1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2016 The Khronos Group Inc.
6  * Copyright (c) 2016 The Android Open Source Project
7  *
8  * Licensed under the Apache License, Version 2.0 (the "License");
9  * you may not use this file except in compliance with the License.
10  * You may obtain a copy of the License at
11  *
12  *      http://www.apache.org/licenses/LICENSE-2.0
13  *
14  * Unless required by applicable law or agreed to in writing, software
15  * distributed under the License is distributed on an "AS IS" BASIS,
16  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17  * See the License for the specific language governing permissions and
18  * limitations under the License.
19  *
20  *//*!
21  * \file
22  * \brief Image load/store Tests
23  *//*--------------------------------------------------------------------*/
24 
25 #include "vktImageLoadStoreTests.hpp"
26 #include "vktTestCaseUtil.hpp"
27 #include "vktImageTestsUtil.hpp"
28 #include "vktImageLoadStoreUtil.hpp"
29 #include "vktImageTexture.hpp"
30 
31 #include "vkDefs.hpp"
32 #include "vkRef.hpp"
33 #include "vkRefUtil.hpp"
34 #include "vkPlatform.hpp"
35 #include "vkPrograms.hpp"
36 #include "vkMemUtil.hpp"
37 #include "vkBarrierUtil.hpp"
38 #include "vkBuilderUtil.hpp"
39 #include "vkQueryUtil.hpp"
40 #include "vkImageUtil.hpp"
41 #include "vkCmdUtil.hpp"
42 #include "vkObjUtil.hpp"
43 
44 #include "deMath.h"
45 #include "deUniquePtr.hpp"
46 #include "deSharedPtr.hpp"
47 #include "deStringUtil.hpp"
48 
49 #include "tcuImageCompare.hpp"
50 #include "tcuTexture.hpp"
51 #include "tcuTextureUtil.hpp"
52 #include "tcuFloat.hpp"
53 #include "tcuStringTemplate.hpp"
54 
55 #include <string>
56 #include <vector>
57 #include <map>
58 
59 using namespace vk;
60 
61 namespace vkt
62 {
63 namespace image
64 {
65 namespace
66 {
67 
68 // Check for three-component (non-packed) format, i.e. pixel size is a multiple of 3.
formatHasThreeComponents(VkFormat format)69 bool formatHasThreeComponents(VkFormat format)
70 {
71 	const tcu::TextureFormat texFormat = mapVkFormat(format);
72 	return (getPixelSize(texFormat) % 3) == 0;
73 }
74 
getSingleComponentFormat(VkFormat format)75 VkFormat getSingleComponentFormat(VkFormat format)
76 {
77 	tcu::TextureFormat texFormat = mapVkFormat(format);
78 	texFormat = tcu::TextureFormat(tcu::TextureFormat::R, texFormat.type);
79 	return mapTextureFormat(texFormat);
80 }
81 
makeBufferImageCopy(const Texture & texture)82 inline VkBufferImageCopy makeBufferImageCopy (const Texture& texture)
83 {
84 	return image::makeBufferImageCopy(makeExtent3D(texture.layerSize()), texture.numLayers());
85 }
86 
getLayerOrSlice(const Texture & texture,const tcu::ConstPixelBufferAccess access,const int layer)87 tcu::ConstPixelBufferAccess getLayerOrSlice (const Texture& texture, const tcu::ConstPixelBufferAccess access, const int layer)
88 {
89 	switch (texture.type())
90 	{
91 		case IMAGE_TYPE_1D:
92 		case IMAGE_TYPE_2D:
93 		case IMAGE_TYPE_BUFFER:
94 			// Not layered
95 			DE_ASSERT(layer == 0);
96 			return access;
97 
98 		case IMAGE_TYPE_1D_ARRAY:
99 			return tcu::getSubregion(access, 0, layer, access.getWidth(), 1);
100 
101 		case IMAGE_TYPE_2D_ARRAY:
102 		case IMAGE_TYPE_CUBE:
103 		case IMAGE_TYPE_CUBE_ARRAY:
104 		case IMAGE_TYPE_3D:			// 3d texture is treated as if depth was the layers
105 			return tcu::getSubregion(access, 0, 0, layer, access.getWidth(), access.getHeight(), 1);
106 
107 		default:
108 			DE_FATAL("Internal test error");
109 			return tcu::ConstPixelBufferAccess();
110 	}
111 }
112 
113 //! \return the size in bytes of a given level of a mipmap image, including array layers.
getMipmapLevelImageSizeBytes(const Texture & texture,const vk::VkFormat format,const deUint32 mipmapLevel)114 vk::VkDeviceSize getMipmapLevelImageSizeBytes (const Texture& texture, const vk::VkFormat format, const deUint32 mipmapLevel)
115 {
116 	tcu::IVec3 size = texture.size(mipmapLevel);
117 	return tcu::getPixelSize(vk::mapVkFormat(format)) * size.x() * size.y() * size.z();
118 }
119 
120 //! \return the size in bytes of the whole mipmap image, including all mipmap levels and array layers
getMipmapImageTotalSizeBytes(const Texture & texture,const vk::VkFormat format)121 vk::VkDeviceSize getMipmapImageTotalSizeBytes (const Texture& texture, const vk::VkFormat format)
122 {
123 	vk::VkDeviceSize	size			= 0u;
124 	deInt32				levelCount		= 0u;
125 
126 	do
127 	{
128 		size += getMipmapLevelImageSizeBytes(texture, format, levelCount);
129 		levelCount++;
130 	} while (levelCount < texture.numMipmapLevels());
131 	return size;
132 }
133 
134 //! \return true if all layers match in both pixel buffers
comparePixelBuffers(tcu::TestLog & log,const Texture & texture,const VkFormat format,const tcu::ConstPixelBufferAccess reference,const tcu::ConstPixelBufferAccess result,const deUint32 mipmapLevel=0u)135 bool comparePixelBuffers (tcu::TestLog&						log,
136 						  const Texture&					texture,
137 						  const VkFormat					format,
138 						  const tcu::ConstPixelBufferAccess	reference,
139 						  const tcu::ConstPixelBufferAccess	result,
140 						  const deUint32					mipmapLevel = 0u)
141 {
142 	DE_ASSERT(reference.getFormat() == result.getFormat());
143 	DE_ASSERT(reference.getSize() == result.getSize());
144 
145 	const bool is3d = (texture.type() == IMAGE_TYPE_3D);
146 	const int numLayersOrSlices = (is3d ? texture.size(mipmapLevel).z() : texture.numLayers());
147 	const int numCubeFaces = 6;
148 
149 	int passedLayers = 0;
150 	for (int layerNdx = 0; layerNdx < numLayersOrSlices; ++layerNdx)
151 	{
152 		const std::string comparisonName = "Comparison" + de::toString(layerNdx);
153 		const std::string comparisonDesc = "Image Comparison, " +
154 			(isCube(texture) ? "face " + de::toString(layerNdx % numCubeFaces) + ", cube " + de::toString(layerNdx / numCubeFaces) :
155 			is3d			 ? "slice " + de::toString(layerNdx) : "layer " + de::toString(layerNdx) + " , level " + de::toString(mipmapLevel));
156 
157 		const tcu::ConstPixelBufferAccess refLayer = getLayerOrSlice(texture, reference, layerNdx);
158 		const tcu::ConstPixelBufferAccess resultLayer = getLayerOrSlice(texture, result, layerNdx);
159 
160 		bool ok = false;
161 
162 		switch (tcu::getTextureChannelClass(mapVkFormat(format).type))
163 		{
164 			case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER:
165 			case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER:
166 			{
167 				ok = tcu::intThresholdCompare(log, comparisonName.c_str(), comparisonDesc.c_str(), refLayer, resultLayer, tcu::UVec4(0), tcu::COMPARE_LOG_RESULT);
168 				break;
169 			}
170 
171 			case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT:
172 			{
173 				// Allow error of minimum representable difference
174 				const tcu::Vec4 threshold (1.0f / ((tcu::UVec4(1u) << tcu::getTextureFormatMantissaBitDepth(mapVkFormat(format)).cast<deUint32>()) - 1u).cast<float>());
175 
176 				ok = tcu::floatThresholdCompare(log, comparisonName.c_str(), comparisonDesc.c_str(), refLayer, resultLayer, threshold, tcu::COMPARE_LOG_RESULT);
177 				break;
178 			}
179 
180 			case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT:
181 			{
182 				// Allow error of minimum representable difference
183 				const tcu::Vec4 threshold (1.0f / ((tcu::UVec4(1u) << (tcu::getTextureFormatMantissaBitDepth(mapVkFormat(format)).cast<deUint32>() - 1u)) - 1u).cast<float>());
184 
185 				ok = tcu::floatThresholdCompare(log, comparisonName.c_str(), comparisonDesc.c_str(), refLayer, resultLayer, threshold, tcu::COMPARE_LOG_RESULT);
186 				break;
187 			}
188 
189 			case tcu::TEXTURECHANNELCLASS_FLOATING_POINT:
190 			{
191 				// Convert target format ulps to float ulps and allow 1 ulp difference
192 				const tcu::UVec4 threshold (tcu::UVec4(1u) << (tcu::UVec4(23) - tcu::getTextureFormatMantissaBitDepth(mapVkFormat(format)).cast<deUint32>()));
193 
194 				ok = tcu::floatUlpThresholdCompare(log, comparisonName.c_str(), comparisonDesc.c_str(), refLayer, resultLayer, threshold, tcu::COMPARE_LOG_RESULT);
195 				break;
196 			}
197 
198 			default:
199 				DE_FATAL("Unknown channel class");
200 		}
201 
202 		if (ok)
203 			++passedLayers;
204 	}
205 
206 	return passedLayers == numLayersOrSlices;
207 }
208 
209 //!< Zero out invalid pixels in the image (denormalized, infinite, NaN values)
replaceBadFloatReinterpretValues(const tcu::PixelBufferAccess access)210 void replaceBadFloatReinterpretValues (const tcu::PixelBufferAccess access)
211 {
212 	DE_ASSERT(tcu::getTextureChannelClass(access.getFormat().type) == tcu::TEXTURECHANNELCLASS_FLOATING_POINT);
213 
214 	for (int z = 0; z < access.getDepth(); ++z)
215 	for (int y = 0; y < access.getHeight(); ++y)
216 	for (int x = 0; x < access.getWidth(); ++x)
217 	{
218 		const tcu::Vec4 color(access.getPixel(x, y, z));
219 		tcu::Vec4 newColor = color;
220 
221 		for (int i = 0; i < 4; ++i)
222 		{
223 			if (access.getFormat().type == tcu::TextureFormat::HALF_FLOAT)
224 			{
225 				const tcu::Float16 f(color[i]);
226 				if (f.isDenorm() || f.isInf() || f.isNaN())
227 					newColor[i] = 0.0f;
228 			}
229 			else
230 			{
231 				const tcu::Float32 f(color[i]);
232 				if (f.isDenorm() || f.isInf() || f.isNaN())
233 					newColor[i] = 0.0f;
234 			}
235 		}
236 
237 		if (newColor != color)
238 			access.setPixel(newColor, x, y, z);
239 	}
240 }
241 
242 //!< replace invalid pixels in the image (-128)
replaceSnormReinterpretValues(const tcu::PixelBufferAccess access)243 void replaceSnormReinterpretValues (const tcu::PixelBufferAccess access)
244 {
245 	DE_ASSERT(tcu::getTextureChannelClass(access.getFormat().type) == tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT);
246 
247 	for (int z = 0; z < access.getDepth(); ++z)
248 	for (int y = 0; y < access.getHeight(); ++y)
249 	for (int x = 0; x < access.getWidth(); ++x)
250 	{
251 		const tcu::IVec4 color(access.getPixelInt(x, y, z));
252 		tcu::IVec4 newColor = color;
253 
254 		for (int i = 0; i < 4; ++i)
255 		{
256 			const deInt32 oldColor(color[i]);
257 			if (oldColor == -128) newColor[i] = -127;
258 		}
259 
260 		if (newColor != color)
261 		access.setPixel(newColor, x, y, z);
262 	}
263 }
264 
generateReferenceImage(const tcu::IVec3 & imageSize,const VkFormat imageFormat,const VkFormat readFormat)265 tcu::TextureLevel generateReferenceImage (const tcu::IVec3& imageSize, const VkFormat imageFormat, const VkFormat readFormat)
266 {
267 	// Generate a reference image data using the storage format
268 
269 	tcu::TextureLevel reference(mapVkFormat(imageFormat), imageSize.x(), imageSize.y(), imageSize.z());
270 	const tcu::PixelBufferAccess access = reference.getAccess();
271 
272 	const float storeColorScale = computeStoreColorScale(imageFormat, imageSize);
273 	const float storeColorBias = computeStoreColorBias(imageFormat);
274 
275 	const bool intFormat = isIntegerFormat(imageFormat);
276 	const bool storeNegativeValues = isSignedFormat(imageFormat) && (storeColorBias == 0);
277 	const int xMax = imageSize.x() - 1;
278 	const int yMax = imageSize.y() - 1;
279 
280 	for (int z = 0; z < imageSize.z(); ++z)
281 	for (int y = 0; y < imageSize.y(); ++y)
282 	for (int x = 0; x < imageSize.x(); ++x)
283 	{
284 		tcu::IVec4 color(x^y^z, (xMax - x)^y^z, x^(yMax - y)^z, (xMax - x)^(yMax - y)^z);
285 
286 		if (storeNegativeValues)
287 			color -= tcu::IVec4(deRoundFloatToInt32((float)de::max(xMax, yMax) / 2.0f));
288 
289 		if (intFormat)
290 			access.setPixel(color, x, y, z);
291 		else
292 			access.setPixel(color.asFloat()*storeColorScale + storeColorBias, x, y, z);
293 	}
294 
295 	// If the image is to be accessed as a float texture, get rid of invalid values
296 
297 	if (isFloatFormat(readFormat) && imageFormat != readFormat)
298 		replaceBadFloatReinterpretValues(tcu::PixelBufferAccess(mapVkFormat(readFormat), imageSize, access.getDataPtr()));
299 	if (isSnormFormat(readFormat) && imageFormat != readFormat)
300 		replaceSnormReinterpretValues(tcu::PixelBufferAccess(mapVkFormat(readFormat), imageSize, access.getDataPtr()));
301 
302 	return reference;
303 }
304 
generateReferenceImage(const tcu::IVec3 & imageSize,const VkFormat imageFormat)305 inline tcu::TextureLevel generateReferenceImage (const tcu::IVec3& imageSize, const VkFormat imageFormat)
306 {
307 	return generateReferenceImage(imageSize, imageFormat, imageFormat);
308 }
309 
flipHorizontally(const tcu::PixelBufferAccess access)310 void flipHorizontally (const tcu::PixelBufferAccess access)
311 {
312 	const int xMax = access.getWidth() - 1;
313 	const int halfWidth = access.getWidth() / 2;
314 
315 	if (isIntegerFormat(mapTextureFormat(access.getFormat())))
316 		for (int z = 0; z < access.getDepth(); z++)
317 		for (int y = 0; y < access.getHeight(); y++)
318 		for (int x = 0; x < halfWidth; x++)
319 		{
320 			const tcu::UVec4 temp = access.getPixelUint(xMax - x, y, z);
321 			access.setPixel(access.getPixelUint(x, y, z), xMax - x, y, z);
322 			access.setPixel(temp, x, y, z);
323 		}
324 	else
325 		for (int z = 0; z < access.getDepth(); z++)
326 		for (int y = 0; y < access.getHeight(); y++)
327 		for (int x = 0; x < halfWidth; x++)
328 		{
329 			const tcu::Vec4 temp = access.getPixel(xMax - x, y, z);
330 			access.setPixel(access.getPixel(x, y, z), xMax - x, y, z);
331 			access.setPixel(temp, x, y, z);
332 		}
333 }
334 
formatsAreCompatible(const VkFormat format0,const VkFormat format1)335 inline bool formatsAreCompatible (const VkFormat format0, const VkFormat format1)
336 {
337 	return format0 == format1 || mapVkFormat(format0).getPixelSize() == mapVkFormat(format1).getPixelSize();
338 }
339 
commandImageWriteBarrierBetweenShaderInvocations(Context & context,const VkCommandBuffer cmdBuffer,const VkImage image,const Texture & texture)340 void commandImageWriteBarrierBetweenShaderInvocations (Context& context, const VkCommandBuffer cmdBuffer, const VkImage image, const Texture& texture)
341 {
342 	const DeviceInterface& vk = context.getDeviceInterface();
343 
344 	const VkImageSubresourceRange fullImageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, texture.numMipmapLevels(), 0u, texture.numLayers());
345 	const VkImageMemoryBarrier shaderWriteBarrier = makeImageMemoryBarrier(
346 		VK_ACCESS_SHADER_WRITE_BIT, 0u,
347 		VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_GENERAL,
348 		image, fullImageSubresourceRange);
349 
350 	vk.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &shaderWriteBarrier);
351 }
352 
commandBufferWriteBarrierBeforeHostRead(Context & context,const VkCommandBuffer cmdBuffer,const VkBuffer buffer,const VkDeviceSize bufferSizeBytes)353 void commandBufferWriteBarrierBeforeHostRead (Context& context, const VkCommandBuffer cmdBuffer, const VkBuffer buffer, const VkDeviceSize bufferSizeBytes)
354 {
355 	const DeviceInterface& vk = context.getDeviceInterface();
356 
357 	const VkBufferMemoryBarrier shaderWriteBarrier = makeBufferMemoryBarrier(
358 		VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT,
359 		buffer, 0ull, bufferSizeBytes);
360 
361 	vk.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_HOST_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 1, &shaderWriteBarrier, 0, (const VkImageMemoryBarrier*)DE_NULL);
362 }
363 
364 //! Copy all layers of an image to a buffer.
commandCopyImageToBuffer(Context & context,const VkCommandBuffer cmdBuffer,const VkImage image,const VkBuffer buffer,const VkDeviceSize bufferSizeBytes,const Texture & texture)365 void commandCopyImageToBuffer (Context&					context,
366 							   const VkCommandBuffer	cmdBuffer,
367 							   const VkImage			image,
368 							   const VkBuffer			buffer,
369 							   const VkDeviceSize		bufferSizeBytes,
370 							   const Texture&			texture)
371 {
372 	const DeviceInterface& vk = context.getDeviceInterface();
373 
374 	const VkImageSubresourceRange fullImageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, texture.numLayers());
375 	const VkImageMemoryBarrier prepareForTransferBarrier = makeImageMemoryBarrier(
376 		VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT,
377 		VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
378 		image, fullImageSubresourceRange);
379 
380 	const VkBufferImageCopy copyRegion = makeBufferImageCopy(texture);
381 
382 	const VkBufferMemoryBarrier copyBarrier = makeBufferMemoryBarrier(
383 		VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT,
384 		buffer, 0ull, bufferSizeBytes);
385 
386 	vk.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &prepareForTransferBarrier);
387 	vk.cmdCopyImageToBuffer(cmdBuffer, image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, buffer, 1u, &copyRegion);
388 	vk.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 1, &copyBarrier, 0, (const VkImageMemoryBarrier*)DE_NULL);
389 }
390 
391 //! Copy all layers of a mipmap image to a buffer.
