1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/metrics/sparse_histogram.h"
6
7 #include <memory>
8 #include <string>
9 #include <vector>
10
11 #include "base/logging.h"
12 #include "base/metrics/histogram_base.h"
13 #include "base/metrics/histogram_functions.h"
14 #include "base/metrics/histogram_samples.h"
15 #include "base/metrics/metrics_hashes.h"
16 #include "base/metrics/persistent_histogram_allocator.h"
17 #include "base/metrics/persistent_memory_allocator.h"
18 #include "base/metrics/sample_map.h"
19 #include "base/metrics/statistics_recorder.h"
20 #include "base/pickle.h"
21 #include "base/stl_util.h"
22 #include "base/strings/stringprintf.h"
23 #include "base/values.h"
24 #include "testing/gmock/include/gmock/gmock.h"
25 #include "testing/gtest/include/gtest/gtest.h"
26
27 namespace base {
28
29 // Test parameter indicates if a persistent memory allocator should be used
30 // for histogram allocation. False will allocate histograms from the process
31 // heap.
32 class SparseHistogramTest : public testing::TestWithParam<bool> {
33 public:
SparseHistogramTest()34 SparseHistogramTest() : use_persistent_histogram_allocator_(GetParam()) {}
35 SparseHistogramTest(const SparseHistogramTest&) = delete;
36 SparseHistogramTest& operator=(const SparseHistogramTest&) = delete;
37
38 protected:
39 const int32_t kAllocatorMemorySize = 8 << 20; // 8 MiB
40
SetUp()41 void SetUp() override {
42 if (use_persistent_histogram_allocator_)
43 CreatePersistentMemoryAllocator();
44
45 // Each test will have a clean state (no Histogram / BucketRanges
46 // registered).
47 InitializeStatisticsRecorder();
48 }
49
TearDown()50 void TearDown() override {
51 if (allocator_) {
52 ASSERT_FALSE(allocator_->IsFull());
53 ASSERT_FALSE(allocator_->IsCorrupt());
54 }
55 UninitializeStatisticsRecorder();
56 DestroyPersistentMemoryAllocator();
57 }
58
InitializeStatisticsRecorder()59 void InitializeStatisticsRecorder() {
60 DCHECK(!statistics_recorder_);
61 statistics_recorder_ = StatisticsRecorder::CreateTemporaryForTesting();
62 }
63
UninitializeStatisticsRecorder()64 void UninitializeStatisticsRecorder() {
65 statistics_recorder_.reset();
66 }
67
CreatePersistentMemoryAllocator()68 void CreatePersistentMemoryAllocator() {
69 GlobalHistogramAllocator::CreateWithLocalMemory(
70 kAllocatorMemorySize, 0, "SparseHistogramAllocatorTest");
71 allocator_ = GlobalHistogramAllocator::Get()->memory_allocator();
72 }
73
DestroyPersistentMemoryAllocator()74 void DestroyPersistentMemoryAllocator() {
75 allocator_ = nullptr;
76 GlobalHistogramAllocator::ReleaseForTesting();
77 }
78
NewSparseHistogram(const char * name)79 std::unique_ptr<SparseHistogram> NewSparseHistogram(const char* name) {
80 // std::make_unique can't access protected ctor so do it manually. This
81 // test class is a friend so can access it.
82 return std::unique_ptr<SparseHistogram>(new SparseHistogram(name));
83 }
84
GetCountAndBucketData(SparseHistogram * histogram,base::Histogram::Count * count,int64_t * sum,base::ListValue * buckets)85 void GetCountAndBucketData(SparseHistogram* histogram,
86 base::Histogram::Count* count,
87 int64_t* sum,
88 base::ListValue* buckets) {
89 // A simple wrapper around |GetCountAndBucketData| to make it visible for
90 // testing.
