1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr constant evaluator.
10 //
11 // Constant expression evaluation produces four main results:
12 //
13 //  * A success/failure flag indicating whether constant folding was successful.
14 //    This is the 'bool' return value used by most of the code in this file. A
15 //    'false' return value indicates that constant folding has failed, and any
16 //    appropriate diagnostic has already been produced.
17 //
18 //  * An evaluated result, valid only if constant folding has not failed.
19 //
20 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
21 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
22 //    where it is possible to determine the evaluated result regardless.
23 //
24 //  * A set of notes indicating why the evaluation was not a constant expression
25 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
26 //    too, why the expression could not be folded.
27 //
28 // If we are checking for a potential constant expression, failure to constant
29 // fold a potential constant sub-expression will be indicated by a 'false'
30 // return value (the expression could not be folded) and no diagnostic (the
31 // expression is not necessarily non-constant).
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #include "Interp/Context.h"
36 #include "Interp/Frame.h"
37 #include "Interp/State.h"
38 #include "clang/AST/APValue.h"
39 #include "clang/AST/ASTContext.h"
40 #include "clang/AST/ASTDiagnostic.h"
41 #include "clang/AST/ASTLambda.h"
42 #include "clang/AST/Attr.h"
43 #include "clang/AST/CXXInheritance.h"
44 #include "clang/AST/CharUnits.h"
45 #include "clang/AST/CurrentSourceLocExprScope.h"
46 #include "clang/AST/Expr.h"
47 #include "clang/AST/OSLog.h"
48 #include "clang/AST/OptionalDiagnostic.h"
49 #include "clang/AST/RecordLayout.h"
50 #include "clang/AST/StmtVisitor.h"
51 #include "clang/AST/TypeLoc.h"
52 #include "clang/Basic/Builtins.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "llvm/ADT/APFixedPoint.h"
55 #include "llvm/ADT/Optional.h"
56 #include "llvm/ADT/SmallBitVector.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/SaveAndRestore.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <cstring>
61 #include <functional>
62 
63 #define DEBUG_TYPE "exprconstant"
64 
65 using namespace clang;
66 using llvm::APFixedPoint;
67 using llvm::APInt;
68 using llvm::APSInt;
69 using llvm::APFloat;
70 using llvm::FixedPointSemantics;
71 using llvm::Optional;
72 
73 namespace {
74   struct LValue;
75   class CallStackFrame;
76   class EvalInfo;
77 
78   using SourceLocExprScopeGuard =
79       CurrentSourceLocExprScope::SourceLocExprScopeGuard;
80 
getType(APValue::LValueBase B)81   static QualType getType(APValue::LValueBase B) {
82     return B.getType();
83   }
84 
85   /// Get an LValue path entry, which is known to not be an array index, as a
86   /// field declaration.
getAsField(APValue::LValuePathEntry E)87   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
88     return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
89   }
90   /// Get an LValue path entry, which is known to not be an array index, as a
91   /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)92   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
93     return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
94   }
95   /// Determine whether this LValue path entry for a base class names a virtual
96   /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)97   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
98     return E.getAsBaseOrMember().getInt();
99   }
100 
101   /// Given an expression, determine the type used to store the result of
102   /// evaluating that expression.
getStorageType(const ASTContext & Ctx,const Expr * E)103   static QualType getStorageType(const ASTContext &Ctx, const Expr *E) {
104     if (E->isRValue())
105       return E->getType();
106     return Ctx.getLValueReferenceType(E->getType());
107   }
108 
109   /// Given a CallExpr, try to get the alloc_size attribute. May return null.
getAllocSizeAttr(const CallExpr * CE)110   static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
111     const FunctionDecl *Callee = CE->getDirectCallee();
112     return Callee ? Callee->getAttr<AllocSizeAttr>() : nullptr;
113   }
114 
115   /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
116   /// This will look through a single cast.
117   ///
118   /// Returns null if we couldn't unwrap a function with alloc_size.
tryUnwrapAllocSizeCall(const Expr * E)119   static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
120     if (!E->getType()->isPointerType())
121       return nullptr;
122 
123     E = E->IgnoreParens();
124     // If we're doing a variable assignment from e.g. malloc(N), there will
125     // probably be a cast of some kind. In exotic cases, we might also see a
126     // top-level ExprWithCleanups. Ignore them either way.
127     if (const auto *FE = dyn_cast<FullExpr>(E))
128       E = FE->getSubExpr()->IgnoreParens();
129 
130     if (const auto *Cast = dyn_cast<CastExpr>(E))
131       E = Cast->getSubExpr()->IgnoreParens();
132 
133     if (const auto *CE = dyn_cast<CallExpr>(E))
134       return getAllocSizeAttr(CE) ? CE : nullptr;
135     return nullptr;
136   }
137 
138   /// Determines whether or not the given Base contains a call to a function
139   /// with the alloc_size attribute.
isBaseAnAllocSizeCall(APValue::LValueBase Base)140   static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
141     const auto *E = Base.dyn_cast<const Expr *>();
142     return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
143   }
144 
145   /// Determines whether the given kind of constant expression is only ever
146   /// used for name mangling. If so, it's permitted to reference things that we
147   /// can't generate code for (in particular, dllimported functions).
isForManglingOnly(ConstantExprKind Kind)148   static bool isForManglingOnly(ConstantExprKind Kind) {
149     switch (Kind) {
150     case ConstantExprKind::Normal:
151     case ConstantExprKind::ClassTemplateArgument:
152     case ConstantExprKind::ImmediateInvocation:
153       // Note that non-type template arguments of class type are emitted as
154       // template parameter objects.
155       return false;
156 
157     case ConstantExprKind::NonClassTemplateArgument:
158       return true;
159     }
160     llvm_unreachable("unknown ConstantExprKind");
161   }
162 
isTemplateArgument(ConstantExprKind Kind)163   static bool isTemplateArgument(ConstantExprKind Kind) {
164     switch (Kind) {
165     case ConstantExprKind::Normal:
166     case ConstantExprKind::ImmediateInvocation:
167       return false;
168 
169     case ConstantExprKind::ClassTemplateArgument:
170     case ConstantExprKind::NonClassTemplateArgument:
171       return true;
172     }
173     llvm_unreachable("unknown ConstantExprKind");
174   }
175 
176   /// The bound to claim that an array of unknown bound has.
177   /// The value in MostDerivedArraySize is undefined in this case. So, set it
178   /// to an arbitrary value that's likely to loudly break things if it's used.
179   static const uint64_t AssumedSizeForUnsizedArray =
180       std::numeric_limits<uint64_t>::max() / 2;
181 
182   /// Determines if an LValue with the given LValueBase will have an unsized
183   /// array in its designator.
184   /// Find the path length and type of the most-derived subobject in the given
185   /// path, and find the size of the containing array, if any.
186   static unsigned
findMostDerivedSubobject(ASTContext & Ctx,APValue::LValueBase Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type,bool & IsArray,bool & FirstEntryIsUnsizedArray)187   findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
188                            ArrayRef<APValue::LValuePathEntry> Path,
189                            uint64_t &ArraySize, QualType &Type, bool &IsArray,
190                            bool &FirstEntryIsUnsizedArray) {
191     // This only accepts LValueBases from APValues, and APValues don't support
192     // arrays that lack size info.
193     assert(!isBaseAnAllocSizeCall(Base) &&
194            "Unsized arrays shouldn't appear here");
195     unsigned MostDerivedLength = 0;
196     Type = getType(Base);
197 
198     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
199       if (Type->isArrayType()) {
200         const ArrayType *AT = Ctx.getAsArrayType(Type);
201         Type = AT->getElementType();
202         MostDerivedLength = I + 1;
203         IsArray = true;
204 
205         if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
206           ArraySize = CAT->getSize().getZExtValue();
207         } else {
208           assert(I == 0 && "unexpected unsized array designator");
209           FirstEntryIsUnsizedArray = true;
210           ArraySize = AssumedSizeForUnsizedArray;
211         }
212       } else if (Type->isAnyComplexType()) {
213         const ComplexType *CT = Type->castAs<ComplexType>();
214         Type = CT->getElementType();
215         ArraySize = 2;
216         MostDerivedLength = I + 1;
217         IsArray = true;
218       } else if (const FieldDecl *FD = getAsField(Path[I])) {
219         Type = FD->getType();
220         ArraySize = 0;
221         MostDerivedLength = I + 1;
222         IsArray = false;
223       } else {
224         // Path[I] describes a base class.
225         ArraySize = 0;
226         IsArray = false;
227       }
228     }
229     return MostDerivedLength;
230   }
231 
232   /// A path from a glvalue to a subobject of that glvalue.
233   struct SubobjectDesignator {
234     /// True if the subobject was named in a manner not supported by C++11. Such
235     /// lvalues can still be folded, but they are not core constant expressions
236     /// and we cannot perform lvalue-to-rvalue conversions on them.
237     unsigned Invalid : 1;
238 
239     /// Is this a pointer one past the end of an object?
240     unsigned IsOnePastTheEnd : 1;
241 
242     /// Indicator of whether the first entry is an unsized array.
243     unsigned FirstEntryIsAnUnsizedArray : 1;
244 
245     /// Indicator of whether the most-derived object is an array element.
246     unsigned MostDerivedIsArrayElement : 1;
247 
248     /// The length of the path to the most-derived object of which this is a
249     /// subobject.
250     unsigned MostDerivedPathLength : 28;
251 
252     /// The size of the array of which the most-derived object is an element.
253     /// This will always be 0 if the most-derived object is not an array
254     /// element. 0 is not an indicator of whether or not the most-derived object
255     /// is an array, however, because 0-length arrays are allowed.
256     ///
257     /// If the current array is an unsized array, the value of this is
258     /// undefined.
259     uint64_t MostDerivedArraySize;
260 
261     /// The type of the most derived object referred to by this address.
262     QualType MostDerivedType;
263 
264     typedef APValue::LValuePathEntry PathEntry;
265 
266     /// The entries on the path from the glvalue to the designated subobject.
267     SmallVector<PathEntry, 8> Entries;
268 
SubobjectDesignator__anon4717f8730111::SubobjectDesignator269     SubobjectDesignator() : Invalid(true) {}
270 
SubobjectDesignator__anon4717f8730111::SubobjectDesignator271     explicit SubobjectDesignator(QualType T)
272         : Invalid(false), IsOnePastTheEnd(false),
273           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
274           MostDerivedPathLength(0), MostDerivedArraySize(0),
275           MostDerivedType(T) {}
276 
SubobjectDesignator__anon4717f8730111::SubobjectDesignator277     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
278         : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
279           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
280           MostDerivedPathLength(0), MostDerivedArraySize(0) {
281       assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
282       if (!Invalid) {
283         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
284         ArrayRef<PathEntry> VEntries = V.getLValuePath();
285         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
286         if (V.getLValueBase()) {
287           bool IsArray = false;
288           bool FirstIsUnsizedArray = false;
289           MostDerivedPathLength = findMostDerivedSubobject(
290               Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
291               MostDerivedType, IsArray, FirstIsUnsizedArray);
292           MostDerivedIsArrayElement = IsArray;
293           FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
294         }
295       }
296     }
297 
truncate__anon4717f8730111::SubobjectDesignator298     void truncate(ASTContext &Ctx, APValue::LValueBase Base,
299                   unsigned NewLength) {
300       if (Invalid)
301         return;
302 
303       assert(Base && "cannot truncate path for null pointer");
304       assert(NewLength <= Entries.size() && "not a truncation");
305 
306       if (NewLength == Entries.size())
307         return;
308       Entries.resize(NewLength);
309 
310       bool IsArray = false;
311       bool FirstIsUnsizedArray = false;
312       MostDerivedPathLength = findMostDerivedSubobject(
313           Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
314           FirstIsUnsizedArray);
315       MostDerivedIsArrayElement = IsArray;
316       FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
317     }
318 
setInvalid__anon4717f8730111::SubobjectDesignator319     void setInvalid() {
320       Invalid = true;
321       Entries.clear();
322     }
323 
324     /// Determine whether the most derived subobject is an array without a
325     /// known bound.
isMostDerivedAnUnsizedArray__anon4717f8730111::SubobjectDesignator326     bool isMostDerivedAnUnsizedArray() const {
327       assert(!Invalid && "Calling this makes no sense on invalid designators");
328       return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
329     }
330 
331     /// Determine what the most derived array's size is. Results in an assertion
332     /// failure if the most derived array lacks a size.
getMostDerivedArraySize__anon4717f8730111::SubobjectDesignator333     uint64_t getMostDerivedArraySize() const {
334       assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
335       return MostDerivedArraySize;
336     }
337 
338     /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anon4717f8730111::SubobjectDesignator339     bool isOnePastTheEnd() const {
340       assert(!Invalid);
341       if (IsOnePastTheEnd)
342         return true;
343       if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
344           Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
345               MostDerivedArraySize)
346         return true;
347       return false;
348     }
349 
350     /// Get the range of valid index adjustments in the form
351     ///   {maximum value that can be subtracted from this pointer,
352     ///    maximum value that can be added to this pointer}
validIndexAdjustments__anon4717f8730111::SubobjectDesignator353     std::pair<uint64_t, uint64_t> validIndexAdjustments() {
354       if (Invalid || isMostDerivedAnUnsizedArray())
355         return {0, 0};
356 
357       // [expr.add]p4: For the purposes of these operators, a pointer to a
358       // nonarray object behaves the same as a pointer to the first element of
359       // an array of length one with the type of the object as its element type.
360       bool IsArray = MostDerivedPathLength == Entries.size() &&
361                      MostDerivedIsArrayElement;
362       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
363                                     : (uint64_t)IsOnePastTheEnd;
364       uint64_t ArraySize =
365           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
366       return {ArrayIndex, ArraySize - ArrayIndex};
367     }
368 
369     /// Check that this refers to a valid subobject.
isValidSubobject__anon4717f8730111::SubobjectDesignator370     bool isValidSubobject() const {
371       if (Invalid)
372         return false;
373       return !isOnePastTheEnd();
374     }
375     /// Check that this refers to a valid subobject, and if not, produce a
376     /// relevant diagnostic and set the designator as invalid.
377     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
378 
379     /// Get the type of the designated object.
getType__anon4717f8730111::SubobjectDesignator380     QualType getType(ASTContext &Ctx) const {
381       assert(!Invalid && "invalid designator has no subobject type");
382       return MostDerivedPathLength == Entries.size()
383                  ? MostDerivedType
384                  : Ctx.getRecordType(getAsBaseClass(Entries.back()));
385     }
386 
387     /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anon4717f8730111::SubobjectDesignator388     void addArrayUnchecked(const ConstantArrayType *CAT) {
389       Entries.push_back(PathEntry::ArrayIndex(0));
390 
391       // This is a most-derived object.
392       MostDerivedType = CAT->getElementType();
393       MostDerivedIsArrayElement = true;
394       MostDerivedArraySize = CAT->getSize().getZExtValue();
395       MostDerivedPathLength = Entries.size();
396     }
397     /// Update this designator to refer to the first element within the array of
398     /// elements of type T. This is an array of unknown size.
addUnsizedArrayUnchecked__anon4717f8730111::SubobjectDesignator399     void addUnsizedArrayUnchecked(QualType ElemTy) {
400       Entries.push_back(PathEntry::ArrayIndex(0));
401 
402       MostDerivedType = ElemTy;
403       MostDerivedIsArrayElement = true;
404       // The value in MostDerivedArraySize is undefined in this case. So, set it
405       // to an arbitrary value that's likely to loudly break things if it's
406       // used.
407       MostDerivedArraySize = AssumedSizeForUnsizedArray;
408       MostDerivedPathLength = Entries.size();
409     }
410     /// Update this designator to refer to the given base or member of this
411     /// object.
addDeclUnchecked__anon4717f8730111::SubobjectDesignator412     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
413       Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
414 
415       // If this isn't a base class, it's a new most-derived object.
416       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
417         MostDerivedType = FD->getType();
418         MostDerivedIsArrayElement = false;
419         MostDerivedArraySize = 0;
420         MostDerivedPathLength = Entries.size();
421       }
422     }
423     /// Update this designator to refer to the given complex component.
addComplexUnchecked__anon4717f8730111::SubobjectDesignator424     void addComplexUnchecked(QualType EltTy, bool Imag) {
425       Entries.push_back(PathEntry::ArrayIndex(Imag));
426 
427       // This is technically a most-derived object, though in practice this
428       // is unlikely to matter.
429       MostDerivedType = EltTy;
430       MostDerivedIsArrayElement = true;
431       MostDerivedArraySize = 2;
432       MostDerivedPathLength = Entries.size();
433     }
434     void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
435     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
436                                    const APSInt &N);
437     /// Add N to the address of this subobject.
adjustIndex__anon4717f8730111::SubobjectDesignator438     void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
439       if (Invalid || !N) return;
440       uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
441       if (isMostDerivedAnUnsizedArray()) {
442         diagnoseUnsizedArrayPointerArithmetic(Info, E);
443         // Can't verify -- trust that the user is doing the right thing (or if
444         // not, trust that the caller will catch the bad behavior).
445         // FIXME: Should we reject if this overflows, at least?
446         Entries.back() = PathEntry::ArrayIndex(
447             Entries.back().getAsArrayIndex() + TruncatedN);
448         return;
449       }
450 
451       // [expr.add]p4: For the purposes of these operators, a pointer to a
452       // nonarray object behaves the same as a pointer to the first element of
453       // an array of length one with the type of the object as its element type.
454       bool IsArray = MostDerivedPathLength == Entries.size() &&
455                      MostDerivedIsArrayElement;
456       uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
457                                     : (uint64_t)IsOnePastTheEnd;
458       uint64_t ArraySize =
459           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
460 
461       if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
462         // Calculate the actual index in a wide enough type, so we can include
463         // it in the note.
464         N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
465         (llvm::APInt&)N += ArrayIndex;
466         assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
467         diagnosePointerArithmetic(Info, E, N);
468         setInvalid();
469         return;
470       }
471 
472       ArrayIndex += TruncatedN;
473       assert(ArrayIndex <= ArraySize &&
474              "bounds check succeeded for out-of-bounds index");
475 
476       if (IsArray)
477         Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
478       else
479         IsOnePastTheEnd = (ArrayIndex != 0);
480     }
481   };
482 
483   /// A scope at the end of which an object can need to be destroyed.
484   enum class ScopeKind {
485     Block,
486     FullExpression,
487     Call
488   };
489 
490   /// A reference to a particular call and its arguments.
491   struct CallRef {
CallRef__anon4717f8730111::CallRef492     CallRef() : OrigCallee(), CallIndex(0), Version() {}
CallRef__anon4717f8730111::CallRef493     CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version)
494         : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {}
495 
operator bool__anon4717f8730111::CallRef496     explicit operator bool() const { return OrigCallee; }
497 
498     /// Get the parameter that the caller initialized, corresponding to the
499     /// given parameter in the callee.
getOrigParam__anon4717f8730111::CallRef500     const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const {
501       return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex())
502                         : PVD;
503     }
504 
505     /// The callee at the point where the arguments were evaluated. This might
506     /// be different from the actual callee (a different redeclaration, or a
507     /// virtual override), but this function's parameters are the ones that
508     /// appear in the parameter map.
509     const FunctionDecl *OrigCallee;
510     /// The call index of the frame that holds the argument values.
511     unsigned CallIndex;
512     /// The version of the parameters corresponding to this call.
513     unsigned Version;
514   };
515 
516   /// A stack frame in the constexpr call stack.
517   class CallStackFrame : public interp::Frame {
518   public:
519     EvalInfo &Info;
520 
521     /// Parent - The caller of this stack frame.
522     CallStackFrame *Caller;
523 
524     /// Callee - The function which was called.
525     const FunctionDecl *Callee;
526 
527     /// This - The binding for the this pointer in this call, if any.
528     const LValue *This;
529 
530     /// Information on how to find the arguments to this call. Our arguments
531     /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a
532     /// key and this value as the version.
533     CallRef Arguments;
534 
535     /// Source location information about the default argument or default
536     /// initializer expression we're evaluating, if any.
537     CurrentSourceLocExprScope CurSourceLocExprScope;
538 
539     // Note that we intentionally use std::map here so that references to
540     // values are stable.
541     typedef std::pair<const void *, unsigned> MapKeyTy;
542     typedef std::map<MapKeyTy, APValue> MapTy;
543     /// Temporaries - Temporary lvalues materialized within this stack frame.
544     MapTy Temporaries;
545 
546     /// CallLoc - The location of the call expression for this call.
547     SourceLocation CallLoc;
548 
549     /// Index - The call index of this call.
550     unsigned Index;
551 
552     /// The stack of integers for tracking version numbers for temporaries.
553     SmallVector<unsigned, 2> TempVersionStack = {1};
554     unsigned CurTempVersion = TempVersionStack.back();
555 
getTempVersion() const556     unsigned getTempVersion() const { return TempVersionStack.back(); }
557 
pushTempVersion()558     void pushTempVersion() {
559       TempVersionStack.push_back(++CurTempVersion);
560     }
561 
popTempVersion()562     void popTempVersion() {
563       TempVersionStack.pop_back();
564     }
565 
createCall(const FunctionDecl * Callee)566     CallRef createCall(const FunctionDecl *Callee) {
567       return {Callee, Index, ++CurTempVersion};
568     }
569 
570     // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
571     // on the overall stack usage of deeply-recursing constexpr evaluations.
572     // (We should cache this map rather than recomputing it repeatedly.)
573     // But let's try this and see how it goes; we can look into caching the map
574     // as a later change.
575 
576     /// LambdaCaptureFields - Mapping from captured variables/this to
577     /// corresponding data members in the closure class.
578     llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
579     FieldDecl *LambdaThisCaptureField;
580 
581     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
582                    const FunctionDecl *Callee, const LValue *This,
583                    CallRef Arguments);
584     ~CallStackFrame();
585 
586     // Return the temporary for Key whose version number is Version.
getTemporary(const void * Key,unsigned Version)587     APValue *getTemporary(const void *Key, unsigned Version) {
588       MapKeyTy KV(Key, Version);
589       auto LB = Temporaries.lower_bound(KV);
590       if (LB != Temporaries.end() && LB->first == KV)
591         return &LB->second;
592       // Pair (Key,Version) wasn't found in the map. Check that no elements
593       // in the map have 'Key' as their key.
594       assert((LB == Temporaries.end() || LB->first.first != Key) &&
595              (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) &&
596              "Element with key 'Key' found in map");
597       return nullptr;
598     }
599 
600     // Return the current temporary for Key in the map.
getCurrentTemporary(const void * Key)601     APValue *getCurrentTemporary(const void *Key) {
602       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
603       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
604         return &std::prev(UB)->second;
605       return nullptr;
606     }
607 
608     // Return the version number of the current temporary for Key.
getCurrentTemporaryVersion(const void * Key) const609     unsigned getCurrentTemporaryVersion(const void *Key) const {
610       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
611       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
612         return std::prev(UB)->first.second;
613       return 0;
614     }
615 
616     /// Allocate storage for an object of type T in this stack frame.
617     /// Populates LV with a handle to the created object. Key identifies
618     /// the temporary within the stack frame, and must not be reused without
619     /// bumping the temporary version number.
620     template<typename KeyT>
621     APValue &createTemporary(const KeyT *Key, QualType T,
622                              ScopeKind Scope, LValue &LV);
623 
624     /// Allocate storage for a parameter of a function call made in this frame.
625     APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV);
626 
627     void describe(llvm::raw_ostream &OS) override;
628 
getCaller() const629     Frame *getCaller() const override { return Caller; }
getCallLocation() const630     SourceLocation getCallLocation() const override { return CallLoc; }
getCallee() const631     const FunctionDecl *getCallee() const override { return Callee; }
632 
isStdFunction() const633     bool isStdFunction() const {
634       for (const DeclContext *DC = Callee; DC; DC = DC->getParent())
635         if (DC->isStdNamespace())
636           return true;
637       return false;
638     }
639 
640   private:
641     APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T,
642                          ScopeKind Scope);
643   };
644 
645   /// Temporarily override 'this'.
646   class ThisOverrideRAII {
647   public:
ThisOverrideRAII(CallStackFrame & Frame,const LValue * NewThis,bool Enable)648     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
649         : Frame(Frame), OldThis(Frame.This) {
650       if (Enable)
651         Frame.This = NewThis;
652     }
~ThisOverrideRAII()653     ~ThisOverrideRAII() {
654       Frame.This = OldThis;
655     }
656   private:
657     CallStackFrame &Frame;
658     const LValue *OldThis;
659   };
660 }
661 
662 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
663                               const LValue &This, QualType ThisType);
664 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
665                               APValue::LValueBase LVBase, APValue &Value,
666                               QualType T);
667 
668 namespace {
669   /// A cleanup, and a flag indicating whether it is lifetime-extended.
670   class Cleanup {
671     llvm::PointerIntPair<APValue*, 2, ScopeKind> Value;
672     APValue::LValueBase Base;
673     QualType T;
674 
675   public:
Cleanup(APValue * Val,APValue::LValueBase Base,QualType T,ScopeKind Scope)676     Cleanup(APValue *Val, APValue::LValueBase Base, QualType T,
677             ScopeKind Scope)
678         : Value(Val, Scope), Base(Base), T(T) {}
679 
680     /// Determine whether this cleanup should be performed at the end of the
681     /// given kind of scope.
isDestroyedAtEndOf(ScopeKind K) const682     bool isDestroyedAtEndOf(ScopeKind K) const {
683       return (int)Value.getInt() >= (int)K;
684     }
endLifetime(EvalInfo & Info,bool RunDestructors)685     bool endLifetime(EvalInfo &Info, bool RunDestructors) {
686       if (RunDestructors) {
687         SourceLocation Loc;
688         if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
689           Loc = VD->getLocation();
690         else if (const Expr *E = Base.dyn_cast<const Expr*>())
691           Loc = E->getExprLoc();
692         return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T);
693       }
694       *Value.getPointer() = APValue();
695       return true;
696     }
697 
hasSideEffect()698     bool hasSideEffect() {
699       return T.isDestructedType();
700     }
701   };
702 
703   /// A reference to an object whose construction we are currently evaluating.
704   struct ObjectUnderConstruction {
705     APValue::LValueBase Base;
706     ArrayRef<APValue::LValuePathEntry> Path;
operator ==(const ObjectUnderConstruction & LHS,const ObjectUnderConstruction & RHS)707     friend bool operator==(const ObjectUnderConstruction &LHS,
708                            const ObjectUnderConstruction &RHS) {
709       return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
710     }
hash_value(const ObjectUnderConstruction & Obj)711     friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
712       return llvm::hash_combine(Obj.Base, Obj.Path);
713     }
714   };
715   enum class ConstructionPhase {
716     None,
717     Bases,
718     AfterBases,
719     AfterFields,
720     Destroying,
721     DestroyingBases
722   };
723 }
724 
725 namespace llvm {
726 template<> struct DenseMapInfo<ObjectUnderConstruction> {
727   using Base = DenseMapInfo<APValue::LValueBase>;
getEmptyKeyllvm::DenseMapInfo728   static ObjectUnderConstruction getEmptyKey() {
729     return {Base::getEmptyKey(), {}}; }
getTombstoneKeyllvm::DenseMapInfo730   static ObjectUnderConstruction getTombstoneKey() {
731     return {Base::getTombstoneKey(), {}};
732   }
getHashValuellvm::DenseMapInfo733   static unsigned getHashValue(const ObjectUnderConstruction &Object) {
734     return hash_value(Object);
735   }
isEqualllvm::DenseMapInfo736   static bool isEqual(const ObjectUnderConstruction &LHS,
737                       const ObjectUnderConstruction &RHS) {
738     return LHS == RHS;
739   }
740 };
741 }
742 
743 namespace {
744   /// A dynamically-allocated heap object.
745   struct DynAlloc {
746     /// The value of this heap-allocated object.
747     APValue Value;
748     /// The allocating expression; used for diagnostics. Either a CXXNewExpr
749     /// or a CallExpr (the latter is for direct calls to operator new inside
750     /// std::allocator<T>::allocate).
751     const Expr *AllocExpr = nullptr;
752 
753     enum Kind {
754       New,
755       ArrayNew,
756       StdAllocator
757     };
758 
759     /// Get the kind of the allocation. This must match between allocation
760     /// and deallocation.
getKind__anon4717f8730311::DynAlloc761     Kind getKind() const {
762       if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr))
763         return NE->isArray() ? ArrayNew : New;
764       assert(isa<CallExpr>(AllocExpr));
765       return StdAllocator;
766     }
767   };
768 
769   struct DynAllocOrder {
operator ()__anon4717f8730311::DynAllocOrder770     bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const {
771       return L.getIndex() < R.getIndex();
772     }
773   };
774 
775   /// EvalInfo - This is a private struct used by the evaluator to capture
776   /// information about a subexpression as it is folded.  It retains information
777   /// about the AST context, but also maintains information about the folded
778   /// expression.
779   ///
780   /// If an expression could be evaluated, it is still possible it is not a C
781   /// "integer constant expression" or constant expression.  If not, this struct
782   /// captures information about how and why not.
783   ///
784   /// One bit of information passed *into* the request for constant folding
785   /// indicates whether the subexpression is "evaluated" or not according to C
786   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
787   /// evaluate the expression regardless of what the RHS is, but C only allows
788   /// certain things in certain situations.
789   class EvalInfo : public interp::State {
790   public:
791     ASTContext &Ctx;
792 
793     /// EvalStatus - Contains information about the evaluation.
794     Expr::EvalStatus &EvalStatus;
795 
796     /// CurrentCall - The top of the constexpr call stack.
797     CallStackFrame *CurrentCall;
798 
799     /// CallStackDepth - The number of calls in the call stack right now.
800     unsigned CallStackDepth;
801 
802     /// NextCallIndex - The next call index to assign.
803     unsigned NextCallIndex;
804 
805     /// StepsLeft - The remaining number of evaluation steps we're permitted
806     /// to perform. This is essentially a limit for the number of statements
807     /// we will evaluate.
808     unsigned StepsLeft;
809 
810     /// Enable the experimental new constant interpreter. If an expression is
811     /// not supported by the interpreter, an error is triggered.
812     bool EnableNewConstInterp;
813 
814     /// BottomFrame - The frame in which evaluation started. This must be
815     /// initialized after CurrentCall and CallStackDepth.
816     CallStackFrame BottomFrame;
817 
818     /// A stack of values whose lifetimes end at the end of some surrounding
819     /// evaluation frame.
820     llvm::SmallVector<Cleanup, 16> CleanupStack;
821 
822     /// EvaluatingDecl - This is the declaration whose initializer is being
823     /// evaluated, if any.
824     APValue::LValueBase EvaluatingDecl;
825 
826     enum class EvaluatingDeclKind {
827       None,
828       /// We're evaluating the construction of EvaluatingDecl.
829       Ctor,
830       /// We're evaluating the destruction of EvaluatingDecl.
831       Dtor,
832     };
833     EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None;
834 
835     /// EvaluatingDeclValue - This is the value being constructed for the
836     /// declaration whose initializer is being evaluated, if any.
837     APValue *EvaluatingDeclValue;
838 
839     /// Set of objects that are currently being constructed.
840     llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
841         ObjectsUnderConstruction;
842 
843     /// Current heap allocations, along with the location where each was
844     /// allocated. We use std::map here because we need stable addresses
845     /// for the stored APValues.
846     std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs;
847 
848     /// The number of heap allocations performed so far in this evaluation.
849     unsigned NumHeapAllocs = 0;
850 
851     struct EvaluatingConstructorRAII {
852       EvalInfo &EI;
853       ObjectUnderConstruction Object;
854       bool DidInsert;
EvaluatingConstructorRAII__anon4717f8730311::EvalInfo::EvaluatingConstructorRAII855       EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
856                                 bool HasBases)
857           : EI(EI), Object(Object) {
858         DidInsert =
859             EI.ObjectsUnderConstruction
860                 .insert({Object, HasBases ? ConstructionPhase::Bases
861                                           : ConstructionPhase::AfterBases})
862                 .second;
863       }
finishedConstructingBases__anon4717f8730311::EvalInfo::EvaluatingConstructorRAII864       void finishedConstructingBases() {
865         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
866       }
finishedConstructingFields__anon4717f8730311::EvalInfo::EvaluatingConstructorRAII867       void finishedConstructingFields() {
868         EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields;
869       }
~EvaluatingConstructorRAII__anon4717f8730311::EvalInfo::EvaluatingConstructorRAII870       ~EvaluatingConstructorRAII() {
871         if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
872       }
873     };
874 
875     struct EvaluatingDestructorRAII {
876       EvalInfo &EI;
877       ObjectUnderConstruction Object;
878       bool DidInsert;
EvaluatingDestructorRAII__anon4717f8730311::EvalInfo::EvaluatingDestructorRAII879       EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object)
880           : EI(EI), Object(Object) {
881         DidInsert = EI.ObjectsUnderConstruction
882                         .insert({Object, ConstructionPhase::Destroying})
883                         .second;
884       }
startedDestroyingBases__anon4717f8730311::EvalInfo::EvaluatingDestructorRAII885       void startedDestroyingBases() {
886         EI.ObjectsUnderConstruction[Object] =
887             ConstructionPhase::DestroyingBases;
888       }
~EvaluatingDestructorRAII__anon4717f8730311::EvalInfo::EvaluatingDestructorRAII889       ~EvaluatingDestructorRAII() {
890         if (DidInsert)
891           EI.ObjectsUnderConstruction.erase(Object);
892       }
893     };
894 
895     ConstructionPhase
isEvaluatingCtorDtor(APValue::LValueBase Base,ArrayRef<APValue::LValuePathEntry> Path)896     isEvaluatingCtorDtor(APValue::LValueBase Base,
897                          ArrayRef<APValue::LValuePathEntry> Path) {
898       return ObjectsUnderConstruction.lookup({Base, Path});
899     }
900 
901     /// If we're currently speculatively evaluating, the outermost call stack
902     /// depth at which we can mutate state, otherwise 0.
903     unsigned SpeculativeEvaluationDepth = 0;
904 
905     /// The current array initialization index, if we're performing array
906     /// initialization.
907     uint64_t ArrayInitIndex = -1;
908 
909     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
910     /// notes attached to it will also be stored, otherwise they will not be.
911     bool HasActiveDiagnostic;
912 
913     /// Have we emitted a diagnostic explaining why we couldn't constant
914     /// fold (not just why it's not strictly a constant expression)?
915     bool HasFoldFailureDiagnostic;
916 
917     /// Whether or not we're in a context where the front end requires a
918     /// constant value.
919     bool InConstantContext;
920 
921     /// Whether we're checking that an expression is a potential constant
922     /// expression. If so, do not fail on constructs that could become constant
923     /// later on (such as a use of an undefined global).
924     bool CheckingPotentialConstantExpression = false;
925 
926     /// Whether we're checking for an expression that has undefined behavior.
927     /// If so, we will produce warnings if we encounter an operation that is
928     /// always undefined.
929     bool CheckingForUndefinedBehavior = false;
930 
931     enum EvaluationMode {
932       /// Evaluate as a constant expression. Stop if we find that the expression
933       /// is not a constant expression.
934       EM_ConstantExpression,
935 
936       /// Evaluate as a constant expression. Stop if we find that the expression
937       /// is not a constant expression. Some expressions can be retried in the
938       /// optimizer if we don't constant fold them here, but in an unevaluated
939       /// context we try to fold them immediately since the optimizer never
940       /// gets a chance to look at it.
941       EM_ConstantExpressionUnevaluated,
942 
943       /// Fold the expression to a constant. Stop if we hit a side-effect that
944       /// we can't model.
945       EM_ConstantFold,
946 
947       /// Evaluate in any way we know how. Don't worry about side-effects that
948       /// can't be modeled.
949       EM_IgnoreSideEffects,
950     } EvalMode;
951 
952     /// Are we checking whether the expression is a potential constant
953     /// expression?
checkingPotentialConstantExpression() const954     bool checkingPotentialConstantExpression() const override  {
955       return CheckingPotentialConstantExpression;
956     }
957 
958     /// Are we checking an expression for overflow?
959     // FIXME: We should check for any kind of undefined or suspicious behavior
960     // in such constructs, not just overflow.
checkingForUndefinedBehavior() const961     bool checkingForUndefinedBehavior() const override {
962       return CheckingForUndefinedBehavior;
963     }
964 
EvalInfo(const ASTContext & C,Expr::EvalStatus & S,EvaluationMode Mode)965     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
966         : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
967           CallStackDepth(0), NextCallIndex(1),
968           StepsLeft(C.getLangOpts().ConstexprStepLimit),
969           EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp),
970           BottomFrame(*this, SourceLocation(), nullptr, nullptr, CallRef()),
971           EvaluatingDecl((const ValueDecl *)nullptr),
972           EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
973           HasFoldFailureDiagnostic(false), InConstantContext(false),
974           EvalMode(Mode) {}
975 
~EvalInfo()976     ~EvalInfo() {
977       discardCleanups();
978     }
979 
setEvaluatingDecl(APValue::LValueBase Base,APValue & Value,EvaluatingDeclKind EDK=EvaluatingDeclKind::Ctor)980     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value,
981                            EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) {
982       EvaluatingDecl = Base;
983       IsEvaluatingDecl = EDK;
984       EvaluatingDeclValue = &Value;
985     }
986 
CheckCallLimit(SourceLocation Loc)987     bool CheckCallLimit(SourceLocation Loc) {
988       // Don't perform any constexpr calls (other than the call we're checking)
989       // when checking a potential constant expression.
990       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
991         return false;
992       if (NextCallIndex == 0) {
993         // NextCallIndex has wrapped around.
994         FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
995         return false;
996       }
997       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
998         return true;
999       FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
1000         << getLangOpts().ConstexprCallDepth;
1001       return false;
1002     }
1003 
1004     std::pair<CallStackFrame *, unsigned>
getCallFrameAndDepth(unsigned CallIndex)1005     getCallFrameAndDepth(unsigned CallIndex) {
1006       assert(CallIndex && "no call index in getCallFrameAndDepth");
1007       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
1008       // be null in this loop.
1009       unsigned Depth = CallStackDepth;
1010       CallStackFrame *Frame = CurrentCall;
1011       while (Frame->Index > CallIndex) {
1012         Frame = Frame->Caller;
1013         --Depth;
1014       }
1015       if (Frame->Index == CallIndex)
1016         return {Frame, Depth};
1017       return {nullptr, 0};
1018     }
1019 
nextStep(const Stmt * S)1020     bool nextStep(const Stmt *S) {
1021       if (!StepsLeft) {
1022         FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
1023         return false;
1024       }
1025       --StepsLeft;
1026       return true;
1027     }
1028 
1029     APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV);
1030 
lookupDynamicAlloc(DynamicAllocLValue DA)1031     Optional<DynAlloc*> lookupDynamicAlloc(DynamicAllocLValue DA) {
1032       Optional<DynAlloc*> Result;
1033       auto It = HeapAllocs.find(DA);
1034       if (It != HeapAllocs.end())
1035         Result = &It->second;
1036       return Result;
1037     }
1038 
1039     /// Get the allocated storage for the given parameter of the given call.
getParamSlot(CallRef Call,const ParmVarDecl * PVD)1040     APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) {
1041       CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first;
1042       return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version)
1043                    : nullptr;
1044     }
1045 
1046     /// Information about a stack frame for std::allocator<T>::[de]allocate.