commandCopyMipmapImageToBuffer(Context & context,const VkCommandBuffer cmdBuffer,const VkImage image,const VkFormat imageFormat,const VkBuffer buffer,const VkDeviceSize bufferSizeBytes,const Texture & texture)392 void commandCopyMipmapImageToBuffer (Context&				context,
393 									 const VkCommandBuffer	cmdBuffer,
394 									 const VkImage			image,
395 									 const VkFormat			imageFormat,
396 									 const VkBuffer			buffer,
397 									 const VkDeviceSize		bufferSizeBytes,
398 									 const Texture&			texture)
399 {
400 	const DeviceInterface& vk = context.getDeviceInterface();
401 
402 	const VkImageSubresourceRange fullImageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, texture.numMipmapLevels(), 0u, texture.numLayers());
403 	const VkImageMemoryBarrier prepareForTransferBarrier = makeImageMemoryBarrier(
404 		VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT,
405 		VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
406 		image, fullImageSubresourceRange);
407 
408 	std::vector<VkBufferImageCopy> copyRegions;
409 	VkDeviceSize bufferOffset = 0u;
410 	for (deInt32 levelNdx = 0; levelNdx < texture.numMipmapLevels(); levelNdx++)
411 	{
412 		const VkBufferImageCopy copyParams =
413 		{
414 			bufferOffset,																				//	VkDeviceSize				bufferOffset;
415 			0u,																							//	deUint32					bufferRowLength;
416 			0u,																							//	deUint32					bufferImageHeight;
417 			makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, levelNdx, 0u, texture.numLayers()),	//	VkImageSubresourceLayers	imageSubresource;
418 			makeOffset3D(0, 0, 0),																		//	VkOffset3D					imageOffset;
419 			makeExtent3D(texture.layerSize(levelNdx)),													//	VkExtent3D					imageExtent;
420 		};
421 		copyRegions.push_back(copyParams);
422 		bufferOffset += getMipmapLevelImageSizeBytes(texture, imageFormat, levelNdx);
423 	}
424 
425 	const VkBufferMemoryBarrier copyBarrier = makeBufferMemoryBarrier(
426 		VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_HOST_READ_BIT,
427 		buffer, 0ull, bufferSizeBytes);
428 
429 	vk.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &prepareForTransferBarrier);
430 	vk.cmdCopyImageToBuffer(cmdBuffer, image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, buffer, (deUint32) copyRegions.size(), copyRegions.data());
431 	vk.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 1, &copyBarrier, 0, (const VkImageMemoryBarrier*)DE_NULL);
432 }
433 
434 class StoreTest : public TestCase
435 {
436 public:
437 	enum TestFlags
438 	{
439 		FLAG_SINGLE_LAYER_BIND				= 0x1,	//!< Run the shader multiple times, each time binding a different layer.
440 		FLAG_DECLARE_IMAGE_FORMAT_IN_SHADER	= 0x2,	//!< Declare the format of the images in the shader code
441 		FLAG_MINALIGN						= 0x4,	//!< Use bufferview offset that matches the advertised minimum alignment
442 	};
443 
444 							StoreTest			(tcu::TestContext&	testCtx,
445 												 const std::string&	name,
446 												 const std::string&	description,
447 												 const Texture&		texture,
448 												 const VkFormat		format,
449 												 const deUint32		flags = FLAG_DECLARE_IMAGE_FORMAT_IN_SHADER);
450 
451 	virtual void			checkSupport		(Context&			context) const;
452 	void					initPrograms		(SourceCollections&	programCollection) const;
453 	TestInstance*			createInstance		(Context&			context) const;
454 
455 private:
456 	const Texture			m_texture;
457 	const VkFormat			m_format;
458 	const bool				m_declareImageFormatInShader;
459 	const bool				m_singleLayerBind;
460 	const bool				m_minalign;
461 };
462 
StoreTest(tcu::TestContext & testCtx,const std::string & name,const std::string & description,const Texture & texture,const VkFormat format,const deUint32 flags)463 StoreTest::StoreTest (tcu::TestContext&		testCtx,
464 					  const std::string&	name,
465 					  const std::string&	description,
466 					  const Texture&		texture,
467 					  const VkFormat		format,
468 					  const deUint32		flags)
469 	: TestCase						(testCtx, name, description)
470 	, m_texture						(texture)
471 	, m_format						(format)
472 	, m_declareImageFormatInShader	((flags & FLAG_DECLARE_IMAGE_FORMAT_IN_SHADER) != 0)
473 	, m_singleLayerBind				((flags & FLAG_SINGLE_LAYER_BIND) != 0)
474 	, m_minalign					((flags & FLAG_MINALIGN) != 0)
475 {
476 	if (m_singleLayerBind)
477 		DE_ASSERT(m_texture.numLayers() > 1);
478 }
479 
checkSupport(Context & context) const480 void StoreTest::checkSupport (Context& context) const
481 {
482 	const VkFormatProperties formatProperties (getPhysicalDeviceFormatProperties(context.getInstanceInterface(), context.getPhysicalDevice(), m_format));
483 
484 	if (!m_declareImageFormatInShader)
485 		context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SHADER_STORAGE_IMAGE_WRITE_WITHOUT_FORMAT);
486 
487 	if (m_texture.type() == IMAGE_TYPE_CUBE_ARRAY)
488 		context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_IMAGE_CUBE_ARRAY);
489 
490 	if ((m_texture.type() != IMAGE_TYPE_BUFFER) && !(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT))
491 		TCU_THROW(NotSupportedError, "Format not supported for storage images");
492 
493 	if (m_texture.type() == IMAGE_TYPE_BUFFER && !(formatProperties.bufferFeatures & VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT))
494 		TCU_THROW(NotSupportedError, "Format not supported for storage texel buffers");
495 }
496 
initPrograms(SourceCollections & programCollection) const497 void StoreTest::initPrograms (SourceCollections& programCollection) const
498 {
499 	const float storeColorScale = computeStoreColorScale(m_format, m_texture.size());
500 	const float storeColorBias = computeStoreColorBias(m_format);
501 	DE_ASSERT(colorScaleAndBiasAreValid(m_format, storeColorScale, storeColorBias));
502 
503 	const deUint32 xMax = m_texture.size().x() - 1;
504 	const deUint32 yMax = m_texture.size().y() - 1;
505 	const std::string signednessPrefix = isUintFormat(m_format) ? "u" : isIntFormat(m_format) ? "i" : "";
506 	const bool storeNegativeValues = isSignedFormat(m_format) && (storeColorBias == 0);
507 	bool useClamp = false;
508 	std::string colorBaseExpr = signednessPrefix + "vec4("
509 		+ "gx^gy^gz, "
510 		+ "(" + de::toString(xMax) + "-gx)^gy^gz, "
511 		+ "gx^(" + de::toString(yMax) + "-gy)^gz, "
512 		+ "(" + de::toString(xMax) + "-gx)^(" + de::toString(yMax) + "-gy)^gz)";
513 
514 	// Large integer values may not be represented with formats with low bit depths
515 	if (isIntegerFormat(m_format))
516 	{
517 		const deInt64 minStoreValue = storeNegativeValues ? 0 - deRoundFloatToInt64((float)de::max(xMax, yMax) / 2.0f) : 0;
518 		const deInt64 maxStoreValue = storeNegativeValues ? deRoundFloatToInt64((float)de::max(xMax, yMax) / 2.0f) : de::max(xMax, yMax);
519 
520 		useClamp = !isRepresentableIntegerValue(tcu::Vector<deInt64, 4>(minStoreValue), mapVkFormat(m_format)) ||
521 				   !isRepresentableIntegerValue(tcu::Vector<deInt64, 4>(maxStoreValue), mapVkFormat(m_format));
522 	}
523 
524 	// Clamp if integer value cannot be represented with the current format
525 	if (useClamp)
526 	{
527 		const tcu::IVec4 bitDepths = tcu::getTextureFormatBitDepth(mapVkFormat(m_format));
528 		tcu::IVec4 minRepresentableValue;
529 		tcu::IVec4 maxRepresentableValue;
530 
531 		switch (tcu::getTextureChannelClass(mapVkFormat(m_format).type))
532 		{
533 			case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER:
534 			{
535 				minRepresentableValue = tcu::IVec4(0);
536 				maxRepresentableValue = (tcu::IVec4(1) << bitDepths) - tcu::IVec4(1);
537 				break;
538 			}
539 
540 			case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER:
541 			{
542 				minRepresentableValue = -(tcu::IVec4(1) << bitDepths - tcu::IVec4(1));
543 				maxRepresentableValue = (tcu::IVec4(1) << (bitDepths - tcu::IVec4(1))) - tcu::IVec4(1);
544 				break;
545 			}
546 
547 			default:
548 				DE_ASSERT(isIntegerFormat(m_format));
549 		}
550 
551 		colorBaseExpr = "clamp(" + colorBaseExpr + ", "
552 						+ signednessPrefix + "vec4" + de::toString(minRepresentableValue) + ", "
553 						+ signednessPrefix + "vec4" + de::toString(maxRepresentableValue) + ")";
554 	}
555 
556 	std::string colorExpr = colorBaseExpr + (storeColorScale == 1.0f ? "" : "*" + de::toString(storeColorScale))
557 							+ (storeColorBias == 0.0f ? "" : " + float(" + de::toString(storeColorBias) + ")");
558 
559 	if (storeNegativeValues)
560 		colorExpr += "-" + de::toString(deRoundFloatToInt32((float)deMax32(xMax, yMax) / 2.0f));
561 
562 	const int dimension = (m_singleLayerBind ? m_texture.layerDimension() : m_texture.dimension());
563 	const std::string texelCoordStr = (dimension == 1 ? "gx" : dimension == 2 ? "ivec2(gx, gy)" : dimension == 3 ? "ivec3(gx, gy, gz)" : "");
564 
565 	const ImageType usedImageType = (m_singleLayerBind ? getImageTypeForSingleLayer(m_texture.type()) : m_texture.type());
566 	const std::string formatQualifierStr = getShaderImageFormatQualifier(mapVkFormat(m_format));
567 	const std::string imageTypeStr = getShaderImageType(mapVkFormat(m_format), usedImageType);
568 
569 	std::ostringstream src;
570 	src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_440) << "\n"
571 		<< "\n"
572 		<< "layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;\n";
573 	if (m_declareImageFormatInShader)
574 		src << "layout (binding = 0, " << formatQualifierStr << ") writeonly uniform " << imageTypeStr << " u_image;\n";
575 	else
576 		src << "layout (binding = 0) writeonly uniform " << imageTypeStr << " u_image;\n";
577 
578 	if (m_singleLayerBind)
579 		src << "layout (binding = 1) readonly uniform Constants {\n"
580 			<< "    int u_layerNdx;\n"
581 			<< "};\n";
582 
583 	src << "\n"
584 		<< "void main (void)\n"
585 		<< "{\n"
586 		<< "    int gx = int(gl_GlobalInvocationID.x);\n"
587 		<< "    int gy = int(gl_GlobalInvocationID.y);\n"
588 		<< "    int gz = " << (m_singleLayerBind ? "u_layerNdx" : "int(gl_GlobalInvocationID.z)") << ";\n"
589 		<< "    imageStore(u_image, " << texelCoordStr << ", " << colorExpr << ");\n"
590 		<< "}\n";
591 
592 	programCollection.glslSources.add("comp") << glu::ComputeSource(src.str());
593 }
594 
595 //! Generic test iteration algorithm for image tests
596 class BaseTestInstance : public TestInstance
597 {
598 public:
599 									BaseTestInstance						(Context&		context,
600 																			 const Texture&	texture,
601 																			 const VkFormat	format,
602 																			 const bool		declareImageFormatInShader,
603 																			 const bool		singleLayerBind,
604 																			 const bool		minalign,
605 																			 const bool		bufferLoadUniform);
606 
607 	tcu::TestStatus					iterate									(void);
608 
~BaseTestInstance(void)609 	virtual							~BaseTestInstance						(void) {}
610 
611 protected:
612 	virtual VkDescriptorSetLayout	prepareDescriptors						(void) = 0;
613 	virtual tcu::TestStatus			verifyResult							(void) = 0;
614 
615 	virtual void					commandBeforeCompute					(const VkCommandBuffer	cmdBuffer) = 0;
616 	virtual void					commandBetweenShaderInvocations			(const VkCommandBuffer	cmdBuffer) = 0;
617 	virtual void					commandAfterCompute						(const VkCommandBuffer	cmdBuffer) = 0;
618 
619 	virtual void					commandBindDescriptorsForLayer			(const VkCommandBuffer	cmdBuffer,
620 																			 const VkPipelineLayout pipelineLayout,
621 																			 const int				layerNdx) = 0;
622 	virtual deUint32				getViewOffset							(Context&		context,
623 																			 const VkFormat	format,
624 																			 bool			uniform);
625 
626 	const Texture					m_texture;
627 	const VkFormat					m_format;
628 	const bool						m_declareImageFormatInShader;
629 	const bool						m_singleLayerBind;
630 	const bool						m_minalign;
631 	const bool						m_bufferLoadUniform;
632 	const deUint32					m_srcViewOffset;
633 	const deUint32					m_dstViewOffset;
634 };
635 
BaseTestInstance(Context & context,const Texture & texture,const VkFormat format,const bool declareImageFormatInShader,const bool singleLayerBind,const bool minalign,const bool bufferLoadUniform)636 BaseTestInstance::BaseTestInstance (Context& context, const Texture& texture, const VkFormat format, const bool declareImageFormatInShader, const bool singleLayerBind, const bool minalign, const bool bufferLoadUniform)
637 	: TestInstance					(context)
638 	, m_texture						(texture)
639 	, m_format						(format)
640 	, m_declareImageFormatInShader	(declareImageFormatInShader)
641 	, m_singleLayerBind				(singleLayerBind)
642 	, m_minalign					(minalign)
643 	, m_bufferLoadUniform			(bufferLoadUniform)
644 	, m_srcViewOffset				(getViewOffset(context, format, m_bufferLoadUniform))
645 	, m_dstViewOffset				(getViewOffset(context, formatHasThreeComponents(format) ? getSingleComponentFormat(format) : format, false))
646 {
647 }
648 
iterate(void)649 tcu::TestStatus BaseTestInstance::iterate (void)
650 {
651 	const DeviceInterface&			vk					= m_context.getDeviceInterface();
652 	const VkDevice					device				= m_context.getDevice();
653 	const VkQueue					queue				= m_context.getUniversalQueue();
654 	const deUint32					queueFamilyIndex	= m_context.getUniversalQueueFamilyIndex();
655 
656 	const Unique<VkShaderModule> shaderModule(createShaderModule(vk, device, m_context.getBinaryCollection().get("comp"), 0));
657 
658 	const VkDescriptorSetLayout descriptorSetLayout = prepareDescriptors();
659 	const Unique<VkPipelineLayout> pipelineLayout(makePipelineLayout(vk, device, descriptorSetLayout));
660 	const Unique<VkPipeline> pipeline(makeComputePipeline(vk, device, *pipelineLayout, *shaderModule));
661 
662 	const Unique<VkCommandPool> cmdPool(createCommandPool(vk, device, VK_COMMAND_POOL_CREATE_TRANSIENT_BIT, queueFamilyIndex));
663 	const Unique<VkCommandBuffer> cmdBuffer(allocateCommandBuffer(vk, device, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
664 
665 	beginCommandBuffer(vk, *cmdBuffer);
666 
667 	vk.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *pipeline);
668 	commandBeforeCompute(*cmdBuffer);
669 
670 	const tcu::IVec3 workSize = (m_singleLayerBind ? m_texture.layerSize() : m_texture.size());
671 	const int loopNumLayers = (m_singleLayerBind ? m_texture.numLayers() : 1);
672 	for (int layerNdx = 0; layerNdx < loopNumLayers; ++layerNdx)
673 	{
674 		commandBindDescriptorsForLayer(*cmdBuffer, *pipelineLayout, layerNdx);
675 
676 		if (layerNdx > 0)
677 			commandBetweenShaderInvocations(*cmdBuffer);
678 
679 		vk.cmdDispatch(*cmdBuffer, workSize.x(), workSize.y(), workSize.z());
680 	}
681 
682 	commandAfterCompute(*cmdBuffer);
683 
684 	endCommandBuffer(vk, *cmdBuffer);
685 
686 	submitCommandsAndWait(vk, device, queue, *cmdBuffer);
687 
688 	return verifyResult();
689 }
690 
691 //! Base store test implementation
692 class StoreTestInstance : public BaseTestInstance
693 {
694 public:
695 									StoreTestInstance						(Context&		context,
696 																			 const Texture&	texture,
697 																			 const VkFormat	format,
698 																			 const bool		declareImageFormatInShader,
699 																			 const bool		singleLayerBind,
700 																			 const bool		minalign);
701 
702 protected:
703 	virtual tcu::TestStatus			verifyResult							(void);
704 
705 	// Add empty implementations for functions that might be not needed
commandBeforeCompute(const VkCommandBuffer)706 	void							commandBeforeCompute					(const VkCommandBuffer) {}
commandBetweenShaderInvocations(const VkCommandBuffer)707 	void							commandBetweenShaderInvocations			(const VkCommandBuffer) {}
commandAfterCompute(const VkCommandBuffer)708 	void							commandAfterCompute						(const VkCommandBuffer) {}
709 
710 	de::MovePtr<Buffer>				m_imageBuffer;
711 	const VkDeviceSize				m_imageSizeBytes;
712 };
713 
getViewOffset(Context & context,const VkFormat format,bool uniform)714 deUint32 BaseTestInstance::getViewOffset(Context&			context,
715 										 const VkFormat		format,
716 										 bool				uniform)
717 {
718 	if (m_minalign)
719 	{
720 		if (!context.getTexelBufferAlignmentFeaturesEXT().texelBufferAlignment)
721 			return (deUint32)context.getDeviceProperties().limits.minTexelBufferOffsetAlignment;
722 
723 		VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT alignmentProperties;
724 		deMemset(&alignmentProperties, 0, sizeof(alignmentProperties));
725 		alignmentProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT;
726 
727 		VkPhysicalDeviceProperties2 properties2;
728 		deMemset(&properties2, 0, sizeof(properties2));
729 		properties2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
730 		properties2.pNext = &alignmentProperties;
731 
732 		context.getInstanceInterface().getPhysicalDeviceProperties2(context.getPhysicalDevice(), &properties2);
733 
734 		VkBool32 singleTexelAlignment = uniform ? alignmentProperties.uniformTexelBufferOffsetSingleTexelAlignment :
735 												  alignmentProperties.storageTexelBufferOffsetSingleTexelAlignment;
736 		VkDeviceSize align = uniform ? alignmentProperties.uniformTexelBufferOffsetAlignmentBytes :
737 									   alignmentProperties.storageTexelBufferOffsetAlignmentBytes;
738 
739 		VkDeviceSize texelSize = formatHasThreeComponents(format) ? tcu::getChannelSize(vk::mapVkFormat(format).type) : tcu::getPixelSize(vk::mapVkFormat(format));
740 
741 		if (singleTexelAlignment)
742 			align = de::min(align, texelSize);
743 
744 		return (deUint32)align;
745 	}
746 
747 	return 0;
748 }
749 
StoreTestInstance(Context & context,const Texture & texture,const VkFormat format,const bool declareImageFormatInShader,const bool singleLayerBind,const bool minalign)750 StoreTestInstance::StoreTestInstance (Context& context, const Texture& texture, const VkFormat format, const bool declareImageFormatInShader, const bool singleLayerBind, const bool minalign)
751 	: BaseTestInstance		(context, texture, format, declareImageFormatInShader, singleLayerBind, minalign, false)
752 	, m_imageSizeBytes		(getImageSizeBytes(texture.size(), format))
753 {
754 	const DeviceInterface&	vk			= m_context.getDeviceInterface();
755 	const VkDevice			device		= m_context.getDevice();
756 	Allocator&				allocator	= m_context.getDefaultAllocator();
757 
758 	// A helper buffer with enough space to hold the whole image. Usage flags accommodate all derived test instances.
