1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 ******************************************************************************
5 *   Copyright (C) 1997-2015, International Business Machines
6 *   Corporation and others.  All Rights Reserved.
7 ******************************************************************************
8 *   file name:  nfsubs.cpp
9 *   encoding:   UTF-8
10 *   tab size:   8 (not used)
11 *   indentation:4
12 *
13 * Modification history
14 * Date        Name      Comments
15 * 10/11/2001  Doug      Ported from ICU4J
16 */
17 
18 #include <stdio.h>
19 #include "utypeinfo.h"  // for 'typeid' to work
20 
21 #include "nfsubs.h"
22 #include "fmtableimp.h"
23 #include "putilimp.h"
24 #include "number_decimalquantity.h"
25 
26 #if U_HAVE_RBNF
27 
28 static const UChar gLessThan = 0x003c;
29 static const UChar gEquals = 0x003d;
30 static const UChar gGreaterThan = 0x003e;
31 static const UChar gPercent = 0x0025;
32 static const UChar gPound = 0x0023;
33 static const UChar gZero = 0x0030;
34 static const UChar gSpace = 0x0020;
35 
36 static const UChar gEqualsEquals[] =
37 {
38     0x3D, 0x3D, 0
39 }; /* "==" */
40 static const UChar gGreaterGreaterGreaterThan[] =
41 {
42     0x3E, 0x3E, 0x3E, 0
43 }; /* ">>>" */
44 static const UChar gGreaterGreaterThan[] =
45 {
46     0x3E, 0x3E, 0
47 }; /* ">>" */
48 
49 U_NAMESPACE_BEGIN
50 
51 using number::impl::DecimalQuantity;
52 
53 class SameValueSubstitution : public NFSubstitution {
54 public:
55     SameValueSubstitution(int32_t pos,
56         const NFRuleSet* ruleset,
57         const UnicodeString& description,
58         UErrorCode& status);
59     virtual ~SameValueSubstitution();
60 
transformNumber(int64_t number) const61     virtual int64_t transformNumber(int64_t number) const { return number; }
transformNumber(double number) const62     virtual double transformNumber(double number) const { return number; }
composeRuleValue(double newRuleValue,double) const63     virtual double composeRuleValue(double newRuleValue, double /*oldRuleValue*/) const { return newRuleValue; }
calcUpperBound(double oldUpperBound) const64     virtual double calcUpperBound(double oldUpperBound) const { return oldUpperBound; }
tokenChar() const65     virtual UChar tokenChar() const { return (UChar)0x003d; } // '='
66 
67 public:
68     static UClassID getStaticClassID(void);
69     virtual UClassID getDynamicClassID(void) const;
70 };
71 
~SameValueSubstitution()72 SameValueSubstitution::~SameValueSubstitution() {}
73 
74 class MultiplierSubstitution : public NFSubstitution {
75     int64_t divisor;
76 
77 public:
MultiplierSubstitution(int32_t _pos,const NFRule * rule,const NFRuleSet * _ruleSet,const UnicodeString & description,UErrorCode & status)78     MultiplierSubstitution(int32_t _pos,
79         const NFRule *rule,
80         const NFRuleSet* _ruleSet,
81         const UnicodeString& description,
82         UErrorCode& status)
83         : NFSubstitution(_pos, _ruleSet, description, status), divisor(rule->getDivisor())
84     {
85         if (divisor == 0) {
86             status = U_PARSE_ERROR;
87         }
88     }
89     virtual ~MultiplierSubstitution();
90 
setDivisor(int32_t radix,int16_t exponent,UErrorCode & status)91     virtual void setDivisor(int32_t radix, int16_t exponent, UErrorCode& status) {
92         divisor = util64_pow(radix, exponent);
93 
94         if(divisor == 0) {
95             status = U_PARSE_ERROR;
96         }
97     }
98 
99     virtual UBool operator==(const NFSubstitution& rhs) const;
100 
transformNumber(int64_t number) const101     virtual int64_t transformNumber(int64_t number) const {
102         return number / divisor;
103     }
104 
transformNumber(double number) const105     virtual double transformNumber(double number) const {
106         if (getRuleSet()) {
107             return uprv_floor(number / divisor);
108         } else {
109             return number / divisor;
110         }
111     }
112 
composeRuleValue(double newRuleValue,double) const113     virtual double composeRuleValue(double newRuleValue, double /*oldRuleValue*/) const {
114         return newRuleValue * divisor;
115     }
116 
calcUpperBound(double) const117     virtual double calcUpperBound(double /*oldUpperBound*/) const { return static_cast<double>(divisor); }
118 
tokenChar() const119     virtual UChar tokenChar() const { return (UChar)0x003c; } // '<'
120 
121 public:
122     static UClassID getStaticClassID(void);
123     virtual UClassID getDynamicClassID(void) const;
124 };
125 
~MultiplierSubstitution()126 MultiplierSubstitution::~MultiplierSubstitution() {}
127 
128 class ModulusSubstitution : public NFSubstitution {
129     int64_t  divisor;
130     const NFRule* ruleToUse;
131 public:
132     ModulusSubstitution(int32_t pos,
133         const NFRule* rule,
134         const NFRule* rulePredecessor,
135         const NFRuleSet* ruleSet,
136         const UnicodeString& description,
137         UErrorCode& status);
138     virtual ~ModulusSubstitution();
139 
setDivisor(int32_t radix,int16_t exponent,UErrorCode & status)140     virtual void setDivisor(int32_t radix, int16_t exponent, UErrorCode& status) {
141         divisor = util64_pow(radix, exponent);
142 
143         if (divisor == 0) {
144             status = U_PARSE_ERROR;
145         }
146     }
147 
148     virtual UBool operator==(const NFSubstitution& rhs) const;
149 
150     virtual void doSubstitution(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const;
151     virtual void doSubstitution(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const;
152 
transformNumber(int64_t number) const153     virtual int64_t transformNumber(int64_t number) const { return number % divisor; }
transformNumber(double number) const154     virtual double transformNumber(double number) const { return uprv_fmod(number, static_cast<double>(divisor)); }
155 
156     virtual UBool doParse(const UnicodeString& text,
157         ParsePosition& parsePosition,
158         double baseValue,
159         double upperBound,
160         UBool lenientParse,
161         uint32_t nonNumericalExecutedRuleMask,
162         Formattable& result) const;
163 
composeRuleValue(double newRuleValue,double oldRuleValue) const164     virtual double composeRuleValue(double newRuleValue, double oldRuleValue) const {
165         return oldRuleValue - uprv_fmod(oldRuleValue, static_cast<double>(divisor)) + newRuleValue;
166     }
167 
calcUpperBound(double) const168     virtual double calcUpperBound(double /*oldUpperBound*/) const { return static_cast<double>(divisor); }
169 
isModulusSubstitution() const170     virtual UBool isModulusSubstitution() const { return TRUE; }
171 
tokenChar() const172     virtual UChar tokenChar() const { return (UChar)0x003e; } // '>'
173 
174 	virtual void toString(UnicodeString& result) const;
175 
176 public:
177     static UClassID getStaticClassID(void);
178     virtual UClassID getDynamicClassID(void) const;
179 };
180 
~ModulusSubstitution()181 ModulusSubstitution::~ModulusSubstitution() {}
182 
183 class IntegralPartSubstitution : public NFSubstitution {
184 public:
IntegralPartSubstitution(int32_t _pos,const NFRuleSet * _ruleSet,const UnicodeString & description,UErrorCode & status)185     IntegralPartSubstitution(int32_t _pos,
186         const NFRuleSet* _ruleSet,
187         const UnicodeString& description,
188         UErrorCode& status)
189         : NFSubstitution(_pos, _ruleSet, description, status) {}
190     virtual ~IntegralPartSubstitution();
191 
transformNumber(int64_t number) const192     virtual int64_t transformNumber(int64_t number) const { return number; }
