1/* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7#include <linux/config.h> 8#include <linux/fs.h> 9#include <linux/mm.h> 10#include <linux/dcache.h> 11#include <linux/init.h> 12#include <linux/quotaops.h> 13#include <linux/slab.h> 14#include <linux/writeback.h> 15#include <linux/module.h> 16#include <linux/backing-dev.h> 17#include <linux/wait.h> 18#include <linux/hash.h> 19#include <linux/swap.h> 20#include <linux/security.h> 21 22/* 23 * This is needed for the following functions: 24 * - inode_has_buffers 25 * - invalidate_inode_buffers 26 * - fsync_bdev 27 * - invalidate_bdev 28 * 29 * FIXME: remove all knowledge of the buffer layer from this file 30 */ 31#include <linux/buffer_head.h> 32 33/* 34 * New inode.c implementation. 35 * 36 * This implementation has the basic premise of trying 37 * to be extremely low-overhead and SMP-safe, yet be 38 * simple enough to be "obviously correct". 39 * 40 * Famous last words. 41 */ 42 43/* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 44 45/* #define INODE_PARANOIA 1 */ 46/* #define INODE_DEBUG 1 */ 47 48/* 49 * Inode lookup is no longer as critical as it used to be: 50 * most of the lookups are going to be through the dcache. 51 */ 52#define I_HASHBITS i_hash_shift 53#define I_HASHMASK i_hash_mask 54 55static unsigned int i_hash_mask; 56static unsigned int i_hash_shift; 57 58/* 59 * Each inode can be on two separate lists. One is 60 * the hash list of the inode, used for lookups. The 61 * other linked list is the "type" list: 62 * "in_use" - valid inode, i_count > 0, i_nlink > 0 63 * "dirty" - as "in_use" but also dirty 64 * "unused" - valid inode, i_count = 0 65 * 66 * A "dirty" list is maintained for each super block, 67 * allowing for low-overhead inode sync() operations. 68 */ 69 70LIST_HEAD(inode_in_use); 71LIST_HEAD(inode_unused); 72static struct hlist_head *inode_hashtable; 73static HLIST_HEAD(anon_hash_chain); /* for inodes with NULL i_sb */ 74 75/* 76 * A simple spinlock to protect the list manipulations. 77 * 78 * NOTE! You also have to own the lock if you change 79 * the i_state of an inode while it is in use.. 80 */ 81spinlock_t inode_lock = SPIN_LOCK_UNLOCKED; 82 83/* 84 * iprune_sem provides exclusion between the kswapd or try_to_free_pages 85 * icache shrinking path, and the umount path. Without this exclusion, 86 * by the time prune_icache calls iput for the inode whose pages it has 87 * been invalidating, or by the time it calls clear_inode & destroy_inode 88 * from its final dispose_list, the struct super_block they refer to 89 * (for inode->i_sb->s_op) may already have been freed and reused. 90 */ 91static DECLARE_MUTEX(iprune_sem); 92 93/* 94 * Statistics gathering.. 95 */ 96struct inodes_stat_t inodes_stat; 97 98static kmem_cache_t * inode_cachep; 99 100static struct inode *alloc_inode(struct super_block *sb) 101{ 102 static struct address_space_operations empty_aops; 103 static struct inode_operations empty_iops; 104 static struct file_operations empty_fops; 105 struct inode *inode; 106 107 if (sb->s_op->alloc_inode) 108 inode = sb->s_op->alloc_inode(sb); 109 else 110 inode = (struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL); 111 112 if (inode) { 113 struct address_space * const mapping = &inode->i_data; 114 115 inode->i_sb = sb; 116 inode->i_blkbits = sb->s_blocksize_bits; 117 inode->i_flags = 0; 118 atomic_set(&inode->i_count, 1); 119 inode->i_sock = 0; 120 inode->i_op = &empty_iops; 121 inode->i_fop = &empty_fops; 122 inode->i_nlink = 1; 123 atomic_set(&inode->i_writecount, 0); 124 inode->i_size = 0; 125 inode->i_blocks = 0; 126 inode->i_bytes = 0; 127 inode->i_generation = 0; 128 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 129 inode->i_pipe = NULL; 130 inode->i_bdev = NULL; 131 inode->i_rdev = to_kdev_t(0); 132 inode->i_security = NULL; 133 if (security_inode_alloc(inode)) { 134 if (inode->i_sb->s_op->destroy_inode) 135 inode->i_sb->s_op->destroy_inode(inode); 136 else 137 kmem_cache_free(inode_cachep, (inode)); 138 return NULL; 139 } 140 141 mapping->a_ops = &empty_aops; 142 mapping->host = inode; 143 mapping->gfp_mask = GFP_HIGHUSER; 144 mapping->dirtied_when = 0; 145 mapping->assoc_mapping = NULL; 146 mapping->backing_dev_info = &default_backing_dev_info; 147 if (sb->s_bdev) 148 mapping->backing_dev_info = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 149 memset(&inode->u, 0, sizeof(inode->u)); 150 inode->i_mapping = mapping; 151 } 152 return inode; 153} 154 155void destroy_inode(struct inode *inode) 156{ 157 if (inode_has_buffers(inode)) 158 BUG(); 159 security_inode_free(inode); 160 if (inode->i_sb->s_op->destroy_inode) 161 inode->i_sb->s_op->destroy_inode(inode); 162 else 163 kmem_cache_free(inode_cachep, (inode)); 164} 165 166 167/* 168 * These are initializations that only need to be done 169 * once, because the fields are idempotent