1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c.  See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21#include <linux/slab.h>
22#include <linux/delay.h>
23#include <linux/blkdev.h>
24#include <linux/module.h>
25#include <linux/seq_file.h>
26#include <linux/ratelimit.h>
27#include <linux/kthread.h>
28#include "md.h"
29#include "raid10.h"
30#include "raid0.h"
31#include "bitmap.h"
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 *    chunk_size
37 *    raid_disks
38 *    near_copies (stored in low byte of layout)
39 *    far_copies (stored in second byte of layout)
40 *    far_offset (stored in bit 16 of layout )
41 *
42 * The data to be stored is divided into chunks using chunksize.
43 * Each device is divided into far_copies sections.
44 * In each section, chunks are laid out in a style similar to raid0, but
45 * near_copies copies of each chunk is stored (each on a different drive).
46 * The starting device for each section is offset near_copies from the starting
47 * device of the previous section.
48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49 * drive.
50 * near_copies and far_copies must be at least one, and their product is at most
51 * raid_disks.
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of be very far apart
55 * on disk, there are adjacent stripes.
56 */
57
58/*
59 * Number of guaranteed r10bios in case of extreme VM load:
60 */
61#define	NR_RAID10_BIOS 256
62
63/* when we get a read error on a read-only array, we redirect to another
64 * device without failing the first device, or trying to over-write to
65 * correct the read error.  To keep track of bad blocks on a per-bio
66 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
67 */
68#define IO_BLOCKED ((struct bio *)1)
69/* When we successfully write to a known bad-block, we need to remove the
70 * bad-block marking which must be done from process context.  So we record
71 * the success by setting devs[n].bio to IO_MADE_GOOD
72 */
73#define IO_MADE_GOOD ((struct bio *)2)
74
75#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
76
77/* When there are this many requests queued to be written by
78 * the raid10 thread, we become 'congested' to provide back-pressure
79 * for writeback.
80 */
81static int max_queued_requests = 1024;
82
83static void allow_barrier(struct r10conf *conf);
84static void lower_barrier(struct r10conf *conf);
85static int enough(struct r10conf *conf, int ignore);
86static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
87				int *skipped);
88static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
89static void end_reshape_write(struct bio *bio, int error);
90static void end_reshape(struct r10conf *conf);
91
92static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
93{
94	struct r10conf *conf = data;
95	int size = offsetof(struct r10bio, devs[conf->copies]);
96
97	/* allocate a r10bio with room for raid_disks entries in the
98	 * bios array */
99	return kzalloc(size, gfp_flags);
100}
101
102static void r10bio_pool_free(void *r10_bio, void *data)
103{
104	kfree(r10_bio);
105}
106
107/* Maximum size of each resync request */
108#define RESYNC_BLOCK_SIZE (64*1024)
109#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
110/* amount of memory to reserve for resync requests */
111#define RESYNC_WINDOW (1024*1024)
112/* maximum number of concurrent requests, memory permitting */
113#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
114
115/*
116 * When performing a resync, we need to read and compare, so
117 * we need as many pages are there are copies.
118 * When performing a recovery, we need 2 bios, one for read,
119 * one for write (we recover only one drive per r10buf)
120 *
121 */
122static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
123{
124	struct r10conf *conf = data;
125	struct page *page;
126	struct r10bio *r10_bio;
127	struct bio *bio;
128	int i, j;
129	int nalloc;
130
131	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
132	if (!r10_bio)
133		return NULL;
134
135	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
136	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
137		nalloc = conf->copies; /* resync */
138	else
139		nalloc = 2; /* recovery */
140
141	/*
142	 * Allocate bios.
143	 */
144	for (j = nalloc ; j-- ; ) {
145		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146		if (!bio)
147			goto out_free_bio;
148		r10_bio->devs[j].bio = bio;
149		if (!conf->have_replacement)
150			continue;
151		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152		if (!bio)
153			goto out_free_bio;
154		r10_bio->devs[j].repl_bio = bio;
155	}
156	/*
157	 * Allocate RESYNC_PAGES data pages and attach them
158	 * where needed.
159	 */
160	for (j = 0 ; j < nalloc; j++) {
161		struct bio *rbio = r10_bio->devs[j].repl_bio;
162		bio = r10_bio->devs[j].bio;
163		for (i = 0; i < RESYNC_PAGES; i++) {
164			if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
165					       &conf->mddev->recovery)) {
166				/* we can share bv_page's during recovery
167				 * and reshape */
168				struct bio *rbio = r10_bio->devs[0].bio;
169				page = rbio->bi_io_vec[i].bv_page;
170				get_page(page);
171			} else
172				page = alloc_page(gfp_flags);
173			if (unlikely(!page))
174				goto out_free_pages;
175
176			bio->bi_io_vec[i].bv_page = page;
177			if (rbio)
178				rbio->bi_io_vec[i].bv_page = page;
179		}
180	}
181
182	return r10_bio;
183
184out_free_pages:
185	for ( ; i > 0 ; i--)
186		safe_put_page(bio->bi_io_vec[i-1].bv_page);
187	while (j--)
188		for (i = 0; i < RESYNC_PAGES ; i++)
189			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
190	j = 0;
191out_free_bio:
192	for ( ; j < nalloc; j++) {
193		if (r10_bio->devs[j].bio)
194			bio_put(r10_bio->devs[j].bio);
195		if (r10_bio->devs[j].repl_bio)
196			bio_put(r10_bio->devs[j].repl_bio);
197	}
198	r10bio_pool_free(r10_bio, conf);
199	return NULL;
200}
201
202static void r10buf_pool_free(void *__r10_bio, void *data)
203{
204	int i;
205	struct r10conf *conf = data;
206	struct r10bio *r10bio = __r10_bio;
207	int j;
208
209	for (j=0; j < conf->copies; j++) {
210		struct bio *bio = r10bio->devs[j].bio;
211		if (bio) {
212			for (i = 0; i < RESYNC_PAGES; i++) {
213				safe_put_page(bio->bi_io_vec[i].bv_page);
214				bio->bi_io_vec[i].bv_page = NULL;
215			}
216			bio_put(bio);
217		}
218		bio = r10bio->devs[j].repl_bio;
219		if (bio)
220			bio_put(bio);
221	}
222	r10bio_pool_free(r10bio, conf);
223}
224
225static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
226{
227	int i;
228
229	for (i = 0; i < conf->copies; i++) {
230		struct bio **bio = & r10_bio->devs[i].bio;
231		if (!BIO_SPECIAL(*bio))
232			bio_put(*bio);
233		*bio = NULL;
234		bio = &r10_bio->devs[i].repl_bio;
235		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
236			bio_put(*bio);
237		*bio = NULL;
238	}
239}
240
241static void free_r10bio(struct r10bio *r10_bio)
242{
243	struct r10conf *conf = r10_bio->mddev->private;
244
245	put_all_bios(conf, r10_bio);
246	mempool_free(r10_bio, conf->r10bio_pool);
247}
248
249static void put_buf(struct r10bio *r10_bio)
250{
251	struct r10conf *conf = r10_bio->mddev->private;
252
253	mempool_free(r10_bio, conf->r10buf_pool);
254
255	lower_barrier(conf);
256}
257
258static void reschedule_retry(struct r10bio *r10_bio)
259{
260	unsigned long flags;
261	struct mddev *mddev = r10_bio->mddev;
262	struct r10conf *conf = mddev->private;
263
264	spin_lock_irqsave(&conf->device_lock, flags);
265	list_add(&r10_bio->retry_list, &conf->retry_list);
266	conf->nr_queued ++;
267	spin_unlock_irqrestore(&conf->device_lock, flags);
268
269	/* wake up frozen array... */
270	wake_up(&conf->wait_barrier);
271
272	md_wakeup_thread(mddev->thread);
273}
274
275/*
276 * raid_end_bio_io() is called when we have finished servicing a mirrored
277 * operation and are ready to return a success/failure code to the buffer
278 * cache layer.
279 */
280static void raid_end_bio_io(struct r10bio *r10_bio)
281{
282	struct bio *bio = r10_bio->master_bio;
283	int done;
284	struct r10conf *conf = r10_bio->mddev->private;
285
286	if (bio->bi_phys_segments) {
287		unsigned long flags;
288		spin_lock_irqsave(&conf->device_lock, flags);
289		bio->bi_phys_segments--;
290		done = (bio->bi_phys_segments == 0);
291		spin_unlock_irqrestore(&conf->device_lock, flags);
292	} else
293		done = 1;
294	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
295		clear_bit(BIO_UPTODATE, &bio->bi_flags);
296	if (done) {
297		bio_endio(bio, 0);
298		/*
299		 * Wake up any possible resync thread that waits for the device
300		 * to go idle.
301		 */
302		allow_barrier(conf);
303	}
304	free_r10bio(r10_bio);
305}
306
307/*
308 * Update disk head position estimator based on IRQ completion info.
309 */
310static inline void update_head_pos(int slot, struct r10bio *r10_bio)
311{
312	struct r10conf *conf = r10_bio->mddev->private;
313
314	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
315		r10_bio->devs[slot].addr + (r10_bio->sectors);
316}
317
318/*
319 * Find the disk number which triggered given bio
320 */
321static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
322			 struct bio *bio, int *slotp, int *replp)
323{
324	int slot;
325	int repl = 0;
326
327	for (slot = 0; slot < conf->copies; slot++) {
328		if (r10_bio->devs[slot].bio == bio)
329			break;
330		if (r10_bio->devs[slot].repl_bio == bio) {
331			repl = 1;
332			break;
333		}
334	}
335
336	BUG_ON(slot == conf->copies);
337	update_head_pos(slot, r10_bio);
338
339	if (slotp)
340		*slotp = slot;
341	if (replp)
342		*replp = repl;
343	return r10_bio->devs[slot].devnum;
344}
345
346static void raid10_end_read_request(struct bio *bio, int error)
347{
348	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
349	struct r10bio *r10_bio = bio->bi_private;
350	int slot, dev;
351	struct md_rdev *rdev;
352	struct r10conf *conf = r10_bio->mddev->private;
353
354
355	slot = r10_bio->read_slot;
356	dev = r10_bio->devs[slot].devnum;
357	rdev = r10_bio->devs[slot].rdev;
358	/*
359	 * this branch is our 'one mirror IO has finished' event handler:
360	 */
361	update_head_pos(slot, r10_bio);
362
363	if (uptodate) {
364		/*
365		 * Set R10BIO_Uptodate in our master bio, so that
366		 * we will return a good error code to the higher
367		 * levels even if IO on some other mirrored buffer fails.
368		 *
369		 * The 'master' represents the composite IO operation to
370		 * user-side. So if something waits for IO, then it will
371		 * wait for the 'master' bio.
372		 */
373		set_bit(R10BIO_Uptodate, &r10_bio->state);
374	} else {
375		/* If all other devices that store this block have
376		 * failed, we want to return the error upwards rather
377		 * than fail the last device.  Here we redefine
378		 * "uptodate" to mean "Don't want to retry"
379		 */
380		unsigned long flags;
381		spin_lock_irqsave(&conf->device_lock, flags);
382		if (!enough(conf, rdev->raid_disk))
383			uptodate = 1;
384		spin_unlock_irqrestore(&conf->device_lock, flags);
385	}
386	if (uptodate) {
387		raid_end_bio_io(r10_bio);
388		rdev_dec_pending(rdev, conf->mddev);
389	} else {
390		/*
391		 * oops, read error - keep the refcount on the rdev
392		 */
393		char b[BDEVNAME_SIZE];
394		printk_ratelimited(KERN_ERR
395				   "md/raid10:%s: %s: rescheduling sector %llu\n",
396				   mdname(conf->mddev),
397				   bdevname(rdev->bdev, b),
398				   (unsigned long long)r10_bio->sector);
399		set_bit(R10BIO_ReadError, &r10_bio->state);
400		reschedule_retry(r10_bio);
401	}
402}
403
404static void close_write(struct r10bio *r10_bio)
405{
406	/* clear the bitmap if all writes complete successfully */
407	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
408			r10_bio->sectors,
409			!test_bit(R10BIO_Degraded, &r10_bio->state),
410			0);
411	md_write_end(r10_bio->mddev);
412}
413
414static void one_write_done(struct r10bio *r10_bio)
415{
416	if (atomic_dec_and_test(&r10_bio->remaining)) {
417		if (test_bit(R10BIO_WriteError, &r10_bio->state))
418			reschedule_retry(r10_bio);
419		else {
420			close_write(r10_bio);
421			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
422				reschedule_retry(r10_bio);
423			else
424				raid_end_bio_io(r10_bio);
425		}
426	}
427}
428
429static void raid10_end_write_request(struct bio *bio, int error)
430{
431	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
432	struct r10bio *r10_bio = bio->bi_private;
433	int dev;
434	int dec_rdev = 1;
435	struct r10conf *conf = r10_bio->mddev->private;
436	int slot, repl;
437	struct md_rdev *rdev = NULL;
438
439	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
440
441	if (repl)
442		rdev = conf->mirrors[dev].replacement;
443	if (!rdev) {
444		smp_rmb();
445		repl = 0;
446		rdev = conf->mirrors[dev].rdev;
447	}
448	/*
449	 * this branch is our 'one mirror IO has finished' event handler:
450	 */
451	if (!uptodate) {
452		if (repl)
453			/* Never record new bad blocks to replacement,
454			 * just fail it.
455			 */
456			md_error(rdev->mddev, rdev);
457		else {
458			set_bit(WriteErrorSeen,	&rdev->flags);
459			if (!test_and_set_bit(WantReplacement, &rdev->flags))
460				set_bit(MD_RECOVERY_NEEDED,
461					&rdev->mddev->recovery);
462			set_bit(R10BIO_WriteError, &r10_bio->state);
463			dec_rdev = 0;
464		}
465	} else {
466		/*
467		 * Set R10BIO_Uptodate in our master bio, so that
468		 * we will return a good error code for to the higher
469		 * levels even if IO on some other mirrored buffer fails.
470		 *
471		 * The 'master' represents the composite IO operation to
472		 * user-side. So if something waits for IO, then it will
473		 * wait for the 'master' bio.
474		 */
475		sector_t first_bad;
476		int bad_sectors;
477
478		set_bit(R10BIO_Uptodate, &r10_bio->state);
479
480		/* Maybe we can clear some bad blocks. */
481		if (is_badblock(rdev,
482				r10_bio->devs[slot].addr,
483				r10_bio->sectors,
484				&first_bad, &bad_sectors)) {
485			bio_put(bio);
486			if (repl)
487				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
488			else
489				r10_bio->devs[slot].bio = IO_MADE_GOOD;
490			dec_rdev = 0;
491			set_bit(R10BIO_MadeGood, &r10_bio->state);
492		}
493	}
494
495	/*
496	 *
497	 * Let's see if all mirrored write operations have finished
498	 * already.
499	 */
500	one_write_done(r10_bio);
501	if (dec_rdev)
502		rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
503}
504
505/*
506 * RAID10 layout manager
507 * As well as the chunksize and raid_disks count, there are two
508 * parameters: near_copies and far_copies.
509 * near_copies * far_copies must be <= raid_disks.
510 * Normally one of these will be 1.
511 * If both are 1, we get raid0.
512 * If near_copies == raid_disks, we get raid1.
513 *
514 * Chunks are laid out in raid0 style with near_copies copies of the
515 * first chunk, followed by near_copies copies of the next chunk and
516 * so on.
517 * If far_copies > 1, then after 1/far_copies of the array has been assigned
518 * as described above, we start again with a device offset of near_copies.
519 * So we effectively have another copy of the whole array further down all
520 * the drives, but with blocks on different drives.
521 * With this layout, and block is never stored twice on the one device.
522 *
523 * raid10_find_phys finds the sector offset of a given virtual sector
524 * on each device that it is on.
525 *
526 * raid10_find_virt does the reverse mapping, from a device and a
527 * sector offset to a virtual address
528 */
529
530static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
531{
532	int n,f;
533	sector_t sector;
534	sector_t chunk;
535	sector_t stripe;
536	int dev;
537	int slot = 0;
538
539	/* now calculate first sector/dev */
540	chunk = r10bio->sector >> geo->chunk_shift;
541	sector = r10bio->sector & geo->chunk_mask;
542
543	chunk *= geo->near_copies;
544	stripe = chunk;
545	dev = sector_div(stripe, geo->raid_disks);
546	if (geo->far_offset)
547		stripe *= geo->far_copies;
548
549	sector += stripe << geo->chunk_shift;
550
551	/* and calculate all the others */
552	for (n = 0; n < geo->near_copies; n++) {
553		int d = dev;
554		sector_t s = sector;
555		r10bio->devs[slot].addr = sector;
556		r10bio->devs[slot].devnum = d;
557		slot++;
558
559		for (f = 1; f < geo->far_copies; f++) {
560			d += geo->near_copies;
561			if (d >= geo->raid_disks)
562				d -= geo->raid_disks;
563			s += geo->stride;
564			r10bio->devs[slot].devnum = d;
565			r10bio->devs[slot].addr = s;
566			slot++;
567		}
568		dev++;
569		if (dev >= geo->raid_disks) {
570			dev = 0;
571			sector += (geo->chunk_mask + 1);
572		}
573	}
574}
575
576static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
577{
578	struct geom *geo = &conf->geo;
579
580	if (conf->reshape_progress != MaxSector &&
581	    ((r10bio->sector >= conf->reshape_progress) !=
582	     conf->mddev->reshape_backwards)) {
583		set_bit(R10BIO_Previous, &r10bio->state);
584		geo = &conf->prev;
585	} else
586		clear_bit(R10BIO_Previous, &r10bio->state);
587
588	__raid10_find_phys(geo, r10bio);
589}
590
591static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
592{
593	sector_t offset, chunk, vchunk;
594	/* Never use conf->prev as this is only called during resync
595	 * or recovery, so reshape isn't happening
596	 */
597	struct geom *geo = &conf->geo;
598
599	offset = sector & geo->chunk_mask;
600	if (geo->far_offset) {
601		int fc;
602		chunk = sector >> geo->chunk_shift;
603		fc = sector_div(chunk, geo->far_copies);
604		dev -= fc * geo->near_copies;
605		if (dev < 0)
606			dev += geo->raid_disks;
607	} else {
608		while (sector >= geo->stride) {
609			sector -= geo->stride;
610			if (dev < geo->near_copies)
611				dev += geo->raid_disks - geo->near_copies;
612			else
613				dev -= geo->near_copies;
614		}
615		chunk = sector >> geo->chunk_shift;
616	}
617	vchunk = chunk * geo->raid_disks + dev;
618	sector_div(vchunk, geo->near_copies);
619	return (vchunk << geo->chunk_shift) + offset;
620}
621
622/**
623 *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
624 *	@q: request queue
625 *	@bvm: properties of new bio
626 *	@biovec: the request that could be merged to it.
627 *
628 *	Return amount of bytes we can accept at this offset
629 *	This requires checking for end-of-chunk if near_copies != raid_disks,
630 *	and for subordinate merge_bvec_fns if merge_check_needed.