transformNumber(double number) const193     virtual double transformNumber(double number) const { return uprv_floor(number); }
composeRuleValue(double newRuleValue,double oldRuleValue) const194     virtual double composeRuleValue(double newRuleValue, double oldRuleValue) const { return newRuleValue + oldRuleValue; }
calcUpperBound(double) const195     virtual double calcUpperBound(double /*oldUpperBound*/) const { return DBL_MAX; }
tokenChar() const196     virtual UChar tokenChar() const { return (UChar)0x003c; } // '<'
197 
198 public:
199     static UClassID getStaticClassID(void);
200     virtual UClassID getDynamicClassID(void) const;
201 };
202 
~IntegralPartSubstitution()203 IntegralPartSubstitution::~IntegralPartSubstitution() {}
204 
205 class FractionalPartSubstitution : public NFSubstitution {
206     UBool byDigits;
207     UBool useSpaces;
208     enum { kMaxDecimalDigits = 8 };
209 public:
210     FractionalPartSubstitution(int32_t pos,
211         const NFRuleSet* ruleSet,
212         const UnicodeString& description,
213         UErrorCode& status);
214     virtual ~FractionalPartSubstitution();
215 
216     virtual UBool operator==(const NFSubstitution& rhs) const;
217 
218     virtual void doSubstitution(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const;
doSubstitution(int64_t,UnicodeString &,int32_t,int32_t,UErrorCode &) const219     virtual void doSubstitution(int64_t /*number*/, UnicodeString& /*toInsertInto*/, int32_t /*_pos*/, int32_t /*recursionCount*/, UErrorCode& /*status*/) const {}
transformNumber(int64_t) const220     virtual int64_t transformNumber(int64_t /*number*/) const { return 0; }
transformNumber(double number) const221     virtual double transformNumber(double number) const { return number - uprv_floor(number); }
222 
223     virtual UBool doParse(const UnicodeString& text,
224         ParsePosition& parsePosition,
225         double baseValue,
226         double upperBound,
227         UBool lenientParse,
228         uint32_t nonNumericalExecutedRuleMask,
229         Formattable& result) const;
230 
composeRuleValue(double newRuleValue,double oldRuleValue) const231     virtual double composeRuleValue(double newRuleValue, double oldRuleValue) const { return newRuleValue + oldRuleValue; }
calcUpperBound(double) const232     virtual double calcUpperBound(double /*oldUpperBound*/) const { return 0.0; }
tokenChar() const233     virtual UChar tokenChar() const { return (UChar)0x003e; } // '>'
234 
235 public:
236     static UClassID getStaticClassID(void);
237     virtual UClassID getDynamicClassID(void) const;
238 };
239 
~FractionalPartSubstitution()240 FractionalPartSubstitution::~FractionalPartSubstitution() {}
241 
242 class AbsoluteValueSubstitution : public NFSubstitution {
243 public:
AbsoluteValueSubstitution(int32_t _pos,const NFRuleSet * _ruleSet,const UnicodeString & description,UErrorCode & status)244     AbsoluteValueSubstitution(int32_t _pos,
245         const NFRuleSet* _ruleSet,
246         const UnicodeString& description,
247         UErrorCode& status)
248         : NFSubstitution(_pos, _ruleSet, description, status) {}
249     virtual ~AbsoluteValueSubstitution();
250 
transformNumber(int64_t number) const251     virtual int64_t transformNumber(int64_t number) const { return number >= 0 ? number : -number; }
transformNumber(double number) const252     virtual double transformNumber(double number) const { return uprv_fabs(number); }
composeRuleValue(double newRuleValue,double) const253     virtual double composeRuleValue(double newRuleValue, double /*oldRuleValue*/) const { return -newRuleValue; }
calcUpperBound(double) const254     virtual double calcUpperBound(double /*oldUpperBound*/) const { return DBL_MAX; }
tokenChar() const255     virtual UChar tokenChar() const { return (UChar)0x003e; } // '>'
256 
257 public:
258     static UClassID getStaticClassID(void);
259     virtual UClassID getDynamicClassID(void) const;
260 };
261 
~AbsoluteValueSubstitution()262 AbsoluteValueSubstitution::~AbsoluteValueSubstitution() {}
263 
264 class NumeratorSubstitution : public NFSubstitution {
265     double denominator;
266     int64_t ldenominator;
267     UBool withZeros;
268 public:
fixdesc(const UnicodeString & desc)269     static inline UnicodeString fixdesc(const UnicodeString& desc) {
270         if (desc.endsWith(LTLT, 2)) {
271             UnicodeString result(desc, 0, desc.length()-1);
272             return result;
273         }
274         return desc;
275     }
NumeratorSubstitution(int32_t _pos,double _denominator,NFRuleSet * _ruleSet,const UnicodeString & description,UErrorCode & status)276     NumeratorSubstitution(int32_t _pos,
277         double _denominator,
278         NFRuleSet* _ruleSet,
279         const UnicodeString& description,
280         UErrorCode& status)
281         : NFSubstitution(_pos, _ruleSet, fixdesc(description), status), denominator(_denominator)
282     {
283         ldenominator = util64_fromDouble(denominator);
284         withZeros = description.endsWith(LTLT, 2);
285     }
286     virtual ~NumeratorSubstitution();
287 
288     virtual UBool operator==(const NFSubstitution& rhs) const;
289 
transformNumber(int64_t number) const290     virtual int64_t transformNumber(int64_t number) const { return number * ldenominator; }
transformNumber(double number) const291     virtual double transformNumber(double number) const { return uprv_round(number * denominator); }
292 
doSubstitution(int64_t,UnicodeString &,int32_t,int32_t,UErrorCode &) const293     virtual void doSubstitution(int64_t /*number*/, UnicodeString& /*toInsertInto*/, int32_t /*_pos*/, int32_t /*recursionCount*/, UErrorCode& /*status*/) const {}
294     virtual void doSubstitution(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const;
295     virtual UBool doParse(const UnicodeString& text,
296         ParsePosition& parsePosition,
297         double baseValue,
298         double upperBound,
299         UBool /*lenientParse*/,
300         uint32_t nonNumericalExecutedRuleMask,
301         Formattable& result) const;
302 
composeRuleValue(double newRuleValue,double oldRuleValue) const303     virtual double composeRuleValue(double newRuleValue, double oldRuleValue) const { return newRuleValue / oldRuleValue; }
calcUpperBound(double) const304     virtual double calcUpperBound(double /*oldUpperBound*/) const { return denominator; }
tokenChar() const305     virtual UChar tokenChar() const { return (UChar)0x003c; } // '<'
306 private:
307     static const UChar LTLT[2];
308 
309 public:
310     static UClassID getStaticClassID(void);
311     virtual UClassID getDynamicClassID(void) const;
312 };
313 
~NumeratorSubstitution()314 NumeratorSubstitution::~NumeratorSubstitution() {}
315 
316 NFSubstitution*
makeSubstitution(int32_t pos,const NFRule * rule,const NFRule * predecessor,const NFRuleSet * ruleSet,const RuleBasedNumberFormat * formatter,const UnicodeString & description,UErrorCode & status)317 NFSubstitution::makeSubstitution(int32_t pos,
318                                  const NFRule* rule,
319                                  const NFRule* predecessor,
320                                  const NFRuleSet* ruleSet,
321                                  const RuleBasedNumberFormat* formatter,
322                                  const UnicodeString& description,
323                                  UErrorCode& status)
324 {
325     // if the description is empty, return a NullSubstitution
326     if (description.length() == 0) {
327         return NULL;
328     }
329 
330     switch (description.charAt(0)) {
331         // if the description begins with '<'...