91 histogram->GetCountAndBucketData(count, sum, buckets);
92 }
93
94 const bool use_persistent_histogram_allocator_;
95
96 std::unique_ptr<StatisticsRecorder> statistics_recorder_;
97 PersistentMemoryAllocator* allocator_ = nullptr;
98 };
99
100 // Run all HistogramTest cases with both heap and persistent memory.
101 INSTANTIATE_TEST_SUITE_P(HeapAndPersistent,
102 SparseHistogramTest,
103 testing::Bool());
104
TEST_P(SparseHistogramTest,BasicTest)105 TEST_P(SparseHistogramTest, BasicTest) {
106 std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
107 std::unique_ptr<HistogramSamples> snapshot(histogram->SnapshotSamples());
108 EXPECT_EQ(0, snapshot->TotalCount());
109 EXPECT_EQ(0, snapshot->sum());
110
111 histogram->Add(100);
112 std::unique_ptr<HistogramSamples> snapshot1(histogram->SnapshotSamples());
113 EXPECT_EQ(1, snapshot1->TotalCount());
114 EXPECT_EQ(1, snapshot1->GetCount(100));
115
116 histogram->Add(100);
117 histogram->Add(101);
118 std::unique_ptr<HistogramSamples> snapshot2(histogram->SnapshotSamples());
119 EXPECT_EQ(3, snapshot2->TotalCount());
120 EXPECT_EQ(2, snapshot2->GetCount(100));
121 EXPECT_EQ(1, snapshot2->GetCount(101));
122 }
123
TEST_P(SparseHistogramTest,BasicTestAddCount)124 TEST_P(SparseHistogramTest, BasicTestAddCount) {
125 std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
126 std::unique_ptr<HistogramSamples> snapshot(histogram->SnapshotSamples());
127 EXPECT_EQ(0, snapshot->TotalCount());
128 EXPECT_EQ(0, snapshot->sum());
129
130 histogram->AddCount(100, 15);
131 std::unique_ptr<HistogramSamples> snapshot1(histogram->SnapshotSamples());
132 EXPECT_EQ(15, snapshot1->TotalCount());
133 EXPECT_EQ(15, snapshot1->GetCount(100));
134
135 histogram->AddCount(100, 15);
136 histogram->AddCount(101, 25);
137 std::unique_ptr<HistogramSamples> snapshot2(histogram->SnapshotSamples());
138 EXPECT_EQ(55, snapshot2->TotalCount());
139 EXPECT_EQ(30, snapshot2->GetCount(100));
140 EXPECT_EQ(25, snapshot2->GetCount(101));
141 }
142
TEST_P(SparseHistogramTest,AddCount_LargeValuesDontOverflow)143 TEST_P(SparseHistogramTest, AddCount_LargeValuesDontOverflow) {
144 std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
145 std::unique_ptr<HistogramSamples> snapshot(histogram->SnapshotSamples());
146 EXPECT_EQ(0, snapshot->TotalCount());
147 EXPECT_EQ(0, snapshot->sum());
148
149 histogram->AddCount(1000000000, 15);
150 std::unique_ptr<HistogramSamples> snapshot1(histogram->SnapshotSamples());
151 EXPECT_EQ(15, snapshot1->TotalCount());
152 EXPECT_EQ(15, snapshot1->GetCount(1000000000));
153
154 histogram->AddCount(1000000000, 15);
155 histogram->AddCount(1010000000, 25);
156 std::unique_ptr<HistogramSamples> snapshot2(histogram->SnapshotSamples());
157 EXPECT_EQ(55, snapshot2->TotalCount());
158 EXPECT_EQ(30, snapshot2->GetCount(1000000000));
159 EXPECT_EQ(25, snapshot2->GetCount(1010000000));
160 EXPECT_EQ(55250000000LL, snapshot2->sum());
161 }
162
163 // Make sure that counts returned by Histogram::SnapshotDelta do not overflow
164 // even when a total count (returned by Histogram::SnapshotSample) does.