631 */
632static int raid10_mergeable_bvec(struct request_queue *q,
633				 struct bvec_merge_data *bvm,
634				 struct bio_vec *biovec)
635{
636	struct mddev *mddev = q->queuedata;
637	struct r10conf *conf = mddev->private;
638	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
639	int max;
640	unsigned int chunk_sectors;
641	unsigned int bio_sectors = bvm->bi_size >> 9;
642	struct geom *geo = &conf->geo;
643
644	chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
645	if (conf->reshape_progress != MaxSector &&
646	    ((sector >= conf->reshape_progress) !=
647	     conf->mddev->reshape_backwards))
648		geo = &conf->prev;
649
650	if (geo->near_copies < geo->raid_disks) {
651		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
652					+ bio_sectors)) << 9;
653		if (max < 0)
654			/* bio_add cannot handle a negative return */
655			max = 0;
656		if (max <= biovec->bv_len && bio_sectors == 0)
657			return biovec->bv_len;
658	} else
659		max = biovec->bv_len;
660
661	if (mddev->merge_check_needed) {
662		struct {
663			struct r10bio r10_bio;
664			struct r10dev devs[conf->copies];
665		} on_stack;
666		struct r10bio *r10_bio = &on_stack.r10_bio;
667		int s;
668		if (conf->reshape_progress != MaxSector) {
669			/* Cannot give any guidance during reshape */
670			if (max <= biovec->bv_len && bio_sectors == 0)
671				return biovec->bv_len;
672			return 0;
673		}
674		r10_bio->sector = sector;
675		raid10_find_phys(conf, r10_bio);
676		rcu_read_lock();
677		for (s = 0; s < conf->copies; s++) {
678			int disk = r10_bio->devs[s].devnum;
679			struct md_rdev *rdev = rcu_dereference(
680				conf->mirrors[disk].rdev);
681			if (rdev && !test_bit(Faulty, &rdev->flags)) {
682				struct request_queue *q =
683					bdev_get_queue(rdev->bdev);
684				if (q->merge_bvec_fn) {
685					bvm->bi_sector = r10_bio->devs[s].addr
686						+ rdev->data_offset;
687					bvm->bi_bdev = rdev->bdev;
688					max = min(max, q->merge_bvec_fn(
689							  q, bvm, biovec));
690				}
691			}
692			rdev = rcu_dereference(conf->mirrors[disk].replacement);
693			if (rdev && !test_bit(Faulty, &rdev->flags)) {
694				struct request_queue *q =
695					bdev_get_queue(rdev->bdev);
696				if (q->merge_bvec_fn) {
697					bvm->bi_sector = r10_bio->devs[s].addr
698						+ rdev->data_offset;
699					bvm->bi_bdev = rdev->bdev;
700					max = min(max, q->merge_bvec_fn(
701							  q, bvm, biovec));
702				}
703			}
704		}
705		rcu_read_unlock();
706	}
707	return max;
708}
709
710/*
711 * This routine returns the disk from which the requested read should
712 * be done. There is a per-array 'next expected sequential IO' sector
713 * number - if this matches on the next IO then we use the last disk.
714 * There is also a per-disk 'last know head position' sector that is
715 * maintained from IRQ contexts, both the normal and the resync IO
716 * completion handlers update this position correctly. If there is no
717 * perfect sequential match then we pick the disk whose head is closest.
718 *
719 * If there are 2 mirrors in the same 2 devices, performance degrades
720 * because position is mirror, not device based.
721 *
722 * The rdev for the device selected will have nr_pending incremented.
723 */
724
725/*
726 * FIXME: possibly should rethink readbalancing and do it differently
727 * depending on near_copies / far_copies geometry.
728 */
729static struct md_rdev *read_balance(struct r10conf *conf,
730				    struct r10bio *r10_bio,
731				    int *max_sectors)
732{
733	const sector_t this_sector = r10_bio->sector;
734	int disk, slot;
735	int sectors = r10_bio->sectors;
736	int best_good_sectors;
737	sector_t new_distance, best_dist;
738	struct md_rdev *best_rdev, *rdev = NULL;
739	int do_balance;
740	int best_slot;
741	struct geom *geo = &conf->geo;
742
743	raid10_find_phys(conf, r10_bio);
744	rcu_read_lock();
745retry:
746	sectors = r10_bio->sectors;
747	best_slot = -1;
748	best_rdev = NULL;
749	best_dist = MaxSector;
750	best_good_sectors = 0;
751	do_balance = 1;
752	/*
753	 * Check if we can balance. We can balance on the whole
754	 * device if no resync is going on (recovery is ok), or below
755	 * the resync window. We take the first readable disk when
756	 * above the resync window.
757	 */
758	if (conf->mddev->recovery_cp < MaxSector
759	    && (this_sector + sectors >= conf->next_resync))
760		do_balance = 0;
761
762	for (slot = 0; slot < conf->copies ; slot++) {
763		sector_t first_bad;
764		int bad_sectors;
765		sector_t dev_sector;
766
767		if (r10_bio->devs[slot].bio == IO_BLOCKED)
768			continue;
769		disk = r10_bio->devs[slot].devnum;
770		rdev = rcu_dereference(conf->mirrors[disk].replacement);
771		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
772		    test_bit(Unmerged, &rdev->flags) ||
773		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
774			rdev = rcu_dereference(conf->mirrors[disk].rdev);
775		if (rdev == NULL ||
776		    test_bit(Faulty, &rdev->flags) ||
777		    test_bit(Unmerged, &rdev->flags))
778			continue;
779		if (!test_bit(In_sync, &rdev->flags) &&
780		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
781			continue;
782
783		dev_sector = r10_bio->devs[slot].addr;
784		if (is_badblock(rdev, dev_sector, sectors,
785				&first_bad, &bad_sectors)) {
786			if (best_dist < MaxSector)
787				/* Already have a better slot */
788				continue;
789			if (first_bad <= dev_sector) {
790				/* Cannot read here.  If this is the
791				 * 'primary' device, then we must not read
792				 * beyond 'bad_sectors' from another device.
793				 */
794				bad_sectors -= (dev_sector - first_bad);
795				if (!do_balance && sectors > bad_sectors)
796					sectors = bad_sectors;
797				if (best_good_sectors > sectors)
798					best_good_sectors = sectors;
799			} else {
800				sector_t good_sectors =
801					first_bad - dev_sector;
802				if (good_sectors > best_good_sectors) {
803					best_good_sectors = good_sectors;
804					best_slot = slot;
805					best_rdev = rdev;
806				}
807				if (!do_balance)
808					/* Must read from here */
809					break;
810			}
811			continue;
812		} else
813			best_good_sectors = sectors;
814
815		if (!do_balance)
816			break;
817
818		/* This optimisation is debatable, and completely destroys
819		 * sequential read speed for 'far copies' arrays.  So only
820		 * keep it for 'near' arrays, and review those later.
821		 */
822		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
823			break;
824
825		/* for far > 1 always use the lowest address */
826		if (geo->far_copies > 1)
827			new_distance = r10_bio->devs[slot].addr;
828		else
829			new_distance = abs(r10_bio->devs[slot].addr -
830					   conf->mirrors[disk].head_position);
831		if (new_distance < best_dist) {
832			best_dist = new_distance;
833			best_slot = slot;
834			best_rdev = rdev;
835		}
836	}
837	if (slot >= conf->copies) {
838		slot = best_slot;
839		rdev = best_rdev;
840	}
841
842	if (slot >= 0) {
843		atomic_inc(&rdev->nr_pending);
844		if (test_bit(Faulty, &rdev->flags)) {
845			/* Cannot risk returning a device that failed
846			 * before we inc'ed nr_pending
847			 */
848			rdev_dec_pending(rdev, conf->mddev);
849			goto retry;
850		}
851		r10_bio->read_slot = slot;
852	} else
853		rdev = NULL;
854	rcu_read_unlock();
855	*max_sectors = best_good_sectors;
856
857	return rdev;
858}
859
860int md_raid10_congested(struct mddev *mddev, int bits)
861{
862	struct r10conf *conf = mddev->private;
863	int i, ret = 0;
864
865	if ((bits & (1 << BDI_async_congested)) &&
866	    conf->pending_count >= max_queued_requests)
867		return 1;
868
869	rcu_read_lock();
870	for (i = 0;
871	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
872		     && ret == 0;
873	     i++) {
874		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
875		if (rdev && !test_bit(Faulty, &rdev->flags)) {
876			struct request_queue *q = bdev_get_queue(rdev->bdev);
877
878			ret |= bdi_congested(&q->backing_dev_info, bits);
879		}
880	}
881	rcu_read_unlock();
882	return ret;
883}
884EXPORT_SYMBOL_GPL(md_raid10_congested);
885
886static int raid10_congested(void *data, int bits)
887{
888	struct mddev *mddev = data;
889
890	return mddev_congested(mddev, bits) ||
891		md_raid10_congested(mddev, bits);
892}
893
894static void flush_pending_writes(struct r10conf *conf)
895{
896	/* Any writes that have been queued but are awaiting
897	 * bitmap updates get flushed here.
898	 */
899	spin_lock_irq(&conf->device_lock);
900
901	if (conf->pending_bio_list.head) {
902		struct bio *bio;
903		bio = bio_list_get(&conf->pending_bio_list);
904		conf->pending_count = 0;
905		spin_unlock_irq(&conf->device_lock);
906		/* flush any pending bitmap writes to disk
907		 * before proceeding w/ I/O */
908		bitmap_unplug(conf->mddev->bitmap);
909		wake_up(&conf->wait_barrier);
910
911		while (bio) { /* submit pending writes */
912			struct bio *next = bio->bi_next;
913			bio->bi_next = NULL;
914			generic_make_request(bio);
915			bio = next;
916		}
917	} else
918		spin_unlock_irq(&conf->device_lock);
919}
920
921/* Barriers....
922 * Sometimes we need to suspend IO while we do something else,
923 * either some resync/recovery, or reconfigure the array.
924 * To do this we raise a 'barrier'.
925 * The 'barrier' is a counter that can be raised multiple times
926 * to count how many activities are happening which preclude
927 * normal IO.
928 * We can only raise the barrier if there is no pending IO.
929 * i.e. if nr_pending == 0.
930 * We choose only to raise the barrier if no-one is waiting for the
931 * barrier to go down.  This means that as soon as an IO request
932 * is ready, no other operations which require a barrier will start
933 * until the IO request has had a chance.
934 *
935 * So: regular IO calls 'wait_barrier'.  When that returns there
936 *    is no backgroup IO happening,  It must arrange to call
937 *    allow_barrier when it has finished its IO.
938 * backgroup IO calls must call raise_barrier.  Once that returns
939 *    there is no normal IO happeing.  It must arrange to call
940 *    lower_barrier when the particular background IO completes.
941 */
942
943static void raise_barrier(struct r10conf *conf, int force)
944{
945	BUG_ON(force && !conf->barrier);
946	spin_lock_irq(&conf->resync_lock);
947
948	/* Wait until no block IO is waiting (unless 'force') */
949	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
950			    conf->resync_lock, );
951
952	/* block any new IO from starting */
953	conf->barrier++;
954
955	/* Now wait for all pending IO to complete */
956	wait_event_lock_irq(conf->wait_barrier,
957			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
958			    conf->resync_lock, );
959
960	spin_unlock_irq(&conf->resync_lock);
961}
962
963static void lower_barrier(struct r10conf *conf)
964{
965	unsigned long flags;
966	spin_lock_irqsave(&conf->resync_lock, flags);
967	conf->barrier--;
968	spin_unlock_irqrestore(&conf->resync_lock, flags);
969	wake_up(&conf->wait_barrier);
970}
971
972static void wait_barrier(struct r10conf *conf)
973{
974	spin_lock_irq(&conf->resync_lock);
975	if (conf->barrier) {
976		conf->nr_waiting++;
977		/* Wait for the barrier to drop.
978		 * However if there are already pending
979		 * requests (preventing the barrier from
980		 * rising completely), and the
981		 * pre-process bio queue isn't empty,
982		 * then don't wait, as we need to empty
983		 * that queue to get the nr_pending
984		 * count down.
985		 */
986		wait_event_lock_irq(conf->wait_barrier,
987				    !conf->barrier ||
988				    (conf->nr_pending &&
989				     current->bio_list &&
990				     !bio_list_empty(current->bio_list)),
991				    conf->resync_lock,
992			);
993		conf->nr_waiting--;
994	}
995	conf->nr_pending++;
996	spin_unlock_irq(&conf->resync_lock);
997}
998
999static void allow_barrier(struct r10conf *conf)
1000{
1001	unsigned long flags;
1002	spin_lock_irqsave(&conf->resync_lock, flags);
1003	conf->nr_pending--;
1004	spin_unlock_irqrestore(&conf->resync_lock, flags);
1005	wake_up(&conf->wait_barrier);
1006}
1007
1008static void freeze_array(struct r10conf *conf)
1009{
1010	/* stop syncio and normal IO and wait for everything to
1011	 * go quiet.
1012	 * We increment barrier and nr_waiting, and then
1013	 * wait until nr_pending match nr_queued+1
1014	 * This is called in the context of one normal IO request
1015	 * that has failed. Thus any sync request that might be pending
1016	 * will be blocked by nr_pending, and we need to wait for
1017	 * pending IO requests to complete or be queued for re-try.
1018	 * Thus the number queued (nr_queued) plus this request (1)
1019	 * must match the number of pending IOs (nr_pending) before
1020	 * we continue.
1021	 */
1022	spin_lock_irq(&conf->resync_lock);
1023	conf->barrier++;
1024	conf->nr_waiting++;
1025	wait_event_lock_irq(conf->wait_barrier,
1026			    conf->nr_pending == conf->nr_queued+1,
1027			    conf->resync_lock,
1028			    flush_pending_writes(conf));
1029
1030	spin_unlock_irq(&conf->resync_lock);
1031}
1032
1033static void unfreeze_array(struct r10conf *conf)
1034{
1035	/* reverse the effect of the freeze */
1036	spin_lock_irq(&conf->resync_lock);
1037	conf->barrier--;
1038	conf->nr_waiting--;
1039	wake_up(&conf->wait_barrier);
1040	spin_unlock_irq(&conf->resync_lock);
1041}
1042
1043static sector_t choose_data_offset(struct r10bio *r10_bio,
1044				   struct md_rdev *rdev)
1045{
1046	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1047	    test_bit(R10BIO_Previous, &r10_bio->state))
1048		return rdev->data_offset;
1049	else
1050		return rdev->new_data_offset;
1051}
1052
1053static void make_request(struct mddev *mddev, struct bio * bio)
1054{
1055	struct r10conf *conf = mddev->private;
1056	struct r10bio *r10_bio;
1057	struct bio *read_bio;
1058	int i;
1059	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1060	int chunk_sects = chunk_mask + 1;
1061	const int rw = bio_data_dir(bio);
1062	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1063	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1064	unsigned long flags;
1065	struct md_rdev *blocked_rdev;
1066	int sectors_handled;
1067	int max_sectors;
1068	int sectors;
1069
1070	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1071		md_flush_request(mddev, bio);
1072		return;
1073	}
1074
1075	/* If this request crosses a chunk boundary, we need to
1076	 * split it.  This will only happen for 1 PAGE (or less) requests.
1077	 */
1078	if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1079		     > chunk_sects
1080		     && (conf->geo.near_copies < conf->geo.raid_disks
1081			 || conf->prev.near_copies < conf->prev.raid_disks))) {
1082		struct bio_pair *bp;
1083		/* Sanity check -- queue functions should prevent this happening */
1084		if (bio->bi_vcnt != 1 ||
1085		    bio->bi_idx != 0)
1086			goto bad_map;
1087		/* This is a one page bio that upper layers
1088		 * refuse to split for us, so we need to split it.
1089		 */
1090		bp = bio_split(bio,
1091			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1092
1093		/* Each of these 'make_request' calls will call 'wait_barrier'.
1094		 * If the first succeeds but the second blocks due to the resync
1095		 * thread raising the barrier, we will deadlock because the
1096		 * IO to the underlying device will be queued in generic_make_request
1097		 * and will never complete, so will never reduce nr_pending.
1098		 * So increment nr_waiting here so no new raise_barriers will
1099		 * succeed, and so the second wait_barrier cannot block.
1100		 */
1101		spin_lock_irq(&conf->resync_lock);
1102		conf->nr_waiting++;
1103		spin_unlock_irq(&conf->resync_lock);
1104
1105		make_request(mddev, &bp->bio1);
1106		make_request(mddev, &bp->bio2);
1107
1108		spin_lock_irq(&conf->resync_lock);
1109		conf->nr_waiting--;
1110		wake_up(&conf->wait_barrier);
1111		spin_unlock_irq(&conf->resync_lock);
1112
1113		bio_pair_release(bp);
1114		return;
1115	bad_map:
1116		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1117		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1118		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1119
1120		bio_io_error(bio);
1121		return;
1122	}
1123
1124	md_write_start(mddev, bio);
1125
1126	/*
1127	 * Register the new request and wait if the reconstruction
1128	 * thread has put up a bar for new requests.
1129	 * Continue immediately if no resync is active currently.
1130	 */
1131	wait_barrier(conf);
1132
1133	sectors = bio->bi_size >> 9;
1134	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1135	    bio->bi_sector < conf->reshape_progress &&
1136	    bio->bi_sector + sectors > conf->reshape_progress) {
1137		/* IO spans the reshape position.  Need to wait for
1138		 * reshape to pass
1139		 */
1140		allow_barrier(conf);
1141		wait_event(conf->wait_barrier,
1142			   conf->reshape_progress <= bio->bi_sector ||
1143			   conf->reshape_progress >= bio->bi_sector + sectors);
1144		wait_barrier(conf);
1145	}
1146	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1147	    bio_data_dir(bio) == WRITE &&
1148	    (mddev->reshape_backwards
1149	     ? (bio->bi_sector < conf->reshape_safe &&
1150		bio->bi_sector + sectors > conf->reshape_progress)
1151	     : (bio->bi_sector + sectors > conf->reshape_safe &&
1152		bio->bi_sector < conf->reshape_progress))) {
1153		/* Need to update reshape_position in metadata */
1154		mddev->reshape_position = conf->reshape_progress;
1155		set_bit(MD_CHANGE_DEVS, &mddev->flags);
1156		set_bit(MD_CHANGE_PENDING, &mddev->flags);
1157		md_wakeup_thread(mddev->thread);
1158		wait_event(mddev->sb_wait,
1159			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1160
1161		conf->reshape_safe = mddev->reshape_position;
1162	}
1163
1164	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1165
1166	r10_bio->master_bio = bio;
1167	r10_bio->sectors = sectors;
1168
1169	r10_bio->mddev = mddev;
1170	r10_bio->sector = bio->bi_sector;
1171	r10_bio->state = 0;
1172
1173	/* We might need to issue multiple reads to different
1174	 * devices if there are bad blocks around, so we keep
1175	 * track of the number of reads in bio->bi_phys_segments.
1176	 * If this is 0, there is only one r10_bio and no locking
1177	 * will be needed when the request completes.  If it is
1178	 * non-zero, then it is the number of not-completed requests.
1179	 */
1180	bio->bi_phys_segments = 0;
1181	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1182
1183	if (rw == READ) {
1184		/*
1185		 * read balancing logic:
1186		 */
1187		struct md_rdev *rdev;
1188		int slot;
1189
1190read_again:
1191		rdev = read_balance(conf, r10_bio, &max_sectors);
1192		if (!rdev) {
1193			raid_end_bio_io(r10_bio);
1194			return;
1195		}
1196		slot = r10_bio->read_slot;
1197
1198		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1199		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1200			    max_sectors);
1201
1202		r10_bio->devs[slot].bio = read_bio;
1203		r10_bio->devs[slot].rdev = rdev;
1204
1205		read_bio->bi_sector = r10_bio->devs[slot].addr +
1206			choose_data_offset(r10_bio, rdev);
1207		read_bio->bi_bdev = rdev->bdev;
1208		read_bio->bi_end_io = raid10_end_read_request;
1209		read_bio->bi_rw = READ | do_sync;
1210		read_bio->bi_private = r10_bio;
1211
1212		if (max_sectors < r10_bio->sectors) {
1213			/* Could not read all from this device, so we will
1214			 * need another r10_bio.