1047     struct StdAllocatorCaller {
1048       unsigned FrameIndex;
1049       QualType ElemType;
operator bool__anon4717f8730311::EvalInfo::StdAllocatorCaller1050       explicit operator bool() const { return FrameIndex != 0; };
1051     };
1052 
getStdAllocatorCaller(StringRef FnName) const1053     StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const {
1054       for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame;
1055            Call = Call->Caller) {
1056         const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee);
1057         if (!MD)
1058           continue;
1059         const IdentifierInfo *FnII = MD->getIdentifier();
1060         if (!FnII || !FnII->isStr(FnName))
1061           continue;
1062 
1063         const auto *CTSD =
1064             dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent());
1065         if (!CTSD)
1066           continue;
1067 
1068         const IdentifierInfo *ClassII = CTSD->getIdentifier();
1069         const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
1070         if (CTSD->isInStdNamespace() && ClassII &&
1071             ClassII->isStr("allocator") && TAL.size() >= 1 &&
1072             TAL[0].getKind() == TemplateArgument::Type)
1073           return {Call->Index, TAL[0].getAsType()};
1074       }
1075 
1076       return {};
1077     }
1078 
performLifetimeExtension()1079     void performLifetimeExtension() {
1080       // Disable the cleanups for lifetime-extended temporaries.
1081       CleanupStack.erase(std::remove_if(CleanupStack.begin(),
1082                                         CleanupStack.end(),
1083                                         [](Cleanup &C) {
1084                                           return !C.isDestroyedAtEndOf(
1085                                               ScopeKind::FullExpression);
1086                                         }),
1087                          CleanupStack.end());
1088      }
1089 
1090     /// Throw away any remaining cleanups at the end of evaluation. If any
1091     /// cleanups would have had a side-effect, note that as an unmodeled
1092     /// side-effect and return false. Otherwise, return true.
discardCleanups()1093     bool discardCleanups() {
1094       for (Cleanup &C : CleanupStack) {
1095         if (C.hasSideEffect() && !noteSideEffect()) {
1096           CleanupStack.clear();
1097           return false;
1098         }
1099       }
1100       CleanupStack.clear();
1101       return true;
1102     }
1103 
1104   private:
getCurrentFrame()1105     interp::Frame *getCurrentFrame() override { return CurrentCall; }
getBottomFrame() const1106     const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
1107 
hasActiveDiagnostic()1108     bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
setActiveDiagnostic(bool Flag)1109     void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
1110 
setFoldFailureDiagnostic(bool Flag)1111     void setFoldFailureDiagnostic(bool Flag) override {
1112       HasFoldFailureDiagnostic = Flag;
1113     }
1114 
getEvalStatus() const1115     Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
1116 
getCtx() const1117     ASTContext &getCtx() const override { return Ctx; }
1118 
1119     // If we have a prior diagnostic, it will be noting that the expression
1120     // isn't a constant expression. This diagnostic is more important,
1121     // unless we require this evaluation to produce a constant expression.
1122     //
1123     // FIXME: We might want to show both diagnostics to the user in
1124     // EM_ConstantFold mode.
hasPriorDiagnostic()1125     bool hasPriorDiagnostic() override {
1126       if (!EvalStatus.Diag->empty()) {
1127         switch (EvalMode) {
1128         case EM_ConstantFold:
1129         case EM_IgnoreSideEffects:
1130           if (!HasFoldFailureDiagnostic)
1131             break;
1132           // We've already failed to fold something. Keep that diagnostic.
1133           LLVM_FALLTHROUGH;
1134         case EM_ConstantExpression:
1135         case EM_ConstantExpressionUnevaluated:
1136           setActiveDiagnostic(false);
1137           return true;
1138         }
1139       }
1140       return false;
1141     }
1142 
getCallStackDepth()1143     unsigned getCallStackDepth() override { return CallStackDepth; }
1144 
1145   public:
1146     /// Should we continue evaluation after encountering a side-effect that we
1147     /// couldn't model?
keepEvaluatingAfterSideEffect()1148     bool keepEvaluatingAfterSideEffect() {
1149       switch (EvalMode) {
1150       case EM_IgnoreSideEffects:
1151         return true;
1152 
1153       case EM_ConstantExpression:
1154       case EM_ConstantExpressionUnevaluated:
1155       case EM_ConstantFold:
1156         // By default, assume any side effect might be valid in some other
1157         // evaluation of this expression from a different context.
1158         return checkingPotentialConstantExpression() ||
1159                checkingForUndefinedBehavior();
1160       }
1161       llvm_unreachable("Missed EvalMode case");
1162     }
1163 
1164     /// Note that we have had a side-effect, and determine whether we should
1165     /// keep evaluating.
noteSideEffect()1166     bool noteSideEffect() {
1167       EvalStatus.HasSideEffects = true;
1168       return keepEvaluatingAfterSideEffect();
1169     }
1170 
1171     /// Should we continue evaluation after encountering undefined behavior?
keepEvaluatingAfterUndefinedBehavior()1172     bool keepEvaluatingAfterUndefinedBehavior() {
1173       switch (EvalMode) {
1174       case EM_IgnoreSideEffects:
1175       case EM_ConstantFold:
1176         return true;
1177 
1178       case EM_ConstantExpression:
1179       case EM_ConstantExpressionUnevaluated:
1180         return checkingForUndefinedBehavior();
1181       }
1182       llvm_unreachable("Missed EvalMode case");
1183     }
1184 
1185     /// Note that we hit something that was technically undefined behavior, but
1186     /// that we can evaluate past it (such as signed overflow or floating-point
1187     /// division by zero.)
noteUndefinedBehavior()1188     bool noteUndefinedBehavior() override {
1189       EvalStatus.HasUndefinedBehavior = true;
1190       return keepEvaluatingAfterUndefinedBehavior();
1191     }
1192 
1193     /// Should we continue evaluation as much as possible after encountering a
1194     /// construct which can't be reduced to a value?
keepEvaluatingAfterFailure() const1195     bool keepEvaluatingAfterFailure() const override {
1196       if (!StepsLeft)
1197         return false;
1198 
1199       switch (EvalMode) {
1200       case EM_ConstantExpression:
1201       case EM_ConstantExpressionUnevaluated:
1202       case EM_ConstantFold:
1203       case EM_IgnoreSideEffects:
1204         return checkingPotentialConstantExpression() ||
1205                checkingForUndefinedBehavior();
1206       }
1207       llvm_unreachable("Missed EvalMode case");
1208     }
1209 
1210     /// Notes that we failed to evaluate an expression that other expressions
1211     /// directly depend on, and determine if we should keep evaluating. This
1212     /// should only be called if we actually intend to keep evaluating.
1213     ///
1214     /// Call noteSideEffect() instead if we may be able to ignore the value that
1215     /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1216     ///
1217     /// (Foo(), 1)      // use noteSideEffect
1218     /// (Foo() || true) // use noteSideEffect
1219     /// Foo() + 1       // use noteFailure
noteFailure()1220     LLVM_NODISCARD bool noteFailure() {
1221       // Failure when evaluating some expression often means there is some
1222       // subexpression whose evaluation was skipped. Therefore, (because we
1223       // don't track whether we skipped an expression when unwinding after an
1224       // evaluation failure) every evaluation failure that bubbles up from a
1225       // subexpression implies that a side-effect has potentially happened. We
1226       // skip setting the HasSideEffects flag to true until we decide to
1227       // continue evaluating after that point, which happens here.
1228       bool KeepGoing = keepEvaluatingAfterFailure();
1229       EvalStatus.HasSideEffects |= KeepGoing;
1230       return KeepGoing;
1231     }
1232 
1233     class ArrayInitLoopIndex {
1234       EvalInfo &Info;
1235       uint64_t OuterIndex;
1236 
1237     public:
ArrayInitLoopIndex(EvalInfo & Info)1238       ArrayInitLoopIndex(EvalInfo &Info)
1239           : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1240         Info.ArrayInitIndex = 0;
1241       }
~ArrayInitLoopIndex()1242       ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1243 
operator uint64_t&()1244       operator uint64_t&() { return Info.ArrayInitIndex; }
1245     };
1246   };
1247 
1248   /// Object used to treat all foldable expressions as constant expressions.
1249   struct FoldConstant {
1250     EvalInfo &Info;
1251     bool Enabled;
1252     bool HadNoPriorDiags;
1253     EvalInfo::EvaluationMode OldMode;
1254 
FoldConstant__anon4717f8730311::FoldConstant1255     explicit FoldConstant(EvalInfo &Info, bool Enabled)
1256       : Info(Info),
1257         Enabled(Enabled),
1258         HadNoPriorDiags(Info.EvalStatus.Diag &&
1259                         Info.EvalStatus.Diag->empty() &&
1260                         !Info.EvalStatus.HasSideEffects),
1261         OldMode(Info.EvalMode) {
1262       if (Enabled)
1263         Info.EvalMode = EvalInfo::EM_ConstantFold;
1264     }
keepDiagnostics__anon4717f8730311::FoldConstant1265     void keepDiagnostics() { Enabled = false; }
~FoldConstant__anon4717f8730311::FoldConstant1266     ~FoldConstant() {
1267       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1268           !Info.EvalStatus.HasSideEffects)
1269         Info.EvalStatus.Diag->clear();
1270       Info.EvalMode = OldMode;
1271     }
1272   };
1273 
1274   /// RAII object used to set the current evaluation mode to ignore
1275   /// side-effects.
1276   struct IgnoreSideEffectsRAII {
1277     EvalInfo &Info;
1278     EvalInfo::EvaluationMode OldMode;
IgnoreSideEffectsRAII__anon4717f8730311::IgnoreSideEffectsRAII1279     explicit IgnoreSideEffectsRAII(EvalInfo &Info)
1280         : Info(Info), OldMode(Info.EvalMode) {
1281       Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
1282     }
1283 
~IgnoreSideEffectsRAII__anon4717f8730311::IgnoreSideEffectsRAII1284     ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
1285   };
1286 
1287   /// RAII object used to optionally suppress diagnostics and side-effects from
1288   /// a speculative evaluation.
1289   class SpeculativeEvaluationRAII {
1290     EvalInfo *Info = nullptr;
1291     Expr::EvalStatus OldStatus;
1292     unsigned OldSpeculativeEvaluationDepth;
1293 
moveFromAndCancel(SpeculativeEvaluationRAII && Other)1294     void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1295       Info = Other.Info;
1296       OldStatus = Other.OldStatus;
1297       OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
1298       Other.Info = nullptr;
1299     }
1300 
maybeRestoreState()1301     void maybeRestoreState() {
1302       if (!Info)
1303         return;
1304 
1305       Info->EvalStatus = OldStatus;
1306       Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
1307     }
1308 
1309   public:
1310     SpeculativeEvaluationRAII() = default;
1311 
SpeculativeEvaluationRAII(EvalInfo & Info,SmallVectorImpl<PartialDiagnosticAt> * NewDiag=nullptr)1312     SpeculativeEvaluationRAII(
1313         EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1314         : Info(&Info), OldStatus(Info.EvalStatus),
1315           OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
1316       Info.EvalStatus.Diag = NewDiag;
1317       Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
1318     }
1319 
1320     SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
SpeculativeEvaluationRAII(SpeculativeEvaluationRAII && Other)1321     SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1322       moveFromAndCancel(std::move(Other));
1323     }
1324 
operator =(SpeculativeEvaluationRAII && Other)1325     SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1326       maybeRestoreState();
1327       moveFromAndCancel(std::move(Other));
1328       return *this;
1329     }
1330 
~SpeculativeEvaluationRAII()1331     ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1332   };
1333 
1334   /// RAII object wrapping a full-expression or block scope, and handling
1335   /// the ending of the lifetime of temporaries created within it.
1336   template<ScopeKind Kind>
1337   class ScopeRAII {
1338     EvalInfo &Info;
1339     unsigned OldStackSize;
1340   public:
ScopeRAII(EvalInfo & Info)1341     ScopeRAII(EvalInfo &Info)
1342         : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1343       // Push a new temporary version. This is needed to distinguish between
1344       // temporaries created in different iterations of a loop.
1345       Info.CurrentCall->pushTempVersion();
1346     }
destroy(bool RunDestructors=true)1347     bool destroy(bool RunDestructors = true) {
1348       bool OK = cleanup(Info, RunDestructors, OldStackSize);
1349       OldStackSize = -1U;
1350       return OK;
1351     }
~ScopeRAII()1352     ~ScopeRAII() {
1353       if (OldStackSize != -1U)
1354         destroy(false);
1355       // Body moved to a static method to encourage the compiler to inline away
1356       // instances of this class.
1357       Info.CurrentCall->popTempVersion();
1358     }
1359   private:
cleanup(EvalInfo & Info,bool RunDestructors,unsigned OldStackSize)1360     static bool cleanup(EvalInfo &Info, bool RunDestructors,
1361                         unsigned OldStackSize) {
1362       assert(OldStackSize <= Info.CleanupStack.size() &&
1363              "running cleanups out of order?");
1364 
1365       // Run all cleanups for a block scope, and non-lifetime-extended cleanups
1366       // for a full-expression scope.
1367       bool Success = true;
1368       for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) {
1369         if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) {
1370           if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) {
1371             Success = false;
1372             break;
1373           }
1374         }
1375       }
1376 
1377       // Compact any retained cleanups.
1378       auto NewEnd = Info.CleanupStack.begin() + OldStackSize;
1379       if (Kind != ScopeKind::Block)
1380         NewEnd =
1381             std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) {
1382               return C.isDestroyedAtEndOf(Kind);
1383             });
1384       Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end());
1385       return Success;
1386     }
1387   };
1388   typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII;
1389   typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII;
1390   typedef ScopeRAII<ScopeKind::Call> CallScopeRAII;
1391 }
1392 
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)1393 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1394                                          CheckSubobjectKind CSK) {
1395   if (Invalid)
1396     return false;
1397   if (isOnePastTheEnd()) {
1398     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1399       << CSK;
1400     setInvalid();
1401     return false;
1402   }
1403   // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1404   // must actually be at least one array element; even a VLA cannot have a
1405   // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1406   return true;
1407 }
1408 
diagnoseUnsizedArrayPointerArithmetic(EvalInfo & Info,const Expr * E)1409 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1410                                                                 const Expr *E) {
1411   Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1412   // Do not set the designator as invalid: we can represent this situation,
1413   // and correct handling of __builtin_object_size requires us to do so.
1414 }
1415 
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,const APSInt & N)1416 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1417                                                     const Expr *E,
1418                                                     const APSInt &N) {
1419   // If we're complaining, we must be able to statically determine the size of
1420   // the most derived array.
1421   if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1422     Info.CCEDiag(E, diag::note_constexpr_array_index)
1423       << N << /*array*/ 0
1424       << static_cast<unsigned>(getMostDerivedArraySize());
1425   else
1426     Info.CCEDiag(E, diag::note_constexpr_array_index)
1427       << N << /*non-array*/ 1;
1428   setInvalid();
1429 }
1430 
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,CallRef Call)1431 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
1432                                const FunctionDecl *Callee, const LValue *This,
1433                                CallRef Call)
1434     : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1435       Arguments(Call), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
1436   Info.CurrentCall = this;
1437   ++Info.CallStackDepth;
1438 }
1439 
~CallStackFrame()1440 CallStackFrame::~CallStackFrame() {
1441   assert(Info.CurrentCall == this && "calls retired out of order");
1442   --Info.CallStackDepth;
1443   Info.CurrentCall = Caller;
1444 }
1445 
isRead(AccessKinds AK)1446 static bool isRead(AccessKinds AK) {
1447   return AK == AK_Read || AK == AK_ReadObjectRepresentation;
1448 }
1449 
isModification(AccessKinds AK)1450 static bool isModification(AccessKinds AK) {
1451   switch (AK) {
1452   case AK_Read:
1453   case AK_ReadObjectRepresentation:
1454   case AK_MemberCall:
1455   case AK_DynamicCast:
1456   case AK_TypeId:
1457     return false;
1458   case AK_Assign:
1459   case AK_Increment:
1460   case AK_Decrement:
1461   case AK_Construct:
1462   case AK_Destroy:
1463     return true;
1464   }
1465   llvm_unreachable("unknown access kind");
1466 }
1467 
isAnyAccess(AccessKinds AK)1468 static bool isAnyAccess(AccessKinds AK) {
1469   return isRead(AK) || isModification(AK);
1470 }
1471 
1472 /// Is this an access per the C++ definition?
isFormalAccess(AccessKinds AK)1473 static bool isFormalAccess(AccessKinds AK) {
1474   return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy;
1475 }
1476 
1477 /// Is this kind of axcess valid on an indeterminate object value?
isValidIndeterminateAccess(AccessKinds AK)1478 static bool isValidIndeterminateAccess(AccessKinds AK) {
1479   switch (AK) {
1480   case AK_Read:
1481   case AK_Increment:
1482   case AK_Decrement:
1483     // These need the object's value.
1484     return false;
1485 
1486   case AK_ReadObjectRepresentation:
1487   case AK_Assign:
1488   case AK_Construct:
1489   case AK_Destroy:
1490     // Construction and destruction don't need the value.
1491     return true;
1492 
1493   case AK_MemberCall:
1494   case AK_DynamicCast:
1495   case AK_TypeId:
1496     // These aren't really meaningful on scalars.
1497     return true;
1498   }
1499   llvm_unreachable("unknown access kind");
1500 }
1501 
1502 namespace {
1503   struct ComplexValue {
1504   private:
1505     bool IsInt;
1506 
1507   public:
1508     APSInt IntReal, IntImag;
1509     APFloat FloatReal, FloatImag;
1510 
ComplexValue__anon4717f8730611::ComplexValue1511     ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1512 
makeComplexFloat__anon4717f8730611::ComplexValue1513     void makeComplexFloat() { IsInt = false; }
isComplexFloat__anon4717f8730611::ComplexValue1514     bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anon4717f8730611::ComplexValue1515     APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anon4717f8730611::ComplexValue1516     APFloat &getComplexFloatImag() { return FloatImag; }
1517 
makeComplexInt__anon4717f8730611::ComplexValue1518     void makeComplexInt() { IsInt = true; }
isComplexInt__anon4717f8730611::ComplexValue1519     bool isComplexInt() const { return IsInt; }
getComplexIntReal__anon4717f8730611::ComplexValue1520     APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anon4717f8730611::ComplexValue1521     APSInt &getComplexIntImag() { return IntImag; }
1522 
moveInto__anon4717f8730611::ComplexValue1523     void moveInto(APValue &v) const {
1524       if (isComplexFloat())
1525         v = APValue(FloatReal, FloatImag);
1526       else
1527         v = APValue(IntReal, IntImag);
1528     }
setFrom__anon4717f8730611::ComplexValue1529     void setFrom(const APValue &v) {
1530       assert(v.isComplexFloat() || v.isComplexInt());
1531       if (v.isComplexFloat()) {
1532         makeComplexFloat();
1533         FloatReal = v.getComplexFloatReal();
1534         FloatImag = v.getComplexFloatImag();
1535       } else {
1536         makeComplexInt();
1537         IntReal = v.getComplexIntReal();
1538         IntImag = v.getComplexIntImag();
1539       }
1540     }
1541   };
1542 
1543   struct LValue {
1544     APValue::LValueBase Base;
1545     CharUnits Offset;
1546     SubobjectDesignator Designator;
1547     bool IsNullPtr : 1;
1548     bool InvalidBase : 1;
1549 
getLValueBase__anon4717f8730611::LValue1550     const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anon4717f8730611::LValue1551     CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anon4717f8730611::LValue1552     const CharUnits &getLValueOffset() const { return Offset; }
getLValueDesignator__anon4717f8730611::LValue1553     SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anon4717f8730611::LValue1554     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
isNullPointer__anon4717f8730611::LValue1555     bool isNullPointer() const { return IsNullPtr;}
1556 
getLValueCallIndex__anon4717f8730611::LValue1557     unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
getLValueVersion__anon4717f8730611::LValue1558     unsigned getLValueVersion() const { return Base.getVersion(); }
1559 
moveInto__anon4717f8730611::LValue1560     void moveInto(APValue &V) const {
1561       if (Designator.Invalid)
1562         V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1563       else {
1564         assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1565         V = APValue(Base, Offset, Designator.Entries,
1566                     Designator.IsOnePastTheEnd, IsNullPtr);
1567       }
1568     }
setFrom__anon4717f8730611::LValue1569     void setFrom(ASTContext &Ctx, const APValue &V) {
1570       assert(V.isLValue() && "Setting LValue from a non-LValue?");
1571       Base = V.getLValueBase();
1572       Offset = V.getLValueOffset();
1573       InvalidBase = false;
1574       Designator = SubobjectDesignator(Ctx, V);
1575       IsNullPtr = V.isNullPointer();
1576     }
1577 
set__anon4717f8730611::LValue1578     void set(APValue::LValueBase B, bool BInvalid = false) {
1579 #ifndef NDEBUG
1580       // We only allow a few types of invalid bases. Enforce that here.
1581       if (BInvalid) {
1582         const auto *E = B.get<const Expr *>();
1583         assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1584                "Unexpected type of invalid base");
1585       }
1586 #endif
1587 
1588       Base = B;
1589       Offset = CharUnits::fromQuantity(0);
1590       InvalidBase = BInvalid;
1591       Designator = SubobjectDesignator(getType(B));
1592       IsNullPtr = false;
1593     }
1594 
setNull__anon4717f8730611::LValue1595     void setNull(ASTContext &Ctx, QualType PointerTy) {
1596       Base = (const ValueDecl *)nullptr;
1597       Offset =
1598           CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy));
1599       InvalidBase = false;
1600       Designator = SubobjectDesignator(PointerTy->getPointeeType());
1601       IsNullPtr = true;
1602     }
1603 
setInvalid__anon4717f8730611::LValue1604     void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1605       set(B, true);
1606     }
1607 
toString__anon4717f8730611::LValue1608     std::string toString(ASTContext &Ctx, QualType T) const {
1609       APValue Printable;
1610       moveInto(Printable);
1611       return Printable.getAsString(Ctx, T);
1612     }
1613 
1614   private:
1615     // Check that this LValue is not based on a null pointer. If it is, produce
1616     // a diagnostic and mark the designator as invalid.
1617     template <typename GenDiagType>
checkNullPointerDiagnosingWith__anon4717f8730611::LValue1618     bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
1619       if (Designator.Invalid)
1620         return false;
1621       if (IsNullPtr) {
1622         GenDiag();
1623         Designator.setInvalid();
1624         return false;
1625       }
1626       return true;
1627     }
1628 
1629   public:
checkNullPointer__anon4717f8730611::LValue1630     bool checkNullPointer(EvalInfo &Info, const Expr *E,
1631                           CheckSubobjectKind CSK) {
1632       return checkNullPointerDiagnosingWith([&Info, E, CSK] {
1633         Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
1634       });
1635     }
1636 
checkNullPointerForFoldAccess__anon4717f8730611::LValue1637     bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
1638                                        AccessKinds AK) {
1639       return checkNullPointerDiagnosingWith([&Info, E, AK] {
1640         Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
1641       });
1642     }
1643 
1644     // Check this LValue refers to an object. If not, set the designator to be
1645     // invalid and emit a diagnostic.
checkSubobject__anon4717f8730611::LValue1646     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1647       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1648              Designator.checkSubobject(Info, E, CSK);
1649     }
1650 
addDecl__anon4717f8730611::LValue1651     void addDecl(EvalInfo &Info, const Expr *E,
1652                  const Decl *D, bool Virtual = false) {
1653       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1654         Designator.addDeclUnchecked(D, Virtual);
1655     }
addUnsizedArray__anon4717f8730611::LValue1656     void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1657       if (!Designator.Entries.empty()) {
1658         Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1659         Designator.setInvalid();
1660         return;
1661       }
1662       if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1663         assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1664         Designator.FirstEntryIsAnUnsizedArray = true;
1665         Designator.addUnsizedArrayUnchecked(ElemTy);
1666       }
1667     }
addArray__anon4717f8730611::LValue1668     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1669       if (checkSubobject(Info, E, CSK_ArrayToPointer))
1670         Designator.addArrayUnchecked(CAT);
1671     }
addComplex__anon4717f8730611::LValue1672     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1673       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1674         Designator.addComplexUnchecked(EltTy, Imag);
1675     }
clearIsNullPointer__anon4717f8730611::LValue1676     void clearIsNullPointer() {
1677       IsNullPtr = false;
1678     }
adjustOffsetAndIndex__anon4717f8730611::LValue1679     void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1680                               const APSInt &Index, CharUnits ElementSize) {
1681       // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1682       // but we're not required to diagnose it and it's valid in C++.)
1683       if (!Index)
1684         return;
1685 
1686       // Compute the new offset in the appropriate width, wrapping at 64 bits.
1687       // FIXME: When compiling for a 32-bit target, we should use 32-bit
1688       // offsets.
1689       uint64_t Offset64 = Offset.getQuantity();
1690       uint64_t ElemSize64 = ElementSize.getQuantity();
1691       uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1692       Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1693 
1694       if (checkNullPointer(Info, E, CSK_ArrayIndex))
1695         Designator.adjustIndex(Info, E, Index);
1696       clearIsNullPointer();
1697     }
adjustOffset__anon4717f8730611::LValue1698     void adjustOffset(CharUnits N) {
1699       Offset += N;
1700       if (N.getQuantity())
1701         clearIsNullPointer();
1702     }
1703   };
1704 
1705   struct MemberPtr {
MemberPtr__anon4717f8730611::MemberPtr1706     MemberPtr() {}
MemberPtr__anon4717f8730611::MemberPtr1707     explicit MemberPtr(const ValueDecl *Decl) :
1708       DeclAndIsDerivedMember(Decl, false), Path() {}
1709 
1710     /// The member or (direct or indirect) field referred to by this member
1711     /// pointer, or 0 if this is a null member pointer.
getDecl__anon4717f8730611::MemberPtr1712     const ValueDecl *getDecl() const {
1713       return DeclAndIsDerivedMember.getPointer();
1714     }
1715     /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anon4717f8730611::MemberPtr1716     bool isDerivedMember() const {
1717       return DeclAndIsDerivedMember.getInt();
1718     }
1719     /// Get the class which the declaration actually lives in.
getContainingRecord__anon4717f8730611::MemberPtr1720     const CXXRecordDecl *getContainingRecord() const {
1721       return cast<CXXRecordDecl>(
1722           DeclAndIsDerivedMember.getPointer()->getDeclContext());
1723     }
1724 
moveInto__anon4717f8730611::MemberPtr1725     void moveInto(APValue &V) const {
1726       V = APValue(getDecl(), isDerivedMember(), Path);
1727     }
setFrom__anon4717f8730611::MemberPtr1728     void setFrom(const APValue &V) {
1729       assert(V.isMemberPointer());
1730       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1731       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1732       Path.clear();
1733       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1734       Path.insert(Path.end(), P.begin(), P.end());
1735     }
1736 
1737     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1738     /// whether the member is a member of some class derived from the class type
1739     /// of the member pointer.
1740     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1741     /// Path - The path of base/derived classes from the member declaration's
1742     /// class (exclusive) to the class type of the member pointer (inclusive).
1743     SmallVector<const CXXRecordDecl*, 4> Path;
1744 
1745     /// Perform a cast towards the class of the Decl (either up or down the
1746     /// hierarchy).
castBack__anon4717f8730611::MemberPtr1747     bool castBack(const CXXRecordDecl *Class) {
1748       assert(!Path.empty());
1749       const CXXRecordDecl *Expected;
1750       if (Path.size() >= 2)
1751         Expected = Path[Path.size() - 2];
1752       else
1753         Expected = getContainingRecord();
1754       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1755         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1756         // if B does not contain the original member and is not a base or
1757         // derived class of the class containing the original member, the result
1758         // of the cast is undefined.
1759         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1760         // (D::*). We consider that to be a language defect.
1761         return false;
1762       }
1763       Path.pop_back();
1764       return true;
1765     }
1766     /// Perform a base-to-derived member pointer cast.
castToDerived__anon4717f8730611::MemberPtr1767     bool castToDerived(const CXXRecordDecl *Derived) {
1768       if (!getDecl())
1769         return true;
1770       if (!isDerivedMember()) {
1771         Path.push_back(Derived);
1772         return true;
1773       }
1774       if (!castBack(Derived))
1775         return false;
1776       if (Path.empty())
1777         DeclAndIsDerivedMember.setInt(false);
1778       return true;
1779     }
1780     /// Perform a derived-to-base member pointer cast.
castToBase__anon4717f8730611::MemberPtr1781     bool castToBase(const CXXRecordDecl *Base) {
1782       if (!getDecl())
1783         return true;
1784       if (Path.empty())
1785         DeclAndIsDerivedMember.setInt(true);
1786       if (isDerivedMember()) {
1787         Path.push_back(Base);
1788         return true;
1789       }
1790       return castBack(Base);
1791     }
1792   };
1793 
1794   /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)1795   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1796     if (!LHS.getDecl() || !RHS.getDecl())
1797       return !LHS.getDecl() && !RHS.getDecl();
1798     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1799       return false;
1800     return LHS.Path == RHS.Path;
1801   }
1802 }
1803 
1804 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1805 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1806                             const LValue &This, const Expr *E,
1807                             bool AllowNonLiteralTypes = false);
1808 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1809                            bool InvalidBaseOK = false);
1810 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1811                             bool InvalidBaseOK = false);
1812 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1813                                   EvalInfo &Info);
1814 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1815 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1816 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1817                                     EvalInfo &Info);
1818 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1819 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1820 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1821                            EvalInfo &Info);
1822 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1823 
1824 /// Evaluate an integer or fixed point expression into an APResult.
1825 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
1826                                         EvalInfo &Info);
1827 
1828 /// Evaluate only a fixed point expression into an APResult.
1829 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
1830                                EvalInfo &Info);
1831 
1832 //===----------------------------------------------------------------------===//
1833 // Misc utilities
1834 //===----------------------------------------------------------------------===//
1835 
1836 /// Negate an APSInt in place, converting it to a signed form if necessary, and
1837 /// preserving its value (by extending by up to one bit as needed).
negateAsSigned(APSInt & Int)1838 static void negateAsSigned(APSInt &Int) {
1839   if (Int.isUnsigned() || Int.isMinSignedValue()) {
1840     Int = Int.extend(Int.getBitWidth() + 1);
1841     Int.setIsSigned(true);
1842   }
1843   Int = -Int;
1844 }
1845 
1846 template<typename KeyT>
createTemporary(const KeyT * Key,QualType T,ScopeKind Scope,LValue & LV)1847 APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T,
1848                                          ScopeKind Scope, LValue &LV) {
1849   unsigned Version = getTempVersion();
1850   APValue::LValueBase Base(Key, Index, Version);
1851   LV.set(Base);
1852   return createLocal(Base, Key, T, Scope);
1853 }
1854 
1855 /// Allocate storage for a parameter of a function call made in this frame.
createParam(CallRef Args,const ParmVarDecl * PVD,LValue & LV)1856 APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD,
1857                                      LValue &LV) {
1858   assert(Args.CallIndex == Index && "creating parameter in wrong frame");
1859   APValue::LValueBase Base(PVD, Index, Args.Version);
1860   LV.set(Base);
1861   // We always destroy parameters at the end of the call, even if we'd allow
1862   // them to live to the end of the full-expression at runtime, in order to
1863   // give portable results and match other compilers.
1864   return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call);
1865 }
1866 
createLocal(APValue::LValueBase Base,const void * Key,QualType T,ScopeKind Scope)1867 APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key,
1868                                      QualType T, ScopeKind Scope) {
1869   assert(Base.getCallIndex() == Index && "lvalue for wrong frame");
1870   unsigned Version = Base.getVersion();
1871   APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1872   assert(Result.isAbsent() && "local created multiple times");
1873 
1874   // If we're creating a local immediately in the operand of a speculative
1875   // evaluation, don't register a cleanup to be run outside the speculative
1876   // evaluation context, since we won't actually be able to initialize this
1877   // object.
1878   if (Index <= Info.SpeculativeEvaluationDepth) {
1879     if (T.isDestructedType())
1880       Info.noteSideEffect();
1881   } else {
1882     Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope));
1883   }
1884   return Result;
1885 }
1886 
createHeapAlloc(const Expr * E,QualType T,LValue & LV)1887 APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) {
1888   if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) {
1889     FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded);
1890     return nullptr;
1891   }
1892 
1893   DynamicAllocLValue DA(NumHeapAllocs++);
1894   LV.set(APValue::LValueBase::getDynamicAlloc(DA, T));
1895   auto Result = HeapAllocs.emplace(std::piecewise_construct,
1896                                    std::forward_as_tuple(DA), std::tuple<>());
1897   assert(Result.second && "reused a heap alloc index?");
1898   Result.first->second.AllocExpr = E;
1899   return &Result.first->second.Value;
1900 }
1901 
1902 /// Produce a string describing the given constexpr call.
describe(raw_ostream & Out)1903 void CallStackFrame::describe(raw_ostream &Out) {
1904   unsigned ArgIndex = 0;
1905   bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
1906                       !isa<CXXConstructorDecl>(Callee) &&
1907                       cast<CXXMethodDecl>(Callee)->isInstance();
1908 
1909   if (!IsMemberCall)
1910     Out << *Callee << '(';
1911 
1912   if (This && IsMemberCall) {
1913     APValue Val;
1914     This->moveInto(Val);
1915     Val.printPretty(Out, Info.Ctx,
1916                     This->Designator.MostDerivedType);
1917     // FIXME: Add parens around Val if needed.
1918     Out << "->" << *Callee << '(';
1919     IsMemberCall = false;
1920   }
1921 
1922   for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
1923        E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
1924     if (ArgIndex > (unsigned)IsMemberCall)
1925       Out << ", ";
1926 
1927     const ParmVarDecl *Param = *I;
1928     APValue *V = Info.getParamSlot(Arguments, Param);
1929     if (V)
1930       V->printPretty(Out, Info.Ctx, Param->getType());
1931     else
1932       Out << "<...>";
1933 
1934     if (ArgIndex == 0 && IsMemberCall)
1935       Out << "->" << *Callee << '(';
1936   }
1937 
1938   Out << ')';
1939 }
1940 
1941 /// Evaluate an expression to see if it had side-effects, and discard its
1942 /// result.
1943 /// \return \c true if the caller should keep evaluating.
EvaluateIgnoredValue(EvalInfo & Info,const Expr * E)1944 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1945   APValue Scratch;
1946   if (!Evaluate(Scratch, Info, E))
1947     // We don't need the value, but we might have skipped a side effect here.
1948     return Info.noteSideEffect();
1949   return true;
1950 }
1951 
1952 /// Should this call expression be treated as a string literal?
IsStringLiteralCall(const CallExpr * E)1953 static bool IsStringLiteralCall(const CallExpr *E) {
1954   unsigned Builtin = E->getBuiltinCallee();
1955   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1956           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1957 }
1958 
IsGlobalLValue(APValue::LValueBase B)1959 static bool IsGlobalLValue(APValue::LValueBase B) {
1960   // C++11 [expr.const]p3 An address constant expression is a prvalue core
1961   // constant expression of pointer type that evaluates to...
1962 
1963   // ... a null pointer value, or a prvalue core constant expression of type
1964   // std::nullptr_t.
1965   if (!B) return true;
1966 
1967   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1968     // ... the address of an object with static storage duration,
1969     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1970       return VD->hasGlobalStorage();
1971     if (isa<TemplateParamObjectDecl>(D))
1972       return true;
1973     // ... the address of a function,
1974     // ... the address of a GUID [MS extension],
1975     return isa<FunctionDecl>(D) || isa<MSGuidDecl>(D);
1976   }
1977 
1978   if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>())
1979     return true;
1980 
1981   const Expr *E = B.get<const Expr*>();
1982   switch (E->getStmtClass()) {
1983   default:
1984     return false;
1985   case Expr::CompoundLiteralExprClass: {
1986     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1987     return CLE->isFileScope() && CLE->isLValue();
1988   }
1989   case Expr::MaterializeTemporaryExprClass:
1990     // A materialized temporary might have been lifetime-extended to static
1991     // storage duration.
1992     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1993   // A string literal has static storage duration.
1994   case Expr::StringLiteralClass:
1995   case Expr::PredefinedExprClass:
1996   case Expr::ObjCStringLiteralClass:
1997   case Expr::ObjCEncodeExprClass:
1998     return true;
1999   case Expr::ObjCBoxedExprClass:
2000     return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
2001   case Expr::CallExprClass:
2002     return IsStringLiteralCall(cast<CallExpr>(E));
2003   // For GCC compatibility, &&label has static storage duration.
2004   case Expr::AddrLabelExprClass:
2005     return true;
2006   // A Block literal expression may be used as the initialization value for
2007   // Block variables at global or local static scope.
2008   case Expr::BlockExprClass:
2009     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
2010   case Expr::ImplicitValueInitExprClass:
2011     // FIXME:
2012     // We can never form an lvalue with an implicit value initialization as its
2013     // base through expression evaluation, so these only appear in one case: the
2014     // implicit variable declaration we invent when checking whether a constexpr
2015     // constructor can produce a constant expression. We must assume that such
2016     // an expression might be a global lvalue.
2017     return true;
2018   }
2019 }
2020 
GetLValueBaseDecl(const LValue & LVal)2021 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
2022   return LVal.Base.dyn_cast<const ValueDecl*>();
2023 }
2024 
IsLiteralLValue(const LValue & Value)2025 static bool IsLiteralLValue(const LValue &Value) {
2026   if (Value.getLValueCallIndex())
2027     return false;
2028   const Expr *E = Value.Base.dyn_cast<const Expr*>();
2029   return E && !isa<MaterializeTemporaryExpr>(E);
2030 }
2031 
IsWeakLValue(const LValue & Value)2032 static bool IsWeakLValue(const LValue &Value) {
2033   const ValueDecl *Decl = GetLValueBaseDecl(Value);
2034   return Decl && Decl->isWeak();
2035 }
2036 
isZeroSized(const LValue & Value)2037 static bool isZeroSized(const LValue &Value) {
2038   const ValueDecl *Decl = GetLValueBaseDecl(Value);
2039   if (Decl && isa<VarDecl>(Decl)) {
2040     QualType Ty = Decl->getType();
2041     if (Ty->isArrayType())
2042       return Ty->isIncompleteType() ||
2043              Decl->getASTContext().getTypeSize(Ty) == 0;
2044   }
2045   return false;
2046 }
2047 
HasSameBase(const LValue & A,const LValue & B)2048 static bool HasSameBase(const LValue &A, const LValue &B) {
2049   if (!A.getLValueBase())
2050     return !B.getLValueBase();
2051   if (!B.getLValueBase())
2052     return false;
2053 
2054   if (A.getLValueBase().getOpaqueValue() !=
2055       B.getLValueBase().getOpaqueValue())
2056     return false;
2057 
2058   return A.getLValueCallIndex() == B.getLValueCallIndex() &&
2059          A.getLValueVersion() == B.getLValueVersion();
2060 }
2061 
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)2062 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
2063   assert(Base && "no location for a null lvalue");
2064   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2065 
2066   // For a parameter, find the corresponding call stack frame (if it still
2067   // exists), and point at the parameter of the function definition we actually
2068   // invoked.
