1 // Copyright 2008 The RE2 Authors.  All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4 
5 // Tested by search_test.cc.
6 //
7 // Prog::SearchOnePass is an efficient implementation of
8 // regular expression search with submatch tracking for
9 // what I call "one-pass regular expressions".  (An alternate
10 // name might be "backtracking-free regular expressions".)
11 //
12 // One-pass regular expressions have the property that
13 // at each input byte during an anchored match, there may be
14 // multiple alternatives but only one can proceed for any
15 // given input byte.
16 //
17 // For example, the regexp /x*yx*/ is one-pass: you read
18 // x's until a y, then you read the y, then you keep reading x's.
19 // At no point do you have to guess what to do or back up
20 // and try a different guess.
21 //
22 // On the other hand, /x*x/ is not one-pass: when you're
23 // looking at an input "x", it's not clear whether you should
24 // use it to extend the x* or as the final x.
25 //
26 // More examples: /([^ ]*) (.*)/ is one-pass; /(.*) (.*)/ is not.
27 // /(\d+)-(\d+)/ is one-pass; /(\d+).(\d+)/ is not.
28 //
29 // A simple intuition for identifying one-pass regular expressions
30 // is that it's always immediately obvious when a repetition ends.
31 // It must also be immediately obvious which branch of an | to take:
32 //
33 // /x(y|z)/ is one-pass, but /(xy|xz)/ is not.
34 //
35 // The NFA-based search in nfa.cc does some bookkeeping to
36 // avoid the need for backtracking and its associated exponential blowup.
37 // But if we have a one-pass regular expression, there is no
38 // possibility of backtracking, so there is no need for the
39 // extra bookkeeping.  Hence, this code.
40 //
41 // On a one-pass regular expression, the NFA code in nfa.cc
42 // runs at about 1/20 of the backtracking-based PCRE speed.
43 // In contrast, the code in this file runs at about the same
44 // speed as PCRE.
45 //
46 // One-pass regular expressions get used a lot when RE is
47 // used for parsing simple strings, so it pays off to
48 // notice them and handle them efficiently.
49 //
50 // See also Anne Brüggemann-Klein and Derick Wood,
51 // "One-unambiguous regular languages", Information and Computation 142(2).
52 
53 #include <stdint.h>
54 #include <string.h>
55 #include <algorithm>
56 #include <map>
57 #include <string>
58 #include <vector>
59 
60 #include "util/util.h"
61 #include "util/logging.h"
62 #include "util/strutil.h"
63 #include "util/utf.h"
64 #include "re2/pod_array.h"
65 #include "re2/prog.h"
66 #include "re2/sparse_set.h"
67 #include "re2/stringpiece.h"
68 
69 // Silence "zero-sized array in struct/union" warning for OneState::action.
70 #ifdef _MSC_VER
71 #pragma warning(disable: 4200)
72 #endif
73 
74 namespace re2 {
75 
76 static const bool ExtraDebug = false;
77 
78 // The key insight behind this implementation is that the
79 // non-determinism in an NFA for a one-pass regular expression
80 // is contained.  To explain what that means, first a
81 // refresher about what regular expression programs look like
82 // and how the usual NFA execution runs.
83 //
84 // In a regular expression program, only the kInstByteRange
85 // instruction processes an input byte c and moves on to the
86 // next byte in the string (it does so if c is in the given range).
87 // The kInstByteRange instructions correspond to literal characters
88 // and character classes in the regular expression.
89 //
90 // The kInstAlt instructions are used as wiring to connect the
91 // kInstByteRange instructions together in interesting ways when
92 // implementing | + and *.
93 // The kInstAlt instruction forks execution, like a goto that
94 // jumps to ip->out() and ip->out1() in parallel.  Each of the
95 // resulting computation paths is called a thread.
96 //
97 // The other instructions -- kInstEmptyWidth, kInstMatch, kInstCapture --
98 // are interesting in their own right but like kInstAlt they don't
99 // advance the input pointer.  Only kInstByteRange does.
100 //
101 // The automaton execution in nfa.cc runs all the possible
102 // threads of execution in lock-step over the input.  To process
103 // a particular byte, each thread gets run until it either dies
104 // or finds a kInstByteRange instruction matching the byte.