across use 170 * of the inode, so let the slab aware of that. 171 */ 172void inode_init_once(struct inode *inode) 173{ 174 memset(inode, 0, sizeof(*inode)); 175 INIT_HLIST_NODE(&inode->i_hash); 176 INIT_LIST_HEAD(&inode->i_data.clean_pages); 177 INIT_LIST_HEAD(&inode->i_data.dirty_pages); 178 INIT_LIST_HEAD(&inode->i_data.locked_pages); 179 INIT_LIST_HEAD(&inode->i_data.io_pages); 180 INIT_LIST_HEAD(&inode->i_dentry); 181 INIT_LIST_HEAD(&inode->i_devices); 182 sema_init(&inode->i_sem, 1); 183 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 184 rwlock_init(&inode->i_data.page_lock); 185 init_MUTEX(&inode->i_data.i_shared_sem); 186 INIT_LIST_HEAD(&inode->i_data.private_list); 187 spin_lock_init(&inode->i_data.private_lock); 188 INIT_LIST_HEAD(&inode->i_data.i_mmap); 189 INIT_LIST_HEAD(&inode->i_data.i_mmap_shared); 190 spin_lock_init(&inode->i_lock); 191} 192 193static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) 194{ 195 struct inode * inode = (struct inode *) foo; 196 197 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 198 SLAB_CTOR_CONSTRUCTOR) 199 inode_init_once(inode); 200} 201 202/* 203 * inode_lock must be held 204 */ 205void __iget(struct inode * inode) 206{ 207 if (atomic_read(&inode->i_count)) { 208 atomic_inc(&inode->i_count); 209 return; 210 } 211 atomic_inc(&inode->i_count); 212 if (!(inode->i_state & (I_DIRTY|I_LOCK))) { 213 list_del(&inode->i_list); 214 list_add(&inode->i_list, &inode_in_use); 215 } 216 inodes_stat.nr_unused--; 217} 218 219/** 220 * clear_inode - clear an inode 221 * @inode: inode to clear 222 * 223 * This is called by the filesystem to tell us 224 * that the inode is no longer useful. We just 225 * terminate it with extreme prejudice. 226 */ 227 228void clear_inode(struct inode *inode) 229{ 230 invalidate_inode_buffers(inode); 231 232 if (inode->i_data.nrpages) 233 BUG(); 234 if (!(inode->i_state & I_FREEING)) 235 BUG(); 236 if (inode->i_state & I_CLEAR) 237 BUG(); 238 wait_on_inode(inode); 239 DQUOT_DROP(inode); 240 if (inode->i_sb && inode->i_sb->s_op->clear_inode) 241 inode->i_sb->s_op->clear_inode(inode); 242 if (inode->i_bdev) 243 bd_forget(inode); 244 inode->i_state = I_CLEAR; 245} 246 247/* 248 * Dispose-list gets a local list with local inodes in it, so it doesn't 249 * need to worry about list corruption and SMP locks. 250 */ 251static void dispose_list(struct list_head *head) 252{ 253 int nr_disposed = 0; 254 255 while (!list_empty(head)) { 256 struct inode *inode; 257 258 inode = list_entry(head->next, struct inode, i_list); 259 list_del(&inode->i_list); 260 261 if (inode->i_data.nrpages) 262 truncate_inode_pages(&inode->i_data, 0); 263 clear_inode(inode); 264 destroy_inode(inode); 265 nr_disposed++; 266 } 267 spin_lock(&inode_lock); 268 inodes_stat.nr_inodes -= nr_disposed; 269 spin_unlock(&inode_lock); 270} 271 272/* 273 * Invalidate all inodes for a device. 274 */ 275static int invalidate_list(struct list_head *head, struct super_block * sb, struct list_head * dispose) 276{ 277 struct list_head *next; 278 int busy = 0, count = 0; 279 280 next = head->next; 281 for (;;) { 282 struct list_head * tmp = next; 283 struct inode * inode; 284 285 next = next->next; 286 if (tmp == head) 287 break; 288 inode = list_entry(tmp, struct inode, i_list); 289 if (inode->i_sb != sb) 290 continue; 291 invalidate_inode_buffers(inode); 292 if (!atomic_read(&inode->i_count)) { 293 hlist_del_init(&inode->i_hash); 294 list_del(&inode->i_list); 295 list_add(&inode->i_list, dispose); 296 inode->i_state |= I_FREEING; 297 count++; 298 continue; 299 } 300 busy = 1; 301 } 302 /* only unused inodes may be cached with i_count zero */ 303 inodes_stat.nr_unused -= count; 304 return busy; 305} 306 307/* 308 * This is a two-stage process. First we collect all 309 * offending inodes onto the throw-away list, and in 310 * the second stage we actually dispose of them. This 311 * is because we don't want to sleep while messing 312 * with the global lists.. 313 */ 314 315/** 316 * invalidate_inodes - discard the inodes on a device 317 * @sb: superblock 318 * 319 * Discard all of the inodes for a given superblock. If the discard 320 * fails because there are busy inodes then a non zero value is returned. 321 * If the discard is successful all the inodes have been discarded. 322 */ 323 324int invalidate_inodes(struct super_block * sb) 325{ 326 int busy; 327 LIST_HEAD(throw_away); 328 329 down(&iprune_sem); 330 spin_lock(&inode_lock); 331 busy = invalidate_list(&inode_in_use, sb, &throw_away); 332 busy |= invalidate_list(&inode_unused, sb, &throw_away); 333 busy |= invalidate_list(&sb->s_dirty, sb, &throw_away); 334 busy |= invalidate_list(&sb->s_io, sb, &throw_away); 335 spin_unlock(&inode_lock); 336 337 dispose_list(&throw_away); 338 up(&iprune_sem); 339 340 return busy; 341} 342 343int invalidate_device(kdev_t dev, int do_sync) 344{ 345 struct super_block *sb; 346 struct block_device *bdev = bdget(kdev_t_to_nr(dev)); 347 int res; 348 349 if (!bdev) 350 return 0; 351 352 if (do_sync) 353 fsync_bdev(bdev); 354 355 res = 0; 356 sb = get_super(bdev); 357 if (sb) { 358 /* 359 * no need to lock the super, get_super holds the 360 * read semaphore so the filesystem cannot go away 361 * under us (->put_super runs with the write lock 362 * hold). 