759 
760 	m_imageBuffer = de::MovePtr<Buffer>(new Buffer(
761 		vk, device, allocator,
762 		makeBufferCreateInfo(m_imageSizeBytes + m_dstViewOffset, VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT),
763 		MemoryRequirement::HostVisible));
764 }
765 
verifyResult(void)766 tcu::TestStatus StoreTestInstance::verifyResult	(void)
767 {
768 	const DeviceInterface&	vk		= m_context.getDeviceInterface();
769 	const VkDevice			device	= m_context.getDevice();
770 
771 	const tcu::IVec3 imageSize = m_texture.size();
772 	const tcu::TextureLevel reference = generateReferenceImage(imageSize, m_format);
773 
774 	const Allocation& alloc = m_imageBuffer->getAllocation();
775 	invalidateAlloc(vk, device, alloc);
776 	const tcu::ConstPixelBufferAccess result(mapVkFormat(m_format), imageSize, (const char *)alloc.getHostPtr() + m_dstViewOffset);
777 
778 	if (comparePixelBuffers(m_context.getTestContext().getLog(), m_texture, m_format, reference.getAccess(), result))
779 		return tcu::TestStatus::pass("Passed");
780 	else
781 		return tcu::TestStatus::fail("Image comparison failed");
782 }
783 
784 //! Store test for images
785 class ImageStoreTestInstance : public StoreTestInstance
786 {
787 public:
788 										ImageStoreTestInstance					(Context&				context,
789 																				 const Texture&			texture,
790 																				 const VkFormat			format,
791 																				 const bool				declareImageFormatInShader,
792 																				 const bool				singleLayerBind,
793 																				 const bool				minalign);
794 
795 protected:
796 	VkDescriptorSetLayout				prepareDescriptors						(void);
797 	void								commandBeforeCompute					(const VkCommandBuffer	cmdBuffer);
798 	void								commandBetweenShaderInvocations			(const VkCommandBuffer	cmdBuffer);
799 	void								commandAfterCompute						(const VkCommandBuffer	cmdBuffer);
800 
801 	void								commandBindDescriptorsForLayer			(const VkCommandBuffer	cmdBuffer,
802 																				 const VkPipelineLayout pipelineLayout,
803 																				 const int				layerNdx);
804 
805 	de::MovePtr<Image>					m_image;
806 	de::MovePtr<Buffer>					m_constantsBuffer;
807 	const VkDeviceSize					m_constantsBufferChunkSizeBytes;
808 	Move<VkDescriptorSetLayout>			m_descriptorSetLayout;
809 	Move<VkDescriptorPool>				m_descriptorPool;
810 	std::vector<SharedVkDescriptorSet>	m_allDescriptorSets;
811 	std::vector<SharedVkImageView>		m_allImageViews;
812 };
813 
ImageStoreTestInstance(Context & context,const Texture & texture,const VkFormat format,const bool declareImageFormatInShader,const bool singleLayerBind,const bool minalign)814 ImageStoreTestInstance::ImageStoreTestInstance (Context&		context,
815 												const Texture&	texture,
816 												const VkFormat	format,
817 												const bool		declareImageFormatInShader,
818 												const bool		singleLayerBind,
819 												const bool		minalign)
820 	: StoreTestInstance					(context, texture, format, declareImageFormatInShader, singleLayerBind, minalign)
821 	, m_constantsBufferChunkSizeBytes	(getOptimalUniformBufferChunkSize(context.getInstanceInterface(), context.getPhysicalDevice(), sizeof(deUint32)))
822 	, m_allDescriptorSets				(texture.numLayers())
823 	, m_allImageViews					(texture.numLayers())
824 {
825 	const DeviceInterface&	vk			= m_context.getDeviceInterface();
826 	const VkDevice			device		= m_context.getDevice();
827 	Allocator&				allocator	= m_context.getDefaultAllocator();
828 
829 	m_image = de::MovePtr<Image>(new Image(
830 		vk, device, allocator,
831 		makeImageCreateInfo(m_texture, m_format, VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, 0u),
832 		MemoryRequirement::Any));
833 
834 	// This buffer will be used to pass constants to the shader
835 
836 	const int numLayers = m_texture.numLayers();
837 	const VkDeviceSize constantsBufferSizeBytes = numLayers * m_constantsBufferChunkSizeBytes;
838 	m_constantsBuffer = de::MovePtr<Buffer>(new Buffer(
839 		vk, device, allocator,
840 		makeBufferCreateInfo(constantsBufferSizeBytes, VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT),
841 		MemoryRequirement::HostVisible));
842 
843 	{
844 		const Allocation& alloc = m_constantsBuffer->getAllocation();
845 		deUint8* const basePtr = static_cast<deUint8*>(alloc.getHostPtr());
846 
847 		deMemset(alloc.getHostPtr(), 0, static_cast<size_t>(constantsBufferSizeBytes));
848 
849 		for (int layerNdx = 0; layerNdx < numLayers; ++layerNdx)
850 		{
851 			deUint32* valuePtr = reinterpret_cast<deUint32*>(basePtr + layerNdx * m_constantsBufferChunkSizeBytes);
852 			*valuePtr = static_cast<deUint32>(layerNdx);
853 		}
854 
855 		flushAlloc(vk, device, alloc);
856 	}
857 }
858 
prepareDescriptors(void)859 VkDescriptorSetLayout ImageStoreTestInstance::prepareDescriptors (void)
860 {
861 	const DeviceInterface&	vk		= m_context.getDeviceInterface();
862 	const VkDevice			device	= m_context.getDevice();
863 
864 	const int numLayers = m_texture.numLayers();
865 	m_descriptorSetLayout = DescriptorSetLayoutBuilder()
866 		.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT)
867 		.addSingleBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT)
868 		.build(vk, device);
869 
870 	m_descriptorPool = DescriptorPoolBuilder()
871 		.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, numLayers)
872 		.addType(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, numLayers)
873 		.build(vk, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, numLayers);
874 
875 	if (m_singleLayerBind)
876 	{
877 		for (int layerNdx = 0; layerNdx < numLayers; ++layerNdx)
878 		{
879 			m_allDescriptorSets[layerNdx]	= makeVkSharedPtr(makeDescriptorSet(vk, device, *m_descriptorPool, *m_descriptorSetLayout));
880 			m_allImageViews[layerNdx]		= makeVkSharedPtr(makeImageView(
881 												vk, device, m_image->get(), mapImageViewType(getImageTypeForSingleLayer(m_texture.type())), m_format,
882 												makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, layerNdx, 1u)));
883 		}
884 	}
885 	else // bind all layers at once
886 	{
887 		m_allDescriptorSets[0] = makeVkSharedPtr(makeDescriptorSet(vk, device, *m_descriptorPool, *m_descriptorSetLayout));
888 		m_allImageViews[0] = makeVkSharedPtr(makeImageView(
889 								vk, device, m_image->get(), mapImageViewType(m_texture.type()), m_format,
890 								makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, numLayers)));
891 	}
892 
893 	return *m_descriptorSetLayout;  // not passing the ownership
894 }
895 
commandBindDescriptorsForLayer(const VkCommandBuffer cmdBuffer,const VkPipelineLayout pipelineLayout,const int layerNdx)896 void ImageStoreTestInstance::commandBindDescriptorsForLayer (const VkCommandBuffer cmdBuffer, const VkPipelineLayout pipelineLayout, const int layerNdx)
897 {
898 	const DeviceInterface&	vk		= m_context.getDeviceInterface();
899 	const VkDevice			device	= m_context.getDevice();
900 
901 	const VkDescriptorSet descriptorSet = **m_allDescriptorSets[layerNdx];
902 	const VkImageView imageView = **m_allImageViews[layerNdx];
903 
904 	const VkDescriptorImageInfo descriptorImageInfo = makeDescriptorImageInfo(DE_NULL, imageView, VK_IMAGE_LAYOUT_GENERAL);
905 
906 	// Set the next chunk of the constants buffer. Each chunk begins with layer index that we've set before.
907 	const VkDescriptorBufferInfo descriptorConstantsBufferInfo = makeDescriptorBufferInfo(
908 		m_constantsBuffer->get(), layerNdx*m_constantsBufferChunkSizeBytes, m_constantsBufferChunkSizeBytes);
909 
910 	DescriptorSetUpdateBuilder()
911 		.writeSingle(descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorImageInfo)
912 		.writeSingle(descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, &descriptorConstantsBufferInfo)
913 		.update(vk, device);
914 	vk.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelineLayout, 0u, 1u, &descriptorSet, 0u, DE_NULL);
915 }
916 
commandBeforeCompute(const VkCommandBuffer cmdBuffer)917 void ImageStoreTestInstance::commandBeforeCompute (const VkCommandBuffer cmdBuffer)
918 {
919 	const DeviceInterface& vk = m_context.getDeviceInterface();
920 
921 	const VkImageSubresourceRange fullImageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, m_texture.numLayers());
922 	const VkImageMemoryBarrier setImageLayoutBarrier = makeImageMemoryBarrier(
923 		0u, VK_ACCESS_SHADER_WRITE_BIT,
924 		VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_GENERAL,
925 		m_image->get(), fullImageSubresourceRange);
926 
927 	const VkDeviceSize constantsBufferSize = m_texture.numLayers() * m_constantsBufferChunkSizeBytes;
928 	const VkBufferMemoryBarrier writeConstantsBarrier = makeBufferMemoryBarrier(
929 		VK_ACCESS_HOST_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT,
930 		m_constantsBuffer->get(), 0ull, constantsBufferSize);
931 
932 	vk.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 1, &writeConstantsBarrier, 1, &setImageLayoutBarrier);
933 }
934 
commandBetweenShaderInvocations(const VkCommandBuffer cmdBuffer)935 void ImageStoreTestInstance::commandBetweenShaderInvocations (const VkCommandBuffer cmdBuffer)
936 {
937 	commandImageWriteBarrierBetweenShaderInvocations(m_context, cmdBuffer, m_image->get(), m_texture);
938 }
939 
commandAfterCompute(const VkCommandBuffer cmdBuffer)940 void ImageStoreTestInstance::commandAfterCompute (const VkCommandBuffer cmdBuffer)
941 {
942 	commandCopyImageToBuffer(m_context, cmdBuffer, m_image->get(), m_imageBuffer->get(), m_imageSizeBytes, m_texture);
943 }
944 
945 //! Store test for buffers
946 class BufferStoreTestInstance : public StoreTestInstance
947 {
948 public:
949 									BufferStoreTestInstance					(Context&				context,
950 																			 const Texture&			texture,
951 																			 const VkFormat			format,
952 																			 const bool				declareImageFormatInShader,
953 																			 const bool				minalign);
954 
955 protected:
956 	VkDescriptorSetLayout			prepareDescriptors						(void);
957 	void							commandAfterCompute						(const VkCommandBuffer	cmdBuffer);
958 
959 	void							commandBindDescriptorsForLayer			(const VkCommandBuffer	cmdBuffer,
960 																			 const VkPipelineLayout pipelineLayout,
961 																			 const int				layerNdx);
962 
963 	Move<VkDescriptorSetLayout>		m_descriptorSetLayout;
964 	Move<VkDescriptorPool>			m_descriptorPool;
965 	Move<VkDescriptorSet>			m_descriptorSet;
966 	Move<VkBufferView>				m_bufferView;
967 };
968 
BufferStoreTestInstance(Context & context,const Texture & texture,const VkFormat format,const bool declareImageFormatInShader,const bool minalign)969 BufferStoreTestInstance::BufferStoreTestInstance (Context&			context,
970 												  const Texture&	texture,
971 												  const VkFormat	format,
972 												  const bool		declareImageFormatInShader,
973 												  const bool		minalign)
974 	: StoreTestInstance(context, texture, format, declareImageFormatInShader, false, minalign)
975 {
976 }
977 
prepareDescriptors(void)978 VkDescriptorSetLayout BufferStoreTestInstance::prepareDescriptors (void)
979 {
980 	const DeviceInterface&	vk		= m_context.getDeviceInterface();
981 	const VkDevice			device	= m_context.getDevice();
982 
983 	m_descriptorSetLayout = DescriptorSetLayoutBuilder()
984 		.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT)
985 		.build(vk, device);
986 
987 	m_descriptorPool = DescriptorPoolBuilder()
988 		.addType(VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER)
989 		.build(vk, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u);
990 
991 	m_descriptorSet = makeDescriptorSet(vk, device, *m_descriptorPool, *m_descriptorSetLayout);
992 	m_bufferView = makeBufferView(vk, device, m_imageBuffer->get(), m_format, m_dstViewOffset, m_imageSizeBytes);
993 
994 	return *m_descriptorSetLayout;  // not passing the ownership
995 }
996 
commandBindDescriptorsForLayer(const VkCommandBuffer cmdBuffer,const VkPipelineLayout pipelineLayout,const int layerNdx)997 void BufferStoreTestInstance::commandBindDescriptorsForLayer (const VkCommandBuffer cmdBuffer, const VkPipelineLayout pipelineLayout, const int layerNdx)
998 {
999 	DE_ASSERT(layerNdx == 0);
1000 	DE_UNREF(layerNdx);
1001 
1002 	const VkDevice			device	= m_context.getDevice();
1003 	const DeviceInterface&	vk		= m_context.getDeviceInterface();
1004 
1005 	DescriptorSetUpdateBuilder()
1006 		.writeSingle(*m_descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, &m_bufferView.get())
1007 		.update(vk, device);
1008 	vk.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelineLayout, 0u, 1u, &m_descriptorSet.get(), 0u, DE_NULL);
1009 }
1010 
commandAfterCompute(const VkCommandBuffer cmdBuffer)1011 void BufferStoreTestInstance::commandAfterCompute (const VkCommandBuffer cmdBuffer)
1012 {
1013 	commandBufferWriteBarrierBeforeHostRead(m_context, cmdBuffer, m_imageBuffer->get(), m_imageSizeBytes + m_dstViewOffset);
1014 }
1015 
1016 class LoadStoreTest : public TestCase
1017 {
1018 public:
1019 	enum TestFlags
1020 	{
1021 		FLAG_SINGLE_LAYER_BIND				= 1 << 0,	//!< Run the shader multiple times, each time binding a different layer.
1022 		FLAG_RESTRICT_IMAGES				= 1 << 1,	//!< If given, images in the shader will be qualified with "restrict".
1023 		FLAG_DECLARE_IMAGE_FORMAT_IN_SHADER	= 1 << 2,	//!< Declare the format of the images in the shader code
1024 		FLAG_MINALIGN						= 1 << 3,	//!< Use bufferview offset that matches the advertised minimum alignment
1025 		FLAG_UNIFORM_TEXEL_BUFFER			= 1 << 4,	//!< Load from a uniform texel buffer rather than a storage texel buffer
1026 	};
1027 
1028 							LoadStoreTest			(tcu::TestContext&		testCtx,
1029 													 const std::string&		name,
1030 													 const std::string&		description,
1031 													 const Texture&			texture,
1032 													 const VkFormat			format,
1033 													 const VkFormat			imageFormat,
1034 													 const deUint32			flags = FLAG_DECLARE_IMAGE_FORMAT_IN_SHADER,
1035 													 const deBool			imageLoadStoreLodAMD = DE_FALSE);
1036 
1037 	virtual void			checkSupport			(Context&				context) const;
1038 	void					initPrograms			(SourceCollections&		programCollection) const;
1039 	TestInstance*			createInstance			(Context&				context) const;
1040 
1041 private:
1042 	const Texture			m_texture;
1043 	const VkFormat			m_format;						//!< Format as accessed in the shader
1044 	const VkFormat			m_imageFormat;					//!< Storage format
1045 	const bool				m_declareImageFormatInShader;	//!< Whether the shader will specify the format layout qualifier of the images
1046 	const bool				m_singleLayerBind;
1047 	const bool				m_restrictImages;
1048 	const bool				m_minalign;
1049 	bool					m_bufferLoadUniform;
1050 	const deBool			m_imageLoadStoreLodAMD;
1051 };
1052 
LoadStoreTest(tcu::TestContext & testCtx,const std::string & name,const std::string & description,const Texture & texture,const VkFormat format,const VkFormat imageFormat,const deUint32 flags,const deBool imageLoadStoreLodAMD)1053 LoadStoreTest::LoadStoreTest (tcu::TestContext&		testCtx,
1054 							  const std::string&	name,
1055 							  const std::string&	description,
1056 							  const Texture&		texture,
1057 							  const VkFormat		format,
1058 							  const VkFormat		imageFormat,
1059 							  const deUint32		flags,
1060 							  const deBool			imageLoadStoreLodAMD)
1061 	: TestCase						(testCtx, name, description)
1062 	, m_texture						(texture)
1063 	, m_format						(format)
1064 	, m_imageFormat					(imageFormat)
1065 	, m_declareImageFormatInShader	((flags & FLAG_DECLARE_IMAGE_FORMAT_IN_SHADER) != 0)
1066 	, m_singleLayerBind				((flags & FLAG_SINGLE_LAYER_BIND) != 0)
1067 	, m_restrictImages				((flags & FLAG_RESTRICT_IMAGES) != 0)
1068 	, m_minalign					((flags & FLAG_MINALIGN) != 0)
1069 	, m_bufferLoadUniform			((flags & FLAG_UNIFORM_TEXEL_BUFFER) != 0)
1070 	, m_imageLoadStoreLodAMD		(imageLoadStoreLodAMD)
1071 {
1072 	if (m_singleLayerBind)
1073 		DE_ASSERT(m_texture.numLayers() > 1);
1074 
1075 	DE_ASSERT(formatsAreCompatible(m_format, m_imageFormat));
1076 }
1077 
checkSupport(Context & context) const1078 void LoadStoreTest::checkSupport (Context& context) const
1079 {
1080 	const vk::VkFormatProperties	formatProperties	(vk::getPhysicalDeviceFormatProperties(context.getInstanceInterface(),
1081 																							   context.getPhysicalDevice(),
1082 																							   m_format));
1083 	const vk::VkFormatProperties imageFormatProperties  (vk::getPhysicalDeviceFormatProperties(context.getInstanceInterface(),
1084 																							   context.getPhysicalDevice(),
1085 																							   m_imageFormat));
1086 	if (m_imageLoadStoreLodAMD)
1087 		context.requireDeviceFunctionality("VK_AMD_shader_image_load_store_lod");
1088 
1089 	if (!m_bufferLoadUniform && !m_declareImageFormatInShader)
1090 		context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SHADER_STORAGE_IMAGE_READ_WITHOUT_FORMAT);
1091 
1092 	if (m_texture.type() == IMAGE_TYPE_CUBE_ARRAY)
1093 		context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_IMAGE_CUBE_ARRAY);
1094 
1095 	if ((m_texture.type() != IMAGE_TYPE_BUFFER) && !(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT))
1096 		TCU_THROW(NotSupportedError, "Format not supported for storage images");
1097 
1098 	if (m_texture.type() == IMAGE_TYPE_BUFFER && !(formatProperties.bufferFeatures & VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT))
1099 		TCU_THROW(NotSupportedError, "Format not supported for storage texel buffers");
1100 
1101 	if ((m_texture.type() != IMAGE_TYPE_BUFFER) && !(imageFormatProperties.optimalTilingFeatures))
1102 		TCU_THROW(NotSupportedError, "Underlying format not supported at all for images");
1103 
1104 	if ((m_texture.type() == IMAGE_TYPE_BUFFER) && !(imageFormatProperties.bufferFeatures))
1105 		TCU_THROW(NotSupportedError, "Underlying format not supported at all for buffers");
1106 
1107     if (formatHasThreeComponents(m_format))
1108 	{
1109 		// When the source buffer is three-component, the destination buffer is single-component.
