1 /*
2 * Cinepak encoder (c) 2011 Tomas Härdin
3 * http://titan.codemill.se/~tomhar/cinepakenc.patch
4 *
5 * Fixes and improvements, vintage decoders compatibility
6 * (c) 2013, 2014 Rl, Aetey Global Technologies AB
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27 /*
28 * TODO:
29 * - optimize: color space conversion (move conversion to libswscale), ...
30 * MAYBE:
31 * - "optimally" split the frame into several non-regular areas
32 * using a separate codebook pair for each area and approximating
33 * the area by several rectangular strips (generally not full width ones)
34 * (use quadtree splitting? a simple fixed-granularity grid?)
35 */
36
37 #include <string.h>
38
39 #include "libavutil/avassert.h"
40 #include "libavutil/common.h"
41 #include "libavutil/internal.h"
42 #include "libavutil/intreadwrite.h"
43 #include "libavutil/lfg.h"
44 #include "libavutil/opt.h"
45
46 #include "avcodec.h"
47 #include "elbg.h"
48 #include "internal.h"
49
50 #define CVID_HEADER_SIZE 10
51 #define STRIP_HEADER_SIZE 12
52 #define CHUNK_HEADER_SIZE 4
53
54 #define MB_SIZE 4 //4x4 MBs
55 #define MB_AREA (MB_SIZE * MB_SIZE)
56
57 #define VECTOR_MAX 6 // six or four entries per vector depending on format
58 #define CODEBOOK_MAX 256 // size of a codebook
59
60 #define MAX_STRIPS 32 // Note: having fewer choices regarding the number of strips speeds up encoding (obviously)
61 #define MIN_STRIPS 1 // Note: having more strips speeds up encoding the frame (this is less obvious)
62 // MAX_STRIPS limits the maximum quality you can reach
63 // when you want high quality on high resolutions,
64 // MIN_STRIPS limits the minimum efficiently encodable bit rate
65 // on low resolutions
66 // the numbers are only used for brute force optimization for the first frame,
67 // for the following frames they are adaptively readjusted
68 // NOTE the decoder in ffmpeg has its own arbitrary limitation on the number
69 // of strips, currently 32
70
71 typedef enum CinepakMode {
72 MODE_V1_ONLY = 0,
73 MODE_V1_V4,
74 MODE_MC,
75
76 MODE_COUNT,
77 } CinepakMode;
78
79 typedef enum mb_encoding {
80 ENC_V1,
81 ENC_V4,
82 ENC_SKIP,
83
84 ENC_UNCERTAIN
85 } mb_encoding;
86
87 typedef struct mb_info {
88 int v1_vector; // index into v1 codebook
89 int v1_error; // error when using V1 encoding
90 int v4_vector[4]; // indices into v4 codebook
91 int v4_error; // error when using V4 encoding
92 int skip_error; // error when block is skipped (aka copied from last frame)
93 mb_encoding best_encoding; // last result from calculate_mode_score()
94 } mb_info;
95
96 typedef struct strip_info {
97 int v1_codebook[CODEBOOK_MAX * VECTOR_MAX];
98 int v4_codebook[CODEBOOK_MAX * VECTOR_MAX];
99 int v1_size;
100 int v4_size;
101 CinepakMode mode;
102 } strip_info;
103
104 typedef struct CinepakEncContext {
105 const AVClass *class;
106 AVCodecContext *avctx;
107 unsigned char *pict_bufs[4], *strip_buf, *frame_buf;
108 AVFrame *last_frame;
109 AVFrame *best_frame;
110 AVFrame *scratch_frame;
111 AVFrame *input_frame;
112 enum AVPixelFormat pix_fmt;
113 int w, h;
114 int frame_buf_size;
115 int curframe, keyint;
116 AVLFG randctx;
117 uint64_t lambda;
118 int *codebook_input;
119 int *codebook_closest;
120 mb_info *mb; // MB RD state
121 int min_strips; // the current limit
122 int max_strips; // the current limit
123 // options
124 int max_extra_cb_iterations;
125 int skip_empty_cb;
126 int min_min_strips;
127 int max_max_strips;
128 int strip_number_delta_range;
129 } CinepakEncContext;
130
131 #define OFFSET(x) offsetof(CinepakEncContext, x)
132 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
133 static const AVOption options[] = {
134 { "max_extra_cb_iterations", "Max extra codebook recalculation passes, more is better and slower",
135 OFFSET(max_extra_cb_iterations), AV_OPT_TYPE_INT, { .i64 = 2 }, 0, INT_MAX, VE },
136 { "skip_empty_cb", "Avoid wasting bytes, ignore vintage MacOS decoder",
137 OFFSET(skip_empty_cb), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
138 { "max_strips", "Limit strips/frame, vintage compatible is 1..3, otherwise the more the better",
139 OFFSET(max_max_strips), AV_OPT_TYPE_INT, { .i64 = 3 }, MIN_STRIPS, MAX_STRIPS, VE },
140 { "min_strips", "Enforce min strips/frame, more is worse and faster, must be <= max_strips",
141 OFFSET(min_min_strips), AV_OPT_TYPE_INT, { .i64 = MIN_STRIPS }, MIN_STRIPS, MAX_STRIPS, VE },
142 { "strip_number_adaptivity", "How fast the strip number adapts, more is slightly better, much slower",
143 OFFSET(strip_number_delta_range), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, MAX_STRIPS - MIN_STRIPS, VE },
144 { NULL },
145 };
146
147 static const AVClass cinepak_class = {
148 .class_name = "cinepak",
149 .item_name = av_default_item_name,
150 .option = options,
151 .version = LIBAVUTIL_VERSION_INT,
152 };
153
cinepak_encode_init(AVCodecContext * avctx)154 static av_cold int cinepak_encode_init(AVCodecContext *avctx)
155 {
156 CinepakEncContext *s = avctx->priv_data;
157 int x, mb_count, strip_buf_size, frame_buf_size;
158
159 if (avctx->width & 3 || avctx->height & 3) {
160 av_log(avctx, AV_LOG_ERROR, "width and height must be multiples of four (got %ix%i)\n",
161 avctx->width, avctx->height);
162 return AVERROR(EINVAL);
163 }
164
165 if (s->min_min_strips > s->max_max_strips) {
166 av_log(avctx, AV_LOG_ERROR, "minimum number of strips must not exceed maximum (got %i and %i)\n",
167 s->min_min_strips, s->max_max_strips);
168 return AVERROR(EINVAL);
169 }
170
171 if (!(s->last_frame = av_frame_alloc()))
172 return AVERROR(ENOMEM);