2069   if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) {
2070     unsigned Idx = PVD->getFunctionScopeIndex();
2071     for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) {
2072       if (F->Arguments.CallIndex == Base.getCallIndex() &&
2073           F->Arguments.Version == Base.getVersion() && F->Callee &&
2074           Idx < F->Callee->getNumParams()) {
2075         VD = F->Callee->getParamDecl(Idx);
2076         break;
2077       }
2078     }
2079   }
2080 
2081   if (VD)
2082     Info.Note(VD->getLocation(), diag::note_declared_at);
2083   else if (const Expr *E = Base.dyn_cast<const Expr*>())
2084     Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
2085   else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
2086     // FIXME: Produce a note for dangling pointers too.
2087     if (Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA))
2088       Info.Note((*Alloc)->AllocExpr->getExprLoc(),
2089                 diag::note_constexpr_dynamic_alloc_here);
2090   }
2091   // We have no information to show for a typeid(T) object.
2092 }
2093 
2094 enum class CheckEvaluationResultKind {
2095   ConstantExpression,
2096   FullyInitialized,
2097 };
2098 
2099 /// Materialized temporaries that we've already checked to determine if they're
2100 /// initializsed by a constant expression.
2101 using CheckedTemporaries =
2102     llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>;
2103 
2104 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2105                                   EvalInfo &Info, SourceLocation DiagLoc,
2106                                   QualType Type, const APValue &Value,
2107                                   ConstantExprKind Kind,
2108                                   SourceLocation SubobjectLoc,
2109                                   CheckedTemporaries &CheckedTemps);
2110 
2111 /// Check that this reference or pointer core constant expression is a valid
2112 /// value for an address or reference constant expression. Return true if we
2113 /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal,ConstantExprKind Kind,CheckedTemporaries & CheckedTemps)2114 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
2115                                           QualType Type, const LValue &LVal,
2116                                           ConstantExprKind Kind,
2117                                           CheckedTemporaries &CheckedTemps) {
2118   bool IsReferenceType = Type->isReferenceType();
2119 
2120   APValue::LValueBase Base = LVal.getLValueBase();
2121   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
2122 
2123   const Expr *BaseE = Base.dyn_cast<const Expr *>();
2124   const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>();
2125 
2126   // Additional restrictions apply in a template argument. We only enforce the
2127   // C++20 restrictions here; additional syntactic and semantic restrictions
2128   // are applied elsewhere.
2129   if (isTemplateArgument(Kind)) {
2130     int InvalidBaseKind = -1;
2131     StringRef Ident;
2132     if (Base.is<TypeInfoLValue>())
2133       InvalidBaseKind = 0;
2134     else if (isa_and_nonnull<StringLiteral>(BaseE))
2135       InvalidBaseKind = 1;
2136     else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) ||
2137              isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD))
2138       InvalidBaseKind = 2;
2139     else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) {
2140       InvalidBaseKind = 3;
2141       Ident = PE->getIdentKindName();
2142     }
2143 
2144     if (InvalidBaseKind != -1) {
2145       Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg)
2146           << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind
2147           << Ident;
2148       return false;
2149     }
2150   }
2151 
2152   if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD)) {
2153     if (FD->isConsteval()) {
2154       Info.FFDiag(Loc, diag::note_consteval_address_accessible)
2155           << !Type->isAnyPointerType();
2156       Info.Note(FD->getLocation(), diag::note_declared_at);
2157       return false;
2158     }
2159   }
2160 
2161   // Check that the object is a global. Note that the fake 'this' object we
2162   // manufacture when checking potential constant expressions is conservatively
2163   // assumed to be global here.
2164   if (!IsGlobalLValue(Base)) {
2165     if (Info.getLangOpts().CPlusPlus11) {
2166       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
2167       Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
2168         << IsReferenceType << !Designator.Entries.empty()
2169         << !!VD << VD;
2170 
2171       auto *VarD = dyn_cast_or_null<VarDecl>(VD);
2172       if (VarD && VarD->isConstexpr()) {
2173         // Non-static local constexpr variables have unintuitive semantics:
2174         //   constexpr int a = 1;
2175         //   constexpr const int *p = &a;
2176         // ... is invalid because the address of 'a' is not constant. Suggest
2177         // adding a 'static' in this case.
2178         Info.Note(VarD->getLocation(), diag::note_constexpr_not_static)
2179             << VarD
2180             << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static ");
2181       } else {
2182         NoteLValueLocation(Info, Base);
2183       }
2184     } else {
2185       Info.FFDiag(Loc);
2186     }
2187     // Don't allow references to temporaries to escape.
2188     return false;
2189   }
2190   assert((Info.checkingPotentialConstantExpression() ||
2191           LVal.getLValueCallIndex() == 0) &&
2192          "have call index for global lvalue");
2193 
2194   if (Base.is<DynamicAllocLValue>()) {
2195     Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc)
2196         << IsReferenceType << !Designator.Entries.empty();
2197     NoteLValueLocation(Info, Base);
2198     return false;
2199   }
2200 
2201   if (BaseVD) {
2202     if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) {
2203       // Check if this is a thread-local variable.
2204       if (Var->getTLSKind())
2205         // FIXME: Diagnostic!
2206         return false;
2207 
2208       // A dllimport variable never acts like a constant, unless we're
2209       // evaluating a value for use only in name mangling.
2210       if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>())
2211         // FIXME: Diagnostic!
2212         return false;
2213     }
2214     if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) {
2215       // __declspec(dllimport) must be handled very carefully:
2216       // We must never initialize an expression with the thunk in C++.
2217       // Doing otherwise would allow the same id-expression to yield
2218       // different addresses for the same function in different translation
2219       // units.  However, this means that we must dynamically initialize the
2220       // expression with the contents of the import address table at runtime.
2221       //
2222       // The C language has no notion of ODR; furthermore, it has no notion of
2223       // dynamic initialization.  This means that we are permitted to
2224       // perform initialization with the address of the thunk.
2225       if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) &&
2226           FD->hasAttr<DLLImportAttr>())
2227         // FIXME: Diagnostic!
2228         return false;
2229     }
2230   } else if (const auto *MTE =
2231                  dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) {
2232     if (CheckedTemps.insert(MTE).second) {
2233       QualType TempType = getType(Base);
2234       if (TempType.isDestructedType()) {
2235         Info.FFDiag(MTE->getExprLoc(),
2236                     diag::note_constexpr_unsupported_temporary_nontrivial_dtor)
2237             << TempType;
2238         return false;
2239       }
2240 
2241       APValue *V = MTE->getOrCreateValue(false);
2242       assert(V && "evasluation result refers to uninitialised temporary");
2243       if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2244                                  Info, MTE->getExprLoc(), TempType, *V,
2245                                  Kind, SourceLocation(), CheckedTemps))
2246         return false;
2247     }
2248   }
2249 
2250   // Allow address constant expressions to be past-the-end pointers. This is
2251   // an extension: the standard requires them to point to an object.
2252   if (!IsReferenceType)
2253     return true;
2254 
2255   // A reference constant expression must refer to an object.
2256   if (!Base) {
2257     // FIXME: diagnostic
2258     Info.CCEDiag(Loc);
2259     return true;
2260   }
2261 
2262   // Does this refer one past the end of some object?
2263   if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
2264     Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
2265       << !Designator.Entries.empty() << !!BaseVD << BaseVD;
2266     NoteLValueLocation(Info, Base);
2267   }
2268 
2269   return true;
2270 }
2271 
2272 /// Member pointers are constant expressions unless they point to a
2273 /// non-virtual dllimport member function.
CheckMemberPointerConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const APValue & Value,ConstantExprKind Kind)2274 static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
2275                                                  SourceLocation Loc,
2276                                                  QualType Type,
2277                                                  const APValue &Value,
2278                                                  ConstantExprKind Kind) {
2279   const ValueDecl *Member = Value.getMemberPointerDecl();
2280   const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
2281   if (!FD)
2282     return true;
2283   if (FD->isConsteval()) {
2284     Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0;
2285     Info.Note(FD->getLocation(), diag::note_declared_at);
2286     return false;
2287   }
2288   return isForManglingOnly(Kind) || FD->isVirtual() ||
2289          !FD->hasAttr<DLLImportAttr>();
2290 }
2291 
2292 /// Check that this core constant expression is of literal type, and if not,
2293 /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E,const LValue * This=nullptr)2294 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
2295                              const LValue *This = nullptr) {
2296   if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
2297     return true;
2298 
2299   // C++1y: A constant initializer for an object o [...] may also invoke
2300   // constexpr constructors for o and its subobjects even if those objects
2301   // are of non-literal class types.
2302   //
2303   // C++11 missed this detail for aggregates, so classes like this:
2304   //   struct foo_t { union { int i; volatile int j; } u; };
2305   // are not (obviously) initializable like so:
2306   //   __attribute__((__require_constant_initialization__))
2307   //   static const foo_t x = {{0}};
2308   // because "i" is a subobject with non-literal initialization (due to the
2309   // volatile member of the union). See:
2310   //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
2311   // Therefore, we use the C++1y behavior.
2312   if (This && Info.EvaluatingDecl == This->getLValueBase())
2313     return true;
2314 
2315   // Prvalue constant expressions must be of literal types.
2316   if (Info.getLangOpts().CPlusPlus11)
2317     Info.FFDiag(E, diag::note_constexpr_nonliteral)
2318       << E->getType();
2319   else
2320     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2321   return false;
2322 }
2323 
CheckEvaluationResult(CheckEvaluationResultKind CERK,EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value,ConstantExprKind Kind,SourceLocation SubobjectLoc,CheckedTemporaries & CheckedTemps)2324 static bool CheckEvaluationResult(CheckEvaluationResultKind CERK,
2325                                   EvalInfo &Info, SourceLocation DiagLoc,
2326                                   QualType Type, const APValue &Value,
2327                                   ConstantExprKind Kind,
2328                                   SourceLocation SubobjectLoc,
2329                                   CheckedTemporaries &CheckedTemps) {
2330   if (!Value.hasValue()) {
2331     Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
2332       << true << Type;
2333     if (SubobjectLoc.isValid())
2334       Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here);
2335     return false;
2336   }
2337 
2338   // We allow _Atomic(T) to be initialized from anything that T can be
2339   // initialized from.
2340   if (const AtomicType *AT = Type->getAs<AtomicType>())
2341     Type = AT->getValueType();
2342 
2343   // Core issue 1454: For a literal constant expression of array or class type,
2344   // each subobject of its value shall have been initialized by a constant
2345   // expression.
2346   if (Value.isArray()) {
2347     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
2348     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
2349       if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2350                                  Value.getArrayInitializedElt(I), Kind,
2351                                  SubobjectLoc, CheckedTemps))
2352         return false;
2353     }
2354     if (!Value.hasArrayFiller())
2355       return true;
2356     return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy,
2357                                  Value.getArrayFiller(), Kind, SubobjectLoc,
2358                                  CheckedTemps);
2359   }
2360   if (Value.isUnion() && Value.getUnionField()) {
2361     return CheckEvaluationResult(
2362         CERK, Info, DiagLoc, Value.getUnionField()->getType(),
2363         Value.getUnionValue(), Kind, Value.getUnionField()->getLocation(),
2364         CheckedTemps);
2365   }
2366   if (Value.isStruct()) {
2367     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
2368     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
2369       unsigned BaseIndex = 0;
2370       for (const CXXBaseSpecifier &BS : CD->bases()) {
2371         if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(),
2372                                    Value.getStructBase(BaseIndex), Kind,
2373                                    BS.getBeginLoc(), CheckedTemps))
2374           return false;
2375         ++BaseIndex;
2376       }
2377     }
2378     for (const auto *I : RD->fields()) {
2379       if (I->isUnnamedBitfield())
2380         continue;
2381 
2382       if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(),
2383                                  Value.getStructField(I->getFieldIndex()),
2384                                  Kind, I->getLocation(), CheckedTemps))
2385         return false;
2386     }
2387   }
2388 
2389   if (Value.isLValue() &&
2390       CERK == CheckEvaluationResultKind::ConstantExpression) {
2391     LValue LVal;
2392     LVal.setFrom(Info.Ctx, Value);
2393     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind,
2394                                          CheckedTemps);
2395   }
2396 
2397   if (Value.isMemberPointer() &&
2398       CERK == CheckEvaluationResultKind::ConstantExpression)
2399     return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind);
2400 
2401   // Everything else is fine.
2402   return true;
2403 }
2404 
2405 /// Check that this core constant expression value is a valid value for a
2406 /// constant expression. If not, report an appropriate diagnostic. Does not
2407 /// check that the expression is of literal type.
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value,ConstantExprKind Kind)2408 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
2409                                     QualType Type, const APValue &Value,
2410                                     ConstantExprKind Kind) {
2411   // Nothing to check for a constant expression of type 'cv void'.
2412   if (Type->isVoidType())
2413     return true;
2414 
2415   CheckedTemporaries CheckedTemps;
2416   return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression,
2417                                Info, DiagLoc, Type, Value, Kind,
2418                                SourceLocation(), CheckedTemps);
2419 }
2420 
2421 /// Check that this evaluated value is fully-initialized and can be loaded by
2422 /// an lvalue-to-rvalue conversion.
CheckFullyInitialized(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value)2423 static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc,
2424                                   QualType Type, const APValue &Value) {
2425   CheckedTemporaries CheckedTemps;
2426   return CheckEvaluationResult(
2427       CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value,
2428       ConstantExprKind::Normal, SourceLocation(), CheckedTemps);
2429 }
2430 
2431 /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless
2432 /// "the allocated storage is deallocated within the evaluation".
CheckMemoryLeaks(EvalInfo & Info)2433 static bool CheckMemoryLeaks(EvalInfo &Info) {
2434   if (!Info.HeapAllocs.empty()) {
2435     // We can still fold to a constant despite a compile-time memory leak,
2436     // so long as the heap allocation isn't referenced in the result (we check
2437     // that in CheckConstantExpression).
2438     Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr,
2439                  diag::note_constexpr_memory_leak)
2440         << unsigned(Info.HeapAllocs.size() - 1);
2441   }
2442   return true;
2443 }
2444 
EvalPointerValueAsBool(const APValue & Value,bool & Result)2445 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
2446   // A null base expression indicates a null pointer.  These are always
2447   // evaluatable, and they are false unless the offset is zero.
2448   if (!Value.getLValueBase()) {
2449     Result = !Value.getLValueOffset().isZero();
2450     return true;
2451   }
2452 
2453   // We have a non-null base.  These are generally known to be true, but if it's
2454   // a weak declaration it can be null at runtime.
2455   Result = true;
2456   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
2457   return !Decl || !Decl->isWeak();
2458 }
2459 
HandleConversionToBool(const APValue & Val,bool & Result)2460 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
2461   switch (Val.getKind()) {
2462   case APValue::None:
2463   case APValue::Indeterminate:
2464     return false;
2465   case APValue::Int:
2466     Result = Val.getInt().getBoolValue();
2467     return true;
2468   case APValue::FixedPoint:
2469     Result = Val.getFixedPoint().getBoolValue();
2470     return true;
2471   case APValue::Float:
2472     Result = !Val.getFloat().isZero();
2473     return true;
2474   case APValue::ComplexInt:
2475     Result = Val.getComplexIntReal().getBoolValue() ||
2476              Val.getComplexIntImag().getBoolValue();
2477     return true;
2478   case APValue::ComplexFloat:
2479     Result = !Val.getComplexFloatReal().isZero() ||
2480              !Val.getComplexFloatImag().isZero();
2481     return true;
2482   case APValue::LValue:
2483     return EvalPointerValueAsBool(Val, Result);
2484   case APValue::MemberPointer:
2485     Result = Val.getMemberPointerDecl();
2486     return true;
2487   case APValue::Vector:
2488   case APValue::Array:
2489   case APValue::Struct:
2490   case APValue::Union:
2491   case APValue::AddrLabelDiff:
2492     return false;
2493   }
2494 
2495   llvm_unreachable("unknown APValue kind");
2496 }
2497 
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)2498 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
2499                                        EvalInfo &Info) {
2500   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
2501   APValue Val;
2502   if (!Evaluate(Val, Info, E))
2503     return false;
2504   return HandleConversionToBool(Val, Result);
2505 }
2506 
2507 template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)2508 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2509                            const T &SrcValue, QualType DestType) {
2510   Info.CCEDiag(E, diag::note_constexpr_overflow)
2511     << SrcValue << DestType;
2512   return Info.noteUndefinedBehavior();
2513 }
2514 
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)2515 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2516                                  QualType SrcType, const APFloat &Value,
2517                                  QualType DestType, APSInt &Result) {
2518   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2519   // Determine whether we are converting to unsigned or signed.
2520   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2521 
2522   Result = APSInt(DestWidth, !DestSigned);
2523   bool ignored;
2524   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2525       & APFloat::opInvalidOp)
2526     return HandleOverflow(Info, E, Value, DestType);
2527   return true;
2528 }
2529 
2530 /// Get rounding mode used for evaluation of the specified expression.
2531 /// \param[out] DynamicRM Is set to true is the requested rounding mode is
2532 ///                       dynamic.
2533 /// If rounding mode is unknown at compile time, still try to evaluate the
2534 /// expression. If the result is exact, it does not depend on rounding mode.
2535 /// So return "tonearest" mode instead of "dynamic".
getActiveRoundingMode(EvalInfo & Info,const Expr * E,bool & DynamicRM)2536 static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E,
2537                                                 bool &DynamicRM) {
2538   llvm::RoundingMode RM =
2539       E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode();
2540   DynamicRM = (RM == llvm::RoundingMode::Dynamic);
2541   if (DynamicRM)
2542     RM = llvm::RoundingMode::NearestTiesToEven;
2543   return RM;
2544 }
2545 
2546 /// Check if the given evaluation result is allowed for constant evaluation.
checkFloatingPointResult(EvalInfo & Info,const Expr * E,APFloat::opStatus St)2547 static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E,
2548                                      APFloat::opStatus St) {
2549   // In a constant context, assume that any dynamic rounding mode or FP
2550   // exception state matches the default floating-point environment.
2551   if (Info.InConstantContext)
2552     return true;
2553 
2554   FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts());
2555   if ((St & APFloat::opInexact) &&
2556       FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
2557     // Inexact result means that it depends on rounding mode. If the requested
2558     // mode is dynamic, the evaluation cannot be made in compile time.
2559     Info.FFDiag(E, diag::note_constexpr_dynamic_rounding);
2560     return false;
2561   }
2562 
2563   if ((St != APFloat::opOK) &&
2564       (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
2565        FPO.getFPExceptionMode() != LangOptions::FPE_Ignore ||
2566        FPO.getAllowFEnvAccess())) {
2567     Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2568     return false;
2569   }
2570 
2571   if ((St & APFloat::opStatus::opInvalidOp) &&
2572       FPO.getFPExceptionMode() != LangOptions::FPE_Ignore) {
2573     // There is no usefully definable result.
2574     Info.FFDiag(E);
2575     return false;
2576   }
2577 
2578   // FIXME: if:
2579   // - evaluation triggered other FP exception, and
2580   // - exception mode is not "ignore", and
2581   // - the expression being evaluated is not a part of global variable
2582   //   initializer,
2583   // the evaluation probably need to be rejected.
2584   return true;
2585 }
2586 
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)2587 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2588                                    QualType SrcType, QualType DestType,
2589                                    APFloat &Result) {
2590   assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E));
2591   bool DynamicRM;
2592   llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM);
2593   APFloat::opStatus St;
2594   APFloat Value = Result;
2595   bool ignored;
2596   St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored);
2597   return checkFloatingPointResult(Info, E, St);
2598 }
2599 
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,const APSInt & Value)2600 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2601                                  QualType DestType, QualType SrcType,
2602                                  const APSInt &Value) {
2603   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2604   // Figure out if this is a truncate, extend or noop cast.
2605   // If the input is signed, do a sign extend, noop, or truncate.
2606   APSInt Result = Value.extOrTrunc(DestWidth);
2607   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2608   if (DestType->isBooleanType())
2609     Result = Value.getBoolValue();
2610   return Result;
2611 }
2612 
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,const FPOptions FPO,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)2613 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2614                                  const FPOptions FPO,
2615                                  QualType SrcType, const APSInt &Value,
2616                                  QualType DestType, APFloat &Result) {
2617   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2618   APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(),
2619        APFloat::rmNearestTiesToEven);
2620   if (!Info.InConstantContext && St != llvm::APFloatBase::opOK &&
2621       FPO.isFPConstrained()) {
2622     Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
2623     return false;
2624   }
2625   return true;
2626 }
2627 
truncateBitfieldValue(EvalInfo & Info,const Expr * E,APValue & Value,const FieldDecl * FD)2628 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2629                                   APValue &Value, const FieldDecl *FD) {
2630   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2631 
2632   if (!Value.isInt()) {
2633     // Trying to store a pointer-cast-to-integer into a bitfield.
2634     // FIXME: In this case, we should provide the diagnostic for casting
2635     // a pointer to an integer.
2636     assert(Value.isLValue() && "integral value neither int nor lvalue?");
2637     Info.FFDiag(E);
2638     return false;
2639   }
2640 
2641   APSInt &Int = Value.getInt();
2642   unsigned OldBitWidth = Int.getBitWidth();
2643   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2644   if (NewBitWidth < OldBitWidth)
2645     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2646   return true;
2647 }
2648 
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)2649 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
2650                                   llvm::APInt &Res) {
2651   APValue SVal;
2652   if (!Evaluate(SVal, Info, E))
2653     return false;
2654   if (SVal.isInt()) {
2655     Res = SVal.getInt();
2656     return true;
2657   }
2658   if (SVal.isFloat()) {
2659     Res = SVal.getFloat().bitcastToAPInt();
2660     return true;
2661   }
2662   if (SVal.isVector()) {
2663     QualType VecTy = E->getType();
2664     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
2665     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
2666     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
2667     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
2668     Res = llvm::APInt::getNullValue(VecSize);
2669     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
2670       APValue &Elt = SVal.getVectorElt(i);
2671       llvm::APInt EltAsInt;
2672       if (Elt.isInt()) {
2673         EltAsInt = Elt.getInt();
2674       } else if (Elt.isFloat()) {
2675         EltAsInt = Elt.getFloat().bitcastToAPInt();
2676       } else {
2677         // Don't try to handle vectors of anything other than int or float
2678         // (not sure if it's possible to hit this case).
2679         Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2680         return false;
2681       }
2682       unsigned BaseEltSize = EltAsInt.getBitWidth();
2683       if (BigEndian)
2684         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
2685       else
2686         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
2687     }
2688     return true;
2689   }
2690   // Give up if the input isn't an int, float, or vector.  For example, we
2691   // reject "(v4i16)(intptr_t)&a".
2692   Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2693   return false;
2694 }
2695 
2696 /// Perform the given integer operation, which is known to need at most BitWidth
2697 /// bits, and check for overflow in the original type (if that type was not an
2698 /// unsigned type).
2699 template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op,APSInt & Result)2700 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2701                                  const APSInt &LHS, const APSInt &RHS,
2702                                  unsigned BitWidth, Operation Op,
2703                                  APSInt &Result) {
2704   if (LHS.isUnsigned()) {
2705     Result = Op(LHS, RHS);
2706     return true;
2707   }
2708 
2709   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2710   Result = Value.trunc(LHS.getBitWidth());
2711   if (Result.extend(BitWidth) != Value) {
2712     if (Info.checkingForUndefinedBehavior())
2713       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2714                                        diag::warn_integer_constant_overflow)
2715           << Result.toString(10) << E->getType();
2716     else
2717       return HandleOverflow(Info, E, Value, E->getType());
2718   }
2719   return true;
2720 }
2721 
2722 /// Perform the given binary integer operation.
handleIntIntBinOp(EvalInfo & Info,const Expr * E,const APSInt & LHS,BinaryOperatorKind Opcode,APSInt RHS,APSInt & Result)2723 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
2724                               BinaryOperatorKind Opcode, APSInt RHS,
2725                               APSInt &Result) {
2726   switch (Opcode) {
2727   default:
2728     Info.FFDiag(E);
2729     return false;
2730   case BO_Mul:
2731     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2732                                 std::multiplies<APSInt>(), Result);
2733   case BO_Add:
2734     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2735                                 std::plus<APSInt>(), Result);
2736   case BO_Sub:
2737     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2738                                 std::minus<APSInt>(), Result);
2739   case BO_And: Result = LHS & RHS; return true;
2740   case BO_Xor: Result = LHS ^ RHS; return true;
2741   case BO_Or:  Result = LHS | RHS; return true;
2742   case BO_Div:
2743   case BO_Rem:
2744     if (RHS == 0) {
2745       Info.FFDiag(E, diag::note_expr_divide_by_zero);
2746       return false;
2747     }
2748     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2749     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2750     // this operation and gives the two's complement result.
2751     if (RHS.isNegative() && RHS.isAllOnesValue() &&
2752         LHS.isSigned() && LHS.isMinSignedValue())
2753       return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
2754                             E->getType());
2755     return true;
2756   case BO_Shl: {
2757     if (Info.getLangOpts().OpenCL)
2758       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2759       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2760                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2761                     RHS.isUnsigned());
2762     else if (RHS.isSigned() && RHS.isNegative()) {
2763       // During constant-folding, a negative shift is an opposite shift. Such
2764       // a shift is not a constant expression.
2765       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2766       RHS = -RHS;
2767       goto shift_right;
2768     }
2769   shift_left:
2770     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2771     // the shifted type.
2772     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2773     if (SA != RHS) {
2774       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2775         << RHS << E->getType() << LHS.getBitWidth();
2776     } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) {
2777       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2778       // operand, and must not overflow the corresponding unsigned type.
2779       // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
2780       // E1 x 2^E2 module 2^N.
2781       if (LHS.isNegative())
2782         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2783       else if (LHS.countLeadingZeros() < SA)
2784         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2785     }
2786     Result = LHS << SA;
2787     return true;
2788   }
2789   case BO_Shr: {
2790     if (Info.getLangOpts().OpenCL)
2791       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2792       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2793                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2794                     RHS.isUnsigned());
2795     else if (RHS.isSigned() && RHS.isNegative()) {
2796       // During constant-folding, a negative shift is an opposite shift. Such a
2797       // shift is not a constant expression.
2798       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2799       RHS = -RHS;
2800       goto shift_left;
2801     }
2802   shift_right:
2803     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2804     // shifted type.
2805     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2806     if (SA != RHS)
2807       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2808         << RHS << E->getType() << LHS.getBitWidth();
2809     Result = LHS >> SA;
2810     return true;
2811   }
2812 
2813   case BO_LT: Result = LHS < RHS; return true;
2814   case BO_GT: Result = LHS > RHS; return true;
2815   case BO_LE: Result = LHS <= RHS; return true;
2816   case BO_GE: Result = LHS >= RHS; return true;
2817   case BO_EQ: Result = LHS == RHS; return true;
2818   case BO_NE: Result = LHS != RHS; return true;
2819   case BO_Cmp:
2820     llvm_unreachable("BO_Cmp should be handled elsewhere");
2821   }
2822 }
2823 
2824 /// Perform the given binary floating-point operation, in-place, on LHS.
handleFloatFloatBinOp(EvalInfo & Info,const BinaryOperator * E,APFloat & LHS,BinaryOperatorKind Opcode,const APFloat & RHS)2825 static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E,
2826                                   APFloat &LHS, BinaryOperatorKind Opcode,
2827                                   const APFloat &RHS) {
2828   bool DynamicRM;
2829   llvm::RoundingMode RM = getActiveRoundingMode(Info, E, DynamicRM);
2830   APFloat::opStatus St;
2831   switch (Opcode) {
2832   default:
2833     Info.FFDiag(E);
2834     return false;
2835   case BO_Mul:
2836     St = LHS.multiply(RHS, RM);
2837     break;
2838   case BO_Add:
2839     St = LHS.add(RHS, RM);
2840     break;
2841   case BO_Sub:
2842     St = LHS.subtract(RHS, RM);
2843     break;
2844   case BO_Div:
2845     // [expr.mul]p4:
2846     //   If the second operand of / or % is zero the behavior is undefined.
2847     if (RHS.isZero())
2848       Info.CCEDiag(E, diag::note_expr_divide_by_zero);
2849     St = LHS.divide(RHS, RM);
2850     break;
2851   }
2852 
2853   // [expr.pre]p4:
2854   //   If during the evaluation of an expression, the result is not
2855   //   mathematically defined [...], the behavior is undefined.
2856   // FIXME: C++ rules require us to not conform to IEEE 754 here.
2857   if (LHS.isNaN()) {
2858     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2859     return Info.noteUndefinedBehavior();
2860   }
2861 
2862   return checkFloatingPointResult(Info, E, St);
2863 }
2864 
handleLogicalOpForVector(const APInt & LHSValue,BinaryOperatorKind Opcode,const APInt & RHSValue,APInt & Result)2865 static bool handleLogicalOpForVector(const APInt &LHSValue,
2866                                      BinaryOperatorKind Opcode,
2867                                      const APInt &RHSValue, APInt &Result) {
2868   bool LHS = (LHSValue != 0);
2869   bool RHS = (RHSValue != 0);
2870 
2871   if (Opcode == BO_LAnd)
2872     Result = LHS && RHS;
2873   else
2874     Result = LHS || RHS;
2875   return true;
2876 }
handleLogicalOpForVector(const APFloat & LHSValue,BinaryOperatorKind Opcode,const APFloat & RHSValue,APInt & Result)2877 static bool handleLogicalOpForVector(const APFloat &LHSValue,
2878                                      BinaryOperatorKind Opcode,
2879                                      const APFloat &RHSValue, APInt &Result) {
2880   bool LHS = !LHSValue.isZero();
2881   bool RHS = !RHSValue.isZero();
2882 
2883   if (Opcode == BO_LAnd)
2884     Result = LHS && RHS;
2885   else
2886     Result = LHS || RHS;
2887   return true;
2888 }
2889 
handleLogicalOpForVector(const APValue & LHSValue,BinaryOperatorKind Opcode,const APValue & RHSValue,APInt & Result)2890 static bool handleLogicalOpForVector(const APValue &LHSValue,
2891                                      BinaryOperatorKind Opcode,
2892                                      const APValue &RHSValue, APInt &Result) {
2893   // The result is always an int type, however operands match the first.
2894   if (LHSValue.getKind() == APValue::Int)
2895     return handleLogicalOpForVector(LHSValue.getInt(), Opcode,
2896                                     RHSValue.getInt(), Result);
2897   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2898   return handleLogicalOpForVector(LHSValue.getFloat(), Opcode,
2899                                   RHSValue.getFloat(), Result);
2900 }
2901 
2902 template <typename APTy>
2903 static bool
handleCompareOpForVectorHelper(const APTy & LHSValue,BinaryOperatorKind Opcode,const APTy & RHSValue,APInt & Result)2904 handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode,
2905                                const APTy &RHSValue, APInt &Result) {
2906   switch (Opcode) {
2907   default:
2908     llvm_unreachable("unsupported binary operator");
2909   case BO_EQ:
2910     Result = (LHSValue == RHSValue);
2911     break;
2912   case BO_NE:
2913     Result = (LHSValue != RHSValue);
2914     break;
2915   case BO_LT:
2916     Result = (LHSValue < RHSValue);
2917     break;
2918   case BO_GT:
2919     Result = (LHSValue > RHSValue);
2920     break;
2921   case BO_LE:
2922     Result = (LHSValue <= RHSValue);
2923     break;
2924   case BO_GE:
2925     Result = (LHSValue >= RHSValue);
2926     break;
2927   }
2928 
2929   return true;
2930 }
2931 
handleCompareOpForVector(const APValue & LHSValue,BinaryOperatorKind Opcode,const APValue & RHSValue,APInt & Result)2932 static bool handleCompareOpForVector(const APValue &LHSValue,
2933                                      BinaryOperatorKind Opcode,
2934                                      const APValue &RHSValue, APInt &Result) {
2935   // The result is always an int type, however operands match the first.
2936   if (LHSValue.getKind() == APValue::Int)
2937     return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode,
2938                                           RHSValue.getInt(), Result);
2939   assert(LHSValue.getKind() == APValue::Float && "Should be no other options");
2940   return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode,
2941                                         RHSValue.getFloat(), Result);
2942 }
2943 
2944 // Perform binary operations for vector types, in place on the LHS.
handleVectorVectorBinOp(EvalInfo & Info,const BinaryOperator * E,BinaryOperatorKind Opcode,APValue & LHSValue,const APValue & RHSValue)2945 static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E,
2946                                     BinaryOperatorKind Opcode,
2947                                     APValue &LHSValue,
2948                                     const APValue &RHSValue) {
2949   assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI &&
2950          "Operation not supported on vector types");
2951 
2952   const auto *VT = E->getType()->castAs<VectorType>();
2953   unsigned NumElements = VT->getNumElements();
2954   QualType EltTy = VT->getElementType();
2955 
2956   // In the cases (typically C as I've observed) where we aren't evaluating
2957   // constexpr but are checking for cases where the LHS isn't yet evaluatable,
2958   // just give up.
2959   if (!LHSValue.isVector()) {
2960     assert(LHSValue.isLValue() &&
2961            "A vector result that isn't a vector OR uncalculated LValue");
2962     Info.FFDiag(E);
2963     return false;
2964   }
2965 
2966   assert(LHSValue.getVectorLength() == NumElements &&
2967          RHSValue.getVectorLength() == NumElements && "Different vector sizes");
2968 
2969   SmallVector<APValue, 4> ResultElements;
2970 
2971   for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) {
2972     APValue LHSElt = LHSValue.getVectorElt(EltNum);
2973     APValue RHSElt = RHSValue.getVectorElt(EltNum);
2974 
2975     if (EltTy->isIntegerType()) {
2976       APSInt EltResult{Info.Ctx.getIntWidth(EltTy),
2977                        EltTy->isUnsignedIntegerType()};
2978       bool Success = true;
2979 
2980       if (BinaryOperator::isLogicalOp(Opcode))
2981         Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult);
2982       else if (BinaryOperator::isComparisonOp(Opcode))
2983         Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult);
2984       else
2985         Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode,
2986                                     RHSElt.getInt(), EltResult);
2987 
2988       if (!Success) {
2989         Info.FFDiag(E);
2990         return false;
2991       }
2992       ResultElements.emplace_back(EltResult);
2993 
2994     } else if (EltTy->isFloatingType()) {
2995       assert(LHSElt.getKind() == APValue::Float &&
2996              RHSElt.getKind() == APValue::Float &&
2997              "Mismatched LHS/RHS/Result Type");
2998       APFloat LHSFloat = LHSElt.getFloat();
2999 
3000       if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode,
3001                                  RHSElt.getFloat())) {
3002         Info.FFDiag(E);
3003         return false;
3004       }
3005 
3006       ResultElements.emplace_back(LHSFloat);
3007     }
3008   }
3009 
3010   LHSValue = APValue(ResultElements.data(), ResultElements.size());
3011   return true;
3012 }
3013 
3014 /// Cast an lvalue referring to a base subobject to a derived class, by
3015 /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)3016 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
3017                                const RecordDecl *TruncatedType,
3018                                unsigned TruncatedElements) {
3019   SubobjectDesignator &D = Result.Designator;
3020 
3021   // Check we actually point to a derived class object.
3022   if (TruncatedElements == D.Entries.size())
3023     return true;
3024   assert(TruncatedElements >= D.MostDerivedPathLength &&
3025          "not casting to a derived class");
3026   if (!Result.checkSubobject(Info, E, CSK_Derived))
3027     return false;
3028 
3029   // Truncate the path to the subobject, and remove any derived-to-base offsets.
3030   const RecordDecl *RD = TruncatedType;
3031   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
3032     if (RD->isInvalidDecl()) return false;
3033     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3034     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
3035     if (isVirtualBaseClass(D.Entries[I]))
3036       Result.Offset -= Layout.getVBaseClassOffset(Base);
3037     else
3038       Result.Offset -= Layout.getBaseClassOffset(Base);
3039     RD = Base;
3040   }
3041   D.Entries.resize(TruncatedElements);
3042   return true;
3043 }
3044 
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=nullptr)3045 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3046                                    const CXXRecordDecl *Derived,
3047                                    const CXXRecordDecl *Base,
3048                                    const ASTRecordLayout *RL = nullptr) {
3049   if (!RL) {
3050     if (Derived->isInvalidDecl()) return false;
3051     RL = &Info.Ctx.getASTRecordLayout(Derived);
3052   }
3053 
3054   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
3055   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
3056   return true;
3057 }
3058 
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)3059 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
3060                              const CXXRecordDecl *DerivedDecl,
3061                              const CXXBaseSpecifier *Base) {
3062   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
3063 
3064   if (!Base->isVirtual())
3065     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
3066 
3067   SubobjectDesignator &D = Obj.Designator;
3068   if (D.Invalid)
3069     return false;
3070 
3071   // Extract most-derived object and corresponding type.
3072   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
3073   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
3074     return false;
3075 
3076   // Find the virtual base class.
3077   if (DerivedDecl->isInvalidDecl()) return false;
3078   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
3079   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
3080   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
3081   return true;
3082 }
3083 
HandleLValueBasePath(EvalInfo & Info,const CastExpr * E,QualType Type,LValue & Result)3084 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
3085                                  QualType Type, LValue &Result) {
3086   for (CastExpr::path_const_iterator PathI = E->path_begin(),
3087                                      PathE = E->path_end();
3088        PathI != PathE; ++PathI) {
3089     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
3090                           *PathI))
3091       return false;
3092     Type = (*PathI)->getType();
3093   }
3094   return true;
3095 }
3096 
3097 /// Cast an lvalue referring to a derived class to a known base subobject.