1215			 */
1216			sectors_handled = (r10_bio->sectors + max_sectors
1217					   - bio->bi_sector);
1218			r10_bio->sectors = max_sectors;
1219			spin_lock_irq(&conf->device_lock);
1220			if (bio->bi_phys_segments == 0)
1221				bio->bi_phys_segments = 2;
1222			else
1223				bio->bi_phys_segments++;
1224			spin_unlock(&conf->device_lock);
1225			/* Cannot call generic_make_request directly
1226			 * as that will be queued in __generic_make_request
1227			 * and subsequent mempool_alloc might block
1228			 * waiting for it.  so hand bio over to raid10d.
1229			 */
1230			reschedule_retry(r10_bio);
1231
1232			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1233
1234			r10_bio->master_bio = bio;
1235			r10_bio->sectors = ((bio->bi_size >> 9)
1236					    - sectors_handled);
1237			r10_bio->state = 0;
1238			r10_bio->mddev = mddev;
1239			r10_bio->sector = bio->bi_sector + sectors_handled;
1240			goto read_again;
1241		} else
1242			generic_make_request(read_bio);
1243		return;
1244	}
1245
1246	/*
1247	 * WRITE:
1248	 */
1249	if (conf->pending_count >= max_queued_requests) {
1250		md_wakeup_thread(mddev->thread);
1251		wait_event(conf->wait_barrier,
1252			   conf->pending_count < max_queued_requests);
1253	}
1254	/* first select target devices under rcu_lock and
1255	 * inc refcount on their rdev.  Record them by setting
1256	 * bios[x] to bio
1257	 * If there are known/acknowledged bad blocks on any device
1258	 * on which we have seen a write error, we want to avoid
1259	 * writing to those blocks.  This potentially requires several
1260	 * writes to write around the bad blocks.  Each set of writes
1261	 * gets its own r10_bio with a set of bios attached.  The number
1262	 * of r10_bios is recored in bio->bi_phys_segments just as with
1263	 * the read case.
1264	 */
1265
1266	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1267	raid10_find_phys(conf, r10_bio);
1268retry_write:
1269	blocked_rdev = NULL;
1270	rcu_read_lock();
1271	max_sectors = r10_bio->sectors;
1272
1273	for (i = 0;  i < conf->copies; i++) {
1274		int d = r10_bio->devs[i].devnum;
1275		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1276		struct md_rdev *rrdev = rcu_dereference(
1277			conf->mirrors[d].replacement);
1278		if (rdev == rrdev)
1279			rrdev = NULL;
1280		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1281			atomic_inc(&rdev->nr_pending);
1282			blocked_rdev = rdev;
1283			break;
1284		}
1285		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1286			atomic_inc(&rrdev->nr_pending);
1287			blocked_rdev = rrdev;
1288			break;
1289		}
1290		if (rdev && (test_bit(Faulty, &rdev->flags)
1291			     || test_bit(Unmerged, &rdev->flags)))
1292			rdev = NULL;
1293		if (rrdev && (test_bit(Faulty, &rrdev->flags)
1294			      || test_bit(Unmerged, &rrdev->flags)))
1295			rrdev = NULL;
1296
1297		r10_bio->devs[i].bio = NULL;
1298		r10_bio->devs[i].repl_bio = NULL;
1299
1300		if (!rdev && !rrdev) {
1301			set_bit(R10BIO_Degraded, &r10_bio->state);
1302			continue;
1303		}
1304		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1305			sector_t first_bad;
1306			sector_t dev_sector = r10_bio->devs[i].addr;
1307			int bad_sectors;
1308			int is_bad;
1309
1310			is_bad = is_badblock(rdev, dev_sector,
1311					     max_sectors,
1312					     &first_bad, &bad_sectors);
1313			if (is_bad < 0) {
1314				/* Mustn't write here until the bad block
1315				 * is acknowledged
1316				 */
1317				atomic_inc(&rdev->nr_pending);
1318				set_bit(BlockedBadBlocks, &rdev->flags);
1319				blocked_rdev = rdev;
1320				break;
1321			}
1322			if (is_bad && first_bad <= dev_sector) {
1323				/* Cannot write here at all */
1324				bad_sectors -= (dev_sector - first_bad);
1325				if (bad_sectors < max_sectors)
1326					/* Mustn't write more than bad_sectors
1327					 * to other devices yet
1328					 */
1329					max_sectors = bad_sectors;
1330				/* We don't set R10BIO_Degraded as that
1331				 * only applies if the disk is missing,
1332				 * so it might be re-added, and we want to
1333				 * know to recover this chunk.
1334				 * In this case the device is here, and the
1335				 * fact that this chunk is not in-sync is
1336				 * recorded in the bad block log.
1337				 */
1338				continue;
1339			}
1340			if (is_bad) {
1341				int good_sectors = first_bad - dev_sector;
1342				if (good_sectors < max_sectors)
1343					max_sectors = good_sectors;
1344			}
1345		}
1346		if (rdev) {
1347			r10_bio->devs[i].bio = bio;
1348			atomic_inc(&rdev->nr_pending);
1349		}
1350		if (rrdev) {
1351			r10_bio->devs[i].repl_bio = bio;
1352			atomic_inc(&rrdev->nr_pending);
1353		}
1354	}
1355	rcu_read_unlock();
1356
1357	if (unlikely(blocked_rdev)) {
1358		/* Have to wait for this device to get unblocked, then retry */
1359		int j;
1360		int d;
1361
1362		for (j = 0; j < i; j++) {
1363			if (r10_bio->devs[j].bio) {
1364				d = r10_bio->devs[j].devnum;
1365				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1366			}
1367			if (r10_bio->devs[j].repl_bio) {
1368				struct md_rdev *rdev;
1369				d = r10_bio->devs[j].devnum;
1370				rdev = conf->mirrors[d].replacement;
1371				if (!rdev) {
1372					/* Race with remove_disk */
1373					smp_mb();
1374					rdev = conf->mirrors[d].rdev;
1375				}
1376				rdev_dec_pending(rdev, mddev);
1377			}
1378		}
1379		allow_barrier(conf);
1380		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1381		wait_barrier(conf);
1382		goto retry_write;
1383	}
1384
1385	if (max_sectors < r10_bio->sectors) {
1386		/* We are splitting this into multiple parts, so
1387		 * we need to prepare for allocating another r10_bio.
1388		 */
1389		r10_bio->sectors = max_sectors;
1390		spin_lock_irq(&conf->device_lock);
1391		if (bio->bi_phys_segments == 0)
1392			bio->bi_phys_segments = 2;
1393		else
1394			bio->bi_phys_segments++;
1395		spin_unlock_irq(&conf->device_lock);
1396	}
1397	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1398
1399	atomic_set(&r10_bio->remaining, 1);
1400	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1401
1402	for (i = 0; i < conf->copies; i++) {
1403		struct bio *mbio;
1404		int d = r10_bio->devs[i].devnum;
1405		if (r10_bio->devs[i].bio) {
1406			struct md_rdev *rdev = conf->mirrors[d].rdev;
1407			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1408			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1409				    max_sectors);
1410			r10_bio->devs[i].bio = mbio;
1411
1412			mbio->bi_sector	= (r10_bio->devs[i].addr+
1413					   choose_data_offset(r10_bio,
1414							      rdev));
1415			mbio->bi_bdev = rdev->bdev;
1416			mbio->bi_end_io	= raid10_end_write_request;
1417			mbio->bi_rw = WRITE | do_sync | do_fua;
1418			mbio->bi_private = r10_bio;
1419
1420<<<<<<< found
1421		atomic_inc(&r10_bio->remaining);
1422		spin_lock_irqsave(&conf->device_lock, flags);
1423||||||| expected
1424		atomic_inc(&r10_bio->remaining);
1425
1426		cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1427		if (cb)
1428			plug = container_of(cb, struct raid10_plug_cb, cb);
1429		else
1430			plug = NULL;
1431		spin_lock_irqsave(&conf->device_lock, flags);
1432=======
1433			atomic_inc(&r10_bio->remaining);
1434
1435			cb = blk_check_plugged(raid10_unplug, mddev,
1436					       sizeof(*plug));
1437			if (cb)
1438				plug = container_of(cb, struct raid10_plug_cb,
1439						    cb);
1440			else
1441				plug = NULL;
1442			spin_lock_irqsave(&conf->device_lock, flags);
1443>>>>>>> replacement
1444<<<<<<< found
1445		bio_list_add(&conf->pending_bio_list, mbio);
1446		conf->pending_count++;
1447		spin_unlock_irqrestore(&conf->device_lock, flags);
1448||||||| expected
1449		if (plug) {
1450			bio_list_add(&plug->pending, mbio);
1451			plug->pending_cnt++;
1452		} else {
1453			bio_list_add(&conf->pending_bio_list, mbio);
1454			conf->pending_count++;
1455		}
1456		spin_unlock_irqrestore(&conf->device_lock, flags);
1457=======
1458			if (plug) {
1459				bio_list_add(&plug->pending, mbio);
1460				plug->pending_cnt++;
1461			} else {
1462				bio_list_add(&conf->pending_bio_list, mbio);
1463				conf->pending_count++;
1464			}
1465			spin_unlock_irqrestore(&conf->device_lock, flags);
1466>>>>>>> replacement
1467			if (!mddev_check_plugged(mddev))
1468				md_wakeup_thread(mddev->thread);
1469		}
1470
1471		if (r10_bio->devs[i].repl_bio) {
1472			struct md_rdev *rdev = conf->mirrors[d].replacement;
1473			if (rdev == NULL) {
1474				/* Replacement just got moved to main 'rdev' */
1475				smp_mb();
1476				rdev = conf->mirrors[d].rdev;
1477			}
1478			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1479			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1480				    max_sectors);
1481			r10_bio->devs[i].repl_bio = mbio;
1482
1483			mbio->bi_sector	= (r10_bio->devs[i].addr +
1484					   choose_data_offset(
1485						   r10_bio, rdev));
1486			mbio->bi_bdev = rdev->bdev;
1487			mbio->bi_end_io	= raid10_end_write_request;
1488			mbio->bi_rw = WRITE | do_sync | do_fua;
1489			mbio->bi_private = r10_bio;
1490
1491			atomic_inc(&r10_bio->remaining);
1492			spin_lock_irqsave(&conf->device_lock, flags);
1493			bio_list_add(&conf->pending_bio_list, mbio);
1494			conf->pending_count++;
1495			spin_unlock_irqrestore(&conf->device_lock, flags);
1496			if (!mddev_check_plugged(mddev))
1497				md_wakeup_thread(mddev->thread);
1498		}
1499	}
1500
1501	/* Don't remove the bias on 'remaining' (one_write_done) until
1502	 * after checking if we need to go around again.
1503	 */
1504
1505	if (sectors_handled < (bio->bi_size >> 9)) {
1506		one_write_done(r10_bio);
1507		/* We need another r10_bio.  It has already been counted
1508		 * in bio->bi_phys_segments.
1509		 */
1510		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1511
1512		r10_bio->master_bio = bio;
1513		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1514
1515		r10_bio->mddev = mddev;
1516		r10_bio->sector = bio->bi_sector + sectors_handled;
1517		r10_bio->state = 0;
1518		goto retry_write;
1519	}
1520	one_write_done(r10_bio);
1521
1522	/* In case raid10d snuck in to freeze_array */
1523	wake_up(&conf->wait_barrier);
1524}
1525
1526static void status(struct seq_file *seq, struct mddev *mddev)
1527{
1528	struct r10conf *conf = mddev->private;
1529	int i;
1530
1531	if (conf->geo.near_copies < conf->geo.raid_disks)
1532		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1533	if (conf->geo.near_copies > 1)
1534		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1535	if (conf->geo.far_copies > 1) {
1536		if (conf->geo.far_offset)
1537			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1538		else
1539			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1540	}
1541	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1542					conf->geo.raid_disks - mddev->degraded);
1543	for (i = 0; i < conf->geo.raid_disks; i++)
1544		seq_printf(seq, "%s",
1545			      conf->mirrors[i].rdev &&
1546			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1547	seq_printf(seq, "]");
1548}
1549
1550/* check if there are enough drives for
1551 * every block to appear on atleast one.
1552 * Don't consider the device numbered 'ignore'
1553 * as we might be about to remove it.
1554 */
1555static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1556{
1557	int first = 0;
1558
1559	do {
1560		int n = conf->copies;
1561		int cnt = 0;
1562		int this = first;
1563		while (n--) {
1564			if (conf->mirrors[this].rdev &&
1565			    this != ignore)
1566				cnt++;
1567			this = (this+1) % geo->raid_disks;
1568		}
1569		if (cnt == 0)
1570			return 0;
1571		first = (first + geo->near_copies) % geo->raid_disks;
1572	} while (first != 0);
1573	return 1;
1574}
1575
1576static int enough(struct r10conf *conf, int ignore)
1577{
1578	return _enough(conf, &conf->geo, ignore) &&
1579		_enough(conf, &conf->prev, ignore);
1580}
1581
1582static void error(struct mddev *mddev, struct md_rdev *rdev)
1583{
1584	char b[BDEVNAME_SIZE];
1585	struct r10conf *conf = mddev->private;
1586
1587	/*
1588	 * If it is not operational, then we have already marked it as dead
1589	 * else if it is the last working disks, ignore the error, let the
1590	 * next level up know.
1591	 * else mark the drive as failed
1592	 */
1593	if (test_bit(In_sync, &rdev->flags)
1594	    && !enough(conf, rdev->raid_disk))
1595		/*
1596		 * Don't fail the drive, just return an IO error.
1597		 */
1598		return;
1599	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1600		unsigned long flags;
1601		spin_lock_irqsave(&conf->device_lock, flags);
1602		mddev->degraded++;
1603		spin_unlock_irqrestore(&conf->device_lock, flags);
1604		/*
1605		 * if recovery is running, make sure it aborts.
1606		 */
1607		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1608	}
1609	set_bit(Blocked, &rdev->flags);
1610	set_bit(Faulty, &rdev->flags);
1611	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1612	printk(KERN_ALERT
1613	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
1614	       "md/raid10:%s: Operation continuing on %d devices.\n",
1615	       mdname(mddev), bdevname(rdev->bdev, b),
1616	       mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1617}
1618
1619static void print_conf(struct r10conf *conf)
1620{
1621	int i;
1622	struct raid10_info *tmp;
1623
1624	printk(KERN_DEBUG "RAID10 conf printout:\n");
1625	if (!conf) {
1626		printk(KERN_DEBUG "(!conf)\n");
1627		return;
1628	}
1629	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1630		conf->geo.raid_disks);
1631
1632	for (i = 0; i < conf->geo.raid_disks; i++) {
1633		char b[BDEVNAME_SIZE];
1634		tmp = conf->mirrors + i;
1635		if (tmp->rdev)
1636			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1637				i, !test_bit(In_sync, &tmp->rdev->flags),
1638			        !test_bit(Faulty, &tmp->rdev->flags),
1639				bdevname(tmp->rdev->bdev,b));
1640	}
1641}
1642
1643static void close_sync(struct r10conf *conf)
1644{
1645	wait_barrier(conf);
1646	allow_barrier(conf);
1647
1648	mempool_destroy(conf->r10buf_pool);
1649	conf->r10buf_pool = NULL;
1650}
1651
1652static int raid10_spare_active(struct mddev *mddev)
1653{
1654	int i;
1655	struct r10conf *conf = mddev->private;
1656	struct raid10_info *tmp;
1657	int count = 0;
1658	unsigned long flags;
1659
1660	/*
1661	 * Find all non-in_sync disks within the RAID10 configuration
1662	 * and mark them in_sync
1663	 */
1664	for (i = 0; i < conf->geo.raid_disks; i++) {
1665		tmp = conf->mirrors + i;
1666		if (tmp->replacement
1667		    && tmp->replacement->recovery_offset == MaxSector
1668		    && !test_bit(Faulty, &tmp->replacement->flags)
1669		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1670			/* Replacement has just become active */
1671			if (!tmp->rdev
1672			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1673				count++;
1674			if (tmp->rdev) {
1675				/* Replaced device not technically faulty,
1676				 * but we need to be sure it gets removed
1677				 * and never re-added.
1678				 */
1679				set_bit(Faulty, &tmp->rdev->flags);
1680				sysfs_notify_dirent_safe(
1681					tmp->rdev->sysfs_state);
1682			}
1683			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1684		} else if (tmp->rdev
1685			   && !test_bit(Faulty, &tmp->rdev->flags)
1686			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1687			count++;
1688			sysfs_notify_dirent(tmp->rdev->sysfs_state);
1689		}
1690	}
1691	spin_lock_irqsave(&conf->device_lock, flags);
1692	mddev->degraded -= count;
1693	spin_unlock_irqrestore(&conf->device_lock, flags);
1694
1695	print_conf(conf);
1696	return count;
1697}
1698
1699
1700static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1701{
1702	struct r10conf *conf = mddev->private;
1703	int err = -EEXIST;
1704	int mirror;
1705	int first = 0;
1706	int last = conf->geo.raid_disks - 1;
1707	struct request_queue *q = bdev_get_queue(rdev->bdev);
1708
1709	if (mddev->recovery_cp < MaxSector)
1710		/* only hot-add to in-sync arrays, as recovery is
1711		 * very different from resync
1712		 */
1713		return -EBUSY;
1714	if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1715		return -EINVAL;
1716
1717	if (rdev->raid_disk >= 0)
1718		first = last = rdev->raid_disk;
1719
1720	if (q->merge_bvec_fn) {
1721		set_bit(Unmerged, &rdev->flags);
1722		mddev->merge_check_needed = 1;
1723	}
1724
1725	if (rdev->saved_raid_disk >= first &&
1726	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1727		mirror = rdev->saved_raid_disk;
1728	else
1729		mirror = first;
1730	for ( ; mirror <= last ; mirror++) {
1731		struct raid10_info *p = &conf->mirrors[mirror];
1732		if (p->recovery_disabled == mddev->recovery_disabled)
1733			continue;
1734		if (p->rdev) {
1735			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1736			    p->replacement != NULL)
1737				continue;
1738			clear_bit(In_sync, &rdev->flags);
1739			set_bit(Replacement, &rdev->flags);
1740			rdev->raid_disk = mirror;
1741			err = 0;
1742			disk_stack_limits(mddev->gendisk, rdev->bdev,
1743					  rdev->data_offset << 9);
1744			conf->fullsync = 1;
1745			rcu_assign_pointer(p->replacement, rdev);
1746			break;
1747		}
1748
1749		disk_stack_limits(mddev->gendisk, rdev->bdev,
1750				  rdev->data_offset << 9);
1751
1752		p->head_position = 0;
1753		p->recovery_disabled = mddev->recovery_disabled - 1;
1754		rdev->raid_disk = mirror;
1755		err = 0;
1756		if (rdev->saved_raid_disk != mirror)
1757			conf->fullsync = 1;
1758		rcu_assign_pointer(p->rdev, rdev);
1759		break;
1760	}
1761	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1762		/* Some requests might not have seen this new
1763		 * merge_bvec_fn.  We must wait for them to complete
1764		 * before merging the device fully.
1765		 * First we make sure any code which has tested
1766		 * our function has submitted the request, then
1767		 * we wait for all outstanding requests to complete.