363 */ 364 shrink_dcache_sb(sb); 365 res = invalidate_inodes(sb); 366 drop_super(sb); 367 } 368 invalidate_bdev(bdev, 0); 369 bdput(bdev); 370 return res; 371} 372 373static int can_unuse(struct inode *inode) 374{ 375 if (inode->i_state) 376 return 0; 377 if (inode_has_buffers(inode)) 378 return 0; 379 if (atomic_read(&inode->i_count)) 380 return 0; 381 if (inode->i_data.nrpages) 382 return 0; 383 return 1; 384} 385 386/* 387 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 388 * a temporary list and then are freed outside inode_lock by dispose_list(). 389 * 390 * Any inodes which are pinned purely because of attached pagecache have their 391 * pagecache removed. We expect the final iput() on that inode to add it to 392 * the front of the inode_unused list. So look for it there and if the 393 * inode is still freeable, proceed. The right inode is found 99.9% of the 394 * time in testing on a 4-way. 395 * 396 * If the inode has metadata buffers attached to mapping->private_list then 397 * try to remove them. 398 */ 399static void prune_icache(int nr_to_scan) 400{ 401 LIST_HEAD(freeable); 402 int nr_pruned = 0; 403 int nr_scanned; 404 unsigned long reap = 0; 405 406 down(&iprune_sem); 407 spin_lock(&inode_lock); 408 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 409 struct inode *inode; 410 411 if (list_empty(&inode_unused)) 412 break; 413 414 inode = list_entry(inode_unused.prev, struct inode, i_list); 415 416 if (inode->i_state || atomic_read(&inode->i_count)) { 417 list_move(&inode->i_list, &inode_unused); 418 continue; 419 } 420 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 421 __iget(inode); 422 spin_unlock(&inode_lock); 423 if (remove_inode_buffers(inode)) 424 reap += invalidate_inode_pages(&inode->i_data); 425 iput(inode); 426 spin_lock(&inode_lock); 427 428 if (inode != list_entry(inode_unused.next, 429 struct inode, i_list)) 430 continue; /* wrong inode or list_empty */ 431 if (!can_unuse(inode)) 432 continue; 433 } 434 hlist_del_init(&inode->i_hash); 435 list_move(&inode->i_list, &freeable); 436 inode->i_state |= I_FREEING; 437 nr_pruned++; 438 } 439 inodes_stat.nr_unused -= nr_pruned; 440 spin_unlock(&inode_lock); 441 442 dispose_list(&freeable); 443 up(&iprune_sem); 444 445 if (current_is_kswapd) 446 mod_page_state(kswapd_inodesteal, reap); 447 else 448 mod_page_state(pginodesteal, reap); 449} 450 451/* 452 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 453 * "unused" means that no dentries are referring to the inodes: the files are 454 * not open and the dcache references to those inodes have already been 455 * reclaimed. 456 * 457 * This function is passed the number of inodes to scan, and it returns the 458 * total number of remaining possibly-reclaimable inodes. 459 */ 460static int shrink_icache_memory(int nr, unsigned int gfp_mask) 461{ 462 if (nr) { 463 /* 464 * Nasty deadlock avoidance. We may hold various FS locks, 465 * and we don't want to recurse into the FS that called us 466 * in clear_inode() and friends.. 467 */ 468 if (gfp_mask & __GFP_FS) 469 prune_icache(nr); 470 } 471 return inodes_stat.nr_unused; 472} 473 474void __wait_on_freeing_inode(struct inode *inode); 475/* 476 * Called with the inode lock held. 477 * NOTE: we are not increasing the inode-refcount, you must call __iget() 478 * by hand after calling find_inode now! This simplifies iunique and won't 479 * add any additional branch in the common code. 480 */ 481static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data) 482{ 483 struct hlist_node *node; 484 struct inode * inode = NULL; 485 486 hlist_for_each (node, head) { 487 prefetch(node->next); 488 inode = hlist_entry(node, struct inode, i_hash); 489 if (inode->i_sb != sb) 490 continue; 491 if (!test(inode, data)) 492 continue; 493 if (inode->i_state & (I_FREEING|I_CLEAR)) { 494 __wait_on_freeing_inode(inode); 495 tmp = head; 496 continue; 497 } 498 break; 499 } 500 return node ? inode : NULL; 501} 502 503/* 504 * find_inode_fast is the fast path version of find_inode, see the comment at 505 * iget_locked for details. 506 */ 507static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino) 508{ 509 struct hlist_node *node; 510 struct inode * inode = NULL; 511 512 hlist_for_each (node, head) { 513 prefetch(node->next); 514 inode = list_entry(node, struct inode, i_hash); 515 if (inode->i_ino != ino) 516 continue; 517 if (inode->i_sb != sb) 518 continue; 519 if (inode->i_state & (I_FREEING|I_CLEAR)) { 520 __wait_on_freeing_inode(inode); 521 tmp = head; 522 continue; 523 } 524 break; 525 } 526 return node ? inode : NULL; 527} 528 529/** 530 * new_inode - obtain an inode 531 * @sb: superblock 532 * 533 * Allocates a new inode for given superblock. 