
509     if (utext_getNativeIndex(fText) != pos) {
510         // Sanity check.  The new input utext is supposed to have the exact same
511         // contents as the old.  If we can't set to the same position, it doesn't.
512         // The contents underlying the old utext might be invalid at this point,
513         // so it's not safe to check directly.
514         status = U_ILLEGAL_ARGUMENT_ERROR;
515     }
516     return *this;
517 }
518 
519 
520 /**
521  * Sets the current iteration position to the beginning of the text, position zero.
522  * @return The new iterator position, which is zero.
523  */
first(void)524 int32_t RuleBasedBreakIterator::first(void) {
525     reset();
526     fLastRuleStatusIndex  = 0;
527     fLastStatusIndexValid = TRUE;
528     //if (fText == NULL)
529     //    return BreakIterator::DONE;
530 
531     utext_setNativeIndex(fText, 0);
532     return 0;
533 }
534 
535 /**
536  * Sets the current iteration position to the end of the text.
537  * @return The text's past-the-end offset.
538  */
last(void)539 int32_t RuleBasedBreakIterator::last(void) {
540     reset();
541     if (fText == NULL) {
542         fLastRuleStatusIndex  = 0;
543         fLastStatusIndexValid = TRUE;
544         return BreakIterator::DONE;
545     }
546 
547     fLastStatusIndexValid = FALSE;
548     int32_t pos = (int32_t)utext_nativeLength(fText);
549     utext_setNativeIndex(fText, pos);
550     return pos;
551 }
552 
553 /**
554  * Advances the iterator either forward or backward the specified number of steps.
555  * Negative values move backward, and positive values move forward.  This is
556  * equivalent to repeatedly calling next() or previous().
557  * @param n The number of steps to move.  The sign indicates the direction
558  * (negative is backwards, and positive is forwards).
559  * @return The character offset of the boundary position n boundaries away from
560  * the current one.
561  */
next(int32_t n)562 int32_t RuleBasedBreakIterator::next(int32_t n) {
563     int32_t result = current();
564     while (n > 0) {
565         result = next();
566         --n;
567     }
568     while (n < 0) {
569         result = previous();
570         ++n;
571     }
572     return result;
573 }
574 
575 /**
576  * Advances the iterator to the next boundary position.
577  * @return The position of the first boundary after this one.
578  */
next(void)579 int32_t RuleBasedBreakIterator::next(void) {
580     // if we have cached break positions and we're still in the range
581     // covered by them, just move one step forward in the cache
582     if (fCachedBreakPositions != NULL) {
583         if (fPositionInCache < fNumCachedBreakPositions - 1) {
584             ++fPositionInCache;
585             int32_t pos = fCachedBreakPositions[fPositionInCache];
586             utext_setNativeIndex(fText, pos);
587             return pos;
588         }
589         else {
590             reset();
591         }
592     }
593 
594     int32_t startPos = current();
595     fDictionaryCharCount = 0;
596     int32_t result = handleNext(fData->fForwardTable);
597     if (fDictionaryCharCount > 0) {
598         result = checkDictionary(startPos, result, FALSE);
599     }
600     return result;
601 }
602 
603 /**
604  * Advances the iterator backwards, to the last boundary preceding this one.
605  * @return The position of the last boundary position preceding this one.
606  */
previous(void)607 int32_t RuleBasedBreakIterator::previous(void) {
608     int32_t result;
609     int32_t startPos;
610 
611     // if we have cached break positions and we're still in the range
612     // covered by them, just move one step backward in the cache
613     if (fCachedBreakPositions != NULL) {
614         if (fPositionInCache > 0) {
615             --fPositionInCache;
616             // If we're at the beginning of the cache, need to reevaluate the
617             // rule status
618             if (fPositionInCache <= 0) {
619                 fLastStatusIndexValid = FALSE;
620             }
621             int32_t pos = fCachedBreakPositions[fPositionInCache];
622             utext_setNativeIndex(fText, pos);
623             return pos;
624         }
625         else {
626             reset();
627         }
628     }
629 
630     // if we're already sitting at the beginning of the text, return DONE
631     if (fText == NULL || (startPos = current()) == 0) {
632         fLastRuleStatusIndex  = 0;
633         fLastStatusIndexValid = TRUE;
634         return BreakIterator::DONE;
635     }
636 
637     if (fData->fSafeRevTable != NULL || fData->fSafeFwdTable != NULL) {
638         result = handlePrevious(fData->fReverseTable);
639         if (fDictionaryCharCount > 0) {
640             result = checkDictionary(result, startPos, TRUE);
641         }
642         return result;
643     }
644 
645     // old rule syntax
646     // set things up.  handlePrevious() will back us up to some valid
647     // break position before the current position (we back our internal
648     // iterator up one step to prevent handlePrevious() from returning
649     // the current position), but not necessarily the last one before
650     // where we started
651 
652     int32_t start = current();
653 
654     (void)UTEXT_PREVIOUS32(fText);
655     int32_t lastResult    = handlePrevious(fData->fReverseTable);
656     if (lastResult == UBRK_DONE) {
657         lastResult = 0;
658         utext_setNativeIndex(fText, 0);
659     }
660     result = lastResult;
661     int32_t lastTag       = 0;
662     UBool   breakTagValid = FALSE;
663 
664     // iterate forward from the known break position until we pass our
665     // starting point.  The last break position before the starting
666     // point is our return value
667 
668     for (;;) {
669         result         = next();
670         if (result == BreakIterator::DONE || result >= start) {
671             break;
672         }
673         lastResult     = result;
674         lastTag        = fLastRuleStatusIndex;
675         breakTagValid  = TRUE;
676     }
677 
678     // fLastBreakTag wants to have the value for section of text preceding
679     // the result position that we are to return (in lastResult.)  If
680     // the backwards rules overshot and the above loop had to do two or more
681     // next()s to move up to the desired return position, we will have a valid
682     // tag value. But, if handlePrevious() took us to exactly the correct result position,
683     // we wont have a tag value for that position, which is only set by handleNext().
684 
685     // Set the current iteration position to be the last break position
686     // before where we started, and then return that value.
687     utext_setNativeIndex(fText, lastResult);
688     fLastRuleStatusIndex  = lastTag;       // for use by getRuleStatus()
689     fLastStatusIndexValid = breakTagValid;
690 
691     // No need to check the dictionary; it will have been handled by
692     // next()
693 
694     return lastResult;
695 }
696 
697 /**
698  * Sets the iterator to refer to the first boundary position following
699  * the specified position.
700  * @offset The position from which to begin searching for a break position.
701  * @return The position of the first break after the current position.