1768		 */
1769		synchronize_sched();
1770		raise_barrier(conf, 0);
1771		lower_barrier(conf);
1772		clear_bit(Unmerged, &rdev->flags);
1773	}
1774	md_integrity_add_rdev(rdev, mddev);
1775	print_conf(conf);
1776	return err;
1777}
1778
1779static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1780{
1781	struct r10conf *conf = mddev->private;
1782	int err = 0;
1783	int number = rdev->raid_disk;
1784	struct md_rdev **rdevp;
1785	struct raid10_info *p = conf->mirrors + number;
1786
1787	print_conf(conf);
1788	if (rdev == p->rdev)
1789		rdevp = &p->rdev;
1790	else if (rdev == p->replacement)
1791		rdevp = &p->replacement;
1792	else
1793		return 0;
1794
1795	if (test_bit(In_sync, &rdev->flags) ||
1796	    atomic_read(&rdev->nr_pending)) {
1797		err = -EBUSY;
1798		goto abort;
1799	}
1800	/* Only remove faulty devices if recovery
1801	 * is not possible.
1802	 */
1803	if (!test_bit(Faulty, &rdev->flags) &&
1804	    mddev->recovery_disabled != p->recovery_disabled &&
1805	    (!p->replacement || p->replacement == rdev) &&
1806	    number < conf->geo.raid_disks &&
1807	    enough(conf, -1)) {
1808		err = -EBUSY;
1809		goto abort;
1810	}
1811	*rdevp = NULL;
1812	synchronize_rcu();
1813	if (atomic_read(&rdev->nr_pending)) {
1814		/* lost the race, try later */
1815		err = -EBUSY;
1816		*rdevp = rdev;
1817		goto abort;
1818	} else if (p->replacement) {
1819		/* We must have just cleared 'rdev' */
1820		p->rdev = p->replacement;
1821		clear_bit(Replacement, &p->replacement->flags);
1822		smp_mb(); /* Make sure other CPUs may see both as identical
1823			   * but will never see neither -- if they are careful.
1824			   */
1825		p->replacement = NULL;
1826		clear_bit(WantReplacement, &rdev->flags);
1827	} else
1828		/* We might have just remove the Replacement as faulty
1829		 * Clear the flag just in case
1830		 */
1831		clear_bit(WantReplacement, &rdev->flags);
1832
1833	err = md_integrity_register(mddev);
1834
1835abort:
1836
1837	print_conf(conf);
1838	return err;
1839}
1840
1841
1842static void end_sync_read(struct bio *bio, int error)
1843{
1844	struct r10bio *r10_bio = bio->bi_private;
1845	struct r10conf *conf = r10_bio->mddev->private;
1846	int d;
1847
1848	if (bio == r10_bio->master_bio) {
1849		/* this is a reshape read */
1850		d = r10_bio->read_slot; /* really the read dev */
1851	} else
1852		d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1853
1854	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1855		set_bit(R10BIO_Uptodate, &r10_bio->state);
1856	else
1857		/* The write handler will notice the lack of
1858		 * R10BIO_Uptodate and record any errors etc
1859		 */
1860		atomic_add(r10_bio->sectors,
1861			   &conf->mirrors[d].rdev->corrected_errors);
1862
1863	/* for reconstruct, we always reschedule after a read.
1864	 * for resync, only after all reads
1865	 */
1866	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1867	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1868	    atomic_dec_and_test(&r10_bio->remaining)) {
1869		/* we have read all the blocks,
1870		 * do the comparison in process context in raid10d
1871		 */
1872		reschedule_retry(r10_bio);
1873	}
1874}
1875
1876static void end_sync_request(struct r10bio *r10_bio)
1877{
1878	struct mddev *mddev = r10_bio->mddev;
1879
1880	while (atomic_dec_and_test(&r10_bio->remaining)) {
1881		if (r10_bio->master_bio == NULL) {
1882			/* the primary of several recovery bios */
1883			sector_t s = r10_bio->sectors;
1884			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1885			    test_bit(R10BIO_WriteError, &r10_bio->state))
1886				reschedule_retry(r10_bio);
1887			else
1888				put_buf(r10_bio);
1889			md_done_sync(mddev, s, 1);
1890			break;
1891		} else {
1892			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1893			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1894			    test_bit(R10BIO_WriteError, &r10_bio->state))
1895				reschedule_retry(r10_bio);
1896			else
1897				put_buf(r10_bio);
1898			r10_bio = r10_bio2;
1899		}
1900	}
1901}
1902
1903static void end_sync_write(struct bio *bio, int error)
1904{
1905	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1906	struct r10bio *r10_bio = bio->bi_private;
1907	struct mddev *mddev = r10_bio->mddev;
1908	struct r10conf *conf = mddev->private;
1909	int d;
1910	sector_t first_bad;
1911	int bad_sectors;
1912	int slot;
1913	int repl;
1914	struct md_rdev *rdev = NULL;
1915
1916	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1917	if (repl)
1918		rdev = conf->mirrors[d].replacement;
1919	else
1920		rdev = conf->mirrors[d].rdev;
1921
1922	if (!uptodate) {
1923		if (repl)
1924			md_error(mddev, rdev);
1925		else {
1926			set_bit(WriteErrorSeen, &rdev->flags);
1927			if (!test_and_set_bit(WantReplacement, &rdev->flags))
1928				set_bit(MD_RECOVERY_NEEDED,
1929					&rdev->mddev->recovery);
1930			set_bit(R10BIO_WriteError, &r10_bio->state);
1931		}
1932	} else if (is_badblock(rdev,
1933			     r10_bio->devs[slot].addr,
1934			     r10_bio->sectors,
1935			     &first_bad, &bad_sectors))
1936		set_bit(R10BIO_MadeGood, &r10_bio->state);
1937
1938	rdev_dec_pending(rdev, mddev);
1939
1940	end_sync_request(r10_bio);
1941}
1942
1943/*
1944 * Note: sync and recover and handled very differently for raid10
1945 * This code is for resync.
1946 * For resync, we read through virtual addresses and read all blocks.
1947 * If there is any error, we schedule a write.  The lowest numbered
1948 * drive is authoritative.
1949 * However requests come for physical address, so we need to map.
1950 * For every physical address there are raid_disks/copies virtual addresses,
1951 * which is always are least one, but is not necessarly an integer.
1952 * This means that a physical address can span multiple chunks, so we may
1953 * have to submit multiple io requests for a single sync request.
1954 */
1955/*
1956 * We check if all blocks are in-sync and only write to blocks that
1957 * aren't in sync
1958 */
1959static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1960{
1961	struct r10conf *conf = mddev->private;
1962	int i, first;
1963	struct bio *tbio, *fbio;
1964	int vcnt;
1965
1966	atomic_set(&r10_bio->remaining, 1);
1967
1968	/* find the first device with a block */
1969	for (i=0; i<conf->copies; i++)
1970		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1971			break;
1972
1973	if (i == conf->copies)
1974		goto done;
1975
1976	first = i;
1977	fbio = r10_bio->devs[i].bio;
1978
1979	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1980	/* now find blocks with errors */
1981	for (i=0 ; i < conf->copies ; i++) {
1982		int  j, d;
1983
1984		tbio = r10_bio->devs[i].bio;
1985
1986		if (tbio->bi_end_io != end_sync_read)
1987			continue;
1988		if (i == first)
1989			continue;
1990		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1991			/* We know that the bi_io_vec layout is the same for
1992			 * both 'first' and 'i', so we just compare them.
1993			 * All vec entries are PAGE_SIZE;
1994			 */
1995			for (j = 0; j < vcnt; j++)
1996				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1997					   page_address(tbio->bi_io_vec[j].bv_page),
1998					   fbio->bi_io_vec[j].bv_len))
1999					break;
2000			if (j == vcnt)
2001				continue;
2002			mddev->resync_mismatches += r10_bio->sectors;
2003			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2004				/* Don't fix anything. */
2005				continue;
2006		}
2007		/* Ok, we need to write this bio, either to correct an
2008		 * inconsistency or to correct an unreadable block.
2009		 * First we need to fixup bv_offset, bv_len and
2010		 * bi_vecs, as the read request might have corrupted these
2011		 */
2012		tbio->bi_vcnt = vcnt;
2013		tbio->bi_size = r10_bio->sectors << 9;
2014		tbio->bi_idx = 0;
2015		tbio->bi_phys_segments = 0;
2016		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2017		tbio->bi_flags |= 1 << BIO_UPTODATE;
2018		tbio->bi_next = NULL;
2019		tbio->bi_rw = WRITE;
2020		tbio->bi_private = r10_bio;
2021		tbio->bi_sector = r10_bio->devs[i].addr;
2022
2023		for (j=0; j < vcnt ; j++) {
2024			tbio->bi_io_vec[j].bv_offset = 0;
2025			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2026
2027			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2028			       page_address(fbio->bi_io_vec[j].bv_page),
2029			       PAGE_SIZE);
2030		}
2031		tbio->bi_end_io = end_sync_write;
2032
2033		d = r10_bio->devs[i].devnum;
2034		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2035		atomic_inc(&r10_bio->remaining);
2036		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2037
2038		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2039		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2040		generic_make_request(tbio);
2041	}
2042
2043	/* Now write out to any replacement devices
2044	 * that are active
2045	 */
2046	for (i = 0; i < conf->copies; i++) {
2047		int j, d;
2048
2049		tbio = r10_bio->devs[i].repl_bio;
2050		if (!tbio || !tbio->bi_end_io)
2051			continue;
2052		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2053		    && r10_bio->devs[i].bio != fbio)
2054			for (j = 0; j < vcnt; j++)
2055				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2056				       page_address(fbio->bi_io_vec[j].bv_page),
2057				       PAGE_SIZE);
2058		d = r10_bio->devs[i].devnum;
2059		atomic_inc(&r10_bio->remaining);
2060		md_sync_acct(conf->mirrors[d].replacement->bdev,
2061			     tbio->bi_size >> 9);
2062		generic_make_request(tbio);
2063	}
2064
2065done:
2066	if (atomic_dec_and_test(&r10_bio->remaining)) {
2067		md_done_sync(mddev, r10_bio->sectors, 1);
2068		put_buf(r10_bio);
2069	}
2070}
2071
2072/*
2073 * Now for the recovery code.
2074 * Recovery happens across physical sectors.
2075 * We recover all non-is_sync drives by finding the virtual address of
2076 * each, and then choose a working drive that also has that virt address.
2077 * There is a separate r10_bio for each non-in_sync drive.
2078 * Only the first two slots are in use. The first for reading,
2079 * The second for writing.
2080 *
2081 */
2082static void fix_recovery_read_error(struct r10bio *r10_bio)
2083{
2084	/* We got a read error during recovery.
2085	 * We repeat the read in smaller page-sized sections.
2086	 * If a read succeeds, write it to the new device or record
2087	 * a bad block if we cannot.
2088	 * If a read fails, record a bad block on both old and
2089	 * new devices.
2090	 */
2091	struct mddev *mddev = r10_bio->mddev;
2092	struct r10conf *conf = mddev->private;
2093	struct bio *bio = r10_bio->devs[0].bio;
2094	sector_t sect = 0;
2095	int sectors = r10_bio->sectors;
2096	int idx = 0;
2097	int dr = r10_bio->devs[0].devnum;
2098	int dw = r10_bio->devs[1].devnum;
2099
2100	while (sectors) {
2101		int s = sectors;
2102		struct md_rdev *rdev;
2103		sector_t addr;
2104		int ok;
2105
2106		if (s > (PAGE_SIZE>>9))
2107			s = PAGE_SIZE >> 9;
2108
2109		rdev = conf->mirrors[dr].rdev;
2110		addr = r10_bio->devs[0].addr + sect,
2111		ok = sync_page_io(rdev,
2112				  addr,
2113				  s << 9,
2114				  bio->bi_io_vec[idx].bv_page,
2115				  READ, false);
2116		if (ok) {
2117			rdev = conf->mirrors[dw].rdev;
2118			addr = r10_bio->devs[1].addr + sect;
2119			ok = sync_page_io(rdev,
2120					  addr,
2121					  s << 9,
2122					  bio->bi_io_vec[idx].bv_page,
2123					  WRITE, false);
2124			if (!ok) {
2125				set_bit(WriteErrorSeen, &rdev->flags);
2126				if (!test_and_set_bit(WantReplacement,
2127						      &rdev->flags))
2128					set_bit(MD_RECOVERY_NEEDED,
2129						&rdev->mddev->recovery);
2130			}
2131		}
2132		if (!ok) {
2133			/* We don't worry if we cannot set a bad block -
2134			 * it really is bad so there is no loss in not
2135			 * recording it yet
2136			 */
2137			rdev_set_badblocks(rdev, addr, s, 0);
2138
2139			if (rdev != conf->mirrors[dw].rdev) {
2140				/* need bad block on destination too */
2141				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2142				addr = r10_bio->devs[1].addr + sect;
2143				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2144				if (!ok) {
2145					/* just abort the recovery */
2146					printk(KERN_NOTICE
2147					       "md/raid10:%s: recovery aborted"
2148					       " due to read error\n",
2149					       mdname(mddev));
2150
2151					conf->mirrors[dw].recovery_disabled
2152						= mddev->recovery_disabled;
2153					set_bit(MD_RECOVERY_INTR,
2154						&mddev->recovery);
2155					break;
2156				}
2157			}
2158		}
2159
2160		sectors -= s;
2161		sect += s;
2162		idx++;
2163	}
2164}
2165
2166static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2167{
2168	struct r10conf *conf = mddev->private;
2169	int d;
2170	struct bio *wbio, *wbio2;
2171
2172	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2173		fix_recovery_read_error(r10_bio);
2174		end_sync_request(r10_bio);
2175		return;
2176	}
2177
2178	/*
2179	 * share the pages with the first bio
2180	 * and submit the write request
2181	 */
2182	d = r10_bio->devs[1].devnum;
2183	wbio = r10_bio->devs[1].bio;
2184	wbio2 = r10_bio->devs[1].repl_bio;
2185	if (wbio->bi_end_io) {
2186		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2187		md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2188		generic_make_request(wbio);
2189	}
2190	if (wbio2 && wbio2->bi_end_io) {
2191		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2192		md_sync_acct(conf->mirrors[d].replacement->bdev,
2193			     wbio2->bi_size >> 9);
2194		generic_make_request(wbio2);
2195	}
2196}
2197
2198
2199/*
2200 * Used by fix_read_error() to decay the per rdev read_errors.
2201 * We halve the read error count for every hour that has elapsed
2202 * since the last recorded read error.
2203 *
2204 */
2205static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2206{
2207	struct timespec cur_time_mon;
2208	unsigned long hours_since_last;
2209	unsigned int read_errors = atomic_read(&rdev->read_errors);
2210
2211	ktime_get_ts(&cur_time_mon);
2212
2213	if (rdev->last_read_error.tv_sec == 0 &&
2214	    rdev->last_read_error.tv_nsec == 0) {
2215		/* first time we've seen a read error */
2216		rdev->last_read_error = cur_time_mon;
2217		return;
2218	}
2219
2220	hours_since_last = (cur_time_mon.tv_sec -
2221			    rdev->last_read_error.tv_sec) / 3600;
2222
2223	rdev->last_read_error = cur_time_mon;
2224
2225	/*
2226	 * if hours_since_last is > the number of bits in read_errors
2227	 * just set read errors to 0. We do this to avoid
2228	 * overflowing the shift of read_errors by hours_since_last.
2229	 */
2230	if (hours_since_last >= 8 * sizeof(read_errors))
2231		atomic_set(&rdev->read_errors, 0);
2232	else
2233		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2234}
2235
2236static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2237			    int sectors, struct page *page, int rw)
2238{
2239	sector_t first_bad;
2240	int bad_sectors;
2241
2242	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2243	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2244		return -1;
2245	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2246		/* success */
2247		return 1;
2248	if (rw == WRITE) {
2249		set_bit(WriteErrorSeen, &rdev->flags);
2250		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2251			set_bit(MD_RECOVERY_NEEDED,
2252				&rdev->mddev->recovery);
2253	}
2254	/* need to record an error - either for the block or the device */
2255	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2256		md_error(rdev->mddev, rdev);
2257	return 0;
2258}
2259
2260/*
2261 * This is a kernel thread which:
2262 *
2263 *	1.	Retries failed read operations on working mirrors.
2264 *	2.	Updates the raid superblock when problems encounter.
2265 *	3.	Performs writes following reads for array synchronising.
2266 */
2267
2268static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2269{
2270	int sect = 0; /* Offset from r10_bio->sector */
2271	int sectors = r10_bio->sectors;
2272	struct md_rdev*rdev;
2273	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2274	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2275
2276	/* still own a reference to this rdev, so it cannot
2277	 * have been cleared recently.
2278	 */
2279	rdev = conf->mirrors[d].rdev;
2280
2281	if (test_bit(Faulty, &rdev->flags))
2282		/* drive has already been failed, just ignore any
2283		   more fix_read_error() attempts */
2284		return;
2285
2286	check_decay_read_errors(mddev, rdev);
2287	atomic_inc(&rdev->read_errors);
2288	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2289		char b[BDEVNAME_SIZE];
2290		bdevname(rdev->bdev, b);
2291
2292		printk(KERN_NOTICE
2293		       "md/raid10:%s: %s: Raid device exceeded "
2294		       "read_error threshold [cur %d:max %d]\n",
2295		       mdname(mddev), b,
2296		       atomic_read(&rdev->read_errors), max_read_errors);
2297		printk(KERN_NOTICE
2298		       "md/raid10:%s: %s: Failing raid device\n",
2299		       mdname(mddev), b);
2300		md_error(mddev, conf->mirrors[d].rdev);
2301		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2302		return;
2303	}
2304
2305	while(sectors) {
2306		int s = sectors;
2307		int sl = r10_bio->read_slot;
2308		int success = 0;
2309		int start;
2310
2311		if (s > (PAGE_SIZE>>9))
2312			s = PAGE_SIZE >> 9;
2313
2314		rcu_read_lock();
2315		do {
2316			sector_t first_bad;
2317			int bad_sectors;
2318
2319			d = r10_bio->devs[sl].devnum;
2320			rdev = rcu_dereference(conf->mirrors[d].rdev);
2321			if (rdev &&
2322			    !test_bit(Unmerged, &rdev->flags) &&
2323			    test_bit(In_sync, &rdev->flags) &&
2324			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2325					&first_bad, &bad_sectors) == 0) {
2326				atomic_inc(&rdev->nr_pending);
2327				rcu_read_unlock();
2328				success = sync_page_io(rdev,
2329						       r10_bio->devs[sl].addr +
2330						       sect,
2331						       s<<9,
2332						       conf->tmppage, READ, false);
2333				rdev_dec_pending(rdev, mddev);
2334				rcu_read_lock();
2335				if (success)
2336					break;
2337			}
2338			sl++;
2339			if (sl == conf->copies)
2340				sl = 0;
2341		} while (!success && sl != r10_bio->read_slot);
2342		rcu_read_unlock();
2343
2344		if (!success) {
2345			/* Cannot read from anywhere, just mark the block
2346			 * as bad on the first device to discourage future
2347			 * reads.