534 */ 535 536struct inode *new_inode(struct super_block *sb) 537{ 538 static unsigned long last_ino; 539 struct inode * inode; 540 541 spin_lock_prefetch(&inode_lock); 542 543 inode = alloc_inode(sb); 544 if (inode) { 545 spin_lock(&inode_lock); 546 inodes_stat.nr_inodes++; 547 list_add(&inode->i_list, &inode_in_use); 548 inode->i_ino = ++last_ino; 549 inode->i_state = 0; 550 spin_unlock(&inode_lock); 551 } 552 return inode; 553} 554 555void unlock_new_inode(struct inode *inode) 556{ 557 /* 558 * This is special! We do not need the spinlock 559 * when clearing I_LOCK, because we're guaranteed 560 * that nobody else tries to do anything about the 561 * state of the inode when it is locked, as we 562 * just created it (so there can be no old holders 563 * that haven't tested I_LOCK). 564 */ 565 inode->i_state &= ~(I_LOCK|I_NEW); 566 wake_up_inode(inode); 567} 568EXPORT_SYMBOL(unlock_new_inode); 569 570/* 571 * This is called without the inode lock held.. Be careful. 572 * 573 * We no longer cache the sb_flags in i_flags - see fs.h 574 * -- rmk@arm.uk.linux.org 575 */ 576static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) 577{ 578 struct inode * inode; 579 580 inode = alloc_inode(sb); 581 if (inode) { 582 struct inode * old; 583 584 spin_lock(&inode_lock); 585 /* We released the lock, so.. */ 586 old = find_inode(sb, head, test, data); 587 if (!old) { 588 if (set(inode, data)) 589 goto set_failed; 590 591 inodes_stat.nr_inodes++; 592 list_add(&inode->i_list, &inode_in_use); 593 hlist_add_head(&inode->i_hash, head); 594 inode->i_state = I_LOCK|I_NEW; 595 spin_unlock(&inode_lock); 596 597 /* Return the locked inode with I_NEW set, the 598 * caller is responsible for filling in the contents 599 */ 600 return inode; 601 } 602 603 /* 604 * Uhhuh, somebody else created the same inode under 605 * us. Use the old inode instead of the one we just 606 * allocated. 607 */ 608 __iget(old); 609 spin_unlock(&inode_lock); 610 destroy_inode(inode); 611 inode = old; 612 wait_on_inode(inode); 613 } 614 return inode; 615 616set_failed: 617 spin_unlock(&inode_lock); 618 destroy_inode(inode); 619 return NULL; 620} 621 622/* 623 * get_new_inode_fast is the fast path version of get_new_inode, see the 624 * comment at iget_locked for details. 625 */ 626static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino) 627{ 628 struct inode * inode; 629 630 inode = alloc_inode(sb); 631 if (inode) { 632 struct inode * old; 633 634 spin_lock(&inode_lock); 635 /* We released the lock, so.. */ 636 old = find_inode_fast(sb, head, ino); 637 if (!old) { 638 inode->i_ino = ino; 639 inodes_stat.nr_inodes++; 640 list_add(&inode->i_list, &inode_in_use); 641 hlist_add_head(&inode->i_hash, head); 642 inode->i_state = I_LOCK|I_NEW; 643 spin_unlock(&inode_lock); 644 645 /* Return the locked inode with I_NEW set, the 646 * caller is responsible for filling in the contents 647 */ 648 return inode; 649 } 650 651 /* 652 * Uhhuh, somebody else created the same inode under 653 * us. Use the old inode instead of the one we just 654 * allocated. 655 */ 656 __iget(old); 657 spin_unlock(&inode_lock); 658 destroy_inode(inode); 659 inode = old; 660 wait_on_inode(inode); 661 } 662 return inode; 663} 664 665static inline unsigned long hash(struct super_block *sb, unsigned long hashval) 666{ 667 unsigned long tmp = hashval + ((unsigned long) sb / L1_CACHE_BYTES); 668 tmp = tmp + (tmp >> I_HASHBITS); 669 return tmp & I_HASHMASK; 670} 671 672/* Yeah, I know about quadratic hash. Maybe, later. */ 673 674/** 675 * iunique - get a unique inode number 676 * @sb: superblock 677 * @max_reserved: highest reserved inode number 678 * 679 * Obtain an inode number that is unique on the system for a given 680 * superblock. This is used by file systems that have no natural 681 * permanent inode numbering system. An inode number is returned that 682 * is higher than the reserved limit but unique. 683 * 684 * BUGS: 685 * With a large number of inodes live on the file system this function 686 * currently becomes quite slow. 687 */ 688 689ino_t iunique(struct super_block *sb, ino_t max_reserved) 690{ 691 static ino_t counter = 0; 692 struct inode *inode; 693 struct hlist_head * head; 694 ino_t res; 695 spin_lock(&inode_lock); 696retry: 697 if (counter > max_reserved) { 698 head = inode_hashtable + hash(sb,counter); 699 res = counter++; 700 inode = find_inode_fast(sb, head, res); 701 if (!inode) { 702 spin_unlock(&inode_lock); 703 return res; 704 } 705 } else { 706 counter = max_reserved + 1; 707 } 708 goto retry; 709 710} 711 712struct inode *igrab(struct inode *inode) 713{ 714 spin_lock(&inode_lock); 715 if (!