1110 		VkFormat dstFormat = getSingleComponentFormat(m_format);
1111 		const vk::VkFormatProperties	dstFormatProperties	(vk::getPhysicalDeviceFormatProperties(context.getInstanceInterface(),
1112 																								   context.getPhysicalDevice(),
1113 																								   dstFormat));
1114 
1115 		if (m_texture.type() == IMAGE_TYPE_BUFFER && !(dstFormatProperties.bufferFeatures & VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT))
1116 			TCU_THROW(NotSupportedError, "Format not supported for storage texel buffers");
1117 	}
1118 	else
1119 		if (m_texture.type() == IMAGE_TYPE_BUFFER && !(formatProperties.bufferFeatures & VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT))
1120 			TCU_THROW(NotSupportedError, "Format not supported for storage texel buffers");
1121 
1122 	if (m_bufferLoadUniform && m_texture.type() == IMAGE_TYPE_BUFFER && !(formatProperties.bufferFeatures & VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT))
1123 		TCU_THROW(NotSupportedError, "Format not supported for uniform texel buffers");
1124 }
1125 
initPrograms(SourceCollections & programCollection) const1126 void LoadStoreTest::initPrograms (SourceCollections& programCollection) const
1127 {
1128 	const tcu::TextureFormat	texFormat			= mapVkFormat(m_format);
1129 	const int					dimension			= (m_singleLayerBind ? m_texture.layerDimension() : m_texture.dimension());
1130 	const ImageType				usedImageType		= (m_singleLayerBind ? getImageTypeForSingleLayer(m_texture.type()) : m_texture.type());
1131 	const std::string			formatQualifierStr	= getShaderImageFormatQualifier(texFormat);
1132 	const std::string			uniformTypeStr		= getFormatPrefix(texFormat) + "textureBuffer";
1133 	const std::string			imageTypeStr		= getShaderImageType(texFormat, usedImageType);
1134 	const std::string			maybeRestrictStr	= (m_restrictImages ? "restrict " : "");
1135 	const std::string			xMax				= de::toString(m_texture.size().x() - 1);
1136 
1137 	std::ostringstream src;
1138 	src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_450) << "\n"
1139 		<< "\n";
1140 	if (!m_declareImageFormatInShader)
1141 	{
1142 		src << "#extension GL_EXT_shader_image_load_formatted : require\n";
1143 	}
1144 
1145 	if (m_imageLoadStoreLodAMD)
1146 	{
1147 		src << "#extension GL_AMD_shader_image_load_store_lod : require\n";
1148 	}
1149 
1150 	src << "layout (local_size_x = 1, local_size_y = 1, local_size_z = 1) in;\n";
1151 	if (m_bufferLoadUniform)
1152 		src << "layout (binding = 0) uniform " << uniformTypeStr << " u_image0;\n";
1153 	else if (m_declareImageFormatInShader)
1154 		src << "layout (binding = 0, " << formatQualifierStr << ") " << maybeRestrictStr << "readonly uniform " << imageTypeStr << " u_image0;\n";
1155 	else
1156 		src << "layout (binding = 0) " << maybeRestrictStr << "readonly uniform " << imageTypeStr << " u_image0;\n";
1157 
1158 	if (formatHasThreeComponents(m_format))
1159 		src << "layout (binding = 1) " << maybeRestrictStr << "writeonly uniform " << imageTypeStr << " u_image1;\n";
1160 	else
1161 		src << "layout (binding = 1, " << formatQualifierStr << ") " << maybeRestrictStr << "writeonly uniform " << imageTypeStr << " u_image1;\n";
1162 
1163 	src << "\n"
1164 		<< "void main (void)\n"
1165 		<< "{\n";
1166 	switch (dimension)
1167 	{
1168 	default: DE_ASSERT(0); // fallthrough
1169 	case 1:
1170 		if (m_bufferLoadUniform)
1171 		{
1172 			// for three-component formats, the dst buffer is single-component and the shader
1173 			// expands the store into 3 component-wise stores.
1174 			std::string type = getFormatPrefix(texFormat) + "vec4";
1175 			src << "    int pos = int(gl_GlobalInvocationID.x);\n"
1176 				   "    " << type << " t = texelFetch(u_image0, " + xMax + "-pos);\n";
1177 			if (formatHasThreeComponents(m_format))
1178 			{
1179 				src << "    imageStore(u_image1, 3*pos+0, " << type << "(t.x));\n";
1180 				src << "    imageStore(u_image1, 3*pos+1, " << type << "(t.y));\n";
1181 				src << "    imageStore(u_image1, 3*pos+2, " << type << "(t.z));\n";
1182 			}
1183 			else
1184 				src << "    imageStore(u_image1, pos, t);\n";
1185 		}
1186 		else if (m_imageLoadStoreLodAMD)
1187 		{
1188 			src <<
1189 				"    int pos = int(gl_GlobalInvocationID.x);\n";
1190 
1191 			for (deInt32 levelNdx = 0; levelNdx < m_texture.numMipmapLevels(); levelNdx++)
1192 			{
1193 				std::string xMaxSize = de::toString(deMax32(((m_texture.layerSize().x() >> levelNdx) - 1), 1u));
1194 				src << "    imageStoreLodAMD(u_image1, pos, " + de::toString(levelNdx) + ", imageLoadLodAMD(u_image0, " + xMaxSize + "-pos, " + de::toString(levelNdx) + "));\n";
1195 			}
1196 		}
1197 		else
1198 		{
1199 			src <<
1200 				"    int pos = int(gl_GlobalInvocationID.x);\n"
1201 				"    imageStore(u_image1, pos, imageLoad(u_image0, " + xMax + "-pos));\n";
1202 		}
1203 		break;
1204 	case 2:
1205 		if (m_imageLoadStoreLodAMD)
1206 		{
1207 			src << "    ivec2 pos = ivec2(gl_GlobalInvocationID.xy);\n";
1208 
1209 			for (deInt32 levelNdx = 0; levelNdx < m_texture.numMipmapLevels(); levelNdx++)
1210 			{
1211 				std::string xMaxSize = de::toString(deMax32(((m_texture.layerSize().x() >> levelNdx) - 1), 1u));
1212 				src << "    imageStoreLodAMD(u_image1, pos, " + de::toString(levelNdx) + ", imageLoadLodAMD(u_image0, ivec2(" + xMaxSize + "-pos.x, pos.y), " + de::toString(levelNdx) + "));\n";
1213 			}
1214 
1215 		}
1216 		else
1217 		{
1218 			src <<
1219 				"    ivec2 pos = ivec2(gl_GlobalInvocationID.xy);\n"
1220 				"    imageStore(u_image1, pos, imageLoad(u_image0, ivec2(" + xMax + "-pos.x, pos.y)));\n";
1221 		}
1222 		break;
1223 	case 3:
1224 		if (m_imageLoadStoreLodAMD)
1225 		{
1226 			src << "    ivec3 pos = ivec3(gl_GlobalInvocationID);\n";
1227 
1228 			for (deInt32 levelNdx = 0; levelNdx < m_texture.numMipmapLevels(); levelNdx++)
1229 			{
1230 				std::string xMaxSize = de::toString(deMax32(((m_texture.layerSize().x() >> levelNdx) - 1), 1u));
1231 				src << "    imageStoreLodAMD(u_image1, pos, " + de::toString(levelNdx) + ", imageLoadLodAMD(u_image0, ivec3(" + xMaxSize + "-pos.x, pos.y, pos.z), " + de::toString(levelNdx) + "));\n";
1232 			}
1233 		}
1234 		else
1235 		{
1236 			src <<
1237 				"    ivec3 pos = ivec3(gl_GlobalInvocationID);\n"
1238 				"    imageStore(u_image1, pos, imageLoad(u_image0, ivec3(" + xMax + "-pos.x, pos.y, pos.z)));\n";
1239 		}
1240 		break;
1241 	}
1242 	src << "}\n";
1243 
1244 	programCollection.glslSources.add("comp") << glu::ComputeSource(src.str());
1245 }
1246 
1247 //! Load/store test base implementation
1248 class LoadStoreTestInstance : public BaseTestInstance
1249 {
1250 public:
1251 									LoadStoreTestInstance				(Context&			context,
1252 																		 const Texture&		texture,
1253 																		 const VkFormat		format,
1254 																		 const VkFormat		imageFormat,
1255 																		 const bool			declareImageFormatInShader,
1256 																		 const bool			singleLayerBind,
1257 																		 const bool			minalign,
1258 																		 const bool			bufferLoadUniform);
1259 
1260 protected:
1261 	virtual Buffer*					getResultBuffer						(void) const = 0;	//!< Get the buffer that contains the result image
1262 
1263 	tcu::TestStatus					verifyResult						(void);
1264 
1265 	// Add empty implementations for functions that might be not needed
commandBeforeCompute(const VkCommandBuffer)1266 	void							commandBeforeCompute				(const VkCommandBuffer) {}
commandBetweenShaderInvocations(const VkCommandBuffer)1267 	void							commandBetweenShaderInvocations		(const VkCommandBuffer) {}
commandAfterCompute(const VkCommandBuffer)1268 	void							commandAfterCompute					(const VkCommandBuffer) {}
1269 
1270 	de::MovePtr<Buffer>				m_imageBuffer;		//!< Source data and helper buffer
1271 	const VkDeviceSize				m_imageSizeBytes;
1272 	const VkFormat					m_imageFormat;		//!< Image format (for storage, may be different than texture format)
1273 	tcu::TextureLevel				m_referenceImage;	//!< Used as input data and later to verify result image
1274 
1275 	bool							m_bufferLoadUniform;
1276 	VkDescriptorType				m_bufferLoadDescriptorType;
1277 	VkBufferUsageFlagBits			m_bufferLoadUsageBit;
1278 };
1279 
LoadStoreTestInstance(Context & context,const Texture & texture,const VkFormat format,const VkFormat imageFormat,const bool declareImageFormatInShader,const bool singleLayerBind,const bool minalign,const bool bufferLoadUniform)1280 LoadStoreTestInstance::LoadStoreTestInstance (Context&			context,
1281 											  const Texture&	texture,
1282 											  const VkFormat	format,
1283 											  const VkFormat	imageFormat,
1284 											  const bool		declareImageFormatInShader,
1285 											  const bool		singleLayerBind,
1286 											  const bool		minalign,
1287 											  const bool		bufferLoadUniform)
1288 	: BaseTestInstance		(context, texture, format, declareImageFormatInShader, singleLayerBind, minalign, bufferLoadUniform)
1289 	, m_imageSizeBytes		(getImageSizeBytes(texture.size(), format))
1290 	, m_imageFormat			(imageFormat)
1291 	, m_referenceImage		(generateReferenceImage(texture.size(), imageFormat, format))
1292 	, m_bufferLoadUniform	(bufferLoadUniform)
1293 {
1294 	const DeviceInterface&	vk			= m_context.getDeviceInterface();
1295 	const VkDevice			device		= m_context.getDevice();
1296 	Allocator&				allocator	= m_context.getDefaultAllocator();
1297 
1298 	m_bufferLoadDescriptorType = m_bufferLoadUniform ? VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER : VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER;
1299 	m_bufferLoadUsageBit = m_bufferLoadUniform ? VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT : VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT;
1300 
1301 	// A helper buffer with enough space to hold the whole image.
1302 
1303 	m_imageBuffer = de::MovePtr<Buffer>(new Buffer(
1304 		vk, device, allocator,
1305 		makeBufferCreateInfo(m_imageSizeBytes + m_srcViewOffset, m_bufferLoadUsageBit | VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT),
1306 		MemoryRequirement::HostVisible));
1307 
1308 	// Copy reference data to buffer for subsequent upload to image.
1309 
1310 	const Allocation& alloc = m_imageBuffer->getAllocation();
1311 	deMemcpy((char *)alloc.getHostPtr() + m_srcViewOffset, m_referenceImage.getAccess().getDataPtr(), static_cast<size_t>(m_imageSizeBytes));
1312 	flushAlloc(vk, device, alloc);
1313 }
1314 
verifyResult(void)1315 tcu::TestStatus LoadStoreTestInstance::verifyResult	(void)
1316 {
1317 	const DeviceInterface&	vk		= m_context.getDeviceInterface();
1318 	const VkDevice			device	= m_context.getDevice();
1319 
1320 	// Apply the same transformation as done in the shader
1321 	const tcu::PixelBufferAccess reference = m_referenceImage.getAccess();
1322 	flipHorizontally(reference);
1323 
1324 	const Allocation& alloc = getResultBuffer()->getAllocation();
1325 	invalidateAlloc(vk, device, alloc);
1326 	const tcu::ConstPixelBufferAccess result(mapVkFormat(m_imageFormat), m_texture.size(), (const char *)alloc.getHostPtr() + m_dstViewOffset);
1327 
1328 	if (comparePixelBuffers(m_context.getTestContext().getLog(), m_texture, m_imageFormat, reference, result))
1329 		return tcu::TestStatus::pass("Passed");
1330 	else
1331 		return tcu::TestStatus::fail("Image comparison failed");
1332 }
1333 
1334 //! Load/store test for images
1335 class ImageLoadStoreTestInstance : public LoadStoreTestInstance
1336 {
1337 public:
1338 										ImageLoadStoreTestInstance			(Context&				context,
1339 																			 const Texture&			texture,
1340 																			 const VkFormat			format,
1341 																			 const VkFormat			imageFormat,
1342 																			 const bool				declareImageFormatInShader,
1343 																			 const bool				singleLayerBind,
1344 																			 const bool				minalign,
1345 																			 const bool				bufferLoadUniform);
1346 
1347 protected:
1348 	VkDescriptorSetLayout				prepareDescriptors					(void);
1349 	void								commandBeforeCompute				(const VkCommandBuffer	cmdBuffer);
1350 	void								commandBetweenShaderInvocations		(const VkCommandBuffer	cmdBuffer);
1351 	void								commandAfterCompute					(const VkCommandBuffer	cmdBuffer);
1352 
1353 	void								commandBindDescriptorsForLayer		(const VkCommandBuffer	cmdBuffer,
1354 																			 const VkPipelineLayout pipelineLayout,
1355 																			 const int				layerNdx);
1356 
getResultBuffer(void) const1357 	Buffer*								getResultBuffer						(void) const { return m_imageBuffer.get(); }
1358 
1359 	de::MovePtr<Image>					m_imageSrc;
1360 	de::MovePtr<Image>					m_imageDst;
1361 	Move<VkDescriptorSetLayout>			m_descriptorSetLayout;
1362 	Move<VkDescriptorPool>				m_descriptorPool;
1363 	std::vector<SharedVkDescriptorSet>	m_allDescriptorSets;
1364 	std::vector<SharedVkImageView>		m_allSrcImageViews;
1365 	std::vector<SharedVkImageView>		m_allDstImageViews;
1366 };
1367 
ImageLoadStoreTestInstance(Context & context,const Texture & texture,const VkFormat format,const VkFormat imageFormat,const bool declareImageFormatInShader,const bool singleLayerBind,const bool minalign,const bool bufferLoadUniform)1368 ImageLoadStoreTestInstance::ImageLoadStoreTestInstance (Context&		context,
1369 														const Texture&	texture,
1370 														const VkFormat	format,
1371 														const VkFormat	imageFormat,
1372 														const bool		declareImageFormatInShader,
1373 														const bool		singleLayerBind,
1374 														const bool		minalign,
1375 														const bool		bufferLoadUniform)
1376 	: LoadStoreTestInstance	(context, texture, format, imageFormat, declareImageFormatInShader, singleLayerBind, minalign, bufferLoadUniform)
1377 	, m_allDescriptorSets	(texture.numLayers())
1378 	, m_allSrcImageViews	(texture.numLayers())
1379 	, m_allDstImageViews	(texture.numLayers())
1380 {
1381 	const DeviceInterface&		vk					= m_context.getDeviceInterface();
1382 	const VkDevice				device				= m_context.getDevice();
1383 	Allocator&					allocator			= m_context.getDefaultAllocator();
1384 	const VkImageCreateFlags	imageFlags			= (m_format == m_imageFormat ? 0u : (VkImageCreateFlags)VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT);
1385 
1386 	m_imageSrc = de::MovePtr<Image>(new Image(
1387 		vk, device, allocator,
1388 		makeImageCreateInfo(m_texture, m_imageFormat, VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, imageFlags),
1389 		MemoryRequirement::Any));
1390 
1391 	m_imageDst = de::MovePtr<Image>(new Image(
1392 		vk, device, allocator,
1393 		makeImageCreateInfo(m_texture, m_imageFormat, VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, imageFlags),
1394 		MemoryRequirement::Any));
1395 }
1396 
prepareDescriptors(void)1397 VkDescriptorSetLayout ImageLoadStoreTestInstance::prepareDescriptors (void)
1398 {
1399 	const VkDevice			device	= m_context.getDevice();
1400 	const DeviceInterface&	vk		= m_context.getDeviceInterface();
1401 
1402 	const int numLayers = m_texture.numLayers();
1403 	m_descriptorSetLayout = DescriptorSetLayoutBuilder()
1404 		.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT)
1405 		.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT)
1406 		.build(vk, device);
1407 
1408 	m_descriptorPool = DescriptorPoolBuilder()
1409 		.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, numLayers)
1410 		.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, numLayers)
1411 		.build(vk, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, numLayers);
1412 
1413 	if (m_singleLayerBind)
1414 	{
1415 		for (int layerNdx = 0; layerNdx < numLayers; ++layerNdx)
1416 		{
1417 			const VkImageViewType viewType = mapImageViewType(getImageTypeForSingleLayer(m_texture.type()));
1418 			const VkImageSubresourceRange subresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, layerNdx, 1u);
1419 
1420 			m_allDescriptorSets[layerNdx] = makeVkSharedPtr(makeDescriptorSet(vk, device, *m_descriptorPool, *m_descriptorSetLayout));
1421 			m_allSrcImageViews[layerNdx]  = makeVkSharedPtr(makeImageView(vk, device, m_imageSrc->get(), viewType, m_format, subresourceRange));
1422 			m_allDstImageViews[layerNdx]  = makeVkSharedPtr(makeImageView(vk, device, m_imageDst->get(), viewType, m_format, subresourceRange));
1423 		}
1424 	}
1425 	else // bind all layers at once
1426 	{
1427 		const VkImageViewType viewType = mapImageViewType(m_texture.type());
1428 		const VkImageSubresourceRange subresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, numLayers);
1429 
1430 		m_allDescriptorSets[0] = makeVkSharedPtr(makeDescriptorSet(vk, device, *m_descriptorPool, *m_descriptorSetLayout));
1431 		m_allSrcImageViews[0]  = makeVkSharedPtr(makeImageView(vk, device, m_imageSrc->get(), viewType, m_format, subresourceRange));
1432 		m_allDstImageViews[0]  = makeVkSharedPtr(makeImageView(vk, device, m_imageDst->get(), viewType, m_format, subresourceRange));
1433 	}
1434 
1435 	return *m_descriptorSetLayout;  // not passing the ownership
1436 }
1437 
commandBindDescriptorsForLayer(const VkCommandBuffer cmdBuffer,const VkPipelineLayout pipelineLayout,const int layerNdx)1438 void ImageLoadStoreTestInstance::commandBindDescriptorsForLayer (const VkCommandBuffer cmdBuffer, const VkPipelineLayout pipelineLayout, const int layerNdx)
1439 {
1440 	const VkDevice			device	= m_context.getDevice();
1441 	const DeviceInterface&	vk		= m_context.getDeviceInterface();
1442 
1443 	const VkDescriptorSet descriptorSet = **m_allDescriptorSets[layerNdx];
1444 	const VkImageView	  srcImageView	= **m_allSrcImageViews[layerNdx];
1445 	const VkImageView	  dstImageView	= **m_allDstImageViews[layerNdx];
1446 
1447 	const VkDescriptorImageInfo descriptorSrcImageInfo = makeDescriptorImageInfo(DE_NULL, srcImageView, VK_IMAGE_LAYOUT_GENERAL);
1448 	const VkDescriptorImageInfo descriptorDstImageInfo = makeDescriptorImageInfo(DE_NULL, dstImageView, VK_IMAGE_LAYOUT_GENERAL);
1449 
1450 	DescriptorSetUpdateBuilder()
1451 		.writeSingle(descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorSrcImageInfo)
1452 		.writeSingle(descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorDstImageInfo)
1453 		.update(vk, device);
1454 	vk.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelineLayout, 0u, 1u, &descriptorSet, 0u, DE_NULL);
1455 }
1456 
commandBeforeCompute(const VkCommandBuffer cmdBuffer)1457 void ImageLoadStoreTestInstance::commandBeforeCompute (const VkCommandBuffer cmdBuffer)
1458 {
1459 	const DeviceInterface& vk = m_context.getDeviceInterface();
1460 
1461 	const VkImageSubresourceRange fullImageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, m_texture.numLayers());
1462 	{
1463 		const VkImageMemoryBarrier preCopyImageBarriers[] =