TEST_P(SparseHistogramTest,AddCount_LargeCountsDontOverflow)165 TEST_P(SparseHistogramTest, AddCount_LargeCountsDontOverflow) {
166 std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
167 std::unique_ptr<HistogramSamples> snapshot(histogram->SnapshotSamples());
168 EXPECT_EQ(0, snapshot->TotalCount());
169 EXPECT_EQ(0, snapshot->sum());
170
171 const int count = (1 << 30) - 1;
172
173 // Repeat N times to make sure that there is no internal value overflow.
174 for (int i = 0; i < 10; ++i) {
175 histogram->AddCount(42, count);
176 std::unique_ptr<HistogramSamples> samples = histogram->SnapshotDelta();
177 EXPECT_EQ(count, samples->TotalCount());
178 EXPECT_EQ(count, samples->GetCount(42));
179 }
180 }
181
TEST_P(SparseHistogramTest,MacroBasicTest)182 TEST_P(SparseHistogramTest, MacroBasicTest) {
183 UmaHistogramSparse("Sparse", 100);
184 UmaHistogramSparse("Sparse", 200);
185 UmaHistogramSparse("Sparse", 100);
186
187 const StatisticsRecorder::Histograms histograms =
188 StatisticsRecorder::GetHistograms();
189
190 ASSERT_THAT(histograms, testing::SizeIs(1));
191 const HistogramBase* const sparse_histogram = histograms[0];
192
193 EXPECT_EQ(SPARSE_HISTOGRAM, sparse_histogram->GetHistogramType());
194 EXPECT_EQ("Sparse", StringPiece(sparse_histogram->histogram_name()));
195 EXPECT_EQ(
196 HistogramBase::kUmaTargetedHistogramFlag |
197 (use_persistent_histogram_allocator_ ? HistogramBase::kIsPersistent
198 : 0),
199 sparse_histogram->flags());
200
201 std::unique_ptr<HistogramSamples> samples =
202 sparse_histogram->SnapshotSamples();
203 EXPECT_EQ(3, samples->TotalCount());
204 EXPECT_EQ(2, samples->GetCount(100));
205 EXPECT_EQ(1, samples->GetCount(200));
206 }
207
TEST_P(SparseHistogramTest,MacroInLoopTest)208 TEST_P(SparseHistogramTest, MacroInLoopTest) {
209 // Unlike the macros in histogram.h, SparseHistogram macros can have a
210 // variable as histogram name.
211 for (int i = 0; i < 2; i++) {
212 UmaHistogramSparse(StringPrintf("Sparse%d", i), 100);
213 }
214
215 const StatisticsRecorder::Histograms histograms =
216 StatisticsRecorder::Sort(StatisticsRecorder::GetHistograms());
217 ASSERT_THAT(histograms, testing::SizeIs(2));
218 EXPECT_STREQ(histograms[0]->histogram_name(), "Sparse0");
219 EXPECT_STREQ(histograms[1]->histogram_name(), "Sparse1");
220 }
221
TEST_P(SparseHistogramTest,Serialize)222 TEST_P(SparseHistogramTest, Serialize) {
223 std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
224 histogram->SetFlags(HistogramBase::kIPCSerializationSourceFlag);
225
226 Pickle pickle;
227 histogram->SerializeInfo(&pickle);
228
229 PickleIterator iter(pickle);
230
231 int type;
232 EXPECT_TRUE(iter.ReadInt(&type));
233 EXPECT_EQ(SPARSE_HISTOGRAM, type);
234
235 std::string name;
236 EXPECT_TRUE(iter.ReadString(&name));
237 EXPECT_EQ("Sparse", name);
238
239 int flag;
240 EXPECT_TRUE(iter.ReadInt(&flag));
241 EXPECT_EQ(HistogramBase::kIPCSerializationSourceFlag, flag);
242
243 // No more data in the pickle.