702  */
following(int32_t offset)703 int32_t RuleBasedBreakIterator::following(int32_t offset) {
704     // if the offset passed in is already past the end of the text,
705     // just return DONE; if it's before the beginning, return the
706     // text's starting offset
707     if (fText == NULL || offset >= utext_nativeLength(fText)) {
708         last();
709         return next();
710     }
711     else if (offset < 0) {
712         return first();
713     }
714 
715     // Move requested offset to a code point start. It might be on a trail surrogate,
716     // or on a trail byte if the input is UTF-8.
717     utext_setNativeIndex(fText, offset);
718     offset = utext_getNativeIndex(fText);
719 
720     // if we have cached break positions and offset is in the range
721     // covered by them, use them
722     // TODO: could use binary search
723     // TODO: what if offset is outside range, but break is not?
724     if (fCachedBreakPositions != NULL) {
725         if (offset >= fCachedBreakPositions[0]
726                 && offset < fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
727             fPositionInCache = 0;
728             // We are guaranteed not to leave the array due to range test above
729             while (offset >= fCachedBreakPositions[fPositionInCache]) {
730                 ++fPositionInCache;
731             }
732             int32_t pos = fCachedBreakPositions[fPositionInCache];
733             utext_setNativeIndex(fText, pos);
734             return pos;
735         }
736         else {
737             reset();
738         }
739     }
740 
741     // Set our internal iteration position (temporarily)
742     // to the position passed in.  If this is the _beginning_ position,
743     // then we can just use next() to get our return value
744 
745     int32_t result = 0;
746 
747     if (fData->fSafeRevTable != NULL) {
748         // new rule syntax
749         utext_setNativeIndex(fText, offset);
750         // move forward one codepoint to prepare for moving back to a
751         // safe point.
752         // this handles offset being between a supplementary character
753         // TODO: is this still needed, with move to code point boundary handled above?
754         (void)UTEXT_NEXT32(fText);
755         // handlePrevious will move most of the time to < 1 boundary away
756         handlePrevious(fData->fSafeRevTable);
757         int32_t result = next();
758         while (result <= offset) {
759             result = next();
760         }
761         return result;
762     }
763     if (fData->fSafeFwdTable != NULL) {
764         // backup plan if forward safe table is not available
765         utext_setNativeIndex(fText, offset);
766         (void)UTEXT_PREVIOUS32(fText);
767         // handle next will give result >= offset
768         handleNext(fData->fSafeFwdTable);
769         // previous will give result 0 or 1 boundary away from offset,
770         // most of the time
771         // we have to
772         int32_t oldresult = previous();
773         while (oldresult > offset) {
774             int32_t result = previous();
775             if (result <= offset) {
776                 return oldresult;
777             }
778             oldresult = result;
779         }
780         int32_t result = next();
781         if (result <= offset) {
782             return next();
783         }
784         return result;
785     }
786     // otherwise, we have to sync up first.  Use handlePrevious() to back
787     // up to a known break position before the specified position (if
788     // we can determine that the specified position is a break position,
789     // we don't back up at all).  This may or may not be the last break
790     // position at or before our starting position.  Advance forward
791     // from here until we've passed the starting position.  The position
792     // we stop on will be the first break position after the specified one.
793     // old rule syntax
794 
795     utext_setNativeIndex(fText, offset);
796     if (offset==0 ||
797         (offset==1  && utext_getNativeIndex(fText)==0)) {
798         return next();
799     }
800     result = previous();
801 
802     while (result != BreakIterator::DONE && result <= offset) {
803         result = next();
804     }
805 
806     return result;
807 }
808 
809 /**
810  * Sets the iterator to refer to the last boundary position before the
811  * specified position.
812  * @offset The position to begin searching for a break from.
813  * @return The position of the last boundary before the starting position.
814  */
preceding(int32_t offset)815 int32_t RuleBasedBreakIterator::preceding(int32_t offset) {
816     // if the offset passed in is already past the end of the text,
817     // just return DONE; if it's before the beginning, return the
818     // text's starting offset
819     if (fText == NULL || offset > utext_nativeLength(fText)) {
820         return last();
821     }
822     else if (offset < 0) {
823         return first();
824     }
825 
826     // Move requested offset to a code point start. It might be on a trail surrogate,
827     // or on a trail byte if the input is UTF-8.
828     utext_setNativeIndex(fText, offset);
829     offset = utext_getNativeIndex(fText);
830 
831     // if we have cached break positions and offset is in the range
832     // covered by them, use them
833     if (fCachedBreakPositions != NULL) {
834         // TODO: binary search?
835         // TODO: What if offset is outside range, but break is not?
836         if (offset > fCachedBreakPositions[0]
837                 && offset <= fCachedBreakPositions[fNumCachedBreakPositions - 1]) {
838             fPositionInCache = 0;
839             while (fPositionInCache < fNumCachedBreakPositions
840                    && offset > fCachedBreakPositions[fPositionInCache])
841                 ++fPositionInCache;
842             --fPositionInCache;
843             // If we're at the beginning of the cache, need to reevaluate the
844             // rule status
845             if (fPositionInCache <= 0) {
846                 fLastStatusIndexValid = FALSE;
847             }
848             utext_setNativeIndex(fText, fCachedBreakPositions[fPositionInCache]);
849             return fCachedBreakPositions[fPositionInCache];
850         }
851         else {
852             reset();
853         }
854     }
855 
856     // if we start by updating the current iteration position to the
857     // position specified by the caller, we can just use previous()
858     // to carry out this operation
859 
860     if (fData->fSafeFwdTable != NULL) {
861         // new rule syntax
862         utext_setNativeIndex(fText, offset);
863         int32_t newOffset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
864         if (newOffset != offset) {
865             // Will come here if specified offset was not a code point boundary AND
866             //   the underlying implmentation is using UText, which snaps any non-code-point-boundary
867             //   indices to the containing code point.
868             // For breakitereator::preceding only, these non-code-point indices need to be moved
869             //   up to refer to the following codepoint.
870             (void)UTEXT_NEXT32(fText);
871             offset = (int32_t)UTEXT_GETNATIVEINDEX(fText);
872         }
873 
874         // TODO:  (synwee) would it be better to just check for being in the middle of a surrogate pair,
875         //        rather than adjusting the position unconditionally?
876         //        (Change would interact with safe rules.)
877         // TODO:  change RBBI behavior for off-boundary indices to match that of UText?
878         //        affects only preceding(), seems cleaner, but is slightly different.