1464 		{
1465 			makeImageMemoryBarrier(
1466 				0u, VK_ACCESS_TRANSFER_WRITE_BIT,
1467 				VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1468 				m_imageSrc->get(), fullImageSubresourceRange),
1469 			makeImageMemoryBarrier(
1470 				0u, VK_ACCESS_SHADER_WRITE_BIT,
1471 				VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_GENERAL,
1472 				m_imageDst->get(), fullImageSubresourceRange)
1473 		};
1474 
1475 		const VkBufferMemoryBarrier barrierFlushHostWriteBeforeCopy = makeBufferMemoryBarrier(
1476 			VK_ACCESS_HOST_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT,
1477 			m_imageBuffer->get(), 0ull, m_imageSizeBytes + m_srcViewOffset);
1478 
1479 		vk.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | VK_PIPELINE_STAGE_TRANSFER_BIT,
1480 			(VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 1, &barrierFlushHostWriteBeforeCopy, DE_LENGTH_OF_ARRAY(preCopyImageBarriers), preCopyImageBarriers);
1481 	}
1482 	{
1483 		const VkImageMemoryBarrier barrierAfterCopy = makeImageMemoryBarrier(
1484 			VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT,
1485 			VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL,
1486 			m_imageSrc->get(), fullImageSubresourceRange);
1487 
1488 		const VkBufferImageCopy copyRegion = makeBufferImageCopy(m_texture);
1489 
1490 		vk.cmdCopyBufferToImage(cmdBuffer, m_imageBuffer->get(), m_imageSrc->get(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1u, &copyRegion);
1491 		vk.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &barrierAfterCopy);
1492 	}
1493 }
1494 
commandBetweenShaderInvocations(const VkCommandBuffer cmdBuffer)1495 void ImageLoadStoreTestInstance::commandBetweenShaderInvocations (const VkCommandBuffer cmdBuffer)
1496 {
1497 	commandImageWriteBarrierBetweenShaderInvocations(m_context, cmdBuffer, m_imageDst->get(), m_texture);
1498 }
1499 
commandAfterCompute(const VkCommandBuffer cmdBuffer)1500 void ImageLoadStoreTestInstance::commandAfterCompute (const VkCommandBuffer cmdBuffer)
1501 {
1502 	commandCopyImageToBuffer(m_context, cmdBuffer, m_imageDst->get(), m_imageBuffer->get(), m_imageSizeBytes, m_texture);
1503 }
1504 
1505 //! Load/store Lod AMD test for images
1506 class ImageLoadStoreLodAMDTestInstance : public BaseTestInstance
1507 {
1508 public:
1509 										ImageLoadStoreLodAMDTestInstance	(Context&				context,
1510 																			 const Texture&			texture,
1511 																			 const VkFormat			format,
1512 																			 const VkFormat			imageFormat,
1513 																			 const bool				declareImageFormatInShader,
1514 																			 const bool				singleLayerBind,
1515 																			 const bool				minalign,
1516 																			 const bool				bufferLoadUniform);
1517 
1518 protected:
1519 	VkDescriptorSetLayout				prepareDescriptors					(void);
1520 	void								commandBeforeCompute				(const VkCommandBuffer	cmdBuffer);
1521 	void								commandBetweenShaderInvocations		(const VkCommandBuffer	cmdBuffer);
1522 	void								commandAfterCompute					(const VkCommandBuffer	cmdBuffer);
1523 
1524 	void								commandBindDescriptorsForLayer		(const VkCommandBuffer	cmdBuffer,
1525 																			 const VkPipelineLayout pipelineLayout,
1526 																			 const int				layerNdx);
1527 
getResultBuffer(void) const1528 	Buffer*								getResultBuffer						(void) const { return m_imageBuffer.get(); }
1529 	tcu::TestStatus						verifyResult						(void);
1530 
1531 	de::MovePtr<Buffer>					m_imageBuffer;		//!< Source data and helper buffer
1532 	const VkDeviceSize					m_imageSizeBytes;
1533 	const VkFormat						m_imageFormat;		//!< Image format (for storage, may be different than texture format)
1534 	std::vector<tcu::TextureLevel>		m_referenceImages;	//!< Used as input data and later to verify result image
1535 
1536 	bool								m_bufferLoadUniform;
1537 	VkDescriptorType					m_bufferLoadDescriptorType;
1538 	VkBufferUsageFlagBits				m_bufferLoadUsageBit;
1539 
1540 	de::MovePtr<Image>					m_imageSrc;
1541 	de::MovePtr<Image>					m_imageDst;
1542 	Move<VkDescriptorSetLayout>			m_descriptorSetLayout;
1543 	Move<VkDescriptorPool>				m_descriptorPool;
1544 	std::vector<SharedVkDescriptorSet>  m_allDescriptorSets;
1545 	std::vector<SharedVkImageView>      m_allSrcImageViews;
1546 	std::vector<SharedVkImageView>      m_allDstImageViews;
1547 
1548 };
1549 
ImageLoadStoreLodAMDTestInstance(Context & context,const Texture & texture,const VkFormat format,const VkFormat imageFormat,const bool declareImageFormatInShader,const bool singleLayerBind,const bool minalign,const bool bufferLoadUniform)1550 ImageLoadStoreLodAMDTestInstance::ImageLoadStoreLodAMDTestInstance (Context&		context,
1551 																	const Texture&	texture,
1552 																	const VkFormat	format,
1553 																	const VkFormat	imageFormat,
1554 																	const bool		declareImageFormatInShader,
1555 																	const bool		singleLayerBind,
1556 																	const bool		minalign,
1557 																	const bool		bufferLoadUniform)
1558 	: BaseTestInstance			(context, texture, format, declareImageFormatInShader, singleLayerBind, minalign, bufferLoadUniform)
1559 	, m_imageSizeBytes			(getMipmapImageTotalSizeBytes(texture, format))
1560 	, m_imageFormat				(imageFormat)
1561 	, m_bufferLoadUniform		(bufferLoadUniform)
1562 	, m_allDescriptorSets       (texture.numLayers())
1563 	, m_allSrcImageViews        (texture.numLayers())
1564 	, m_allDstImageViews        (texture.numLayers())
1565 {
1566 	const DeviceInterface&		vk					= m_context.getDeviceInterface();
1567 	const VkDevice				device				= m_context.getDevice();
1568 	Allocator&					allocator			= m_context.getDefaultAllocator();
1569 	const VkImageCreateFlags	imageFlags			= (m_format == m_imageFormat ? 0u : (VkImageCreateFlags)VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT);
1570 
1571 	const VkSampleCountFlagBits samples = static_cast<VkSampleCountFlagBits>(m_texture.numSamples());	// integer and bit mask are aligned, so we can cast like this
1572 
1573 	for (deInt32 levelNdx = 0; levelNdx < m_texture.numMipmapLevels(); levelNdx++)
1574 	{
1575 		tcu::TextureLevel referenceImage = generateReferenceImage(texture.size(levelNdx), imageFormat, format);
1576 		m_referenceImages.push_back(referenceImage);
1577 	}
1578 
1579 	m_bufferLoadDescriptorType = m_bufferLoadUniform ? VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER : VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER;
1580 	m_bufferLoadUsageBit = m_bufferLoadUniform ? VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT : VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT;
1581 
1582 	// A helper buffer with enough space to hold the whole image.
1583 	m_imageBuffer = de::MovePtr<Buffer>(new Buffer(
1584 												   vk, device, allocator,
1585 												   makeBufferCreateInfo(m_imageSizeBytes + m_srcViewOffset, m_bufferLoadUsageBit | VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT),
1586 												   MemoryRequirement::HostVisible));
1587 
1588 	// Copy reference data to buffer for subsequent upload to image.
1589 	{
1590 		const Allocation& alloc = m_imageBuffer->getAllocation();
1591 		VkDeviceSize bufferOffset = 0u;
1592 		for (deInt32 levelNdx = 0; levelNdx < m_texture.numMipmapLevels(); levelNdx++)
1593 		{
1594 			deMemcpy((char *)alloc.getHostPtr() + m_srcViewOffset + bufferOffset, m_referenceImages[levelNdx].getAccess().getDataPtr(), static_cast<size_t>(getMipmapLevelImageSizeBytes(m_texture, m_imageFormat, levelNdx)));
1595 			bufferOffset += getMipmapLevelImageSizeBytes(m_texture, m_imageFormat, levelNdx);
1596 		}
1597 		flushAlloc(vk, device, alloc);
1598 	}
1599 
1600 	{
1601 		const VkImageCreateInfo imageParamsSrc =
1602 		{
1603 			VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,																// VkStructureType			sType;
1604 			DE_NULL,																							// const void*				pNext;
1605 			(isCube(m_texture) ? (VkImageCreateFlags)VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT : 0u) | imageFlags,	// VkImageCreateFlags		flags;
1606 			mapImageType(m_texture.type()),																		// VkImageType				imageType;
1607 			m_imageFormat,																						// VkFormat					format;
1608 			makeExtent3D(m_texture.layerSize()),																// VkExtent3D				extent;
1609 			(deUint32)m_texture.numMipmapLevels(),																// deUint32					mipLevels;
1610 			(deUint32)m_texture.numLayers(),																	// deUint32					arrayLayers;
1611 			samples,																							// VkSampleCountFlagBits	samples;
1612 			VK_IMAGE_TILING_OPTIMAL,																			// VkImageTiling			tiling;
1613 			VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,										// VkImageUsageFlags		usage;
1614 			VK_SHARING_MODE_EXCLUSIVE,																			// VkSharingMode			sharingMode;
1615 			0u,																									// deUint32					queueFamilyIndexCount;
1616 			DE_NULL,																							// const deUint32*			pQueueFamilyIndices;
1617 			VK_IMAGE_LAYOUT_UNDEFINED,																			// VkImageLayout			initialLayout;
1618 		};
1619 
1620 		m_imageSrc = de::MovePtr<Image>(new Image(
1621 												  vk, device, allocator,
1622 												  imageParamsSrc,
1623 												  MemoryRequirement::Any));
1624 	}
1625 
1626 	{
1627 		const VkImageCreateInfo imageParamsDst =
1628 		{
1629 			VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,																// VkStructureType			sType;
1630 			DE_NULL,																							// const void*				pNext;
1631 			(isCube(m_texture) ? (VkImageCreateFlags)VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT : 0u) | imageFlags,	// VkImageCreateFlags		flags;
1632 			mapImageType(m_texture.type()),																		// VkImageType				imageType;
1633 			m_imageFormat,																						// VkFormat					format;
1634 			makeExtent3D(m_texture.layerSize()),																// VkExtent3D				extent;
1635 			(deUint32)m_texture.numMipmapLevels(),																// deUint32					mipLevels;
1636 			(deUint32)m_texture.numLayers(),																	// deUint32					arrayLayers;
1637 			samples,																							// VkSampleCountFlagBits	samples;
1638 			VK_IMAGE_TILING_OPTIMAL,																			// VkImageTiling			tiling;
1639 		    VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT,										// VkImageUsageFlags		usage;
1640 			VK_SHARING_MODE_EXCLUSIVE,																			// VkSharingMode			sharingMode;
1641 			0u,																									// deUint32					queueFamilyIndexCount;
1642 			DE_NULL,																							// const deUint32*			pQueueFamilyIndices;
1643 			VK_IMAGE_LAYOUT_UNDEFINED,																			// VkImageLayout			initialLayout;
1644 		};
1645 
1646 		m_imageDst = de::MovePtr<Image>(new Image(
1647 												  vk, device, allocator,
1648 												  imageParamsDst,
1649 												  MemoryRequirement::Any));
1650 	}
1651 }
1652 
verifyResult(void)1653 tcu::TestStatus ImageLoadStoreLodAMDTestInstance::verifyResult	(void)
1654 {
1655 	const DeviceInterface&	vk		= m_context.getDeviceInterface();
1656 	const VkDevice			device	= m_context.getDevice();
1657 
1658 	const Allocation& alloc = getResultBuffer()->getAllocation();
1659 	invalidateAlloc(vk, device, alloc);
1660 
1661     VkDeviceSize bufferOffset = 0;
1662 	for (deInt32 levelNdx = 0; levelNdx < m_texture.numMipmapLevels(); levelNdx++)
1663 	{
1664 		// Apply the same transformation as done in the shader
1665 		const tcu::PixelBufferAccess reference = m_referenceImages[levelNdx].getAccess();
1666 		flipHorizontally(reference);
1667 
1668 		const tcu::ConstPixelBufferAccess result(mapVkFormat(m_imageFormat), m_texture.size(levelNdx), (const char *)alloc.getHostPtr() + m_dstViewOffset + bufferOffset);
1669 
1670 		if (!comparePixelBuffers(m_context.getTestContext().getLog(), m_texture, m_imageFormat, reference, result, levelNdx))
1671 		{
1672 			std::ostringstream errorMessage;
1673 			errorMessage << "Image Level " << levelNdx << " comparison failed";
1674 			return tcu::TestStatus::fail(errorMessage.str());
1675 		}
1676 		bufferOffset += getMipmapLevelImageSizeBytes(m_texture, m_imageFormat, levelNdx);
1677 	}
1678 
1679 	return tcu::TestStatus::pass("Passed");
1680 }
1681 
prepareDescriptors(void)1682 VkDescriptorSetLayout ImageLoadStoreLodAMDTestInstance::prepareDescriptors (void)
1683 {
1684 	const VkDevice			device	= m_context.getDevice();
1685 	const DeviceInterface&	vk		= m_context.getDeviceInterface();
1686 
1687 	const int numLayers = m_texture.numLayers();
1688 	m_descriptorSetLayout = DescriptorSetLayoutBuilder()
1689 		.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT)
1690 		.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT)
1691 		.build(vk, device);
1692 
1693 	m_descriptorPool = DescriptorPoolBuilder()
1694 		.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, numLayers)
1695 		.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, numLayers)
1696 		.build(vk, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, numLayers);
1697 
1698 	if (m_singleLayerBind)
1699 	{
1700 		for (int layerNdx = 0; layerNdx < numLayers; ++layerNdx)
1701 		{
1702 			const VkImageViewType viewType = mapImageViewType(getImageTypeForSingleLayer(m_texture.type()));
1703 			const VkImageSubresourceRange subresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, m_texture.numMipmapLevels(), layerNdx, 1u);
1704 
1705 			m_allDescriptorSets[layerNdx] = makeVkSharedPtr(makeDescriptorSet(vk, device, *m_descriptorPool, *m_descriptorSetLayout));
1706 			m_allSrcImageViews[layerNdx]  = makeVkSharedPtr(makeImageView(vk, device, m_imageSrc->get(), viewType, m_format, subresourceRange));
1707 			m_allDstImageViews[layerNdx]  = makeVkSharedPtr(makeImageView(vk, device, m_imageDst->get(), viewType, m_format, subresourceRange));
1708 		}
1709 	}
1710 	else // bind all layers at once
1711 	{
1712 		const VkImageViewType viewType = mapImageViewType(m_texture.type());
1713 		const VkImageSubresourceRange subresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, m_texture.numMipmapLevels(), 0u, numLayers);
1714 
1715 		m_allDescriptorSets[0] = makeVkSharedPtr(makeDescriptorSet(vk, device, *m_descriptorPool, *m_descriptorSetLayout));
1716 		m_allSrcImageViews[0]  = makeVkSharedPtr(makeImageView(vk, device, m_imageSrc->get(), viewType, m_format, subresourceRange));
1717 		m_allDstImageViews[0]  = makeVkSharedPtr(makeImageView(vk, device, m_imageDst->get(), viewType, m_format, subresourceRange));
1718 	}
1719 
1720 	return *m_descriptorSetLayout;  // not passing the ownership
1721 }
1722 
commandBindDescriptorsForLayer(const VkCommandBuffer cmdBuffer,const VkPipelineLayout pipelineLayout,const int layerNdx)1723 void ImageLoadStoreLodAMDTestInstance::commandBindDescriptorsForLayer (const VkCommandBuffer cmdBuffer, const VkPipelineLayout pipelineLayout, const int layerNdx)
1724 {
1725 	const VkDevice			device	= m_context.getDevice();
1726 	const DeviceInterface&	vk		= m_context.getDeviceInterface();
1727 
1728 	const VkDescriptorSet descriptorSet = **m_allDescriptorSets[layerNdx];
1729 	const VkImageView	  srcImageView	= **m_allSrcImageViews[layerNdx];
1730 	const VkImageView	  dstImageView	= **m_allDstImageViews[layerNdx];
1731 
1732 	const VkDescriptorImageInfo descriptorSrcImageInfo = makeDescriptorImageInfo(DE_NULL, srcImageView, VK_IMAGE_LAYOUT_GENERAL);
1733 	const VkDescriptorImageInfo descriptorDstImageInfo = makeDescriptorImageInfo(DE_NULL, dstImageView, VK_IMAGE_LAYOUT_GENERAL);
1734 
1735 	DescriptorSetUpdateBuilder()
1736 		.writeSingle(descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorSrcImageInfo)
1737 		.writeSingle(descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorDstImageInfo)
1738 		.update(vk, device);
1739 	vk.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelineLayout, 0u, 1u, &descriptorSet, 0u, DE_NULL);
1740 }
1741 
commandBeforeCompute(const VkCommandBuffer cmdBuffer)1742 void ImageLoadStoreLodAMDTestInstance::commandBeforeCompute (const VkCommandBuffer cmdBuffer)
1743 {
1744 	const DeviceInterface& vk = m_context.getDeviceInterface();
1745 	const VkImageSubresourceRange fullImageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, m_texture.numMipmapLevels(), 0u, m_texture.numLayers());
1746 	{
1747 		const VkImageMemoryBarrier preCopyImageBarriers[] =
1748 		{
1749 			makeImageMemoryBarrier(
1750 				0u, VK_ACCESS_TRANSFER_WRITE_BIT,
1751 				VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1752 				m_imageSrc->get(), fullImageSubresourceRange),
1753 			makeImageMemoryBarrier(
1754 				0u, VK_ACCESS_SHADER_WRITE_BIT,
1755 				VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_GENERAL,
1756 				m_imageDst->get(), fullImageSubresourceRange)
1757 		};
1758 
1759 		const VkBufferMemoryBarrier barrierFlushHostWriteBeforeCopy = makeBufferMemoryBarrier(
1760 			VK_ACCESS_HOST_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT,
1761 			m_imageBuffer->get(), 0ull, m_imageSizeBytes + m_srcViewOffset);
1762 
1763 		vk.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | VK_PIPELINE_STAGE_TRANSFER_BIT,
1764 			(VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 1, &barrierFlushHostWriteBeforeCopy, DE_LENGTH_OF_ARRAY(preCopyImageBarriers), preCopyImageBarriers);
1765 	}
1766 	{
1767 		const VkImageMemoryBarrier barrierAfterCopy = makeImageMemoryBarrier(
1768 			VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT,
1769 			VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL,
1770 			m_imageSrc->get(), fullImageSubresourceRange);
1771 
1772 		std::vector<VkBufferImageCopy> copyRegions;
1773 		VkDeviceSize bufferOffset = 0u;
1774 		for (deInt32 levelNdx = 0; levelNdx < m_texture.numMipmapLevels(); levelNdx++)
1775 		{
1776 			const VkBufferImageCopy copyParams =
1777 			{
1778 				bufferOffset,																					//	VkDeviceSize				bufferOffset;
1779 				0u,																								//	deUint32					bufferRowLength;
1780 				0u,																								//	deUint32					bufferImageHeight;
1781 				makeImageSubresourceLayers(VK_IMAGE_ASPECT_COLOR_BIT, levelNdx, 0u, m_texture.numLayers()),		//	VkImageSubresourceLayers	imageSubresource;
1782 				makeOffset3D(0, 0, 0),																			//	VkOffset3D					imageOffset;
1783 				makeExtent3D(m_texture.layerSize(levelNdx)),													//	VkExtent3D					imageExtent;
1784 			};
1785 			copyRegions.push_back(copyParams);
1786 			bufferOffset += getMipmapLevelImageSizeBytes(m_texture, m_imageFormat, levelNdx);
1787 		}
1788 
1789 		vk.cmdCopyBufferToImage(cmdBuffer, m_imageBuffer->get(), m_imageSrc->get(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, (deUint32) copyRegions.size(), copyRegions.data());
1790 		vk.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &barrierAfterCopy);