2348			 */
2349			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2350			rdev = conf->mirrors[dn].rdev;
2351
2352			if (!rdev_set_badblocks(
2353				    rdev,
2354				    r10_bio->devs[r10_bio->read_slot].addr
2355				    + sect,
2356				    s, 0)) {
2357				md_error(mddev, rdev);
2358				r10_bio->devs[r10_bio->read_slot].bio
2359					= IO_BLOCKED;
2360			}
2361			break;
2362		}
2363
2364		start = sl;
2365		/* write it back and re-read */
2366		rcu_read_lock();
2367		while (sl != r10_bio->read_slot) {
2368			char b[BDEVNAME_SIZE];
2369
2370			if (sl==0)
2371				sl = conf->copies;
2372			sl--;
2373			d = r10_bio->devs[sl].devnum;
2374			rdev = rcu_dereference(conf->mirrors[d].rdev);
2375			if (!rdev ||
2376			    test_bit(Unmerged, &rdev->flags) ||
2377			    !test_bit(In_sync, &rdev->flags))
2378				continue;
2379
2380			atomic_inc(&rdev->nr_pending);
2381			rcu_read_unlock();
2382			if (r10_sync_page_io(rdev,
2383					     r10_bio->devs[sl].addr +
2384					     sect,
2385					     s, conf->tmppage, WRITE)
2386			    == 0) {
2387				/* Well, this device is dead */
2388				printk(KERN_NOTICE
2389				       "md/raid10:%s: read correction "
2390				       "write failed"
2391				       " (%d sectors at %llu on %s)\n",
2392				       mdname(mddev), s,
2393				       (unsigned long long)(
2394					       sect +
2395					       choose_data_offset(r10_bio,
2396								  rdev)),
2397				       bdevname(rdev->bdev, b));
2398				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2399				       "drive\n",
2400				       mdname(mddev),
2401				       bdevname(rdev->bdev, b));
2402			}
2403			rdev_dec_pending(rdev, mddev);
2404			rcu_read_lock();
2405		}
2406		sl = start;
2407		while (sl != r10_bio->read_slot) {
2408			char b[BDEVNAME_SIZE];
2409
2410			if (sl==0)
2411				sl = conf->copies;
2412			sl--;
2413			d = r10_bio->devs[sl].devnum;
2414			rdev = rcu_dereference(conf->mirrors[d].rdev);
2415			if (!rdev ||
2416			    !test_bit(In_sync, &rdev->flags))
2417				continue;
2418
2419			atomic_inc(&rdev->nr_pending);
2420			rcu_read_unlock();
2421			switch (r10_sync_page_io(rdev,
2422					     r10_bio->devs[sl].addr +
2423					     sect,
2424					     s, conf->tmppage,
2425						 READ)) {
2426			case 0:
2427				/* Well, this device is dead */
2428				printk(KERN_NOTICE
2429				       "md/raid10:%s: unable to read back "
2430				       "corrected sectors"
2431				       " (%d sectors at %llu on %s)\n",
2432				       mdname(mddev), s,
2433				       (unsigned long long)(
2434					       sect +
2435					       choose_data_offset(r10_bio, rdev)),
2436				       bdevname(rdev->bdev, b));
2437				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2438				       "drive\n",
2439				       mdname(mddev),
2440				       bdevname(rdev->bdev, b));
2441				break;
2442			case 1:
2443				printk(KERN_INFO
2444				       "md/raid10:%s: read error corrected"
2445				       " (%d sectors at %llu on %s)\n",
2446				       mdname(mddev), s,
2447				       (unsigned long long)(
2448					       sect +
2449					       choose_data_offset(r10_bio, rdev)),
2450				       bdevname(rdev->bdev, b));
2451				atomic_add(s, &rdev->corrected_errors);
2452			}
2453
2454			rdev_dec_pending(rdev, mddev);
2455			rcu_read_lock();
2456		}
2457		rcu_read_unlock();
2458
2459		sectors -= s;
2460		sect += s;
2461	}
2462}
2463
2464static void bi_complete(struct bio *bio, int error)
2465{
2466	complete((struct completion *)bio->bi_private);
2467}
2468
2469static int submit_bio_wait(int rw, struct bio *bio)
2470{
2471	struct completion event;
2472	rw |= REQ_SYNC;
2473
2474	init_completion(&event);
2475	bio->bi_private = &event;
2476	bio->bi_end_io = bi_complete;
2477	submit_bio(rw, bio);
2478	wait_for_completion(&event);
2479
2480	return test_bit(BIO_UPTODATE, &bio->bi_flags);
2481}
2482
2483static int narrow_write_error(struct r10bio *r10_bio, int i)
2484{
2485	struct bio *bio = r10_bio->master_bio;
2486	struct mddev *mddev = r10_bio->mddev;
2487	struct r10conf *conf = mddev->private;
2488	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2489	/* bio has the data to be written to slot 'i' where
2490	 * we just recently had a write error.
2491	 * We repeatedly clone the bio and trim down to one block,
2492	 * then try the write.  Where the write fails we record
2493	 * a bad block.
2494	 * It is conceivable that the bio doesn't exactly align with
2495	 * blocks.  We must handle this.
2496	 *
2497	 * We currently own a reference to the rdev.
2498	 */
2499
2500	int block_sectors;
2501	sector_t sector;
2502	int sectors;
2503	int sect_to_write = r10_bio->sectors;
2504	int ok = 1;
2505
2506	if (rdev->badblocks.shift < 0)
2507		return 0;
2508
2509	block_sectors = 1 << rdev->badblocks.shift;
2510	sector = r10_bio->sector;
2511	sectors = ((r10_bio->sector + block_sectors)
2512		   & ~(sector_t)(block_sectors - 1))
2513		- sector;
2514
2515	while (sect_to_write) {
2516		struct bio *wbio;
2517		if (sectors > sect_to_write)
2518			sectors = sect_to_write;
2519		/* Write at 'sector' for 'sectors' */
2520		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2521		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2522		wbio->bi_sector = (r10_bio->devs[i].addr+
2523				   choose_data_offset(r10_bio, rdev) +
2524				   (sector - r10_bio->sector));
2525		wbio->bi_bdev = rdev->bdev;
2526		if (submit_bio_wait(WRITE, wbio) == 0)
2527			/* Failure! */
2528			ok = rdev_set_badblocks(rdev, sector,
2529						sectors, 0)
2530				&& ok;
2531
2532		bio_put(wbio);
2533		sect_to_write -= sectors;
2534		sector += sectors;
2535		sectors = block_sectors;
2536	}
2537	return ok;
2538}
2539
2540static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2541{
2542	int slot = r10_bio->read_slot;
2543	struct bio *bio;
2544	struct r10conf *conf = mddev->private;
2545	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2546	char b[BDEVNAME_SIZE];
2547	unsigned long do_sync;
2548	int max_sectors;
2549
2550	/* we got a read error. Maybe the drive is bad.  Maybe just
2551	 * the block and we can fix it.
2552	 * We freeze all other IO, and try reading the block from
2553	 * other devices.  When we find one, we re-write
2554	 * and check it that fixes the read error.
2555	 * This is all done synchronously while the array is
2556	 * frozen.
2557	 */
2558	bio = r10_bio->devs[slot].bio;
2559	bdevname(bio->bi_bdev, b);
2560	bio_put(bio);
2561	r10_bio->devs[slot].bio = NULL;
2562
2563	if (mddev->ro == 0) {
2564		freeze_array(conf);
2565		fix_read_error(conf, mddev, r10_bio);
2566		unfreeze_array(conf);
2567	} else
2568		r10_bio->devs[slot].bio = IO_BLOCKED;
2569
2570	rdev_dec_pending(rdev, mddev);
2571
2572read_more:
2573	rdev = read_balance(conf, r10_bio, &max_sectors);
2574	if (rdev == NULL) {
2575		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2576		       " read error for block %llu\n",
2577		       mdname(mddev), b,
2578		       (unsigned long long)r10_bio->sector);
2579		raid_end_bio_io(r10_bio);
2580		return;
2581	}
2582
2583	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2584	slot = r10_bio->read_slot;
2585	printk_ratelimited(
2586		KERN_ERR
2587		"md/raid10:%s: %s: redirecting "
2588		"sector %llu to another mirror\n",
2589		mdname(mddev),
2590		bdevname(rdev->bdev, b),
2591		(unsigned long long)r10_bio->sector);
2592	bio = bio_clone_mddev(r10_bio->master_bio,
2593			      GFP_NOIO, mddev);
2594	md_trim_bio(bio,
2595		    r10_bio->sector - bio->bi_sector,
2596		    max_sectors);
2597	r10_bio->devs[slot].bio = bio;
2598	r10_bio->devs[slot].rdev = rdev;
2599	bio->bi_sector = r10_bio->devs[slot].addr
2600		+ choose_data_offset(r10_bio, rdev);
2601	bio->bi_bdev = rdev->bdev;
2602	bio->bi_rw = READ | do_sync;
2603	bio->bi_private = r10_bio;
2604	bio->bi_end_io = raid10_end_read_request;
2605	if (max_sectors < r10_bio->sectors) {
2606		/* Drat - have to split this up more */
2607		struct bio *mbio = r10_bio->master_bio;
2608		int sectors_handled =
2609			r10_bio->sector + max_sectors
2610			- mbio->bi_sector;
2611		r10_bio->sectors = max_sectors;
2612		spin_lock_irq(&conf->device_lock);
2613		if (mbio->bi_phys_segments == 0)
2614			mbio->bi_phys_segments = 2;
2615		else
2616			mbio->bi_phys_segments++;
2617		spin_unlock_irq(&conf->device_lock);
2618		generic_make_request(bio);
2619
2620		r10_bio = mempool_alloc(conf->r10bio_pool,
2621					GFP_NOIO);
2622		r10_bio->master_bio = mbio;
2623		r10_bio->sectors = (mbio->bi_size >> 9)
2624			- sectors_handled;
2625		r10_bio->state = 0;
2626		set_bit(R10BIO_ReadError,
2627			&r10_bio->state);
2628		r10_bio->mddev = mddev;
2629		r10_bio->sector = mbio->bi_sector
2630			+ sectors_handled;
2631
2632		goto read_more;
2633	} else
2634		generic_make_request(bio);
2635}
2636
2637static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2638{
2639	/* Some sort of write request has finished and it
2640	 * succeeded in writing where we thought there was a
2641	 * bad block.  So forget the bad block.
2642	 * Or possibly if failed and we need to record
2643	 * a bad block.
2644	 */
2645	int m;
2646	struct md_rdev *rdev;
2647
2648	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2649	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2650		for (m = 0; m < conf->copies; m++) {
2651			int dev = r10_bio->devs[m].devnum;
2652			rdev = conf->mirrors[dev].rdev;
2653			if (r10_bio->devs[m].bio == NULL)
2654				continue;
2655			if (test_bit(BIO_UPTODATE,
2656				     &r10_bio->devs[m].bio->bi_flags)) {
2657				rdev_clear_badblocks(
2658					rdev,
2659					r10_bio->devs[m].addr,
2660					r10_bio->sectors, 0);
2661			} else {
2662				if (!rdev_set_badblocks(
2663					    rdev,
2664					    r10_bio->devs[m].addr,
2665					    r10_bio->sectors, 0))
2666					md_error(conf->mddev, rdev);
2667			}
2668			rdev = conf->mirrors[dev].replacement;
2669			if (r10_bio->devs[m].repl_bio == NULL)
2670				continue;
2671			if (test_bit(BIO_UPTODATE,
2672				     &r10_bio->devs[m].repl_bio->bi_flags)) {
2673				rdev_clear_badblocks(
2674					rdev,
2675					r10_bio->devs[m].addr,
2676					r10_bio->sectors, 0);
2677			} else {
2678				if (!rdev_set_badblocks(
2679					    rdev,
2680					    r10_bio->devs[m].addr,
2681					    r10_bio->sectors, 0))
2682					md_error(conf->mddev, rdev);
2683			}
2684		}
2685		put_buf(r10_bio);
2686	} else {
2687		for (m = 0; m < conf->copies; m++) {
2688			int dev = r10_bio->devs[m].devnum;
2689			struct bio *bio = r10_bio->devs[m].bio;
2690			rdev = conf->mirrors[dev].rdev;
2691			if (bio == IO_MADE_GOOD) {
2692				rdev_clear_badblocks(
2693					rdev,
2694					r10_bio->devs[m].addr,
2695					r10_bio->sectors, 0);
2696				rdev_dec_pending(rdev, conf->mddev);
2697			} else if (bio != NULL &&
2698				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2699				if (!narrow_write_error(r10_bio, m)) {
2700					md_error(conf->mddev, rdev);
2701					set_bit(R10BIO_Degraded,
2702						&r10_bio->state);
2703				}
2704				rdev_dec_pending(rdev, conf->mddev);
2705			}
2706			bio = r10_bio->devs[m].repl_bio;
2707			rdev = conf->mirrors[dev].replacement;
2708			if (rdev && bio == IO_MADE_GOOD) {
2709				rdev_clear_badblocks(
2710					rdev,
2711					r10_bio->devs[m].addr,
2712					r10_bio->sectors, 0);
2713				rdev_dec_pending(rdev, conf->mddev);
2714			}
2715		}
2716		if (test_bit(R10BIO_WriteError,
2717			     &r10_bio->state))
2718			close_write(r10_bio);
2719		raid_end_bio_io(r10_bio);
2720	}
2721}
2722
2723static void raid10d(struct mddev *mddev)
2724{
2725	struct r10bio *r10_bio;
2726	unsigned long flags;
2727	struct r10conf *conf = mddev->private;
2728	struct list_head *head = &conf->retry_list;
2729	struct blk_plug plug;
2730
2731	md_check_recovery(mddev);
2732
2733	blk_start_plug(&plug);
2734	for (;;) {
2735
2736		flush_pending_writes(conf);
2737
2738		spin_lock_irqsave(&conf->device_lock, flags);
2739		if (list_empty(head)) {
2740			spin_unlock_irqrestore(&conf->device_lock, flags);
2741			break;
2742		}
2743		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2744		list_del(head->prev);
2745		conf->nr_queued--;
2746		spin_unlock_irqrestore(&conf->device_lock, flags);
2747
2748		mddev = r10_bio->mddev;
2749		conf = mddev->private;
2750		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2751		    test_bit(R10BIO_WriteError, &r10_bio->state))
2752			handle_write_completed(conf, r10_bio);
2753		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2754			reshape_request_write(mddev, r10_bio);
2755		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2756			sync_request_write(mddev, r10_bio);
2757		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2758			recovery_request_write(mddev, r10_bio);
2759		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2760			handle_read_error(mddev, r10_bio);
2761		else {
2762			/* just a partial read to be scheduled from a
2763			 * separate context
2764			 */
2765			int slot = r10_bio->read_slot;
2766			generic_make_request(r10_bio->devs[slot].bio);
2767		}
2768
2769		cond_resched();
2770		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2771			md_check_recovery(mddev);
2772	}
2773	blk_finish_plug(&plug);
2774}
2775
2776
2777static int init_resync(struct r10conf *conf)
2778{
2779	int buffs;
2780	int i;
2781
2782	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2783	BUG_ON(conf->r10buf_pool);
2784	conf->have_replacement = 0;
2785	for (i = 0; i < conf->geo.raid_disks; i++)
2786		if (conf->mirrors[i].replacement)
2787			conf->have_replacement = 1;
2788	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2789	if (!conf->r10buf_pool)
2790		return -ENOMEM;
2791	conf->next_resync = 0;
2792	return 0;
2793}
2794
2795/*
2796 * perform a "sync" on one "block"
2797 *
2798 * We need to make sure that no normal I/O request - particularly write
2799 * requests - conflict with active sync requests.
2800 *
2801 * This is achieved by tracking pending requests and a 'barrier' concept
2802 * that can be installed to exclude normal IO requests.
2803 *
2804 * Resync and recovery are handled very differently.
2805 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2806 *
2807 * For resync, we iterate over virtual addresses, read all copies,
2808 * and update if there are differences.  If only one copy is live,
2809 * skip it.
2810 * For recovery, we iterate over physical addresses, read a good
2811 * value for each non-in_sync drive, and over-write.
2812 *
2813 * So, for recovery we may have several outstanding complex requests for a
2814 * given address, one for each out-of-sync device.  We model this by allocating
2815 * a number of r10_bio structures, one for each out-of-sync device.
2816 * As we setup these structures, we collect all bio's together into a list
2817 * which we then process collectively to add pages, and then process again
2818 * to pass to generic_make_request.
2819 *
2820 * The r10_bio structures are linked using a borrowed master_bio pointer.
2821 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2822 * has its remaining count decremented to 0, the whole complex operation
2823 * is complete.
2824 *
2825 */
2826
2827static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2828			     int *skipped, int go_faster)
2829{
2830	struct r10conf *conf = mddev->private;
2831	struct r10bio *r10_bio;
2832	struct bio *biolist = NULL, *bio;
2833	sector_t max_sector, nr_sectors;
2834	int i;
2835	int max_sync;
2836	sector_t sync_blocks;
2837	sector_t sectors_skipped = 0;
2838	int chunks_skipped = 0;
2839	sector_t chunk_mask = conf->geo.chunk_mask;
2840
2841	if (!conf->r10buf_pool)
2842		if (init_resync(conf))
2843			return 0;
2844
2845 skipped:
2846	max_sector = mddev->dev_sectors;
2847	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2848	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2849		max_sector = mddev->resync_max_sectors;
2850	if (sector_nr >= max_sector) {
2851		/* If we aborted, we need to abort the
2852		 * sync on the 'current' bitmap chucks (there can
2853		 * be several when recovering multiple devices).
2854		 * as we may have started syncing it but not finished.
2855		 * We can find the current address in
2856		 * mddev->curr_resync, but for recovery,
2857		 * we need to convert that to several
2858		 * virtual addresses.
2859		 */
2860		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2861			end_reshape(conf);
2862			return 0;
2863		}
2864
2865		if (mddev->curr_resync < max_sector) { /* aborted */
2866			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2867				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2868						&sync_blocks, 1);
2869			else for (i = 0; i < conf->geo.raid_disks; i++) {
2870				sector_t sect =
2871					raid10_find_virt(conf, mddev->curr_resync, i);
2872				bitmap_end_sync(mddev->bitmap, sect,
2873						&sync_blocks, 1);
2874			}
2875		} else {
2876			/* completed sync */
2877			if ((!mddev->bitmap || conf->fullsync)
2878			    && conf->have_replacement
2879			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2880				/* Completed a full sync so the replacements
2881				 * are now fully recovered.
2882				 */
2883				for (i = 0; i < conf->geo.raid_disks; i++)
2884					if (conf->mirrors[i].replacement)
2885						conf->mirrors[i].replacement
2886							->recovery_offset
2887							= MaxSector;
2888			}
2889			conf->fullsync = 0;
2890		}
2891		bitmap_close_sync(mddev->bitmap);
2892		close_sync(conf);
2893		*skipped = 1;
2894		return sectors_skipped;
2895	}
2896
2897	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2898		return reshape_request(mddev, sector_nr, skipped);
2899
2900	if (chunks_skipped >= conf->geo.raid_disks) {
2901		/* if there has been nothing to do on any drive,
2902		 * then there is nothing to do at all..
2903		 */
2904		*skipped = 1;
2905		return (max_sector - sector_nr) + sectors_skipped;
2906	}
2907
2908	if (max_sector > mddev->resync_max)
2909		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2910
2911	/* make sure whole request will fit in a chunk - if chunks
2912	 * are meaningful
2913	 */
2914	if (conf->geo.near_copies < conf->geo.raid_disks &&
2915	    max_sector > (sector_nr | chunk_mask))
2916		max_sector = (sector_nr | chunk_mask) + 1;
2917	/*
2918	 * If there is non-resync activity waiting for us then
2919	 * put in a delay to throttle resync.
2920	 */
2921	if (!go_faster && conf->nr_waiting)
2922		msleep_interruptible(1000);
2923
2924	/* Again, very different code for resync and recovery.