105 // If the latter happens, the thread stops just past the
106 // kInstByteRange instruction (at ip->out()) and waits for
107 // the other threads to finish processing the input byte.
108 // Then, once all the threads have processed that input byte,
109 // the whole process repeats.  The kInstAlt state instruction
110 // might create new threads during input processing, but no
111 // matter what, all the threads stop after a kInstByteRange
112 // and wait for the other threads to "catch up".
113 // Running in lock step like this ensures that the NFA reads
114 // the input string only once.
115 //
116 // Each thread maintains its own set of capture registers
117 // (the string positions at which it executed the kInstCapture
118 // instructions corresponding to capturing parentheses in the
119 // regular expression).  Repeated copying of the capture registers
120 // is the main performance bottleneck in the NFA implementation.
121 //
122 // A regular expression program is "one-pass" if, no matter what
123 // the input string, there is only one thread that makes it
124 // past a kInstByteRange instruction at each input byte.  This means
125 // that there is in some sense only one active thread throughout
126 // the execution.  Other threads might be created during the
127 // processing of an input byte, but they are ephemeral: only one
128 // thread is left to start processing the next input byte.
129 // This is what I meant above when I said the non-determinism
130 // was "contained".
131 //
132 // To execute a one-pass regular expression program, we can build
133 // a DFA (no non-determinism) that has at most as many states as
134 // the NFA (compare this to the possibly exponential number of states
135 // in the general case).  Each state records, for each possible
136 // input byte, the next state along with the conditions required
137 // before entering that state -- empty-width flags that must be true
138 // and capture operations that must be performed.  It also records
139 // whether a set of conditions required to finish a match at that
140 // point in the input rather than process the next byte.
141 
142 // A state in the one-pass NFA - just an array of actions indexed
143 // by the bytemap_[] of the next input byte.  (The bytemap
144 // maps next input bytes into equivalence classes, to reduce
145 // the memory footprint.)
146 struct OneState {
147   uint32_t matchcond;   // conditions to match right now.
148   uint32_t action[];
149 };
150 
151 // The uint32_t conditions in the action are a combination of
152 // condition and capture bits and the next state.  The bottom 16 bits
153 // are the condition and capture bits, and the top 16 are the index of
154 // the next state.
155 //
156 // Bits 0-5 are the empty-width flags from prog.h.
157 // Bit 6 is kMatchWins, which means the match takes
158 // priority over moving to next in a first-match search.
159 // The remaining bits mark capture registers that should
160 // be set to the current input position.  The capture bits
161 // start at index 2, since the search loop can take care of
162 // cap[0], cap[1] (the overall match position).
163 // That means we can handle up to 5 capturing parens: $1 through $4, plus $0.
164 // No input position can satisfy both kEmptyWordBoundary
165 // and kEmptyNonWordBoundary, so we can use that as a sentinel
166 // instead of needing an extra bit.
167 
168 static const int    kIndexShift   = 16;  // number of bits below index
169 static const int    kEmptyShift   = 6;   // number of empty flags in prog.h
170 static const int    kRealCapShift = kEmptyShift + 1;
171 static const int    kRealMaxCap   = (kIndexShift - kRealCapShift) / 2 * 2;
172 
173 // Parameters used to skip over cap[0], cap[1].
174 static const int    kCapShift     = kRealCapShift - 2;
175 static const int    kMaxCap       = kRealMaxCap + 2;
176 
177 static const uint32_t kMatchWins  = 1 << kEmptyShift;
178 static const uint32_t kCapMask    = ((1 << kRealMaxCap) - 1) << kRealCapShift;
179 
180 static const uint32_t kImpossible = kEmptyWordBoundary | kEmptyNonWordBoundary;
181 
182 // Check, at compile time, that prog.h agrees with math above.
183 // This function is never called.
OnePass_Checks()184 void OnePass_Checks() {
185   static_assert((1<<kEmptyShift)-1 == kEmptyAllFlags,
186                 "kEmptyShift disagrees with kEmptyAllFlags");
187   // kMaxCap counts pointers, kMaxOnePassCapture counts pairs.