1791 	}
1792 }
1793 
commandBetweenShaderInvocations(const VkCommandBuffer cmdBuffer)1794 void ImageLoadStoreLodAMDTestInstance::commandBetweenShaderInvocations (const VkCommandBuffer cmdBuffer)
1795 {
1796 	commandImageWriteBarrierBetweenShaderInvocations(m_context, cmdBuffer, m_imageDst->get(), m_texture);
1797 }
1798 
commandAfterCompute(const VkCommandBuffer cmdBuffer)1799 void ImageLoadStoreLodAMDTestInstance::commandAfterCompute (const VkCommandBuffer cmdBuffer)
1800 {
1801 	commandCopyMipmapImageToBuffer(m_context, cmdBuffer, m_imageDst->get(), m_imageFormat, m_imageBuffer->get(), m_imageSizeBytes, m_texture);
1802 }
1803 
1804 //! Load/store test for buffers
1805 class BufferLoadStoreTestInstance : public LoadStoreTestInstance
1806 {
1807 public:
1808 									BufferLoadStoreTestInstance		(Context&				context,
1809 																	 const Texture&			texture,
1810 																	 const VkFormat			format,
1811 																	 const VkFormat			imageFormat,
1812 																	 const bool				declareImageFormatInShader,
1813 																	 const bool				minalign,
1814 																	 const bool				bufferLoadUniform);
1815 
1816 protected:
1817 	VkDescriptorSetLayout			prepareDescriptors				(void);
1818 	void							commandAfterCompute				(const VkCommandBuffer	cmdBuffer);
1819 
1820 	void							commandBindDescriptorsForLayer	(const VkCommandBuffer	cmdBuffer,
1821 																	 const VkPipelineLayout pipelineLayout,
1822 																	 const int				layerNdx);
1823 
getResultBuffer(void) const1824 	Buffer*							getResultBuffer					(void) const { return m_imageBufferDst.get(); }
1825 
1826 	de::MovePtr<Buffer>				m_imageBufferDst;
1827 	Move<VkDescriptorSetLayout>		m_descriptorSetLayout;
1828 	Move<VkDescriptorPool>			m_descriptorPool;
1829 	Move<VkDescriptorSet>			m_descriptorSet;
1830 	Move<VkBufferView>				m_bufferViewSrc;
1831 	Move<VkBufferView>				m_bufferViewDst;
1832 };
1833 
BufferLoadStoreTestInstance(Context & context,const Texture & texture,const VkFormat format,const VkFormat imageFormat,const bool declareImageFormatInShader,const bool minalign,const bool bufferLoadUniform)1834 BufferLoadStoreTestInstance::BufferLoadStoreTestInstance (Context&			context,
1835 														  const Texture&	texture,
1836 														  const VkFormat	format,
1837 														  const VkFormat	imageFormat,
1838 														  const bool		declareImageFormatInShader,
1839 														  const bool		minalign,
1840 														  const bool		bufferLoadUniform)
1841 	: LoadStoreTestInstance(context, texture, format, imageFormat, declareImageFormatInShader, false, minalign, bufferLoadUniform)
1842 {
1843 	const DeviceInterface&	vk			= m_context.getDeviceInterface();
1844 	const VkDevice			device		= m_context.getDevice();
1845 	Allocator&				allocator	= m_context.getDefaultAllocator();
1846 
1847 	// Create a destination buffer.
1848 
1849 	m_imageBufferDst = de::MovePtr<Buffer>(new Buffer(
1850 		vk, device, allocator,
1851 		makeBufferCreateInfo(m_imageSizeBytes + m_dstViewOffset, VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT),
1852 		MemoryRequirement::HostVisible));
1853 }
1854 
prepareDescriptors(void)1855 VkDescriptorSetLayout BufferLoadStoreTestInstance::prepareDescriptors (void)
1856 {
1857 	const DeviceInterface&	vk		= m_context.getDeviceInterface();
1858 	const VkDevice			device	= m_context.getDevice();
1859 
1860 	m_descriptorSetLayout = DescriptorSetLayoutBuilder()
1861 		.addSingleBinding(m_bufferLoadDescriptorType, VK_SHADER_STAGE_COMPUTE_BIT)
1862 		.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT)
1863 		.build(vk, device);
1864 
1865 	m_descriptorPool = DescriptorPoolBuilder()
1866 		.addType(m_bufferLoadDescriptorType)
1867 		.addType(VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER)
1868 		.build(vk, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u);
1869 
1870 	VkFormat dstFormat = formatHasThreeComponents(m_format) ? getSingleComponentFormat(m_format) : m_format;
1871 
1872 	m_descriptorSet = makeDescriptorSet(vk, device, *m_descriptorPool, *m_descriptorSetLayout);
1873 	m_bufferViewSrc = makeBufferView(vk, device, m_imageBuffer->get(), m_format, m_srcViewOffset, m_imageSizeBytes);
1874 	m_bufferViewDst = makeBufferView(vk, device, m_imageBufferDst->get(), dstFormat, m_dstViewOffset, m_imageSizeBytes);
1875 
1876 	return *m_descriptorSetLayout;  // not passing the ownership
1877 }
1878 
commandBindDescriptorsForLayer(const VkCommandBuffer cmdBuffer,const VkPipelineLayout pipelineLayout,const int layerNdx)1879 void BufferLoadStoreTestInstance::commandBindDescriptorsForLayer (const VkCommandBuffer cmdBuffer, const VkPipelineLayout pipelineLayout, const int layerNdx)
1880 {
1881 	DE_ASSERT(layerNdx == 0);
1882 	DE_UNREF(layerNdx);
1883 
1884 	const VkDevice			device	= m_context.getDevice();
1885 	const DeviceInterface&	vk		= m_context.getDeviceInterface();
1886 
1887 	DescriptorSetUpdateBuilder()
1888 		.writeSingle(*m_descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), m_bufferLoadDescriptorType, &m_bufferViewSrc.get())
1889 		.writeSingle(*m_descriptorSet, DescriptorSetUpdateBuilder::Location::binding(1u), VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER, &m_bufferViewDst.get())
1890 		.update(vk, device);
1891 	vk.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelineLayout, 0u, 1u, &m_descriptorSet.get(), 0u, DE_NULL);
1892 }
1893 
commandAfterCompute(const VkCommandBuffer cmdBuffer)1894 void BufferLoadStoreTestInstance::commandAfterCompute (const VkCommandBuffer cmdBuffer)
1895 {
1896 	commandBufferWriteBarrierBeforeHostRead(m_context, cmdBuffer, m_imageBufferDst->get(), m_imageSizeBytes + m_dstViewOffset);
1897 }
1898 
createInstance(Context & context) const1899 TestInstance* StoreTest::createInstance (Context& context) const
1900 {
1901 	if (m_texture.type() == IMAGE_TYPE_BUFFER)
1902 		return new BufferStoreTestInstance(context, m_texture, m_format, m_declareImageFormatInShader, m_minalign);
1903 	else
1904 		return new ImageStoreTestInstance(context, m_texture, m_format, m_declareImageFormatInShader, m_singleLayerBind, m_minalign);
1905 }
1906 
createInstance(Context & context) const1907 TestInstance* LoadStoreTest::createInstance (Context& context) const
1908 {
1909 	if (m_imageLoadStoreLodAMD)
1910 		return new ImageLoadStoreLodAMDTestInstance(context, m_texture, m_format, m_imageFormat, m_declareImageFormatInShader, m_singleLayerBind, m_minalign, m_bufferLoadUniform);
1911 
1912 	if (m_texture.type() == IMAGE_TYPE_BUFFER)
1913 		return new BufferLoadStoreTestInstance(context, m_texture, m_format, m_imageFormat, m_declareImageFormatInShader, m_minalign, m_bufferLoadUniform);
1914 	else
1915 		return new ImageLoadStoreTestInstance(context, m_texture, m_format, m_imageFormat, m_declareImageFormatInShader, m_singleLayerBind, m_minalign, m_bufferLoadUniform);
1916 }
1917 
1918 class ImageExtendOperandTestInstance : public BaseTestInstance
1919 {
1920 public:
1921 									ImageExtendOperandTestInstance			(Context&				context,
1922 																			 const Texture&			texture,
1923 																			 const VkFormat			format);
1924 
~ImageExtendOperandTestInstance(void)1925 	virtual							~ImageExtendOperandTestInstance			(void) {};
1926 
1927 protected:
1928 
1929 	VkDescriptorSetLayout			prepareDescriptors						(void);
1930 	void							commandBeforeCompute					(const VkCommandBuffer	cmdBuffer);
1931 	void							commandBetweenShaderInvocations			(const VkCommandBuffer	cmdBuffer);
1932 	void							commandAfterCompute						(const VkCommandBuffer	cmdBuffer);
1933 
1934 	void							commandBindDescriptorsForLayer			(const VkCommandBuffer	cmdBuffer,
1935 																			 const VkPipelineLayout pipelineLayout,
1936 																			 const int				layerNdx);
1937 
1938 	tcu::TestStatus					verifyResult							(void);
1939 
1940 protected:
1941 
1942 	bool							m_isSigned;
1943 	tcu::TextureLevel				m_inputImageData;
1944 
1945 	de::MovePtr<Image>				m_imageSrc;				// source image
1946 	SharedVkImageView				m_imageSrcView;
1947 	VkDeviceSize					m_imageSrcSize;
1948 
1949 	de::MovePtr<Image>				m_imageDst;				// dest image
1950 	SharedVkImageView				m_imageDstView;
1951 	VkFormat						m_imageDstFormat;
1952 	VkDeviceSize					m_imageDstSize;
1953 
1954 	de::MovePtr<Buffer>				m_buffer;				// result buffer
1955 
1956 	Move<VkDescriptorSetLayout>		m_descriptorSetLayout;
1957 	Move<VkDescriptorPool>			m_descriptorPool;
1958 	SharedVkDescriptorSet			m_descriptorSet;
1959 };
1960 
ImageExtendOperandTestInstance(Context & context,const Texture & texture,const VkFormat format)1961 ImageExtendOperandTestInstance::ImageExtendOperandTestInstance (Context& context,
1962 																const Texture& texture,
1963 																const VkFormat format)
1964 	: BaseTestInstance		(context, texture, format, true, true, false, false)
1965 {
1966 	const DeviceInterface&		vk				= m_context.getDeviceInterface();
1967 	const VkDevice				device			= m_context.getDevice();
1968 	Allocator&					allocator		= m_context.getDefaultAllocator();
1969 	const deInt32				width			= texture.size().x();
1970 	const deInt32				height			= texture.size().y();
1971 	const tcu::TextureFormat	textureFormat	= mapVkFormat(m_format);
1972 
1973 	// Generate reference image
1974 	m_isSigned = (getTextureChannelClass(textureFormat.type) == tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER);
1975 	m_inputImageData.setStorage(textureFormat, width, height, 1);
1976 	const tcu::PixelBufferAccess access = m_inputImageData.getAccess();
1977 	int valueStart = m_isSigned ? -width / 2 : 0;
1978 	for (int x = 0; x < width; ++x)
1979 	for (int y = 0; y < height; ++y)
1980 	{
1981 		const tcu::IVec4 color(valueStart + x, valueStart + y, valueStart, valueStart);
1982 		access.setPixel(color, x, y);
1983 	}
1984 
1985 	// Create source image
1986 	m_imageSrc = de::MovePtr<Image>(new Image(
1987 		vk, device, allocator,
1988 		makeImageCreateInfo(m_texture, m_format, VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, 0u),
1989 		MemoryRequirement::Any));
1990 
1991 	// Create destination image
1992 	m_imageDstFormat	= m_isSigned ? VK_FORMAT_R32G32B32A32_SINT : VK_FORMAT_R32G32B32A32_UINT;
1993 	m_imageDst = de::MovePtr<Image>(new Image(
1994 		vk, device, allocator,
1995 		makeImageCreateInfo(m_texture, m_imageDstFormat, VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, 0u),
1996 		MemoryRequirement::Any));
1997 
1998 	// Compute image and buffer sizes
1999 	m_imageSrcSize					= width * height * tcu::getPixelSize(textureFormat);
2000 	m_imageDstSize					= width * height * tcu::getPixelSize(mapVkFormat(m_imageDstFormat));
2001 	VkDeviceSize bufferSizeBytes	= de::max(m_imageSrcSize, m_imageDstSize);
2002 
2003 	// Create helper buffer able to store input data and image write result
2004 	m_buffer = de::MovePtr<Buffer>(new Buffer(
2005 		vk, device, allocator,
2006 		makeBufferCreateInfo(bufferSizeBytes, VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT),
2007 		MemoryRequirement::HostVisible));
2008 
2009 	const Allocation& alloc = m_buffer->getAllocation();
2010 	deMemcpy(alloc.getHostPtr(), m_inputImageData.getAccess().getDataPtr(), static_cast<size_t>(m_imageSrcSize));
2011 	flushAlloc(vk, device, alloc);
2012 }
2013 
prepareDescriptors(void)2014 VkDescriptorSetLayout ImageExtendOperandTestInstance::prepareDescriptors (void)
2015 {
2016 	const DeviceInterface&	vk		= m_context.getDeviceInterface();
2017 	const VkDevice			device	= m_context.getDevice();
2018 
2019 	m_descriptorSetLayout = DescriptorSetLayoutBuilder()
2020 		.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT)
2021 		.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT)
2022 		.build(vk, device);
2023 
2024 	m_descriptorPool = DescriptorPoolBuilder()
2025 		.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1)
2026 		.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1)
2027 		.build(vk, device, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1);
2028 
2029 	const VkImageViewType viewType = mapImageViewType(m_texture.type());
2030 	const VkImageSubresourceRange subresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, 1u);
2031 
2032 	m_descriptorSet	= makeVkSharedPtr(makeDescriptorSet(vk, device, *m_descriptorPool, *m_descriptorSetLayout));
2033 	m_imageSrcView	= makeVkSharedPtr(makeImageView(vk, device, m_imageSrc->get(), viewType, m_format, subresourceRange));
2034 	m_imageDstView	= makeVkSharedPtr(makeImageView(vk, device, m_imageDst->get(), viewType, m_imageDstFormat, subresourceRange));
2035 
2036 	return *m_descriptorSetLayout;  // not passing the ownership
2037 }
2038 
commandBindDescriptorsForLayer(const VkCommandBuffer cmdBuffer,const VkPipelineLayout pipelineLayout,const int layerNdx)2039 void ImageExtendOperandTestInstance::commandBindDescriptorsForLayer (const VkCommandBuffer cmdBuffer, const VkPipelineLayout pipelineLayout, const int layerNdx)
2040 {
2041 	DE_UNREF(layerNdx);
2042 
2043 	const DeviceInterface&	vk				= m_context.getDeviceInterface();
2044 	const VkDevice			device			= m_context.getDevice();
2045 	const VkDescriptorSet	descriptorSet	= **m_descriptorSet;
2046 
2047 	const VkDescriptorImageInfo descriptorSrcImageInfo = makeDescriptorImageInfo(DE_NULL, **m_imageSrcView, VK_IMAGE_LAYOUT_GENERAL);
2048 	const VkDescriptorImageInfo descriptorDstImageInfo = makeDescriptorImageInfo(DE_NULL, **m_imageDstView, VK_IMAGE_LAYOUT_GENERAL);
2049 
2050 	typedef DescriptorSetUpdateBuilder::Location DSUBL;
2051 	DescriptorSetUpdateBuilder()
2052 		.writeSingle(descriptorSet, DSUBL::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorSrcImageInfo)
2053 		.writeSingle(descriptorSet, DSUBL::binding(1u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorDstImageInfo)
2054 		.update(vk, device);
2055 	vk.cmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelineLayout, 0u, 1u, &descriptorSet, 0u, DE_NULL);
2056 }
2057 
commandBeforeCompute(const VkCommandBuffer cmdBuffer)2058 void ImageExtendOperandTestInstance::commandBeforeCompute (const VkCommandBuffer cmdBuffer)
2059 {
2060 	const DeviceInterface& vk = m_context.getDeviceInterface();
2061 
2062 	const VkImageSubresourceRange fullImageSubresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, m_texture.numLayers());
2063 	{
2064 		const VkImageMemoryBarrier preCopyImageBarriers[] =
2065 		{
2066 			makeImageMemoryBarrier(
2067 				0u, VK_ACCESS_TRANSFER_WRITE_BIT,
2068 				VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
2069 				m_imageSrc->get(), fullImageSubresourceRange),
2070 			makeImageMemoryBarrier(
2071 				0u, VK_ACCESS_SHADER_WRITE_BIT,
2072 				VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_GENERAL,
2073 				m_imageDst->get(), fullImageSubresourceRange)
2074 		};
2075 
2076 		const VkBufferMemoryBarrier barrierFlushHostWriteBeforeCopy = makeBufferMemoryBarrier(
2077 			VK_ACCESS_HOST_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT,
2078 			m_buffer->get(), 0ull, m_imageSrcSize);
2079 
2080 		vk.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | VK_PIPELINE_STAGE_TRANSFER_BIT,
2081 			(VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 1, &barrierFlushHostWriteBeforeCopy, DE_LENGTH_OF_ARRAY(preCopyImageBarriers), preCopyImageBarriers);
2082 	}
2083 	{
2084 		const VkImageMemoryBarrier barrierAfterCopy = makeImageMemoryBarrier(
2085 			VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT,
2086 			VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL,
2087 			m_imageSrc->get(), fullImageSubresourceRange);
2088 
2089 		const VkBufferImageCopy copyRegion = makeBufferImageCopy(m_texture);
2090 
2091 		vk.cmdCopyBufferToImage(cmdBuffer, m_buffer->get(), m_imageSrc->get(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1u, &copyRegion);
2092 		vk.cmdPipelineBarrier(cmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, (VkDependencyFlags)0, 0, (const VkMemoryBarrier*)DE_NULL, 0, (const VkBufferMemoryBarrier*)DE_NULL, 1, &barrierAfterCopy);
2093 	}
2094 }
2095 
commandBetweenShaderInvocations(const VkCommandBuffer cmdBuffer)2096 void ImageExtendOperandTestInstance::commandBetweenShaderInvocations (const VkCommandBuffer cmdBuffer)
2097 {
2098 	commandImageWriteBarrierBetweenShaderInvocations(m_context, cmdBuffer, m_imageDst->get(), m_texture);
2099 }
2100 
commandAfterCompute(const VkCommandBuffer cmdBuffer)2101 void ImageExtendOperandTestInstance::commandAfterCompute (const VkCommandBuffer cmdBuffer)
2102 {
2103 	commandCopyImageToBuffer(m_context, cmdBuffer, m_imageDst->get(), m_buffer->get(), m_imageDstSize, m_texture);
2104 }
2105 
verifyResult(void)2106 tcu::TestStatus ImageExtendOperandTestInstance::verifyResult (void)
2107 {
2108 	const DeviceInterface&			vk			= m_context.getDeviceInterface();
2109 	const VkDevice					device		= m_context.getDevice();
2110 	const tcu::IVec3				imageSize	= m_texture.size();
2111 	const tcu::PixelBufferAccess	inputAccess	= m_inputImageData.getAccess();
2112 	const deInt32					width		= inputAccess.getWidth();
2113 	const deInt32					height		= inputAccess.getHeight();
2114 	tcu::TextureLevel				refImage	(mapVkFormat(m_imageDstFormat), width, height);
2115 	tcu::PixelBufferAccess			refAccess	= refImage.getAccess();
2116 
2117 	for (int x = 0; x < width; ++x)
2118 	for (int y = 0; y < height; ++y)
2119 	{
2120 		tcu::IVec4 color = inputAccess.getPixelInt(x, y);
2121 		refAccess.setPixel(color, x, y);
2122 	}
2123 
2124 	const Allocation& alloc = m_buffer->getAllocation();
2125 	invalidateAlloc(vk, device, alloc);
2126 	const tcu::ConstPixelBufferAccess result(mapVkFormat(m_imageDstFormat), imageSize, alloc.getHostPtr());
2127 
2128 	if (intThresholdCompare (m_context.getTestContext().getLog(), "Comparison", "Comparison", refAccess, result, tcu::UVec4(0), tcu::COMPARE_LOG_RESULT))
2129 		return tcu::TestStatus::pass("Passed");
2130 	else
2131 		return tcu::TestStatus::fail("Image comparison failed");
2132 }
2133 
2134 class ImageExtendOperandTest : public TestCase
2135 {
2136 public:
2137 							ImageExtendOperandTest	(tcu::TestContext&					testCtx,
2138 													 const std::string&					name,
2139 													 const Texture						texture,
2140 													 const VkFormat						format,
2141 													 const bool							signedInt,
2142 													 const bool							relaxedPrecision);
2143 
2144 	void					checkSupport			(Context&				context) const;
2145 	void					initPrograms			(SourceCollections&		programCollection) const;
2146 	TestInstance*			createInstance			(Context&				context) const;
2147 
2148 private:
2149 	const Texture					m_texture;
2150 	VkFormat						m_format;
2151 	bool							m_operandForce;	// Use an operand that doesn't match SampledType?