244 EXPECT_FALSE(iter.SkipBytes(1));
245 }
246
247 // Ensure that race conditions that cause multiple, identical sparse histograms
248 // to be created will safely resolve to a single one.
TEST_P(SparseHistogramTest,DuplicationSafety)249 TEST_P(SparseHistogramTest, DuplicationSafety) {
250 const char histogram_name[] = "Duplicated";
251 size_t histogram_count = StatisticsRecorder::GetHistogramCount();
252
253 // Create a histogram that we will later duplicate.
254 HistogramBase* original =
255 SparseHistogram::FactoryGet(histogram_name, HistogramBase::kNoFlags);
256 ++histogram_count;
257 DCHECK_EQ(histogram_count, StatisticsRecorder::GetHistogramCount());
258 original->Add(1);
259
260 // Create a duplicate. This has to happen differently depending on where the
261 // memory is taken from.
262 if (use_persistent_histogram_allocator_) {
263 // To allocate from persistent memory, clear the last_created reference in
264 // the GlobalHistogramAllocator. This will cause an Import to recreate
265 // the just-created histogram which will then be released as a duplicate.
266 GlobalHistogramAllocator::Get()->ClearLastCreatedReferenceForTesting();
267 // Creating a different histogram will first do an Import to ensure it
268 // hasn't been created elsewhere, triggering the duplication and release.
269 SparseHistogram::FactoryGet("something.new", HistogramBase::kNoFlags);
270 ++histogram_count;
271 } else {
272 // To allocate from the heap, just call the (private) constructor directly.
273 // Delete it immediately like would have happened within FactoryGet();
274 std::unique_ptr<SparseHistogram> something =
275 NewSparseHistogram(histogram_name);
276 DCHECK_NE(original, something.get());
277 }
278 DCHECK_EQ(histogram_count, StatisticsRecorder::GetHistogramCount());
279
280 // Re-creating the histogram via FactoryGet() will return the same one.
281 HistogramBase* duplicate =
282 SparseHistogram::FactoryGet(histogram_name, HistogramBase::kNoFlags);
283 DCHECK_EQ(original, duplicate);
284 DCHECK_EQ(histogram_count, StatisticsRecorder::GetHistogramCount());
285 duplicate->Add(2);
286
287 // Ensure that original histograms are still cross-functional.
288 original->Add(2);
289 duplicate->Add(1);
290 std::unique_ptr<HistogramSamples> snapshot_orig = original->SnapshotSamples();
291 std::unique_ptr<HistogramSamples> snapshot_dup = duplicate->SnapshotSamples();
292 DCHECK_EQ(2, snapshot_orig->GetCount(2));
293 DCHECK_EQ(2, snapshot_dup->GetCount(1));
294 }
295
TEST_P(SparseHistogramTest,FactoryTime)296 TEST_P(SparseHistogramTest, FactoryTime) {
297 const int kTestCreateCount = 1 << 10; // Must be power-of-2.
298 const int kTestLookupCount = 100000;
299 const int kTestAddCount = 100000;
300
301 // Create all histogram names in advance for accurate timing below.
302 std::vector<std::string> histogram_names;
303 for (int i = 0; i < kTestCreateCount; ++i) {
304 histogram_names.push_back(
305 StringPrintf("TestHistogram.%d", i % kTestCreateCount));
306 }
307
308 // Calculate cost of creating histograms.
309 TimeTicks create_start = TimeTicks::Now();
310 for (int i = 0; i < kTestCreateCount; ++i)
311 SparseHistogram::FactoryGet(histogram_names[i], HistogramBase::kNoFlags);
312 TimeDelta create_ticks = TimeTicks::Now() - create_start;
313 int64_t create_ms = create_ticks.InMilliseconds();
314
315 VLOG(1) << kTestCreateCount << " histogram creations took " << create_ms
316 << "ms or about "
317 << (create_ms * 1000000) / kTestCreateCount
318 << "ns each.";
319
320 // Calculate cost of looking up existing histograms.