188   static_assert(kMaxCap == Prog::kMaxOnePassCapture*2,
189                 "kMaxCap disagrees with kMaxOnePassCapture");
190 }
191 
Satisfy(uint32_t cond,const StringPiece & context,const char * p)192 static bool Satisfy(uint32_t cond, const StringPiece& context, const char* p) {
193   uint32_t satisfied = Prog::EmptyFlags(context, p);
194   if (cond & kEmptyAllFlags & ~satisfied)
195     return false;
196   return true;
197 }
198 
199 // Apply the capture bits in cond, saving p to the appropriate
200 // locations in cap[].
ApplyCaptures(uint32_t cond,const char * p,const char ** cap,int ncap)201 static void ApplyCaptures(uint32_t cond, const char* p,
202                           const char** cap, int ncap) {
203   for (int i = 2; i < ncap; i++)
204     if (cond & (1 << kCapShift << i))
205       cap[i] = p;
206 }
207 
208 // Computes the OneState* for the given nodeindex.
IndexToNode(uint8_t * nodes,int statesize,int nodeindex)209 static inline OneState* IndexToNode(uint8_t* nodes, int statesize,
210                                     int nodeindex) {
211   return reinterpret_cast<OneState*>(nodes + statesize*nodeindex);
212 }
213 
SearchOnePass(const StringPiece & text,const StringPiece & const_context,Anchor anchor,MatchKind kind,StringPiece * match,int nmatch)214 bool Prog::SearchOnePass(const StringPiece& text,
215                          const StringPiece& const_context,
216                          Anchor anchor, MatchKind kind,
217                          StringPiece* match, int nmatch) {
218   if (anchor != kAnchored && kind != kFullMatch) {
219     LOG(DFATAL) << "Cannot use SearchOnePass for unanchored matches.";
220     return false;
221   }
222 
223   // Make sure we have at least cap[1],
224   // because we use it to tell if we matched.
225   int ncap = 2*nmatch;
226   if (ncap < 2)
227     ncap = 2;
228 
229   const char* cap[kMaxCap];
230   for (int i = 0; i < ncap; i++)
231     cap[i] = NULL;
232 
233   const char* matchcap[kMaxCap];
234   for (int i = 0; i < ncap; i++)
235     matchcap[i] = NULL;
236 
237   StringPiece context = const_context;
238   if (context.data() == NULL)
239     context = text;
240   if (anchor_start() && context.begin() != text.begin())
241     return false;
242   if (anchor_end() && context.end() != text.end())
243     return false;
244   if (anchor_end())
245     kind = kFullMatch;
246 
247   uint8_t* nodes = onepass_nodes_.data();
248   int statesize = sizeof(OneState) + bytemap_range()*sizeof(uint32_t);
249   // start() is always mapped to the zeroth OneState.
250   OneState* state = IndexToNode(nodes, statesize, 0);
251   uint8_t* bytemap = bytemap_;
252   const char* bp = text.data();
253   const char* ep = text.data() + text.size();
254   const char* p;
255   bool matched = false;
256   matchcap[0] = bp;
257   cap[0] = bp;
258   uint32_t nextmatchcond = state->matchcond;
259   for (p = bp; p < ep; p++) {
260     int c = bytemap[*p & 0xFF];
261     uint32_t matchcond = nextmatchcond;
262     uint32_t cond = state->action[c];
263 
264     // Determine whether we can reach act->next.
265     // If so, advance state and nextmatchcond.
266     if ((cond & kEmptyAllFlags) == 0 || Satisfy(cond, context, p)) {
267       uint32_t nextindex = cond >> kIndexShift;
268       state = IndexToNode(nodes, statesize, nextindex);
269       nextmatchcond = state->matchcond;
270     } else {
271       state = NULL;
272       nextmatchcond = kImpossible;
273     }
274 
275     // This code section is carefully tuned.
276     // The goto sequence is about 10% faster than the
277     // obvious rewrite as a large if statement in the
278     // ASCIIMatchRE2 and DotMatchRE2 benchmarks.
279 
280     // Saving the match capture registers is expensive.
281     // Is this intermediate match worth thinking about?
282 
283     // Not if we want a full match.
284     if (kind == kFullMatch)
285       goto skipmatch;
286 
287     // Not if it's impossible.
288     if (matchcond == kImpossible)
289       goto skipmatch;
290 
291     // Not if the possible match is beaten by the certain
292     // match at the next byte.  When this test is useless
293     // (e.g., HTTPPartialMatchRE2) it slows the loop by
294     // about 10%, but when it avoids work (e.g., DotMatchRE2),
295     // it cuts the loop execution by about 45%.