2152 	bool							m_relaxedPrecision;
2153 };
2154 
ImageExtendOperandTest(tcu::TestContext & testCtx,const std::string & name,const Texture texture,const VkFormat format,const bool operandForce,const bool relaxedPrecision)2155 ImageExtendOperandTest::ImageExtendOperandTest (tcu::TestContext&				testCtx,
2156 												const std::string&				name,
2157 												const Texture					texture,
2158 												const VkFormat					format,
2159 												const bool						operandForce,
2160 												const bool						relaxedPrecision)
2161 	: TestCase						(testCtx, name, "")
2162 	, m_texture						(texture)
2163 	, m_format						(format)
2164 	, m_operandForce				(operandForce)
2165 	, m_relaxedPrecision			(relaxedPrecision)
2166 {
2167 }
2168 
checkSupport(Context & context) const2169 void ImageExtendOperandTest::checkSupport (Context& context) const
2170 {
2171 	const vk::VkFormatProperties	formatProperties	(vk::getPhysicalDeviceFormatProperties(context.getInstanceInterface(),
2172 																							   context.getPhysicalDevice(),
2173 																							   m_format));
2174 
2175 	if (!context.requireDeviceFunctionality("VK_KHR_spirv_1_4"))
2176 		TCU_THROW(NotSupportedError, "VK_KHR_spirv_1_4 not supported");
2177 
2178 	if ((m_texture.type() != IMAGE_TYPE_BUFFER) && !(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT))
2179 		TCU_THROW(NotSupportedError, "Format not supported for storage images");
2180 
2181 	if (m_texture.type() == IMAGE_TYPE_BUFFER && !(formatProperties.bufferFeatures & VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT))
2182 		TCU_THROW(NotSupportedError, "Format not supported for storage texel buffers");
2183 }
2184 
initPrograms(SourceCollections & programCollection) const2185 void ImageExtendOperandTest::initPrograms (SourceCollections& programCollection) const
2186 {
2187 	tcu::StringTemplate shaderTemplate(
2188 		"OpCapability Shader\n"
2189 
2190 		"${capability}"
2191 
2192 		"%std450 = OpExtInstImport \"GLSL.std.450\"\n"
2193 		"OpMemoryModel Logical GLSL450\n"
2194 		"OpEntryPoint GLCompute %main \"main\" %id %src_image_ptr %dst_image_ptr\n"
2195 		"OpExecutionMode %main LocalSize 1 1 1\n"
2196 
2197 		// decorations
2198 		"OpDecorate %id BuiltIn GlobalInvocationId\n"
2199 
2200 		"OpDecorate %src_image_ptr DescriptorSet 0\n"
2201 		"OpDecorate %src_image_ptr Binding 0\n"
2202 		"OpDecorate %src_image_ptr NonWritable\n"
2203 
2204 		"${relaxed_precision}"
2205 
2206 		"OpDecorate %dst_image_ptr DescriptorSet 0\n"
2207 		"OpDecorate %dst_image_ptr Binding 1\n"
2208 		"OpDecorate %dst_image_ptr NonReadable\n"
2209 
2210 		// types
2211 		"%type_void                          = OpTypeVoid\n"
2212 		"%type_i32                           = OpTypeInt 32 1\n"
2213 		"%type_u32                           = OpTypeInt 32 0\n"
2214 		"%type_vec3_i32                      = OpTypeVector %type_i32 3\n"
2215 		"%type_vec3_u32                      = OpTypeVector %type_u32 3\n"
2216 		"%type_vec4_i32                      = OpTypeVector %type_i32 4\n"
2217 		"%type_vec4_u32                      = OpTypeVector %type_u32 4\n"
2218 
2219 		"%type_fun_void                      = OpTypeFunction %type_void\n"
2220 
2221 		"${image_types}"
2222 
2223 		"%type_ptr_in_vec3_u32               = OpTypePointer Input %type_vec3_u32\n"
2224 		"%type_ptr_in_u32                    = OpTypePointer Input %type_u32\n"
2225 
2226 		"${image_uniforms}"
2227 
2228 		// variables
2229 		"%id                                 = OpVariable %type_ptr_in_vec3_u32 Input\n"
2230 
2231 		"${image_variables}"
2232 
2233 		// main function
2234 		"%main                               = OpFunction %type_void None %type_fun_void\n"
2235 		"%label                              = OpLabel\n"
2236 
2237 		"${image_load}"
2238 
2239 		"%coord                              = OpLoad %type_vec3_u32 %id\n"
2240 		"%value                              = OpImageRead ${read_vect4_type} %src_image %coord ${extend_operand}\n"
2241 		"                                      OpImageWrite %dst_image %coord %value ${extend_operand}\n"
2242 		"                                      OpReturn\n"
2243 		"                                      OpFunctionEnd\n");
2244 
2245 	tcu::TextureFormat	tcuFormat			= mapVkFormat(m_format);
2246 	const ImageType		usedImageType		= getImageTypeForSingleLayer(m_texture.type());
2247 	const std::string	imageTypeStr		= getShaderImageType(tcuFormat, usedImageType);
2248 	const bool			isSigned			= (getTextureChannelClass(tcuFormat.type) == tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER);
2249 
2250 	struct FormatData
2251 	{
2252 		std::string		spirvImageFormat;
2253 		bool			isExtendedFormat;
2254 	};
2255 	const std::map<vk::VkFormat, FormatData> formatDataMap =
2256 	{
2257 		// Mandatory support
2258 		{ VK_FORMAT_R32G32B32A32_UINT,			{ "Rgba32ui",	false } },
2259 		{ VK_FORMAT_R16G16B16A16_UINT,			{ "Rgba16ui",	false } },
2260 		{ VK_FORMAT_R8G8B8A8_UINT,				{ "Rgba8ui",	false } },
2261 		{ VK_FORMAT_R32_UINT,					{ "R32ui",		false } },
2262 		{ VK_FORMAT_R32G32B32A32_SINT,			{ "Rgba32i",	false } },
2263 		{ VK_FORMAT_R16G16B16A16_SINT,			{ "Rgba16i",	false } },
2264 		{ VK_FORMAT_R8G8B8A8_SINT,				{ "Rgba8i",		false } },
2265 		{ VK_FORMAT_R32_SINT,					{ "R32i",		false } },
2266 
2267 		// Requires StorageImageExtendedFormats capability
2268 		{ VK_FORMAT_R32G32_UINT,				{ "Rg32ui",		true } },
2269 		{ VK_FORMAT_R16G16_UINT,				{ "Rg16ui",		true } },
2270 		{ VK_FORMAT_R16_UINT,					{ "R16ui",		true } },
2271 		{ VK_FORMAT_R8G8_UINT,					{ "Rg8ui",		true } },
2272 		{ VK_FORMAT_R8_UINT,					{ "R8ui",		true } },
2273 		{ VK_FORMAT_R32G32_SINT,				{ "Rg32i",		true } },
2274 		{ VK_FORMAT_R16G16_SINT,				{ "Rg16i",		true } },
2275 		{ VK_FORMAT_R16_SINT,					{ "R16i",		true } },
2276 		{ VK_FORMAT_R8G8_SINT,					{ "Rg8i",		true } },
2277 		{ VK_FORMAT_R8_SINT,					{ "R8i",		true } },
2278 		{ VK_FORMAT_A2B10G10R10_UINT_PACK32,	{ "Rgb10a2ui",	true } }
2279 	};
2280 
2281 	auto it = formatDataMap.find(m_format);
2282 	DE_ASSERT (it != formatDataMap.end());		// Missing int format data
2283 	auto spirvImageFormat = it->second.spirvImageFormat;
2284 
2285 	// Request additional capability when needed
2286 	std::string capability = "";
2287 	if (it->second.isExtendedFormat)
2288 		capability += "OpCapability StorageImageExtendedFormats\n";
2289 
2290 	std::string relaxed = "";
2291 	if (m_relaxedPrecision)
2292 		relaxed += "OpDecorate %src_image_ptr RelaxedPrecision\n";
2293 
2294 	// Use i32 SampledType only for signed images and only where we're not forcing
2295 	// the signedness usingthe SignExtend operand. Everything else uses u32.
2296 	std::string readTypePostfix = (isSigned && !m_operandForce) ? "i32" : "u32";
2297 
2298 	std::map<std::string, std::string> specializations =
2299 	{
2300 		{ "image_type_id",			"%type_image" },
2301 		{ "image_uni_ptr_type_id",	"%type_ptr_uniform_const_image" },
2302 		{ "image_var_id",			"%src_image_ptr" },
2303 		{ "image_id",				"%src_image" },
2304 		{ "capability",				capability },
2305 		{ "relaxed_precision",		relaxed },
2306 		{ "image_format",			spirvImageFormat },
2307 		{ "sampled_type",			(std::string("%type_") + readTypePostfix) },
2308 		{ "read_vect4_type",		(std::string("%type_vec4_") + readTypePostfix) },
2309 		{ "extend_operand",			(isSigned ? "SignExtend" : "ZeroExtend") }
2310 	};
2311 
2312 	// Addidtional parametrization is needed for a case when source and destination textures have same format
2313 	tcu::StringTemplate imageTypeTemplate(
2314 		"${image_type_id}                     = OpTypeImage ${sampled_type} 2D 0 0 0 2 ${image_format}\n");
2315 	tcu::StringTemplate imageUniformTypeTemplate(
2316 		"${image_uni_ptr_type_id}   = OpTypePointer UniformConstant ${image_type_id}\n");
2317 	tcu::StringTemplate imageVariablesTemplate(
2318 		"${image_var_id}                      = OpVariable ${image_uni_ptr_type_id} UniformConstant\n");
2319 	tcu::StringTemplate imageLoadTemplate(
2320 		"${image_id}                          = OpLoad ${image_type_id} ${image_var_id}\n");
2321 
2322 	std::string imageTypes;
2323 	std::string imageUniformTypes;
2324 	std::string imageVariables;
2325 	std::string imageLoad;
2326 
2327 	// If input image format is the same as output there is less spir-v definitions
2328 	if ((m_format == VK_FORMAT_R32G32B32A32_SINT) || (m_format == VK_FORMAT_R32G32B32A32_UINT))
2329 	{
2330 		imageTypes			= imageTypeTemplate.specialize(specializations);
2331 		imageUniformTypes	= imageUniformTypeTemplate.specialize(specializations);
2332 		imageVariables		= imageVariablesTemplate.specialize(specializations);
2333 		imageLoad			= imageLoadTemplate.specialize(specializations);
2334 
2335 		specializations["image_var_id"]				= "%dst_image_ptr";
2336 		specializations["image_id"]					= "%dst_image";
2337 		imageVariables		+= imageVariablesTemplate.specialize(specializations);
2338 		imageLoad			+= imageLoadTemplate.specialize(specializations);
2339 	}
2340 	else
2341 	{
2342 		specializations["image_type_id"]			= "%type_src_image";
2343 		specializations["image_uni_ptr_type_id"]	= "%type_ptr_uniform_const_src_image";
2344 		imageTypes			= imageTypeTemplate.specialize(specializations);
2345 		imageUniformTypes	= imageUniformTypeTemplate.specialize(specializations);
2346 		imageVariables		= imageVariablesTemplate.specialize(specializations);
2347 		imageLoad			= imageLoadTemplate.specialize(specializations);
2348 
2349 		specializations["image_format"]				= isSigned ? "Rgba32i" : "Rgba32ui";
2350 		specializations["image_type_id"]			= "%type_dst_image";
2351 		specializations["image_uni_ptr_type_id"]	= "%type_ptr_uniform_const_dst_image";
2352 		specializations["image_var_id"]				= "%dst_image_ptr";
2353 		specializations["image_id"]					= "%dst_image";
2354 		imageTypes			+= imageTypeTemplate.specialize(specializations);
2355 		imageUniformTypes	+= imageUniformTypeTemplate.specialize(specializations);
2356 		imageVariables		+= imageVariablesTemplate.specialize(specializations);
2357 		imageLoad			+= imageLoadTemplate.specialize(specializations);
2358 	}
2359 
2360 	specializations["image_types"]		= imageTypes;
2361 	specializations["image_uniforms"]	= imageUniformTypes;
2362 	specializations["image_variables"]	= imageVariables;
2363 	specializations["image_load"]		= imageLoad;
2364 
2365 	// Specialize whole shader and add it to program collection
2366 	programCollection.spirvAsmSources.add("comp") << shaderTemplate.specialize(specializations)
2367 		<< vk::SpirVAsmBuildOptions(programCollection.usedVulkanVersion, vk::SPIRV_VERSION_1_4, true);
2368 }
2369 
createInstance(Context & context) const2370 TestInstance* ImageExtendOperandTest::createInstance(Context& context) const
2371 {
2372 	return new ImageExtendOperandTestInstance(context, m_texture, m_format);
2373 }
2374 
2375 static const Texture s_textures[] =
2376 {
2377 	Texture(IMAGE_TYPE_1D,			tcu::IVec3(64,	1,	1),	1),
2378 	Texture(IMAGE_TYPE_1D_ARRAY,	tcu::IVec3(64,	1,	1),	8),
2379 	Texture(IMAGE_TYPE_2D,			tcu::IVec3(64,	64,	1),	1),
2380 	Texture(IMAGE_TYPE_2D_ARRAY,	tcu::IVec3(64,	64,	1),	8),
2381 	Texture(IMAGE_TYPE_3D,			tcu::IVec3(64,	64,	8),	1),
2382 	Texture(IMAGE_TYPE_CUBE,		tcu::IVec3(64,	64,	1),	6),
2383 	Texture(IMAGE_TYPE_CUBE_ARRAY,	tcu::IVec3(64,	64,	1),	2*6),
2384 	Texture(IMAGE_TYPE_BUFFER,		tcu::IVec3(64,	1,	1),	1),
2385 };
2386 
getTestTexture(const ImageType imageType)2387 const Texture& getTestTexture (const ImageType imageType)
2388 {
2389 	for (int textureNdx = 0; textureNdx < DE_LENGTH_OF_ARRAY(s_textures); ++textureNdx)
2390 		if (s_textures[textureNdx].type() == imageType)
2391 			return s_textures[textureNdx];
2392 
2393 	DE_FATAL("Internal error");
2394 	return s_textures[0];
2395 }
2396 
2397 static const VkFormat s_formats[] =
2398 {
2399 	// Mandatory support
2400 	VK_FORMAT_R32G32B32A32_SFLOAT,
2401 	VK_FORMAT_R16G16B16A16_SFLOAT,
2402 	VK_FORMAT_R32_SFLOAT,
2403 
2404 	VK_FORMAT_R32G32B32A32_UINT,
2405 	VK_FORMAT_R16G16B16A16_UINT,
2406 	VK_FORMAT_R8G8B8A8_UINT,
2407 	VK_FORMAT_R32_UINT,
2408 
2409 	VK_FORMAT_R32G32B32A32_SINT,
2410 	VK_FORMAT_R16G16B16A16_SINT,
2411 	VK_FORMAT_R8G8B8A8_SINT,
2412 	VK_FORMAT_R32_SINT,
2413 
2414 	VK_FORMAT_R8G8B8A8_UNORM,
2415 
2416 	VK_FORMAT_R8G8B8A8_SNORM,
2417 
2418 	// Requires StorageImageExtendedFormats capability
2419 	VK_FORMAT_B10G11R11_UFLOAT_PACK32,
2420 
2421 	VK_FORMAT_R32G32_SFLOAT,
2422 	VK_FORMAT_R16G16_SFLOAT,
2423 	VK_FORMAT_R16_SFLOAT,
2424 
2425 	VK_FORMAT_A2B10G10R10_UINT_PACK32,
2426 	VK_FORMAT_R32G32_UINT,
2427 	VK_FORMAT_R16G16_UINT,
2428 	VK_FORMAT_R16_UINT,
2429 	VK_FORMAT_R8G8_UINT,
2430 	VK_FORMAT_R8_UINT,
2431 
2432 	VK_FORMAT_R32G32_SINT,
2433 	VK_FORMAT_R16G16_SINT,
2434 	VK_FORMAT_R16_SINT,
2435 	VK_FORMAT_R8G8_SINT,
2436 	VK_FORMAT_R8_SINT,
2437 
2438 	VK_FORMAT_A2B10G10R10_UNORM_PACK32,
2439 	VK_FORMAT_R16G16B16A16_UNORM,
2440 	VK_FORMAT_R16G16B16A16_SNORM,
2441 	VK_FORMAT_R16G16_UNORM,
2442 	VK_FORMAT_R16_UNORM,
2443 	VK_FORMAT_R8G8_UNORM,
2444 	VK_FORMAT_R8_UNORM,
2445 
2446 	VK_FORMAT_R16G16_SNORM,
2447 	VK_FORMAT_R16_SNORM,
2448 	VK_FORMAT_R8G8_SNORM,
2449 	VK_FORMAT_R8_SNORM
2450 };
2451 
2452 static const VkFormat s_formatsThreeComponent[] =
2453 {
2454 	VK_FORMAT_R8G8B8_UINT,
2455 	VK_FORMAT_R8G8B8_SINT,
2456 	VK_FORMAT_R8G8B8_UNORM,
2457 	VK_FORMAT_R8G8B8_SNORM,
2458 	VK_FORMAT_R16G16B16_UINT,
2459 	VK_FORMAT_R16G16B16_SINT,
2460 	VK_FORMAT_R16G16B16_UNORM,
2461 	VK_FORMAT_R16G16B16_SNORM,
2462 	VK_FORMAT_R16G16B16_SFLOAT,
2463 	VK_FORMAT_R32G32B32_UINT,
2464 	VK_FORMAT_R32G32B32_SINT,
2465 	VK_FORMAT_R32G32B32_SFLOAT,