173 if (!(s->best_frame = av_frame_alloc()))
174 return AVERROR(ENOMEM);
175 if (!(s->scratch_frame = av_frame_alloc()))
176 return AVERROR(ENOMEM);
177 if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
178 if (!(s->input_frame = av_frame_alloc()))
179 return AVERROR(ENOMEM);
180
181 if (!(s->codebook_input = av_malloc_array((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2, sizeof(*s->codebook_input))))
182 return AVERROR(ENOMEM);
183
184 if (!(s->codebook_closest = av_malloc_array((avctx->width * avctx->height) >> 2, sizeof(*s->codebook_closest))))
185 return AVERROR(ENOMEM);;
186
187 for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
188 if (!(s->pict_bufs[x] = av_malloc((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2)))
189 return AVERROR(ENOMEM);
190
191 mb_count = avctx->width * avctx->height / MB_AREA;
192
193 // the largest possible chunk is 0x31 with all MBs encoded in V4 mode
194 // and full codebooks being replaced in INTER mode,
195 // which is 34 bits per MB
196 // and 2*256 extra flag bits per strip
197 strip_buf_size = STRIP_HEADER_SIZE + 3 * CHUNK_HEADER_SIZE + 2 * VECTOR_MAX * CODEBOOK_MAX + 4 * (mb_count + (mb_count + 15) / 16) + (2 * CODEBOOK_MAX) / 8;
198
199 frame_buf_size = CVID_HEADER_SIZE + s->max_max_strips * strip_buf_size;
200
201 if (!(s->strip_buf = av_malloc(strip_buf_size)))
202 return AVERROR(ENOMEM);
203
204 if (!(s->frame_buf = av_malloc(frame_buf_size)))
205 return AVERROR(ENOMEM);
206
207 if (!(s->mb = av_malloc_array(mb_count, sizeof(mb_info))))
208 return AVERROR(ENOMEM);
209
210 av_lfg_init(&s->randctx, 1);
211 s->avctx = avctx;
212 s->w = avctx->width;
213 s->h = avctx->height;
214 s->frame_buf_size = frame_buf_size;
215 s->curframe = 0;
216 s->keyint = avctx->keyint_min;
217 s->pix_fmt = avctx->pix_fmt;
218
219 // set up AVFrames
220 s->last_frame->data[0] = s->pict_bufs[0];
221 s->last_frame->linesize[0] = s->w;
222 s->best_frame->data[0] = s->pict_bufs[1];
223 s->best_frame->linesize[0] = s->w;
224 s->scratch_frame->data[0] = s->pict_bufs[2];
225 s->scratch_frame->linesize[0] = s->w;
226
227 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
228 s->last_frame->data[1] = s->last_frame->data[0] + s->w * s->h;
229 s->last_frame->data[2] = s->last_frame->data[1] + ((s->w * s->h) >> 2);
230 s->last_frame->linesize[1] =
231 s->last_frame->linesize[2] = s->w >> 1;
232
233 s->best_frame->data[1] = s->best_frame->data[0] + s->w * s->h;
234 s->best_frame->data[2] = s->best_frame->data[1] + ((s->w * s->h) >> 2);
235 s->best_frame->linesize[1] =
236 s->best_frame->linesize[2] = s->w >> 1;
237
238 s->scratch_frame->data[1] = s->scratch_frame->data[0] + s->w * s->h;
239 s->scratch_frame->data[2] = s->scratch_frame->data[1] + ((s->w * s->h) >> 2);
240 s->scratch_frame->linesize[1] =
241 s->scratch_frame->linesize[2] = s->w >> 1;
242
243 s->input_frame->data[0] = s->pict_bufs[3];
244 s->input_frame->linesize[0] = s->w;
245 s->input_frame->data[1] = s->input_frame->data[0] + s->w * s->h;
246 s->input_frame->data[2] = s->input_frame->data[1] + ((s->w * s->h) >> 2);
247 s->input_frame->linesize[1] =
248 s->input_frame->linesize[2] = s->w >> 1;
249 }
250
251 s->min_strips = s->min_min_strips;
252 s->max_strips = s->max_max_strips;
253
254 return 0;
255 }
256
calculate_mode_score(CinepakEncContext * s,int h,strip_info * info,int report,int * training_set_v1_shrunk,int * training_set_v4_shrunk)257 static int64_t calculate_mode_score(CinepakEncContext *s, int h,
258 strip_info *info, int report,
259 int *training_set_v1_shrunk,
260 int *training_set_v4_shrunk)
261 {
262 // score = FF_LAMBDA_SCALE * error + lambda * bits
263 int x;
264 int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
265 int mb_count = s->w * h / MB_AREA;
266 mb_info *mb;
267 int64_t score1, score2, score3;
268 int64_t ret = s->lambda * ((info->v1_size ? CHUNK_HEADER_SIZE + info->v1_size * entry_size : 0) +
269 (info->v4_size ? CHUNK_HEADER_SIZE + info->v4_size * entry_size : 0) +
270 CHUNK_HEADER_SIZE) << 3;
271
272 switch (info->mode) {
273 case MODE_V1_ONLY:
274 // one byte per MB
275 ret += s->lambda * 8 * mb_count;
276
277 // while calculating we assume all blocks are ENC_V1
278 for (x = 0; x < mb_count; x++) {
279 mb = &s->mb[x];
280 ret += FF_LAMBDA_SCALE * mb->v1_error;
281 // this function is never called for report in MODE_V1_ONLY
282 // if (!report)
283 mb->best_encoding = ENC_V1;
284 }
285
286 break;
287 case MODE_V1_V4:
288 // 9 or 33 bits per MB
289 if (report) {
290 // no moves between the corresponding training sets are allowed
291 *training_set_v1_shrunk = *training_set_v4_shrunk = 0;
292 for (x = 0; x < mb_count; x++) {
293 int mberr;
294 mb = &s->mb[x];
295 if (mb->best_encoding == ENC_V1)
296 score1 = s->lambda * 9 + FF_LAMBDA_SCALE * (mberr = mb->v1_error);
297 else
298 score1 = s->lambda * 33 + FF_LAMBDA_SCALE * (mberr = mb->v4_error);
299 ret += score1;
300 }
301 } else { // find best mode per block
302 for (x = 0; x < mb_count; x++) {
303 mb = &s->mb[x];
304 score1 = s->lambda * 9 + FF_LAMBDA_SCALE * mb->v1_error;
305 score2 = s->lambda * 33 + FF_LAMBDA_SCALE * mb->v4_error;
306
307 if (score1 <= score2) {
308 ret += score1;
309 mb->best_encoding = ENC_V1;
310 } else {
311 ret += score2;
312 mb->best_encoding = ENC_V4;
313 }
314 }
315 }
316
317 break;
318 case MODE_MC:
319 // 1, 10 or 34 bits per MB
320 if (report) {
321 int v1_shrunk = 0, v4_shrunk = 0;
322 for (x = 0; x < mb_count; x++) {
323 mb = &s->mb[x];
324 // it is OK to move blocks to ENC_SKIP here
325 // but not to any codebook encoding!