332     case gLessThan:
333         // throw an exception if the rule is a negative number
334         // rule
335         if (rule->getBaseValue() == NFRule::kNegativeNumberRule) {
336             // throw new IllegalArgumentException("<< not allowed in negative-number rule");
337             status = U_PARSE_ERROR;
338             return NULL;
339         }
340 
341         // if the rule is a fraction rule, return an
342         // IntegralPartSubstitution
343         else if (rule->getBaseValue() == NFRule::kImproperFractionRule
344             || rule->getBaseValue() == NFRule::kProperFractionRule
345             || rule->getBaseValue() == NFRule::kDefaultRule) {
346             return new IntegralPartSubstitution(pos, ruleSet, description, status);
347         }
348 
349         // if the rule set containing the rule is a fraction
350         // rule set, return a NumeratorSubstitution
351         else if (ruleSet->isFractionRuleSet()) {
352             return new NumeratorSubstitution(pos, (double)rule->getBaseValue(),
353                 formatter->getDefaultRuleSet(), description, status);
354         }
355 
356         // otherwise, return a MultiplierSubstitution
357         else {
358             return new MultiplierSubstitution(pos, rule, ruleSet,
359                 description, status);
360         }
361 
362         // if the description begins with '>'...
363     case gGreaterThan:
364         // if the rule is a negative-number rule, return
365         // an AbsoluteValueSubstitution
366         if (rule->getBaseValue() == NFRule::kNegativeNumberRule) {
367             return new AbsoluteValueSubstitution(pos, ruleSet, description, status);
368         }
369 
370         // if the rule is a fraction rule, return a
371         // FractionalPartSubstitution
372         else if (rule->getBaseValue() == NFRule::kImproperFractionRule
373             || rule->getBaseValue() == NFRule::kProperFractionRule
374             || rule->getBaseValue() == NFRule::kDefaultRule) {
375             return new FractionalPartSubstitution(pos, ruleSet, description, status);
376         }
377 
378         // if the rule set owning the rule is a fraction rule set,
379         // throw an exception
380         else if (ruleSet->isFractionRuleSet()) {
381             // throw new IllegalArgumentException(">> not allowed in fraction rule set");
382             status = U_PARSE_ERROR;
383             return NULL;
384         }
385 
386         // otherwise, return a ModulusSubstitution
387         else {
388             return new ModulusSubstitution(pos, rule, predecessor,
389                 ruleSet, description, status);
390         }
391 
392         // if the description begins with '=', always return a
393         // SameValueSubstitution
394     case gEquals:
395         return new SameValueSubstitution(pos, ruleSet, description, status);
396 
397         // and if it's anything else, throw an exception
398     default:
399         // throw new IllegalArgumentException("Illegal substitution character");
400         status = U_PARSE_ERROR;
401     }
402     return NULL;
403 }
404 
NFSubstitution(int32_t _pos,const NFRuleSet * _ruleSet,const UnicodeString & description,UErrorCode & status)405 NFSubstitution::NFSubstitution(int32_t _pos,
406                                const NFRuleSet* _ruleSet,
407                                const UnicodeString& description,
408                                UErrorCode& status)
409                                : pos(_pos), ruleSet(NULL), numberFormat(NULL)
410 {
411     // the description should begin and end with the same character.
412     // If it doesn't that's a syntax error.  Otherwise,
413     // makeSubstitution() was the only thing that needed to know
414     // about these characters, so strip them off
415     UnicodeString workingDescription(description);
416     if (description.length() >= 2
417         && description.charAt(0) == description.charAt(description.length() - 1))
418     {
419         workingDescription.remove(description.length() - 1, 1);
420         workingDescription.remove(0, 1);
421     }
422     else if (description.length() != 0) {
423         // throw new IllegalArgumentException("Illegal substitution syntax");
424         status = U_PARSE_ERROR;
425         return;
426     }
427 
428     if (workingDescription.length() == 0) {
429         // if the description was just two paired token characters
430         // (i.e., "<<" or ">>"), it uses the rule set it belongs to to
431         // format its result
432         this->ruleSet = _ruleSet;
433     }
434     else if (workingDescription.charAt(0) == gPercent) {
435         // if the description contains a rule set name, that's the rule
436         // set we use to format the result: get a reference to the
437         // names rule set
438         this->ruleSet = _ruleSet->getOwner()->findRuleSet(workingDescription, status);
439     }
440     else if (workingDescription.charAt(0) == gPound || workingDescription.charAt(0) ==gZero) {
441         // if the description begins with 0 or #, treat it as a
442         // DecimalFormat pattern, and initialize a DecimalFormat with
443         // that pattern (then set it to use the DecimalFormatSymbols
444         // belonging to our formatter)
445         const DecimalFormatSymbols* sym = _ruleSet->getOwner()->getDecimalFormatSymbols();
446         if (!sym) {
447             status = U_MISSING_RESOURCE_ERROR;
448             return;
449         }
450         DecimalFormat *tempNumberFormat = new DecimalFormat(workingDescription, *sym, status);
451         /* test for NULL */
452         if (!tempNumberFormat) {
453             status = U_MEMORY_ALLOCATION_ERROR;
454             return;
455         }
456         if (U_FAILURE(status)) {
457             delete tempNumberFormat;
458             return;
459         }
460         this->numberFormat = tempNumberFormat;
461     }
462     else if (workingDescription.charAt(0) == gGreaterThan) {
463         // if the description is ">>>", this substitution bypasses the
464         // usual rule-search process and always uses the rule that precedes
465         // it in its own rule set's rule list (this is used for place-value
466         // notations: formats where you want to see a particular part of
467         // a number even when it's 0)
468 
469         // this causes problems when >>> is used in a frationalPartSubstitution
470         // this->ruleSet = NULL;
471         this->ruleSet = _ruleSet;
472         this->numberFormat = NULL;
473     }
474     else {
475         // and of the description is none of these things, it's a syntax error
476 
477         // throw new IllegalArgumentException("Illegal substitution syntax");
478         status = U_PARSE_ERROR;
479     }
480 }
481 
~NFSubstitution()482 NFSubstitution::~NFSubstitution()
483 {
484     delete numberFormat;
485     numberFormat = NULL;
486 }
487 
488 /**
489  * Set's the substitution's divisor.  Used by NFRule.setBaseValue().