2466 };
2467 
2468 } // anonymous ns
2469 
createImageStoreTests(tcu::TestContext & testCtx)2470 tcu::TestCaseGroup* createImageStoreTests (tcu::TestContext& testCtx)
2471 {
2472 	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "store", "Plain imageStore() cases"));
2473 	de::MovePtr<tcu::TestCaseGroup> testGroupWithFormat(new tcu::TestCaseGroup(testCtx, "with_format", "Declare a format layout qualifier for write images"));
2474 	de::MovePtr<tcu::TestCaseGroup> testGroupWithoutFormat(new tcu::TestCaseGroup(testCtx, "without_format", "Do not declare a format layout qualifier for write images"));
2475 
2476 	for (int textureNdx = 0; textureNdx < DE_LENGTH_OF_ARRAY(s_textures); ++textureNdx)
2477 	{
2478 		const Texture& texture = s_textures[textureNdx];
2479 		de::MovePtr<tcu::TestCaseGroup> groupWithFormatByImageViewType (new tcu::TestCaseGroup(testCtx, getImageTypeName(texture.type()).c_str(), ""));
2480 		de::MovePtr<tcu::TestCaseGroup> groupWithoutFormatByImageViewType (new tcu::TestCaseGroup(testCtx, getImageTypeName(texture.type()).c_str(), ""));
2481 		const bool isLayered = (texture.numLayers() > 1);
2482 
2483 		for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(s_formats); ++formatNdx)
2484 		{
2485 			groupWithFormatByImageViewType->addChild(new StoreTest(testCtx, getFormatShortString(s_formats[formatNdx]), "", texture, s_formats[formatNdx]));
2486 			groupWithoutFormatByImageViewType->addChild(new StoreTest(testCtx, getFormatShortString(s_formats[formatNdx]), "", texture, s_formats[formatNdx], 0));
2487 
2488 			if (isLayered)
2489 				groupWithFormatByImageViewType->addChild(new StoreTest(testCtx, getFormatShortString(s_formats[formatNdx]) + "_single_layer", "",
2490 														 texture, s_formats[formatNdx],
2491 														 StoreTest::FLAG_SINGLE_LAYER_BIND | StoreTest::FLAG_DECLARE_IMAGE_FORMAT_IN_SHADER));
2492 
2493 			if (texture.type() == IMAGE_TYPE_BUFFER)
2494 			{
2495 				groupWithFormatByImageViewType->addChild(new StoreTest(testCtx, getFormatShortString(s_formats[formatNdx]) + "_minalign", "", texture, s_formats[formatNdx], StoreTest::FLAG_MINALIGN | StoreTest::FLAG_DECLARE_IMAGE_FORMAT_IN_SHADER));
2496 				groupWithoutFormatByImageViewType->addChild(new StoreTest(testCtx, getFormatShortString(s_formats[formatNdx]) + "_minalign", "", texture, s_formats[formatNdx], StoreTest::FLAG_MINALIGN));
2497 			}
2498 		}
2499 
2500 		testGroupWithFormat->addChild(groupWithFormatByImageViewType.release());
2501 		testGroupWithoutFormat->addChild(groupWithoutFormatByImageViewType.release());
2502 	}
2503 
2504 	testGroup->addChild(testGroupWithFormat.release());
2505 	testGroup->addChild(testGroupWithoutFormat.release());
2506 
2507 	return testGroup.release();
2508 }
2509 
createImageLoadStoreTests(tcu::TestContext & testCtx)2510 tcu::TestCaseGroup* createImageLoadStoreTests (tcu::TestContext& testCtx)
2511 {
2512 	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "load_store", "Cases with imageLoad() followed by imageStore()"));
2513 	de::MovePtr<tcu::TestCaseGroup> testGroupWithFormat(new tcu::TestCaseGroup(testCtx, "with_format", "Declare a format layout qualifier for read images"));
2514 	de::MovePtr<tcu::TestCaseGroup> testGroupWithoutFormat(new tcu::TestCaseGroup(testCtx, "without_format", "Do not declare a format layout qualifier for read images"));
2515 
2516 	for (int textureNdx = 0; textureNdx < DE_LENGTH_OF_ARRAY(s_textures); ++textureNdx)
2517 	{
2518 		const Texture& texture = s_textures[textureNdx];
2519 		de::MovePtr<tcu::TestCaseGroup> groupWithFormatByImageViewType (new tcu::TestCaseGroup(testCtx, getImageTypeName(texture.type()).c_str(), ""));
2520 		de::MovePtr<tcu::TestCaseGroup> groupWithoutFormatByImageViewType (new tcu::TestCaseGroup(testCtx, getImageTypeName(texture.type()).c_str(), ""));
2521 		const bool isLayered = (texture.numLayers() > 1);
2522 
2523 		for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(s_formats); ++formatNdx)
2524 		{
2525 			groupWithFormatByImageViewType->addChild(new LoadStoreTest(testCtx, getFormatShortString(s_formats[formatNdx]), "", texture, s_formats[formatNdx], s_formats[formatNdx]));
2526 			groupWithoutFormatByImageViewType->addChild(new LoadStoreTest(testCtx, getFormatShortString(s_formats[formatNdx]), "", texture, s_formats[formatNdx], s_formats[formatNdx], 0));
2527 
2528 			if (isLayered)
2529 				groupWithFormatByImageViewType->addChild(new LoadStoreTest(testCtx, getFormatShortString(s_formats[formatNdx]) + "_single_layer", "",
2530 														 texture, s_formats[formatNdx], s_formats[formatNdx],
2531 														 LoadStoreTest::FLAG_SINGLE_LAYER_BIND | LoadStoreTest::FLAG_DECLARE_IMAGE_FORMAT_IN_SHADER));
2532 			if (texture.type() == IMAGE_TYPE_BUFFER)
2533 			{
2534 				groupWithFormatByImageViewType->addChild(new LoadStoreTest(testCtx, getFormatShortString(s_formats[formatNdx]) + "_minalign", "", texture, s_formats[formatNdx], s_formats[formatNdx], LoadStoreTest::FLAG_MINALIGN | LoadStoreTest::FLAG_DECLARE_IMAGE_FORMAT_IN_SHADER));
2535 				groupWithFormatByImageViewType->addChild(new LoadStoreTest(testCtx, getFormatShortString(s_formats[formatNdx]) + "_minalign_uniform", "", texture, s_formats[formatNdx], s_formats[formatNdx], LoadStoreTest::FLAG_MINALIGN | LoadStoreTest::FLAG_DECLARE_IMAGE_FORMAT_IN_SHADER | LoadStoreTest::FLAG_UNIFORM_TEXEL_BUFFER));
2536 				groupWithoutFormatByImageViewType->addChild(new LoadStoreTest(testCtx, getFormatShortString(s_formats[formatNdx]) + "_minalign", "", texture, s_formats[formatNdx], s_formats[formatNdx], LoadStoreTest::FLAG_MINALIGN));
2537 				groupWithoutFormatByImageViewType->addChild(new LoadStoreTest(testCtx, getFormatShortString(s_formats[formatNdx]) + "_minalign_uniform", "", texture, s_formats[formatNdx], s_formats[formatNdx], LoadStoreTest::FLAG_MINALIGN | LoadStoreTest::FLAG_UNIFORM_TEXEL_BUFFER));
2538 			}
2539 		}
2540 
2541 		if (texture.type() == IMAGE_TYPE_BUFFER)
2542 		{
2543 			for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(s_formatsThreeComponent); ++formatNdx)
2544 			{
2545 				groupWithoutFormatByImageViewType->addChild(new LoadStoreTest(testCtx, getFormatShortString(s_formatsThreeComponent[formatNdx]) + "_uniform", "", texture, s_formatsThreeComponent[formatNdx], s_formatsThreeComponent[formatNdx], LoadStoreTest::FLAG_UNIFORM_TEXEL_BUFFER));
2546 				groupWithoutFormatByImageViewType->addChild(new LoadStoreTest(testCtx, getFormatShortString(s_formatsThreeComponent[formatNdx]) + "_minalign_uniform", "", texture, s_formatsThreeComponent[formatNdx], s_formatsThreeComponent[formatNdx], LoadStoreTest::FLAG_MINALIGN | LoadStoreTest::FLAG_UNIFORM_TEXEL_BUFFER));
2547 			}
2548 		}
2549 
2550 		testGroupWithFormat->addChild(groupWithFormatByImageViewType.release());
2551 		testGroupWithoutFormat->addChild(groupWithoutFormatByImageViewType.release());
2552 	}
2553 
2554 	testGroup->addChild(testGroupWithFormat.release());
2555 	testGroup->addChild(testGroupWithoutFormat.release());
2556 
2557 	return testGroup.release();
2558 }
2559 
createImageLoadStoreLodAMDTests(tcu::TestContext & testCtx)2560 tcu::TestCaseGroup* createImageLoadStoreLodAMDTests (tcu::TestContext& testCtx)
2561 {
2562 	static const Texture textures[] =
2563 	{
2564 		Texture(IMAGE_TYPE_1D_ARRAY,	tcu::IVec3(64,	1,	1),	8, 1, 6),
2565 		Texture(IMAGE_TYPE_1D,			tcu::IVec3(64,	1,	1),	1, 1, 6),
2566 		Texture(IMAGE_TYPE_2D,			tcu::IVec3(64,	64,	1),	1, 1, 6),
2567 		Texture(IMAGE_TYPE_2D_ARRAY,	tcu::IVec3(64,	64,	1),	8, 1, 6),
2568 		Texture(IMAGE_TYPE_3D,			tcu::IVec3(64,	64,	8),	1, 1, 6),
2569 		Texture(IMAGE_TYPE_CUBE,		tcu::IVec3(64,	64,	1),	6, 1, 6),
2570 		Texture(IMAGE_TYPE_CUBE_ARRAY,	tcu::IVec3(64,	64,	1),	2*6, 1, 6),
2571 	};
2572 
2573 	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "load_store_lod", "Cases with imageLoad() followed by imageStore()"));
2574 	de::MovePtr<tcu::TestCaseGroup> testGroupWithFormat(new tcu::TestCaseGroup(testCtx, "with_format", "Declare a format layout qualifier for read images"));
2575 	de::MovePtr<tcu::TestCaseGroup> testGroupWithoutFormat(new tcu::TestCaseGroup(testCtx, "without_format", "Do not declare a format layout qualifier for read images"));
2576 
2577 	for (int textureNdx = 0; textureNdx < DE_LENGTH_OF_ARRAY(textures); ++textureNdx)
2578 	{
2579 		const Texture& texture = textures[textureNdx];
2580 		de::MovePtr<tcu::TestCaseGroup> groupWithFormatByImageViewType (new tcu::TestCaseGroup(testCtx, getImageTypeName(texture.type()).c_str(), ""));
2581 		de::MovePtr<tcu::TestCaseGroup> groupWithoutFormatByImageViewType (new tcu::TestCaseGroup(testCtx, getImageTypeName(texture.type()).c_str(), ""));
2582 		const bool isLayered = (texture.numLayers() > 1);
2583 
2584 		if (texture.type() == IMAGE_TYPE_BUFFER)
2585 			continue;
2586 
2587 		for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(s_formats); ++formatNdx)
2588 		{
2589 			groupWithFormatByImageViewType->addChild(new LoadStoreTest(testCtx, getFormatShortString(s_formats[formatNdx]), "", texture, s_formats[formatNdx], s_formats[formatNdx], LoadStoreTest::FLAG_DECLARE_IMAGE_FORMAT_IN_SHADER, DE_TRUE));
2590 			groupWithoutFormatByImageViewType->addChild(new LoadStoreTest(testCtx, getFormatShortString(s_formats[formatNdx]), "", texture, s_formats[formatNdx], s_formats[formatNdx], 0, DE_TRUE));
2591 
2592 			if (isLayered)
2593 				groupWithFormatByImageViewType->addChild(new LoadStoreTest(testCtx, getFormatShortString(s_formats[formatNdx]) + "_single_layer", "",
2594 														 texture, s_formats[formatNdx], s_formats[formatNdx],
2595 														 LoadStoreTest::FLAG_SINGLE_LAYER_BIND | LoadStoreTest::FLAG_DECLARE_IMAGE_FORMAT_IN_SHADER, DE_TRUE));
2596 		}
2597 
2598 		testGroupWithFormat->addChild(groupWithFormatByImageViewType.release());
2599 		testGroupWithoutFormat->addChild(groupWithoutFormatByImageViewType.release());
2600 	}
2601 
2602 	testGroup->addChild(testGroupWithFormat.release());
2603 	testGroup->addChild(testGroupWithoutFormat.release());
2604 
2605 	return testGroup.release();
2606 }
2607 
createImageFormatReinterpretTests(tcu::TestContext & testCtx)2608 tcu::TestCaseGroup* createImageFormatReinterpretTests (tcu::TestContext& testCtx)
2609 {
2610 	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "format_reinterpret",	"Cases with differing texture and image formats"));
2611 
2612 	for (int textureNdx = 0; textureNdx < DE_LENGTH_OF_ARRAY(s_textures); ++textureNdx)
2613 	{
2614 		const Texture& texture = s_textures[textureNdx];
2615 		de::MovePtr<tcu::TestCaseGroup> groupByImageViewType (new tcu::TestCaseGroup(testCtx, getImageTypeName(texture.type()).c_str(), ""));
2616 
2617 		for (int imageFormatNdx = 0; imageFormatNdx < DE_LENGTH_OF_ARRAY(s_formats); ++imageFormatNdx)
2618 		for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(s_formats); ++formatNdx)
2619 		{
2620 			const std::string caseName = getFormatShortString(s_formats[imageFormatNdx]) + "_" + getFormatShortString(s_formats[formatNdx]);
2621 			if (imageFormatNdx != formatNdx && formatsAreCompatible(s_formats[imageFormatNdx], s_formats[formatNdx]))
2622 				groupByImageViewType->addChild(new LoadStoreTest(testCtx, caseName, "", texture, s_formats[formatNdx], s_formats[imageFormatNdx]));
2623 		}
2624 		testGroup->addChild(groupByImageViewType.release());
2625 	}
2626 
2627 	return testGroup.release();
2628 }
2629 
createImageQualifierRestrictCase(tcu::TestContext & testCtx,const ImageType imageType,const std::string & name)2630 de::MovePtr<TestCase> createImageQualifierRestrictCase (tcu::TestContext& testCtx, const ImageType imageType, const std::string& name)
2631 {
2632 	const VkFormat format = VK_FORMAT_R32G32B32A32_UINT;
2633 	const Texture& texture = getTestTexture(imageType);
2634 	return de::MovePtr<TestCase>(new LoadStoreTest(testCtx, name, "", texture, format, format, LoadStoreTest::FLAG_RESTRICT_IMAGES | LoadStoreTest::FLAG_DECLARE_IMAGE_FORMAT_IN_SHADER));
2635 }
2636 
relaxedOK(VkFormat format)2637 static bool relaxedOK(VkFormat format)
2638 {
2639 	tcu::IVec4 bitDepth = tcu::getTextureFormatBitDepth(mapVkFormat(format));
2640 	int maxBitDepth = deMax32(deMax32(bitDepth[0], bitDepth[1]), deMax32(bitDepth[2], bitDepth[3]));
2641 	return maxBitDepth <= 16;
2642 }
2643 
createImageExtendOperandsTests(tcu::TestContext & testCtx)2644 tcu::TestCaseGroup* createImageExtendOperandsTests(tcu::TestContext& testCtx)
2645 {
2646 	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "extend_operands_spirv1p4", "Cases with SignExtend and ZeroExtend"));
2647 
2648 	const auto texture = Texture(IMAGE_TYPE_2D, tcu::IVec3(8, 8, 1), 1);
2649 	for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(s_formats); ++formatNdx)
2650 	{
2651 		auto format = s_formats[formatNdx];
2652 		if (!isIntFormat(format) && !isUintFormat(format))
2653 			continue;
2654 
2655 		for (int prec = 0; prec < 2; prec++)
2656 		{
2657 			bool relaxedPrecision = (prec != 0);
2658 			if (relaxedPrecision && !relaxedOK(format))
2659 				continue;
2660 
2661 			const std::string name = getFormatShortString(format) + (relaxedPrecision ? "_relaxed" : "");
2662 			testGroup->addChild(new ImageExtendOperandTest(testCtx, name + "_matching_extend", texture, format, false, relaxedPrecision));
2663 			// For signed types test both using the sign bit in SPIR-V and the new operand
2664 			if (isIntFormat(format))
2665 				testGroup->addChild(new ImageExtendOperandTest(testCtx, name + "_force_sign_extend", texture, format, true, relaxedPrecision));
2666 		}
2667 	}
2668 
2669 	return testGroup.release();
2670 }
2671 
2672 } // image
2673 } // vkt
2674