321 TimeTicks lookup_start = TimeTicks::Now();
322 for (int i = 0; i < kTestLookupCount; ++i) {
323 // 6007 is co-prime with kTestCreateCount and so will do lookups in an
324 // order less likely to be cacheable (but still hit them all) should the
325 // underlying storage use the exact histogram name as the key.
326 const int i_mult = 6007;
327 static_assert(i_mult < INT_MAX / kTestCreateCount, "Multiplier too big");
328 int index = (i * i_mult) & (kTestCreateCount - 1);
329 SparseHistogram::FactoryGet(histogram_names[index],
330 HistogramBase::kNoFlags);
331 }
332 TimeDelta lookup_ticks = TimeTicks::Now() - lookup_start;
333 int64_t lookup_ms = lookup_ticks.InMilliseconds();
334
335 VLOG(1) << kTestLookupCount << " histogram lookups took " << lookup_ms
336 << "ms or about "
337 << (lookup_ms * 1000000) / kTestLookupCount
338 << "ns each.";
339
340 // Calculate cost of accessing histograms.
341 HistogramBase* histogram =
342 SparseHistogram::FactoryGet(histogram_names[0], HistogramBase::kNoFlags);
343 ASSERT_TRUE(histogram);
344 TimeTicks add_start = TimeTicks::Now();
345 for (int i = 0; i < kTestAddCount; ++i)
346 histogram->Add(i & 127);
347 TimeDelta add_ticks = TimeTicks::Now() - add_start;
348 int64_t add_ms = add_ticks.InMilliseconds();
349
350 VLOG(1) << kTestAddCount << " histogram adds took " << add_ms
351 << "ms or about "
352 << (add_ms * 1000000) / kTestAddCount
353 << "ns each.";
354 }
355
TEST_P(SparseHistogramTest,ExtremeValues)356 TEST_P(SparseHistogramTest, ExtremeValues) {
357 static const struct {
358 Histogram::Sample sample;
359 int64_t expected_max;
360 } cases[] = {
361 // Note: We use -2147483647 - 1 rather than -2147483648 because the later
362 // is interpreted as - operator applied to 2147483648 and the latter can't
363 // be represented as an int32 and causes a warning.
364 {-2147483647 - 1, -2147483647LL},
365 {0, 1},
366 {2147483647, 2147483648LL},
367 };
368
369 for (size_t i = 0; i < base::size(cases); ++i) {
370 HistogramBase* histogram =
371 SparseHistogram::FactoryGet(StringPrintf("ExtremeValues_%zu", i),
372 HistogramBase::kUmaTargetedHistogramFlag);
373 histogram->Add(cases[i].sample);
374
375 std::unique_ptr<HistogramSamples> snapshot = histogram->SnapshotSamples();
376 std::unique_ptr<SampleCountIterator> it = snapshot->Iterator();
377 ASSERT_FALSE(it->Done());
378
379 base::Histogram::Sample min;
380 int64_t max;
381 base::Histogram::Count count;
382 it->Get(&min, &max, &count);
383
384 EXPECT_EQ(1, count);
385 EXPECT_EQ(cases[i].sample, min);
386 EXPECT_EQ(cases[i].expected_max, max);
387
388 it->Next();
389 EXPECT_TRUE(it->Done());
390 }
391 }
392
TEST_P(SparseHistogramTest,HistogramNameHash)393 TEST_P(SparseHistogramTest, HistogramNameHash) {
394 const char kName[] = "TestName";
395 HistogramBase* histogram = SparseHistogram::FactoryGet(
396 kName, HistogramBase::kUmaTargetedHistogramFlag);
397 EXPECT_EQ(histogram->name_hash(), HashMetricName(kName));
398 }
399
TEST_P(SparseHistogramTest,CheckGetCountAndBucketData)400 TEST_P(SparseHistogramTest, CheckGetCountAndBucketData) {
401 std::unique_ptr<SparseHistogram> histogram(NewSparseHistogram("Sparse"));
402 // Add samples in reverse order and make sure the output is in correct order.