879         (void)UTEXT_PREVIOUS32(fText);
880         handleNext(fData->fSafeFwdTable);
881         int32_t result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
882         while (result >= offset) {
883             result = previous();
884         }
885         return result;
886     }
887     if (fData->fSafeRevTable != NULL) {
888         // backup plan if forward safe table is not available
889         //  TODO:  check whether this path can be discarded
890         //         It's probably OK to say that rules must supply both safe tables
891         //            if they use safe tables at all.  We have certainly never described
892         //            to anyone how to work with just one safe table.
893         utext_setNativeIndex(fText, offset);
894         (void)UTEXT_NEXT32(fText);
895 
896         // handle previous will give result <= offset
897         handlePrevious(fData->fSafeRevTable);
898 
899         // next will give result 0 or 1 boundary away from offset,
900         // most of the time
901         // we have to
902         int32_t oldresult = next();
903         while (oldresult < offset) {
904             int32_t result = next();
905             if (result >= offset) {
906                 return oldresult;
907             }
908             oldresult = result;
909         }
910         int32_t result = previous();
911         if (result >= offset) {
912             return previous();
913         }
914         return result;
915     }
916 
917     // old rule syntax
918     utext_setNativeIndex(fText, offset);
919     return previous();
920 }
921 
922 /**
923  * Returns true if the specfied position is a boundary position.  As a side
924  * effect, leaves the iterator pointing to the first boundary position at
925  * or after "offset".
926  * @param offset the offset to check.
927  * @return True if "offset" is a boundary position.
928  */
isBoundary(int32_t offset)929 UBool RuleBasedBreakIterator::isBoundary(int32_t offset) {
930     // the beginning index of the iterator is always a boundary position by definition
931     if (offset == 0) {
932         first();       // For side effects on current position, tag values.
933         return TRUE;
934     }
935 
936     if (offset == (int32_t)utext_nativeLength(fText)) {
937         last();       // For side effects on current position, tag values.
938         return TRUE;
939     }
940 
941     // out-of-range indexes are never boundary positions
942     if (offset < 0) {
943         first();       // For side effects on current position, tag values.
944         return FALSE;
945     }
946 
947     if (offset > utext_nativeLength(fText)) {
948         last();        // For side effects on current position, tag values.
949         return FALSE;
950     }
951 
952     // otherwise, we can use following() on the position before the specified
953     // one and return true if the position we get back is the one the user
954     // specified
955     utext_previous32From(fText, offset);
956     int32_t backOne = (int32_t)UTEXT_GETNATIVEINDEX(fText);
957     UBool    result  = following(backOne) == offset;
958     return result;
959 }
960 
961 /**
962  * Returns the current iteration position.
963  * @return The current iteration position.
964  */
current(void) const965 int32_t RuleBasedBreakIterator::current(void) const {
966     int32_t  pos = (int32_t)UTEXT_GETNATIVEINDEX(fText);
967     return pos;
968 }
969 
970 //=======================================================================
971 // implementation
972 //=======================================================================
973 
974 //
975 // RBBIRunMode  -  the state machine runs an extra iteration at the beginning and end
976 //                 of user text.  A variable with this enum type keeps track of where we
977 //                 are.  The state machine only fetches user input while in the RUN mode.
978 //
979 enum RBBIRunMode {
980     RBBI_START,     // state machine processing is before first char of input
981     RBBI_RUN,       // state machine processing is in the user text
982     RBBI_END        // state machine processing is after end of user text.
983 };
984 
985 
986 //-----------------------------------------------------------------------------------
987 //
988 //  handleNext(stateTable)
989 //     This method is the actual implementation of the rbbi next() method.
990 //     This method initializes the state machine to state 1
991 //     and advances through the text character by character until we reach the end
992 //     of the text or the state machine transitions to state 0.  We update our return
993 //     value every time the state machine passes through an accepting state.
994 //
995 //-----------------------------------------------------------------------------------
handleNext(const RBBIStateTable * statetable)996 int32_t RuleBasedBreakIterator::handleNext(const RBBIStateTable *statetable) {
997     int32_t             state;
998     uint16_t            category        = 0;
999     RBBIRunMode         mode;
1000 
1001     RBBIStateTableRow  *row;
1002     UChar32             c;
1003     int32_t             lookaheadStatus = 0;
1004     int32_t             lookaheadTagIdx = 0;
1005     int32_t             result          = 0;
1006     int32_t             initialPosition = 0;
1007     int32_t             lookaheadResult = 0;
1008     UBool               lookAheadHardBreak = (statetable->fFlags & RBBI_LOOKAHEAD_HARD_BREAK) != 0;
1009     const char         *tableData       = statetable->fTableData;
1010     uint32_t            tableRowLen     = statetable->fRowLen;
1011 
1012     #ifdef RBBI_DEBUG
1013         if (fTrace) {
1014             RBBIDebugPuts("Handle Next   pos   char  state category");
1015         }
1016     #endif
1017 
1018     // No matter what, handleNext alway correctly sets the break tag value.
1019     fLastStatusIndexValid = TRUE;
1020     fLastRuleStatusIndex = 0;
1021 
1022     // if we're already at the end of the text, return DONE.
1023     initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1024     result          = initialPosition;
1025     c               = UTEXT_NEXT32(fText);
1026     if (fData == NULL || c==U_SENTINEL) {
1027         return BreakIterator::DONE;
1028     }
1029 
1030     //  Set the initial state for the state machine
1031     state = START_STATE;
1032     row = (RBBIStateTableRow *)
1033             //(statetable->fTableData + (statetable->fRowLen * state));
1034             (tableData + tableRowLen * state);
1035 
1036 
1037     mode     = RBBI_RUN;
1038     if (statetable->fFlags & RBBI_BOF_REQUIRED) {
1039         category = 2;
1040         mode     = RBBI_START;
1041     }
1042 
1043 
1044     // loop until we reach the end of the text or transition to state 0
1045     //
1046     for (;;) {
1047         if (c == U_SENTINEL) {
1048             // Reached end of input string.
1049             if (mode == RBBI_END) {
1050                 // We have already run the loop one last time with the
1051                 //   character set to the psueudo {eof} value.  Now it is time
1052                 //   to unconditionally bail out.
1053                 if (lookaheadResult > result) {
1054                     // We ran off the end of the string with a pending look-ahead match.
1055                     // Treat this as if the look-ahead condition had been met, and return
1056                     //  the match at the / position from the look-ahead rule.
1057                     result               = lookaheadResult;
1058                     fLastRuleStatusIndex = lookaheadTagIdx;
1059                     lookaheadStatus = 0;
1060                 }
1061                 break;
1062             }
1063             // Run the loop one last time with the fake end-of-input character category.