2925	 * Both must result in an r10bio with a list of bios that
2926	 * have bi_end_io, bi_sector, bi_bdev set,
2927	 * and bi_private set to the r10bio.
2928	 * For recovery, we may actually create several r10bios
2929	 * with 2 bios in each, that correspond to the bios in the main one.
2930	 * In this case, the subordinate r10bios link back through a
2931	 * borrowed master_bio pointer, and the counter in the master
2932	 * includes a ref from each subordinate.
2933	 */
2934	/* First, we decide what to do and set ->bi_end_io
2935	 * To end_sync_read if we want to read, and
2936	 * end_sync_write if we will want to write.
2937	 */
2938
2939	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2940	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2941		/* recovery... the complicated one */
2942		int j;
2943		r10_bio = NULL;
2944
2945		for (i = 0 ; i < conf->geo.raid_disks; i++) {
2946			int still_degraded;
2947			struct r10bio *rb2;
2948			sector_t sect;
2949			int must_sync;
2950			int any_working;
2951			struct raid10_info *mirror = &conf->mirrors[i];
2952
2953			if ((mirror->rdev == NULL ||
2954			     test_bit(In_sync, &mirror->rdev->flags))
2955			    &&
2956			    (mirror->replacement == NULL ||
2957			     test_bit(Faulty,
2958				      &mirror->replacement->flags)))
2959				continue;
2960
2961			still_degraded = 0;
2962			/* want to reconstruct this device */
2963			rb2 = r10_bio;
2964			sect = raid10_find_virt(conf, sector_nr, i);
2965			if (sect >= mddev->resync_max_sectors) {
2966				/* last stripe is not complete - don't
2967				 * try to recover this sector.
2968				 */
2969				continue;
2970			}
2971			/* Unless we are doing a full sync, or a replacement
2972			 * we only need to recover the block if it is set in
2973			 * the bitmap
2974			 */
2975			must_sync = bitmap_start_sync(mddev->bitmap, sect,
2976						      &sync_blocks, 1);
2977			if (sync_blocks < max_sync)
2978				max_sync = sync_blocks;
2979			if (!must_sync &&
2980			    mirror->replacement == NULL &&
2981			    !conf->fullsync) {
2982				/* yep, skip the sync_blocks here, but don't assume
2983				 * that there will never be anything to do here
2984				 */
2985				chunks_skipped = -1;
2986				continue;
2987			}
2988
2989			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2990			raise_barrier(conf, rb2 != NULL);
2991			atomic_set(&r10_bio->remaining, 0);
2992
2993			r10_bio->master_bio = (struct bio*)rb2;
2994			if (rb2)
2995				atomic_inc(&rb2->remaining);
2996			r10_bio->mddev = mddev;
2997			set_bit(R10BIO_IsRecover, &r10_bio->state);
2998			r10_bio->sector = sect;
2999
3000			raid10_find_phys(conf, r10_bio);
3001
3002			/* Need to check if the array will still be
3003			 * degraded
3004			 */
3005			for (j = 0; j < conf->geo.raid_disks; j++)
3006				if (conf->mirrors[j].rdev == NULL ||
3007				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3008					still_degraded = 1;
3009					break;
3010				}
3011
3012			must_sync = bitmap_start_sync(mddev->bitmap, sect,
3013						      &sync_blocks, still_degraded);
3014
3015			any_working = 0;
3016			for (j=0; j<conf->copies;j++) {
3017				int k;
3018				int d = r10_bio->devs[j].devnum;
3019				sector_t from_addr, to_addr;
3020				struct md_rdev *rdev;
3021				sector_t sector, first_bad;
3022				int bad_sectors;
3023				if (!conf->mirrors[d].rdev ||
3024				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3025					continue;
3026				/* This is where we read from */
3027				any_working = 1;
3028				rdev = conf->mirrors[d].rdev;
3029				sector = r10_bio->devs[j].addr;
3030
3031				if (is_badblock(rdev, sector, max_sync,
3032						&first_bad, &bad_sectors)) {
3033					if (first_bad > sector)
3034						max_sync = first_bad - sector;
3035					else {
3036						bad_sectors -= (sector
3037								- first_bad);
3038						if (max_sync > bad_sectors)
3039							max_sync = bad_sectors;
3040						continue;
3041					}
3042				}
3043				bio = r10_bio->devs[0].bio;
3044				bio->bi_next = biolist;
3045				biolist = bio;
3046				bio->bi_private = r10_bio;
3047				bio->bi_end_io = end_sync_read;
3048				bio->bi_rw = READ;
3049				from_addr = r10_bio->devs[j].addr;
3050				bio->bi_sector = from_addr + rdev->data_offset;
3051				bio->bi_bdev = rdev->bdev;
3052				atomic_inc(&rdev->nr_pending);
3053				/* and we write to 'i' (if not in_sync) */
3054
3055				for (k=0; k<conf->copies; k++)
3056					if (r10_bio->devs[k].devnum == i)
3057						break;
3058				BUG_ON(k == conf->copies);
3059				to_addr = r10_bio->devs[k].addr;
3060				r10_bio->devs[0].devnum = d;
3061				r10_bio->devs[0].addr = from_addr;
3062				r10_bio->devs[1].devnum = i;
3063				r10_bio->devs[1].addr = to_addr;
3064
3065				rdev = mirror->rdev;
3066				if (!test_bit(In_sync, &rdev->flags)) {
3067					bio = r10_bio->devs[1].bio;
3068					bio->bi_next = biolist;
3069					biolist = bio;
3070					bio->bi_private = r10_bio;
3071					bio->bi_end_io = end_sync_write;
3072					bio->bi_rw = WRITE;
3073					bio->bi_sector = to_addr
3074						+ rdev->data_offset;
3075					bio->bi_bdev = rdev->bdev;
3076					atomic_inc(&r10_bio->remaining);
3077				} else
3078					r10_bio->devs[1].bio->bi_end_io = NULL;
3079
3080				/* and maybe write to replacement */
3081				bio = r10_bio->devs[1].repl_bio;
3082				if (bio)
3083					bio->bi_end_io = NULL;
3084				rdev = mirror->replacement;
3085				/* Note: if rdev != NULL, then bio
3086				 * cannot be NULL as r10buf_pool_alloc will
3087				 * have allocated it.
3088				 * So the second test here is pointless.
3089				 * But it keeps semantic-checkers happy, and
3090				 * this comment keeps human reviewers
3091				 * happy.
3092				 */
3093				if (rdev == NULL || bio == NULL ||
3094				    test_bit(Faulty, &rdev->flags))
3095					break;
3096				bio->bi_next = biolist;
3097				biolist = bio;
3098				bio->bi_private = r10_bio;
3099				bio->bi_end_io = end_sync_write;
3100				bio->bi_rw = WRITE;
3101				bio->bi_sector = to_addr + rdev->data_offset;
3102				bio->bi_bdev = rdev->bdev;
3103				atomic_inc(&r10_bio->remaining);
3104				break;
3105			}
3106			if (j == conf->copies) {
3107				/* Cannot recover, so abort the recovery or
3108				 * record a bad block */
3109				put_buf(r10_bio);
3110				if (rb2)
3111					atomic_dec(&rb2->remaining);
3112				r10_bio = rb2;
3113				if (any_working) {
3114					/* problem is that there are bad blocks
3115					 * on other device(s)
3116					 */
3117					int k;
3118					for (k = 0; k < conf->copies; k++)
3119						if (r10_bio->devs[k].devnum == i)
3120							break;
3121					if (!test_bit(In_sync,
3122						      &mirror->rdev->flags)
3123					    && !rdev_set_badblocks(
3124						    mirror->rdev,
3125						    r10_bio->devs[k].addr,
3126						    max_sync, 0))
3127						any_working = 0;
3128					if (mirror->replacement &&
3129					    !rdev_set_badblocks(
3130						    mirror->replacement,
3131						    r10_bio->devs[k].addr,
3132						    max_sync, 0))
3133						any_working = 0;
3134				}
3135				if (!any_working)  {
3136					if (!test_and_set_bit(MD_RECOVERY_INTR,
3137							      &mddev->recovery))
3138						printk(KERN_INFO "md/raid10:%s: insufficient "
3139						       "working devices for recovery.\n",
3140						       mdname(mddev));
3141					mirror->recovery_disabled
3142						= mddev->recovery_disabled;
3143				}
3144				break;
3145			}
3146		}
3147		if (biolist == NULL) {
3148			while (r10_bio) {
3149				struct r10bio *rb2 = r10_bio;
3150				r10_bio = (struct r10bio*) rb2->master_bio;
3151				rb2->master_bio = NULL;
3152				put_buf(rb2);
3153			}
3154			goto giveup;
3155		}
3156	} else {
3157		/* resync. Schedule a read for every block at this virt offset */
3158		int count = 0;
3159
3160		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3161
3162		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3163				       &sync_blocks, mddev->degraded) &&
3164		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3165						 &mddev->recovery)) {
3166			/* We can skip this block */
3167			*skipped = 1;
3168			return sync_blocks + sectors_skipped;
3169		}
3170		if (sync_blocks < max_sync)
3171			max_sync = sync_blocks;
3172		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3173
3174		r10_bio->mddev = mddev;
3175		atomic_set(&r10_bio->remaining, 0);
3176		raise_barrier(conf, 0);
3177		conf->next_resync = sector_nr;
3178
3179		r10_bio->master_bio = NULL;
3180		r10_bio->sector = sector_nr;
3181		set_bit(R10BIO_IsSync, &r10_bio->state);
3182		raid10_find_phys(conf, r10_bio);
3183		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3184
3185		for (i = 0; i < conf->copies; i++) {
3186			int d = r10_bio->devs[i].devnum;
3187			sector_t first_bad, sector;
3188			int bad_sectors;
3189
3190			if (r10_bio->devs[i].repl_bio)
3191				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3192
3193			bio = r10_bio->devs[i].bio;
3194			bio->bi_end_io = NULL;
3195			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3196			if (conf->mirrors[d].rdev == NULL ||
3197			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3198				continue;
3199			sector = r10_bio->devs[i].addr;
3200			if (is_badblock(conf->mirrors[d].rdev,
3201					sector, max_sync,
3202					&first_bad, &bad_sectors)) {
3203				if (first_bad > sector)
3204					max_sync = first_bad - sector;
3205				else {
3206					bad_sectors -= (sector - first_bad);
3207					if (max_sync > bad_sectors)
3208						max_sync = bad_sectors;
3209					continue;
3210				}
3211			}
3212			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3213			atomic_inc(&r10_bio->remaining);
3214			bio->bi_next = biolist;
3215			biolist = bio;
3216			bio->bi_private = r10_bio;
3217			bio->bi_end_io = end_sync_read;
3218			bio->bi_rw = READ;
3219			bio->bi_sector = sector +
3220				conf->mirrors[d].rdev->data_offset;
3221			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3222			count++;
3223
3224			if (conf->mirrors[d].replacement == NULL ||
3225			    test_bit(Faulty,
3226				     &conf->mirrors[d].replacement->flags))
3227				continue;
3228
3229			/* Need to set up for writing to the replacement */
3230			bio = r10_bio->devs[i].repl_bio;
3231			clear_bit(BIO_UPTODATE, &bio->bi_flags);
3232
3233			sector = r10_bio->devs[i].addr;
3234			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3235			bio->bi_next = biolist;
3236			biolist = bio;
3237			bio->bi_private = r10_bio;
3238			bio->bi_end_io = end_sync_write;
3239			bio->bi_rw = WRITE;
3240			bio->bi_sector = sector +
3241				conf->mirrors[d].replacement->data_offset;
3242			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3243			count++;
3244		}
3245
3246		if (count < 2) {
3247			for (i=0; i<conf->copies; i++) {
3248				int d = r10_bio->devs[i].devnum;
3249				if (r10_bio->devs[i].bio->bi_end_io)
3250					rdev_dec_pending(conf->mirrors[d].rdev,
3251							 mddev);
3252				if (r10_bio->devs[i].repl_bio &&
3253				    r10_bio->devs[i].repl_bio->bi_end_io)
3254					rdev_dec_pending(
3255						conf->mirrors[d].replacement,
3256						mddev);
3257			}
3258			put_buf(r10_bio);
3259			biolist = NULL;
3260			goto giveup;
3261		}
3262	}
3263
3264	for (bio = biolist; bio ; bio=bio->bi_next) {
3265
3266		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3267		if (bio->bi_end_io)
3268			bio->bi_flags |= 1 << BIO_UPTODATE;
3269		bio->bi_vcnt = 0;
3270		bio->bi_idx = 0;
3271		bio->bi_phys_segments = 0;
3272		bio->bi_size = 0;
3273	}
3274
3275	nr_sectors = 0;
3276	if (sector_nr + max_sync < max_sector)
3277		max_sector = sector_nr + max_sync;
3278	do {
3279		struct page *page;
3280		int len = PAGE_SIZE;
3281		if (sector_nr + (len>>9) > max_sector)
3282			len = (max_sector - sector_nr) << 9;
3283		if (len == 0)
3284			break;
3285		for (bio= biolist ; bio ; bio=bio->bi_next) {
3286			struct bio *bio2;
3287			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3288			if (bio_add_page(bio, page, len, 0))
3289				continue;
3290
3291			/* stop here */
3292			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3293			for (bio2 = biolist;
3294			     bio2 && bio2 != bio;
3295			     bio2 = bio2->bi_next) {
3296				/* remove last page from this bio */
3297				bio2->bi_vcnt--;
3298				bio2->bi_size -= len;
3299				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3300			}
3301			goto bio_full;
3302		}
3303		nr_sectors += len>>9;
3304		sector_nr += len>>9;
3305	} while (biolist->bi_vcnt < RESYNC_PAGES);
3306 bio_full:
3307	r10_bio->sectors = nr_sectors;
3308
3309	while (biolist) {
3310		bio = biolist;
3311		biolist = biolist->bi_next;
3312
3313		bio->bi_next = NULL;
3314		r10_bio = bio->bi_private;
3315		r10_bio->sectors = nr_sectors;
3316
3317		if (bio->bi_end_io == end_sync_read) {
3318			md_sync_acct(bio->bi_bdev, nr_sectors);
3319			generic_make_request(bio);
3320		}
3321	}
3322
3323	if (sectors_skipped)
3324		/* pretend they weren't skipped, it makes
3325		 * no important difference in this case
3326		 */
3327		md_done_sync(mddev, sectors_skipped, 1);
3328
3329	return sectors_skipped + nr_sectors;
3330 giveup:
3331	/* There is nowhere to write, so all non-sync
3332	 * drives must be failed or in resync, all drives
3333	 * have a bad block, so try the next chunk...
3334	 */
3335	if (sector_nr + max_sync < max_sector)
3336		max_sector = sector_nr + max_sync;
3337
3338	sectors_skipped += (max_sector - sector_nr);
3339	chunks_skipped ++;
3340	sector_nr = max_sector;
3341	goto skipped;
3342}
3343
3344static sector_t
3345raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3346{
3347	sector_t size;
3348	struct r10conf *conf = mddev->private;
3349
3350	if (!raid_disks)
3351		raid_disks = min(conf->geo.raid_disks,
3352				 conf->prev.raid_disks);
3353	if (!sectors)
3354		sectors = conf->dev_sectors;
3355
3356	size = sectors >> conf->geo.chunk_shift;
3357	sector_div(size, conf->geo.far_copies);
3358	size = size * raid_disks;
3359	sector_div(size, conf->geo.near_copies);
3360
3361	return size << conf->geo.chunk_shift;
3362}
3363
3364static void calc_sectors(struct r10conf *conf, sector_t size)
3365{
3366	/* Calculate the number of sectors-per-device that will
3367	 * actually be used, and set conf->dev_sectors and
3368	 * conf->stride
3369	 */
3370
3371	size = size >> conf->geo.chunk_shift;
3372	sector_div(size, conf->geo.far_copies);
3373	size = size * conf->geo.raid_disks;
3374	sector_div(size, conf->geo.near_copies);
3375	/* 'size' is now the number of chunks in the array */
3376	/* calculate "used chunks per device" */
3377	size = size * conf->copies;
3378
3379	/* We need to round up when dividing by raid_disks to
3380	 * get the stride size.