(inode->i_state & I_FREEING)) 716 __iget(inode); 717 else 718 /* 719 * Handle the case where s_op->clear_inode is not been 720 * called yet, and somebody is calling igrab 721 * while the inode is getting freed. 722 */ 723 inode = NULL; 724 spin_unlock(&inode_lock); 725 return inode; 726} 727 728/** 729 * ifind - internal function, you want ilookup5() or iget5(). 730 * @sb: super block of file system to search 731 * @hashval: hash value (usually inode number) to search for 732 * @test: callback used for comparisons between inodes 733 * @data: opaque data pointer to pass to @test 734 * 735 * ifind() searches for the inode specified by @hashval and @data in the inode 736 * cache. This is a generalized version of ifind_fast() for file systems where 737 * the inode number is not sufficient for unique identification of an inode. 738 * 739 * If the inode is in the cache, the inode is returned with an incremented 740 * reference count. 741 * 742 * Otherwise NULL is returned. 743 * 744 * Note, @test is called with the inode_lock held, so can't sleep. 745 */ 746static inline struct inode *ifind(struct super_block *sb, 747 struct hlist_head *head, int (*test)(struct inode *, void *), 748 void *data) 749{ 750 struct inode *inode; 751 752 spin_lock(&inode_lock); 753 inode = find_inode(sb, head, test, data); 754 if (inode) { 755 __iget(inode); 756 spin_unlock(&inode_lock); 757 wait_on_inode(inode); 758 return inode; 759 } 760 spin_unlock(&inode_lock); 761 return NULL; 762} 763 764/** 765 * ifind_fast - internal function, you want ilookup() or iget(). 766 * @sb: super block of file system to search 767 * @ino: inode number to search for 768 * 769 * ifind_fast() searches for the inode @ino in the inode cache. This is for 770 * file systems where the inode number is sufficient for unique identification 771 * of an inode. 772 * 773 * If the inode is in the cache, the inode is returned with an incremented 774 * reference count. 775 * 776 * Otherwise NULL is returned. 777 */ 778static inline struct inode *ifind_fast(struct super_block *sb, 779 struct hlist_head *head, unsigned long ino) 780{ 781 struct inode *inode; 782 783 spin_lock(&inode_lock); 784 inode = find_inode_fast(sb, head, ino); 785 if (inode) { 786 __iget(inode); 787 spin_unlock(&inode_lock); 788 wait_on_inode(inode); 789 return inode; 790 } 791 spin_unlock(&inode_lock); 792 return NULL; 793} 794 795/** 796 * ilookup5 - search for an inode in the inode cache 797 * @sb: super block of file system to search 798 * @hashval: hash value (usually inode number) to search for 799 * @test: callback used for comparisons between inodes 800 * @data: opaque data pointer to pass to @test 801 * 802 * ilookup5() uses ifind() to search for the inode specified by @hashval and 803 * @data in the inode cache. This is a generalized version of ilookup() for 804 * file systems where the inode number is not sufficient for unique 805 * identification of an inode. 806 * 807 * If the inode is in the cache, the inode is returned with an incremented 808 * reference count. 809 * 810 * Otherwise NULL is returned. 811 * 812 * Note, @test is called with the inode_lock held, so can't sleep. 813 */ 814struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 815 int (*test)(struct inode *, void *), void *data) 816{ 817 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 818 819 return ifind(sb, head, test, data); 820} 821EXPORT_SYMBOL(ilookup5); 822 823/** 824 * ilookup - search for an inode in the inode cache 825 * @sb: super block of file system to search 826 * @ino: inode number to search for 827 * 828 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 829 * This is for file systems where the inode number is sufficient for unique 830 * identification of an inode. 831 * 832 * If the inode is in the cache, the inode is returned with an incremented 833 * reference count. 834 * 835 * Otherwise NULL is returned. 836 */ 837struct inode *ilookup(struct super_block *sb, unsigned long ino) 838{ 839 struct hlist_head *head = inode_hashtable + hash(sb, ino); 840 841 return ifind_fast(sb, head, ino); 842} 843EXPORT_SYMBOL(ilookup); 844 845/** 846 * iget5_locked - obtain an inode from a mounted file system 847 * @sb: super block of file system 848 * @hashval: hash value (usually inode number) to get 849 * @test: callback used for comparisons between inodes 850 * @set: callback used to initialize a new struct inode 851 * @data: opaque data pointer to pass to @test and @set 852 * 853 * This is iget() without the read_inode() portion of get_new_inode(). 854 * 855 * iget5_locked() uses ifind() to search for the inode specified by @hashval 856 * and @data in the inode cache and if present it is returned with an increased 857 * reference count. This is a generalized version of iget_locked() for file 858 * systems where the inode number is not sufficient for unique identification 859 * of an inode. 