1064             mode = RBBI_END;
1065             category = 1;
1066         }
1067 
1068         //
1069         // Get the char category.  An incoming category of 1 or 2 means that
1070         //      we are preset for doing the beginning or end of input, and
1071         //      that we shouldn't get a category from an actual text input character.
1072         //
1073         if (mode == RBBI_RUN) {
1074             // look up the current character's character category, which tells us
1075             // which column in the state table to look at.
1076             // Note:  the 16 in UTRIE_GET16 refers to the size of the data being returned,
1077             //        not the size of the character going in, which is a UChar32.
1078             //
1079             UTRIE_GET16(&fData->fTrie, c, category);
1080 
1081             // Check the dictionary bit in the character's category.
1082             //    Counter is only used by dictionary based iterators (subclasses).
1083             //    Chars that need to be handled by a dictionary have a flag bit set
1084             //    in their category values.
1085             //
1086             if ((category & 0x4000) != 0)  {
1087                 fDictionaryCharCount++;
1088                 //  And off the dictionary flag bit.
1089                 category &= ~0x4000;
1090             }
1091         }
1092 
1093        #ifdef RBBI_DEBUG
1094             if (fTrace) {
1095                 RBBIDebugPrintf("             %4ld   ", utext_getNativeIndex(fText));
1096                 if (0x20<=c && c<0x7f) {
1097                     RBBIDebugPrintf("\"%c\"  ", c);
1098                 } else {
1099                     RBBIDebugPrintf("%5x  ", c);
1100                 }
1101                 RBBIDebugPrintf("%3d  %3d\n", state, category);
1102             }
1103         #endif
1104 
1105         // State Transition - move machine to its next state
1106         //
1107 
1108         // Note: fNextState is defined as uint16_t[2], but we are casting
1109         // a generated RBBI table to RBBIStateTableRow and some tables
1110         // actually have more than 2 categories.
1111         U_ASSERT(category<fData->fHeader->fCatCount);
1112         state = row->fNextState[category];  /*Not accessing beyond memory*/
1113         row = (RBBIStateTableRow *)
1114             // (statetable->fTableData + (statetable->fRowLen * state));
1115             (tableData + tableRowLen * state);
1116 
1117 
1118         if (row->fAccepting == -1) {
1119             // Match found, common case.
1120             if (mode != RBBI_START) {
1121                 result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1122             }
1123             fLastRuleStatusIndex = row->fTagIdx;   // Remember the break status (tag) values.
1124         }
1125 
1126         if (row->fLookAhead != 0) {
1127             if (lookaheadStatus != 0
1128                 && row->fAccepting == lookaheadStatus) {
1129                 // Lookahead match is completed.
1130                 result               = lookaheadResult;
1131                 fLastRuleStatusIndex = lookaheadTagIdx;
1132                 lookaheadStatus      = 0;
1133                 // TODO:  make a standalone hard break in a rule work.
1134                 if (lookAheadHardBreak) {
1135                     UTEXT_SETNATIVEINDEX(fText, result);
1136                     return result;
1137                 }
1138                 // Look-ahead completed, but other rules may match further.  Continue on
1139                 //  TODO:  junk this feature?  I don't think it's used anywhwere.
1140                 goto continueOn;
1141             }
1142 
1143             int32_t  r = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1144             lookaheadResult = r;
1145             lookaheadStatus = row->fLookAhead;
1146             lookaheadTagIdx = row->fTagIdx;
1147             goto continueOn;
1148         }
1149 
1150 
1151         if (row->fAccepting != 0) {
1152             // Because this is an accepting state, any in-progress look-ahead match
1153             //   is no longer relavant.  Clear out the pending lookahead status.
1154             lookaheadStatus = 0;           // clear out any pending look-ahead match.
1155         }
1156 
1157 continueOn:
1158         if (state == STOP_STATE) {
1159             // This is the normal exit from the lookup state machine.
1160             // We have advanced through the string until it is certain that no
1161             //   longer match is possible, no matter what characters follow.
1162             break;
1163         }
1164 
1165         // Advance to the next character.
1166         // If this is a beginning-of-input loop iteration, don't advance
1167         //    the input position.  The next iteration will be processing the
1168         //    first real input character.
1169         if (mode == RBBI_RUN) {
1170             c = UTEXT_NEXT32(fText);
1171         } else {
1172             if (mode == RBBI_START) {
1173                 mode = RBBI_RUN;
1174             }
1175         }
1176 
1177 
1178     }
1179 
1180     // The state machine is done.  Check whether it found a match...
1181 
1182     // If the iterator failed to advance in the match engine, force it ahead by one.
1183     //   (This really indicates a defect in the break rules.  They should always match
1184     //    at least one character.)
1185     if (result == initialPosition) {
1186         UTEXT_SETNATIVEINDEX(fText, initialPosition);
1187         UTEXT_NEXT32(fText);
1188         result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1189     }
1190 
1191     // Leave the iterator at our result position.
1192     UTEXT_SETNATIVEINDEX(fText, result);
1193     #ifdef RBBI_DEBUG
1194         if (fTrace) {
1195             RBBIDebugPrintf("result = %d\n\n", result);
1196         }
1197     #endif
1198     return result;
1199 }
1200 
1201 
1202 
1203 //-----------------------------------------------------------------------------------
1204 //
1205 //  handlePrevious()
1206 //
1207 //      Iterate backwards, according to the logic of the reverse rules.
1208 //      This version handles the exact style backwards rules.
1209 //
1210 //      The logic of this function is very similar to handleNext(), above.
1211 //
1212 //-----------------------------------------------------------------------------------
handlePrevious(const RBBIStateTable * statetable)1213 int32_t RuleBasedBreakIterator::handlePrevious(const RBBIStateTable *statetable) {
1214     int32_t             state;
1215     uint16_t            category        = 0;
1216     RBBIRunMode         mode;
1217     RBBIStateTableRow  *row;
1218     UChar32             c;
1219     int32_t             lookaheadStatus = 0;
1220     int32_t             result          = 0;
1221     int32_t             initialPosition = 0;
1222     int32_t             lookaheadResult = 0;
1223     UBool               lookAheadHardBreak = (statetable->fFlags & RBBI_LOOKAHEAD_HARD_BREAK) != 0;
1224 
1225     #ifdef RBBI_DEBUG
1226         if (fTrace) {
1227             RBBIDebugPuts("Handle Previous   pos   char  state category");
1228         }
1229     #endif
1230 
1231     // handlePrevious() never gets the rule status.
1232     // Flag the status as invalid; if the user ever asks for status, we will need
1233     // to back up, then re-find the break position using handleNext(), which does
1234     // get the status value.