CastToBaseClass(EvalInfo & Info,const Expr * E,LValue & Result,const CXXRecordDecl * DerivedRD,const CXXRecordDecl * BaseRD)3098 static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
3099                             const CXXRecordDecl *DerivedRD,
3100                             const CXXRecordDecl *BaseRD) {
3101   CXXBasePaths Paths(/*FindAmbiguities=*/false,
3102                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
3103   if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
3104     llvm_unreachable("Class must be derived from the passed in base class!");
3105 
3106   for (CXXBasePathElement &Elem : Paths.front())
3107     if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
3108       return false;
3109   return true;
3110 }
3111 
3112 /// Update LVal to refer to the given field, which must be a member of the type
3113 /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=nullptr)3114 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
3115                                const FieldDecl *FD,
3116                                const ASTRecordLayout *RL = nullptr) {
3117   if (!RL) {
3118     if (FD->getParent()->isInvalidDecl()) return false;
3119     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
3120   }
3121 
3122   unsigned I = FD->getFieldIndex();
3123   LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
3124   LVal.addDecl(Info, E, FD);
3125   return true;
3126 }
3127 
3128 /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)3129 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
3130                                        LValue &LVal,
3131                                        const IndirectFieldDecl *IFD) {
3132   for (const auto *C : IFD->chain())
3133     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
3134       return false;
3135   return true;
3136 }
3137 
3138 /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)3139 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
3140                          QualType Type, CharUnits &Size) {
3141   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
3142   // extension.
3143   if (Type->isVoidType() || Type->isFunctionType()) {
3144     Size = CharUnits::One();
3145     return true;
3146   }
3147 
3148   if (Type->isDependentType()) {
3149     Info.FFDiag(Loc);
3150     return false;
3151   }
3152 
3153   if (!Type->isConstantSizeType()) {
3154     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
3155     // FIXME: Better diagnostic.
3156     Info.FFDiag(Loc);
3157     return false;
3158   }
3159 
3160   Size = Info.Ctx.getTypeSizeInChars(Type);
3161   return true;
3162 }
3163 
3164 /// Update a pointer value to model pointer arithmetic.
3165 /// \param Info - Information about the ongoing evaluation.
3166 /// \param E - The expression being evaluated, for diagnostic purposes.
3167 /// \param LVal - The pointer value to be updated.
3168 /// \param EltTy - The pointee type represented by LVal.
3169 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,APSInt Adjustment)3170 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3171                                         LValue &LVal, QualType EltTy,
3172                                         APSInt Adjustment) {
3173   CharUnits SizeOfPointee;
3174   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
3175     return false;
3176 
3177   LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
3178   return true;
3179 }
3180 
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)3181 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
3182                                         LValue &LVal, QualType EltTy,
3183                                         int64_t Adjustment) {
3184   return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
3185                                      APSInt::get(Adjustment));
3186 }
3187 
3188 /// Update an lvalue to refer to a component of a complex number.
3189 /// \param Info - Information about the ongoing evaluation.
3190 /// \param LVal - The lvalue to be updated.
3191 /// \param EltTy - The complex number's component type.
3192 /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)3193 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
3194                                        LValue &LVal, QualType EltTy,
3195                                        bool Imag) {
3196   if (Imag) {
3197     CharUnits SizeOfComponent;
3198     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
3199       return false;
3200     LVal.Offset += SizeOfComponent;
3201   }
3202   LVal.addComplex(Info, E, EltTy, Imag);
3203   return true;
3204 }
3205 
3206 /// Try to evaluate the initializer for a variable declaration.
3207 ///
3208 /// \param Info   Information about the ongoing evaluation.
3209 /// \param E      An expression to be used when printing diagnostics.
3210 /// \param VD     The variable whose initializer should be obtained.
3211 /// \param Version The version of the variable within the frame.
3212 /// \param Frame  The frame in which the variable was created. Must be null
3213 ///               if this variable is not local to the evaluation.
3214 /// \param Result Filled in with a pointer to the value of the variable.
evaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,unsigned Version,APValue * & Result)3215 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
3216                                 const VarDecl *VD, CallStackFrame *Frame,
3217                                 unsigned Version, APValue *&Result) {
3218   APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version);
3219 
3220   // If this is a local variable, dig out its value.
3221   if (Frame) {
3222     Result = Frame->getTemporary(VD, Version);
3223     if (Result)
3224       return true;
3225 
3226     if (!isa<ParmVarDecl>(VD)) {
3227       // Assume variables referenced within a lambda's call operator that were
3228       // not declared within the call operator are captures and during checking
3229       // of a potential constant expression, assume they are unknown constant
3230       // expressions.
3231       assert(isLambdaCallOperator(Frame->Callee) &&
3232              (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
3233              "missing value for local variable");
3234       if (Info.checkingPotentialConstantExpression())
3235         return false;
3236       // FIXME: This diagnostic is bogus; we do support captures. Is this code
3237       // still reachable at all?
3238       Info.FFDiag(E->getBeginLoc(),
3239                   diag::note_unimplemented_constexpr_lambda_feature_ast)
3240           << "captures not currently allowed";
3241       return false;
3242     }
3243   }
3244 
3245   // If we're currently evaluating the initializer of this declaration, use that
3246   // in-flight value.
3247   if (Info.EvaluatingDecl == Base) {
3248     Result = Info.EvaluatingDeclValue;
3249     return true;
3250   }
3251 
3252   if (isa<ParmVarDecl>(VD)) {
3253     // Assume parameters of a potential constant expression are usable in
3254     // constant expressions.
3255     if (!Info.checkingPotentialConstantExpression() ||
3256         !Info.CurrentCall->Callee ||
3257         !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
3258       if (Info.getLangOpts().CPlusPlus11) {
3259         Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown)
3260             << VD;
3261         NoteLValueLocation(Info, Base);
3262       } else {
3263         Info.FFDiag(E);
3264       }
3265     }
3266     return false;
3267   }
3268 
3269   // Dig out the initializer, and use the declaration which it's attached to.
3270   // FIXME: We should eventually check whether the variable has a reachable
3271   // initializing declaration.
3272   const Expr *Init = VD->getAnyInitializer(VD);
3273   if (!Init) {
3274     // Don't diagnose during potential constant expression checking; an
3275     // initializer might be added later.
3276     if (!Info.checkingPotentialConstantExpression()) {
3277       Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1)
3278         << VD;
3279       NoteLValueLocation(Info, Base);
3280     }
3281     return false;
3282   }
3283 
3284   if (Init->isValueDependent()) {
3285     // The DeclRefExpr is not value-dependent, but the variable it refers to
3286     // has a value-dependent initializer. This should only happen in
3287     // constant-folding cases, where the variable is not actually of a suitable
3288     // type for use in a constant expression (otherwise the DeclRefExpr would
3289     // have been value-dependent too), so diagnose that.
3290     assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx));
3291     if (!Info.checkingPotentialConstantExpression()) {
3292       Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
3293                          ? diag::note_constexpr_ltor_non_constexpr
3294                          : diag::note_constexpr_ltor_non_integral, 1)
3295           << VD << VD->getType();
3296       NoteLValueLocation(Info, Base);
3297     }
3298     return false;
3299   }
3300 
3301   // Check that we can fold the initializer. In C++, we will have already done
3302   // this in the cases where it matters for conformance.
3303   if (!VD->evaluateValue()) {
3304     Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3305     NoteLValueLocation(Info, Base);
3306     return false;
3307   }
3308 
3309   // Check that the variable is actually usable in constant expressions. For a
3310   // const integral variable or a reference, we might have a non-constant
3311   // initializer that we can nonetheless evaluate the initializer for. Such
3312   // variables are not usable in constant expressions. In C++98, the
3313   // initializer also syntactically needs to be an ICE.
3314   //
3315   // FIXME: We don't diagnose cases that aren't potentially usable in constant
3316   // expressions here; doing so would regress diagnostics for things like
3317   // reading from a volatile constexpr variable.
3318   if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() &&
3319        VD->mightBeUsableInConstantExpressions(Info.Ctx)) ||
3320       ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) &&
3321        !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) {
3322     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD;
3323     NoteLValueLocation(Info, Base);
3324   }
3325 
3326   // Never use the initializer of a weak variable, not even for constant
3327   // folding. We can't be sure that this is the definition that will be used.
3328   if (VD->isWeak()) {
3329     Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD;
3330     NoteLValueLocation(Info, Base);
3331     return false;
3332   }
3333 
3334   Result = VD->getEvaluatedValue();
3335   return true;
3336 }
3337 
3338 /// Get the base index of the given base class within an APValue representing
3339 /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)3340 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
3341                              const CXXRecordDecl *Base) {
3342   Base = Base->getCanonicalDecl();
3343   unsigned Index = 0;
3344   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
3345          E = Derived->bases_end(); I != E; ++I, ++Index) {
3346     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
3347       return Index;
3348   }
3349 
3350   llvm_unreachable("base class missing from derived class's bases list");
3351 }
3352 
3353 /// Extract the value of a character from a string literal.
extractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index)3354 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
3355                                             uint64_t Index) {
3356   assert(!isa<SourceLocExpr>(Lit) &&
3357          "SourceLocExpr should have already been converted to a StringLiteral");
3358 
3359   // FIXME: Support MakeStringConstant
3360   if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
3361     std::string Str;
3362     Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
3363     assert(Index <= Str.size() && "Index too large");
3364     return APSInt::getUnsigned(Str.c_str()[Index]);
3365   }
3366 
3367   if (auto PE = dyn_cast<PredefinedExpr>(Lit))
3368     Lit = PE->getFunctionName();
3369   const StringLiteral *S = cast<StringLiteral>(Lit);
3370   const ConstantArrayType *CAT =
3371       Info.Ctx.getAsConstantArrayType(S->getType());
3372   assert(CAT && "string literal isn't an array");
3373   QualType CharType = CAT->getElementType();
3374   assert(CharType->isIntegerType() && "unexpected character type");
3375 
3376   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3377                CharType->isUnsignedIntegerType());
3378   if (Index < S->getLength())
3379     Value = S->getCodeUnit(Index);
3380   return Value;
3381 }
3382 
3383 // Expand a string literal into an array of characters.
3384 //
3385 // FIXME: This is inefficient; we should probably introduce something similar
3386 // to the LLVM ConstantDataArray to make this cheaper.
expandStringLiteral(EvalInfo & Info,const StringLiteral * S,APValue & Result,QualType AllocType=QualType ())3387 static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
3388                                 APValue &Result,
3389                                 QualType AllocType = QualType()) {
3390   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
3391       AllocType.isNull() ? S->getType() : AllocType);
3392   assert(CAT && "string literal isn't an array");
3393   QualType CharType = CAT->getElementType();
3394   assert(CharType->isIntegerType() && "unexpected character type");
3395 
3396   unsigned Elts = CAT->getSize().getZExtValue();
3397   Result = APValue(APValue::UninitArray(),
3398                    std::min(S->getLength(), Elts), Elts);
3399   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
3400                CharType->isUnsignedIntegerType());
3401   if (Result.hasArrayFiller())
3402     Result.getArrayFiller() = APValue(Value);
3403   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
3404     Value = S->getCodeUnit(I);
3405     Result.getArrayInitializedElt(I) = APValue(Value);
3406   }
3407 }
3408 
3409 // Expand an array so that it has more than Index filled elements.
expandArray(APValue & Array,unsigned Index)3410 static void expandArray(APValue &Array, unsigned Index) {
3411   unsigned Size = Array.getArraySize();
3412   assert(Index < Size);
3413 
3414   // Always at least double the number of elements for which we store a value.
3415   unsigned OldElts = Array.getArrayInitializedElts();
3416   unsigned NewElts = std::max(Index+1, OldElts * 2);
3417   NewElts = std::min(Size, std::max(NewElts, 8u));
3418 
3419   // Copy the data across.
3420   APValue NewValue(APValue::UninitArray(), NewElts, Size);
3421   for (unsigned I = 0; I != OldElts; ++I)
3422     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
3423   for (unsigned I = OldElts; I != NewElts; ++I)
3424     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
3425   if (NewValue.hasArrayFiller())
3426     NewValue.getArrayFiller() = Array.getArrayFiller();
3427   Array.swap(NewValue);
3428 }
3429 
3430 /// Determine whether a type would actually be read by an lvalue-to-rvalue
3431 /// conversion. If it's of class type, we may assume that the copy operation
3432 /// is trivial. Note that this is never true for a union type with fields
3433 /// (because the copy always "reads" the active member) and always true for
3434 /// a non-class type.
3435 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD);
isReadByLvalueToRvalueConversion(QualType T)3436 static bool isReadByLvalueToRvalueConversion(QualType T) {
3437   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3438   return !RD || isReadByLvalueToRvalueConversion(RD);
3439 }
isReadByLvalueToRvalueConversion(const CXXRecordDecl * RD)3440 static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) {
3441   // FIXME: A trivial copy of a union copies the object representation, even if
3442   // the union is empty.
3443   if (RD->isUnion())
3444     return !RD->field_empty();
3445   if (RD->isEmpty())
3446     return false;
3447 
3448   for (auto *Field : RD->fields())
3449     if (!Field->isUnnamedBitfield() &&
3450         isReadByLvalueToRvalueConversion(Field->getType()))
3451       return true;
3452 
3453   for (auto &BaseSpec : RD->bases())
3454     if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
3455       return true;
3456 
3457   return false;
3458 }
3459 
3460 /// Diagnose an attempt to read from any unreadable field within the specified
3461 /// type, which might be a class type.
diagnoseMutableFields(EvalInfo & Info,const Expr * E,AccessKinds AK,QualType T)3462 static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK,
3463                                   QualType T) {
3464   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3465   if (!RD)
3466     return false;
3467 
3468   if (!RD->hasMutableFields())
3469     return false;
3470 
3471   for (auto *Field : RD->fields()) {
3472     // If we're actually going to read this field in some way, then it can't
3473     // be mutable. If we're in a union, then assigning to a mutable field
3474     // (even an empty one) can change the active member, so that's not OK.
3475     // FIXME: Add core issue number for the union case.
3476     if (Field->isMutable() &&
3477         (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
3478       Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field;
3479       Info.Note(Field->getLocation(), diag::note_declared_at);
3480       return true;
3481     }
3482 
3483     if (diagnoseMutableFields(Info, E, AK, Field->getType()))
3484       return true;
3485   }
3486 
3487   for (auto &BaseSpec : RD->bases())
3488     if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType()))
3489       return true;
3490 
3491   // All mutable fields were empty, and thus not actually read.
3492   return false;
3493 }
3494 
lifetimeStartedInEvaluation(EvalInfo & Info,APValue::LValueBase Base,bool MutableSubobject=false)3495 static bool lifetimeStartedInEvaluation(EvalInfo &Info,
3496                                         APValue::LValueBase Base,
3497                                         bool MutableSubobject = false) {
3498   // A temporary we created.
3499   if (Base.getCallIndex())
3500     return true;
3501 
3502   switch (Info.IsEvaluatingDecl) {
3503   case EvalInfo::EvaluatingDeclKind::None:
3504     return false;
3505 
3506   case EvalInfo::EvaluatingDeclKind::Ctor:
3507     // The variable whose initializer we're evaluating.
3508     if (Info.EvaluatingDecl == Base)
3509       return true;
3510 
3511     // A temporary lifetime-extended by the variable whose initializer we're
3512     // evaluating.
3513     if (auto *BaseE = Base.dyn_cast<const Expr *>())
3514       if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
3515         return Info.EvaluatingDecl == BaseMTE->getExtendingDecl();
3516     return false;
3517 
3518   case EvalInfo::EvaluatingDeclKind::Dtor:
3519     // C++2a [expr.const]p6:
3520     //   [during constant destruction] the lifetime of a and its non-mutable
3521     //   subobjects (but not its mutable subobjects) [are] considered to start
3522     //   within e.
3523     if (MutableSubobject || Base != Info.EvaluatingDecl)
3524       return false;
3525     // FIXME: We can meaningfully extend this to cover non-const objects, but
3526     // we will need special handling: we should be able to access only
3527     // subobjects of such objects that are themselves declared const.
3528     QualType T = getType(Base);
3529     return T.isConstQualified() || T->isReferenceType();
3530   }
3531 
3532   llvm_unreachable("unknown evaluating decl kind");
3533 }
3534 
3535 namespace {
3536 /// A handle to a complete object (an object that is not a subobject of
3537 /// another object).
3538 struct CompleteObject {
3539   /// The identity of the object.
3540   APValue::LValueBase Base;
3541   /// The value of the complete object.
3542   APValue *Value;
3543   /// The type of the complete object.
3544   QualType Type;
3545 
CompleteObject__anon4717f8730911::CompleteObject3546   CompleteObject() : Value(nullptr) {}
CompleteObject__anon4717f8730911::CompleteObject3547   CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
3548       : Base(Base), Value(Value), Type(Type) {}
3549 
mayAccessMutableMembers__anon4717f8730911::CompleteObject3550   bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const {
3551     // If this isn't a "real" access (eg, if it's just accessing the type
3552     // info), allow it. We assume the type doesn't change dynamically for
3553     // subobjects of constexpr objects (even though we'd hit UB here if it
3554     // did). FIXME: Is this right?
3555     if (!isAnyAccess(AK))
3556       return true;
3557 
3558     // In C++14 onwards, it is permitted to read a mutable member whose
3559     // lifetime began within the evaluation.
3560     // FIXME: Should we also allow this in C++11?
3561     if (!Info.getLangOpts().CPlusPlus14)
3562       return false;
3563     return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true);
3564   }
3565 
operator bool__anon4717f8730911::CompleteObject3566   explicit operator bool() const { return !Type.isNull(); }
3567 };
3568 } // end anonymous namespace
3569 
getSubobjectType(QualType ObjType,QualType SubobjType,bool IsMutable=false)3570 static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
3571                                  bool IsMutable = false) {
3572   // C++ [basic.type.qualifier]p1:
3573   // - A const object is an object of type const T or a non-mutable subobject
3574   //   of a const object.
3575   if (ObjType.isConstQualified() && !IsMutable)
3576     SubobjType.addConst();
3577   // - A volatile object is an object of type const T or a subobject of a
3578   //   volatile object.
3579   if (ObjType.isVolatileQualified())
3580     SubobjType.addVolatile();
3581   return SubobjType;
3582 }
3583 
3584 /// Find the designated sub-object of an rvalue.
3585 template<typename SubobjectHandler>
3586 typename SubobjectHandler::result_type
findSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,SubobjectHandler & handler)3587 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
3588               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
3589   if (Sub.Invalid)
3590     // A diagnostic will have already been produced.
3591     return handler.failed();
3592   if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
3593     if (Info.getLangOpts().CPlusPlus11)
3594       Info.FFDiag(E, Sub.isOnePastTheEnd()
3595                          ? diag::note_constexpr_access_past_end
3596                          : diag::note_constexpr_access_unsized_array)
3597           << handler.AccessKind;
3598     else
3599       Info.FFDiag(E);
3600     return handler.failed();
3601   }
3602 
3603   APValue *O = Obj.Value;
3604   QualType ObjType = Obj.Type;
3605   const FieldDecl *LastField = nullptr;
3606   const FieldDecl *VolatileField = nullptr;
3607 
3608   // Walk the designator's path to find the subobject.
3609   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
3610     // Reading an indeterminate value is undefined, but assigning over one is OK.
3611     if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) ||
3612         (O->isIndeterminate() &&
3613          !isValidIndeterminateAccess(handler.AccessKind))) {
3614       if (!Info.checkingPotentialConstantExpression())
3615         Info.FFDiag(E, diag::note_constexpr_access_uninit)
3616             << handler.AccessKind << O->isIndeterminate();
3617       return handler.failed();
3618     }
3619 
3620     // C++ [class.ctor]p5, C++ [class.dtor]p5:
3621     //    const and volatile semantics are not applied on an object under
3622     //    {con,de}struction.
3623     if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
3624         ObjType->isRecordType() &&
3625         Info.isEvaluatingCtorDtor(
3626             Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(),
3627                                          Sub.Entries.begin() + I)) !=
3628                           ConstructionPhase::None) {
3629       ObjType = Info.Ctx.getCanonicalType(ObjType);
3630       ObjType.removeLocalConst();
3631       ObjType.removeLocalVolatile();
3632     }
3633 
3634     // If this is our last pass, check that the final object type is OK.
3635     if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
3636       // Accesses to volatile objects are prohibited.
3637       if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
3638         if (Info.getLangOpts().CPlusPlus) {
3639           int DiagKind;
3640           SourceLocation Loc;
3641           const NamedDecl *Decl = nullptr;
3642           if (VolatileField) {
3643             DiagKind = 2;
3644             Loc = VolatileField->getLocation();
3645             Decl = VolatileField;
3646           } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
3647             DiagKind = 1;
3648             Loc = VD->getLocation();
3649             Decl = VD;
3650           } else {
3651             DiagKind = 0;
3652             if (auto *E = Obj.Base.dyn_cast<const Expr *>())
3653               Loc = E->getExprLoc();
3654           }
3655           Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3656               << handler.AccessKind << DiagKind << Decl;
3657           Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
3658         } else {
3659           Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
3660         }
3661         return handler.failed();
3662       }
3663 
3664       // If we are reading an object of class type, there may still be more
3665       // things we need to check: if there are any mutable subobjects, we
3666       // cannot perform this read. (This only happens when performing a trivial
3667       // copy or assignment.)
3668       if (ObjType->isRecordType() &&
3669           !Obj.mayAccessMutableMembers(Info, handler.AccessKind) &&
3670           diagnoseMutableFields(Info, E, handler.AccessKind, ObjType))
3671         return handler.failed();
3672     }
3673 
3674     if (I == N) {
3675       if (!handler.found(*O, ObjType))
3676         return false;
3677 
3678       // If we modified a bit-field, truncate it to the right width.
3679       if (isModification(handler.AccessKind) &&
3680           LastField && LastField->isBitField() &&
3681           !truncateBitfieldValue(Info, E, *O, LastField))
3682         return false;
3683 
3684       return true;
3685     }
3686 
3687     LastField = nullptr;
3688     if (ObjType->isArrayType()) {
3689       // Next subobject is an array element.
3690       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
3691       assert(CAT && "vla in literal type?");
3692       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3693       if (CAT->getSize().ule(Index)) {
3694         // Note, it should not be possible to form a pointer with a valid
3695         // designator which points more than one past the end of the array.
3696         if (Info.getLangOpts().CPlusPlus11)
3697           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3698             << handler.AccessKind;
3699         else
3700           Info.FFDiag(E);
3701         return handler.failed();
3702       }
3703 
3704       ObjType = CAT->getElementType();
3705 
3706       if (O->getArrayInitializedElts() > Index)
3707         O = &O->getArrayInitializedElt(Index);
3708       else if (!isRead(handler.AccessKind)) {
3709         expandArray(*O, Index);
3710         O = &O->getArrayInitializedElt(Index);
3711       } else
3712         O = &O->getArrayFiller();
3713     } else if (ObjType->isAnyComplexType()) {
3714       // Next subobject is a complex number.
3715       uint64_t Index = Sub.Entries[I].getAsArrayIndex();
3716       if (Index > 1) {
3717         if (Info.getLangOpts().CPlusPlus11)
3718           Info.FFDiag(E, diag::note_constexpr_access_past_end)
3719             << handler.AccessKind;
3720         else
3721           Info.FFDiag(E);
3722         return handler.failed();
3723       }
3724 
3725       ObjType = getSubobjectType(
3726           ObjType, ObjType->castAs<ComplexType>()->getElementType());
3727 
3728       assert(I == N - 1 && "extracting subobject of scalar?");
3729       if (O->isComplexInt()) {
3730         return handler.found(Index ? O->getComplexIntImag()
3731                                    : O->getComplexIntReal(), ObjType);
3732       } else {
3733         assert(O->isComplexFloat());
3734         return handler.found(Index ? O->getComplexFloatImag()
3735                                    : O->getComplexFloatReal(), ObjType);
3736       }
3737     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
3738       if (Field->isMutable() &&
3739           !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) {
3740         Info.FFDiag(E, diag::note_constexpr_access_mutable, 1)
3741           << handler.AccessKind << Field;
3742         Info.Note(Field->getLocation(), diag::note_declared_at);
3743         return handler.failed();
3744       }
3745 
3746       // Next subobject is a class, struct or union field.
3747       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
3748       if (RD->isUnion()) {
3749         const FieldDecl *UnionField = O->getUnionField();
3750         if (!UnionField ||
3751             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
3752           if (I == N - 1 && handler.AccessKind == AK_Construct) {
3753             // Placement new onto an inactive union member makes it active.
3754             O->setUnion(Field, APValue());
3755           } else {
3756             // FIXME: If O->getUnionValue() is absent, report that there's no
3757             // active union member rather than reporting the prior active union
3758             // member. We'll need to fix nullptr_t to not use APValue() as its
3759             // representation first.
3760             Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
3761                 << handler.AccessKind << Field << !UnionField << UnionField;
3762             return handler.failed();
3763           }
3764         }
3765         O = &O->getUnionValue();
3766       } else
3767         O = &O->getStructField(Field->getFieldIndex());
3768 
3769       ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
3770       LastField = Field;
3771       if (Field->getType().isVolatileQualified())
3772         VolatileField = Field;
3773     } else {
3774       // Next subobject is a base class.
3775       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
3776       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
3777       O = &O->getStructBase(getBaseIndex(Derived, Base));
3778 
3779       ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
3780     }
3781   }
3782 }
3783 
3784 namespace {
3785 struct ExtractSubobjectHandler {
3786   EvalInfo &Info;
3787   const Expr *E;
3788   APValue &Result;
3789   const AccessKinds AccessKind;
3790 
3791   typedef bool result_type;
failed__anon4717f8730a11::ExtractSubobjectHandler3792   bool failed() { return false; }
found__anon4717f8730a11::ExtractSubobjectHandler3793   bool found(APValue &Subobj, QualType SubobjType) {
3794     Result = Subobj;
3795     if (AccessKind == AK_ReadObjectRepresentation)
3796       return true;
3797     return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result);
3798   }
found__anon4717f8730a11::ExtractSubobjectHandler3799   bool found(APSInt &Value, QualType SubobjType) {
3800     Result = APValue(Value);
3801     return true;
3802   }
found__anon4717f8730a11::ExtractSubobjectHandler3803   bool found(APFloat &Value, QualType SubobjType) {
3804     Result = APValue(Value);
3805     return true;
3806   }
3807 };
3808 } // end anonymous namespace
3809 
3810 /// Extract the designated sub-object of an rvalue.
extractSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & Result,AccessKinds AK=AK_Read)3811 static bool extractSubobject(EvalInfo &Info, const Expr *E,
3812                              const CompleteObject &Obj,
3813                              const SubobjectDesignator &Sub, APValue &Result,
3814                              AccessKinds AK = AK_Read) {
3815   assert(AK == AK_Read || AK == AK_ReadObjectRepresentation);
3816   ExtractSubobjectHandler Handler = {Info, E, Result, AK};
3817   return findSubobject(Info, E, Obj, Sub, Handler);
3818 }
3819 
3820 namespace {
3821 struct ModifySubobjectHandler {
3822   EvalInfo &Info;
3823   APValue &NewVal;
3824   const Expr *E;
3825 
3826   typedef bool result_type;
3827   static const AccessKinds AccessKind = AK_Assign;
3828 
checkConst__anon4717f8730b11::ModifySubobjectHandler3829   bool checkConst(QualType QT) {
3830     // Assigning to a const object has undefined behavior.
3831     if (QT.isConstQualified()) {
3832       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3833       return false;
3834     }
3835     return true;
3836   }
3837 
failed__anon4717f8730b11::ModifySubobjectHandler3838   bool failed() { return false; }
found__anon4717f8730b11::ModifySubobjectHandler3839   bool found(APValue &Subobj, QualType SubobjType) {
3840     if (!checkConst(SubobjType))
3841       return false;
3842     // We've been given ownership of NewVal, so just swap it in.
3843     Subobj.swap(NewVal);
3844     return true;
3845   }
found__anon4717f8730b11::ModifySubobjectHandler3846   bool found(APSInt &Value, QualType SubobjType) {
3847     if (!checkConst(SubobjType))
3848       return false;
3849     if (!NewVal.isInt()) {
3850       // Maybe trying to write a cast pointer value into a complex?
3851       Info.FFDiag(E);
3852       return false;
3853     }
3854     Value = NewVal.getInt();
3855     return true;
3856   }
found__anon4717f8730b11::ModifySubobjectHandler3857   bool found(APFloat &Value, QualType SubobjType) {
3858     if (!checkConst(SubobjType))
3859       return false;
3860     Value = NewVal.getFloat();
3861     return true;
3862   }
3863 };
3864 } // end anonymous namespace
3865 
3866 const AccessKinds ModifySubobjectHandler::AccessKind;
3867 
3868 /// Update the designated sub-object of an rvalue to the given value.
modifySubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & NewVal)3869 static bool modifySubobject(EvalInfo &Info, const Expr *E,
3870                             const CompleteObject &Obj,
3871                             const SubobjectDesignator &Sub,
3872                             APValue &NewVal) {
3873   ModifySubobjectHandler Handler = { Info, NewVal, E };
3874   return findSubobject(Info, E, Obj, Sub, Handler);
3875 }
3876 
3877 /// Find the position where two subobject designators diverge, or equivalently
3878 /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)3879 static unsigned FindDesignatorMismatch(QualType ObjType,
3880                                        const SubobjectDesignator &A,
3881                                        const SubobjectDesignator &B,
3882                                        bool &WasArrayIndex) {
3883   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
3884   for (/**/; I != N; ++I) {
3885     if (!ObjType.isNull() &&
3886         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3887       // Next subobject is an array element.
3888       if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
3889         WasArrayIndex = true;
3890         return I;
3891       }
3892       if (ObjType->isAnyComplexType())
3893         ObjType = ObjType->castAs<ComplexType>()->getElementType();
3894       else
3895         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3896     } else {
3897       if (A.Entries[I].getAsBaseOrMember() !=
3898           B.Entries[I].getAsBaseOrMember()) {
3899         WasArrayIndex = false;
3900         return I;
3901       }
3902       if (const FieldDecl *FD = getAsField(A.Entries[I]))
3903         // Next subobject is a field.
3904         ObjType = FD->getType();
3905       else
3906         // Next subobject is a base class.
3907         ObjType = QualType();
3908     }
3909   }
3910   WasArrayIndex = false;
3911   return I;
3912 }
3913 
3914 /// Determine whether the given subobject designators refer to elements of the
3915 /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)3916 static bool AreElementsOfSameArray(QualType ObjType,
3917                                    const SubobjectDesignator &A,
3918                                    const SubobjectDesignator &B) {
3919   if (A.Entries.size() != B.Entries.size())
3920     return false;
3921 
3922   bool IsArray = A.MostDerivedIsArrayElement;
3923   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
3924     // A is a subobject of the array element.
3925     return false;
3926 
3927   // If A (and B) designates an array element, the last entry will be the array
3928   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3929   // of length 1' case, and the entire path must match.
3930   bool WasArrayIndex;
3931   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
3932   return CommonLength >= A.Entries.size() - IsArray;
3933 }
3934 
3935 /// Find the complete object to which an LValue refers.
findCompleteObject(EvalInfo & Info,const Expr * E,AccessKinds AK,const LValue & LVal,QualType LValType)3936 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
3937                                          AccessKinds AK, const LValue &LVal,
3938                                          QualType LValType) {
3939   if (LVal.InvalidBase) {
3940     Info.FFDiag(E);
3941     return CompleteObject();
3942   }
3943 
3944   if (!LVal.Base) {
3945     Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
3946     return CompleteObject();
3947   }
3948 
3949   CallStackFrame *Frame = nullptr;
3950   unsigned Depth = 0;
3951   if (LVal.getLValueCallIndex()) {
3952     std::tie(Frame, Depth) =
3953         Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
3954     if (!Frame) {
3955       Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
3956         << AK << LVal.Base.is<const ValueDecl*>();
3957       NoteLValueLocation(Info, LVal.Base);
3958       return CompleteObject();
3959     }
3960   }
3961 
3962   bool IsAccess = isAnyAccess(AK);
3963 
3964   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
3965   // is not a constant expression (even if the object is non-volatile). We also
3966   // apply this rule to C++98, in order to conform to the expected 'volatile'
3967   // semantics.
3968   if (isFormalAccess(AK) && LValType.isVolatileQualified()) {
3969     if (Info.getLangOpts().CPlusPlus)
3970       Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
3971         << AK << LValType;
3972     else
3973       Info.FFDiag(E);
3974     return CompleteObject();
3975   }
3976 
3977   // Compute value storage location and type of base object.
3978   APValue *BaseVal = nullptr;
3979   QualType BaseType = getType(LVal.Base);
3980 
3981   if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl &&
3982       lifetimeStartedInEvaluation(Info, LVal.Base)) {
3983     // This is the object whose initializer we're evaluating, so its lifetime
3984     // started in the current evaluation.
3985     BaseVal = Info.EvaluatingDeclValue;
3986   } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) {
3987     // Allow reading from a GUID declaration.
3988     if (auto *GD = dyn_cast<MSGuidDecl>(D)) {
3989       if (isModification(AK)) {
3990         // All the remaining cases do not permit modification of the object.
3991         Info.FFDiag(E, diag::note_constexpr_modify_global);
3992         return CompleteObject();
3993       }
3994       APValue &V = GD->getAsAPValue();
3995       if (V.isAbsent()) {
3996         Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
3997             << GD->getType();
3998         return CompleteObject();
3999       }
4000       return CompleteObject(LVal.Base, &V, GD->getType());
4001     }
4002 
4003     // Allow reading from template parameter objects.
4004     if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) {
4005       if (isModification(AK)) {
4006         Info.FFDiag(E, diag::note_constexpr_modify_global);
4007         return CompleteObject();
4008       }
4009       return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()),
4010                             TPO->getType());
4011     }
4012 
4013     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
4014     // In C++11, constexpr, non-volatile variables initialized with constant
4015     // expressions are constant expressions too. Inside constexpr functions,
4016     // parameters are constant expressions even if they're non-const.
4017     // In C++1y, objects local to a constant expression (those with a Frame) are
4018     // both readable and writable inside constant expressions.
4019     // In C, such things can also be folded, although they are not ICEs.
4020     const VarDecl *VD = dyn_cast<VarDecl>(D);
4021     if (VD) {
4022       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
4023         VD = VDef;
4024     }
4025     if (!VD || VD->isInvalidDecl()) {
4026       Info.FFDiag(E);
4027       return CompleteObject();
4028     }
4029 
4030     bool IsConstant = BaseType.isConstant(Info.Ctx);
4031 
4032     // Unless we're looking at a local variable or argument in a constexpr call,
4033     // the variable we're reading must be const.
4034     if (!Frame) {
4035       if (IsAccess && isa<ParmVarDecl>(VD)) {
4036         // Access of a parameter that's not associated with a frame isn't going
4037         // to work out, but we can leave it to evaluateVarDeclInit to provide a
4038         // suitable diagnostic.
4039       } else if (Info.getLangOpts().CPlusPlus14 &&
4040                  lifetimeStartedInEvaluation(Info, LVal.Base)) {
4041         // OK, we can read and modify an object if we're in the process of
4042         // evaluating its initializer, because its lifetime began in this
4043         // evaluation.
4044       } else if (isModification(AK)) {
4045         // All the remaining cases do not permit modification of the object.
4046         Info.FFDiag(E, diag::note_constexpr_modify_global);
4047         return CompleteObject();
4048       } else if (VD->isConstexpr()) {
4049         // OK, we can read this variable.
4050       } else if (BaseType->isIntegralOrEnumerationType()) {
4051         if (!IsConstant) {
4052           if (!IsAccess)
4053             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4054           if (Info.getLangOpts().CPlusPlus) {
4055             Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
4056             Info.Note(VD->getLocation(), diag::note_declared_at);
4057           } else {
4058             Info.FFDiag(E);
4059           }
4060           return CompleteObject();
4061         }
4062       } else if (!IsAccess) {
4063         return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4064       } else if (IsConstant && Info.checkingPotentialConstantExpression() &&
4065                  BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) {
4066         // This variable might end up being constexpr. Don't diagnose it yet.
4067       } else if (IsConstant) {
4068         // Keep evaluating to see what we can do. In particular, we support
4069         // folding of const floating-point types, in order to make static const
4070         // data members of such types (supported as an extension) more useful.
4071         if (Info.getLangOpts().CPlusPlus) {
4072           Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11
4073                               ? diag::note_constexpr_ltor_non_constexpr
4074                               : diag::note_constexpr_ltor_non_integral, 1)
4075               << VD << BaseType;
4076           Info.Note(VD->getLocation(), diag::note_declared_at);
4077         } else {
4078           Info.CCEDiag(E);
4079         }
4080       } else {
4081         // Never allow reading a non-const value.
4082         if (Info.getLangOpts().CPlusPlus) {
4083           Info.FFDiag(E, Info.getLangOpts().CPlusPlus11
4084                              ? diag::note_constexpr_ltor_non_constexpr
4085                              : diag::note_constexpr_ltor_non_integral, 1)
4086               << VD << BaseType;
4087           Info.Note(VD->getLocation(), diag::note_declared_at);
4088         } else {
4089           Info.FFDiag(E);
4090         }
4091         return CompleteObject();
4092       }
4093     }
4094 
4095     if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal))
4096       return CompleteObject();
4097   } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) {
4098     Optional<DynAlloc*> Alloc = Info.lookupDynamicAlloc(DA);
4099     if (!Alloc) {
4100       Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK;
4101       return CompleteObject();
4102     }
4103     return CompleteObject(LVal.Base, &(*Alloc)->Value,
4104                           LVal.Base.getDynamicAllocType());
4105   } else {
4106     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4107 
4108     if (!Frame) {
4109       if (const MaterializeTemporaryExpr *MTE =
4110               dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
4111         assert(MTE->getStorageDuration() == SD_Static &&
4112                "should have a frame for a non-global materialized temporary");
4113 
4114         // C++20 [expr.const]p4: [DR2126]
4115         //   An object or reference is usable in constant expressions if it is
4116         //   - a temporary object of non-volatile const-qualified literal type
4117         //     whose lifetime is extended to that of a variable that is usable
4118         //     in constant expressions
4119         //
4120         // C++20 [expr.const]p5:
4121         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
4122         //   - a non-volatile glvalue that refers to an object that is usable
4123         //     in constant expressions, or
4124         //   - a non-volatile glvalue of literal type that refers to a
4125         //     non-volatile object whose lifetime began within the evaluation
4126         //     of E;
4127         //
4128         // C++11 misses the 'began within the evaluation of e' check and
4129         // instead allows all temporaries, including things like:
4130         //   int &&r = 1;
4131         //   int x = ++r;
4132         //   constexpr int k = r;
4133         // Therefore we use the C++14-onwards rules in C++11 too.
4134         //
4135         // Note that temporaries whose lifetimes began while evaluating a
4136         // variable's constructor are not usable while evaluating the
4137         // corresponding destructor, not even if they're of const-qualified
4138         // types.