490  * A no-op for all substitutions except multiplier and modulus
491  * substitutions.
492  * @param radix The radix of the divisor
493  * @param exponent The exponent of the divisor
494  */
495 void
setDivisor(int32_t,int16_t,UErrorCode &)496 NFSubstitution::setDivisor(int32_t /*radix*/, int16_t /*exponent*/, UErrorCode& /*status*/) {
497   // a no-op for all substitutions except multiplier and modulus substitutions
498 }
499 
500 void
setDecimalFormatSymbols(const DecimalFormatSymbols & newSymbols,UErrorCode &)501 NFSubstitution::setDecimalFormatSymbols(const DecimalFormatSymbols &newSymbols, UErrorCode& /*status*/) {
502     if (numberFormat != NULL) {
503         numberFormat->setDecimalFormatSymbols(newSymbols);
504     }
505 }
506 
507 //-----------------------------------------------------------------------
508 // boilerplate
509 //-----------------------------------------------------------------------
510 
511 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(NFSubstitution)
512 
513 /**
514  * Compares two substitutions for equality
515  * @param The substitution to compare this one to
516  * @return true if the two substitutions are functionally equivalent
517  */
518 UBool
519 NFSubstitution::operator==(const NFSubstitution& rhs) const
520 {
521   // compare class and all of the fields all substitutions have
522   // in common
523   // this should be called by subclasses before their own equality tests
524   return typeid(*this) == typeid(rhs)
525   && pos == rhs.pos
526   && (ruleSet == NULL) == (rhs.ruleSet == NULL)
527   // && ruleSet == rhs.ruleSet causes circularity, other checks to make instead?
528   && (numberFormat == NULL
529       ? (rhs.numberFormat == NULL)
530       : (*numberFormat == *rhs.numberFormat));
531 }
532 
533 /**
534  * Returns a textual description of the substitution
535  * @return A textual description of the substitution.  This might
536  * not be identical to the description it was created from, but
537  * it'll produce the same result.
538  */
539 void
toString(UnicodeString & text) const540 NFSubstitution::toString(UnicodeString& text) const
541 {
542   // use tokenChar() to get the character at the beginning and
543   // end of the substitutin token.  In between them will go
544   // either the name of the rule set it uses, or the pattern of
545   // the DecimalFormat it uses
546   text.remove();
547   text.append(tokenChar());
548 
549   UnicodeString temp;
550   if (ruleSet != NULL) {
551     ruleSet->getName(temp);
552   } else if (numberFormat != NULL) {
553     numberFormat->toPattern(temp);
554   }
555   text.append(temp);
556   text.append(tokenChar());
557 }
558 
559 //-----------------------------------------------------------------------
560 // formatting
561 //-----------------------------------------------------------------------
562 
563 /**
564  * Performs a mathematical operation on the number, formats it using
565  * either ruleSet or decimalFormat, and inserts the result into
566  * toInsertInto.
567  * @param number The number being formatted.
568  * @param toInsertInto The string we insert the result into
569  * @param pos The position in toInsertInto where the owning rule's
570  * rule text begins (this value is added to this substitution's
571  * position to determine exactly where to insert the new text)
572  */
573 void
doSubstitution(int64_t number,UnicodeString & toInsertInto,int32_t _pos,int32_t recursionCount,UErrorCode & status) const574 NFSubstitution::doSubstitution(int64_t number, UnicodeString& toInsertInto, int32_t _pos, int32_t recursionCount, UErrorCode& status) const
575 {
576     if (ruleSet != NULL) {
577         // Perform a transformation on the number that is dependent
578         // on the type of substitution this is, then just call its
579         // rule set's format() method to format the result
580         ruleSet->format(transformNumber(number), toInsertInto, _pos + this->pos, recursionCount, status);
581     } else if (numberFormat != NULL) {
582         if (number <= MAX_INT64_IN_DOUBLE) {
583             // or perform the transformation on the number (preserving
584             // the result's fractional part if the formatter it set
585             // to show it), then use that formatter's format() method
586             // to format the result
587             double numberToFormat = transformNumber((double)number);
588             if (numberFormat->getMaximumFractionDigits() == 0) {
589                 numberToFormat = uprv_floor(numberToFormat);
590             }
591 
592             UnicodeString temp;
593             numberFormat->format(numberToFormat, temp, status);
594             toInsertInto.insert(_pos + this->pos, temp);
595         }
596         else {
597             // We have gone beyond double precision. Something has to give.
598             // We're favoring accuracy of the large number over potential rules
599             // that round like a CompactDecimalFormat, which is not a common use case.
600             //
601             // Perform a transformation on the number that is dependent
602             // on the type of substitution this is, then just call its
603             // rule set's format() method to format the result
604             int64_t numberToFormat = transformNumber(number);
605             UnicodeString temp;
606             numberFormat->format(numberToFormat, temp, status);
607             toInsertInto.insert(_pos + this->pos, temp);
608         }
609     }
610 }
611 
612 /**
613  * Performs a mathematical operation on the number, formats it using
614  * either ruleSet or decimalFormat, and inserts the result into
615  * toInsertInto.
616  * @param number The number being formatted.
617  * @param toInsertInto The string we insert the result into
618  * @param pos The position in toInsertInto where the owning rule's
619  * rule text begins (this value is added to this substitution's
620  * position to determine exactly where to insert the new text)
621  */
622 void
doSubstitution(double number,UnicodeString & toInsertInto,int32_t _pos,int32_t recursionCount,UErrorCode & status) const623 NFSubstitution::doSubstitution(double number, UnicodeString& toInsertInto, int32_t _pos, int32_t recursionCount, UErrorCode& status) const {
624     // perform a transformation on the number being formatted that
625     // is dependent on the type of substitution this is
626     double numberToFormat = transformNumber(number);
627 
628     if (uprv_isInfinite(numberToFormat)) {
629         // This is probably a minus rule. Combine it with an infinite rule.
630         const NFRule *infiniteRule = ruleSet->findDoubleRule(uprv_getInfinity());
631         infiniteRule->doFormat(numberToFormat, toInsertInto, _pos + this->pos, recursionCount, status);
632         return;
633     }
634 
635     // if the result is an integer, from here on out we work in integer
636     // space (saving time and memory and preserving accuracy)
637     if (numberToFormat == uprv_floor(numberToFormat) && ruleSet != NULL) {
638         ruleSet->format(util64_fromDouble(numberToFormat), toInsertInto, _pos + this->pos, recursionCount, status);
639 
640         // if the result isn't an integer, then call either our rule set's
641         // format() method or our DecimalFormat's format() method to
642         // format the result
643     } else {
644         if (ruleSet != NULL) {
645             ruleSet->format(numberToFormat, toInsertInto, _pos + this->pos, recursionCount, status);
646         } else if (numberFormat != NULL) {
647             UnicodeString temp;
648             numberFormat->format(numberToFormat, temp);
649             toInsertInto.insert(_pos + this->pos, temp);
650         }
651     }
652 }
653 
654 
655     //-----------------------------------------------------------------------
656     // parsing
657     //-----------------------------------------------------------------------
658 
659 #ifdef RBNF_DEBUG
660 #include <stdio.h>
661 #endif
662 
663 /**
664  * Parses a string using the rule set or DecimalFormat belonging
665  * to this substitution.  If there's a match, a mathematical
666  * operation (the inverse of the one used in formatting) is
667  * performed on the result of the parse and the value passed in
668  * and returned as the result.  The parse position is updated to
669  * point to the first unmatched character in the string.