1235     fLastStatusIndexValid = FALSE;
1236     fLastRuleStatusIndex = 0;
1237 
1238     // if we're already at the start of the text, return DONE.
1239     if (fText == NULL || fData == NULL || UTEXT_GETNATIVEINDEX(fText)==0) {
1240         return BreakIterator::DONE;
1241     }
1242 
1243     //  Set up the starting char.
1244     initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1245     result          = initialPosition;
1246     c               = UTEXT_PREVIOUS32(fText);
1247 
1248     //  Set the initial state for the state machine
1249     state = START_STATE;
1250     row = (RBBIStateTableRow *)
1251             (statetable->fTableData + (statetable->fRowLen * state));
1252     category = 3;
1253     mode     = RBBI_RUN;
1254     if (statetable->fFlags & RBBI_BOF_REQUIRED) {
1255         category = 2;
1256         mode     = RBBI_START;
1257     }
1258 
1259 
1260     // loop until we reach the start of the text or transition to state 0
1261     //
1262     for (;;) {
1263         if (c == U_SENTINEL) {
1264             // Reached end of input string.
1265             if (mode == RBBI_END) {
1266                 // We have already run the loop one last time with the
1267                 //   character set to the psueudo {eof} value.  Now it is time
1268                 //   to unconditionally bail out.
1269                 if (lookaheadResult < result) {
1270                     // We ran off the end of the string with a pending look-ahead match.
1271                     // Treat this as if the look-ahead condition had been met, and return
1272                     //  the match at the / position from the look-ahead rule.
1273                     result               = lookaheadResult;
1274                     lookaheadStatus = 0;
1275                 } else if (result == initialPosition) {
1276                     // Ran off start, no match found.
1277                     // move one index one (towards the start, since we are doing a previous())
1278                     UTEXT_SETNATIVEINDEX(fText, initialPosition);
1279                     (void)UTEXT_PREVIOUS32(fText);   // TODO:  shouldn't be necessary.  We're already at beginning.  Check.
1280                 }
1281                 break;
1282             }
1283             // Run the loop one last time with the fake end-of-input character category.
1284             mode = RBBI_END;
1285             category = 1;
1286         }
1287 
1288         //
1289         // Get the char category.  An incoming category of 1 or 2 means that
1290         //      we are preset for doing the beginning or end of input, and
1291         //      that we shouldn't get a category from an actual text input character.
1292         //
1293         if (mode == RBBI_RUN) {
1294             // look up the current character's character category, which tells us
1295             // which column in the state table to look at.
1296             // Note:  the 16 in UTRIE_GET16 refers to the size of the data being returned,
1297             //        not the size of the character going in, which is a UChar32.
1298             //
1299             UTRIE_GET16(&fData->fTrie, c, category);
1300 
1301             // Check the dictionary bit in the character's category.
1302             //    Counter is only used by dictionary based iterators (subclasses).
1303             //    Chars that need to be handled by a dictionary have a flag bit set
1304             //    in their category values.
1305             //
1306             if ((category & 0x4000) != 0)  {
1307                 fDictionaryCharCount++;
1308                 //  And off the dictionary flag bit.
1309                 category &= ~0x4000;
1310             }
1311         }
1312 
1313         #ifdef RBBI_DEBUG
1314             if (fTrace) {
1315                 RBBIDebugPrintf("             %4d   ", (int32_t)utext_getNativeIndex(fText));
1316                 if (0x20<=c && c<0x7f) {
1317                     RBBIDebugPrintf("\"%c\"  ", c);
1318                 } else {
1319                     RBBIDebugPrintf("%5x  ", c);
1320                 }
1321                 RBBIDebugPrintf("%3d  %3d\n", state, category);
1322             }
1323         #endif
1324 
1325         // State Transition - move machine to its next state
1326         //
1327 
1328         // Note: fNextState is defined as uint16_t[2], but we are casting
1329         // a generated RBBI table to RBBIStateTableRow and some tables
1330         // actually have more than 2 categories.
1331         U_ASSERT(category<fData->fHeader->fCatCount);
1332         state = row->fNextState[category];  /*Not accessing beyond memory*/
1333         row = (RBBIStateTableRow *)
1334             (statetable->fTableData + (statetable->fRowLen * state));
1335 
1336         if (row->fAccepting == -1) {
1337             // Match found, common case.
1338             result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1339         }
1340 
1341         if (row->fLookAhead != 0) {
1342             if (lookaheadStatus != 0
1343                 && row->fAccepting == lookaheadStatus) {
1344                 // Lookahead match is completed.
1345                 result               = lookaheadResult;
1346                 lookaheadStatus      = 0;
1347                 // TODO:  make a standalone hard break in a rule work.
1348                 if (lookAheadHardBreak) {
1349                     UTEXT_SETNATIVEINDEX(fText, result);
1350                     return result;
1351                 }
1352                 // Look-ahead completed, but other rules may match further.  Continue on
1353                 //  TODO:  junk this feature?  I don't think it's used anywhwere.
1354                 goto continueOn;
1355             }
1356 
1357             int32_t  r = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1358             lookaheadResult = r;
1359             lookaheadStatus = row->fLookAhead;
1360             goto continueOn;
1361         }
1362 
1363 
1364         if (row->fAccepting != 0) {
1365             // Because this is an accepting state, any in-progress look-ahead match
1366             //   is no longer relavant.  Clear out the pending lookahead status.
1367             lookaheadStatus = 0;
1368         }
1369 
1370 continueOn:
1371         if (state == STOP_STATE) {
1372             // This is the normal exit from the lookup state machine.
1373             // We have advanced through the string until it is certain that no
1374             //   longer match is possible, no matter what characters follow.
1375             break;
1376         }
1377 
1378         // Move (backwards) to the next character to process.
1379         // If this is a beginning-of-input loop iteration, don't advance
1380         //    the input position.  The next iteration will be processing the
1381         //    first real input character.
1382         if (mode == RBBI_RUN) {
1383             c = UTEXT_PREVIOUS32(fText);
1384         } else {
1385             if (mode == RBBI_START) {
1386                 mode = RBBI_RUN;
1387             }
1388         }
1389     }
1390 
1391     // The state machine is done.  Check whether it found a match...
1392 
1393     // If the iterator failed to advance in the match engine, force it ahead by one.
1394     //   (This really indicates a defect in the break rules.  They should always match
1395     //    at least one character.)
1396     if (result == initialPosition) {
1397         UTEXT_SETNATIVEINDEX(fText, initialPosition);
1398         UTEXT_PREVIOUS32(fText);
1399         result = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1400     }
1401 
1402     // Leave the iterator at our result position.