296     if ((cond & kMatchWins) == 0 && (nextmatchcond & kEmptyAllFlags) == 0)
297       goto skipmatch;
298 
299     // Finally, the match conditions must be satisfied.
300     if ((matchcond & kEmptyAllFlags) == 0 || Satisfy(matchcond, context, p)) {
301       for (int i = 2; i < 2*nmatch; i++)
302         matchcap[i] = cap[i];
303       if (nmatch > 1 && (matchcond & kCapMask))
304         ApplyCaptures(matchcond, p, matchcap, ncap);
305       matchcap[1] = p;
306       matched = true;
307 
308       // If we're in longest match mode, we have to keep
309       // going and see if we find a longer match.
310       // In first match mode, we can stop if the match
311       // takes priority over the next state for this input byte.
312       // That bit is per-input byte and thus in cond, not matchcond.
313       if (kind == kFirstMatch && (cond & kMatchWins))
314         goto done;
315     }
316 
317   skipmatch:
318     if (state == NULL)
319       goto done;
320     if ((cond & kCapMask) && nmatch > 1)
321       ApplyCaptures(cond, p, cap, ncap);
322   }
323 
324   // Look for match at end of input.
325   {
326     uint32_t matchcond = state->matchcond;
327     if (matchcond != kImpossible &&
328         ((matchcond & kEmptyAllFlags) == 0 || Satisfy(matchcond, context, p))) {
329       if (nmatch > 1 && (matchcond & kCapMask))
330         ApplyCaptures(matchcond, p, cap, ncap);
331       for (int i = 2; i < ncap; i++)
332         matchcap[i] = cap[i];
333       matchcap[1] = p;
334       matched = true;
335     }
336   }
337 
338 done:
339   if (!matched)
340     return false;
341   for (int i = 0; i < nmatch; i++)
342     match[i] =
343         StringPiece(matchcap[2 * i],
344                     static_cast<size_t>(matchcap[2 * i + 1] - matchcap[2 * i]));
345   return true;
346 }
347 
348 
349 // Analysis to determine whether a given regexp program is one-pass.
350 
351 // If ip is not on workq, adds ip to work queue and returns true.
352 // If ip is already on work queue, does nothing and returns false.
353 // If ip is NULL, does nothing and returns true (pretends to add it).
354 typedef SparseSet Instq;
AddQ(Instq * q,int id)355 static bool AddQ(Instq *q, int id) {
356   if (id == 0)
357     return true;
358   if (q->contains(id))
359     return false;
360   q->insert(id);
361   return true;
362 }
363 
364 struct InstCond {
365   int id;
366   uint32_t cond;
367 };
368 
369 // Returns whether this is a one-pass program; that is,
370 // returns whether it is safe to use SearchOnePass on this program.
371 // These conditions must be true for any instruction ip:
372 //
373 //   (1) for any other Inst nip, there is at most one input-free
374 //       path from ip to nip.
375 //   (2) there is at most one kInstByte instruction reachable from
376 //       ip that matches any particular byte c.
377 //   (3) there is at most one input-free path from ip to a kInstMatch
378 //       instruction.
379 //
380 // This is actually just a conservative approximation: it might
381 // return false when the answer is true, when kInstEmptyWidth
382 // instructions are involved.
383 // Constructs and saves corresponding one-pass NFA on success.
IsOnePass()384 bool Prog::IsOnePass() {
385   if (did_onepass_)
386     return onepass_nodes_.data() != NULL;
387   did_onepass_ = true;
388 
389   if (start() == 0)  // no match
390     return false;
391 
392   // Steal memory for the one-pass NFA from the overall DFA budget.
393   // Willing to use at most 1/4 of the DFA budget (heuristic).
394   // Limit max node count to 65000 as a conservative estimate to
395   // avoid overflowing 16-bit node index in encoding.
396   int maxnodes = 2 + inst_count(kInstByteRange);
397   int statesize = sizeof(OneState) + bytemap_range()*sizeof(uint32_t);
398   if (maxnodes >= 65000 || dfa_mem_ / 4 / statesize < maxnodes)
399     return false;
400 
401   // Flood the graph starting at the start state, and check
402   // that in each reachable state, each possible byte leads
403   // to a unique next state.