670  * @param text The string to parse
671  * @param parsePosition On entry, ignored, but assumed to be 0.
672  * On exit, this is updated to point to the first unmatched
673  * character (or 0 if the substitution didn't match)
674  * @param baseValue A partial parse result that should be
675  * combined with the result of this parse
676  * @param upperBound When searching the rule set for a rule
677  * matching the string passed in, only rules with base values
678  * lower than this are considered
679  * @param lenientParse If true and matching against rules fails,
680  * the substitution will also try matching the text against
681  * numerals using a default-costructed NumberFormat.  If false,
682  * no extra work is done.  (This value is false whenever the
683  * formatter isn't in lenient-parse mode, but is also false
684  * under some conditions even when the formatter _is_ in
685  * lenient-parse mode.)
686  * @return If there's a match, this is the result of composing
687  * baseValue with whatever was returned from matching the
688  * characters.  This will be either a Long or a Double.  If there's
689  * no match this is new Long(0) (not null), and parsePosition
690  * is left unchanged.
691  */
692 UBool
doParse(const UnicodeString & text,ParsePosition & parsePosition,double baseValue,double upperBound,UBool lenientParse,uint32_t nonNumericalExecutedRuleMask,Formattable & result) const693 NFSubstitution::doParse(const UnicodeString& text,
694                         ParsePosition& parsePosition,
695                         double baseValue,
696                         double upperBound,
697                         UBool lenientParse,
698                         uint32_t nonNumericalExecutedRuleMask,
699                         Formattable& result) const
700 {
701 #ifdef RBNF_DEBUG
702     fprintf(stderr, "<nfsubs> %x bv: %g ub: %g\n", this, baseValue, upperBound);
703 #endif
704     // figure out the highest base value a rule can have and match
705     // the text being parsed (this varies according to the type of
706     // substitutions: multiplier, modulus, and numerator substitutions
707     // restrict the search to rules with base values lower than their
708     // own; same-value substitutions leave the upper bound wherever
709     // it was, and the others allow any rule to match
710     upperBound = calcUpperBound(upperBound);
711 
712     // use our rule set to parse the text.  If that fails and
713     // lenient parsing is enabled (this is always false if the
714     // formatter's lenient-parsing mode is off, but it may also
715     // be false even when the formatter's lenient-parse mode is
716     // on), then also try parsing the text using a default-
717     // constructed NumberFormat
718     if (ruleSet != NULL) {
719         ruleSet->parse(text, parsePosition, upperBound, nonNumericalExecutedRuleMask, result);
720         if (lenientParse && !ruleSet->isFractionRuleSet() && parsePosition.getIndex() == 0) {
721             UErrorCode status = U_ZERO_ERROR;
722             NumberFormat* fmt = NumberFormat::createInstance(status);
723             if (U_SUCCESS(status)) {
724                 fmt->parse(text, result, parsePosition);
725             }
726             delete fmt;
727         }
728 
729         // ...or use our DecimalFormat to parse the text
730     } else if (numberFormat != NULL) {
731         numberFormat->parse(text, result, parsePosition);
732     }
733 
734     // if the parse was successful, we've already advanced the caller's
735     // parse position (this is the one function that doesn't have one
736     // of its own).  Derive a parse result and return it as a Long,
737     // if possible, or a Double
738     if (parsePosition.getIndex() != 0) {
739         UErrorCode status = U_ZERO_ERROR;
740         double tempResult = result.getDouble(status);
741 
742         // composeRuleValue() produces a full parse result from
743         // the partial parse result passed to this function from
744         // the caller (this is either the owning rule's base value
745         // or the partial result obtained from composing the
746         // owning rule's base value with its other substitution's
747         // parse result) and the partial parse result obtained by
748         // matching the substitution (which will be the same value
749         // the caller would get by parsing just this part of the
750         // text with RuleBasedNumberFormat.parse() ).  How the two
751         // values are used to derive the full parse result depends
752         // on the types of substitutions: For a regular rule, the
753         // ultimate result is its multiplier substitution's result
754         // times the rule's divisor (or the rule's base value) plus
755         // the modulus substitution's result (which will actually
756         // supersede part of the rule's base value).  For a negative-
757         // number rule, the result is the negative of its substitution's
758         // result.  For a fraction rule, it's the sum of its two
759         // substitution results.  For a rule in a fraction rule set,
760         // it's the numerator substitution's result divided by
761         // the rule's base value.  Results from same-value substitutions
762         // propagate back upard, and null substitutions don't affect
763         // the result.
764         tempResult = composeRuleValue(tempResult, baseValue);
765         result.setDouble(tempResult);
766         return TRUE;
767         // if the parse was UNsuccessful, return 0
768     } else {
769         result.setLong(0);
770         return FALSE;
771     }
772 }
773 
774     /**
775      * Returns true if this is a modulus substitution.  (We didn't do this
776      * with instanceof partially because it causes source files to
777      * proliferate and partially because we have to port this to C++.)
778      * @return true if this object is an instance of ModulusSubstitution
779      */
780 UBool
isModulusSubstitution() const781 NFSubstitution::isModulusSubstitution() const {
782     return FALSE;
783 }
784 
785 //===================================================================
786 // SameValueSubstitution
787 //===================================================================
788 
789 /**
790  * A substitution that passes the value passed to it through unchanged.
791  * Represented by == in rule descriptions.
792  */
SameValueSubstitution(int32_t _pos,const NFRuleSet * _ruleSet,const UnicodeString & description,UErrorCode & status)793 SameValueSubstitution::SameValueSubstitution(int32_t _pos,
794                         const NFRuleSet* _ruleSet,
795                         const UnicodeString& description,
796                         UErrorCode& status)
797 : NFSubstitution(_pos, _ruleSet, description, status)
798 {
799     if (0 == description.compare(gEqualsEquals, 2)) {
800         // throw new IllegalArgumentException("== is not a legal token");
801         status = U_PARSE_ERROR;
802     }
803 }
804 
805 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(SameValueSubstitution)
806 
807 //===================================================================
808 // MultiplierSubstitution
809 //===================================================================
810 
811 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(MultiplierSubstitution)
812 
813 UBool MultiplierSubstitution::operator==(const NFSubstitution& rhs) const
814 {
815     return NFSubstitution::operator==(rhs) &&
816         divisor == ((const MultiplierSubstitution*)&rhs)->divisor;
817 }
818 
819 
820 //===================================================================
821 // ModulusSubstitution
822 //===================================================================
823 
824 /**
825  * A substitution that divides the number being formatted by the its rule's
826  * divisor and formats the remainder.  Represented by "&gt;&gt;" in a
827  * regular rule.