1403     UTEXT_SETNATIVEINDEX(fText, result);
1404     #ifdef RBBI_DEBUG
1405         if (fTrace) {
1406             RBBIDebugPrintf("result = %d\n\n", result);
1407         }
1408     #endif
1409     return result;
1410 }
1411 
1412 
1413 void
reset()1414 RuleBasedBreakIterator::reset()
1415 {
1416     if (fCachedBreakPositions) {
1417         uprv_free(fCachedBreakPositions);
1418     }
1419     fCachedBreakPositions = NULL;
1420     fNumCachedBreakPositions = 0;
1421     fDictionaryCharCount = 0;
1422     fPositionInCache = 0;
1423 }
1424 
1425 
1426 
1427 //-------------------------------------------------------------------------------
1428 //
1429 //   getRuleStatus()   Return the break rule tag associated with the current
1430 //                     iterator position.  If the iterator arrived at its current
1431 //                     position by iterating forwards, the value will have been
1432 //                     cached by the handleNext() function.
1433 //
1434 //                     If no cached status value is available, the status is
1435 //                     found by doing a previous() followed by a next(), which
1436 //                     leaves the iterator where it started, and computes the
1437 //                     status while doing the next().
1438 //
1439 //-------------------------------------------------------------------------------
makeRuleStatusValid()1440 void RuleBasedBreakIterator::makeRuleStatusValid() {
1441     if (fLastStatusIndexValid == FALSE) {
1442         //  No cached status is available.
1443         if (fText == NULL || current() == 0) {
1444             //  At start of text, or there is no text.  Status is always zero.
1445             fLastRuleStatusIndex = 0;
1446             fLastStatusIndexValid = TRUE;
1447         } else {
1448             //  Not at start of text.  Find status the tedious way.
1449             int32_t pa = current();
1450             previous();
1451             if (fNumCachedBreakPositions > 0) {
1452                 reset();                // Blow off the dictionary cache
1453             }
1454             int32_t pb = next();
1455             if (pa != pb) {
1456                 // note: the if (pa != pb) test is here only to eliminate warnings for
1457                 //       unused local variables on gcc.  Logically, it isn't needed.
1458                 U_ASSERT(pa == pb);
1459             }
1460         }
1461     }
1462     U_ASSERT(fLastRuleStatusIndex >= 0  &&  fLastRuleStatusIndex < fData->fStatusMaxIdx);
1463 }
1464 
1465 
getRuleStatus() const1466 int32_t  RuleBasedBreakIterator::getRuleStatus() const {
1467     RuleBasedBreakIterator *nonConstThis  = (RuleBasedBreakIterator *)this;
1468     nonConstThis->makeRuleStatusValid();
1469 
1470     // fLastRuleStatusIndex indexes to the start of the appropriate status record
1471     //                                                 (the number of status values.)
1472     //   This function returns the last (largest) of the array of status values.
1473     int32_t  idx = fLastRuleStatusIndex + fData->fRuleStatusTable[fLastRuleStatusIndex];
1474     int32_t  tagVal = fData->fRuleStatusTable[idx];
1475 
1476     return tagVal;
1477 }
1478 
1479 
1480 
1481 
getRuleStatusVec(int32_t * fillInVec,int32_t capacity,UErrorCode & status)1482 int32_t RuleBasedBreakIterator::getRuleStatusVec(
1483              int32_t *fillInVec, int32_t capacity, UErrorCode &status)
1484 {
1485     if (U_FAILURE(status)) {
1486         return 0;
1487     }
1488 
1489     RuleBasedBreakIterator *nonConstThis  = (RuleBasedBreakIterator *)this;
1490     nonConstThis->makeRuleStatusValid();
1491     int32_t  numVals = fData->fRuleStatusTable[fLastRuleStatusIndex];
1492     int32_t  numValsToCopy = numVals;
1493     if (numVals > capacity) {
1494         status = U_BUFFER_OVERFLOW_ERROR;
1495         numValsToCopy = capacity;
1496     }
1497     int i;
1498     for (i=0; i<numValsToCopy; i++) {
1499         fillInVec[i] = fData->fRuleStatusTable[fLastRuleStatusIndex + i + 1];
1500     }
1501     return numVals;
1502 }
1503 
1504 
1505 
1506 //-------------------------------------------------------------------------------
1507 //
1508 //   getBinaryRules        Access to the compiled form of the rules,
1509 //                         for use by build system tools that save the data
1510 //                         for standard iterator types.
1511 //
1512 //-------------------------------------------------------------------------------
getBinaryRules(uint32_t & length)1513 const uint8_t  *RuleBasedBreakIterator::getBinaryRules(uint32_t &length) {
1514     const uint8_t  *retPtr = NULL;
1515     length = 0;
1516 
1517     if (fData != NULL) {
1518         retPtr = (const uint8_t *)fData->fHeader;
1519         length = fData->fHeader->fLength;
1520     }
1521     return retPtr;
1522 }
1523 
1524 
createBufferClone(void *,int32_t & bufferSize,UErrorCode & status)1525 BreakIterator *  RuleBasedBreakIterator::createBufferClone(void * /*stackBuffer*/,
1526                                    int32_t &bufferSize,
1527                                    UErrorCode &status)
1528 {
1529     if (U_FAILURE(status)){
1530         return NULL;
1531     }
1532 
1533     if (bufferSize == 0) {
1534         bufferSize = 1;  // preflighting for deprecated functionality
1535         return NULL;
1536     }
1537 
1538     BreakIterator *clonedBI = clone();
1539     if (clonedBI == NULL) {
1540         status = U_MEMORY_ALLOCATION_ERROR;
1541     } else {
1542         status = U_SAFECLONE_ALLOCATED_WARNING;
1543     }
1544     return (RuleBasedBreakIterator *)clonedBI;
1545 }
1546 
1547 
1548 //-------------------------------------------------------------------------------
1549 //
1550 //  isDictionaryChar      Return true if the category lookup for this char
1551 //                        indicates that it is in the set of dictionary lookup
1552 //                        chars.
1553 //
1554 //                        This function is intended for use by dictionary based
1555 //                        break iterators.
1556 //
1557 //-------------------------------------------------------------------------------
1558 /*UBool RuleBasedBreakIterator::isDictionaryChar(UChar32   c) {
1559     if (fData == NULL) {
1560         return FALSE;
1561     }
1562     uint16_t category;
1563     UTRIE_GET16(&fData->fTrie, c, category);
1564     return (category & 0x4000) != 0;
1565 }*/
1566 
1567 
1568 //-------------------------------------------------------------------------------
1569 //
1570 //  checkDictionary       This function handles all processing of characters in
1571 //                        the "dictionary" set. It will determine the appropriate
1572 //                        course of action, and possibly set up a cache in the
1573 //                        process.