404   int stacksize = inst_count(kInstCapture) +
405                   inst_count(kInstEmptyWidth) +
406                   inst_count(kInstNop) + 1;  // + 1 for start inst
407   PODArray<InstCond> stack(stacksize);
408 
409   int size = this->size();
410   PODArray<int> nodebyid(size);  // indexed by ip
411   memset(nodebyid.data(), 0xFF, size*sizeof nodebyid[0]);
412 
413   // Originally, nodes was a uint8_t[maxnodes*statesize], but that was
414   // unnecessarily optimistic: why allocate a large amount of memory
415   // upfront for a large program when it is unlikely to be one-pass?
416   std::vector<uint8_t> nodes;
417 
418   Instq tovisit(size), workq(size);
419   AddQ(&tovisit, start());
420   nodebyid[start()] = 0;
421   int nalloc = 1;
422   nodes.insert(nodes.end(), statesize, 0);
423   for (Instq::iterator it = tovisit.begin(); it != tovisit.end(); ++it) {
424     int id = *it;
425     int nodeindex = nodebyid[id];
426     OneState* node = IndexToNode(nodes.data(), statesize, nodeindex);
427 
428     // Flood graph using manual stack, filling in actions as found.
429     // Default is none.
430     for (int b = 0; b < bytemap_range_; b++)
431       node->action[b] = kImpossible;
432     node->matchcond = kImpossible;
433 
434     workq.clear();
435     bool matched = false;
436     int nstack = 0;
437     stack[nstack].id = id;
438     stack[nstack++].cond = 0;
439     while (nstack > 0) {
440       int id = stack[--nstack].id;
441       uint32_t cond = stack[nstack].cond;
442 
443     Loop:
444       Prog::Inst* ip = inst(id);
445       switch (ip->opcode()) {
446         default:
447           LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
448           break;
449 
450         case kInstAltMatch:
451           // TODO(rsc): Ignoring kInstAltMatch optimization.
452           // Should implement it in this engine, but it's subtle.
453           DCHECK(!ip->last());
454           // If already on work queue, (1) is violated: bail out.
455           if (!AddQ(&workq, id+1))
456             goto fail;
457           id = id+1;
458           goto Loop;
459 
460         case kInstByteRange: {
461           int nextindex = nodebyid[ip->out()];
462           if (nextindex == -1) {
463             if (nalloc >= maxnodes) {
464               if (ExtraDebug)
465                 LOG(ERROR) << StringPrintf(
466                     "Not OnePass: hit node limit %d >= %d", nalloc, maxnodes);
467               goto fail;
468             }
469             nextindex = nalloc;
470             AddQ(&tovisit, ip->out());
471             nodebyid[ip->out()] = nalloc;
472             nalloc++;
473             nodes.insert(nodes.end(), statesize, 0);
474             // Update node because it might have been invalidated.
475             node = IndexToNode(nodes.data(), statesize, nodeindex);
476           }
477           for (int c = ip->lo(); c <= ip->hi(); c++) {
478             int b = bytemap_[c];
479             // Skip any bytes immediately after c that are also in b.
480             while (c < 256-1 && bytemap_[c+1] == b)
481               c++;
482             uint32_t act = node->action[b];
483             uint32_t newact = (nextindex << kIndexShift) | cond;
484             if (matched)
485               newact |= kMatchWins;
486             if ((act & kImpossible) == kImpossible) {
487               node->action[b] = newact;
488             } else if (act != newact) {
489               if (ExtraDebug)
490                 LOG(ERROR) << StringPrintf(
491                     "Not OnePass: conflict on byte %#x at state %d", c, *it);
492               goto fail;
493             }
494           }
495           if (ip->foldcase()) {
496             Rune lo = std::max<Rune>(ip->lo(), 'a') + 'A' - 'a';
497             Rune hi = std::min<Rune>(ip->hi(), 'z') + 'A' - 'a';
498             for (int c = lo; c <= hi; c++) {
499               int b = bytemap_[c];
500               // Skip any bytes immediately after c that are also in b.