828  */
ModulusSubstitution(int32_t _pos,const NFRule * rule,const NFRule * predecessor,const NFRuleSet * _ruleSet,const UnicodeString & description,UErrorCode & status)829 ModulusSubstitution::ModulusSubstitution(int32_t _pos,
830                                          const NFRule* rule,
831                                          const NFRule* predecessor,
832                                          const NFRuleSet* _ruleSet,
833                                          const UnicodeString& description,
834                                          UErrorCode& status)
835  : NFSubstitution(_pos, _ruleSet, description, status)
836  , divisor(rule->getDivisor())
837  , ruleToUse(NULL)
838 {
839   // the owning rule's divisor controls the behavior of this
840   // substitution: rather than keeping a backpointer to the rule,
841   // we keep a copy of the divisor
842 
843   if (divisor == 0) {
844       status = U_PARSE_ERROR;
845   }
846 
847   if (0 == description.compare(gGreaterGreaterGreaterThan, 3)) {
848     // the >>> token doesn't alter how this substituion calculates the
849     // values it uses for formatting and parsing, but it changes
850     // what's done with that value after it's obtained: >>> short-
851     // circuits the rule-search process and goes straight to the
852     // specified rule to format the substitution value
853     ruleToUse = predecessor;
854   }
855 }
856 
857 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(ModulusSubstitution)
858 
859 UBool ModulusSubstitution::operator==(const NFSubstitution& rhs) const
860 {
861   return NFSubstitution::operator==(rhs) &&
862   divisor == ((const ModulusSubstitution*)&rhs)->divisor &&
863   ruleToUse == ((const ModulusSubstitution*)&rhs)->ruleToUse;
864 }
865 
866 //-----------------------------------------------------------------------
867 // formatting
868 //-----------------------------------------------------------------------
869 
870 
871 /**
872  * If this is a &gt;&gt;&gt; substitution, use ruleToUse to fill in
873  * the substitution.  Otherwise, just use the superclass function.
874  * @param number The number being formatted
875  * @toInsertInto The string to insert the result of this substitution
876  * into
877  * @param pos The position of the rule text in toInsertInto
878  */
879 void
doSubstitution(int64_t number,UnicodeString & toInsertInto,int32_t _pos,int32_t recursionCount,UErrorCode & status) const880 ModulusSubstitution::doSubstitution(int64_t number, UnicodeString& toInsertInto, int32_t _pos, int32_t recursionCount, UErrorCode& status) const
881 {
882     // if this isn't a >>> substitution, just use the inherited version
883     // of this function (which uses either a rule set or a DecimalFormat
884     // to format its substitution value)
885     if (ruleToUse == NULL) {
886         NFSubstitution::doSubstitution(number, toInsertInto, _pos, recursionCount, status);
887 
888         // a >>> substitution goes straight to a particular rule to
889         // format the substitution value
890     } else {
891         int64_t numberToFormat = transformNumber(number);
892         ruleToUse->doFormat(numberToFormat, toInsertInto, _pos + getPos(), recursionCount, status);
893     }
894 }
895 
896 /**
897 * If this is a &gt;&gt;&gt; substitution, use ruleToUse to fill in
898 * the substitution.  Otherwise, just use the superclass function.
899 * @param number The number being formatted
900 * @toInsertInto The string to insert the result of this substitution
901 * into
902 * @param pos The position of the rule text in toInsertInto
903 */
904 void
doSubstitution(double number,UnicodeString & toInsertInto,int32_t _pos,int32_t recursionCount,UErrorCode & status) const905 ModulusSubstitution::doSubstitution(double number, UnicodeString& toInsertInto, int32_t _pos, int32_t recursionCount, UErrorCode& status) const
906 {
907     // if this isn't a >>> substitution, just use the inherited version
908     // of this function (which uses either a rule set or a DecimalFormat
909     // to format its substitution value)
910     if (ruleToUse == NULL) {
911         NFSubstitution::doSubstitution(number, toInsertInto, _pos, recursionCount, status);
912 
913         // a >>> substitution goes straight to a particular rule to
914         // format the substitution value
915     } else {
916         double numberToFormat = transformNumber(number);
917 
918         ruleToUse->doFormat(numberToFormat, toInsertInto, _pos + getPos(), recursionCount, status);
919     }
920 }
921 
922 //-----------------------------------------------------------------------
923 // parsing
924 //-----------------------------------------------------------------------
925 
926 /**
927  * If this is a &gt;&gt;&gt; substitution, match only against ruleToUse.
928  * Otherwise, use the superclass function.
929  * @param text The string to parse
930  * @param parsePosition Ignored on entry, updated on exit to point to
931  * the first unmatched character.
932  * @param baseValue The partial parse result prior to calling this
933  * routine.
934  */
935 UBool
doParse(const UnicodeString & text,ParsePosition & parsePosition,double baseValue,double upperBound,UBool lenientParse,uint32_t nonNumericalExecutedRuleMask,Formattable & result) const936 ModulusSubstitution::doParse(const UnicodeString& text,
937                              ParsePosition& parsePosition,
938                              double baseValue,
939                              double upperBound,
940                              UBool lenientParse,
941                              uint32_t nonNumericalExecutedRuleMask,
942                              Formattable& result) const
943 {
944     // if this isn't a >>> substitution, we can just use the
945     // inherited parse() routine to do the parsing
946     if (ruleToUse == NULL) {
947         return NFSubstitution::doParse(text, parsePosition, baseValue, upperBound, lenientParse, nonNumericalExecutedRuleMask, result);
948 
949         // but if it IS a >>> substitution, we have to do it here: we
950         // use the specific rule's doParse() method, and then we have to
951         // do some of the other work of NFRuleSet.parse()
952     } else {
953         ruleToUse->doParse(text, parsePosition, FALSE, upperBound, nonNumericalExecutedRuleMask, result);
954 
955         if (parsePosition.getIndex() != 0) {
956             UErrorCode status = U_ZERO_ERROR;
957             double tempResult = result.getDouble(status);
958             tempResult = composeRuleValue(tempResult, baseValue);
959             result.setDouble(tempResult);
960         }
961 
962         return TRUE;
963     }
964 }
965 /**
966  * Returns a textual description of the substitution
967  * @return A textual description of the substitution.  This might
968  * not be identical to the description it was created from, but
969  * it'll produce the same result.
970  */
971 void
toString(UnicodeString & text) const972 ModulusSubstitution::toString(UnicodeString& text) const
973 {
974   // use tokenChar() to get the character at the beginning and
975   // end of the substitutin token.  In between them will go
976   // either the name of the rule set it uses, or the pattern of
977   // the DecimalFormat it uses
978 
979   if ( ruleToUse != NULL ) { // Must have been a >>> substitution.
980       text.remove();
981       text.append(tokenChar());
982       text.append(tokenChar());
983       text.append(tokenChar());
984   } else { // Otherwise just use the super-class function.
985 	  NFSubstitution::toString(text);
986   }
987 }
988 //===================================================================
989 // IntegralPartSubstitution
990 //===================================================================
991 
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(IntegralPartSubstitution)992 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(IntegralPartSubstitution)
993 
994 
995 //===================================================================
996 // FractionalPartSubstitution
997 //===================================================================
998 
999 
1000     /**
1001      * Constructs a FractionalPartSubstitution.  This object keeps a flag
1002      * telling whether it should format by digits or not.  In addition,
1003      * it marks the rule set it calls (if any) as a fraction rule set.