1574 //
1575 //-------------------------------------------------------------------------------
checkDictionary(int32_t startPos,int32_t endPos,UBool reverse)1576 int32_t RuleBasedBreakIterator::checkDictionary(int32_t startPos,
1577                             int32_t endPos,
1578                             UBool reverse) {
1579     // Reset the old break cache first.
1580     reset();
1581 
1582     // note: code segment below assumes that dictionary chars are in the
1583     // startPos-endPos range
1584     // value returned should be next character in sequence
1585     if ((endPos - startPos) <= 1) {
1586         return (reverse ? startPos : endPos);
1587     }
1588 
1589     // Starting from the starting point, scan towards the proposed result,
1590     // looking for the first dictionary character (which may be the one
1591     // we're on, if we're starting in the middle of a range).
1592     utext_setNativeIndex(fText, reverse ? endPos : startPos);
1593     if (reverse) {
1594         UTEXT_PREVIOUS32(fText);
1595     }
1596 
1597     int32_t rangeStart = startPos;
1598     int32_t rangeEnd = endPos;
1599 
1600     uint16_t    category;
1601     int32_t     current;
1602     UErrorCode  status = U_ZERO_ERROR;
1603     UStack      breaks(status);
1604     int32_t     foundBreakCount = 0;
1605     UChar32     c = utext_current32(fText);
1606 
1607     UTRIE_GET16(&fData->fTrie, c, category);
1608 
1609     // Is the character we're starting on a dictionary character? If so, we
1610     // need to back up to include the entire run; otherwise the results of
1611     // the break algorithm will differ depending on where we start. Since
1612     // the result is cached and there is typically a non-dictionary break
1613     // within a small number of words, there should be little performance impact.
1614     if (category & 0x4000) {
1615         if (reverse) {
1616             do {
1617                 utext_next32(fText);          // TODO:  recast to work directly with postincrement.
1618                 c = utext_current32(fText);
1619                 UTRIE_GET16(&fData->fTrie, c, category);
1620             } while (c != U_SENTINEL && (category & 0x4000));
1621             // Back up to the last dictionary character
1622             rangeEnd = (int32_t)UTEXT_GETNATIVEINDEX(fText);
1623             if (c == U_SENTINEL) {
1624                 // c = fText->last32();
1625                 //   TODO:  why was this if needed?
1626                 c = UTEXT_PREVIOUS32(fText);
1627             }
1628             else {
1629                 c = UTEXT_PREVIOUS32(fText);
1630             }
1631         }
1632         else {
1633             do {
1634                 c = UTEXT_PREVIOUS32(fText);
1635                 UTRIE_GET16(&fData->fTrie, c, category);
1636             }
1637             while (c != U_SENTINEL && (category & 0x4000));
1638             // Back up to the last dictionary character
1639             if (c == U_SENTINEL) {
1640                 // c = fText->first32();
1641                 c = utext_current32(fText);
1642             }
1643             else {
1644                 utext_next32(fText);
1645                 c = utext_current32(fText);
1646             }
1647             rangeStart = (int32_t)UTEXT_GETNATIVEINDEX(fText);;
1648         }
1649         UTRIE_GET16(&fData->fTrie, c, category);
1650     }
1651 
1652     // Loop through the text, looking for ranges of dictionary characters.
1653     // For each span, find the appropriate break engine, and ask it to find
1654     // any breaks within the span.
1655     // Note: we always do this in the forward direction, so that the break
1656     // cache is built in the right order.
1657     if (reverse) {
1658         utext_setNativeIndex(fText, rangeStart);
1659         c = utext_current32(fText);
1660         UTRIE_GET16(&fData->fTrie, c, category);
1661     }
1662     while(U_SUCCESS(status)) {
1663         while((current = (int32_t)UTEXT_GETNATIVEINDEX(fText)) < rangeEnd && (category & 0x4000) == 0) {
1664             utext_next32(fText);           // TODO:  tweak for post-increment operation
1665             c = utext_current32(fText);
1666             UTRIE_GET16(&fData->fTrie, c, category);
1667         }
1668         if (current >= rangeEnd) {
1669             break;
1670         }
1671 
1672         // We now have a dictionary character. Get the appropriate language object
1673         // to deal with it.
1674         const LanguageBreakEngine *lbe = getLanguageBreakEngine(c);
1675 
1676         // Ask the language object if there are any breaks. It will leave the text
1677         // pointer on the other side of its range, ready to search for the next one.
1678         if (lbe != NULL) {
1679             foundBreakCount += lbe->findBreaks(fText, rangeStart, rangeEnd, FALSE, fBreakType, breaks);
1680         }
1681 
1682         // Reload the loop variables for the next go-round
1683         c = utext_current32(fText);
1684         UTRIE_GET16(&fData->fTrie, c, category);
1685     }
1686 
1687     // If we found breaks, build a new break cache. The first and last entries must
1688     // be the original starting and ending position.
1689     if (foundBreakCount > 0) {
1690         U_ASSERT(foundBreakCount == breaks.size());
1691         int32_t totalBreaks = foundBreakCount;
1692         if (startPos < breaks.elementAti(0)) {
1693             totalBreaks += 1;
1694         }
1695         if (endPos > breaks.peeki()) {
1696             totalBreaks += 1;
1697         }
1698         fCachedBreakPositions = (int32_t *)uprv_malloc(totalBreaks * sizeof(int32_t));
1699         if (fCachedBreakPositions != NULL) {
1700             int32_t out = 0;
1701             fNumCachedBreakPositions = totalBreaks;
1702             if (startPos < breaks.elementAti(0)) {
1703                 fCachedBreakPositions[out++] = startPos;
1704             }
1705             for (int32_t i = 0; i < foundBreakCount; ++i) {
1706                 fCachedBreakPositions[out++] = breaks.elementAti(i);
1707             }
1708             if (endPos > fCachedBreakPositions[out-1]) {
1709                 fCachedBreakPositions[out] = endPos;
1710             }
1711             // If there are breaks, then by definition, we are replacing the original
1712             // proposed break by one of the breaks we found. Use following() and
1713             // preceding() to do the work. They should never recurse in this case.
1714             if (reverse) {
1715                 return preceding(endPos);
1716             }
1717             else {
1718                 return following(startPos);
1719             }
1720         }
1721         // If the allocation failed, just fall through to the "no breaks found" case.