501               while (c < 256-1 && bytemap_[c+1] == b)
502                 c++;
503               uint32_t act = node->action[b];
504               uint32_t newact = (nextindex << kIndexShift) | cond;
505               if (matched)
506                 newact |= kMatchWins;
507               if ((act & kImpossible) == kImpossible) {
508                 node->action[b] = newact;
509               } else if (act != newact) {
510                 if (ExtraDebug)
511                   LOG(ERROR) << StringPrintf(
512                       "Not OnePass: conflict on byte %#x at state %d", c, *it);
513                 goto fail;
514               }
515             }
516           }
517 
518           if (ip->last())
519             break;
520           // If already on work queue, (1) is violated: bail out.
521           if (!AddQ(&workq, id+1))
522             goto fail;
523           id = id+1;
524           goto Loop;
525         }
526 
527         case kInstCapture:
528         case kInstEmptyWidth:
529         case kInstNop:
530           if (!ip->last()) {
531             // If already on work queue, (1) is violated: bail out.
532             if (!AddQ(&workq, id+1))
533               goto fail;
534             stack[nstack].id = id+1;
535             stack[nstack++].cond = cond;
536           }
537 
538           if (ip->opcode() == kInstCapture && ip->cap() < kMaxCap)
539             cond |= (1 << kCapShift) << ip->cap();
540           if (ip->opcode() == kInstEmptyWidth)
541             cond |= ip->empty();
542 
543           // kInstCapture and kInstNop always proceed to ip->out().
544           // kInstEmptyWidth only sometimes proceeds to ip->out(),
545           // but as a conservative approximation we assume it always does.
546           // We could be a little more precise by looking at what c
547           // is, but that seems like overkill.
548 
549           // If already on work queue, (1) is violated: bail out.
550           if (!AddQ(&workq, ip->out())) {
551             if (ExtraDebug)
552               LOG(ERROR) << StringPrintf(
553                   "Not OnePass: multiple paths %d -> %d", *it, ip->out());
554             goto fail;
555           }
556           id = ip->out();
557           goto Loop;
558 
559         case kInstMatch:
560           if (matched) {
561             // (3) is violated
562             if (ExtraDebug)
563               LOG(ERROR) << StringPrintf(
564                   "Not OnePass: multiple matches from %d", *it);
565             goto fail;
566           }
567           matched = true;
568           node->matchcond = cond;
569 
570           if (ip->last())
571             break;
572           // If already on work queue, (1) is violated: bail out.
573           if (!AddQ(&workq, id+1))
574             goto fail;
575           id = id+1;
576           goto Loop;
577 
578         case kInstFail:
579           break;
580       }
581     }
582   }
583 
584   if (ExtraDebug) {  // For debugging, dump one-pass NFA to LOG(ERROR).
585     LOG(ERROR) << "bytemap:\n" << DumpByteMap();
586     LOG(ERROR) << "prog:\n" << Dump();
587 
588     std::map<int, int> idmap;
589     for (int i = 0; i < size; i++)
590       if (nodebyid[i] != -1)
591         idmap[nodebyid[i]] = i;
592 
593     std::string dump;
594     for (Instq::iterator it = tovisit.begin(); it != tovisit.end(); ++it) {
595       int id = *it;
596       int nodeindex = nodebyid[id];
597       if (nodeindex == -1)
598         continue;
599       OneState* node = IndexToNode(nodes.data(), statesize, nodeindex);
600       dump += StringPrintf("node %d id=%d: matchcond=%#x\n",
601                            nodeindex, id, node->matchcond);
602       for (int i = 0; i < bytemap_range_; i++) {
603         if ((node->action[i] & kImpossible) == kImpossible)
604           continue;
605         dump += StringPrintf("  %d cond %#x -> %d id=%d\n",
606                              i, node->action[i] & 0xFFFF,
607                              node->action[i] >> kIndexShift,
608                              idmap[node->action[i] >> kIndexShift]);
609       }
610     }
611     LOG(ERROR) << "nodes:\n" << dump;
612   }
613 
614   dfa_mem_ -= nalloc*statesize;
615   onepass_nodes_ = PODArray<uint8_t>(nalloc*statesize);
616   memmove(onepass_nodes_.data(), nodes.data(), nalloc*statesize);
617   return true;
618 
619 fail:
620   return false;
621 }
622 
623 }  // namespace re2
624