3381	 */
3382	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3383
3384	conf->dev_sectors = size << conf->geo.chunk_shift;
3385
3386	if (conf->geo.far_offset)
3387		conf->geo.stride = 1 << conf->geo.chunk_shift;
3388	else {
3389		sector_div(size, conf->geo.far_copies);
3390		conf->geo.stride = size << conf->geo.chunk_shift;
3391	}
3392}
3393
3394enum geo_type {geo_new, geo_old, geo_start};
3395static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3396{
3397	int nc, fc, fo;
3398	int layout, chunk, disks;
3399	switch (new) {
3400	case geo_old:
3401		layout = mddev->layout;
3402		chunk = mddev->chunk_sectors;
3403		disks = mddev->raid_disks - mddev->delta_disks;
3404		break;
3405	case geo_new:
3406		layout = mddev->new_layout;
3407		chunk = mddev->new_chunk_sectors;
3408		disks = mddev->raid_disks;
3409		break;
3410	default: /* avoid 'may be unused' warnings */
3411	case geo_start: /* new when starting reshape - raid_disks not
3412			 * updated yet. */
3413		layout = mddev->new_layout;
3414		chunk = mddev->new_chunk_sectors;
3415		disks = mddev->raid_disks + mddev->delta_disks;
3416		break;
3417	}
3418	if (layout >> 17)
3419		return -1;
3420	if (chunk < (PAGE_SIZE >> 9) ||
3421	    !is_power_of_2(chunk))
3422		return -2;
3423	nc = layout & 255;
3424	fc = (layout >> 8) & 255;
3425	fo = layout & (1<<16);
3426	geo->raid_disks = disks;
3427	geo->near_copies = nc;
3428	geo->far_copies = fc;
3429	geo->far_offset = fo;
3430	geo->chunk_mask = chunk - 1;
3431	geo->chunk_shift = ffz(~chunk);
3432	return nc*fc;
3433}
3434
3435static struct r10conf *setup_conf(struct mddev *mddev)
3436{
3437	struct r10conf *conf = NULL;
3438	int err = -EINVAL;
3439	struct geom geo;
3440	int copies;
3441
3442	copies = setup_geo(&geo, mddev, geo_new);
3443
3444	if (copies == -2) {
3445		printk(KERN_ERR "md/raid10:%s: chunk size must be "
3446		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3447		       mdname(mddev), PAGE_SIZE);
3448		goto out;
3449	}
3450
3451	if (copies < 2 || copies > mddev->raid_disks) {
3452		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3453		       mdname(mddev), mddev->new_layout);
3454		goto out;
3455	}
3456
3457	err = -ENOMEM;
3458	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3459	if (!conf)
3460		goto out;
3461
3462	/* FIXME calc properly */
3463	conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3464							    max(0,mddev->delta_disks)),
3465				GFP_KERNEL);
3466	if (!conf->mirrors)
3467		goto out;
3468
3469	conf->tmppage = alloc_page(GFP_KERNEL);
3470	if (!conf->tmppage)
3471		goto out;
3472
3473	conf->geo = geo;
3474	conf->copies = copies;
3475	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3476					   r10bio_pool_free, conf);
3477	if (!conf->r10bio_pool)
3478		goto out;
3479
3480	calc_sectors(conf, mddev->dev_sectors);
3481	if (mddev->reshape_position == MaxSector) {
3482		conf->prev = conf->geo;
3483		conf->reshape_progress = MaxSector;
3484	} else {
3485		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3486			err = -EINVAL;
3487			goto out;
3488		}
3489		conf->reshape_progress = mddev->reshape_position;
3490		if (conf->prev.far_offset)
3491			conf->prev.stride = 1 << conf->prev.chunk_shift;
3492		else
3493			/* far_copies must be 1 */
3494			conf->prev.stride = conf->dev_sectors;
3495	}
3496	spin_lock_init(&conf->device_lock);
3497	INIT_LIST_HEAD(&conf->retry_list);
3498
3499	spin_lock_init(&conf->resync_lock);
3500	init_waitqueue_head(&conf->wait_barrier);
3501
3502	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3503	if (!conf->thread)
3504		goto out;
3505
3506	conf->mddev = mddev;
3507	return conf;
3508
3509 out:
3510	if (err == -ENOMEM)
3511		printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3512		       mdname(mddev));
3513	if (conf) {
3514		if (conf->r10bio_pool)
3515			mempool_destroy(conf->r10bio_pool);
3516		kfree(conf->mirrors);
3517		safe_put_page(conf->tmppage);
3518		kfree(conf);
3519	}
3520	return ERR_PTR(err);
3521}
3522
3523static int run(struct mddev *mddev)
3524{
3525	struct r10conf *conf;
3526	int i, disk_idx, chunk_size;
3527	struct raid10_info *disk;
3528	struct md_rdev *rdev;
3529	sector_t size;
3530	sector_t min_offset_diff = 0;
3531	int first = 1;
3532
3533	if (mddev->private == NULL) {
3534		conf = setup_conf(mddev);
3535		if (IS_ERR(conf))
3536			return PTR_ERR(conf);
3537		mddev->private = conf;
3538	}
3539	conf = mddev->private;
3540	if (!conf)
3541		goto out;
3542
3543	mddev->thread = conf->thread;
3544	conf->thread = NULL;
3545
3546	chunk_size = mddev->chunk_sectors << 9;
3547	if (mddev->queue) {
3548		blk_queue_io_min(mddev->queue, chunk_size);
3549		if (conf->geo.raid_disks % conf->geo.near_copies)
3550			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3551		else
3552			blk_queue_io_opt(mddev->queue, chunk_size *
3553					 (conf->geo.raid_disks / conf->geo.near_copies));
3554	}
3555
3556	rdev_for_each(rdev, mddev) {
3557		long long diff;
3558		struct request_queue *q;
3559
3560		disk_idx = rdev->raid_disk;
3561		if (disk_idx < 0)
3562			continue;
3563		if (disk_idx >= conf->geo.raid_disks &&
3564		    disk_idx >= conf->prev.raid_disks)
3565			continue;
3566		disk = conf->mirrors + disk_idx;
3567
3568		if (test_bit(Replacement, &rdev->flags)) {
3569			if (disk->replacement)
3570				goto out_free_conf;
3571			disk->replacement = rdev;
3572		} else {
3573			if (disk->rdev)
3574				goto out_free_conf;
3575			disk->rdev = rdev;
3576		}
3577		q = bdev_get_queue(rdev->bdev);
3578		if (q->merge_bvec_fn)
3579			mddev->merge_check_needed = 1;
3580		diff = (rdev->new_data_offset - rdev->data_offset);
3581		if (!mddev->reshape_backwards)
3582			diff = -diff;
3583		if (diff < 0)
3584			diff = 0;
3585		if (first || diff < min_offset_diff)
3586			min_offset_diff = diff;
3587
3588		if (mddev->gendisk)
3589			disk_stack_limits(mddev->gendisk, rdev->bdev,
3590					  rdev->data_offset << 9);
3591
3592		disk->head_position = 0;
3593	}
3594
3595	/* need to check that every block has at least one working mirror */
3596	if (!enough(conf, -1)) {
3597		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3598		       mdname(mddev));
3599		goto out_free_conf;
3600	}
3601
3602	if (conf->reshape_progress != MaxSector) {
3603		/* must ensure that shape change is supported */
3604		if (conf->geo.far_copies != 1 &&
3605		    conf->geo.far_offset == 0)
3606			goto out_free_conf;
3607		if (conf->prev.far_copies != 1 &&
3608		    conf->geo.far_offset == 0)
3609			goto out_free_conf;
3610	}
3611
3612	mddev->degraded = 0;
3613	for (i = 0;
3614	     i < conf->geo.raid_disks
3615		     || i < conf->prev.raid_disks;
3616	     i++) {
3617
3618		disk = conf->mirrors + i;
3619
3620		if (!disk->rdev && disk->replacement) {
3621			/* The replacement is all we have - use it */
3622			disk->rdev = disk->replacement;
3623			disk->replacement = NULL;
3624			clear_bit(Replacement, &disk->rdev->flags);
3625		}
3626
3627		if (!disk->rdev ||
3628		    !test_bit(In_sync, &disk->rdev->flags)) {
3629			disk->head_position = 0;
3630			mddev->degraded++;
3631			if (disk->rdev)
3632				conf->fullsync = 1;
3633		}
3634		disk->recovery_disabled = mddev->recovery_disabled - 1;
3635	}
3636
3637	if (mddev->recovery_cp != MaxSector)
3638		printk(KERN_NOTICE "md/raid10:%s: not clean"
3639		       " -- starting background reconstruction\n",
3640		       mdname(mddev));
3641	printk(KERN_INFO
3642		"md/raid10:%s: active with %d out of %d devices\n",
3643		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3644		conf->geo.raid_disks);
3645	/*
3646	 * Ok, everything is just fine now
3647	 */
3648	mddev->dev_sectors = conf->dev_sectors;
3649	size = raid10_size(mddev, 0, 0);
3650	md_set_array_sectors(mddev, size);
3651	mddev->resync_max_sectors = size;
3652
3653	if (mddev->queue) {
3654		int stripe = conf->geo.raid_disks *
3655			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3656		mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3657		mddev->queue->backing_dev_info.congested_data = mddev;
3658
3659		/* Calculate max read-ahead size.
3660		 * We need to readahead at least twice a whole stripe....
3661		 * maybe...
3662		 */
3663		stripe /= conf->geo.near_copies;
3664		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3665			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3666		blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3667	}
3668
3669
3670	if (md_integrity_register(mddev))
3671		goto out_free_conf;
3672
3673	if (conf->reshape_progress != MaxSector) {
3674		unsigned long before_length, after_length;
3675
3676		before_length = ((1 << conf->prev.chunk_shift) *
3677				 conf->prev.far_copies);
3678		after_length = ((1 << conf->geo.chunk_shift) *
3679				conf->geo.far_copies);
3680
3681		if (max(before_length, after_length) > min_offset_diff) {
3682			/* This cannot work */
3683			printk("md/raid10: offset difference not enough to continue reshape\n");
3684			goto out_free_conf;
3685		}
3686		conf->offset_diff = min_offset_diff;
3687
3688		conf->reshape_safe = conf->reshape_progress;
3689		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3690		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3691		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3692		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3693		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3694							"reshape");
3695	}
3696
3697	return 0;
3698
3699out_free_conf:
3700	md_unregister_thread(&mddev->thread);
3701	if (conf->r10bio_pool)
3702		mempool_destroy(conf->r10bio_pool);
3703	safe_put_page(conf->tmppage);
3704	kfree(conf->mirrors);
3705	kfree(conf);
3706	mddev->private = NULL;
3707out:
3708	return -EIO;
3709}
3710
3711static int stop(struct mddev *mddev)
3712{
3713	struct r10conf *conf = mddev->private;
3714
3715	raise_barrier(conf, 0);
3716	lower_barrier(conf);
3717
3718	md_unregister_thread(&mddev->thread);
3719	if (mddev->queue)
3720		/* the unplug fn references 'conf'*/
3721		blk_sync_queue(mddev->queue);
3722
3723	if (conf->r10bio_pool)
3724		mempool_destroy(conf->r10bio_pool);
3725	kfree(conf->mirrors);
3726	kfree(conf);
3727	mddev->private = NULL;
3728	return 0;
3729}
3730
3731static void raid10_quiesce(struct mddev *mddev, int state)
3732{
3733	struct r10conf *conf = mddev->private;
3734
3735	switch(state) {
3736	case 1:
3737		raise_barrier(conf, 0);
3738		break;
3739	case 0:
3740		lower_barrier(conf);
3741		break;
3742	}
3743}
3744
3745static int raid10_resize(struct mddev *mddev, sector_t sectors)
3746{
3747	/* Resize of 'far' arrays is not supported.
3748	 * For 'near' and 'offset' arrays we can set the
3749	 * number of sectors used to be an appropriate multiple
3750	 * of the chunk size.
3751	 * For 'offset', this is far_copies*chunksize.
3752	 * For 'near' the multiplier is the LCM of
3753	 * near_copies and raid_disks.
3754	 * So if far_copies > 1 && !far_offset, fail.
3755	 * Else find LCM(raid_disks, near_copy)*far_copies and
3756	 * multiply by chunk_size.  Then round to this number.
3757	 * This is mostly done by raid10_size()
3758	 */
3759	struct r10conf *conf = mddev->private;
3760	sector_t oldsize, size;
3761
3762	if (mddev->reshape_position != MaxSector)
3763		return -EBUSY;
3764
3765	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3766		return -EINVAL;
3767
3768	oldsize = raid10_size(mddev, 0, 0);
3769	size = raid10_size(mddev, sectors, 0);
3770	if (mddev->external_size &&
3771	    mddev->array_sectors > size)
3772		return -EINVAL;
3773	if (mddev->bitmap) {
3774		int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3775		if (ret)
3776			return ret;
3777	}
3778	md_set_array_sectors(mddev, size);
3779	set_capacity(mddev->gendisk, mddev->array_sectors);
3780	revalidate_disk(mddev->gendisk);
3781	if (sectors > mddev->dev_sectors &&
3782	    mddev->recovery_cp > oldsize) {
3783		mddev->recovery_cp = oldsize;
3784		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3785	}
3786	calc_sectors(conf, sectors);
3787	mddev->dev_sectors = conf->dev_sectors;
3788	mddev->resync_max_sectors = size;
3789	return 0;
3790}
3791
3792static void *raid10_takeover_raid0(struct mddev *mddev)
3793{
3794	struct md_rdev *rdev;
3795	struct r10conf *conf;
3796
3797	if (mddev->degraded > 0) {
3798		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3799		       mdname(mddev));
3800		return ERR_PTR(-EINVAL);
3801	}
3802
3803	/* Set new parameters */
3804	mddev->new_level = 10;
3805	/* new layout: far_copies = 1, near_copies = 2 */
3806	mddev->new_layout = (1<<8) + 2;
3807	mddev->new_chunk_sectors = mddev->chunk_sectors;
3808	mddev->delta_disks = mddev->raid_disks;
3809	mddev->raid_disks *= 2;
3810	/* make sure it will be not marked as dirty */
3811	mddev->recovery_cp = MaxSector;
3812
3813	conf = setup_conf(mddev);
3814	if (!IS_ERR(conf)) {
3815		rdev_for_each(rdev, mddev)
3816			if (rdev->raid_disk >= 0)
3817				rdev->new_raid_disk = rdev->raid_disk * 2;
3818		conf->barrier = 1;
3819	}
3820
3821	return conf;
3822}
3823
3824static void *raid10_takeover(struct mddev *mddev)
3825{
3826	struct r0conf *raid0_conf;
3827
3828	/* raid10 can take over:
3829	 *  raid0 - providing it has only two drives
3830	 */
3831	if (mddev->level == 0) {
3832		/* for raid0 takeover only one zone is supported */
3833		raid0_conf = mddev->private;
3834		if (raid0_conf->nr_strip_zones > 1) {
3835			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3836			       " with more than one zone.\n",
3837			       mdname(mddev));
3838			return ERR_PTR(-EINVAL);
3839		}
3840		return raid10_takeover_raid0(mddev);
3841	}
3842	return ERR_PTR(-EINVAL);
3843}
3844
3845static int raid10_check_reshape(struct mddev *mddev)
3846{
3847	/* Called when there is a request to change
3848	 * - layout (to ->new_layout)
3849	 * - chunk size (to ->new_chunk_sectors)
3850	 * - raid_disks (by delta_disks)
3851	 * or when trying to restart a reshape that was ongoing.
3852	 *
3853	 * We need to validate the request and possibly allocate
3854	 * space if that might be an issue later.
3855	 *
3856	 * Currently we reject any reshape of a 'far' mode array,
3857	 * allow chunk size to change if new is generally acceptable,
3858	 * allow raid_disks to increase, and allow
3859	 * a switch between 'near' mode and 'offset' mode.
3860	 */
3861	struct r10conf *conf = mddev->private;
3862	struct geom geo;
3863
3864	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3865		return -EINVAL;
3866
3867	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3868		/* mustn't change number of copies */
3869		return -EINVAL;
3870	if (geo.far_copies > 1 && !geo.far_offset)
3871		/* Cannot switch to 'far' mode */
3872		return -EINVAL;
3873
3874	if (mddev->array_sectors & geo.chunk_mask)
3875			/* not factor of array size */
3876			return -EINVAL;
3877
3878	if (!enough(conf, -1))
3879		return -EINVAL;
3880
3881	kfree(conf->mirrors_new);
3882	conf->mirrors_new = NULL;
3883	if (mddev->delta_disks > 0) {
3884		/* allocate new 'mirrors' list */
3885		conf->mirrors_new = kzalloc(
3886			sizeof(struct raid10_info)
3887			*(mddev->raid_disks +
3888			  mddev->delta_disks),
3889			GFP_KERNEL);
3890		if (!conf->mirrors_new)
3891			return -ENOMEM;
3892	}
3893	return 0;
3894}
3895
3896/*
3897 * Need to check if array has failed when deciding whether to:
3898 *  - start an array
3899 *  - remove non-faulty devices
3900 *  - add a spare
3901 *  - allow a reshape
3902 * This determination is simple when no reshape is happening.
3903 * However if there is a reshape, we need to carefully check
3904 * both the before and after sections.
3905 * This is because some failed devices may only affect one
3906 * of the two sections, and some non-in_sync devices may
3907 * be insync in the section most affected by failed devices.
3908 */
3909static int calc_degraded(struct r10conf *conf)
3910{
3911	int degraded, degraded2;
3912	int i;
3913
3914	rcu_read_lock();
3915	degraded = 0;
3916	/* 'prev' section first */
3917	for (i = 0; i < conf->prev.raid_disks; i++) {
3918		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3919		if (!rdev || test_bit(Faulty, &rdev->flags))
3920			degraded++;
3921		else if (!test_bit(In_sync, &rdev->flags))
3922			/* When we can reduce the number of devices in
3923			 * an array, this might not contribute to
3924			 * 'degraded'.  It does now.
3925			 */
3926			degraded++;
3927	}
3928	rcu_read_unlock();
3929	if (conf->geo.raid_disks == conf->prev.raid_disks)
3930		return degraded;
3931	rcu_read_lock();
3932	degraded2 = 0;
3933	for (i = 0; i < conf->geo.raid_disks; i++) {
3934		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3935		if (!rdev || test_bit(Faulty, &rdev->flags))
3936			degraded2++;
3937		else if (!test_bit(In_sync, &rdev->flags)) {
3938			/* If reshape is increasing the number of devices,
3939			 * this section has already been recovered, so
3940			 * it doesn't contribute to degraded.
3941			 * else it does.
3942			 */
3943			if (conf->geo.raid_disks <= conf->prev.raid_disks)
3944				degraded2++;
3945		}
3946	}
3947	rcu_read_unlock();
3948	if (degraded2 > degraded)
3949		return degraded2;
3950	return degraded;
3951}
3952
3953static int raid10_start_reshape(struct mddev *mddev)
3954{
3955	/* A 'reshape' has been requested. This commits
3956	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3957	 * This also checks if there are enough spares and adds them
3958	 * to the array.
3959	 * We currently require enough spares to make the final
3960	 * array non-degraded.  We also require that the difference
3961	 * between old and new data_offset - on each device - is
3962	 * enough that we never risk over-writing.
3963	 */
3964
3965	unsigned long before_length, after_length;
3966	sector_t min_offset_diff = 0;
3967	int first = 1;
3968	struct geom new;
3969	struct r10conf *conf = mddev->private;
3970	struct md_rdev *rdev;
3971	int spares = 0;
3972	int ret;
3973
3974	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3975		return -EBUSY;
3976
3977	if (setup_geo(&new, mddev, geo_start) != conf->copies)
3978		return -EINVAL;
3979
3980	before_length = ((1 << conf->prev.chunk_shift) *
3981			 conf->prev.far_copies);
3982	after_length = ((1 << conf->geo.chunk_shift) *
3983			conf->geo.far_copies);
3984
3985	rdev_for_each(rdev, mddev) {
3986		if (!test_bit(In_sync, &rdev->flags)
3987		    && !test_bit(Faulty, &rdev->flags))
3988			spares++;
3989		if (rdev->raid_disk >= 0) {
3990			long long diff = (rdev->new_data_offset
3991					  - rdev->data_offset);
3992			if (!mddev->reshape_backwards)
3993				diff = -diff;
3994			if (diff < 0)
3995				diff = 0;
3996			if (first || diff < min_offset_diff)
3997				min_offset_diff = diff;
3998		}
3999	}
4000
4001	if (max(before_length, after_length) > min_offset_diff)
4002		return -EINVAL;
4003
4004	if (spares < mddev->delta_disks)
4005		return -EINVAL;
4006
4007	conf->offset_diff = min_offset_diff;
4008	spin_lock_irq(&conf->device_lock);
4009	if (conf->mirrors_new) {
4010		memcpy(conf->mirrors_new, conf->mirrors,
4011		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4012		smp_mb();
4013		kfree(conf->mirrors_old); /* FIXME and elsewhere */
4014		conf->mirrors_old = conf->mirrors;
4015		conf->mirrors = conf->mirrors_new;
4016		conf->mirrors_new = NULL;
4017	}
4018	setup_geo(&conf->geo, mddev, geo_start);
4019	smp_mb();
4020	if (mddev->reshape_backwards) {
4021		sector_t size = raid10_size(mddev, 0, 0);
4022		if (size < mddev->array_sectors) {
4023			spin_unlock_irq(&conf->device_lock);
4024			printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4025			       mdname(mddev));
4026			return -EINVAL;
4027		}
4028		mddev->resync_max_sectors = size;
4029		conf->reshape_progress = size;
4030	} else
4031		conf->reshape_progress = 0;
4032	spin_unlock_irq(&conf->device_lock);
4033
4034	if (mddev->delta_disks && mddev->bitmap) {
4035		ret = bitmap_resize(mddev->bitmap,
4036				    raid10_size(mddev, 0,
4037						conf->geo.raid_disks),
4038				    0, 0);
4039		if (ret)
4040			goto abort;
4041	}
4042	if (mddev->delta_disks > 0) {
4043		rdev_for_each(rdev, mddev)
4044			if (rdev->raid_disk < 0 &&
4045			    !test_bit(Faulty, &rdev->flags)) {
4046				if (raid10_add_disk(mddev, rdev) == 0) {
4047					if (rdev->raid_disk >=
4048					    conf->prev.raid_disks)
4049						set_bit(In_sync, &rdev->flags);
4050					else
4051						rdev->recovery_offset = 0;
4052
4053					if (sysfs_link_rdev(mddev, rdev))
4054						/* Failure here  is OK */;
4055				}
4056			} else if (rdev->raid_disk >= conf->prev.raid_disks
4057				   && !test_bit(Faulty, &rdev->flags)) {
4058				/* This is a spare that was manually added */
4059				set_bit(In_sync, &rdev->flags);
4060			}
4061	}
4062	/* When a reshape changes the number of devices,
4063	 * ->degraded is measured against the larger of the
4064	 * pre and  post numbers.