1722     }
1723 
1724     // If we get here, there were no language-based breaks. Set the text pointer
1725     // to the original proposed break.
1726     utext_setNativeIndex(fText, reverse ? startPos : endPos);
1727     return (reverse ? startPos : endPos);
1728 }
1729 
1730 U_NAMESPACE_END
1731 
1732 
1733 static icu::UStack *gLanguageBreakFactories = NULL;
1734 static icu::UInitOnce gLanguageBreakFactoriesInitOnce = U_INITONCE_INITIALIZER;
1735 
1736 /**
1737  * Release all static memory held by breakiterator.
1738  */
1739 U_CDECL_BEGIN
breakiterator_cleanup_dict(void)1740 static UBool U_CALLCONV breakiterator_cleanup_dict(void) {
1741     if (gLanguageBreakFactories) {
1742         delete gLanguageBreakFactories;
1743         gLanguageBreakFactories = NULL;
1744     }
1745     gLanguageBreakFactoriesInitOnce.reset();
1746     return TRUE;
1747 }
1748 U_CDECL_END
1749 
1750 U_CDECL_BEGIN
_deleteFactory(void * obj)1751 static void U_CALLCONV _deleteFactory(void *obj) {
1752     delete (icu::LanguageBreakFactory *) obj;
1753 }
1754 U_CDECL_END
1755 U_NAMESPACE_BEGIN
1756 
initLanguageFactories()1757 static void U_CALLCONV initLanguageFactories() {
1758     UErrorCode status = U_ZERO_ERROR;
1759     U_ASSERT(gLanguageBreakFactories == NULL);
1760     gLanguageBreakFactories = new UStack(_deleteFactory, NULL, status);
1761     if (gLanguageBreakFactories != NULL && U_SUCCESS(status)) {
1762         ICULanguageBreakFactory *builtIn = new ICULanguageBreakFactory(status);
1763         gLanguageBreakFactories->push(builtIn, status);
1764 #ifdef U_LOCAL_SERVICE_HOOK
1765         LanguageBreakFactory *extra = (LanguageBreakFactory *)uprv_svc_hook("languageBreakFactory", &status);
1766         if (extra != NULL) {
1767             gLanguageBreakFactories->push(extra, status);
1768         }
1769 #endif
1770     }
1771     ucln_common_registerCleanup(UCLN_COMMON_BREAKITERATOR_DICT, breakiterator_cleanup_dict);
1772 }
1773 
1774 
1775 static const LanguageBreakEngine*
getLanguageBreakEngineFromFactory(UChar32 c,int32_t breakType)1776 getLanguageBreakEngineFromFactory(UChar32 c, int32_t breakType)
1777 {
1778     umtx_initOnce(gLanguageBreakFactoriesInitOnce, &initLanguageFactories);
1779     if (gLanguageBreakFactories == NULL) {
1780         return NULL;
1781     }
1782 
1783     int32_t i = gLanguageBreakFactories->size();
1784     const LanguageBreakEngine *lbe = NULL;
1785     while (--i >= 0) {
1786         LanguageBreakFactory *factory = (LanguageBreakFactory *)(gLanguageBreakFactories->elementAt(i));
1787         lbe = factory->getEngineFor(c, breakType);
1788         if (lbe != NULL) {
1789             break;
1790         }
1791     }
1792     return lbe;
1793 }
1794 
1795 
1796 //-------------------------------------------------------------------------------
1797 //
1798 //  getLanguageBreakEngine  Find an appropriate LanguageBreakEngine for the
1799 //                          the character c.
1800 //
1801 //-------------------------------------------------------------------------------
1802 const LanguageBreakEngine *
getLanguageBreakEngine(UChar32 c)1803 RuleBasedBreakIterator::getLanguageBreakEngine(UChar32 c) {
1804     const LanguageBreakEngine *lbe = NULL;
1805     UErrorCode status = U_ZERO_ERROR;
1806 
1807     if (fLanguageBreakEngines == NULL) {
1808         fLanguageBreakEngines = new UStack(status);
1809         if (fLanguageBreakEngines == NULL || U_FAILURE(status)) {
1810             delete fLanguageBreakEngines;
1811             fLanguageBreakEngines = 0;
1812             return NULL;
1813         }
1814     }
1815 
1816     int32_t i = fLanguageBreakEngines->size();
1817     while (--i >= 0) {
1818         lbe = (const LanguageBreakEngine *)(fLanguageBreakEngines->elementAt(i));
1819         if (lbe->handles(c, fBreakType)) {
1820             return lbe;
1821         }
1822     }
1823 
1824     // No existing dictionary took the character. See if a factory wants to
1825     // give us a new LanguageBreakEngine for this character.
1826     lbe = getLanguageBreakEngineFromFactory(c, fBreakType);
1827 
1828     // If we got one, use it and push it on our stack.
1829     if (lbe != NULL) {
1830         fLanguageBreakEngines->push((void *)lbe, status);
1831         // Even if we can't remember it, we can keep looking it up, so
1832         // return it even if the push fails.
1833         return lbe;
1834     }
1835 
1836     // No engine is forthcoming for this character. Add it to the
1837     // reject set. Create the reject break engine if needed.
1838     if (fUnhandledBreakEngine == NULL) {
1839         fUnhandledBreakEngine = new UnhandledEngine(status);
1840         if (U_SUCCESS(status) && fUnhandledBreakEngine == NULL) {
1841             status = U_MEMORY_ALLOCATION_ERROR;
1842         }
1843         // Put it last so that scripts for which we have an engine get tried
1844         // first.
1845         fLanguageBreakEngines->insertElementAt(fUnhandledBreakEngine, 0, status);
1846         // If we can't insert it, or creation failed, get rid of it
1847         if (U_FAILURE(status)) {
1848             delete fUnhandledBreakEngine;
1849             fUnhandledBreakEngine = 0;
1850             return NULL;
1851         }
1852     }
1853 
1854     // Tell the reject engine about the character; at its discretion, it may
1855     // add more than just the one character.
1856     fUnhandledBreakEngine->handleCharacter(c, fBreakType);
1857 
1858     return fUnhandledBreakEngine;
1859 }
1860 
1861 
1862 
1863 /*int32_t RuleBasedBreakIterator::getBreakType() const {
1864     return fBreakType;
1865 }*/
1866 
setBreakType(int32_t type)1867 void RuleBasedBreakIterator::setBreakType(int32_t type) {
1868     fBreakType = type;
1869     reset();
1870 }
1871 
1872 U_NAMESPACE_END
1873 
1874 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */
1875