4139         if (!MTE->isUsableInConstantExpressions(Info.Ctx) &&
4140             !lifetimeStartedInEvaluation(Info, LVal.Base)) {
4141           if (!IsAccess)
4142             return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4143           Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
4144           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
4145           return CompleteObject();
4146         }
4147 
4148         BaseVal = MTE->getOrCreateValue(false);
4149         assert(BaseVal && "got reference to unevaluated temporary");
4150       } else {
4151         if (!IsAccess)
4152           return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
4153         APValue Val;
4154         LVal.moveInto(Val);
4155         Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
4156             << AK
4157             << Val.getAsString(Info.Ctx,
4158                                Info.Ctx.getLValueReferenceType(LValType));
4159         NoteLValueLocation(Info, LVal.Base);
4160         return CompleteObject();
4161       }
4162     } else {
4163       BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
4164       assert(BaseVal && "missing value for temporary");
4165     }
4166   }
4167 
4168   // In C++14, we can't safely access any mutable state when we might be
4169   // evaluating after an unmodeled side effect. Parameters are modeled as state
4170   // in the caller, but aren't visible once the call returns, so they can be
4171   // modified in a speculatively-evaluated call.
4172   //
4173   // FIXME: Not all local state is mutable. Allow local constant subobjects
4174   // to be read here (but take care with 'mutable' fields).
4175   unsigned VisibleDepth = Depth;
4176   if (llvm::isa_and_nonnull<ParmVarDecl>(
4177           LVal.Base.dyn_cast<const ValueDecl *>()))
4178     ++VisibleDepth;
4179   if ((Frame && Info.getLangOpts().CPlusPlus14 &&
4180        Info.EvalStatus.HasSideEffects) ||
4181       (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth))
4182     return CompleteObject();
4183 
4184   return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
4185 }
4186 
4187 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
4188 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
4189 /// glvalue referred to by an entity of reference type.
4190 ///
4191 /// \param Info - Information about the ongoing evaluation.
4192 /// \param Conv - The expression for which we are performing the conversion.
4193 ///               Used for diagnostics.
4194 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
4195 ///               case of a non-class type).
4196 /// \param LVal - The glvalue on which we are attempting to perform this action.
4197 /// \param RVal - The produced value will be placed here.
4198 /// \param WantObjectRepresentation - If true, we're looking for the object
4199 ///               representation rather than the value, and in particular,
4200 ///               there is no requirement that the result be fully initialized.
4201 static bool
handleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal,bool WantObjectRepresentation=false)4202 handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type,
4203                                const LValue &LVal, APValue &RVal,
4204                                bool WantObjectRepresentation = false) {
4205   if (LVal.Designator.Invalid)
4206     return false;
4207 
4208   // Check for special cases where there is no existing APValue to look at.
4209   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
4210 
4211   AccessKinds AK =
4212       WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read;
4213 
4214   if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
4215     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
4216       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
4217       // initializer until now for such expressions. Such an expression can't be
4218       // an ICE in C, so this only matters for fold.
4219       if (Type.isVolatileQualified()) {
4220         Info.FFDiag(Conv);
4221         return false;
4222       }
4223       APValue Lit;
4224       if (!Evaluate(Lit, Info, CLE->getInitializer()))
4225         return false;
4226       CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
4227       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK);
4228     } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
4229       // Special-case character extraction so we don't have to construct an
4230       // APValue for the whole string.
4231       assert(LVal.Designator.Entries.size() <= 1 &&
4232              "Can only read characters from string literals");
4233       if (LVal.Designator.Entries.empty()) {
4234         // Fail for now for LValue to RValue conversion of an array.
4235         // (This shouldn't show up in C/C++, but it could be triggered by a
4236         // weird EvaluateAsRValue call from a tool.)
4237         Info.FFDiag(Conv);
4238         return false;
4239       }
4240       if (LVal.Designator.isOnePastTheEnd()) {
4241         if (Info.getLangOpts().CPlusPlus11)
4242           Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK;
4243         else
4244           Info.FFDiag(Conv);
4245         return false;
4246       }
4247       uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
4248       RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
4249       return true;
4250     }
4251   }
4252 
4253   CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type);
4254   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK);
4255 }
4256 
4257 /// Perform an assignment of Val to LVal. Takes ownership of Val.
handleAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,APValue & Val)4258 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
4259                              QualType LValType, APValue &Val) {
4260   if (LVal.Designator.Invalid)
4261     return false;
4262 
4263   if (!Info.getLangOpts().CPlusPlus14) {
4264     Info.FFDiag(E);
4265     return false;
4266   }
4267 
4268   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4269   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
4270 }
4271 
4272 namespace {
4273 struct CompoundAssignSubobjectHandler {
4274   EvalInfo &Info;
4275   const CompoundAssignOperator *E;
4276   QualType PromotedLHSType;
4277   BinaryOperatorKind Opcode;
4278   const APValue &RHS;
4279 
4280   static const AccessKinds AccessKind = AK_Assign;
4281 
4282   typedef bool result_type;
4283 
checkConst__anon4717f8730c11::CompoundAssignSubobjectHandler4284   bool checkConst(QualType QT) {
4285     // Assigning to a const object has undefined behavior.
4286     if (QT.isConstQualified()) {
4287       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4288       return false;
4289     }
4290     return true;
4291   }
4292 
failed__anon4717f8730c11::CompoundAssignSubobjectHandler4293   bool failed() { return false; }
found__anon4717f8730c11::CompoundAssignSubobjectHandler4294   bool found(APValue &Subobj, QualType SubobjType) {
4295     switch (Subobj.getKind()) {
4296     case APValue::Int:
4297       return found(Subobj.getInt(), SubobjType);
4298     case APValue::Float:
4299       return found(Subobj.getFloat(), SubobjType);
4300     case APValue::ComplexInt:
4301     case APValue::ComplexFloat:
4302       // FIXME: Implement complex compound assignment.
4303       Info.FFDiag(E);
4304       return false;
4305     case APValue::LValue:
4306       return foundPointer(Subobj, SubobjType);
4307     case APValue::Vector:
4308       return foundVector(Subobj, SubobjType);
4309     default:
4310       // FIXME: can this happen?
4311       Info.FFDiag(E);
4312       return false;
4313     }
4314   }
4315 
foundVector__anon4717f8730c11::CompoundAssignSubobjectHandler4316   bool foundVector(APValue &Value, QualType SubobjType) {
4317     if (!checkConst(SubobjType))
4318       return false;
4319 
4320     if (!SubobjType->isVectorType()) {
4321       Info.FFDiag(E);
4322       return false;
4323     }
4324     return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS);
4325   }
4326 
found__anon4717f8730c11::CompoundAssignSubobjectHandler4327   bool found(APSInt &Value, QualType SubobjType) {
4328     if (!checkConst(SubobjType))
4329       return false;
4330 
4331     if (!SubobjType->isIntegerType()) {
4332       // We don't support compound assignment on integer-cast-to-pointer
4333       // values.
4334       Info.FFDiag(E);
4335       return false;
4336     }
4337 
4338     if (RHS.isInt()) {
4339       APSInt LHS =
4340           HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
4341       if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
4342         return false;
4343       Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
4344       return true;
4345     } else if (RHS.isFloat()) {
4346       const FPOptions FPO = E->getFPFeaturesInEffect(
4347                                     Info.Ctx.getLangOpts());
4348       APFloat FValue(0.0);
4349       return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value,
4350                                   PromotedLHSType, FValue) &&
4351              handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
4352              HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
4353                                   Value);
4354     }
4355 
4356     Info.FFDiag(E);
4357     return false;
4358   }
found__anon4717f8730c11::CompoundAssignSubobjectHandler4359   bool found(APFloat &Value, QualType SubobjType) {
4360     return checkConst(SubobjType) &&
4361            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
4362                                   Value) &&
4363            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
4364            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
4365   }
foundPointer__anon4717f8730c11::CompoundAssignSubobjectHandler4366   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4367     if (!checkConst(SubobjType))
4368       return false;
4369 
4370     QualType PointeeType;
4371     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4372       PointeeType = PT->getPointeeType();
4373 
4374     if (PointeeType.isNull() || !RHS.isInt() ||
4375         (Opcode != BO_Add && Opcode != BO_Sub)) {
4376       Info.FFDiag(E);
4377       return false;
4378     }
4379 
4380     APSInt Offset = RHS.getInt();
4381     if (Opcode == BO_Sub)
4382       negateAsSigned(Offset);
4383 
4384     LValue LVal;
4385     LVal.setFrom(Info.Ctx, Subobj);
4386     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
4387       return false;
4388     LVal.moveInto(Subobj);
4389     return true;
4390   }
4391 };
4392 } // end anonymous namespace
4393 
4394 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
4395 
4396 /// Perform a compound assignment of LVal <op>= RVal.
handleCompoundAssignment(EvalInfo & Info,const CompoundAssignOperator * E,const LValue & LVal,QualType LValType,QualType PromotedLValType,BinaryOperatorKind Opcode,const APValue & RVal)4397 static bool handleCompoundAssignment(EvalInfo &Info,
4398                                      const CompoundAssignOperator *E,
4399                                      const LValue &LVal, QualType LValType,
4400                                      QualType PromotedLValType,
4401                                      BinaryOperatorKind Opcode,
4402                                      const APValue &RVal) {
4403   if (LVal.Designator.Invalid)
4404     return false;
4405 
4406   if (!Info.getLangOpts().CPlusPlus14) {
4407     Info.FFDiag(E);
4408     return false;
4409   }
4410 
4411   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
4412   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
4413                                              RVal };
4414   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4415 }
4416 
4417 namespace {
4418 struct IncDecSubobjectHandler {
4419   EvalInfo &Info;
4420   const UnaryOperator *E;
4421   AccessKinds AccessKind;
4422   APValue *Old;
4423 
4424   typedef bool result_type;
4425 
checkConst__anon4717f8730d11::IncDecSubobjectHandler4426   bool checkConst(QualType QT) {
4427     // Assigning to a const object has undefined behavior.
4428     if (QT.isConstQualified()) {
4429       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
4430       return false;
4431     }
4432     return true;
4433   }
4434 
failed__anon4717f8730d11::IncDecSubobjectHandler4435   bool failed() { return false; }
found__anon4717f8730d11::IncDecSubobjectHandler4436   bool found(APValue &Subobj, QualType SubobjType) {
4437     // Stash the old value. Also clear Old, so we don't clobber it later
4438     // if we're post-incrementing a complex.
4439     if (Old) {
4440       *Old = Subobj;
4441       Old = nullptr;
4442     }
4443 
4444     switch (Subobj.getKind()) {
4445     case APValue::Int:
4446       return found(Subobj.getInt(), SubobjType);
4447     case APValue::Float:
4448       return found(Subobj.getFloat(), SubobjType);
4449     case APValue::ComplexInt:
4450       return found(Subobj.getComplexIntReal(),
4451                    SubobjType->castAs<ComplexType>()->getElementType()
4452                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4453     case APValue::ComplexFloat:
4454       return found(Subobj.getComplexFloatReal(),
4455                    SubobjType->castAs<ComplexType>()->getElementType()
4456                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
4457     case APValue::LValue:
4458       return foundPointer(Subobj, SubobjType);
4459     default:
4460       // FIXME: can this happen?
4461       Info.FFDiag(E);
4462       return false;
4463     }
4464   }
found__anon4717f8730d11::IncDecSubobjectHandler4465   bool found(APSInt &Value, QualType SubobjType) {
4466     if (!checkConst(SubobjType))
4467       return false;
4468 
4469     if (!SubobjType->isIntegerType()) {
4470       // We don't support increment / decrement on integer-cast-to-pointer
4471       // values.
4472       Info.FFDiag(E);
4473       return false;
4474     }
4475 
4476     if (Old) *Old = APValue(Value);
4477 
4478     // bool arithmetic promotes to int, and the conversion back to bool
4479     // doesn't reduce mod 2^n, so special-case it.
4480     if (SubobjType->isBooleanType()) {
4481       if (AccessKind == AK_Increment)
4482         Value = 1;
4483       else
4484         Value = !Value;
4485       return true;
4486     }
4487 
4488     bool WasNegative = Value.isNegative();
4489     if (AccessKind == AK_Increment) {
4490       ++Value;
4491 
4492       if (!WasNegative && Value.isNegative() && E->canOverflow()) {
4493         APSInt ActualValue(Value, /*IsUnsigned*/true);
4494         return HandleOverflow(Info, E, ActualValue, SubobjType);
4495       }
4496     } else {
4497       --Value;
4498 
4499       if (WasNegative && !Value.isNegative() && E->canOverflow()) {
4500         unsigned BitWidth = Value.getBitWidth();
4501         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
4502         ActualValue.setBit(BitWidth);
4503         return HandleOverflow(Info, E, ActualValue, SubobjType);
4504       }
4505     }
4506     return true;
4507   }
found__anon4717f8730d11::IncDecSubobjectHandler4508   bool found(APFloat &Value, QualType SubobjType) {
4509     if (!checkConst(SubobjType))
4510       return false;
4511 
4512     if (Old) *Old = APValue(Value);
4513 
4514     APFloat One(Value.getSemantics(), 1);
4515     if (AccessKind == AK_Increment)
4516       Value.add(One, APFloat::rmNearestTiesToEven);
4517     else
4518       Value.subtract(One, APFloat::rmNearestTiesToEven);
4519     return true;
4520   }
foundPointer__anon4717f8730d11::IncDecSubobjectHandler4521   bool foundPointer(APValue &Subobj, QualType SubobjType) {
4522     if (!checkConst(SubobjType))
4523       return false;
4524 
4525     QualType PointeeType;
4526     if (const PointerType *PT = SubobjType->getAs<PointerType>())
4527       PointeeType = PT->getPointeeType();
4528     else {
4529       Info.FFDiag(E);
4530       return false;
4531     }
4532 
4533     LValue LVal;
4534     LVal.setFrom(Info.Ctx, Subobj);
4535     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
4536                                      AccessKind == AK_Increment ? 1 : -1))
4537       return false;
4538     LVal.moveInto(Subobj);
4539     return true;
4540   }
4541 };
4542 } // end anonymous namespace
4543 
4544 /// Perform an increment or decrement on LVal.
handleIncDec(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,bool IsIncrement,APValue * Old)4545 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
4546                          QualType LValType, bool IsIncrement, APValue *Old) {
4547   if (LVal.Designator.Invalid)
4548     return false;
4549 
4550   if (!Info.getLangOpts().CPlusPlus14) {
4551     Info.FFDiag(E);
4552     return false;
4553   }
4554 
4555   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
4556   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
4557   IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
4558   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
4559 }
4560 
4561 /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)4562 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
4563                                    LValue &This) {
4564   if (Object->getType()->isPointerType() && Object->isRValue())
4565     return EvaluatePointer(Object, This, Info);
4566 
4567   if (Object->isGLValue())
4568     return EvaluateLValue(Object, This, Info);
4569 
4570   if (Object->getType()->isLiteralType(Info.Ctx))
4571     return EvaluateTemporary(Object, This, Info);
4572 
4573   Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
4574   return false;
4575 }
4576 
4577 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
4578 /// lvalue referring to the result.
4579 ///
4580 /// \param Info - Information about the ongoing evaluation.
4581 /// \param LV - An lvalue referring to the base of the member pointer.
4582 /// \param RHS - The member pointer expression.
4583 /// \param IncludeMember - Specifies whether the member itself is included in
4584 ///        the resulting LValue subobject designator. This is not possible when
4585 ///        creating a bound member function.
4586 /// \return The field or method declaration to which the member pointer refers,
4587 ///         or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,QualType LVType,LValue & LV,const Expr * RHS,bool IncludeMember=true)4588 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4589                                                   QualType LVType,
4590                                                   LValue &LV,
4591                                                   const Expr *RHS,
4592                                                   bool IncludeMember = true) {
4593   MemberPtr MemPtr;
4594   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
4595     return nullptr;
4596 
4597   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
4598   // member value, the behavior is undefined.
4599   if (!MemPtr.getDecl()) {
4600     // FIXME: Specific diagnostic.
4601     Info.FFDiag(RHS);
4602     return nullptr;
4603   }
4604 
4605   if (MemPtr.isDerivedMember()) {
4606     // This is a member of some derived class. Truncate LV appropriately.
4607     // The end of the derived-to-base path for the base object must match the
4608     // derived-to-base path for the member pointer.
4609     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
4610         LV.Designator.Entries.size()) {
4611       Info.FFDiag(RHS);
4612       return nullptr;
4613     }
4614     unsigned PathLengthToMember =
4615         LV.Designator.Entries.size() - MemPtr.Path.size();
4616     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
4617       const CXXRecordDecl *LVDecl = getAsBaseClass(
4618           LV.Designator.Entries[PathLengthToMember + I]);
4619       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
4620       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
4621         Info.FFDiag(RHS);
4622         return nullptr;
4623       }
4624     }
4625 
4626     // Truncate the lvalue to the appropriate derived class.
4627     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
4628                             PathLengthToMember))
4629       return nullptr;
4630   } else if (!MemPtr.Path.empty()) {
4631     // Extend the LValue path with the member pointer's path.
4632     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
4633                                   MemPtr.Path.size() + IncludeMember);
4634 
4635     // Walk down to the appropriate base class.
4636     if (const PointerType *PT = LVType->getAs<PointerType>())
4637       LVType = PT->getPointeeType();
4638     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
4639     assert(RD && "member pointer access on non-class-type expression");
4640     // The first class in the path is that of the lvalue.
4641     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
4642       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
4643       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
4644         return nullptr;
4645       RD = Base;
4646     }
4647     // Finally cast to the class containing the member.
4648     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
4649                                 MemPtr.getContainingRecord()))
4650       return nullptr;
4651   }
4652 
4653   // Add the member. Note that we cannot build bound member functions here.
4654   if (IncludeMember) {
4655     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
4656       if (!HandleLValueMember(Info, RHS, LV, FD))
4657         return nullptr;
4658     } else if (const IndirectFieldDecl *IFD =
4659                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
4660       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
4661         return nullptr;
4662     } else {
4663       llvm_unreachable("can't construct reference to bound member function");
4664     }
4665   }
4666 
4667   return MemPtr.getDecl();
4668 }
4669 
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)4670 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
4671                                                   const BinaryOperator *BO,
4672                                                   LValue &LV,
4673                                                   bool IncludeMember = true) {
4674   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
4675 
4676   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
4677     if (Info.noteFailure()) {
4678       MemberPtr MemPtr;
4679       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
4680     }
4681     return nullptr;
4682   }
4683 
4684   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
4685                                    BO->getRHS(), IncludeMember);
4686 }
4687 
4688 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
4689 /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)4690 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
4691                                     LValue &Result) {
4692   SubobjectDesignator &D = Result.Designator;
4693   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
4694     return false;
4695 
4696   QualType TargetQT = E->getType();
4697   if (const PointerType *PT = TargetQT->getAs<PointerType>())
4698     TargetQT = PT->getPointeeType();
4699 
4700   // Check this cast lands within the final derived-to-base subobject path.
4701   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
4702     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4703       << D.MostDerivedType << TargetQT;
4704     return false;
4705   }
4706 
4707   // Check the type of the final cast. We don't need to check the path,
4708   // since a cast can only be formed if the path is unique.
4709   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
4710   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
4711   const CXXRecordDecl *FinalType;
4712   if (NewEntriesSize == D.MostDerivedPathLength)
4713     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
4714   else
4715     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
4716   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
4717     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
4718       << D.MostDerivedType << TargetQT;
4719     return false;
4720   }
4721 
4722   // Truncate the lvalue to the appropriate derived class.
4723   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
4724 }
4725 
4726 /// Get the value to use for a default-initialized object of type T.
4727 /// Return false if it encounters something invalid.
getDefaultInitValue(QualType T,APValue & Result)4728 static bool getDefaultInitValue(QualType T, APValue &Result) {
4729   bool Success = true;
4730   if (auto *RD = T->getAsCXXRecordDecl()) {
4731     if (RD->isInvalidDecl()) {
4732       Result = APValue();
4733       return false;
4734     }
4735     if (RD->isUnion()) {
4736       Result = APValue((const FieldDecl *)nullptr);
4737       return true;
4738     }
4739     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4740                      std::distance(RD->field_begin(), RD->field_end()));
4741 
4742     unsigned Index = 0;
4743     for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
4744                                                   End = RD->bases_end();
4745          I != End; ++I, ++Index)
4746       Success &= getDefaultInitValue(I->getType(), Result.getStructBase(Index));
4747 
4748     for (const auto *I : RD->fields()) {
4749       if (I->isUnnamedBitfield())
4750         continue;
4751       Success &= getDefaultInitValue(I->getType(),
4752                                      Result.getStructField(I->getFieldIndex()));
4753     }
4754     return Success;
4755   }
4756 
4757   if (auto *AT =
4758           dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) {
4759     Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
4760     if (Result.hasArrayFiller())
4761       Success &=
4762           getDefaultInitValue(AT->getElementType(), Result.getArrayFiller());
4763 
4764     return Success;
4765   }
4766 
4767   Result = APValue::IndeterminateValue();
4768   return true;
4769 }
4770 
4771 namespace {
4772 enum EvalStmtResult {
4773   /// Evaluation failed.
4774   ESR_Failed,
4775   /// Hit a 'return' statement.
4776   ESR_Returned,
4777   /// Evaluation succeeded.
4778   ESR_Succeeded,
4779   /// Hit a 'continue' statement.
4780   ESR_Continue,
4781   /// Hit a 'break' statement.
4782   ESR_Break,
4783   /// Still scanning for 'case' or 'default' statement.
4784   ESR_CaseNotFound
4785 };
4786 }
4787 
EvaluateVarDecl(EvalInfo & Info,const VarDecl * VD)4788 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
4789   // We don't need to evaluate the initializer for a static local.
4790   if (!VD->hasLocalStorage())
4791     return true;
4792 
4793   LValue Result;
4794   APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(),
4795                                                    ScopeKind::Block, Result);
4796 
4797   const Expr *InitE = VD->getInit();
4798   if (!InitE)
4799     return getDefaultInitValue(VD->getType(), Val);
4800 
4801   if (InitE->isValueDependent())
4802     return false;
4803 
4804   if (!EvaluateInPlace(Val, Info, Result, InitE)) {
4805     // Wipe out any partially-computed value, to allow tracking that this
4806     // evaluation failed.
4807     Val = APValue();
4808     return false;
4809   }
4810 
4811   return true;
4812 }
4813 
EvaluateDecl(EvalInfo & Info,const Decl * D)4814 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
4815   bool OK = true;
4816 
4817   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
4818     OK &= EvaluateVarDecl(Info, VD);
4819 
4820   if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
4821     for (auto *BD : DD->bindings())
4822       if (auto *VD = BD->getHoldingVar())
4823         OK &= EvaluateDecl(Info, VD);
4824 
4825   return OK;
4826 }
4827 
4828 
4829 /// Evaluate a condition (either a variable declaration or an expression).
EvaluateCond(EvalInfo & Info,const VarDecl * CondDecl,const Expr * Cond,bool & Result)4830 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
4831                          const Expr *Cond, bool &Result) {
4832   FullExpressionRAII Scope(Info);
4833   if (CondDecl && !EvaluateDecl(Info, CondDecl))
4834     return false;
4835   if (!EvaluateAsBooleanCondition(Cond, Result, Info))
4836     return false;
4837   return Scope.destroy();
4838 }
4839 
4840 namespace {
4841 /// A location where the result (returned value) of evaluating a
4842 /// statement should be stored.
4843 struct StmtResult {
4844   /// The APValue that should be filled in with the returned value.
4845   APValue &Value;
4846   /// The location containing the result, if any (used to support RVO).
4847   const LValue *Slot;
4848 };
4849 
4850 struct TempVersionRAII {
4851   CallStackFrame &Frame;
4852 
TempVersionRAII__anon4717f8730f11::TempVersionRAII4853   TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
4854     Frame.pushTempVersion();
4855   }
4856 
~TempVersionRAII__anon4717f8730f11::TempVersionRAII4857   ~TempVersionRAII() {
4858     Frame.popTempVersion();
4859   }
4860 };
4861 
4862 }
4863 
4864 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4865                                    const Stmt *S,
4866                                    const SwitchCase *SC = nullptr);
4867 
4868 /// Evaluate the body of a loop, and translate the result as appropriate.
EvaluateLoopBody(StmtResult & Result,EvalInfo & Info,const Stmt * Body,const SwitchCase * Case=nullptr)4869 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
4870                                        const Stmt *Body,
4871                                        const SwitchCase *Case = nullptr) {
4872   BlockScopeRAII Scope(Info);
4873 
4874   EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case);
4875   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4876     ESR = ESR_Failed;
4877 
4878   switch (ESR) {
4879   case ESR_Break:
4880     return ESR_Succeeded;
4881   case ESR_Succeeded:
4882   case ESR_Continue:
4883     return ESR_Continue;
4884   case ESR_Failed:
4885   case ESR_Returned:
4886   case ESR_CaseNotFound:
4887     return ESR;
4888   }
4889   llvm_unreachable("Invalid EvalStmtResult!");
4890 }
4891 
4892 /// Evaluate a switch statement.
EvaluateSwitch(StmtResult & Result,EvalInfo & Info,const SwitchStmt * SS)4893 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
4894                                      const SwitchStmt *SS) {
4895   BlockScopeRAII Scope(Info);
4896 
4897   // Evaluate the switch condition.
4898   APSInt Value;
4899   {
4900     if (const Stmt *Init = SS->getInit()) {
4901       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4902       if (ESR != ESR_Succeeded) {
4903         if (ESR != ESR_Failed && !Scope.destroy())
4904           ESR = ESR_Failed;
4905         return ESR;
4906       }
4907     }
4908 
4909     FullExpressionRAII CondScope(Info);
4910     if (SS->getConditionVariable() &&
4911         !EvaluateDecl(Info, SS->getConditionVariable()))
4912       return ESR_Failed;
4913     if (!EvaluateInteger(SS->getCond(), Value, Info))
4914       return ESR_Failed;
4915     if (!CondScope.destroy())
4916       return ESR_Failed;
4917   }
4918 
4919   // Find the switch case corresponding to the value of the condition.
4920   // FIXME: Cache this lookup.
4921   const SwitchCase *Found = nullptr;
4922   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
4923        SC = SC->getNextSwitchCase()) {
4924     if (isa<DefaultStmt>(SC)) {
4925       Found = SC;
4926       continue;
4927     }
4928 
4929     const CaseStmt *CS = cast<CaseStmt>(SC);
4930     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
4931     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
4932                               : LHS;
4933     if (LHS <= Value && Value <= RHS) {
4934       Found = SC;
4935       break;
4936     }
4937   }
4938 
4939   if (!Found)
4940     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
4941 
4942   // Search the switch body for the switch case and evaluate it from there.
4943   EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found);
4944   if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy())
4945     return ESR_Failed;
4946 
4947   switch (ESR) {
4948   case ESR_Break:
4949     return ESR_Succeeded;
4950   case ESR_Succeeded:
4951   case ESR_Continue:
4952   case ESR_Failed:
4953   case ESR_Returned:
4954     return ESR;
4955   case ESR_CaseNotFound:
4956     // This can only happen if the switch case is nested within a statement
4957     // expression. We have no intention of supporting that.
4958     Info.FFDiag(Found->getBeginLoc(),
4959                 diag::note_constexpr_stmt_expr_unsupported);
4960     return ESR_Failed;
4961   }
4962   llvm_unreachable("Invalid EvalStmtResult!");
4963 }
4964 
4965 // Evaluate a statement.
EvaluateStmt(StmtResult & Result,EvalInfo & Info,const Stmt * S,const SwitchCase * Case)4966 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
4967                                    const Stmt *S, const SwitchCase *Case) {
4968   if (!Info.nextStep(S))
4969     return ESR_Failed;
4970 
4971   // If we're hunting down a 'case' or 'default' label, recurse through
4972   // substatements until we hit the label.
4973   if (Case) {
4974     switch (S->getStmtClass()) {
4975     case Stmt::CompoundStmtClass:
4976       // FIXME: Precompute which substatement of a compound statement we
4977       // would jump to, and go straight there rather than performing a
4978       // linear scan each time.
4979     case Stmt::LabelStmtClass:
4980     case Stmt::AttributedStmtClass:
4981     case Stmt::DoStmtClass:
4982       break;
4983 
4984     case Stmt::CaseStmtClass:
4985     case Stmt::DefaultStmtClass:
4986       if (Case == S)
4987         Case = nullptr;
4988       break;
4989 
4990     case Stmt::IfStmtClass: {
4991       // FIXME: Precompute which side of an 'if' we would jump to, and go
4992       // straight there rather than scanning both sides.
4993       const IfStmt *IS = cast<IfStmt>(S);
4994 
4995       // Wrap the evaluation in a block scope, in case it's a DeclStmt
4996       // preceded by our switch label.
4997       BlockScopeRAII Scope(Info);
4998 
4999       // Step into the init statement in case it brings an (uninitialized)
5000       // variable into scope.
5001       if (const Stmt *Init = IS->getInit()) {
5002         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5003         if (ESR != ESR_CaseNotFound) {
5004           assert(ESR != ESR_Succeeded);
5005           return ESR;
5006         }
5007       }
5008 
5009       // Condition variable must be initialized if it exists.
5010       // FIXME: We can skip evaluating the body if there's a condition
5011       // variable, as there can't be any case labels within it.
5012       // (The same is true for 'for' statements.)
5013 
5014       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
5015       if (ESR == ESR_Failed)
5016         return ESR;
5017       if (ESR != ESR_CaseNotFound)
5018         return Scope.destroy() ? ESR : ESR_Failed;
5019       if (!IS->getElse())
5020         return ESR_CaseNotFound;
5021 
5022       ESR = EvaluateStmt(Result, Info, IS->getElse(), Case);
5023       if (ESR == ESR_Failed)
5024         return ESR;
5025       if (ESR != ESR_CaseNotFound)
5026         return Scope.destroy() ? ESR : ESR_Failed;
5027       return ESR_CaseNotFound;
5028     }
5029 
5030     case Stmt::WhileStmtClass: {
5031       EvalStmtResult ESR =
5032           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
5033       if (ESR != ESR_Continue)
5034         return ESR;
5035       break;
5036     }
5037 
5038     case Stmt::ForStmtClass: {
5039       const ForStmt *FS = cast<ForStmt>(S);
5040       BlockScopeRAII Scope(Info);
5041 
5042       // Step into the init statement in case it brings an (uninitialized)
5043       // variable into scope.
5044       if (const Stmt *Init = FS->getInit()) {
5045         EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case);
5046         if (ESR != ESR_CaseNotFound) {
5047           assert(ESR != ESR_Succeeded);
5048           return ESR;
5049         }
5050       }
5051 
5052       EvalStmtResult ESR =
5053           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
5054       if (ESR != ESR_Continue)
5055         return ESR;
5056       if (FS->getInc()) {
5057         FullExpressionRAII IncScope(Info);
5058         if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy())
5059           return ESR_Failed;
5060       }
5061       break;
5062     }
5063 
5064     case Stmt::DeclStmtClass: {
5065       // Start the lifetime of any uninitialized variables we encounter. They
5066       // might be used by the selected branch of the switch.
5067       const DeclStmt *DS = cast<DeclStmt>(S);
5068       for (const auto *D : DS->decls()) {
5069         if (const auto *VD = dyn_cast<VarDecl>(D)) {
5070           if (VD->hasLocalStorage() && !VD->getInit())
5071             if (!EvaluateVarDecl(Info, VD))
5072               return ESR_Failed;
5073           // FIXME: If the variable has initialization that can't be jumped
5074           // over, bail out of any immediately-surrounding compound-statement
5075           // too. There can't be any case labels here.
5076         }
5077       }
5078       return ESR_CaseNotFound;
5079     }
5080 
5081     default:
5082       return ESR_CaseNotFound;
5083     }
5084   }
5085 
5086   switch (S->getStmtClass()) {
5087   default:
5088     if (const Expr *E = dyn_cast<Expr>(S)) {
5089       // Don't bother evaluating beyond an expression-statement which couldn't
5090       // be evaluated.
5091       // FIXME: Do we need the FullExpressionRAII object here?
5092       // VisitExprWithCleanups should create one when necessary.
5093       FullExpressionRAII Scope(Info);
5094       if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy())
5095         return ESR_Failed;
5096       return ESR_Succeeded;
5097     }
5098 
5099     Info.FFDiag(S->getBeginLoc());
5100     return ESR_Failed;
5101 
5102   case Stmt::NullStmtClass:
5103     return ESR_Succeeded;
5104 
5105   case Stmt::DeclStmtClass: {
5106     const DeclStmt *DS = cast<DeclStmt>(S);
5107     for (const auto *D : DS->decls()) {
5108       // Each declaration initialization is its own full-expression.
5109       FullExpressionRAII Scope(Info);
5110       if (!EvaluateDecl(Info, D) && !Info.noteFailure())
5111         return ESR_Failed;
5112       if (!Scope.destroy())
5113         return ESR_Failed;
5114     }
5115     return ESR_Succeeded;
5116   }
5117 
5118   case Stmt::ReturnStmtClass: {
5119     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
5120     FullExpressionRAII Scope(Info);
5121     if (RetExpr &&
5122         !(Result.Slot
5123               ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
5124               : Evaluate(Result.Value, Info, RetExpr)))
5125       return ESR_Failed;
5126     return Scope.destroy() ? ESR_Returned : ESR_Failed;
5127   }
5128 
5129   case Stmt::CompoundStmtClass: {
5130     BlockScopeRAII Scope(Info);
5131 
5132     const CompoundStmt *CS = cast<CompoundStmt>(S);
5133     for (const auto *BI : CS->body()) {
5134       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
5135       if (ESR == ESR_Succeeded)
5136         Case = nullptr;
5137       else if (ESR != ESR_CaseNotFound) {
5138         if (ESR != ESR_Failed && !Scope.destroy())
5139           return ESR_Failed;
5140         return ESR;
5141       }
5142     }
5143     if (Case)
5144       return ESR_CaseNotFound;
5145     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5146   }
5147 
5148   case Stmt::IfStmtClass: {
5149     const IfStmt *IS = cast<IfStmt>(S);
5150 
5151     // Evaluate the condition, as either a var decl or as an expression.
5152     BlockScopeRAII Scope(Info);
5153     if (const Stmt *Init = IS->getInit()) {
5154       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
5155       if (ESR != ESR_Succeeded) {
5156         if (ESR != ESR_Failed && !Scope.destroy())
5157           return ESR_Failed;
5158         return ESR;
5159       }
5160     }
5161     bool Cond;
5162     if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
5163       return ESR_Failed;
5164 
5165     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
5166       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
5167       if (ESR != ESR_Succeeded) {
5168         if (ESR != ESR_Failed && !Scope.destroy())
5169           return ESR_Failed;
5170         return ESR;
5171       }
5172     }
5173     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5174   }
5175 
5176   case Stmt::WhileStmtClass: {
5177     const WhileStmt *WS = cast<WhileStmt>(S);
5178     while (true) {
5179       BlockScopeRAII Scope(Info);
5180       bool Continue;
5181       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
5182                         Continue))
5183         return ESR_Failed;
5184       if (!Continue)
5185         break;
5186 
5187       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
5188       if (ESR != ESR_Continue) {
5189         if (ESR != ESR_Failed && !Scope.destroy())
5190           return ESR_Failed;
5191         return ESR;
5192       }
5193       if (!Scope.destroy())
5194         return ESR_Failed;
5195     }
5196     return ESR_Succeeded;
5197   }
5198 
5199   case Stmt::DoStmtClass: {
5200     const DoStmt *DS = cast<DoStmt>(S);
5201     bool Continue;
5202     do {
5203       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
5204       if (ESR != ESR_Continue)
5205         return ESR;
5206       Case = nullptr;
5207 
5208       FullExpressionRAII CondScope(Info);
5209       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) ||
5210           !CondScope.destroy())
5211         return ESR_Failed;
5212     } while (Continue);
5213     return ESR_Succeeded;
5214   }
5215 
5216   case Stmt::ForStmtClass: {
5217     const ForStmt *FS = cast<ForStmt>(S);
5218     BlockScopeRAII ForScope(Info);
5219     if (FS->getInit()) {
5220       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5221       if (ESR != ESR_Succeeded) {
5222         if (ESR != ESR_Failed && !ForScope.destroy())
5223           return ESR_Failed;
5224         return ESR;
5225       }
5226     }
5227     while (true) {
5228       BlockScopeRAII IterScope(Info);
5229       bool Continue = true;
5230       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
5231                                          FS->getCond(), Continue))
5232         return ESR_Failed;
5233       if (!Continue)
5234         break;
5235 
5236       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5237       if (ESR != ESR_Continue) {
5238         if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy()))
5239           return ESR_Failed;
5240         return ESR;
5241       }
5242 
5243       if (FS->getInc()) {
5244         FullExpressionRAII IncScope(Info);
5245         if (!EvaluateIgnoredValue(Info, FS->getInc()) || !IncScope.destroy())
5246           return ESR_Failed;
5247       }
5248 
5249       if (!IterScope.destroy())
5250         return ESR_Failed;
5251     }
5252     return ForScope.destroy() ? ESR_Succeeded : ESR_Failed;
5253   }
5254 
5255   case Stmt::CXXForRangeStmtClass: {
5256     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
5257     BlockScopeRAII Scope(Info);
5258 
5259     // Evaluate the init-statement if present.
5260     if (FS->getInit()) {
5261       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
5262       if (ESR != ESR_Succeeded) {
5263         if (ESR != ESR_Failed && !Scope.destroy())
5264           return ESR_Failed;
5265         return ESR;
5266       }
5267     }
5268 
5269     // Initialize the __range variable.
5270     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
5271     if (ESR != ESR_Succeeded) {
5272       if (ESR != ESR_Failed && !Scope.destroy())
5273         return ESR_Failed;
5274       return ESR;
5275     }
5276 
5277     // Create the __begin and __end iterators.
5278     ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
5279     if (ESR != ESR_Succeeded) {
5280       if (ESR != ESR_Failed && !Scope.destroy())
5281         return ESR_Failed;
5282       return ESR;
5283     }
5284     ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
5285     if (ESR != ESR_Succeeded) {
5286       if (ESR != ESR_Failed && !Scope.destroy())
5287         return ESR_Failed;
5288       return ESR;
5289     }
5290 
5291     while (true) {
5292       // Condition: __begin != __end.
5293       {
5294         bool Continue = true;
5295         FullExpressionRAII CondExpr(Info);
5296         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
5297           return ESR_Failed;
5298         if (!Continue)
5299           break;
5300       }
5301 
5302       // User's variable declaration, initialized by *__begin.
5303       BlockScopeRAII InnerScope(Info);
5304       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
5305       if (ESR != ESR_Succeeded) {
5306         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5307           return ESR_Failed;
5308         return ESR;
5309       }
5310 
5311       // Loop body.