326 score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error;
327 if (mb->best_encoding == ENC_SKIP) {
328 ret += score1;
329 } else if (mb->best_encoding == ENC_V1) {
330 if ((score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error) >= score1) {
331 mb->best_encoding = ENC_SKIP;
332 ++v1_shrunk;
333 ret += score1;
334 } else {
335 ret += score2;
336 }
337 } else {
338 if ((score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error) >= score1) {
339 mb->best_encoding = ENC_SKIP;
340 ++v4_shrunk;
341 ret += score1;
342 } else {
343 ret += score3;
344 }
345 }
346 }
347 *training_set_v1_shrunk = v1_shrunk;
348 *training_set_v4_shrunk = v4_shrunk;
349 } else { // find best mode per block
350 for (x = 0; x < mb_count; x++) {
351 mb = &s->mb[x];
352 score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error;
353 score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error;
354 score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error;
355
356 if (score1 <= score2 && score1 <= score3) {
357 ret += score1;
358 mb->best_encoding = ENC_SKIP;
359 } else if (score2 <= score3) {
360 ret += score2;
361 mb->best_encoding = ENC_V1;
362 } else {
363 ret += score3;
364 mb->best_encoding = ENC_V4;
365 }
366 }
367 }
368
369 break;
370 }
371
372 return ret;
373 }
374
write_chunk_header(unsigned char * buf,int chunk_type,int chunk_size)375 static int write_chunk_header(unsigned char *buf, int chunk_type, int chunk_size)
376 {
377 buf[0] = chunk_type;
378 AV_WB24(&buf[1], chunk_size + CHUNK_HEADER_SIZE);
379 return CHUNK_HEADER_SIZE;
380 }
381
encode_codebook(CinepakEncContext * s,int * codebook,int size,int chunk_type_yuv,int chunk_type_gray,unsigned char * buf)382 static int encode_codebook(CinepakEncContext *s, int *codebook, int size,
383 int chunk_type_yuv, int chunk_type_gray,
384 unsigned char *buf)
385 {
386 int x, y, ret, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
387 int incremental_codebook_replacement_mode = 0; // hardcoded here,
388 // the compiler should notice that this is a constant -- rl
389
390 ret = write_chunk_header(buf,
391 s->pix_fmt == AV_PIX_FMT_RGB24 ?
392 chunk_type_yuv + (incremental_codebook_replacement_mode ? 1 : 0) :
393 chunk_type_gray + (incremental_codebook_replacement_mode ? 1 : 0),
394 entry_size * size +
395 (incremental_codebook_replacement_mode ? (size + 31) / 32 * 4 : 0));
396
397 // we do codebook encoding according to the "intra" mode
398 // but we keep the "dead" code for reference in case we will want
399 // to use incremental codebook updates (which actually would give us
400 // "kind of" motion compensation, especially in 1 strip/frame case) -- rl
401 // (of course, the code will be not useful as-is)
402 if (incremental_codebook_replacement_mode) {
403 int flags = 0;
404 int flagsind;
405 for (x = 0; x < size; x++) {
406 if (flags == 0) {
407 flagsind = ret;
408 ret += 4;
409 flags = 0x80000000;
410 } else
411 flags = ((flags >> 1) | 0x80000000);
412 for (y = 0; y < entry_size; y++)
413 buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0);
414 if ((flags & 0xffffffff) == 0xffffffff) {
415 AV_WB32(&buf[flagsind], flags);
416 flags = 0;
417 }
418 }
419 if (flags)
420 AV_WB32(&buf[flagsind], flags);
421 } else
422 for (x = 0; x < size; x++)
423 for (y = 0; y < entry_size; y++)
424 buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0);
425
426 return ret;
427 }
428
429 // sets out to the sub picture starting at (x,y) in in
get_sub_picture(CinepakEncContext * s,int x,int y,uint8_t * in_data[4],int in_linesize[4],uint8_t * out_data[4],int out_linesize[4])430 static void get_sub_picture(CinepakEncContext *s, int x, int y,
431 uint8_t * in_data[4], int in_linesize[4],
432 uint8_t *out_data[4], int out_linesize[4])
433 {
434 out_data[0] = in_data[0] + x + y * in_linesize[0];
435 out_linesize[0] = in_linesize[0];
436
437 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
438 out_data[1] = in_data[1] + (x >> 1) + (y >> 1) * in_linesize[1];
439 out_linesize[1] = in_linesize[1];
440
441 out_data[2] = in_data[2] + (x >> 1) + (y >> 1) * in_linesize[2];
442 out_linesize[2] = in_linesize[2];
443 }
444 }
445
446 // decodes the V1 vector in mb into the 4x4 MB pointed to by data
decode_v1_vector(CinepakEncContext * s,uint8_t * data[4],int linesize[4],int v1_vector,strip_info * info)447 static void decode_v1_vector(CinepakEncContext *s, uint8_t *data[4],
448 int linesize[4], int v1_vector, strip_info *info)
449 {
450 int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
451
452 data[0][0] =
453 data[0][1] =
454 data[0][ linesize[0]] =
455 data[0][1 + linesize[0]] = info->v1_codebook[v1_vector * entry_size];
456
457 data[0][2] =
458 data[0][3] =
459 data[0][2 + linesize[0]] =
460 data[0][3 + linesize[0]] = info->v1_codebook[v1_vector * entry_size + 1];
461
462 data[0][ 2 * linesize[0]] =
463 data[0][1 + 2 * linesize[0]] =
464 data[0][ 3 * linesize[0]] =
465 data[0][1 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 2];
466
467 data[0][2 + 2 * linesize[0]] =
468 data[0][3 + 2 * linesize[0]] =
469 data[0][2 + 3 * linesize[0]] =
470 data[0][3 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 3];
471
472 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
473 data[1][0] =
474 data[1][1] =
475 data[1][ linesize[1]] =
476 data[1][1 + linesize[1]] = info->v1_codebook[v1_vector * entry_size + 4];
477
478 data[2][0] =
479 data[2][1] =
480 data[2][ linesize[2]] =