860 * 861 * If the inode is not in cache, get_new_inode() is called to allocate a new 862 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 863 * file system gets to fill it in before unlocking it via unlock_new_inode(). 864 * 865 * Note both @test and @set are called with the inode_lock held, so can't sleep. 866 */ 867struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 868 int (*test)(struct inode *, void *), 869 int (*set)(struct inode *, void *), void *data) 870{ 871 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 872 struct inode *inode; 873 874 inode = ifind(sb, head, test, data); 875 if (inode) 876 return inode; 877 /* 878 * get_new_inode() will do the right thing, re-trying the search 879 * in case it had to block at any point. 880 */ 881 return get_new_inode(sb, head, test, set, data); 882} 883EXPORT_SYMBOL(iget5_locked); 884 885/** 886 * iget_locked - obtain an inode from a mounted file system 887 * @sb: super block of file system 888 * @ino: inode number to get 889 * 890 * This is iget() without the read_inode() portion of get_new_inode_fast(). 891 * 892 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 893 * the inode cache and if present it is returned with an increased reference 894 * count. This is for file systems where the inode number is sufficient for 895 * unique identification of an inode. 896 * 897 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 898 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 899 * The file system gets to fill it in before unlocking it via 900 * unlock_new_inode(). 901 */ 902struct inode *iget_locked(struct super_block *sb, unsigned long ino) 903{ 904 struct hlist_head *head = inode_hashtable + hash(sb, ino); 905 struct inode *inode; 906 907 inode = ifind_fast(sb, head, ino); 908 if (inode) 909 return inode; 910 /* 911 * get_new_inode_fast() will do the right thing, re-trying the search 912 * in case it had to block at any point. 913 */ 914 return get_new_inode_fast(sb, head, ino); 915} 916EXPORT_SYMBOL(iget_locked); 917 918/** 919 * __insert_inode_hash - hash an inode 920 * @inode: unhashed inode 921 * @hashval: unsigned long value used to locate this object in the 922 * inode_hashtable. 923 * 924 * Add an inode to the inode hash for this superblock. If the inode 925 * has no superblock it is added to a separate anonymous chain. 926 */ 927 928void __insert_inode_hash(struct inode *inode, unsigned long hashval) 929{ 930 struct hlist_head *head = &anon_hash_chain; 931 if (inode->i_sb) 932 head = inode_hashtable + hash(inode->i_sb, hashval); 933 spin_lock(&inode_lock); 934 hlist_add_head(&inode->i_hash, head); 935 spin_unlock(&inode_lock); 936} 937 938/** 939 * remove_inode_hash - remove an inode from the hash 940 * @inode: inode to unhash 941 * 942 * Remove an inode from the superblock or anonymous hash. 943 */ 944 945void remove_inode_hash(struct inode *inode) 946{ 947 spin_lock(&inode_lock); 948 hlist_del_init(&inode->i_hash); 949 spin_unlock(&inode_lock); 950} 951 952void generic_delete_inode(struct inode *inode) 953{ 954 struct super_operations *op = inode->i_sb->s_op; 955 956<<<<<<< found 957 hlist_del_init(&inode->i_hash); 958||||||| expected 959 list_del_init(&inode->i_hash); 960======= 961>>>>>>> replacement 962 list_del_init(&inode->i_list); 963 inode->i_state|=I_FREEING; 964 inodes_stat.nr_inodes--; 965 spin_unlock(&inode_lock); 966 967 if (inode->i_data.nrpages) 968 truncate_inode_pages(&inode->i_data, 0); 969 970 security_inode_delete(inode); 971 972 if (op->delete_inode) { 973 void (*delete)(struct inode *) = op->delete_inode; 974 if (!is_bad_inode(inode)) 975 DQUOT_INIT(inode); 976 /* s_op->delete_inode internally recalls clear_inode() */ 977 delete(inode); 978 } else 979 clear_inode(inode); 980 spin_lock(&inode_lock); 981 list_del_init(&inode->i_hash); 982 spin_unlock(&inode_lock); 983 wake_up_inode(inode); 984 if (inode->i_state != I_CLEAR) 985 BUG(); 986 destroy_inode(inode); 987} 988EXPORT_SYMBOL(generic_delete_inode); 989 990static void generic_forget_inode(struct inode *inode) 991{ 992 struct super_block *sb = inode->i_sb; 993 994 if (!hlist_unhashed(&inode->i_hash)) { 995 if (!(inode->i_state & (I_DIRTY|I_LOCK))) { 996 list_del(&inode->i_list); 997 list_add(&inode->i_list, &inode_unused); 998 } 999 inodes_stat.nr_unused++; 1000 spin_unlock(&inode_lock); 1001 if (!sb || (sb->s_flags & MS_ACTIVE)) 1002 return; 1003 write_inode_now(inode, 1); 1004 spin_lock(&inode_lock); 1005 inodes_stat.nr_unused--; 1006 hlist_del_init(&inode->i_hash); 1007 } 1008 list_del_init(&inode->i_list); 1009 inode->i_state|=I_FREEING; 1010 inodes_stat.nr_inodes--; 1011 spin_unlock(&inode_lock); 1012 if (inode->i_data.nrpages) 1013 truncate_inode_pages(&inode->i_data, 0); 1014 clear_inode(inode); 1015 destroy_inode(inode); 1016} 1017 1018/* 1019 * Normal UNIX filesystem behaviour: delete the 1020 * inode when the usage count drops to zero, and 1021 * i_nlink is zero. 1022 */ 1023static void generic_drop_inode(struct inode *inode) 1024{ 1025 if (!inode->i_nlink) 1026 generic_delete_inode(inode); 1027 else 1028 generic_forget_inode(inode); 1029} 1030 1031/* 1032 * Called when we're dropping the last reference 1033 * to an inode. 