5312       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
5313       if (ESR != ESR_Continue) {
5314         if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy()))
5315           return ESR_Failed;
5316         return ESR;
5317       }
5318 
5319       // Increment: ++__begin
5320       if (!EvaluateIgnoredValue(Info, FS->getInc()))
5321         return ESR_Failed;
5322 
5323       if (!InnerScope.destroy())
5324         return ESR_Failed;
5325     }
5326 
5327     return Scope.destroy() ? ESR_Succeeded : ESR_Failed;
5328   }
5329 
5330   case Stmt::SwitchStmtClass:
5331     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
5332 
5333   case Stmt::ContinueStmtClass:
5334     return ESR_Continue;
5335 
5336   case Stmt::BreakStmtClass:
5337     return ESR_Break;
5338 
5339   case Stmt::LabelStmtClass:
5340     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
5341 
5342   case Stmt::AttributedStmtClass:
5343     // As a general principle, C++11 attributes can be ignored without
5344     // any semantic impact.
5345     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
5346                         Case);
5347 
5348   case Stmt::CaseStmtClass:
5349   case Stmt::DefaultStmtClass:
5350     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
5351   case Stmt::CXXTryStmtClass:
5352     // Evaluate try blocks by evaluating all sub statements.
5353     return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
5354   }
5355 }
5356 
5357 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
5358 /// default constructor. If so, we'll fold it whether or not it's marked as
5359 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
5360 /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)5361 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
5362                                            const CXXConstructorDecl *CD,
5363                                            bool IsValueInitialization) {
5364   if (!CD->isTrivial() || !CD->isDefaultConstructor())
5365     return false;
5366 
5367   // Value-initialization does not call a trivial default constructor, so such a
5368   // call is a core constant expression whether or not the constructor is
5369   // constexpr.
5370   if (!CD->isConstexpr() && !IsValueInitialization) {
5371     if (Info.getLangOpts().CPlusPlus11) {
5372       // FIXME: If DiagDecl is an implicitly-declared special member function,
5373       // we should be much more explicit about why it's not constexpr.
5374       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
5375         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
5376       Info.Note(CD->getLocation(), diag::note_declared_at);
5377     } else {
5378       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
5379     }
5380   }
5381   return true;
5382 }
5383 
5384 /// CheckConstexprFunction - Check that a function can be called in a constant
5385 /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition,const Stmt * Body)5386 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
5387                                    const FunctionDecl *Declaration,
5388                                    const FunctionDecl *Definition,
5389                                    const Stmt *Body) {
5390   // Potential constant expressions can contain calls to declared, but not yet
5391   // defined, constexpr functions.
5392   if (Info.checkingPotentialConstantExpression() && !Definition &&
5393       Declaration->isConstexpr())
5394     return false;
5395 
5396   // Bail out if the function declaration itself is invalid.  We will
5397   // have produced a relevant diagnostic while parsing it, so just
5398   // note the problematic sub-expression.
5399   if (Declaration->isInvalidDecl()) {
5400     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5401     return false;
5402   }
5403 
5404   // DR1872: An instantiated virtual constexpr function can't be called in a
5405   // constant expression (prior to C++20). We can still constant-fold such a
5406   // call.
5407   if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) &&
5408       cast<CXXMethodDecl>(Declaration)->isVirtual())
5409     Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
5410 
5411   if (Definition && Definition->isInvalidDecl()) {
5412     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5413     return false;
5414   }
5415 
5416   if (const auto *CtorDecl = dyn_cast_or_null<CXXConstructorDecl>(Definition)) {
5417     for (const auto *InitExpr : CtorDecl->inits()) {
5418       if (InitExpr->getInit() && InitExpr->getInit()->containsErrors())
5419         return false;
5420     }
5421   }
5422 
5423   // Can we evaluate this function call?
5424   if (Definition && Definition->isConstexpr() && Body)
5425     return true;
5426 
5427   if (Info.getLangOpts().CPlusPlus11) {
5428     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
5429 
5430     // If this function is not constexpr because it is an inherited
5431     // non-constexpr constructor, diagnose that directly.
5432     auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
5433     if (CD && CD->isInheritingConstructor()) {
5434       auto *Inherited = CD->getInheritedConstructor().getConstructor();
5435       if (!Inherited->isConstexpr())
5436         DiagDecl = CD = Inherited;
5437     }
5438 
5439     // FIXME: If DiagDecl is an implicitly-declared special member function
5440     // or an inheriting constructor, we should be much more explicit about why
5441     // it's not constexpr.
5442     if (CD && CD->isInheritingConstructor())
5443       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
5444         << CD->getInheritedConstructor().getConstructor()->getParent();
5445     else
5446       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
5447         << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
5448     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
5449   } else {
5450     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
5451   }
5452   return false;
5453 }
5454 
5455 namespace {
5456 struct CheckDynamicTypeHandler {
5457   AccessKinds AccessKind;
5458   typedef bool result_type;
failed__anon4717f8731011::CheckDynamicTypeHandler5459   bool failed() { return false; }
found__anon4717f8731011::CheckDynamicTypeHandler5460   bool found(APValue &Subobj, QualType SubobjType) { return true; }
found__anon4717f8731011::CheckDynamicTypeHandler5461   bool found(APSInt &Value, QualType SubobjType) { return true; }
found__anon4717f8731011::CheckDynamicTypeHandler5462   bool found(APFloat &Value, QualType SubobjType) { return true; }
5463 };
5464 } // end anonymous namespace
5465 
5466 /// Check that we can access the notional vptr of an object / determine its
5467 /// dynamic type.
checkDynamicType(EvalInfo & Info,const Expr * E,const LValue & This,AccessKinds AK,bool Polymorphic)5468 static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
5469                              AccessKinds AK, bool Polymorphic) {
5470   if (This.Designator.Invalid)
5471     return false;
5472 
5473   CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
5474 
5475   if (!Obj)
5476     return false;
5477 
5478   if (!Obj.Value) {
5479     // The object is not usable in constant expressions, so we can't inspect
5480     // its value to see if it's in-lifetime or what the active union members
5481     // are. We can still check for a one-past-the-end lvalue.
5482     if (This.Designator.isOnePastTheEnd() ||
5483         This.Designator.isMostDerivedAnUnsizedArray()) {
5484       Info.FFDiag(E, This.Designator.isOnePastTheEnd()
5485                          ? diag::note_constexpr_access_past_end
5486                          : diag::note_constexpr_access_unsized_array)
5487           << AK;
5488       return false;
5489     } else if (Polymorphic) {
5490       // Conservatively refuse to perform a polymorphic operation if we would
5491       // not be able to read a notional 'vptr' value.
5492       APValue Val;
5493       This.moveInto(Val);
5494       QualType StarThisType =
5495           Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
5496       Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
5497           << AK << Val.getAsString(Info.Ctx, StarThisType);
5498       return false;
5499     }
5500     return true;
5501   }
5502 
5503   CheckDynamicTypeHandler Handler{AK};
5504   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
5505 }
5506 
5507 /// Check that the pointee of the 'this' pointer in a member function call is
5508 /// either within its lifetime or in its period of construction or destruction.
5509 static bool
checkNonVirtualMemberCallThisPointer(EvalInfo & Info,const Expr * E,const LValue & This,const CXXMethodDecl * NamedMember)5510 checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
5511                                      const LValue &This,
5512                                      const CXXMethodDecl *NamedMember) {
5513   return checkDynamicType(
5514       Info, E, This,
5515       isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false);
5516 }
5517 
5518 struct DynamicType {
5519   /// The dynamic class type of the object.
5520   const CXXRecordDecl *Type;
5521   /// The corresponding path length in the lvalue.
5522   unsigned PathLength;
5523 };
5524 
getBaseClassType(SubobjectDesignator & Designator,unsigned PathLength)5525 static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
5526                                              unsigned PathLength) {
5527   assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
5528       Designator.Entries.size() && "invalid path length");
5529   return (PathLength == Designator.MostDerivedPathLength)
5530              ? Designator.MostDerivedType->getAsCXXRecordDecl()
5531              : getAsBaseClass(Designator.Entries[PathLength - 1]);
5532 }
5533 
5534 /// Determine the dynamic type of an object.
ComputeDynamicType(EvalInfo & Info,const Expr * E,LValue & This,AccessKinds AK)5535 static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E,
5536                                                 LValue &This, AccessKinds AK) {
5537   // If we don't have an lvalue denoting an object of class type, there is no
5538   // meaningful dynamic type. (We consider objects of non-class type to have no
5539   // dynamic type.)
5540   if (!checkDynamicType(Info, E, This, AK, true))
5541     return None;
5542 
5543   // Refuse to compute a dynamic type in the presence of virtual bases. This
5544   // shouldn't happen other than in constant-folding situations, since literal
5545   // types can't have virtual bases.
5546   //
5547   // Note that consumers of DynamicType assume that the type has no virtual
5548   // bases, and will need modifications if this restriction is relaxed.
5549   const CXXRecordDecl *Class =
5550       This.Designator.MostDerivedType->getAsCXXRecordDecl();
5551   if (!Class || Class->getNumVBases()) {
5552     Info.FFDiag(E);
5553     return None;
5554   }
5555 
5556   // FIXME: For very deep class hierarchies, it might be beneficial to use a
5557   // binary search here instead. But the overwhelmingly common case is that
5558   // we're not in the middle of a constructor, so it probably doesn't matter
5559   // in practice.
5560   ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
5561   for (unsigned PathLength = This.Designator.MostDerivedPathLength;
5562        PathLength <= Path.size(); ++PathLength) {
5563     switch (Info.isEvaluatingCtorDtor(This.getLValueBase(),
5564                                       Path.slice(0, PathLength))) {
5565     case ConstructionPhase::Bases:
5566     case ConstructionPhase::DestroyingBases:
5567       // We're constructing or destroying a base class. This is not the dynamic
5568       // type.
5569       break;
5570 
5571     case ConstructionPhase::None:
5572     case ConstructionPhase::AfterBases:
5573     case ConstructionPhase::AfterFields:
5574     case ConstructionPhase::Destroying:
5575       // We've finished constructing the base classes and not yet started
5576       // destroying them again, so this is the dynamic type.
5577       return DynamicType{getBaseClassType(This.Designator, PathLength),
5578                          PathLength};
5579     }
5580   }
5581 
5582   // CWG issue 1517: we're constructing a base class of the object described by
5583   // 'This', so that object has not yet begun its period of construction and
5584   // any polymorphic operation on it results in undefined behavior.
5585   Info.FFDiag(E);
5586   return None;
5587 }
5588 
5589 /// Perform virtual dispatch.
HandleVirtualDispatch(EvalInfo & Info,const Expr * E,LValue & This,const CXXMethodDecl * Found,llvm::SmallVectorImpl<QualType> & CovariantAdjustmentPath)5590 static const CXXMethodDecl *HandleVirtualDispatch(
5591     EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
5592     llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
5593   Optional<DynamicType> DynType = ComputeDynamicType(
5594       Info, E, This,
5595       isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall);
5596   if (!DynType)
5597     return nullptr;
5598 
5599   // Find the final overrider. It must be declared in one of the classes on the
5600   // path from the dynamic type to the static type.
5601   // FIXME: If we ever allow literal types to have virtual base classes, that
5602   // won't be true.
5603   const CXXMethodDecl *Callee = Found;
5604   unsigned PathLength = DynType->PathLength;
5605   for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
5606     const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
5607     const CXXMethodDecl *Overrider =
5608         Found->getCorrespondingMethodDeclaredInClass(Class, false);
5609     if (Overrider) {
5610       Callee = Overrider;
5611       break;
5612     }
5613   }
5614 
5615   // C++2a [class.abstract]p6:
5616   //   the effect of making a virtual call to a pure virtual function [...] is
5617   //   undefined
5618   if (Callee->isPure()) {
5619     Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
5620     Info.Note(Callee->getLocation(), diag::note_declared_at);
5621     return nullptr;
5622   }
5623 
5624   // If necessary, walk the rest of the path to determine the sequence of
5625   // covariant adjustment steps to apply.
5626   if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
5627                                        Found->getReturnType())) {
5628     CovariantAdjustmentPath.push_back(Callee->getReturnType());
5629     for (unsigned CovariantPathLength = PathLength + 1;
5630          CovariantPathLength != This.Designator.Entries.size();
5631          ++CovariantPathLength) {
5632       const CXXRecordDecl *NextClass =
5633           getBaseClassType(This.Designator, CovariantPathLength);
5634       const CXXMethodDecl *Next =
5635           Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
5636       if (Next && !Info.Ctx.hasSameUnqualifiedType(
5637                       Next->getReturnType(), CovariantAdjustmentPath.back()))
5638         CovariantAdjustmentPath.push_back(Next->getReturnType());
5639     }
5640     if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
5641                                          CovariantAdjustmentPath.back()))
5642       CovariantAdjustmentPath.push_back(Found->getReturnType());
5643   }
5644 
5645   // Perform 'this' adjustment.
5646   if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
5647     return nullptr;
5648 
5649   return Callee;
5650 }
5651 
5652 /// Perform the adjustment from a value returned by a virtual function to
5653 /// a value of the statically expected type, which may be a pointer or
5654 /// reference to a base class of the returned type.
HandleCovariantReturnAdjustment(EvalInfo & Info,const Expr * E,APValue & Result,ArrayRef<QualType> Path)5655 static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
5656                                             APValue &Result,
5657                                             ArrayRef<QualType> Path) {
5658   assert(Result.isLValue() &&
5659          "unexpected kind of APValue for covariant return");
5660   if (Result.isNullPointer())
5661     return true;
5662 
5663   LValue LVal;
5664   LVal.setFrom(Info.Ctx, Result);
5665 
5666   const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
5667   for (unsigned I = 1; I != Path.size(); ++I) {
5668     const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
5669     assert(OldClass && NewClass && "unexpected kind of covariant return");
5670     if (OldClass != NewClass &&
5671         !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
5672       return false;
5673     OldClass = NewClass;
5674   }
5675 
5676   LVal.moveInto(Result);
5677   return true;
5678 }
5679 
5680 /// Determine whether \p Base, which is known to be a direct base class of
5681 /// \p Derived, is a public base class.
isBaseClassPublic(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)5682 static bool isBaseClassPublic(const CXXRecordDecl *Derived,
5683                               const CXXRecordDecl *Base) {
5684   for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
5685     auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
5686     if (BaseClass && declaresSameEntity(BaseClass, Base))
5687       return BaseSpec.getAccessSpecifier() == AS_public;
5688   }
5689   llvm_unreachable("Base is not a direct base of Derived");
5690 }
5691 
5692 /// Apply the given dynamic cast operation on the provided lvalue.
5693 ///
5694 /// This implements the hard case of dynamic_cast, requiring a "runtime check"
5695 /// to find a suitable target subobject.
HandleDynamicCast(EvalInfo & Info,const ExplicitCastExpr * E,LValue & Ptr)5696 static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
5697                               LValue &Ptr) {
5698   // We can't do anything with a non-symbolic pointer value.
5699   SubobjectDesignator &D = Ptr.Designator;
5700   if (D.Invalid)
5701     return false;
5702 
5703   // C++ [expr.dynamic.cast]p6:
5704   //   If v is a null pointer value, the result is a null pointer value.
5705   if (Ptr.isNullPointer() && !E->isGLValue())
5706     return true;
5707 
5708   // For all the other cases, we need the pointer to point to an object within
5709   // its lifetime / period of construction / destruction, and we need to know
5710   // its dynamic type.
5711   Optional<DynamicType> DynType =
5712       ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
5713   if (!DynType)
5714     return false;
5715 
5716   // C++ [expr.dynamic.cast]p7:
5717   //   If T is "pointer to cv void", then the result is a pointer to the most
5718   //   derived object
5719   if (E->getType()->isVoidPointerType())
5720     return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
5721 
5722   const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
5723   assert(C && "dynamic_cast target is not void pointer nor class");
5724   CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
5725 
5726   auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
5727     // C++ [expr.dynamic.cast]p9:
5728     if (!E->isGLValue()) {
5729       //   The value of a failed cast to pointer type is the null pointer value
5730       //   of the required result type.
5731       Ptr.setNull(Info.Ctx, E->getType());
5732       return true;
5733     }
5734 
5735     //   A failed cast to reference type throws [...] std::bad_cast.
5736     unsigned DiagKind;
5737     if (!Paths && (declaresSameEntity(DynType->Type, C) ||
5738                    DynType->Type->isDerivedFrom(C)))
5739       DiagKind = 0;
5740     else if (!Paths || Paths->begin() == Paths->end())
5741       DiagKind = 1;
5742     else if (Paths->isAmbiguous(CQT))
5743       DiagKind = 2;
5744     else {
5745       assert(Paths->front().Access != AS_public && "why did the cast fail?");
5746       DiagKind = 3;
5747     }
5748     Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
5749         << DiagKind << Ptr.Designator.getType(Info.Ctx)
5750         << Info.Ctx.getRecordType(DynType->Type)
5751         << E->getType().getUnqualifiedType();
5752     return false;
5753   };
5754 
5755   // Runtime check, phase 1:
5756   //   Walk from the base subobject towards the derived object looking for the
5757   //   target type.
5758   for (int PathLength = Ptr.Designator.Entries.size();
5759        PathLength >= (int)DynType->PathLength; --PathLength) {
5760     const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
5761     if (declaresSameEntity(Class, C))
5762       return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
5763     // We can only walk across public inheritance edges.
5764     if (PathLength > (int)DynType->PathLength &&
5765         !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
5766                            Class))
5767       return RuntimeCheckFailed(nullptr);
5768   }
5769 
5770   // Runtime check, phase 2:
5771   //   Search the dynamic type for an unambiguous public base of type C.
5772   CXXBasePaths Paths(/*FindAmbiguities=*/true,
5773                      /*RecordPaths=*/true, /*DetectVirtual=*/false);
5774   if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
5775       Paths.front().Access == AS_public) {
5776     // Downcast to the dynamic type...
5777     if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
5778       return false;
5779     // ... then upcast to the chosen base class subobject.
5780     for (CXXBasePathElement &Elem : Paths.front())
5781       if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
5782         return false;
5783     return true;
5784   }
5785 
5786   // Otherwise, the runtime check fails.
5787   return RuntimeCheckFailed(&Paths);
5788 }
5789 
5790 namespace {
5791 struct StartLifetimeOfUnionMemberHandler {
5792   EvalInfo &Info;
5793   const Expr *LHSExpr;
5794   const FieldDecl *Field;
5795   bool DuringInit;
5796   bool Failed = false;
5797   static const AccessKinds AccessKind = AK_Assign;
5798 
5799   typedef bool result_type;
failed__anon4717f8731211::StartLifetimeOfUnionMemberHandler5800   bool failed() { return Failed; }
found__anon4717f8731211::StartLifetimeOfUnionMemberHandler5801   bool found(APValue &Subobj, QualType SubobjType) {
5802     // We are supposed to perform no initialization but begin the lifetime of
5803     // the object. We interpret that as meaning to do what default
5804     // initialization of the object would do if all constructors involved were
5805     // trivial:
5806     //  * All base, non-variant member, and array element subobjects' lifetimes
5807     //    begin
5808     //  * No variant members' lifetimes begin
5809     //  * All scalar subobjects whose lifetimes begin have indeterminate values
5810     assert(SubobjType->isUnionType());
5811     if (declaresSameEntity(Subobj.getUnionField(), Field)) {
5812       // This union member is already active. If it's also in-lifetime, there's
5813       // nothing to do.
5814       if (Subobj.getUnionValue().hasValue())
5815         return true;
5816     } else if (DuringInit) {
5817       // We're currently in the process of initializing a different union
5818       // member.  If we carried on, that initialization would attempt to
5819       // store to an inactive union member, resulting in undefined behavior.
5820       Info.FFDiag(LHSExpr,
5821                   diag::note_constexpr_union_member_change_during_init);
5822       return false;
5823     }
5824     APValue Result;
5825     Failed = !getDefaultInitValue(Field->getType(), Result);
5826     Subobj.setUnion(Field, Result);
5827     return true;
5828   }
found__anon4717f8731211::StartLifetimeOfUnionMemberHandler5829   bool found(APSInt &Value, QualType SubobjType) {
5830     llvm_unreachable("wrong value kind for union object");
5831   }
found__anon4717f8731211::StartLifetimeOfUnionMemberHandler5832   bool found(APFloat &Value, QualType SubobjType) {
5833     llvm_unreachable("wrong value kind for union object");
5834   }
5835 };
5836 } // end anonymous namespace
5837 
5838 const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
5839 
5840 /// Handle a builtin simple-assignment or a call to a trivial assignment
5841 /// operator whose left-hand side might involve a union member access. If it
5842 /// does, implicitly start the lifetime of any accessed union elements per
5843 /// C++20 [class.union]5.
HandleUnionActiveMemberChange(EvalInfo & Info,const Expr * LHSExpr,const LValue & LHS)5844 static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
5845                                           const LValue &LHS) {
5846   if (LHS.InvalidBase || LHS.Designator.Invalid)
5847     return false;
5848 
5849   llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
5850   // C++ [class.union]p5:
5851   //   define the set S(E) of subexpressions of E as follows:
5852   unsigned PathLength = LHS.Designator.Entries.size();
5853   for (const Expr *E = LHSExpr; E != nullptr;) {
5854     //   -- If E is of the form A.B, S(E) contains the elements of S(A)...
5855     if (auto *ME = dyn_cast<MemberExpr>(E)) {
5856       auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
5857       // Note that we can't implicitly start the lifetime of a reference,
5858       // so we don't need to proceed any further if we reach one.
5859       if (!FD || FD->getType()->isReferenceType())
5860         break;
5861 
5862       //    ... and also contains A.B if B names a union member ...
5863       if (FD->getParent()->isUnion()) {
5864         //    ... of a non-class, non-array type, or of a class type with a
5865         //    trivial default constructor that is not deleted, or an array of
5866         //    such types.
5867         auto *RD =
5868             FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5869         if (!RD || RD->hasTrivialDefaultConstructor())
5870           UnionPathLengths.push_back({PathLength - 1, FD});
5871       }
5872 
5873       E = ME->getBase();
5874       --PathLength;
5875       assert(declaresSameEntity(FD,
5876                                 LHS.Designator.Entries[PathLength]
5877                                     .getAsBaseOrMember().getPointer()));
5878 
5879       //   -- If E is of the form A[B] and is interpreted as a built-in array
5880       //      subscripting operator, S(E) is [S(the array operand, if any)].
5881     } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
5882       // Step over an ArrayToPointerDecay implicit cast.
5883       auto *Base = ASE->getBase()->IgnoreImplicit();
5884       if (!Base->getType()->isArrayType())
5885         break;
5886 
5887       E = Base;
5888       --PathLength;
5889 
5890     } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
5891       // Step over a derived-to-base conversion.
5892       E = ICE->getSubExpr();
5893       if (ICE->getCastKind() == CK_NoOp)
5894         continue;
5895       if (ICE->getCastKind() != CK_DerivedToBase &&
5896           ICE->getCastKind() != CK_UncheckedDerivedToBase)
5897         break;
5898       // Walk path backwards as we walk up from the base to the derived class.
5899       for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
5900         --PathLength;
5901         (void)Elt;
5902         assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
5903                                   LHS.Designator.Entries[PathLength]
5904                                       .getAsBaseOrMember().getPointer()));
5905       }
5906 
5907     //   -- Otherwise, S(E) is empty.
5908     } else {
5909       break;
5910     }
5911   }
5912 
5913   // Common case: no unions' lifetimes are started.
5914   if (UnionPathLengths.empty())
5915     return true;
5916 
5917   //   if modification of X [would access an inactive union member], an object
5918   //   of the type of X is implicitly created
5919   CompleteObject Obj =
5920       findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
5921   if (!Obj)
5922     return false;
5923   for (std::pair<unsigned, const FieldDecl *> LengthAndField :
5924            llvm::reverse(UnionPathLengths)) {
5925     // Form a designator for the union object.
5926     SubobjectDesignator D = LHS.Designator;
5927     D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
5928 
5929     bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) ==
5930                       ConstructionPhase::AfterBases;
5931     StartLifetimeOfUnionMemberHandler StartLifetime{
5932         Info, LHSExpr, LengthAndField.second, DuringInit};
5933     if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
5934       return false;
5935   }
5936 
5937   return true;
5938 }
5939 
EvaluateCallArg(const ParmVarDecl * PVD,const Expr * Arg,CallRef Call,EvalInfo & Info,bool NonNull=false)5940 static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg,
5941                             CallRef Call, EvalInfo &Info,
5942                             bool NonNull = false) {
5943   LValue LV;
5944   // Create the parameter slot and register its destruction. For a vararg
5945   // argument, create a temporary.
5946   // FIXME: For calling conventions that destroy parameters in the callee,
5947   // should we consider performing destruction when the function returns
5948   // instead?
5949   APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV)
5950                    : Info.CurrentCall->createTemporary(Arg, Arg->getType(),
5951                                                        ScopeKind::Call, LV);
5952   if (!EvaluateInPlace(V, Info, LV, Arg))
5953     return false;
5954 
5955   // Passing a null pointer to an __attribute__((nonnull)) parameter results in
5956   // undefined behavior, so is non-constant.
5957   if (NonNull && V.isLValue() && V.isNullPointer()) {
5958     Info.CCEDiag(Arg, diag::note_non_null_attribute_failed);
5959     return false;
5960   }
5961 
5962   return true;
5963 }
5964 
5965 /// Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,CallRef Call,EvalInfo & Info,const FunctionDecl * Callee,bool RightToLeft=false)5966 static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call,
5967                          EvalInfo &Info, const FunctionDecl *Callee,
5968                          bool RightToLeft = false) {
5969   bool Success = true;
5970   llvm::SmallBitVector ForbiddenNullArgs;
5971   if (Callee->hasAttr<NonNullAttr>()) {
5972     ForbiddenNullArgs.resize(Args.size());
5973     for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
5974       if (!Attr->args_size()) {
5975         ForbiddenNullArgs.set();
5976         break;
5977       } else
5978         for (auto Idx : Attr->args()) {
5979           unsigned ASTIdx = Idx.getASTIndex();
5980           if (ASTIdx >= Args.size())
5981             continue;
5982           ForbiddenNullArgs[ASTIdx] = 1;
5983         }
5984     }
5985   }
5986   for (unsigned I = 0; I < Args.size(); I++) {
5987     unsigned Idx = RightToLeft ? Args.size() - I - 1 : I;
5988     const ParmVarDecl *PVD =
5989         Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr;
5990     bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx];
5991     if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) {
5992       // If we're checking for a potential constant expression, evaluate all
5993       // initializers even if some of them fail.
5994       if (!Info.noteFailure())
5995         return false;
5996       Success = false;
5997     }
5998   }
5999   return Success;
6000 }
6001 
6002 /// Perform a trivial copy from Param, which is the parameter of a copy or move
6003 /// constructor or assignment operator.
handleTrivialCopy(EvalInfo & Info,const ParmVarDecl * Param,const Expr * E,APValue & Result,bool CopyObjectRepresentation)6004 static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param,
6005                               const Expr *E, APValue &Result,
6006                               bool CopyObjectRepresentation) {
6007   // Find the reference argument.
6008   CallStackFrame *Frame = Info.CurrentCall;
6009   APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param);
6010   if (!RefValue) {
6011     Info.FFDiag(E);
6012     return false;
6013   }
6014 
6015   // Copy out the contents of the RHS object.
6016   LValue RefLValue;
6017   RefLValue.setFrom(Info.Ctx, *RefValue);
6018   return handleLValueToRValueConversion(
6019       Info, E, Param->getType().getNonReferenceType(), RefLValue, Result,
6020       CopyObjectRepresentation);
6021 }
6022 
6023 /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,CallRef Call,const Stmt * Body,EvalInfo & Info,APValue & Result,const LValue * ResultSlot)6024 static bool HandleFunctionCall(SourceLocation CallLoc,
6025                                const FunctionDecl *Callee, const LValue *This,
6026                                ArrayRef<const Expr *> Args, CallRef Call,
6027                                const Stmt *Body, EvalInfo &Info,
6028                                APValue &Result, const LValue *ResultSlot) {
6029   if (!Info.CheckCallLimit(CallLoc))
6030     return false;
6031 
6032   CallStackFrame Frame(Info, CallLoc, Callee, This, Call);
6033 
6034   // For a trivial copy or move assignment, perform an APValue copy. This is
6035   // essential for unions, where the operations performed by the assignment
6036   // operator cannot be represented as statements.
6037   //
6038   // Skip this for non-union classes with no fields; in that case, the defaulted
6039   // copy/move does not actually read the object.
6040   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
6041   if (MD && MD->isDefaulted() &&
6042       (MD->getParent()->isUnion() ||
6043        (MD->isTrivial() &&
6044         isReadByLvalueToRvalueConversion(MD->getParent())))) {
6045     assert(This &&
6046            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
6047     APValue RHSValue;
6048     if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue,
6049                            MD->getParent()->isUnion()))
6050       return false;
6051     if (Info.getLangOpts().CPlusPlus20 && MD->isTrivial() &&
6052         !HandleUnionActiveMemberChange(Info, Args[0], *This))
6053       return false;
6054     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
6055                           RHSValue))
6056       return false;
6057     This->moveInto(Result);
6058     return true;
6059   } else if (MD && isLambdaCallOperator(MD)) {
6060     // We're in a lambda; determine the lambda capture field maps unless we're
6061     // just constexpr checking a lambda's call operator. constexpr checking is
6062     // done before the captures have been added to the closure object (unless
6063     // we're inferring constexpr-ness), so we don't have access to them in this
6064     // case. But since we don't need the captures to constexpr check, we can
6065     // just ignore them.
6066     if (!Info.checkingPotentialConstantExpression())
6067       MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
6068                                         Frame.LambdaThisCaptureField);
6069   }
6070 
6071   StmtResult Ret = {Result, ResultSlot};
6072   EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
6073   if (ESR == ESR_Succeeded) {
6074     if (Callee->getReturnType()->isVoidType())
6075       return true;
6076     Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
6077   }
6078   return ESR == ESR_Returned;
6079 }
6080 
6081 /// Evaluate a constructor call.
HandleConstructorCall(const Expr * E,const LValue & This,CallRef Call,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)6082 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6083                                   CallRef Call,
6084                                   const CXXConstructorDecl *Definition,
6085                                   EvalInfo &Info, APValue &Result) {
6086   SourceLocation CallLoc = E->getExprLoc();
6087   if (!Info.CheckCallLimit(CallLoc))
6088     return false;
6089 
6090   const CXXRecordDecl *RD = Definition->getParent();
6091   if (RD->getNumVBases()) {
6092     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6093     return false;
6094   }
6095 
6096   EvalInfo::EvaluatingConstructorRAII EvalObj(
6097       Info,
6098       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
6099       RD->getNumBases());
6100   CallStackFrame Frame(Info, CallLoc, Definition, &This, Call);
6101 
6102   // FIXME: Creating an APValue just to hold a nonexistent return value is
6103   // wasteful.
6104   APValue RetVal;
6105   StmtResult Ret = {RetVal, nullptr};
6106 
6107   // If it's a delegating constructor, delegate.
6108   if (Definition->isDelegatingConstructor()) {
6109     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
6110     {
6111       FullExpressionRAII InitScope(Info);
6112       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) ||
6113           !InitScope.destroy())
6114         return false;
6115     }
6116     return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
6117   }
6118 
6119   // For a trivial copy or move constructor, perform an APValue copy. This is
6120   // essential for unions (or classes with anonymous union members), where the
6121   // operations performed by the constructor cannot be represented by
6122   // ctor-initializers.
6123   //
6124   // Skip this for empty non-union classes; we should not perform an
6125   // lvalue-to-rvalue conversion on them because their copy constructor does not
6126   // actually read them.
6127   if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
6128       (Definition->getParent()->isUnion() ||
6129        (Definition->isTrivial() &&
6130         isReadByLvalueToRvalueConversion(Definition->getParent())))) {
6131     return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result,
6132                              Definition->getParent()->isUnion());
6133   }
6134 
6135   // Reserve space for the struct members.
6136   if (!Result.hasValue()) {
6137     if (!RD->isUnion())
6138       Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
6139                        std::distance(RD->field_begin(), RD->field_end()));
6140     else
6141       // A union starts with no active member.
6142       Result = APValue((const FieldDecl*)nullptr);
6143   }
6144 
6145   if (RD->isInvalidDecl()) return false;
6146   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6147 
6148   // A scope for temporaries lifetime-extended by reference members.
6149   BlockScopeRAII LifetimeExtendedScope(Info);
6150 
6151   bool Success = true;
6152   unsigned BasesSeen = 0;
6153 #ifndef NDEBUG
6154   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
6155 #endif
6156   CXXRecordDecl::field_iterator FieldIt = RD->field_begin();
6157   auto SkipToField = [&](FieldDecl *FD, bool Indirect) {
6158     // We might be initializing the same field again if this is an indirect
6159     // field initialization.
6160     if (FieldIt == RD->field_end() ||
6161         FieldIt->getFieldIndex() > FD->getFieldIndex()) {
6162       assert(Indirect && "fields out of order?");
6163       return;
6164     }
6165 
6166     // Default-initialize any fields with no explicit initializer.
6167     for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) {
6168       assert(FieldIt != RD->field_end() && "missing field?");
6169       if (!FieldIt->isUnnamedBitfield())
6170         Success &= getDefaultInitValue(
6171             FieldIt->getType(),
6172             Result.getStructField(FieldIt->getFieldIndex()));
6173     }
6174     ++FieldIt;
6175   };
6176   for (const auto *I : Definition->inits()) {
6177     LValue Subobject = This;
6178     LValue SubobjectParent = This;
6179     APValue *Value = &Result;
6180 
6181     // Determine the subobject to initialize.
6182     FieldDecl *FD = nullptr;
6183     if (I->isBaseInitializer()) {
6184       QualType BaseType(I->getBaseClass(), 0);
6185 #ifndef NDEBUG
6186       // Non-virtual base classes are initialized in the order in the class
6187       // definition. We have already checked for virtual base classes.
6188       assert(!BaseIt->isVirtual() && "virtual base for literal type");
6189       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
6190              "base class initializers not in expected order");
6191       ++BaseIt;
6192 #endif
6193       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
6194                                   BaseType->getAsCXXRecordDecl(), &Layout))
6195         return false;
6196       Value = &Result.getStructBase(BasesSeen++);
6197     } else if ((FD = I->getMember())) {
6198       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
6199         return false;
6200       if (RD->isUnion()) {
6201         Result = APValue(FD);
6202         Value = &Result.getUnionValue();
6203       } else {
6204         SkipToField(FD, false);
6205         Value = &Result.getStructField(FD->getFieldIndex());
6206       }
6207     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
6208       // Walk the indirect field decl's chain to find the object to initialize,
6209       // and make sure we've initialized every step along it.
6210       auto IndirectFieldChain = IFD->chain();
6211       for (auto *C : IndirectFieldChain) {
6212         FD = cast<FieldDecl>(C);
6213         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
6214         // Switch the union field if it differs. This happens if we had
6215         // preceding zero-initialization, and we're now initializing a union
6216         // subobject other than the first.
6217         // FIXME: In this case, the values of the other subobjects are
6218         // specified, since zero-initialization sets all padding bits to zero.
6219         if (!Value->hasValue() ||
6220             (Value->isUnion() && Value->getUnionField() != FD)) {
6221           if (CD->isUnion())
6222             *Value = APValue(FD);
6223           else
6224             // FIXME: This immediately starts the lifetime of all members of
6225             // an anonymous struct. It would be preferable to strictly start
6226             // member lifetime in initialization order.
6227             Success &= getDefaultInitValue(Info.Ctx.getRecordType(CD), *Value);
6228         }
6229         // Store Subobject as its parent before updating it for the last element
6230         // in the chain.
6231         if (C == IndirectFieldChain.back())
6232           SubobjectParent = Subobject;
6233         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
6234           return false;
6235         if (CD->isUnion())
6236           Value = &Value->getUnionValue();
6237         else {
6238           if (C == IndirectFieldChain.front() && !RD->isUnion())
6239             SkipToField(FD, true);
6240           Value = &Value->getStructField(FD->getFieldIndex());
6241         }
6242       }
6243     } else {
6244       llvm_unreachable("unknown base initializer kind");
6245     }
6246 
6247     // Need to override This for implicit field initializers as in this case
6248     // This refers to innermost anonymous struct/union containing initializer,
6249     // not to currently constructed class.
6250     const Expr *Init = I->getInit();
6251     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
6252                                   isa<CXXDefaultInitExpr>(Init));
6253     FullExpressionRAII InitScope(Info);
6254     if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
6255         (FD && FD->isBitField() &&
6256          !truncateBitfieldValue(Info, Init, *Value, FD))) {
6257       // If we're checking for a potential constant expression, evaluate all
6258       // initializers even if some of them fail.
6259       if (!Info.noteFailure())
6260         return false;
6261       Success = false;
6262     }
6263 
6264     // This is the point at which the dynamic type of the object becomes this
6265     // class type.
6266     if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
6267       EvalObj.finishedConstructingBases();
6268   }
6269 
6270   // Default-initialize any remaining fields.
6271   if (!RD->isUnion()) {
6272     for (; FieldIt != RD->field_end(); ++FieldIt) {
6273       if (!FieldIt->isUnnamedBitfield())
6274         Success &= getDefaultInitValue(
6275             FieldIt->getType(),
6276             Result.getStructField(FieldIt->getFieldIndex()));
6277     }
6278   }
6279 
6280   EvalObj.finishedConstructingFields();
6281 
6282   return Success &&
6283          EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed &&
6284          LifetimeExtendedScope.destroy();
6285 }
6286 
HandleConstructorCall(const Expr * E,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)6287 static bool HandleConstructorCall(const Expr *E, const LValue &This,
6288                                   ArrayRef<const Expr*> Args,
6289                                   const CXXConstructorDecl *Definition,
6290                                   EvalInfo &Info, APValue &Result) {
6291   CallScopeRAII CallScope(Info);
6292   CallRef Call = Info.CurrentCall->createCall(Definition);
6293   if (!EvaluateArgs(Args, Call, Info, Definition))
6294     return false;
6295 
6296   return HandleConstructorCall(E, This, Call, Definition, Info, Result) &&
6297          CallScope.destroy();
6298 }
6299 
HandleDestructionImpl(EvalInfo & Info,SourceLocation CallLoc,const LValue & This,APValue & Value,QualType T)6300 static bool HandleDestructionImpl(EvalInfo &Info, SourceLocation CallLoc,
6301                                   const LValue &This, APValue &Value,
6302                                   QualType T) {
6303   // Objects can only be destroyed while they're within their lifetimes.
6304   // FIXME: We have no representation for whether an object of type nullptr_t
6305   // is in its lifetime; it usually doesn't matter. Perhaps we should model it
6306   // as indeterminate instead?
6307   if (Value.isAbsent() && !T->isNullPtrType()) {
6308     APValue Printable;
6309     This.moveInto(Printable);
6310     Info.FFDiag(CallLoc, diag::note_constexpr_destroy_out_of_lifetime)
6311       << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T));
6312     return false;
6313   }
6314 
6315   // Invent an expression for location purposes.
6316   // FIXME: We shouldn't need to do this.
6317   OpaqueValueExpr LocE(CallLoc, Info.Ctx.IntTy, VK_RValue);
6318 
6319   // For arrays, destroy elements right-to-left.