481 data[2][1 + linesize[2]] = info->v1_codebook[v1_vector * entry_size + 5];
482 }
483 }
484
485 // decodes the V4 vectors in mb into the 4x4 MB pointed to by data
decode_v4_vector(CinepakEncContext * s,uint8_t * data[4],int linesize[4],int * v4_vector,strip_info * info)486 static void decode_v4_vector(CinepakEncContext *s, uint8_t *data[4],
487 int linesize[4], int *v4_vector, strip_info *info)
488 {
489 int i, x, y, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
490
491 for (i = y = 0; y < 4; y += 2) {
492 for (x = 0; x < 4; x += 2, i++) {
493 data[0][x + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size];
494 data[0][x + 1 + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 1];
495 data[0][x + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 2];
496 data[0][x + 1 + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 3];
497
498 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
499 data[1][(x >> 1) + (y >> 1) * linesize[1]] = info->v4_codebook[v4_vector[i] * entry_size + 4];
500 data[2][(x >> 1) + (y >> 1) * linesize[2]] = info->v4_codebook[v4_vector[i] * entry_size + 5];
501 }
502 }
503 }
504 }
505
copy_mb(CinepakEncContext * s,uint8_t * a_data[4],int a_linesize[4],uint8_t * b_data[4],int b_linesize[4])506 static void copy_mb(CinepakEncContext *s,
507 uint8_t *a_data[4], int a_linesize[4],
508 uint8_t *b_data[4], int b_linesize[4])
509 {
510 int y, p;
511
512 for (y = 0; y < MB_SIZE; y++)
513 memcpy(a_data[0] + y * a_linesize[0], b_data[0] + y * b_linesize[0],
514 MB_SIZE);
515
516 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
517 for (p = 1; p <= 2; p++)
518 for (y = 0; y < MB_SIZE / 2; y++)
519 memcpy(a_data[p] + y * a_linesize[p],
520 b_data[p] + y * b_linesize[p],
521 MB_SIZE / 2);
522 }
523 }
524
encode_mode(CinepakEncContext * s,int h,uint8_t * scratch_data[4],int scratch_linesize[4],uint8_t * last_data[4],int last_linesize[4],strip_info * info,unsigned char * buf)525 static int encode_mode(CinepakEncContext *s, int h,
526 uint8_t *scratch_data[4], int scratch_linesize[4],
527 uint8_t *last_data[4], int last_linesize[4],
528 strip_info *info, unsigned char *buf)
529 {
530 int x, y, z, bits, temp_size, header_ofs, ret = 0, mb_count = s->w * h / MB_AREA;
531 int needs_extra_bit, should_write_temp;
532 uint32_t flags;
533 unsigned char temp[64]; // 32/2 = 16 V4 blocks at 4 B each -> 64 B
534 mb_info *mb;
535 uint8_t *sub_scratch_data[4] = { 0 }, *sub_last_data[4] = { 0 };
536 int sub_scratch_linesize[4] = { 0 }, sub_last_linesize[4] = { 0 };
537
538 // encode codebooks
539 ////// MacOS vintage decoder compatibility dictates the presence of
540 ////// the codebook chunk even when the codebook is empty - pretty dumb...
541 ////// and also the certain order of the codebook chunks -- rl
542 if (info->v4_size || !s->skip_empty_cb)
543 ret += encode_codebook(s, info->v4_codebook, info->v4_size, 0x20, 0x24, buf + ret);
544
545 if (info->v1_size || !s->skip_empty_cb)
546 ret += encode_codebook(s, info->v1_codebook, info->v1_size, 0x22, 0x26, buf + ret);
547
548 // update scratch picture
549 for (z = y = 0; y < h; y += MB_SIZE)
550 for (x = 0; x < s->w; x += MB_SIZE, z++) {
551 mb = &s->mb[z];
552
553 get_sub_picture(s, x, y, scratch_data, scratch_linesize,
554 sub_scratch_data, sub_scratch_linesize);
555
556 if (info->mode == MODE_MC && mb->best_encoding == ENC_SKIP) {
557 get_sub_picture(s, x, y, last_data, last_linesize,
558 sub_last_data, sub_last_linesize);
559 copy_mb(s, sub_scratch_data, sub_scratch_linesize,
560 sub_last_data, sub_last_linesize);
561 } else if (info->mode == MODE_V1_ONLY || mb->best_encoding == ENC_V1)
562 decode_v1_vector(s, sub_scratch_data, sub_scratch_linesize,
563 mb->v1_vector, info);
564 else
565 decode_v4_vector(s, sub_scratch_data, sub_scratch_linesize,
566 mb->v4_vector, info);
567 }
568
569 switch (info->mode) {
570 case MODE_V1_ONLY:
571 ret += write_chunk_header(buf + ret, 0x32, mb_count);
572
573 for (x = 0; x < mb_count; x++)
574 buf[ret++] = s->mb[x].v1_vector;
575
576 break;
577 case MODE_V1_V4:
578 // remember header position
579 header_ofs = ret;
580 ret += CHUNK_HEADER_SIZE;
581
582 for (x = 0; x < mb_count; x += 32) {
583 flags = 0;
584 for (y = x; y < FFMIN(x + 32, mb_count); y++)
585 if (s->mb[y].best_encoding == ENC_V4)
586 flags |= 1U << (31 - y + x);
587
588 AV_WB32(&buf[ret], flags);
589 ret += 4;
590
591 for (y = x; y < FFMIN(x + 32, mb_count); y++) {
592 mb = &s->mb[y];
593
594 if (mb->best_encoding == ENC_V1)
595 buf[ret++] = mb->v1_vector;
596 else
597 for (z = 0; z < 4; z++)
598 buf[ret++] = mb->v4_vector[z];
599 }
600 }
601
602 write_chunk_header(buf + header_ofs, 0x30, ret - header_ofs - CHUNK_HEADER_SIZE);
603
604 break;
605 case MODE_MC:
606 // remember header position
607 header_ofs = ret;
608 ret += CHUNK_HEADER_SIZE;
609 flags = bits = temp_size = 0;
610
611 for (x = 0; x < mb_count; x++) {
612 mb = &s->mb[x];
613 flags |= (uint32_t)(mb->best_encoding != ENC_SKIP) << (31 - bits++);
614 needs_extra_bit = 0;
615 should_write_temp = 0;
616
617 if (mb->best_encoding != ENC_SKIP) {
618 if (bits < 32)
619 flags |= (uint32_t)(mb->best_encoding == ENC_V4) << (31 - bits++);
620 else
621 needs_extra_bit = 1;
622 }
623
624 if (bits == 32) {
625 AV_WB32(&buf[ret], flags);
626 ret += 4;
627 flags = bits = 0;
628
629 if (mb->best_encoding == ENC_SKIP || needs_extra_bit) {
630 memcpy(&buf[ret], temp, temp_size);
631 ret += temp_size;
632 temp_size = 0;
633 } else
634 should_write_temp = 1;
635 }
636