1004      */
1005 FractionalPartSubstitution::FractionalPartSubstitution(int32_t _pos,
1006                              const NFRuleSet* _ruleSet,
1007                              const UnicodeString& description,
1008                              UErrorCode& status)
1009  : NFSubstitution(_pos, _ruleSet, description, status)
1010  , byDigits(FALSE)
1011  , useSpaces(TRUE)
1012 
1013 {
1014     // akk, ruleSet can change in superclass constructor
1015     if (0 == description.compare(gGreaterGreaterThan, 2) ||
1016         0 == description.compare(gGreaterGreaterGreaterThan, 3) ||
1017         _ruleSet == getRuleSet()) {
1018         byDigits = TRUE;
1019         if (0 == description.compare(gGreaterGreaterGreaterThan, 3)) {
1020             useSpaces = FALSE;
1021         }
1022     } else {
1023         // cast away const
1024         ((NFRuleSet*)getRuleSet())->makeIntoFractionRuleSet();
1025     }
1026 }
1027 
1028 //-----------------------------------------------------------------------
1029 // formatting
1030 //-----------------------------------------------------------------------
1031 
1032 /**
1033  * If in "by digits" mode, fills in the substitution one decimal digit
1034  * at a time using the rule set containing this substitution.
1035  * Otherwise, uses the superclass function.
1036  * @param number The number being formatted
1037  * @param toInsertInto The string to insert the result of formatting
1038  * the substitution into
1039  * @param pos The position of the owning rule's rule text in
1040  * toInsertInto
1041  */
1042 void
doSubstitution(double number,UnicodeString & toInsertInto,int32_t _pos,int32_t recursionCount,UErrorCode & status) const1043 FractionalPartSubstitution::doSubstitution(double number, UnicodeString& toInsertInto,
1044                                            int32_t _pos, int32_t recursionCount, UErrorCode& status) const
1045 {
1046   // if we're not in "byDigits" mode, just use the inherited
1047   // doSubstitution() routine
1048   if (!byDigits) {
1049     NFSubstitution::doSubstitution(number, toInsertInto, _pos, recursionCount, status);
1050 
1051     // if we're in "byDigits" mode, transform the value into an integer
1052     // by moving the decimal point eight places to the right and
1053     // pulling digits off the right one at a time, formatting each digit
1054     // as an integer using this substitution's owning rule set
1055     // (this is slower, but more accurate, than doing it from the
1056     // other end)
1057   } else {
1058     //          int32_t numberToFormat = (int32_t)uprv_round(transformNumber(number) * uprv_pow(10, kMaxDecimalDigits));
1059     //          // this flag keeps us from formatting trailing zeros.  It starts
1060     //          // out false because we're pulling from the right, and switches
1061     //          // to true the first time we encounter a non-zero digit
1062     //          UBool doZeros = FALSE;
1063     //          for (int32_t i = 0; i < kMaxDecimalDigits; i++) {
1064     //              int64_t digit = numberToFormat % 10;
1065     //              if (digit != 0 || doZeros) {
1066     //                  if (doZeros && useSpaces) {
1067     //                      toInsertInto.insert(_pos + getPos(), gSpace);
1068     //                  }
1069     //                  doZeros = TRUE;
1070     //                  getRuleSet()->format(digit, toInsertInto, _pos + getPos());
1071     //              }
1072     //              numberToFormat /= 10;
1073     //          }
1074 
1075     DecimalQuantity dl;
1076     dl.setToDouble(number);
1077     dl.roundToMagnitude(-20, UNUM_ROUND_HALFEVEN, status);     // round to 20 fraction digits.
1078 
1079     UBool pad = FALSE;
1080     for (int32_t didx = dl.getLowerDisplayMagnitude(); didx<0; didx++) {
1081       // Loop iterates over fraction digits, starting with the LSD.
1082       //   include both real digits from the number, and zeros
1083       //   to the left of the MSD but to the right of the decimal point.
1084       if (pad && useSpaces) {
1085         toInsertInto.insert(_pos + getPos(), gSpace);
1086       } else {
1087         pad = TRUE;
1088       }
1089       int64_t digit = dl.getDigit(didx);
1090       getRuleSet()->format(digit, toInsertInto, _pos + getPos(), recursionCount, status);
1091     }
1092 
1093     if (!pad) {
1094       // hack around lack of precision in digitlist. if we would end up with
1095       // "foo point" make sure we add a " zero" to the end.
1096       getRuleSet()->format((int64_t)0, toInsertInto, _pos + getPos(), recursionCount, status);
1097     }
1098   }
1099 }
1100 
1101 //-----------------------------------------------------------------------
1102 // parsing
1103 //-----------------------------------------------------------------------
1104 
1105 /**
1106  * If in "by digits" mode, parses the string as if it were a string
1107  * of individual digits; otherwise, uses the superclass function.
1108  * @param text The string to parse
1109  * @param parsePosition Ignored on entry, but updated on exit to point
1110  * to the first unmatched character
1111  * @param baseValue The partial parse result prior to entering this
1112  * function
1113  * @param upperBound Only consider rules with base values lower than
1114  * this when filling in the substitution
1115  * @param lenientParse If true, try matching the text as numerals if
1116  * matching as words doesn't work
1117  * @return If the match was successful, the current partial parse
1118  * result; otherwise new Long(0).  The result is either a Long or
1119  * a Double.
1120  */
1121 
1122 UBool
doParse(const UnicodeString & text,ParsePosition & parsePosition,double baseValue,double,UBool lenientParse,uint32_t nonNumericalExecutedRuleMask,Formattable & resVal) const1123 FractionalPartSubstitution::doParse(const UnicodeString& text,
1124                 ParsePosition& parsePosition,
1125                 double baseValue,
1126                 double /*upperBound*/,
1127                 UBool lenientParse,
1128                 uint32_t nonNumericalExecutedRuleMask,
1129                 Formattable& resVal) const
1130 {
1131     // if we're not in byDigits mode, we can just use the inherited
1132     // doParse()
1133     if (!byDigits) {
1134         return NFSubstitution::doParse(text, parsePosition, baseValue, 0, lenientParse, nonNumericalExecutedRuleMask, resVal);
1135 
1136         // if we ARE in byDigits mode, parse the text one digit at a time
1137         // using this substitution's owning rule set (we do this by setting
1138         // upperBound to 10 when calling doParse() ) until we reach
1139         // nonmatching text
1140     } else {
1141         UnicodeString workText(text);
1142         ParsePosition workPos(1);
1143         double result = 0;
1144         int32_t digit;
1145 //          double p10 = 0.1;
1146 
1147         DecimalQuantity dl;
1148         int32_t totalDigits = 0;
1149         NumberFormat* fmt = NULL;
1150         while (workText.length() > 0 && workPos.getIndex() != 0) {
1151             workPos.setIndex(0);
1152             Formattable temp;
1153             getRuleSet()->parse(workText, workPos, 10, nonNumericalExecutedRuleMask, temp);
1154             UErrorCode status = U_ZERO_ERROR;
1155             digit = temp.getLong(status);
1156 //            digit = temp.getType() == Formattable::kLong ?