6320   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) {
6321     uint64_t Size = CAT->getSize().getZExtValue();
6322     QualType ElemT = CAT->getElementType();
6323 
6324     LValue ElemLV = This;
6325     ElemLV.addArray(Info, &LocE, CAT);
6326     if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size))
6327       return false;
6328 
6329     // Ensure that we have actual array elements available to destroy; the
6330     // destructors might mutate the value, so we can't run them on the array
6331     // filler.
6332     if (Size && Size > Value.getArrayInitializedElts())
6333       expandArray(Value, Value.getArraySize() - 1);
6334 
6335     for (; Size != 0; --Size) {
6336       APValue &Elem = Value.getArrayInitializedElt(Size - 1);
6337       if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) ||
6338           !HandleDestructionImpl(Info, CallLoc, ElemLV, Elem, ElemT))
6339         return false;
6340     }
6341 
6342     // End the lifetime of this array now.
6343     Value = APValue();
6344     return true;
6345   }
6346 
6347   const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6348   if (!RD) {
6349     if (T.isDestructedType()) {
6350       Info.FFDiag(CallLoc, diag::note_constexpr_unsupported_destruction) << T;
6351       return false;
6352     }
6353 
6354     Value = APValue();
6355     return true;
6356   }
6357 
6358   if (RD->getNumVBases()) {
6359     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
6360     return false;
6361   }
6362 
6363   const CXXDestructorDecl *DD = RD->getDestructor();
6364   if (!DD && !RD->hasTrivialDestructor()) {
6365     Info.FFDiag(CallLoc);
6366     return false;
6367   }
6368 
6369   if (!DD || DD->isTrivial() ||
6370       (RD->isAnonymousStructOrUnion() && RD->isUnion())) {
6371     // A trivial destructor just ends the lifetime of the object. Check for
6372     // this case before checking for a body, because we might not bother
6373     // building a body for a trivial destructor. Note that it doesn't matter
6374     // whether the destructor is constexpr in this case; all trivial
6375     // destructors are constexpr.
6376     //
6377     // If an anonymous union would be destroyed, some enclosing destructor must
6378     // have been explicitly defined, and the anonymous union destruction should
6379     // have no effect.
6380     Value = APValue();
6381     return true;
6382   }
6383 
6384   if (!Info.CheckCallLimit(CallLoc))
6385     return false;
6386 
6387   const FunctionDecl *Definition = nullptr;
6388   const Stmt *Body = DD->getBody(Definition);
6389 
6390   if (!CheckConstexprFunction(Info, CallLoc, DD, Definition, Body))
6391     return false;
6392 
6393   CallStackFrame Frame(Info, CallLoc, Definition, &This, CallRef());
6394 
6395   // We're now in the period of destruction of this object.
6396   unsigned BasesLeft = RD->getNumBases();
6397   EvalInfo::EvaluatingDestructorRAII EvalObj(
6398       Info,
6399       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries});
6400   if (!EvalObj.DidInsert) {
6401     // C++2a [class.dtor]p19:
6402     //   the behavior is undefined if the destructor is invoked for an object
6403     //   whose lifetime has ended
6404     // (Note that formally the lifetime ends when the period of destruction
6405     // begins, even though certain uses of the object remain valid until the
6406     // period of destruction ends.)
6407     Info.FFDiag(CallLoc, diag::note_constexpr_double_destroy);
6408     return false;
6409   }
6410 
6411   // FIXME: Creating an APValue just to hold a nonexistent return value is
6412   // wasteful.
6413   APValue RetVal;
6414   StmtResult Ret = {RetVal, nullptr};
6415   if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed)
6416     return false;
6417 
6418   // A union destructor does not implicitly destroy its members.
6419   if (RD->isUnion())
6420     return true;
6421 
6422   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6423 
6424   // We don't have a good way to iterate fields in reverse, so collect all the
6425   // fields first and then walk them backwards.
6426   SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end());
6427   for (const FieldDecl *FD : llvm::reverse(Fields)) {
6428     if (FD->isUnnamedBitfield())
6429       continue;
6430 
6431     LValue Subobject = This;
6432     if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout))
6433       return false;
6434 
6435     APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex());
6436     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6437                                FD->getType()))
6438       return false;
6439   }
6440 
6441   if (BasesLeft != 0)
6442     EvalObj.startedDestroyingBases();
6443 
6444   // Destroy base classes in reverse order.
6445   for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) {
6446     --BasesLeft;
6447 
6448     QualType BaseType = Base.getType();
6449     LValue Subobject = This;
6450     if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD,
6451                                 BaseType->getAsCXXRecordDecl(), &Layout))
6452       return false;
6453 
6454     APValue *SubobjectValue = &Value.getStructBase(BasesLeft);
6455     if (!HandleDestructionImpl(Info, CallLoc, Subobject, *SubobjectValue,
6456                                BaseType))
6457       return false;
6458   }
6459   assert(BasesLeft == 0 && "NumBases was wrong?");
6460 
6461   // The period of destruction ends now. The object is gone.
6462   Value = APValue();
6463   return true;
6464 }
6465 
6466 namespace {
6467 struct DestroyObjectHandler {
6468   EvalInfo &Info;
6469   const Expr *E;
6470   const LValue &This;
6471   const AccessKinds AccessKind;
6472 
6473   typedef bool result_type;
failed__anon4717f8731411::DestroyObjectHandler6474   bool failed() { return false; }
found__anon4717f8731411::DestroyObjectHandler6475   bool found(APValue &Subobj, QualType SubobjType) {
6476     return HandleDestructionImpl(Info, E->getExprLoc(), This, Subobj,
6477                                  SubobjType);
6478   }
found__anon4717f8731411::DestroyObjectHandler6479   bool found(APSInt &Value, QualType SubobjType) {
6480     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6481     return false;
6482   }
found__anon4717f8731411::DestroyObjectHandler6483   bool found(APFloat &Value, QualType SubobjType) {
6484     Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem);
6485     return false;
6486   }
6487 };
6488 }
6489 
6490 /// Perform a destructor or pseudo-destructor call on the given object, which
6491 /// might in general not be a complete object.
HandleDestruction(EvalInfo & Info,const Expr * E,const LValue & This,QualType ThisType)6492 static bool HandleDestruction(EvalInfo &Info, const Expr *E,
6493                               const LValue &This, QualType ThisType) {
6494   CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType);
6495   DestroyObjectHandler Handler = {Info, E, This, AK_Destroy};
6496   return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
6497 }
6498 
6499 /// Destroy and end the lifetime of the given complete object.
HandleDestruction(EvalInfo & Info,SourceLocation Loc,APValue::LValueBase LVBase,APValue & Value,QualType T)6500 static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc,
6501                               APValue::LValueBase LVBase, APValue &Value,
6502                               QualType T) {
6503   // If we've had an unmodeled side-effect, we can't rely on mutable state
6504   // (such as the object we're about to destroy) being correct.
6505   if (Info.EvalStatus.HasSideEffects)
6506     return false;
6507 
6508   LValue LV;
6509   LV.set({LVBase});
6510   return HandleDestructionImpl(Info, Loc, LV, Value, T);
6511 }
6512 
6513 /// Perform a call to 'perator new' or to `__builtin_operator_new'.
HandleOperatorNewCall(EvalInfo & Info,const CallExpr * E,LValue & Result)6514 static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E,
6515                                   LValue &Result) {
6516   if (Info.checkingPotentialConstantExpression() ||
6517       Info.SpeculativeEvaluationDepth)
6518     return false;
6519 
6520   // This is permitted only within a call to std::allocator<T>::allocate.
6521   auto Caller = Info.getStdAllocatorCaller("allocate");
6522   if (!Caller) {
6523     Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20
6524                                      ? diag::note_constexpr_new_untyped
6525                                      : diag::note_constexpr_new);
6526     return false;
6527   }
6528 
6529   QualType ElemType = Caller.ElemType;
6530   if (ElemType->isIncompleteType() || ElemType->isFunctionType()) {
6531     Info.FFDiag(E->getExprLoc(),
6532                 diag::note_constexpr_new_not_complete_object_type)
6533         << (ElemType->isIncompleteType() ? 0 : 1) << ElemType;
6534     return false;
6535   }
6536 
6537   APSInt ByteSize;
6538   if (!EvaluateInteger(E->getArg(0), ByteSize, Info))
6539     return false;
6540   bool IsNothrow = false;
6541   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) {
6542     EvaluateIgnoredValue(Info, E->getArg(I));
6543     IsNothrow |= E->getType()->isNothrowT();
6544   }
6545 
6546   CharUnits ElemSize;
6547   if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize))
6548     return false;
6549   APInt Size, Remainder;
6550   APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity());
6551   APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder);
6552   if (Remainder != 0) {
6553     // This likely indicates a bug in the implementation of 'std::allocator'.
6554     Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size)
6555         << ByteSize << APSInt(ElemSizeAP, true) << ElemType;
6556     return false;
6557   }
6558 
6559   if (ByteSize.getActiveBits() > ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
6560     if (IsNothrow) {
6561       Result.setNull(Info.Ctx, E->getType());
6562       return true;
6563     }
6564 
6565     Info.FFDiag(E, diag::note_constexpr_new_too_large) << APSInt(Size, true);
6566     return false;
6567   }
6568 
6569   QualType AllocType = Info.Ctx.getConstantArrayType(ElemType, Size, nullptr,
6570                                                      ArrayType::Normal, 0);
6571   APValue *Val = Info.createHeapAlloc(E, AllocType, Result);
6572   *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue());
6573   Result.addArray(Info, E, cast<ConstantArrayType>(AllocType));
6574   return true;
6575 }
6576 
hasVirtualDestructor(QualType T)6577 static bool hasVirtualDestructor(QualType T) {
6578   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6579     if (CXXDestructorDecl *DD = RD->getDestructor())
6580       return DD->isVirtual();
6581   return false;
6582 }
6583 
getVirtualOperatorDelete(QualType T)6584 static const FunctionDecl *getVirtualOperatorDelete(QualType T) {
6585   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
6586     if (CXXDestructorDecl *DD = RD->getDestructor())
6587       return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
6588   return nullptr;
6589 }
6590 
6591 /// Check that the given object is a suitable pointer to a heap allocation that
6592 /// still exists and is of the right kind for the purpose of a deletion.
6593 ///
6594 /// On success, returns the heap allocation to deallocate. On failure, produces
6595 /// a diagnostic and returns None.
CheckDeleteKind(EvalInfo & Info,const Expr * E,const LValue & Pointer,DynAlloc::Kind DeallocKind)6596 static Optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E,
6597                                             const LValue &Pointer,
6598                                             DynAlloc::Kind DeallocKind) {
6599   auto PointerAsString = [&] {
6600     return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy);
6601   };
6602 
6603   DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>();
6604   if (!DA) {
6605     Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc)
6606         << PointerAsString();
6607     if (Pointer.Base)
6608       NoteLValueLocation(Info, Pointer.Base);
6609     return None;
6610   }
6611 
6612   Optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA);
6613   if (!Alloc) {
6614     Info.FFDiag(E, diag::note_constexpr_double_delete);
6615     return None;
6616   }
6617 
6618   QualType AllocType = Pointer.Base.getDynamicAllocType();
6619   if (DeallocKind != (*Alloc)->getKind()) {
6620     Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
6621         << DeallocKind << (*Alloc)->getKind() << AllocType;
6622     NoteLValueLocation(Info, Pointer.Base);
6623     return None;
6624   }
6625 
6626   bool Subobject = false;
6627   if (DeallocKind == DynAlloc::New) {
6628     Subobject = Pointer.Designator.MostDerivedPathLength != 0 ||
6629                 Pointer.Designator.isOnePastTheEnd();
6630   } else {
6631     Subobject = Pointer.Designator.Entries.size() != 1 ||
6632                 Pointer.Designator.Entries[0].getAsArrayIndex() != 0;
6633   }
6634   if (Subobject) {
6635     Info.FFDiag(E, diag::note_constexpr_delete_subobject)
6636         << PointerAsString() << Pointer.Designator.isOnePastTheEnd();
6637     return None;
6638   }
6639 
6640   return Alloc;
6641 }
6642 
6643 // Perform a call to 'operator delete' or '__builtin_operator_delete'.
HandleOperatorDeleteCall(EvalInfo & Info,const CallExpr * E)6644 bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) {
6645   if (Info.checkingPotentialConstantExpression() ||
6646       Info.SpeculativeEvaluationDepth)
6647     return false;
6648 
6649   // This is permitted only within a call to std::allocator<T>::deallocate.
6650   if (!Info.getStdAllocatorCaller("deallocate")) {
6651     Info.FFDiag(E->getExprLoc());
6652     return true;
6653   }
6654 
6655   LValue Pointer;
6656   if (!EvaluatePointer(E->getArg(0), Pointer, Info))
6657     return false;
6658   for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
6659     EvaluateIgnoredValue(Info, E->getArg(I));
6660 
6661   if (Pointer.Designator.Invalid)
6662     return false;
6663 
6664   // Deleting a null pointer has no effect.
6665   if (Pointer.isNullPointer())
6666     return true;
6667 
6668   if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator))
6669     return false;
6670 
6671   Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>());
6672   return true;
6673 }
6674 
6675 //===----------------------------------------------------------------------===//
6676 // Generic Evaluation
6677 //===----------------------------------------------------------------------===//
6678 namespace {
6679 
6680 class BitCastBuffer {
6681   // FIXME: We're going to need bit-level granularity when we support
6682   // bit-fields.
6683   // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
6684   // we don't support a host or target where that is the case. Still, we should
6685   // use a more generic type in case we ever do.
6686   SmallVector<Optional<unsigned char>, 32> Bytes;
6687 
6688   static_assert(std::numeric_limits<unsigned char>::digits >= 8,
6689                 "Need at least 8 bit unsigned char");
6690 
6691   bool TargetIsLittleEndian;
6692 
6693 public:
BitCastBuffer(CharUnits Width,bool TargetIsLittleEndian)6694   BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
6695       : Bytes(Width.getQuantity()),
6696         TargetIsLittleEndian(TargetIsLittleEndian) {}
6697 
6698   LLVM_NODISCARD
readObject(CharUnits Offset,CharUnits Width,SmallVectorImpl<unsigned char> & Output) const6699   bool readObject(CharUnits Offset, CharUnits Width,
6700                   SmallVectorImpl<unsigned char> &Output) const {
6701     for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
6702       // If a byte of an integer is uninitialized, then the whole integer is
6703       // uninitalized.
6704       if (!Bytes[I.getQuantity()])
6705         return false;
6706       Output.push_back(*Bytes[I.getQuantity()]);
6707     }
6708     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6709       std::reverse(Output.begin(), Output.end());
6710     return true;
6711   }
6712 
writeObject(CharUnits Offset,SmallVectorImpl<unsigned char> & Input)6713   void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
6714     if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
6715       std::reverse(Input.begin(), Input.end());
6716 
6717     size_t Index = 0;
6718     for (unsigned char Byte : Input) {
6719       assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
6720       Bytes[Offset.getQuantity() + Index] = Byte;
6721       ++Index;
6722     }
6723   }
6724 
size()6725   size_t size() { return Bytes.size(); }
6726 };
6727 
6728 /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
6729 /// target would represent the value at runtime.
6730 class APValueToBufferConverter {
6731   EvalInfo &Info;
6732   BitCastBuffer Buffer;
6733   const CastExpr *BCE;
6734 
APValueToBufferConverter(EvalInfo & Info,CharUnits ObjectWidth,const CastExpr * BCE)6735   APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
6736                            const CastExpr *BCE)
6737       : Info(Info),
6738         Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
6739         BCE(BCE) {}
6740 
visit(const APValue & Val,QualType Ty)6741   bool visit(const APValue &Val, QualType Ty) {
6742     return visit(Val, Ty, CharUnits::fromQuantity(0));
6743   }
6744 
6745   // Write out Val with type Ty into Buffer starting at Offset.
visit(const APValue & Val,QualType Ty,CharUnits Offset)6746   bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
6747     assert((size_t)Offset.getQuantity() <= Buffer.size());
6748 
6749     // As a special case, nullptr_t has an indeterminate value.
6750     if (Ty->isNullPtrType())
6751       return true;
6752 
6753     // Dig through Src to find the byte at SrcOffset.
6754     switch (Val.getKind()) {
6755     case APValue::Indeterminate:
6756     case APValue::None:
6757       return true;
6758 
6759     case APValue::Int:
6760       return visitInt(Val.getInt(), Ty, Offset);
6761     case APValue::Float:
6762       return visitFloat(Val.getFloat(), Ty, Offset);
6763     case APValue::Array:
6764       return visitArray(Val, Ty, Offset);
6765     case APValue::Struct:
6766       return visitRecord(Val, Ty, Offset);
6767 
6768     case APValue::ComplexInt:
6769     case APValue::ComplexFloat:
6770     case APValue::Vector:
6771     case APValue::FixedPoint:
6772       // FIXME: We should support these.
6773 
6774     case APValue::Union:
6775     case APValue::MemberPointer:
6776     case APValue::AddrLabelDiff: {
6777       Info.FFDiag(BCE->getBeginLoc(),
6778                   diag::note_constexpr_bit_cast_unsupported_type)
6779           << Ty;
6780       return false;
6781     }
6782 
6783     case APValue::LValue:
6784       llvm_unreachable("LValue subobject in bit_cast?");
6785     }
6786     llvm_unreachable("Unhandled APValue::ValueKind");
6787   }
6788 
visitRecord(const APValue & Val,QualType Ty,CharUnits Offset)6789   bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
6790     const RecordDecl *RD = Ty->getAsRecordDecl();
6791     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6792 
6793     // Visit the base classes.
6794     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6795       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6796         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6797         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6798 
6799         if (!visitRecord(Val.getStructBase(I), BS.getType(),
6800                          Layout.getBaseClassOffset(BaseDecl) + Offset))
6801           return false;
6802       }
6803     }
6804 
6805     // Visit the fields.
6806     unsigned FieldIdx = 0;
6807     for (FieldDecl *FD : RD->fields()) {
6808       if (FD->isBitField()) {
6809         Info.FFDiag(BCE->getBeginLoc(),
6810                     diag::note_constexpr_bit_cast_unsupported_bitfield);
6811         return false;
6812       }
6813 
6814       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
6815 
6816       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
6817              "only bit-fields can have sub-char alignment");
6818       CharUnits FieldOffset =
6819           Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
6820       QualType FieldTy = FD->getType();
6821       if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
6822         return false;
6823       ++FieldIdx;
6824     }
6825 
6826     return true;
6827   }
6828 
visitArray(const APValue & Val,QualType Ty,CharUnits Offset)6829   bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
6830     const auto *CAT =
6831         dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
6832     if (!CAT)
6833       return false;
6834 
6835     CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
6836     unsigned NumInitializedElts = Val.getArrayInitializedElts();
6837     unsigned ArraySize = Val.getArraySize();
6838     // First, initialize the initialized elements.
6839     for (unsigned I = 0; I != NumInitializedElts; ++I) {
6840       const APValue &SubObj = Val.getArrayInitializedElt(I);
6841       if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
6842         return false;
6843     }
6844 
6845     // Next, initialize the rest of the array using the filler.
6846     if (Val.hasArrayFiller()) {
6847       const APValue &Filler = Val.getArrayFiller();
6848       for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
6849         if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
6850           return false;
6851       }
6852     }
6853 
6854     return true;
6855   }
6856 
visitInt(const APSInt & Val,QualType Ty,CharUnits Offset)6857   bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
6858     APSInt AdjustedVal = Val;
6859     unsigned Width = AdjustedVal.getBitWidth();
6860     if (Ty->isBooleanType()) {
6861       Width = Info.Ctx.getTypeSize(Ty);
6862       AdjustedVal = AdjustedVal.extend(Width);
6863     }
6864 
6865     SmallVector<unsigned char, 8> Bytes(Width / 8);
6866     llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8);
6867     Buffer.writeObject(Offset, Bytes);
6868     return true;
6869   }
6870 
visitFloat(const APFloat & Val,QualType Ty,CharUnits Offset)6871   bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
6872     APSInt AsInt(Val.bitcastToAPInt());
6873     return visitInt(AsInt, Ty, Offset);
6874   }
6875 
6876 public:
convert(EvalInfo & Info,const APValue & Src,const CastExpr * BCE)6877   static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src,
6878                                          const CastExpr *BCE) {
6879     CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
6880     APValueToBufferConverter Converter(Info, DstSize, BCE);
6881     if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
6882       return None;
6883     return Converter.Buffer;
6884   }
6885 };
6886 
6887 /// Write an BitCastBuffer into an APValue.
6888 class BufferToAPValueConverter {
6889   EvalInfo &Info;
6890   const BitCastBuffer &Buffer;
6891   const CastExpr *BCE;
6892 
BufferToAPValueConverter(EvalInfo & Info,const BitCastBuffer & Buffer,const CastExpr * BCE)6893   BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
6894                            const CastExpr *BCE)
6895       : Info(Info), Buffer(Buffer), BCE(BCE) {}
6896 
6897   // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
6898   // with an invalid type, so anything left is a deficiency on our part (FIXME).
6899   // Ideally this will be unreachable.
unsupportedType(QualType Ty)6900   llvm::NoneType unsupportedType(QualType Ty) {
6901     Info.FFDiag(BCE->getBeginLoc(),
6902                 diag::note_constexpr_bit_cast_unsupported_type)
6903         << Ty;
6904     return None;
6905   }
6906 
unrepresentableValue(QualType Ty,const APSInt & Val)6907   llvm::NoneType unrepresentableValue(QualType Ty, const APSInt &Val) {
6908     Info.FFDiag(BCE->getBeginLoc(),
6909                 diag::note_constexpr_bit_cast_unrepresentable_value)
6910         << Ty << Val.toString(/*Radix=*/10);
6911     return None;
6912   }
6913 
visit(const BuiltinType * T,CharUnits Offset,const EnumType * EnumSugar=nullptr)6914   Optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
6915                           const EnumType *EnumSugar = nullptr) {
6916     if (T->isNullPtrType()) {
6917       uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
6918       return APValue((Expr *)nullptr,
6919                      /*Offset=*/CharUnits::fromQuantity(NullValue),
6920                      APValue::NoLValuePath{}, /*IsNullPtr=*/true);
6921     }
6922 
6923     CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
6924 
6925     // Work around floating point types that contain unused padding bytes. This
6926     // is really just `long double` on x86, which is the only fundamental type
6927     // with padding bytes.
6928     if (T->isRealFloatingType()) {
6929       const llvm::fltSemantics &Semantics =
6930           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
6931       unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics);
6932       assert(NumBits % 8 == 0);
6933       CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8);
6934       if (NumBytes != SizeOf)
6935         SizeOf = NumBytes;
6936     }
6937 
6938     SmallVector<uint8_t, 8> Bytes;
6939     if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
6940       // If this is std::byte or unsigned char, then its okay to store an
6941       // indeterminate value.
6942       bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
6943       bool IsUChar =
6944           !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
6945                          T->isSpecificBuiltinType(BuiltinType::Char_U));
6946       if (!IsStdByte && !IsUChar) {
6947         QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
6948         Info.FFDiag(BCE->getExprLoc(),
6949                     diag::note_constexpr_bit_cast_indet_dest)
6950             << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
6951         return None;
6952       }
6953 
6954       return APValue::IndeterminateValue();
6955     }
6956 
6957     APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
6958     llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
6959 
6960     if (T->isIntegralOrEnumerationType()) {
6961       Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
6962 
6963       unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0));
6964       if (IntWidth != Val.getBitWidth()) {
6965         APSInt Truncated = Val.trunc(IntWidth);
6966         if (Truncated.extend(Val.getBitWidth()) != Val)
6967           return unrepresentableValue(QualType(T, 0), Val);
6968         Val = Truncated;
6969       }
6970 
6971       return APValue(Val);
6972     }
6973 
6974     if (T->isRealFloatingType()) {
6975       const llvm::fltSemantics &Semantics =
6976           Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
6977       return APValue(APFloat(Semantics, Val));
6978     }
6979 
6980     return unsupportedType(QualType(T, 0));
6981   }
6982 
visit(const RecordType * RTy,CharUnits Offset)6983   Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
6984     const RecordDecl *RD = RTy->getAsRecordDecl();
6985     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6986 
6987     unsigned NumBases = 0;
6988     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6989       NumBases = CXXRD->getNumBases();
6990 
6991     APValue ResultVal(APValue::UninitStruct(), NumBases,
6992                       std::distance(RD->field_begin(), RD->field_end()));
6993 
6994     // Visit the base classes.
6995     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
6996       for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
6997         const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
6998         CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
6999         if (BaseDecl->isEmpty() ||
7000             Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
7001           continue;
7002 
7003         Optional<APValue> SubObj = visitType(
7004             BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
7005         if (!SubObj)
7006           return None;
7007         ResultVal.getStructBase(I) = *SubObj;
7008       }
7009     }
7010 
7011     // Visit the fields.
7012     unsigned FieldIdx = 0;
7013     for (FieldDecl *FD : RD->fields()) {
7014       // FIXME: We don't currently support bit-fields. A lot of the logic for
7015       // this is in CodeGen, so we need to factor it around.
7016       if (FD->isBitField()) {
7017         Info.FFDiag(BCE->getBeginLoc(),
7018                     diag::note_constexpr_bit_cast_unsupported_bitfield);
7019         return None;
7020       }
7021 
7022       uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
7023       assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
7024 
7025       CharUnits FieldOffset =
7026           CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
7027           Offset;
7028       QualType FieldTy = FD->getType();
7029       Optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
7030       if (!SubObj)
7031         return None;
7032       ResultVal.getStructField(FieldIdx) = *SubObj;
7033       ++FieldIdx;
7034     }
7035 
7036     return ResultVal;
7037   }
7038 
visit(const EnumType * Ty,CharUnits Offset)7039   Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
7040     QualType RepresentationType = Ty->getDecl()->getIntegerType();
7041     assert(!RepresentationType.isNull() &&
7042            "enum forward decl should be caught by Sema");
7043     const auto *AsBuiltin =
7044         RepresentationType.getCanonicalType()->castAs<BuiltinType>();
7045     // Recurse into the underlying type. Treat std::byte transparently as
7046     // unsigned char.
7047     return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
7048   }
7049 
visit(const ConstantArrayType * Ty,CharUnits Offset)7050   Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
7051     size_t Size = Ty->getSize().getLimitedValue();
7052     CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
7053 
7054     APValue ArrayValue(APValue::UninitArray(), Size, Size);
7055     for (size_t I = 0; I != Size; ++I) {
7056       Optional<APValue> ElementValue =
7057           visitType(Ty->getElementType(), Offset + I * ElementWidth);
7058       if (!ElementValue)
7059         return None;
7060       ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
7061     }
7062 
7063     return ArrayValue;
7064   }
7065 
visit(const Type * Ty,CharUnits Offset)7066   Optional<APValue> visit(const Type *Ty, CharUnits Offset) {
7067     return unsupportedType(QualType(Ty, 0));
7068   }
7069 
visitType(QualType Ty,CharUnits Offset)7070   Optional<APValue> visitType(QualType Ty, CharUnits Offset) {
7071     QualType Can = Ty.getCanonicalType();
7072 
7073     switch (Can->getTypeClass()) {
7074 #define TYPE(Class, Base)                                                      \
7075   case Type::Class:                                                            \
7076     return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
7077 #define ABSTRACT_TYPE(Class, Base)
7078 #define NON_CANONICAL_TYPE(Class, Base)                                        \
7079   case Type::Class:                                                            \
7080     llvm_unreachable("non-canonical type should be impossible!");
7081 #define DEPENDENT_TYPE(Class, Base)                                            \
7082   case Type::Class:                                                            \
7083     llvm_unreachable(                                                          \
7084         "dependent types aren't supported in the constant evaluator!");
7085 #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base)                            \
7086   case Type::Class:                                                            \
7087     llvm_unreachable("either dependent or not canonical!");
7088 #include "clang/AST/TypeNodes.inc"
7089     }
7090     llvm_unreachable("Unhandled Type::TypeClass");
7091   }
7092 
7093 public:
7094   // Pull out a full value of type DstType.
convert(EvalInfo & Info,BitCastBuffer & Buffer,const CastExpr * BCE)7095   static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
7096                                    const CastExpr *BCE) {
7097     BufferToAPValueConverter Converter(Info, Buffer, BCE);
7098     return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
7099   }
7100 };
7101 
checkBitCastConstexprEligibilityType(SourceLocation Loc,QualType Ty,EvalInfo * Info,const ASTContext & Ctx,bool CheckingDest)7102 static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
7103                                                  QualType Ty, EvalInfo *Info,
7104                                                  const ASTContext &Ctx,
7105                                                  bool CheckingDest) {
7106   Ty = Ty.getCanonicalType();
7107 
7108   auto diag = [&](int Reason) {
7109     if (Info)
7110       Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
7111           << CheckingDest << (Reason == 4) << Reason;
7112     return false;
7113   };
7114   auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
7115     if (Info)
7116       Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
7117           << NoteTy << Construct << Ty;
7118     return false;
7119   };
7120 
7121   if (Ty->isUnionType())
7122     return diag(0);
7123   if (Ty->isPointerType())
7124     return diag(1);
7125   if (Ty->isMemberPointerType())
7126     return diag(2);
7127   if (Ty.isVolatileQualified())
7128     return diag(3);
7129 
7130   if (RecordDecl *Record = Ty->getAsRecordDecl()) {
7131     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
7132       for (CXXBaseSpecifier &BS : CXXRD->bases())
7133         if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
7134                                                   CheckingDest))
7135           return note(1, BS.getType(), BS.getBeginLoc());
7136     }
7137     for (FieldDecl *FD : Record->fields()) {
7138       if (FD->getType()->isReferenceType())
7139         return diag(4);
7140       if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
7141                                                 CheckingDest))
7142         return note(0, FD->getType(), FD->getBeginLoc());
7143     }
7144   }
7145 
7146   if (Ty->isArrayType() &&
7147       !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
7148                                             Info, Ctx, CheckingDest))
7149     return false;
7150 
7151   return true;
7152 }
7153 
checkBitCastConstexprEligibility(EvalInfo * Info,const ASTContext & Ctx,const CastExpr * BCE)7154 static bool checkBitCastConstexprEligibility(EvalInfo *Info,
7155                                              const ASTContext &Ctx,
7156                                              const CastExpr *BCE) {
7157   bool DestOK = checkBitCastConstexprEligibilityType(
7158       BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
7159   bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
7160                                 BCE->getBeginLoc(),
7161                                 BCE->getSubExpr()->getType(), Info, Ctx, false);
7162   return SourceOK;
7163 }
7164 
handleLValueToRValueBitCast(EvalInfo & Info,APValue & DestValue,APValue & SourceValue,const CastExpr * BCE)7165 static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
7166                                         APValue &SourceValue,
7167                                         const CastExpr *BCE) {
7168   assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
7169          "no host or target supports non 8-bit chars");
7170   assert(SourceValue.isLValue() &&
7171          "LValueToRValueBitcast requires an lvalue operand!");
7172 
7173   if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
7174     return false;
7175 
7176   LValue SourceLValue;
7177   APValue SourceRValue;
7178   SourceLValue.setFrom(Info.Ctx, SourceValue);
7179   if (!handleLValueToRValueConversion(
7180           Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue,
7181           SourceRValue, /*WantObjectRepresentation=*/true))
7182     return false;
7183 
7184   // Read out SourceValue into a char buffer.
7185   Optional<BitCastBuffer> Buffer =
7186       APValueToBufferConverter::convert(Info, SourceRValue, BCE);
7187   if (!Buffer)
7188     return false;
7189 
7190   // Write out the buffer into a new APValue.
7191   Optional<APValue> MaybeDestValue =
7192       BufferToAPValueConverter::convert(Info, *Buffer, BCE);
7193   if (!MaybeDestValue)
7194     return false;
7195 
7196   DestValue = std::move(*MaybeDestValue);
7197   return true;
7198 }
7199 
7200 template <class Derived>
7201 class ExprEvaluatorBase
7202   : public ConstStmtVisitor<Derived, bool> {
7203 private:
getDerived()7204   Derived &getDerived() { return static_cast<Derived&>(*this); }
DerivedSuccess(const APValue & V,const Expr * E)7205   bool DerivedSuccess(const APValue &V, const Expr *E) {
7206     return getDerived().Success(V, E);
7207   }
DerivedZeroInitialization(const Expr * E)7208   bool DerivedZeroInitialization(const Expr *E) {
7209     return getDerived().ZeroInitialization(E);
7210   }
7211 
7212   // Check whether a conditional operator with a non-constant condition is a
7213   // potential constant expression. If neither arm is a potential constant
7214   // expression, then the conditional operator is not either.
7215   template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)7216   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
7217     assert(Info.checkingPotentialConstantExpression());
7218 
7219     // Speculatively evaluate both arms.
7220     SmallVector<PartialDiagnosticAt, 8> Diag;
7221     {
7222       SpeculativeEvaluationRAII Speculate(Info, &Diag);
7223       StmtVisitorTy::Visit(E->getFalseExpr());
7224       if (Diag.empty())
7225         return;
7226     }
7227 
7228     {
7229       SpeculativeEvaluationRAII Speculate(Info, &Diag);
7230       Diag.clear();
7231       StmtVisitorTy::Visit(E->getTrueExpr());
7232       if (Diag.empty())
7233         return;
7234     }
7235 
7236     Error(E, diag::note_constexpr_conditional_never_const);
7237   }
7238 
7239 
7240   template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)7241   bool HandleConditionalOperator(const ConditionalOperator *E) {
7242     bool BoolResult;
7243     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
7244       if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
7245         CheckPotentialConstantConditional(E);
7246         return false;
7247       }
7248       if (Info.noteFailure()) {
7249         StmtVisitorTy::Visit(E->getTrueExpr());
7250         StmtVisitorTy::Visit(E->getFalseExpr());
7251       }
7252       return false;
7253     }
7254 
7255     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
7256     return StmtVisitorTy::Visit(EvalExpr);
7257   }
7258 
7259 protected:
7260   EvalInfo &Info;
7261   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
7262   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
7263 
CCEDiag(const Expr * E,diag::kind D)7264   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7265     return Info.CCEDiag(E, D);
7266   }
7267 
ZeroInitialization(const Expr * E)7268   bool ZeroInitialization(const Expr *E) { return Error(E); }
7269 
7270 public:
ExprEvaluatorBase(EvalInfo & Info)7271   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
7272 
getEvalInfo()7273   EvalInfo &getEvalInfo() { return Info; }
7274 
7275   /// Report an evaluation error. This should only be called when an error is
7276   /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)7277   bool Error(const Expr *E, diag::kind D) {
7278     Info.FFDiag(E, D);
7279     return false;
7280   }
Error(const Expr * E)7281   bool Error(const Expr *E) {
7282     return Error(E, diag::note_invalid_subexpr_in_const_expr);
7283   }
7284 
VisitStmt(const Stmt *)7285   bool VisitStmt(const Stmt *) {
7286     llvm_unreachable("Expression evaluator should not be called on stmts");
7287   }
VisitExpr(const Expr * E)7288   bool VisitExpr(const Expr *E) {
7289     return Error(E);
7290   }
7291 
VisitConstantExpr(const ConstantExpr * E)7292   bool VisitConstantExpr(const ConstantExpr *E) {
7293     if (E->hasAPValueResult())
7294       return DerivedSuccess(E->getAPValueResult(), E);
7295 
7296     return StmtVisitorTy::Visit(E->getSubExpr());
7297   }
7298 
VisitParenExpr(const ParenExpr * E)7299   bool VisitParenExpr(const ParenExpr *E)
7300     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)7301   bool VisitUnaryExtension(const UnaryOperator *E)
7302     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)7303   bool VisitUnaryPlus(const UnaryOperator *E)
7304     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)7305   bool VisitChooseExpr(const ChooseExpr *E)
7306     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)7307   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
7308     { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)7309   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
7310     { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)7311   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
7312     TempVersionRAII RAII(*Info.CurrentCall);
7313     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7314     return StmtVisitorTy::Visit(E->getExpr());
7315   }
VisitCXXDefaultInitExpr(const CXXDefaultInitExpr * E)7316   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
7317     TempVersionRAII RAII(*Info.CurrentCall);
7318     // The initializer may not have been parsed yet, or might be erroneous.
7319     if (!E->getExpr())
7320       return Error(E);
7321     SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
7322     return StmtVisitorTy::Visit(E->getExpr());
7323   }
7324 
VisitExprWithCleanups(const ExprWithCleanups * E)7325   bool VisitExprWithCleanups(const ExprWithCleanups *E) {
7326     FullExpressionRAII Scope(Info);
7327     return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy();
7328   }
7329 
7330   // Temporaries are registered when created, so we don't care about
7331   // CXXBindTemporaryExpr.
VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr * E)7332   bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
7333     return StmtVisitorTy::Visit(E->getSubExpr());
7334   }
7335 
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)7336   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
7337     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
7338     return static_cast<Derived*>(this)->VisitCastExpr(E);
7339   }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)7340   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
7341     if (!Info.Ctx.getLangOpts().CPlusPlus20)
7342       CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
7343     return static_cast<Derived*>(this)->VisitCastExpr(E);
7344   }
VisitBuiltinBitCastExpr(const BuiltinBitCastExpr * E)7345   bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
7346     return static_cast<Derived*>(this)->VisitCastExpr(E);
7347   }
7348 
VisitBinaryOperator(const BinaryOperator * E)7349   bool VisitBinaryOperator(const BinaryOperator *E) {
7350     switch (E->getOpcode()) {
7351     default:
7352       return Error(E);
7353 
7354     case BO_Comma:
7355       VisitIgnoredValue(E->getLHS());
7356       return StmtVisitorTy::Visit(E->getRHS());
7357 
7358     case BO_PtrMemD:
7359     case BO_PtrMemI: {
7360       LValue Obj;
7361       if (!HandleMemberPointerAccess(Info, E, Obj))
7362         return false;
7363       APValue Result;
7364       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
7365         return false;
7366       return DerivedSuccess(Result, E);
7367     }
7368     }
7369   }
7370 
VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator * E)7371   bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) {
7372     return StmtVisitorTy::Visit(E->getSemanticForm());
7373   }
7374 
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)7375   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
7376     // Evaluate and cache the common expression. We treat it as a temporary,
7377     // even though it's not quite the same thing.
7378     LValue CommonLV;
7379     if (!Evaluate(Info.CurrentCall->createTemporary(
7380                       E->getOpaqueValue(),
7381                       getStorageType(Info.Ctx, E->getOpaqueValue()),
7382                       ScopeKind::FullExpression, CommonLV),
7383                   Info, E->getCommon()))
7384       return false;
7385 
7386     return HandleConditionalOperator(E);
7387   }
7388 
VisitConditionalOperator(const ConditionalOperator * E)7389   bool VisitConditionalOperator(const ConditionalOperator *E) {
7390     bool IsBcpCall = false;
7391     // If the condition (ignoring parens) is a __builtin_constant_p call,
7392     // the result is a constant expression if it can be folded without
7393     // side-effects. This is an important GNU extension. See GCC PR38377
7394     // for discussion.