637 if (needs_extra_bit) {
638 flags = (uint32_t)(mb->best_encoding == ENC_V4) << 31;
639 bits = 1;
640 }
641
642 if (mb->best_encoding == ENC_V1)
643 temp[temp_size++] = mb->v1_vector;
644 else if (mb->best_encoding == ENC_V4)
645 for (z = 0; z < 4; z++)
646 temp[temp_size++] = mb->v4_vector[z];
647
648 if (should_write_temp) {
649 memcpy(&buf[ret], temp, temp_size);
650 ret += temp_size;
651 temp_size = 0;
652 }
653 }
654
655 if (bits > 0) {
656 AV_WB32(&buf[ret], flags);
657 ret += 4;
658 memcpy(&buf[ret], temp, temp_size);
659 ret += temp_size;
660 }
661
662 write_chunk_header(buf + header_ofs, 0x31, ret - header_ofs - CHUNK_HEADER_SIZE);
663
664 break;
665 }
666
667 return ret;
668 }
669
670 // computes distortion of 4x4 MB in b compared to a
compute_mb_distortion(CinepakEncContext * s,uint8_t * a_data[4],int a_linesize[4],uint8_t * b_data[4],int b_linesize[4])671 static int compute_mb_distortion(CinepakEncContext *s,
672 uint8_t *a_data[4], int a_linesize[4],
673 uint8_t *b_data[4], int b_linesize[4])
674 {
675 int x, y, p, d, ret = 0;
676
677 for (y = 0; y < MB_SIZE; y++)
678 for (x = 0; x < MB_SIZE; x++) {
679 d = a_data[0][x + y * a_linesize[0]] - b_data[0][x + y * b_linesize[0]];
680 ret += d * d;
681 }
682
683 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
684 for (p = 1; p <= 2; p++) {
685 for (y = 0; y < MB_SIZE / 2; y++)
686 for (x = 0; x < MB_SIZE / 2; x++) {
687 d = a_data[p][x + y * a_linesize[p]] - b_data[p][x + y * b_linesize[p]];
688 ret += d * d;
689 }
690 }
691 }
692
693 return ret;
694 }
695
696 // return the possibly adjusted size of the codebook
697 #define CERTAIN(x) ((x) != ENC_UNCERTAIN)
quantize(CinepakEncContext * s,int h,uint8_t * data[4],int linesize[4],int v1mode,strip_info * info,mb_encoding encoding)698 static int quantize(CinepakEncContext *s, int h, uint8_t *data[4],
699 int linesize[4], int v1mode, strip_info *info,
700 mb_encoding encoding)
701 {
702 int x, y, i, j, k, x2, y2, x3, y3, plane, shift, mbn;
703 int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
704 int *codebook = v1mode ? info->v1_codebook : info->v4_codebook;
705 int size = v1mode ? info->v1_size : info->v4_size;
706 int64_t total_error = 0;
707 uint8_t vq_pict_buf[(MB_AREA * 3) / 2];
708 uint8_t *sub_data[4], *vq_data[4];
709 int sub_linesize[4], vq_linesize[4];
710
711 for (mbn = i = y = 0; y < h; y += MB_SIZE) {
712 for (x = 0; x < s->w; x += MB_SIZE, ++mbn) {
713 int *base;
714
715 if (CERTAIN(encoding)) {
716 // use for the training only the blocks known to be to be encoded [sic:-]
717 if (s->mb[mbn].best_encoding != encoding)
718 continue;
719 }
720
721 base = s->codebook_input + i * entry_size;
722 if (v1mode) {
723 // subsample
724 for (j = y2 = 0; y2 < entry_size; y2 += 2)
725 for (x2 = 0; x2 < 4; x2 += 2, j++) {
726 plane = y2 < 4 ? 0 : 1 + (x2 >> 1);
727 shift = y2 < 4 ? 0 : 1;
728 x3 = shift ? 0 : x2;
729 y3 = shift ? 0 : y2;
730 base[j] = (data[plane][((x + x3) >> shift) + ((y + y3) >> shift) * linesize[plane]] +
731 data[plane][((x + x3) >> shift) + 1 + ((y + y3) >> shift) * linesize[plane]] +
732 data[plane][((x + x3) >> shift) + (((y + y3) >> shift) + 1) * linesize[plane]] +
733 data[plane][((x + x3) >> shift) + 1 + (((y + y3) >> shift) + 1) * linesize[plane]]) >> 2;
734 }
735 } else {
736 // copy
737 for (j = y2 = 0; y2 < MB_SIZE; y2 += 2) {
738 for (x2 = 0; x2 < MB_SIZE; x2 += 2)
739 for (k = 0; k < entry_size; k++, j++) {
740 plane = k >= 4 ? k - 3 : 0;
741
742 if (k >= 4) {
743 x3 = (x + x2) >> 1;
744 y3 = (y + y2) >> 1;
745 } else {
746 x3 = x + x2 + (k & 1);
747 y3 = y + y2 + (k >> 1);
748 }
749
750 base[j] = data[plane][x3 + y3 * linesize[plane]];
751 }
752 }
753 }
754 i += v1mode ? 1 : 4;
755 }
756 }
757
758 if (i == 0) // empty training set, nothing to do
759 return 0;
760 if (i < size)
761 size = i;
762
763 avpriv_init_elbg(s->codebook_input, entry_size, i, codebook, size, 1, s->codebook_closest, &s->randctx);
764 avpriv_do_elbg(s->codebook_input, entry_size, i, codebook, size, 1, s->codebook_closest, &s->randctx);
765
766 // set up vq_data, which contains a single MB
767 vq_data[0] = vq_pict_buf;
768 vq_linesize[0] = MB_SIZE;
769 vq_data[1] = &vq_pict_buf[MB_AREA];
770 vq_data[2] = vq_data[1] + (MB_AREA >> 2);
771 vq_linesize[1] =
772 vq_linesize[2] = MB_SIZE >> 1;
773
774 // copy indices
775 for (i = j = y = 0; y < h; y += MB_SIZE)
776 for (x = 0; x < s->w; x += MB_SIZE, j++) {
777 mb_info *mb = &s->mb[j];
778 // skip uninteresting blocks if we know their preferred encoding
779 if (CERTAIN(encoding) && mb->best_encoding != encoding)
780 continue;
781
782 // point sub_data to current MB
783 get_sub_picture(s, x, y, data, linesize, sub_data, sub_linesize);
784
785 if (v1mode) {
786 mb->v1_vector = s->codebook_closest[i];
787
788 // fill in vq_data with V1 data
789 decode_v1_vector(s, vq_data, vq_linesize, mb->v1_vector, info);
790
791 mb->v1_error = compute_mb_distortion(s, sub_data, sub_linesize,
792 vq_data, vq_linesize);
793 total_error += mb->v1_error;
794 } else {
795 for (k = 0; k < 4; k++)
796 mb->v4_vector[k] = s->codebook_closest[i + k];
797
798 // fill in vq_data with V4 data
799 decode_v4_vector(s, vq_data, vq_linesize, mb->v4_vector, info);
800
801 mb->v4_error = compute_mb_distortion(s, sub_data, sub_linesize,
802 vq_data, vq_linesize);
803 total_error += mb->v4_error;
804 }
805 i += v1mode ? 1 : 4;
806 }
807 // check that we did it right in the beginning of the function