4065	 */
4066	spin_lock_irq(&conf->device_lock);
4067	mddev->degraded = calc_degraded(conf);
4068	spin_unlock_irq(&conf->device_lock);
4069	mddev->raid_disks = conf->geo.raid_disks;
4070	mddev->reshape_position = conf->reshape_progress;
4071	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4072
4073	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4074	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4075	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4076	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4077
4078	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4079						"reshape");
4080	if (!mddev->sync_thread) {
4081		ret = -EAGAIN;
4082		goto abort;
4083	}
4084	conf->reshape_checkpoint = jiffies;
4085	md_wakeup_thread(mddev->sync_thread);
4086	md_new_event(mddev);
4087	return 0;
4088
4089abort:
4090	mddev->recovery = 0;
4091	spin_lock_irq(&conf->device_lock);
4092	conf->geo = conf->prev;
4093	mddev->raid_disks = conf->geo.raid_disks;
4094	rdev_for_each(rdev, mddev)
4095		rdev->new_data_offset = rdev->data_offset;
4096	smp_wmb();
4097	conf->reshape_progress = MaxSector;
4098	mddev->reshape_position = MaxSector;
4099	spin_unlock_irq(&conf->device_lock);
4100	return ret;
4101}
4102
4103/* Calculate the last device-address that could contain
4104 * any block from the chunk that includes the array-address 's'
4105 * and report the next address.
4106 * i.e. the address returned will be chunk-aligned and after
4107 * any data that is in the chunk containing 's'.
4108 */
4109static sector_t last_dev_address(sector_t s, struct geom *geo)
4110{
4111	s = (s | geo->chunk_mask) + 1;
4112	s >>= geo->chunk_shift;
4113	s *= geo->near_copies;
4114	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4115	s *= geo->far_copies;
4116	s <<= geo->chunk_shift;
4117	return s;
4118}
4119
4120/* Calculate the first device-address that could contain
4121 * any block from the chunk that includes the array-address 's'.
4122 * This too will be the start of a chunk
4123 */
4124static sector_t first_dev_address(sector_t s, struct geom *geo)
4125{
4126	s >>= geo->chunk_shift;
4127	s *= geo->near_copies;
4128	sector_div(s, geo->raid_disks);
4129	s *= geo->far_copies;
4130	s <<= geo->chunk_shift;
4131	return s;
4132}
4133
4134static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4135				int *skipped)
4136{
4137	/* We simply copy at most one chunk (smallest of old and new)
4138	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4139	 * or we hit a bad block or something.
4140	 * This might mean we pause for normal IO in the middle of
4141	 * a chunk, but that is not a problem was mddev->reshape_position
4142	 * can record any location.
4143	 *
4144	 * If we will want to write to a location that isn't
4145	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4146	 * we need to flush all reshape requests and update the metadata.
4147	 *
4148	 * When reshaping forwards (e.g. to more devices), we interpret
4149	 * 'safe' as the earliest block which might not have been copied
4150	 * down yet.  We divide this by previous stripe size and multiply
4151	 * by previous stripe length to get lowest device offset that we
4152	 * cannot write to yet.
4153	 * We interpret 'sector_nr' as an address that we want to write to.
4154	 * From this we use last_device_address() to find where we might
4155	 * write to, and first_device_address on the  'safe' position.
4156	 * If this 'next' write position is after the 'safe' position,
4157	 * we must update the metadata to increase the 'safe' position.
4158	 *
4159	 * When reshaping backwards, we round in the opposite direction
4160	 * and perform the reverse test:  next write position must not be
4161	 * less than current safe position.
4162	 *
4163	 * In all this the minimum difference in data offsets
4164	 * (conf->offset_diff - always positive) allows a bit of slack,
4165	 * so next can be after 'safe', but not by more than offset_disk
4166	 *
4167	 * We need to prepare all the bios here before we start any IO
4168	 * to ensure the size we choose is acceptable to all devices.
4169	 * The means one for each copy for write-out and an extra one for
4170	 * read-in.
4171	 * We store the read-in bio in ->master_bio and the others in
4172	 * ->devs[x].bio and ->devs[x].repl_bio.
4173	 */
4174	struct r10conf *conf = mddev->private;
4175	struct r10bio *r10_bio;
4176	sector_t next, safe, last;
4177	int max_sectors;
4178	int nr_sectors;
4179	int s;
4180	struct md_rdev *rdev;
4181	int need_flush = 0;
4182	struct bio *blist;
4183	struct bio *bio, *read_bio;
4184	int sectors_done = 0;
4185
4186	if (sector_nr == 0) {
4187		/* If restarting in the middle, skip the initial sectors */
4188		if (mddev->reshape_backwards &&
4189		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4190			sector_nr = (raid10_size(mddev, 0, 0)
4191				     - conf->reshape_progress);
4192		} else if (!mddev->reshape_backwards &&
4193			   conf->reshape_progress > 0)
4194			sector_nr = conf->reshape_progress;
4195		if (sector_nr) {
4196			mddev->curr_resync_completed = sector_nr;
4197			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4198			*skipped = 1;
4199			return sector_nr;
4200		}
4201	}
4202
4203	/* We don't use sector_nr to track where we are up to
4204	 * as that doesn't work well for ->reshape_backwards.
4205	 * So just use ->reshape_progress.
4206	 */
4207	if (mddev->reshape_backwards) {
4208		/* 'next' is the earliest device address that we might
4209		 * write to for this chunk in the new layout
4210		 */
4211		next = first_dev_address(conf->reshape_progress - 1,
4212					 &conf->geo);
4213
4214		/* 'safe' is the last device address that we might read from
4215		 * in the old layout after a restart
4216		 */
4217		safe = last_dev_address(conf->reshape_safe - 1,
4218					&conf->prev);
4219
4220		if (next + conf->offset_diff < safe)
4221			need_flush = 1;
4222
4223		last = conf->reshape_progress - 1;
4224		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4225					       & conf->prev.chunk_mask);
4226		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4227			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4228	} else {
4229		/* 'next' is after the last device address that we
4230		 * might write to for this chunk in the new layout
4231		 */
4232		next = last_dev_address(conf->reshape_progress, &conf->geo);
4233
4234		/* 'safe' is the earliest device address that we might
4235		 * read from in the old layout after a restart
4236		 */
4237		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4238
4239		/* Need to update metadata if 'next' might be beyond 'safe'
4240		 * as that would possibly corrupt data
4241		 */
4242		if (next > safe + conf->offset_diff)
4243			need_flush = 1;
4244
4245		sector_nr = conf->reshape_progress;
4246		last  = sector_nr | (conf->geo.chunk_mask
4247				     & conf->prev.chunk_mask);
4248
4249		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4250			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4251	}
4252
4253	if (need_flush ||
4254	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4255		/* Need to update reshape_position in metadata */
4256		wait_barrier(conf);
4257		mddev->reshape_position = conf->reshape_progress;
4258		if (mddev->reshape_backwards)
4259			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4260				- conf->reshape_progress;
4261		else
4262			mddev->curr_resync_completed = conf->reshape_progress;
4263		conf->reshape_checkpoint = jiffies;
4264		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4265		md_wakeup_thread(mddev->thread);
4266		wait_event(mddev->sb_wait, mddev->flags == 0 ||
4267			   kthread_should_stop());
4268		conf->reshape_safe = mddev->reshape_position;
4269		allow_barrier(conf);
4270	}
4271
4272read_more:
4273	/* Now schedule reads for blocks from sector_nr to last */
4274	r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4275	raise_barrier(conf, sectors_done != 0);
4276	atomic_set(&r10_bio->remaining, 0);
4277	r10_bio->mddev = mddev;
4278	r10_bio->sector = sector_nr;
4279	set_bit(R10BIO_IsReshape, &r10_bio->state);
4280	r10_bio->sectors = last - sector_nr + 1;
4281	rdev = read_balance(conf, r10_bio, &max_sectors);
4282	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4283
4284	if (!rdev) {
4285		/* Cannot read from here, so need to record bad blocks
4286		 * on all the target devices.
4287		 */
4288		// FIXME
4289		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4290		return sectors_done;
4291	}
4292
4293	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4294
4295	read_bio->bi_bdev = rdev->bdev;
4296	read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4297			       + rdev->data_offset);
4298	read_bio->bi_private = r10_bio;
4299	read_bio->bi_end_io = end_sync_read;
4300	read_bio->bi_rw = READ;
4301	read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4302	read_bio->bi_flags |= 1 << BIO_UPTODATE;
4303	read_bio->bi_vcnt = 0;
4304	read_bio->bi_idx = 0;
4305	read_bio->bi_size = 0;
4306	r10_bio->master_bio = read_bio;
4307	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4308
4309	/* Now find the locations in the new layout */
4310	__raid10_find_phys(&conf->geo, r10_bio);
4311
4312	blist = read_bio;
4313	read_bio->bi_next = NULL;
4314
4315	for (s = 0; s < conf->copies*2; s++) {
4316		struct bio *b;
4317		int d = r10_bio->devs[s/2].devnum;
4318		struct md_rdev *rdev2;
4319		if (s&1) {
4320			rdev2 = conf->mirrors[d].replacement;
4321			b = r10_bio->devs[s/2].repl_bio;
4322		} else {
4323			rdev2 = conf->mirrors[d].rdev;
4324			b = r10_bio->devs[s/2].bio;
4325		}
4326		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4327			continue;
4328		b->bi_bdev = rdev2->bdev;
4329		b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4330		b->bi_private = r10_bio;
4331		b->bi_end_io = end_reshape_write;
4332		b->bi_rw = WRITE;
4333		b->bi_flags &= ~(BIO_POOL_MASK - 1);
4334		b->bi_flags |= 1 << BIO_UPTODATE;
4335		b->bi_next = blist;
4336		b->bi_vcnt = 0;
4337		b->bi_idx = 0;
4338		b->bi_size = 0;
4339		blist = b;
4340	}
4341
4342	/* Now add as many pages as possible to all of these bios. */
4343
4344	nr_sectors = 0;
4345	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4346		struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4347		int len = (max_sectors - s) << 9;
4348		if (len > PAGE_SIZE)
4349			len = PAGE_SIZE;
4350		for (bio = blist; bio ; bio = bio->bi_next) {
4351			struct bio *bio2;
4352			if (bio_add_page(bio, page, len, 0))
4353				continue;
4354
4355			/* Didn't fit, must stop */
4356			for (bio2 = blist;
4357			     bio2 && bio2 != bio;
4358			     bio2 = bio2->bi_next) {
4359				/* Remove last page from this bio */
4360				bio2->bi_vcnt--;
4361				bio2->bi_size -= len;
4362				bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4363			}
4364			goto bio_full;
4365		}
4366		sector_nr += len >> 9;
4367		nr_sectors += len >> 9;
4368	}
4369bio_full:
4370	r10_bio->sectors = nr_sectors;
4371
4372	/* Now submit the read */
4373	md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4374	atomic_inc(&r10_bio->remaining);
4375	read_bio->bi_next = NULL;
4376	generic_make_request(read_bio);
4377	sector_nr += nr_sectors;
4378	sectors_done += nr_sectors;
4379	if (sector_nr <= last)
4380		goto read_more;
4381
4382	/* Now that we have done the whole section we can
4383	 * update reshape_progress
4384	 */
4385	if (mddev->reshape_backwards)
4386		conf->reshape_progress -= sectors_done;
4387	else
4388		conf->reshape_progress += sectors_done;
4389
4390	return sectors_done;
4391}
4392
4393static void end_reshape_request(struct r10bio *r10_bio);
4394static int handle_reshape_read_error(struct mddev *mddev,
4395				     struct r10bio *r10_bio);
4396static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4397{
4398	/* Reshape read completed.  Hopefully we have a block
4399	 * to write out.
4400	 * If we got a read error then we do sync 1-page reads from
4401	 * elsewhere until we find the data - or give up.
4402	 */
4403	struct r10conf *conf = mddev->private;
4404	int s;
4405
4406	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4407		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4408			/* Reshape has been aborted */
4409			md_done_sync(mddev, r10_bio->sectors, 0);
4410			return;
4411		}
4412
4413	/* We definitely have the data in the pages, schedule the
4414	 * writes.
4415	 */
4416	atomic_set(&r10_bio->remaining, 1);
4417	for (s = 0; s < conf->copies*2; s++) {
4418		struct bio *b;
4419		int d = r10_bio->devs[s/2].devnum;
4420		struct md_rdev *rdev;
4421		if (s&1) {
4422			rdev = conf->mirrors[d].replacement;
4423			b = r10_bio->devs[s/2].repl_bio;
4424		} else {
4425			rdev = conf->mirrors[d].rdev;
4426			b = r10_bio->devs[s/2].bio;
4427		}
4428		if (!rdev || test_bit(Faulty, &rdev->flags))
4429			continue;
4430		atomic_inc(&rdev->nr_pending);
4431		md_sync_acct(b->bi_bdev, r10_bio->sectors);
4432		atomic_inc(&r10_bio->remaining);
4433		b->bi_next = NULL;
4434		generic_make_request(b);
4435	}
4436	end_reshape_request(r10_bio);
4437}
4438
4439static void end_reshape(struct r10conf *conf)
4440{
4441	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4442		return;
4443
4444	spin_lock_irq(&conf->device_lock);
4445	conf->prev = conf->geo;
4446	md_finish_reshape(conf->mddev);
4447	smp_wmb();
4448	conf->reshape_progress = MaxSector;
4449	spin_unlock_irq(&conf->device_lock);
4450
4451	/* read-ahead size must cover two whole stripes, which is
4452	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4453	 */
4454	if (conf->mddev->queue) {
4455		int stripe = conf->geo.raid_disks *
4456			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4457		stripe /= conf->geo.near_copies;
4458		if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4459			conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4460	}
4461	conf->fullsync = 0;
4462}
4463
4464
4465static int handle_reshape_read_error(struct mddev *mddev,
4466				     struct r10bio *r10_bio)
4467{
4468	/* Use sync reads to get the blocks from somewhere else */
4469	int sectors = r10_bio->sectors;
4470	struct r10conf *conf = mddev->private;
4471	struct {
4472		struct r10bio r10_bio;
4473		struct r10dev devs[conf->copies];
4474	} on_stack;
4475	struct r10bio *r10b = &on_stack.r10_bio;
4476	int slot = 0;
4477	int idx = 0;
4478	struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4479
4480	r10b->sector = r10_bio->sector;
4481	__raid10_find_phys(&conf->prev, r10b);
4482
4483	while (sectors) {
4484		int s = sectors;
4485		int success = 0;
4486		int first_slot = slot;
4487
4488		if (s > (PAGE_SIZE >> 9))
4489			s = PAGE_SIZE >> 9;
4490
4491		while (!success) {
4492			int d = r10b->devs[slot].devnum;
4493			struct md_rdev *rdev = conf->mirrors[d].rdev;
4494			sector_t addr;
4495			if (rdev == NULL ||
4496			    test_bit(Faulty, &rdev->flags) ||
4497			    !test_bit(In_sync, &rdev->flags))
4498				goto failed;
4499
4500			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4501			success = sync_page_io(rdev,
4502					       addr,
4503					       s << 9,
4504					       bvec[idx].bv_page,
4505					       READ, false);
4506			if (success)
4507				break;
4508		failed:
4509			slot++;
4510			if (slot >= conf->copies)
4511				slot = 0;
4512			if (slot == first_slot)
4513				break;
4514		}
4515		if (!success) {
4516			/* couldn't read this block, must give up */
4517			set_bit(MD_RECOVERY_INTR,
4518				&mddev->recovery);
4519			return -EIO;
4520		}
4521		sectors -= s;
4522		idx++;
4523	}
4524	return 0;
4525}
4526
4527static void end_reshape_write(struct bio *bio, int error)
4528{
4529	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4530	struct r10bio *r10_bio = bio->bi_private;
4531	struct mddev *mddev = r10_bio->mddev;
4532	struct r10conf *conf = mddev->private;
4533	int d;
4534	int slot;
4535	int repl;
4536	struct md_rdev *rdev = NULL;
4537
4538	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4539	if (repl)
4540		rdev = conf->mirrors[d].replacement;
4541	if (!rdev) {
4542		smp_mb();
4543		rdev = conf->mirrors[d].rdev;
4544	}
4545
4546	if (!uptodate) {
4547		/* FIXME should record badblock */
4548		md_error(mddev, rdev);
4549	}
4550
4551	rdev_dec_pending(rdev, mddev);
4552	end_reshape_request(r10_bio);
4553}
4554
4555static void end_reshape_request(struct r10bio *r10_bio)
4556{
4557	if (!atomic_dec_and_test(&r10_bio->remaining))
4558		return;
4559	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4560	bio_put(r10_bio->master_bio);
4561	put_buf(r10_bio);
4562}
4563
4564static void raid10_finish_reshape(struct mddev *mddev)
4565{
4566	struct r10conf *conf = mddev->private;
4567
4568	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4569		return;
4570
4571	if (mddev->delta_disks > 0) {
4572		sector_t size = raid10_size(mddev, 0, 0);
4573		md_set_array_sectors(mddev, size);
4574		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4575			mddev->recovery_cp = mddev->resync_max_sectors;
4576			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4577		}
4578		mddev->resync_max_sectors = size;
4579		set_capacity(mddev->gendisk, mddev->array_sectors);
4580		revalidate_disk(mddev->gendisk);
4581	} else {
4582		int d;
4583		for (d = conf->geo.raid_disks ;
4584		     d < conf->geo.raid_disks - mddev->delta_disks;
4585		     d++) {
4586			struct md_rdev *rdev = conf->mirrors[d].rdev;
4587			if (rdev)
4588				clear_bit(In_sync, &rdev->flags);
4589			rdev = conf->mirrors[d].replacement;
4590			if (rdev)
4591				clear_bit(In_sync, &rdev->flags);
4592		}
4593	}
4594	mddev->layout = mddev->new_layout;
4595	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4596	mddev->reshape_position = MaxSector;
4597	mddev->delta_disks = 0;
4598	mddev->reshape_backwards = 0;
4599}
4600
4601static struct md_personality raid10_personality =
4602{
4603	.name		= "raid10",
4604	.level		= 10,
4605	.owner		= THIS_MODULE,
4606	.make_request	= make_request,
4607	.run		= run,
4608	.stop		= stop,
4609	.status		= status,
4610	.error_handler	= error,
4611	.hot_add_disk	= raid10_add_disk,
4612	.hot_remove_disk= raid10_remove_disk,
4613	.spare_active	= raid10_spare_active,
4614	.sync_request	= sync_request,
4615	.quiesce	= raid10_quiesce,
4616	.size		= raid10_size,
4617	.resize		= raid10_resize,
4618	.takeover	= raid10_takeover,
4619	.check_reshape	= raid10_check_reshape,
4620	.start_reshape	= raid10_start_reshape,
4621	.finish_reshape	= raid10_finish_reshape,
4622};
4623
4624static int __init raid_init(void)
4625{
4626	return register_md_personality(&raid10_personality);
4627}
4628
4629static void raid_exit(void)
4630{
4631	unregister_md_personality(&raid10_personality);
4632}
4633
4634module_init(raid_init);
4635module_exit(raid_exit);
4636MODULE_LICENSE("GPL");
4637MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4638MODULE_ALIAS("md-personality-9"); /* RAID10 */
4639MODULE_ALIAS("md-raid10");
4640MODULE_ALIAS("md-level-10");
4641
4642module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4643