403 histogram->AddCount(/*sample=*/200, /*count=*/15);
404 histogram->AddCount(/*sample=*/100, /*count=*/5);
405 // Add samples to the same bucket and make sure they'll be aggregated.
406 histogram->AddCount(/*sample=*/100, /*count=*/5);
407
408 base::Histogram::Count total_count;
409 int64_t sum;
410 base::ListValue buckets;
411 GetCountAndBucketData(histogram.get(), &total_count, &sum, &buckets);
412 EXPECT_EQ(25, total_count);
413 EXPECT_EQ(4000, sum);
414 EXPECT_EQ(2u, buckets.GetSize());
415
416 int low, high, count;
417 // Check the first bucket.
418 base::DictionaryValue* bucket1;
419 EXPECT_TRUE(buckets.GetDictionary(0, &bucket1));
420 EXPECT_TRUE(bucket1->GetInteger("low", &low));
421 EXPECT_TRUE(bucket1->GetInteger("high", &high));
422 EXPECT_TRUE(bucket1->GetInteger("count", &count));
423 EXPECT_EQ(100, low);
424 EXPECT_EQ(101, high);
425 EXPECT_EQ(10, count);
426
427 // Check the second bucket.
428 base::DictionaryValue* bucket2;
429 EXPECT_TRUE(buckets.GetDictionary(1, &bucket2));
430 EXPECT_TRUE(bucket2->GetInteger("low", &low));
431 EXPECT_TRUE(bucket2->GetInteger("high", &high));
432 EXPECT_TRUE(bucket2->GetInteger("count", &count));
433 EXPECT_EQ(200, low);
434 EXPECT_EQ(201, high);
435 EXPECT_EQ(15, count);
436 }
437
TEST_P(SparseHistogramTest,WriteAscii)438 TEST_P(SparseHistogramTest, WriteAscii) {
439 HistogramBase* histogram =
440 SparseHistogram::FactoryGet("AsciiOut", HistogramBase::kNoFlags);
441 histogram->AddCount(/*sample=*/4, /*count=*/5);
442 histogram->AddCount(/*sample=*/10, /*count=*/15);
443
444 std::string output;
445 histogram->WriteAscii(&output);
446
447 const char kOutputFormatRe[] =
448 R"(Histogram: AsciiOut recorded 20 samples.*\n)"
449 R"(4 -+O +\(5 = 25.0%\)\n)"
450 R"(10 -+O +\(15 = 75.0%\)\n)";
451
452 EXPECT_THAT(output, testing::MatchesRegex(kOutputFormatRe));
453 }
454
TEST_P(SparseHistogramTest,ToGraphDict)455 TEST_P(SparseHistogramTest, ToGraphDict) {
456 HistogramBase* histogram =
457 SparseHistogram::FactoryGet("HTMLOut", HistogramBase::kNoFlags);
458 histogram->AddCount(/*sample=*/4, /*count=*/5);
459 histogram->AddCount(/*sample=*/10, /*count=*/15);
460
461 base::DictionaryValue output = histogram->ToGraphDict();
462 std::string* header = output.FindStringKey("header");
463 std::string* body = output.FindStringKey("body");
464
465 const char kOutputHeaderFormatRe[] =
466 R"(Histogram: HTMLOut recorded 20 samples.*)";
467 const char kOutputBodyFormatRe[] = R"(4 -+O +\(5 = 25.0%\)\n)"
468 R"(10 -+O +\(15 = 75.0%\)\n)";
469
470 EXPECT_THAT(*header, testing::MatchesRegex(kOutputHeaderFormatRe));
471 EXPECT_THAT(*body, testing::MatchesRegex(kOutputBodyFormatRe));
472 }
473
474 } // namespace base
475