808 av_assert0(i >= size); // training set is no smaller than the codebook
809
810 return size;
811 }
812
calculate_skip_errors(CinepakEncContext * s,int h,uint8_t * last_data[4],int last_linesize[4],uint8_t * data[4],int linesize[4],strip_info * info)813 static void calculate_skip_errors(CinepakEncContext *s, int h,
814 uint8_t *last_data[4], int last_linesize[4],
815 uint8_t *data[4], int linesize[4],
816 strip_info *info)
817 {
818 int x, y, i;
819 uint8_t *sub_last_data [4], *sub_pict_data [4];
820 int sub_last_linesize[4], sub_pict_linesize[4];
821
822 for (i = y = 0; y < h; y += MB_SIZE)
823 for (x = 0; x < s->w; x += MB_SIZE, i++) {
824 get_sub_picture(s, x, y, last_data, last_linesize,
825 sub_last_data, sub_last_linesize);
826 get_sub_picture(s, x, y, data, linesize,
827 sub_pict_data, sub_pict_linesize);
828
829 s->mb[i].skip_error =
830 compute_mb_distortion(s,
831 sub_last_data, sub_last_linesize,
832 sub_pict_data, sub_pict_linesize);
833 }
834 }
835
write_strip_header(CinepakEncContext * s,int y,int h,int keyframe,unsigned char * buf,int strip_size)836 static void write_strip_header(CinepakEncContext *s, int y, int h, int keyframe,
837 unsigned char *buf, int strip_size)
838 {
839 // actually we are exclusively using intra strip coding (how much can we win
840 // otherwise? how to choose which part of a codebook to update?),
841 // keyframes are different only because we disallow ENC_SKIP on them -- rl
842 // (besides, the logic here used to be inverted: )
843 // buf[0] = keyframe ? 0x11: 0x10;
844 buf[0] = keyframe ? 0x10 : 0x11;
845 AV_WB24(&buf[1], strip_size + STRIP_HEADER_SIZE);
846 // AV_WB16(&buf[4], y); /* using absolute y values works -- rl */
847 AV_WB16(&buf[4], 0); /* using relative values works as well -- rl */
848 AV_WB16(&buf[6], 0);
849 // AV_WB16(&buf[8], y + h); /* using absolute y values works -- rl */
850 AV_WB16(&buf[8], h); /* using relative values works as well -- rl */
851 AV_WB16(&buf[10], s->w);
852 }
853
rd_strip(CinepakEncContext * s,int y,int h,int keyframe,uint8_t * last_data[4],int last_linesize[4],uint8_t * data[4],int linesize[4],uint8_t * scratch_data[4],int scratch_linesize[4],unsigned char * buf,int64_t * best_score)854 static int rd_strip(CinepakEncContext *s, int y, int h, int keyframe,
855 uint8_t *last_data[4], int last_linesize[4],
856 uint8_t *data[4], int linesize[4],
857 uint8_t *scratch_data[4], int scratch_linesize[4],
858 unsigned char *buf, int64_t *best_score)
859 {
860 int64_t score = 0;
861 int best_size = 0;
862 strip_info info;
863 // for codebook optimization:
864 int v1enough, v1_size, v4enough, v4_size;
865 int new_v1_size, new_v4_size;
866 int v1shrunk, v4shrunk;
867
868 if (!keyframe)
869 calculate_skip_errors(s, h, last_data, last_linesize, data, linesize,
870 &info);
871
872 // try some powers of 4 for the size of the codebooks
873 // constraint the v4 codebook to be no bigger than v1 one,
874 // (and no less than v1_size/4)
875 // thus making v1 preferable and possibly losing small details? should be ok
876 #define SMALLEST_CODEBOOK 1
877 for (v1enough = 0, v1_size = SMALLEST_CODEBOOK; v1_size <= CODEBOOK_MAX && !v1enough; v1_size <<= 2) {
878 for (v4enough = 0, v4_size = 0; v4_size <= v1_size && !v4enough; v4_size = v4_size ? v4_size << 2 : v1_size >= SMALLEST_CODEBOOK << 2 ? v1_size >> 2 : SMALLEST_CODEBOOK) {
879 CinepakMode mode;
880 // try all modes
881 for (mode = 0; mode < MODE_COUNT; mode++) {
882 // don't allow MODE_MC in intra frames
883 if (keyframe && mode == MODE_MC)
884 continue;
885
886 if (mode == MODE_V1_ONLY) {
887 info.v1_size = v1_size;
888 // the size may shrink even before optimizations if the input is short:
889 info.v1_size = quantize(s, h, data, linesize, 1,
890 &info, ENC_UNCERTAIN);
891 if (info.v1_size < v1_size)
892 // too few eligible blocks, no sense in trying bigger sizes
893 v1enough = 1;
894
895 info.v4_size = 0;
896 } else { // mode != MODE_V1_ONLY
897 // if v4 codebook is empty then only allow V1-only mode
898 if (!v4_size)
899 continue;
900
901 if (mode == MODE_V1_V4) {
902 info.v4_size = v4_size;
903 info.v4_size = quantize(s, h, data, linesize, 0,
904 &info, ENC_UNCERTAIN);
905 if (info.v4_size < v4_size)
906 // too few eligible blocks, no sense in trying bigger sizes
907 v4enough = 1;
908 }
909 }
910
911 info.mode = mode;
912 // choose the best encoding per block, based on current experience
913 score = calculate_mode_score(s, h, &info, 0,
914 &v1shrunk, &v4shrunk);
915
916 if (mode != MODE_V1_ONLY) {
917 int extra_iterations_limit = s->max_extra_cb_iterations;
918 // recompute the codebooks, omitting the extra blocks
919 // we assume we _may_ come here with more blocks to encode than before
920 info.v1_size = v1_size;
921 new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1);
922 if (new_v1_size < info.v1_size)
923 info.v1_size = new_v1_size;
924 // we assume we _may_ come here with more blocks to encode than before
925 info.v4_size = v4_size;
926 new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4);
927 if (new_v4_size < info.v4_size)
928 info.v4_size = new_v4_size;
929 // calculate the resulting score
930 // (do not move blocks to codebook encodings now, as some blocks may have
931 // got bigger errors despite a smaller training set - but we do not
932 // ever grow the training sets back)
933 for (;;) {
934 score = calculate_mode_score(s, h, &info, 1,
935 &v1shrunk, &v4shrunk);
936 // do we have a reason to reiterate? if so, have we reached the limit?