1157 //               temp.getLong() :
1158 //            (int32_t)temp.getDouble();
1159 
1160             if (lenientParse && workPos.getIndex() == 0) {
1161                 if (!fmt) {
1162                     status = U_ZERO_ERROR;
1163                     fmt = NumberFormat::createInstance(status);
1164                     if (U_FAILURE(status)) {
1165                         delete fmt;
1166                         fmt = NULL;
1167                     }
1168                 }
1169                 if (fmt) {
1170                     fmt->parse(workText, temp, workPos);
1171                     digit = temp.getLong(status);
1172                 }
1173             }
1174 
1175             if (workPos.getIndex() != 0) {
1176                 dl.appendDigit(static_cast<int8_t>(digit), 0, true);
1177                 totalDigits++;
1178 //                  result += digit * p10;
1179 //                  p10 /= 10;
1180                 parsePosition.setIndex(parsePosition.getIndex() + workPos.getIndex());
1181                 workText.removeBetween(0, workPos.getIndex());
1182                 while (workText.length() > 0 && workText.charAt(0) == gSpace) {
1183                     workText.removeBetween(0, 1);
1184                     parsePosition.setIndex(parsePosition.getIndex() + 1);
1185                 }
1186             }
1187         }
1188         delete fmt;
1189 
1190         dl.adjustMagnitude(-totalDigits);
1191         result = dl.toDouble();
1192         result = composeRuleValue(result, baseValue);
1193         resVal.setDouble(result);
1194         return TRUE;
1195     }
1196 }
1197 
1198 UBool
operator ==(const NFSubstitution & rhs) const1199 FractionalPartSubstitution::operator==(const NFSubstitution& rhs) const
1200 {
1201   return NFSubstitution::operator==(rhs) &&
1202   ((const FractionalPartSubstitution*)&rhs)->byDigits == byDigits;
1203 }
1204 
1205 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(FractionalPartSubstitution)
1206 
1207 
1208 //===================================================================
1209 // AbsoluteValueSubstitution
1210 //===================================================================
1211 
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(AbsoluteValueSubstitution)1212 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(AbsoluteValueSubstitution)
1213 
1214 //===================================================================
1215 // NumeratorSubstitution
1216 //===================================================================
1217 
1218 void
1219 NumeratorSubstitution::doSubstitution(double number, UnicodeString& toInsertInto, int32_t apos, int32_t recursionCount, UErrorCode& status) const {
1220     // perform a transformation on the number being formatted that
1221     // is dependent on the type of substitution this is
1222 
1223     double numberToFormat = transformNumber(number);
1224     int64_t longNF = util64_fromDouble(numberToFormat);
1225 
1226     const NFRuleSet* aruleSet = getRuleSet();
1227     if (withZeros && aruleSet != NULL) {
1228         // if there are leading zeros in the decimal expansion then emit them
1229         int64_t nf =longNF;
1230         int32_t len = toInsertInto.length();
1231         while ((nf *= 10) < denominator) {
1232             toInsertInto.insert(apos + getPos(), gSpace);
1233             aruleSet->format((int64_t)0, toInsertInto, apos + getPos(), recursionCount, status);
1234         }
1235         apos += toInsertInto.length() - len;
1236     }
1237 
1238     // if the result is an integer, from here on out we work in integer
1239     // space (saving time and memory and preserving accuracy)
1240     if (numberToFormat == longNF && aruleSet != NULL) {
1241         aruleSet->format(longNF, toInsertInto, apos + getPos(), recursionCount, status);
1242 
1243         // if the result isn't an integer, then call either our rule set's
1244         // format() method or our DecimalFormat's format() method to
1245         // format the result
1246     } else {
1247         if (aruleSet != NULL) {
1248             aruleSet->format(numberToFormat, toInsertInto, apos + getPos(), recursionCount, status);
1249         } else {
1250             UnicodeString temp;
1251             getNumberFormat()->format(numberToFormat, temp, status);
1252             toInsertInto.insert(apos + getPos(), temp);
1253         }
1254     }
1255 }
1256 
1257 UBool
doParse(const UnicodeString & text,ParsePosition & parsePosition,double baseValue,double upperBound,UBool,uint32_t nonNumericalExecutedRuleMask,Formattable & result) const1258 NumeratorSubstitution::doParse(const UnicodeString& text,
1259                                ParsePosition& parsePosition,
1260                                double baseValue,
1261                                double upperBound,
1262                                UBool /*lenientParse*/,
1263                                uint32_t nonNumericalExecutedRuleMask,
1264                                Formattable& result) const
1265 {
1266     // we don't have to do anything special to do the parsing here,
1267     // but we have to turn lenient parsing off-- if we leave it on,
1268     // it SERIOUSLY messes up the algorithm
1269 
1270     // if withZeros is true, we need to count the zeros
1271     // and use that to adjust the parse result
1272     UErrorCode status = U_ZERO_ERROR;
1273     int32_t zeroCount = 0;
1274     UnicodeString workText(text);
1275 
1276     if (withZeros) {
1277         ParsePosition workPos(1);
1278         Formattable temp;
1279 
1280         while (workText.length() > 0 && workPos.getIndex() != 0) {
1281             workPos.setIndex(0);
1282             getRuleSet()->parse(workText, workPos, 1, nonNumericalExecutedRuleMask, temp); // parse zero or nothing at all
1283             if (workPos.getIndex() == 0) {
1284                 // we failed, either there were no more zeros, or the number was formatted with digits
1285                 // either way, we're done
1286                 break;
1287             }
1288 
1289             ++zeroCount;
1290             parsePosition.setIndex(parsePosition.getIndex() + workPos.getIndex());
1291             workText.remove(0, workPos.getIndex());
1292             while (workText.length() > 0 && workText.charAt(0) == gSpace) {
1293                 workText.remove(0, 1);
1294                 parsePosition.setIndex(parsePosition.getIndex() + 1);
1295             }
1296         }
1297 
1298         workText = text;
1299         workText.remove(0, (int32_t)parsePosition.getIndex());
1300         parsePosition.setIndex(0);
1301     }
1302 
1303     // we've parsed off the zeros, now let's parse the rest from our current position
1304     NFSubstitution::doParse(workText, parsePosition, withZeros ? 1 : baseValue, upperBound, FALSE, nonNumericalExecutedRuleMask, result);
1305 
1306     if (withZeros) {
1307         // any base value will do in this case.  is there a way to
1308         // force this to not bother trying all the base values?
1309 
1310         // compute the 'effective' base and prescale the value down
1311         int64_t n = result.getLong(status); // force conversion!
1312         int64_t d = 1;
1313         int32_t pow = 0;
1314         while (d <= n) {
1315             d *= 10;
1316             ++pow;
1317         }
1318         // now add the zeros
1319         while (zeroCount > 0) {
1320             d *= 10;
1321             --zeroCount;
1322         }
1323         // d is now our true denominator
1324         result.setDouble((double)n/(double)d);
1325     }
1326 
1327     return TRUE;
1328 }
1329 
1330 UBool
operator ==(const NFSubstitution & rhs) const1331 NumeratorSubstitution::operator==(const NFSubstitution& rhs) const
1332 {
1333     return NFSubstitution::operator==(rhs) &&
1334         denominator == ((const NumeratorSubstitution*)&rhs)->denominator;
1335 }
1336 
1337 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(NumeratorSubstitution)
1338 
1339 const UChar NumeratorSubstitution::LTLT[] = { 0x003c, 0x003c };
1340 
1341 U_NAMESPACE_END
1342 
1343 /* U_HAVE_RBNF */
1344 #endif
1345 
1346