1034 * 1035 * Call the FS "drop()" function, defaulting to 1036 * the legacy UNIX filesystem behaviour.. 1037 * 1038 * NOTE! NOTE! NOTE! We're called with the inode lock 1039 * held, and the drop function is supposed to release 1040 * the lock! 1041 */ 1042static inline void iput_final(struct inode *inode) 1043{ 1044 struct super_operations *op = inode->i_sb->s_op; 1045 void (*drop)(struct inode *) = generic_drop_inode; 1046 1047 if (op && op->drop_inode) 1048 drop = op->drop_inode; 1049 drop(inode); 1050} 1051 1052/** 1053 * iput - put an inode 1054 * @inode: inode to put 1055 * 1056 * Puts an inode, dropping its usage count. If the inode use count hits 1057 * zero the inode is also then freed and may be destroyed. 1058 */ 1059 1060void iput(struct inode *inode) 1061{ 1062 if (inode) { 1063 struct super_operations *op = inode->i_sb->s_op; 1064 1065 if (inode->i_state == I_CLEAR) 1066 BUG(); 1067 1068 if (op && op->put_inode) 1069 op->put_inode(inode); 1070 1071 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1072 iput_final(inode); 1073 } 1074} 1075 1076/** 1077 * bmap - find a block number in a file 1078 * @inode: inode of file 1079 * @block: block to find 1080 * 1081 * Returns the block number on the device holding the inode that 1082 * is the disk block number for the block of the file requested. 1083 * That is, asked for block 4 of inode 1 the function will return the 1084 * disk block relative to the disk start that holds that block of the 1085 * file. 1086 */ 1087 1088sector_t bmap(struct inode * inode, sector_t block) 1089{ 1090 sector_t res = 0; 1091 if (inode->i_mapping->a_ops->bmap) 1092 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1093 return res; 1094} 1095 1096/* 1097 * Return true if the filesystem which backs this inode considers the two 1098 * passed timespecs to be sufficiently different to warrant flushing the 1099 * altered time out to disk. 1100 */ 1101static int inode_times_differ(struct inode *inode, 1102 struct timespec *old, struct timespec *new) 1103{ 1104 if (IS_ONE_SECOND(inode)) 1105 return old->tv_sec != new->tv_sec; 1106 return !timespec_equal(old, new); 1107} 1108 1109/** 1110 * update_atime - update the access time 1111 * @inode: inode accessed 1112 * 1113 * Update the accessed time on an inode and mark it for writeback. 1114 * This function automatically handles read only file systems and media, 1115 * as well as the "noatime" flag and inode specific "noatime" markers. 1116 */ 1117 1118void update_atime(struct inode *inode) 1119{ 1120 struct timespec now; 1121 1122 if (IS_NOATIME(inode)) 1123 return; 1124 if (IS_NODIRATIME(inode) && S_ISDIR(inode->i_mode)) 1125 return; 1126 if (IS_RDONLY(inode)) 1127 return; 1128 1129 now = current_kernel_time(); 1130 if (inode_times_differ(inode, &inode->i_atime, &now)) { 1131 inode->i_atime = now; 1132 mark_inode_dirty_sync(inode); 1133 } else { 1134 if (!timespec_equal(&inode->i_atime, &now)) 1135 inode->i_atime = now; 1136 } 1137} 1138 1139/** 1140 * inode_update_time - update mtime and ctime time 1141 * @inode: inode accessed 1142 * @ctime_too: update ctime too 1143 * 1144 * Update the mtime time on an inode and mark it for writeback. 1145 * When ctime_too is specified update the ctime too. 1146 */ 1147 1148void inode_update_time(struct inode *inode, int ctime_too) 1149{ 1150 struct timespec now = current_kernel_time(); 1151 int sync_it = 0; 1152 1153 if (inode_times_differ(inode, &inode->i_mtime, &now)) 1154 sync_it = 1; 1155 inode->i_mtime = now; 1156 1157 if (ctime_too) { 1158 if (inode_times_differ(inode, &inode->i_ctime, &now)) 1159 sync_it = 1; 1160 inode->i_ctime = now; 1161 } 1162 if (sync_it) 1163 mark_inode_dirty_sync(inode); 1164} 1165EXPORT_SYMBOL(inode_update_time); 1166 1167int inode_needs_sync(struct inode *inode) 1168{ 1169 if (IS_SYNC(inode)) 1170 return 1; 1171 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1172 return 1; 1173 return 0; 1174} 1175EXPORT_SYMBOL(inode_needs_sync); 1176 1177/* 1178 * Quota functions that want to walk the inode lists.. 