937 if ((!v1shrunk && !v4shrunk) || !extra_iterations_limit--)
938 break;
939 // recompute the codebooks, omitting the extra blocks
940 if (v1shrunk) {
941 info.v1_size = v1_size;
942 new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1);
943 if (new_v1_size < info.v1_size)
944 info.v1_size = new_v1_size;
945 }
946 if (v4shrunk) {
947 info.v4_size = v4_size;
948 new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4);
949 if (new_v4_size < info.v4_size)
950 info.v4_size = new_v4_size;
951 }
952 }
953 }
954
955 if (best_size == 0 || score < *best_score) {
956 *best_score = score;
957 best_size = encode_mode(s, h,
958 scratch_data, scratch_linesize,
959 last_data, last_linesize, &info,
960 s->strip_buf + STRIP_HEADER_SIZE);
961
962 write_strip_header(s, y, h, keyframe, s->strip_buf, best_size);
963 }
964 }
965 }
966 }
967
968 best_size += STRIP_HEADER_SIZE;
969 memcpy(buf, s->strip_buf, best_size);
970
971 return best_size;
972 }
973
write_cvid_header(CinepakEncContext * s,unsigned char * buf,int num_strips,int data_size,int isakeyframe)974 static int write_cvid_header(CinepakEncContext *s, unsigned char *buf,
975 int num_strips, int data_size, int isakeyframe)
976 {
977 buf[0] = isakeyframe ? 0 : 1;
978 AV_WB24(&buf[1], data_size + CVID_HEADER_SIZE);
979 AV_WB16(&buf[4], s->w);
980 AV_WB16(&buf[6], s->h);
981 AV_WB16(&buf[8], num_strips);
982
983 return CVID_HEADER_SIZE;
984 }
985
rd_frame(CinepakEncContext * s,const AVFrame * frame,int isakeyframe,unsigned char * buf,int buf_size)986 static int rd_frame(CinepakEncContext *s, const AVFrame *frame,
987 int isakeyframe, unsigned char *buf, int buf_size)
988 {
989 int num_strips, strip, i, y, nexty, size, temp_size, best_size;
990 uint8_t *last_data [4], *data [4], *scratch_data [4];
991 int last_linesize[4], linesize[4], scratch_linesize[4];
992 int64_t best_score = 0, score, score_temp;
993 int best_nstrips;
994
995 if (s->pix_fmt == AV_PIX_FMT_RGB24) {
996 int x;
997 // build a copy of the given frame in the correct colorspace
998 for (y = 0; y < s->h; y += 2)
999 for (x = 0; x < s->w; x += 2) {
1000 uint8_t *ir[2];
1001 int32_t r, g, b, rr, gg, bb;
1002 ir[0] = frame->data[0] + x * 3 + y * frame->linesize[0];
1003 ir[1] = ir[0] + frame->linesize[0];
1004 get_sub_picture(s, x, y,
1005 s->input_frame->data, s->input_frame->linesize,
1006 scratch_data, scratch_linesize);
1007 r = g = b = 0;
1008 for (i = 0; i < 4; ++i) {
1009 int i1, i2;
1010 i1 = (i & 1);
1011 i2 = (i >= 2);
1012 rr = ir[i2][i1 * 3 + 0];
1013 gg = ir[i2][i1 * 3 + 1];
1014 bb = ir[i2][i1 * 3 + 2];
1015 r += rr;
1016 g += gg;
1017 b += bb;
1018 // using fixed point arithmetic for portable repeatability, scaling by 2^23
1019 // "Y"
1020 // rr = 0.2857 * rr + 0.5714 * gg + 0.1429 * bb;
1021 rr = (2396625 * rr + 4793251 * gg + 1198732 * bb) >> 23;
1022 if (rr < 0)
1023 rr = 0;
1024 else if (rr > 255)
1025 rr = 255;
1026 scratch_data[0][i1 + i2 * scratch_linesize[0]] = rr;
1027 }
1028 // let us scale down as late as possible
1029 // r /= 4; g /= 4; b /= 4;
1030 // "U"
1031 // rr = -0.1429 * r - 0.2857 * g + 0.4286 * b;
1032 rr = (-299683 * r - 599156 * g + 898839 * b) >> 23;
1033 if (rr < -128)
1034 rr = -128;
1035 else if (rr > 127)
1036 rr = 127;
1037 scratch_data[1][0] = rr + 128; // quantize needs unsigned
1038 // "V"
1039 // rr = 0.3571 * r - 0.2857 * g - 0.0714 * b;
1040 rr = (748893 * r - 599156 * g - 149737 * b) >> 23;
1041 if (rr < -128)
1042 rr = -128;
1043 else if (rr > 127)
1044 rr = 127;
1045 scratch_data[2][0] = rr + 128; // quantize needs unsigned
1046 }
1047 }
1048
1049 // would be nice but quite certainly incompatible with vintage players:
1050 // support encoding zero strips (meaning skip the whole frame)
1051 for (num_strips = s->min_strips; num_strips <= s->max_strips && num_strips <= s->h / MB_SIZE; num_strips++) {
1052 score = 0;
1053 size = 0;
1054
1055 for (y = 0, strip = 1; y < s->h; strip++, y = nexty) {
1056 int strip_height;
1057
1058 nexty = strip * s->h / num_strips; // <= s->h
1059 // make nexty the next multiple of 4 if not already there
1060 if (nexty & 3)
1061 nexty += 4 - (nexty & 3);
1062
1063 strip_height = nexty - y;
1064 if (strip_height <= 0) { // can this ever happen?
1065 av_log(s->avctx, AV_LOG_INFO, "skipping zero height strip %i of %i\n", strip, num_strips);
1066 continue;
1067 }
1068
1069 if (s->pix_fmt == AV_PIX_FMT_RGB24)
1070 get_sub_picture(s, 0, y,
1071 s->input_frame->data, s->input_frame->linesize,
1072 data, linesize);
1073 else
1074 get_sub_picture(s, 0, y,
1075 (uint8_t **)frame->data, (int *)frame->linesize,
1076 data, linesize);
1077 get_sub_picture(s, 0, y,
1078 s->last_frame->data, s->last_frame->linesize,
1079 last_data, last_linesize);
1080 get_sub_picture(s, 0, y,
1081 s->scratch_frame->data, s->scratch_frame->linesize,
1082 scratch_data, scratch_linesize);
1083
1084 if ((temp_size = rd_strip(s, y, strip_height, isakeyframe,
1085 last_data, last_linesize, data, linesize,
1086 scratch_data, scratch_linesize,
1087 s->frame_buf + size + CVID_HEADER_SIZE,
1088 &score_temp)) < 0)
1089 return temp_size;
1090
1091 score += score_temp;
1092 size += temp_size;
1093 }
1094
1095 if (best_score == 0 || score < best_score) {
1096 best_score = score;
1097 best_size = size + write_cvid_header(s, s->frame_buf, num_strips, size, isakeyframe);
1098
1099 FFSWAP(AVFrame *, s->best_frame, s->scratch_frame);
1100 memcpy(buf, s->frame_buf, best_size);
1101 best_nstrips = num_strips;
1102 }
1103 // avoid trying too many strip numbers without a real reason
1104 // (this makes the processing of the very first frame faster)
1105 if (num_strips - best_nstrips > 4)
1106 break;
1107 }
1108
1109 // let the number of strips slowly adapt to the changes in the contents,
1110 // compared to full bruteforcing every time this will occasionally lead
1111 // to some r/d performance loss but makes encoding up to several times faster
1112 if (!s->strip_number_delta_range) {
1113 if (best_nstrips == s->max_strips) { // let us try to step up
1114 s->max_strips = best_nstrips + 1;
1115 if (s->max_strips >= s->max_max_strips)
1116 s->max_strips = s->max_max_strips;
1117 } else { // try to step down
1118 s->max_strips = best_nstrips;
1119 }
1120 s->min_strips = s->max_strips - 1;
1121 if (s->min_strips < s->min_min_strips)
1122 s->min_strips = s->min_min_strips;
1123 } else {
1124 s->max_strips = best_nstrips + s->strip_number_delta_range;
1125 if (s->max_strips >= s->max_max_strips)
1126 s->max_strips = s->max_max_strips;
1127 s->min_strips = best_nstrips - s->strip_number_delta_range;
1128 if (s->min_strips < s->min_min_strips)
1129 s->min_strips = s->min_min_strips;
1130 }
1131
1132 return best_size;
1133 }
1134
cinepak_encode_frame(AVCodecContext * avctx,AVPacket * pkt,const AVFrame * frame,int * got_packet)1135 static int cinepak_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
1136 const AVFrame *frame, int *got_packet)
1137 {
1138 CinepakEncContext *s = avctx->priv_data;
1139 int ret;
1140
1141 s->lambda = frame->quality ? frame->quality - 1 : 2 * FF_LAMBDA_SCALE;
1142
1143 if ((ret = ff_alloc_packet2(avctx, pkt, s->frame_buf_size, 0)) < 0)
1144 return ret;
1145 ret = rd_frame(s, frame, (s->curframe == 0), pkt->data, s->frame_buf_size);
1146 pkt->size = ret;
1147 if (s->curframe == 0)
1148 pkt->flags |= AV_PKT_FLAG_KEY;
1149 *got_packet = 1;
1150
1151 FFSWAP(AVFrame *, s->last_frame, s->best_frame);
1152
1153 if (++s->curframe >= s->keyint)
1154 s->curframe = 0;
1155
1156 return 0;
1157 }
1158
cinepak_encode_end(AVCodecContext * avctx)1159 static av_cold int cinepak_encode_end(AVCodecContext *avctx)
1160 {
1161 CinepakEncContext *s = avctx->priv_data;
1162 int x;
1163
1164 av_frame_free(&s->last_frame);
1165 av_frame_free(&s->best_frame);
1166 av_frame_free(&s->scratch_frame);
1167 if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
1168 av_frame_free(&s->input_frame);
1169 av_freep(&s->codebook_input);
1170 av_freep(&s->codebook_closest);
1171 av_freep(&s->strip_buf);
1172 av_freep(&s->frame_buf);
1173 av_freep(&s->mb);
1174
1175 for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
1176 av_freep(&s->pict_bufs[x]);
1177
1178 return 0;
1179 }
1180
1181 AVCodec ff_cinepak_encoder = {
1182 .name = "cinepak",
1183 .long_name = NULL_IF_CONFIG_SMALL("Cinepak"),
1184 .type = AVMEDIA_TYPE_VIDEO,
1185 .id = AV_CODEC_ID_CINEPAK,
1186 .priv_data_size = sizeof(CinepakEncContext),
1187 .init = cinepak_encode_init,
1188 .encode2 = cinepak_encode_frame,
1189 .close = cinepak_encode_end,
1190 .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_RGB24, AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE },
1191 .priv_class = &cinepak_class,
1192 .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
1193 };
1194