1179 */ 1180#ifdef CONFIG_QUOTA 1181 1182/* Functions back in dquot.c */ 1183void put_dquot_list(struct list_head *); 1184int remove_inode_dquot_ref(struct inode *, int, struct list_head *); 1185 1186void remove_dquot_ref(struct super_block *sb, int type) 1187{ 1188 struct inode *inode; 1189 struct list_head *act_head; 1190 LIST_HEAD(tofree_head); 1191 1192 if (!sb->dq_op) 1193 return; /* nothing to do */ 1194 spin_lock(&inode_lock); /* This lock is for inodes code */ 1195 /* We don't have to lock against quota code - test IS_QUOTAINIT is just for speedup... */ 1196 1197 list_for_each(act_head, &inode_in_use) { 1198 inode = list_entry(act_head, struct inode, i_list); 1199 if (inode->i_sb == sb && IS_QUOTAINIT(inode)) 1200 remove_inode_dquot_ref(inode, type, &tofree_head); 1201 } 1202 list_for_each(act_head, &inode_unused) { 1203 inode = list_entry(act_head, struct inode, i_list); 1204 if (inode->i_sb == sb && IS_QUOTAINIT(inode)) 1205 remove_inode_dquot_ref(inode, type, &tofree_head); 1206 } 1207 list_for_each(act_head, &sb->s_dirty) { 1208 inode = list_entry(act_head, struct inode, i_list); 1209 if (IS_QUOTAINIT(inode)) 1210 remove_inode_dquot_ref(inode, type, &tofree_head); 1211 } 1212 list_for_each(act_head, &sb->s_io) { 1213 inode = list_entry(act_head, struct inode, i_list); 1214 if (IS_QUOTAINIT(inode)) 1215 remove_inode_dquot_ref(inode, type, &tofree_head); 1216 } 1217 spin_unlock(&inode_lock); 1218 1219 put_dquot_list(&tofree_head); 1220} 1221 1222#endif 1223 1224/* 1225 * Hashed waitqueues for wait_on_inode(). The table is pretty small - the 1226 * kernel doesn't lock many inodes at the same time. 1227 */ 1228#define I_WAIT_TABLE_ORDER 3 1229static struct i_wait_queue_head { 1230 wait_queue_head_t wqh; 1231} ____cacheline_aligned_in_smp i_wait_queue_heads[1<<I_WAIT_TABLE_ORDER]; 1232 1233/* 1234 * Return the address of the waitqueue_head to be used for this inode 1235 */ 1236static wait_queue_head_t *i_waitq_head(struct inode *inode) 1237{ 1238 return &i_wait_queue_heads[hash_ptr(inode, I_WAIT_TABLE_ORDER)].wqh; 1239} 1240 1241void __wait_on_inode(struct inode *inode) 1242{ 1243 DECLARE_WAITQUEUE(wait, current); 1244 wait_queue_head_t *wq = i_waitq_head(inode); 1245 1246 add_wait_queue(wq, &wait); 1247repeat: 1248 set_current_state(TASK_UNINTERRUPTIBLE); 1249 if (inode->i_state & I_LOCK) { 1250 schedule(); 1251 goto repeat; 1252 } 1253 remove_wait_queue(wq, &wait); 1254 __set_current_state(TASK_RUNNING); 1255} 1256 1257void __wait_on_freeing_inode(struct inode *inode) 1258{ 1259 DECLARE_WAITQUEUE(wait, current); 1260 wait_queue_head_t *wq = i_waitq_head(inode); 1261 1262 add_wait_queue(wq, &wait); 1263 set_current_state(TASK_UNINTERRUPTIBLE); 1264 spin_unlock(&inode_lock); 1265 schedule(); 1266 remove_wait_queue(wq, &wait); 1267 current->state = TASK_RUNNING; 1268 spin_lock(&inode_lock); 1269} 1270 1271 1272void wake_up_inode(struct inode *inode) 1273{ 1274 wait_queue_head_t *wq = i_waitq_head(inode); 1275 1276 /* 1277 * Prevent speculative execution through spin_unlock(&inode_lock); 1278 */ 1279 smp_mb(); 1280 if (waitqueue_active(wq)) 1281 wake_up_all(wq); 1282} 1283 1284/* 1285 * Initialize the waitqueues and inode hash table. 1286 */ 1287void __init inode_init(unsigned long mempages) 1288{ 1289 struct hlist_head *head; 1290 unsigned long order; 1291 unsigned int nr_hash; 1292 int i; 1293 1294 for (i = 0; i < ARRAY_SIZE(i_wait_queue_heads); i++) 1295 init_waitqueue_head(&i_wait_queue_heads[i].wqh); 1296 1297 mempages >>= (14 - PAGE_SHIFT); 1298 mempages *= sizeof(struct list_head); 1299 for (order = 0; ((1UL << order) << PAGE_SHIFT) < mempages; order++) 1300 ; 1301 1302 do { 1303 unsigned long tmp; 1304 1305 nr_hash = (1UL << order) * PAGE_SIZE / 1306 sizeof(struct hlist_head); 1307 i_hash_mask = (nr_hash - 1); 1308 1309 tmp = nr_hash; 1310 i_hash_shift = 0; 1311 while ((tmp >>= 1UL) != 0UL) 1312 i_hash_shift++; 1313 1314 inode_hashtable = (struct hlist_head *) 1315 __get_free_pages(GFP_ATOMIC, order); 1316 } while (inode_hashtable == NULL && --order >= 0); 1317 1318 printk("Inode-cache hash table entries: %d (order: %ld, %ld bytes)\n", 1319 nr_hash, order, (PAGE_SIZE << order)); 1320 1321 if (!inode_hashtable) 1322 panic("Failed to allocate inode hash table\n"); 1323 1324 head = inode_hashtable; 1325 i = nr_hash; 1326 do { 1327 INIT_HLIST_HEAD(head); 1328 head++; 1329 i--; 1330 } while (i); 1331 1332 /* inode slab cache */ 1333 inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode), 1334 0, SLAB_HWCACHE_ALIGN, init_once, 1335 NULL); 1336 if (!inode_cachep) 1337 panic("cannot create inode slab cache"); 1338 1339 set_shrinker(DEFAULT_SEEKS, shrink_icache_memory); 1340} 1341 1342void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1343{ 1344 inode->i_mode = mode; 1345 if (S_ISCHR(mode)) { 1346 inode->i_fop = &def_chr_fops; 1347 inode->i_rdev = to_kdev_t(rdev); 1348 } else if (S_ISBLK(mode)) { 1349 inode->i_fop = &def_blk_fops; 1350 inode->i_rdev = to_kdev_t(rdev); 1351 } else if (S_ISFIFO(mode)) 1352 inode->i_fop = &def_fifo_fops; 1353 else if (S_ISSOCK(mode)) 1354 inode->i_fop = &bad_sock_fops; 1355 else 1356 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1357 mode); 1358} 1359