7395     if (const CallExpr *CallCE =
7396           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
7397       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
7398         IsBcpCall = true;
7399 
7400     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
7401     // constant expression; we can't check whether it's potentially foldable.
7402     // FIXME: We should instead treat __builtin_constant_p as non-constant if
7403     // it would return 'false' in this mode.
7404     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
7405       return false;
7406 
7407     FoldConstant Fold(Info, IsBcpCall);
7408     if (!HandleConditionalOperator(E)) {
7409       Fold.keepDiagnostics();
7410       return false;
7411     }
7412 
7413     return true;
7414   }
7415 
VisitOpaqueValueExpr(const OpaqueValueExpr * E)7416   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
7417     if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
7418       return DerivedSuccess(*Value, E);
7419 
7420     const Expr *Source = E->getSourceExpr();
7421     if (!Source)
7422       return Error(E);
7423     if (Source == E) { // sanity checking.
7424       assert(0 && "OpaqueValueExpr recursively refers to itself");
7425       return Error(E);
7426     }
7427     return StmtVisitorTy::Visit(Source);
7428   }
7429 
VisitPseudoObjectExpr(const PseudoObjectExpr * E)7430   bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
7431     for (const Expr *SemE : E->semantics()) {
7432       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
7433         // FIXME: We can't handle the case where an OpaqueValueExpr is also the
7434         // result expression: there could be two different LValues that would
7435         // refer to the same object in that case, and we can't model that.
7436         if (SemE == E->getResultExpr())
7437           return Error(E);
7438 
7439         // Unique OVEs get evaluated if and when we encounter them when
7440         // emitting the rest of the semantic form, rather than eagerly.
7441         if (OVE->isUnique())
7442           continue;
7443 
7444         LValue LV;
7445         if (!Evaluate(Info.CurrentCall->createTemporary(
7446                           OVE, getStorageType(Info.Ctx, OVE),
7447                           ScopeKind::FullExpression, LV),
7448                       Info, OVE->getSourceExpr()))
7449           return false;
7450       } else if (SemE == E->getResultExpr()) {
7451         if (!StmtVisitorTy::Visit(SemE))
7452           return false;
7453       } else {
7454         if (!EvaluateIgnoredValue(Info, SemE))
7455           return false;
7456       }
7457     }
7458     return true;
7459   }
7460 
VisitCallExpr(const CallExpr * E)7461   bool VisitCallExpr(const CallExpr *E) {
7462     APValue Result;
7463     if (!handleCallExpr(E, Result, nullptr))
7464       return false;
7465     return DerivedSuccess(Result, E);
7466   }
7467 
handleCallExpr(const CallExpr * E,APValue & Result,const LValue * ResultSlot)7468   bool handleCallExpr(const CallExpr *E, APValue &Result,
7469                      const LValue *ResultSlot) {
7470     CallScopeRAII CallScope(Info);
7471 
7472     const Expr *Callee = E->getCallee()->IgnoreParens();
7473     QualType CalleeType = Callee->getType();
7474 
7475     const FunctionDecl *FD = nullptr;
7476     LValue *This = nullptr, ThisVal;
7477     auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
7478     bool HasQualifier = false;
7479 
7480     CallRef Call;
7481 
7482     // Extract function decl and 'this' pointer from the callee.
7483     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
7484       const CXXMethodDecl *Member = nullptr;
7485       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
7486         // Explicit bound member calls, such as x.f() or p->g();
7487         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
7488           return false;
7489         Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
7490         if (!Member)
7491           return Error(Callee);
7492         This = &ThisVal;
7493         HasQualifier = ME->hasQualifier();
7494       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
7495         // Indirect bound member calls ('.*' or '->*').
7496         const ValueDecl *D =
7497             HandleMemberPointerAccess(Info, BE, ThisVal, false);
7498         if (!D)
7499           return false;
7500         Member = dyn_cast<CXXMethodDecl>(D);
7501         if (!Member)
7502           return Error(Callee);
7503         This = &ThisVal;
7504       } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) {
7505         if (!Info.getLangOpts().CPlusPlus20)
7506           Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor);
7507         return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) &&
7508                HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType());
7509       } else
7510         return Error(Callee);
7511       FD = Member;
7512     } else if (CalleeType->isFunctionPointerType()) {
7513       LValue CalleeLV;
7514       if (!EvaluatePointer(Callee, CalleeLV, Info))
7515         return false;
7516 
7517       if (!CalleeLV.getLValueOffset().isZero())
7518         return Error(Callee);
7519       FD = dyn_cast_or_null<FunctionDecl>(
7520           CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>());
7521       if (!FD)
7522         return Error(Callee);
7523       // Don't call function pointers which have been cast to some other type.
7524       // Per DR (no number yet), the caller and callee can differ in noexcept.
7525       if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
7526         CalleeType->getPointeeType(), FD->getType())) {
7527         return Error(E);
7528       }
7529 
7530       // For an (overloaded) assignment expression, evaluate the RHS before the
7531       // LHS.
7532       auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
7533       if (OCE && OCE->isAssignmentOp()) {
7534         assert(Args.size() == 2 && "wrong number of arguments in assignment");
7535         Call = Info.CurrentCall->createCall(FD);
7536         if (!EvaluateArgs(isa<CXXMethodDecl>(FD) ? Args.slice(1) : Args, Call,
7537                           Info, FD, /*RightToLeft=*/true))
7538           return false;
7539       }
7540 
7541       // Overloaded operator calls to member functions are represented as normal
7542       // calls with '*this' as the first argument.
7543       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7544       if (MD && !MD->isStatic()) {
7545         // FIXME: When selecting an implicit conversion for an overloaded
7546         // operator delete, we sometimes try to evaluate calls to conversion
7547         // operators without a 'this' parameter!
7548         if (Args.empty())
7549           return Error(E);
7550 
7551         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
7552           return false;
7553         This = &ThisVal;
7554         Args = Args.slice(1);
7555       } else if (MD && MD->isLambdaStaticInvoker()) {
7556         // Map the static invoker for the lambda back to the call operator.
7557         // Conveniently, we don't have to slice out the 'this' argument (as is
7558         // being done for the non-static case), since a static member function
7559         // doesn't have an implicit argument passed in.
7560         const CXXRecordDecl *ClosureClass = MD->getParent();
7561         assert(
7562             ClosureClass->captures_begin() == ClosureClass->captures_end() &&
7563             "Number of captures must be zero for conversion to function-ptr");
7564 
7565         const CXXMethodDecl *LambdaCallOp =
7566             ClosureClass->getLambdaCallOperator();
7567 
7568         // Set 'FD', the function that will be called below, to the call
7569         // operator.  If the closure object represents a generic lambda, find
7570         // the corresponding specialization of the call operator.
7571 
7572         if (ClosureClass->isGenericLambda()) {
7573           assert(MD->isFunctionTemplateSpecialization() &&
7574                  "A generic lambda's static-invoker function must be a "
7575                  "template specialization");
7576           const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
7577           FunctionTemplateDecl *CallOpTemplate =
7578               LambdaCallOp->getDescribedFunctionTemplate();
7579           void *InsertPos = nullptr;
7580           FunctionDecl *CorrespondingCallOpSpecialization =
7581               CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
7582           assert(CorrespondingCallOpSpecialization &&
7583                  "We must always have a function call operator specialization "
7584                  "that corresponds to our static invoker specialization");
7585           FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
7586         } else
7587           FD = LambdaCallOp;
7588       } else if (FD->isReplaceableGlobalAllocationFunction()) {
7589         if (FD->getDeclName().getCXXOverloadedOperator() == OO_New ||
7590             FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
7591           LValue Ptr;
7592           if (!HandleOperatorNewCall(Info, E, Ptr))
7593             return false;
7594           Ptr.moveInto(Result);
7595           return CallScope.destroy();
7596         } else {
7597           return HandleOperatorDeleteCall(Info, E) && CallScope.destroy();
7598         }
7599       }
7600     } else
7601       return Error(E);
7602 
7603     // Evaluate the arguments now if we've not already done so.
7604     if (!Call) {
7605       Call = Info.CurrentCall->createCall(FD);
7606       if (!EvaluateArgs(Args, Call, Info, FD))
7607         return false;
7608     }
7609 
7610     SmallVector<QualType, 4> CovariantAdjustmentPath;
7611     if (This) {
7612       auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
7613       if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
7614         // Perform virtual dispatch, if necessary.
7615         FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
7616                                    CovariantAdjustmentPath);
7617         if (!FD)
7618           return false;
7619       } else {
7620         // Check that the 'this' pointer points to an object of the right type.
7621         // FIXME: If this is an assignment operator call, we may need to change
7622         // the active union member before we check this.
7623         if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember))
7624           return false;
7625       }
7626     }
7627 
7628     // Destructor calls are different enough that they have their own codepath.
7629     if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) {
7630       assert(This && "no 'this' pointer for destructor call");
7631       return HandleDestruction(Info, E, *This,
7632                                Info.Ctx.getRecordType(DD->getParent())) &&
7633              CallScope.destroy();
7634     }
7635 
7636     const FunctionDecl *Definition = nullptr;
7637     Stmt *Body = FD->getBody(Definition);
7638 
7639     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
7640         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Call,
7641                             Body, Info, Result, ResultSlot))
7642       return false;
7643 
7644     if (!CovariantAdjustmentPath.empty() &&
7645         !HandleCovariantReturnAdjustment(Info, E, Result,
7646                                          CovariantAdjustmentPath))
7647       return false;
7648 
7649     return CallScope.destroy();
7650   }
7651 
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)7652   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
7653     return StmtVisitorTy::Visit(E->getInitializer());
7654   }
VisitInitListExpr(const InitListExpr * E)7655   bool VisitInitListExpr(const InitListExpr *E) {
7656     if (E->getNumInits() == 0)
7657       return DerivedZeroInitialization(E);
7658     if (E->getNumInits() == 1)
7659       return StmtVisitorTy::Visit(E->getInit(0));
7660     return Error(E);
7661   }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)7662   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
7663     return DerivedZeroInitialization(E);
7664   }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)7665   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
7666     return DerivedZeroInitialization(E);
7667   }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)7668   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
7669     return DerivedZeroInitialization(E);
7670   }
7671 
7672   /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)7673   bool VisitMemberExpr(const MemberExpr *E) {
7674     assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
7675            "missing temporary materialization conversion");
7676     assert(!E->isArrow() && "missing call to bound member function?");
7677 
7678     APValue Val;
7679     if (!Evaluate(Val, Info, E->getBase()))
7680       return false;
7681 
7682     QualType BaseTy = E->getBase()->getType();
7683 
7684     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
7685     if (!FD) return Error(E);
7686     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
7687     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7688            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7689 
7690     // Note: there is no lvalue base here. But this case should only ever
7691     // happen in C or in C++98, where we cannot be evaluating a constexpr
7692     // constructor, which is the only case the base matters.
7693     CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
7694     SubobjectDesignator Designator(BaseTy);
7695     Designator.addDeclUnchecked(FD);
7696 
7697     APValue Result;
7698     return extractSubobject(Info, E, Obj, Designator, Result) &&
7699            DerivedSuccess(Result, E);
7700   }
7701 
VisitExtVectorElementExpr(const ExtVectorElementExpr * E)7702   bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) {
7703     APValue Val;
7704     if (!Evaluate(Val, Info, E->getBase()))
7705       return false;
7706 
7707     if (Val.isVector()) {
7708       SmallVector<uint32_t, 4> Indices;
7709       E->getEncodedElementAccess(Indices);
7710       if (Indices.size() == 1) {
7711         // Return scalar.
7712         return DerivedSuccess(Val.getVectorElt(Indices[0]), E);
7713       } else {
7714         // Construct new APValue vector.
7715         SmallVector<APValue, 4> Elts;
7716         for (unsigned I = 0; I < Indices.size(); ++I) {
7717           Elts.push_back(Val.getVectorElt(Indices[I]));
7718         }
7719         APValue VecResult(Elts.data(), Indices.size());
7720         return DerivedSuccess(VecResult, E);
7721       }
7722     }
7723 
7724     return false;
7725   }
7726 
VisitCastExpr(const CastExpr * E)7727   bool VisitCastExpr(const CastExpr *E) {
7728     switch (E->getCastKind()) {
7729     default:
7730       break;
7731 
7732     case CK_AtomicToNonAtomic: {
7733       APValue AtomicVal;
7734       // This does not need to be done in place even for class/array types:
7735       // atomic-to-non-atomic conversion implies copying the object
7736       // representation.
7737       if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
7738         return false;
7739       return DerivedSuccess(AtomicVal, E);
7740     }
7741 
7742     case CK_NoOp:
7743     case CK_UserDefinedConversion:
7744       return StmtVisitorTy::Visit(E->getSubExpr());
7745 
7746     case CK_LValueToRValue: {
7747       LValue LVal;
7748       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
7749         return false;
7750       APValue RVal;
7751       // Note, we use the subexpression's type in order to retain cv-qualifiers.
7752       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
7753                                           LVal, RVal))
7754         return false;
7755       return DerivedSuccess(RVal, E);
7756     }
7757     case CK_LValueToRValueBitCast: {
7758       APValue DestValue, SourceValue;
7759       if (!Evaluate(SourceValue, Info, E->getSubExpr()))
7760         return false;
7761       if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
7762         return false;
7763       return DerivedSuccess(DestValue, E);
7764     }
7765 
7766     case CK_AddressSpaceConversion: {
7767       APValue Value;
7768       if (!Evaluate(Value, Info, E->getSubExpr()))
7769         return false;
7770       return DerivedSuccess(Value, E);
7771     }
7772     }
7773 
7774     return Error(E);
7775   }
7776 
VisitUnaryPostInc(const UnaryOperator * UO)7777   bool VisitUnaryPostInc(const UnaryOperator *UO) {
7778     return VisitUnaryPostIncDec(UO);
7779   }
VisitUnaryPostDec(const UnaryOperator * UO)7780   bool VisitUnaryPostDec(const UnaryOperator *UO) {
7781     return VisitUnaryPostIncDec(UO);
7782   }
VisitUnaryPostIncDec(const UnaryOperator * UO)7783   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
7784     if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
7785       return Error(UO);
7786 
7787     LValue LVal;
7788     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
7789       return false;
7790     APValue RVal;
7791     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
7792                       UO->isIncrementOp(), &RVal))
7793       return false;
7794     return DerivedSuccess(RVal, UO);
7795   }
7796 
VisitStmtExpr(const StmtExpr * E)7797   bool VisitStmtExpr(const StmtExpr *E) {
7798     // We will have checked the full-expressions inside the statement expression
7799     // when they were completed, and don't need to check them again now.
7800     if (Info.checkingForUndefinedBehavior())
7801       return Error(E);
7802 
7803     const CompoundStmt *CS = E->getSubStmt();
7804     if (CS->body_empty())
7805       return true;
7806 
7807     BlockScopeRAII Scope(Info);
7808     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
7809                                            BE = CS->body_end();
7810          /**/; ++BI) {
7811       if (BI + 1 == BE) {
7812         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
7813         if (!FinalExpr) {
7814           Info.FFDiag((*BI)->getBeginLoc(),
7815                       diag::note_constexpr_stmt_expr_unsupported);
7816           return false;
7817         }
7818         return this->Visit(FinalExpr) && Scope.destroy();
7819       }
7820 
7821       APValue ReturnValue;
7822       StmtResult Result = { ReturnValue, nullptr };
7823       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
7824       if (ESR != ESR_Succeeded) {
7825         // FIXME: If the statement-expression terminated due to 'return',
7826         // 'break', or 'continue', it would be nice to propagate that to
7827         // the outer statement evaluation rather than bailing out.
7828         if (ESR != ESR_Failed)
7829           Info.FFDiag((*BI)->getBeginLoc(),
7830                       diag::note_constexpr_stmt_expr_unsupported);
7831         return false;
7832       }
7833     }
7834 
7835     llvm_unreachable("Return from function from the loop above.");
7836   }
7837 
7838   /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)7839   void VisitIgnoredValue(const Expr *E) {
7840     EvaluateIgnoredValue(Info, E);
7841   }
7842 
7843   /// Potentially visit a MemberExpr's base expression.
VisitIgnoredBaseExpression(const Expr * E)7844   void VisitIgnoredBaseExpression(const Expr *E) {
7845     // While MSVC doesn't evaluate the base expression, it does diagnose the
7846     // presence of side-effecting behavior.
7847     if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
7848       return;
7849     VisitIgnoredValue(E);
7850   }
7851 };
7852 
7853 } // namespace
7854 
7855 //===----------------------------------------------------------------------===//
7856 // Common base class for lvalue and temporary evaluation.
7857 //===----------------------------------------------------------------------===//
7858 namespace {
7859 template<class Derived>
7860 class LValueExprEvaluatorBase
7861   : public ExprEvaluatorBase<Derived> {
7862 protected:
7863   LValue &Result;
7864   bool InvalidBaseOK;
7865   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
7866   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
7867 
Success(APValue::LValueBase B)7868   bool Success(APValue::LValueBase B) {
7869     Result.set(B);
7870     return true;
7871   }
7872 
evaluatePointer(const Expr * E,LValue & Result)7873   bool evaluatePointer(const Expr *E, LValue &Result) {
7874     return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
7875   }
7876 
7877 public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result,bool InvalidBaseOK)7878   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
7879       : ExprEvaluatorBaseTy(Info), Result(Result),
7880         InvalidBaseOK(InvalidBaseOK) {}
7881 
Success(const APValue & V,const Expr * E)7882   bool Success(const APValue &V, const Expr *E) {
7883     Result.setFrom(this->Info.Ctx, V);
7884     return true;
7885   }
7886 
VisitMemberExpr(const MemberExpr * E)7887   bool VisitMemberExpr(const MemberExpr *E) {
7888     // Handle non-static data members.
7889     QualType BaseTy;
7890     bool EvalOK;
7891     if (E->isArrow()) {
7892       EvalOK = evaluatePointer(E->getBase(), Result);
7893       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
7894     } else if (E->getBase()->isRValue()) {
7895       assert(E->getBase()->getType()->isRecordType());
7896       EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
7897       BaseTy = E->getBase()->getType();
7898     } else {
7899       EvalOK = this->Visit(E->getBase());
7900       BaseTy = E->getBase()->getType();
7901     }
7902     if (!EvalOK) {
7903       if (!InvalidBaseOK)
7904         return false;
7905       Result.setInvalid(E);
7906       return true;
7907     }
7908 
7909     const ValueDecl *MD = E->getMemberDecl();
7910     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
7911       assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
7912              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
7913       (void)BaseTy;
7914       if (!HandleLValueMember(this->Info, E, Result, FD))
7915         return false;
7916     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
7917       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
7918         return false;
7919     } else
7920       return this->Error(E);
7921 
7922     if (MD->getType()->isReferenceType()) {
7923       APValue RefValue;
7924       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
7925                                           RefValue))
7926         return false;
7927       return Success(RefValue, E);
7928     }
7929     return true;
7930   }
7931 
VisitBinaryOperator(const BinaryOperator * E)7932   bool VisitBinaryOperator(const BinaryOperator *E) {
7933     switch (E->getOpcode()) {
7934     default:
7935       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7936 
7937     case BO_PtrMemD:
7938     case BO_PtrMemI:
7939       return HandleMemberPointerAccess(this->Info, E, Result);
7940     }
7941   }
7942 
VisitCastExpr(const CastExpr * E)7943   bool VisitCastExpr(const CastExpr *E) {
7944     switch (E->getCastKind()) {
7945     default:
7946       return ExprEvaluatorBaseTy::VisitCastExpr(E);
7947 
7948     case CK_DerivedToBase:
7949     case CK_UncheckedDerivedToBase:
7950       if (!this->Visit(E->getSubExpr()))
7951         return false;
7952 
7953       // Now figure out the necessary offset to add to the base LV to get from
7954       // the derived class to the base class.
7955       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
7956                                   Result);
7957     }
7958   }
7959 };
7960 }
7961 
7962 //===----------------------------------------------------------------------===//
7963 // LValue Evaluation
7964 //
7965 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
7966 // function designators (in C), decl references to void objects (in C), and
7967 // temporaries (if building with -Wno-address-of-temporary).
7968 //
7969 // LValue evaluation produces values comprising a base expression of one of the
7970 // following types:
7971 // - Declarations
7972 //  * VarDecl
7973 //  * FunctionDecl
7974 // - Literals
7975 //  * CompoundLiteralExpr in C (and in global scope in C++)
7976 //  * StringLiteral
7977 //  * PredefinedExpr
7978 //  * ObjCStringLiteralExpr
7979 //  * ObjCEncodeExpr
7980 //  * AddrLabelExpr
7981 //  * BlockExpr
7982 //  * CallExpr for a MakeStringConstant builtin
7983 // - typeid(T) expressions, as TypeInfoLValues
7984 // - Locals and temporaries
7985 //  * MaterializeTemporaryExpr
7986 //  * Any Expr, with a CallIndex indicating the function in which the temporary
7987 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
7988 //    from the AST (FIXME).
7989 //  * A MaterializeTemporaryExpr that has static storage duration, with no
7990 //    CallIndex, for a lifetime-extended temporary.
7991 //  * The ConstantExpr that is currently being evaluated during evaluation of an
7992 //    immediate invocation.
7993 // plus an offset in bytes.
7994 //===----------------------------------------------------------------------===//
7995 namespace {
7996 class LValueExprEvaluator
7997   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
7998 public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result,bool InvalidBaseOK)7999   LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
8000     LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
8001 
8002   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
8003   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
8004 
8005   bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)8006   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
8007   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
8008   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
8009   bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)8010   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)8011   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
8012   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
8013   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
8014   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
8015   bool VisitUnaryDeref(const UnaryOperator *E);
8016   bool VisitUnaryReal(const UnaryOperator *E);
8017   bool VisitUnaryImag(const UnaryOperator *E);
VisitUnaryPreInc(const UnaryOperator * UO)8018   bool VisitUnaryPreInc(const UnaryOperator *UO) {
8019     return VisitUnaryPreIncDec(UO);
8020   }
VisitUnaryPreDec(const UnaryOperator * UO)8021   bool VisitUnaryPreDec(const UnaryOperator *UO) {
8022     return VisitUnaryPreIncDec(UO);
8023   }
8024   bool VisitBinAssign(const BinaryOperator *BO);
8025   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
8026 
VisitCastExpr(const CastExpr * E)8027   bool VisitCastExpr(const CastExpr *E) {
8028     switch (E->getCastKind()) {
8029     default:
8030       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
8031 
8032     case CK_LValueBitCast:
8033       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8034       if (!Visit(E->getSubExpr()))
8035         return false;
8036       Result.Designator.setInvalid();
8037       return true;
8038 
8039     case CK_BaseToDerived:
8040       if (!Visit(E->getSubExpr()))
8041         return false;
8042       return HandleBaseToDerivedCast(Info, E, Result);
8043 
8044     case CK_Dynamic:
8045       if (!Visit(E->getSubExpr()))
8046         return false;
8047       return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8048     }
8049   }
8050 };
8051 } // end anonymous namespace
8052 
8053 /// Evaluate an expression as an lvalue. This can be legitimately called on
8054 /// expressions which are not glvalues, in three cases:
8055 ///  * function designators in C, and
8056 ///  * "extern void" objects
8057 ///  * @selector() expressions in Objective-C
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info,bool InvalidBaseOK)8058 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
8059                            bool InvalidBaseOK) {
8060   assert(E->isGLValue() || E->getType()->isFunctionType() ||
8061          E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
8062   return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8063 }
8064 
VisitDeclRefExpr(const DeclRefExpr * E)8065 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
8066   const NamedDecl *D = E->getDecl();
8067   if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl>(D))
8068     return Success(cast<ValueDecl>(D));
8069   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
8070     return VisitVarDecl(E, VD);
8071   if (const BindingDecl *BD = dyn_cast<BindingDecl>(D))
8072     return Visit(BD->getBinding());
8073   return Error(E);
8074 }
8075 
8076 
VisitVarDecl(const Expr * E,const VarDecl * VD)8077 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
8078 
8079   // If we are within a lambda's call operator, check whether the 'VD' referred
8080   // to within 'E' actually represents a lambda-capture that maps to a
8081   // data-member/field within the closure object, and if so, evaluate to the
8082   // field or what the field refers to.
8083   if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
8084       isa<DeclRefExpr>(E) &&
8085       cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
8086     // We don't always have a complete capture-map when checking or inferring if
8087     // the function call operator meets the requirements of a constexpr function
8088     // - but we don't need to evaluate the captures to determine constexprness
8089     // (dcl.constexpr C++17).
8090     if (Info.checkingPotentialConstantExpression())
8091       return false;
8092 
8093     if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
8094       // Start with 'Result' referring to the complete closure object...
8095       Result = *Info.CurrentCall->This;
8096       // ... then update it to refer to the field of the closure object
8097       // that represents the capture.
8098       if (!HandleLValueMember(Info, E, Result, FD))
8099         return false;
8100       // And if the field is of reference type, update 'Result' to refer to what
8101       // the field refers to.
8102       if (FD->getType()->isReferenceType()) {
8103         APValue RVal;
8104         if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
8105                                             RVal))
8106           return false;
8107         Result.setFrom(Info.Ctx, RVal);
8108       }
8109       return true;
8110     }
8111   }
8112 
8113   CallStackFrame *Frame = nullptr;
8114   unsigned Version = 0;
8115   if (VD->hasLocalStorage()) {
8116     // Only if a local variable was declared in the function currently being
8117     // evaluated, do we expect to be able to find its value in the current
8118     // frame. (Otherwise it was likely declared in an enclosing context and
8119     // could either have a valid evaluatable value (for e.g. a constexpr
8120     // variable) or be ill-formed (and trigger an appropriate evaluation
8121     // diagnostic)).
8122     CallStackFrame *CurrFrame = Info.CurrentCall;
8123     if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) {
8124       // Function parameters are stored in some caller's frame. (Usually the
8125       // immediate caller, but for an inherited constructor they may be more
8126       // distant.)
8127       if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) {
8128         if (CurrFrame->Arguments) {
8129           VD = CurrFrame->Arguments.getOrigParam(PVD);
8130           Frame =
8131               Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first;
8132           Version = CurrFrame->Arguments.Version;
8133         }
8134       } else {
8135         Frame = CurrFrame;
8136         Version = CurrFrame->getCurrentTemporaryVersion(VD);
8137       }
8138     }
8139   }
8140 
8141   if (!VD->getType()->isReferenceType()) {
8142     if (Frame) {
8143       Result.set({VD, Frame->Index, Version});
8144       return true;
8145     }
8146     return Success(VD);
8147   }
8148 
8149   if (!Info.getLangOpts().CPlusPlus11) {
8150     Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1)
8151         << VD << VD->getType();
8152     Info.Note(VD->getLocation(), diag::note_declared_at);
8153   }
8154 
8155   APValue *V;
8156   if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V))
8157     return false;
8158   if (!V->hasValue()) {
8159     // FIXME: Is it possible for V to be indeterminate here? If so, we should
8160     // adjust the diagnostic to say that.
8161     if (!Info.checkingPotentialConstantExpression())
8162       Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
8163     return false;
8164   }
8165   return Success(*V, E);
8166 }
8167 
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)8168 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
8169     const MaterializeTemporaryExpr *E) {
8170   // Walk through the expression to find the materialized temporary itself.
8171   SmallVector<const Expr *, 2> CommaLHSs;
8172   SmallVector<SubobjectAdjustment, 2> Adjustments;
8173   const Expr *Inner =
8174       E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
8175 
8176   // If we passed any comma operators, evaluate their LHSs.
8177   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
8178     if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
8179       return false;
8180 
8181   // A materialized temporary with static storage duration can appear within the
8182   // result of a constant expression evaluation, so we need to preserve its
8183   // value for use outside this evaluation.
8184   APValue *Value;
8185   if (E->getStorageDuration() == SD_Static) {
8186     // FIXME: What about SD_Thread?
8187     Value = E->getOrCreateValue(true);
8188     *Value = APValue();
8189     Result.set(E);
8190   } else {
8191     Value = &Info.CurrentCall->createTemporary(
8192         E, E->getType(),
8193         E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression
8194                                                      : ScopeKind::Block,
8195         Result);
8196   }
8197 
8198   QualType Type = Inner->getType();
8199 
8200   // Materialize the temporary itself.
8201   if (!EvaluateInPlace(*Value, Info, Result, Inner)) {
8202     *Value = APValue();
8203     return false;
8204   }
8205 
8206   // Adjust our lvalue to refer to the desired subobject.
8207   for (unsigned I = Adjustments.size(); I != 0; /**/) {
8208     --I;
8209     switch (Adjustments[I].Kind) {
8210     case SubobjectAdjustment::DerivedToBaseAdjustment:
8211       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
8212                                 Type, Result))
8213         return false;
8214       Type = Adjustments[I].DerivedToBase.BasePath->getType();
8215       break;
8216 
8217     case SubobjectAdjustment::FieldAdjustment:
8218       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
8219         return false;
8220       Type = Adjustments[I].Field->getType();
8221       break;
8222 
8223     case SubobjectAdjustment::MemberPointerAdjustment:
8224       if (!HandleMemberPointerAccess(this->Info, Type, Result,
8225                                      Adjustments[I].Ptr.RHS))
8226         return false;
8227       Type = Adjustments[I].Ptr.MPT->getPointeeType();
8228       break;
8229     }
8230   }
8231 
8232   return true;
8233 }
8234 
8235 bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)8236 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
8237   assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
8238          "lvalue compound literal in c++?");
8239   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
8240   // only see this when folding in C, so there's no standard to follow here.
8241   return Success(E);
8242 }
8243 
VisitCXXTypeidExpr(const CXXTypeidExpr * E)8244 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
8245   TypeInfoLValue TypeInfo;
8246 
8247   if (!E->isPotentiallyEvaluated()) {
8248     if (E->isTypeOperand())
8249       TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
8250     else
8251       TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
8252   } else {
8253     if (!Info.Ctx.getLangOpts().CPlusPlus20) {
8254       Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
8255         << E->getExprOperand()->getType()
8256         << E->getExprOperand()->getSourceRange();
8257     }
8258 
8259     if (!Visit(E->getExprOperand()))
8260       return false;
8261 
8262     Optional<DynamicType> DynType =
8263         ComputeDynamicType(Info, E, Result, AK_TypeId);
8264     if (!DynType)
8265       return false;
8266 
8267     TypeInfo =
8268         TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
8269   }
8270 
8271   return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
8272 }
8273 
VisitCXXUuidofExpr(const CXXUuidofExpr * E)8274 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
8275   return Success(E->getGuidDecl());
8276 }
8277 
VisitMemberExpr(const MemberExpr * E)8278 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
8279   // Handle static data members.
8280   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
8281     VisitIgnoredBaseExpression(E->getBase());
8282     return VisitVarDecl(E, VD);
8283   }
8284 
8285   // Handle static member functions.
8286   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
8287     if (MD->isStatic()) {
8288       VisitIgnoredBaseExpression(E->getBase());
8289       return Success(MD);
8290     }
8291   }
8292 
8293   // Handle non-static data members.
8294   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
8295 }
8296 
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)8297 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
8298   // FIXME: Deal with vectors as array subscript bases.
8299   if (E->getBase()->getType()->isVectorType())
8300     return Error(E);
8301 
8302   APSInt Index;
8303   bool Success = true;
8304 
8305   // C++17's rules require us to evaluate the LHS first, regardless of which
8306   // side is the base.
8307   for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) {
8308     if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result)
8309                                 : !EvaluateInteger(SubExpr, Index, Info)) {
8310       if (!Info.noteFailure())
8311         return false;
8312       Success = false;
8313     }
8314   }
8315 
8316   return Success &&
8317          HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
8318 }
8319 
VisitUnaryDeref(const UnaryOperator * E)8320 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
8321   return evaluatePointer(E->getSubExpr(), Result);
8322 }
8323 
VisitUnaryReal(const UnaryOperator * E)8324 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8325   if (!Visit(E->getSubExpr()))
8326     return false;
8327   // __real is a no-op on scalar lvalues.
8328   if (E->getSubExpr()->getType()->isAnyComplexType())
8329     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
8330   return true;
8331 }
8332 
VisitUnaryImag(const UnaryOperator * E)8333 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8334   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
8335          "lvalue __imag__ on scalar?");
8336   if (!Visit(E->getSubExpr()))
8337     return false;
8338   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
8339   return true;
8340 }
8341 
VisitUnaryPreIncDec(const UnaryOperator * UO)8342 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
8343   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8344     return Error(UO);
8345 
8346   if (!this->Visit(UO->getSubExpr()))
8347     return false;
8348 
8349   return handleIncDec(
8350       this->Info, UO, Result, UO->getSubExpr()->getType(),
8351       UO->isIncrementOp(), nullptr);
8352 }
8353 
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)8354 bool LValueExprEvaluator::VisitCompoundAssignOperator(
8355     const CompoundAssignOperator *CAO) {
8356   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8357     return Error(CAO);
8358 
8359   bool Success = true;
8360 
8361   // C++17 onwards require that we evaluate the RHS first.
8362   APValue RHS;
8363   if (!Evaluate(RHS, this->Info, CAO->getRHS())) {
8364     if (!Info.noteFailure())
8365       return false;
8366     Success = false;
8367   }
8368 
8369   // The overall lvalue result is the result of evaluating the LHS.
8370   if (!this->Visit(CAO->getLHS()) || !Success)
8371     return false;
8372 
8373   return handleCompoundAssignment(
8374       this->Info, CAO,
8375       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
8376       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
8377 }
8378 
VisitBinAssign(const BinaryOperator * E)8379 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
8380   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
8381     return Error(E);
8382 
8383   bool Success = true;
8384 
8385   // C++17 onwards require that we evaluate the RHS first.
8386   APValue NewVal;
8387   if (!Evaluate(NewVal, this->Info, E->getRHS())) {
8388     if (!Info.noteFailure())
8389       return false;
8390     Success = false;
8391   }
8392 
8393   if (!this->Visit(E->getLHS()) || !Success)
8394     return false;
8395 
8396   if (Info.getLangOpts().CPlusPlus20 &&
8397       !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
8398     return false;
8399 
8400   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
8401                           NewVal);
8402 }
8403 
8404 //===----------------------------------------------------------------------===//
8405 // Pointer Evaluation
8406 //===----------------------------------------------------------------------===//
8407 
8408 /// Attempts to compute the number of bytes available at the pointer
8409 /// returned by a function with the alloc_size attribute. Returns true if we
8410 /// were successful. Places an unsigned number into `Result`.
8411 ///
8412 /// This expects the given CallExpr to be a call to a function with an
8413 /// alloc_size attribute.
getBytesReturnedByAllocSizeCall(const ASTContext & Ctx,const CallExpr * Call,llvm::APInt & Result)8414 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8415                                             const CallExpr *Call,
8416                                             llvm::APInt &Result) {
8417   const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
8418 
8419   assert(AllocSize && AllocSize->getElemSizeParam().isValid());
8420   unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
8421   unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
8422   if (Call->getNumArgs() <= SizeArgNo)
8423     return false;
8424 
8425   auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
8426     Expr::EvalResult ExprResult;
8427     if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
8428       return false;
8429     Into = ExprResult.Val.getInt();
8430     if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
8431       return false;
8432     Into = Into.zextOrSelf(BitsInSizeT);
8433     return true;
8434   };
8435 
8436   APSInt SizeOfElem;
8437   if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
8438     return false;
8439 
8440   if (!AllocSize->getNumElemsParam().isValid()) {
8441     Result = std::move(SizeOfElem);
8442     return true;
8443   }
8444 
8445   APSInt NumberOfElems;
8446   unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
8447   if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
8448     return false;
8449 
8450   bool Overflow;
8451   llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
8452   if (Overflow)
8453     return false;
8454 
8455   Result = std::move(BytesAvailable);
8456   return true;
8457 }
8458 
8459 /// Convenience function. LVal's base must be a call to an alloc_size
8460 /// function.
getBytesReturnedByAllocSizeCall(const ASTContext & Ctx,const LValue & LVal,llvm::APInt & Result)8461 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
8462                                             const LValue &LVal,
8463                                             llvm::APInt &Result) {
8464   assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
8465          "Can't get the size of a non alloc_size function");
8466   const auto *Base = LVal.getLValueBase().get<const Expr *>();
8467   const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
8468   return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
8469 }
8470 
8471 /// Attempts to evaluate the given LValueBase as the result of a call to
8472 /// a function with the alloc_size attribute. If it was possible to do so, this
8473 /// function will return true, make Result's Base point to said function call,
8474 /// and mark Result's Base as invalid.
evaluateLValueAsAllocSize(EvalInfo & Info,APValue::LValueBase Base,LValue & Result)8475 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
8476                                       LValue &Result) {
8477   if (Base.isNull())
8478     return false;
8479 
8480   // Because we do no form of static analysis, we only support const variables.
8481   //
8482   // Additionally, we can't support parameters, nor can we support static
8483   // variables (in the latter case, use-before-assign isn't UB; in the former,
8484   // we have no clue what they'll be assigned to).
8485   const auto *VD =
8486       dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
8487   if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
8488     return false;
8489 
8490   const Expr *Init = VD->getAnyInitializer();
8491   if (!Init)
8492     return false;
8493 
8494   const Expr *E = Init->IgnoreParens();
8495   if (!tryUnwrapAllocSizeCall(E))
8496     return false;
8497 
8498   // Store E instead of E unwrapped so that the type of the LValue's base is
8499   // what the user wanted.
8500   Result.setInvalid(E);
8501 
8502   QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
8503   Result.addUnsizedArray(Info, E, Pointee);
8504   return true;
8505 }
8506 
8507 namespace {
8508 class PointerExprEvaluator
8509   : public ExprEvaluatorBase<PointerExprEvaluator> {
8510   LValue &Result;
8511   bool InvalidBaseOK;
8512 
Success(const Expr * E)8513   bool Success(const Expr *E) {
8514     Result.set(E);
8515     return true;
8516   }
8517 
evaluateLValue(const Expr * E,LValue & Result)8518   bool evaluateLValue(const Expr *E, LValue &Result) {
8519     return EvaluateLValue(E, Result, Info, InvalidBaseOK);
8520   }
8521 
evaluatePointer(const Expr * E,LValue & Result)8522   bool evaluatePointer(const Expr *E, LValue &Result) {
8523     return EvaluatePointer(E, Result, Info, InvalidBaseOK);
8524   }
8525 
8526   bool visitNonBuiltinCallExpr(const CallExpr *E);
8527 public:
8528 
PointerExprEvaluator(EvalInfo & info,LValue & Result,bool InvalidBaseOK)8529   PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
8530       : ExprEvaluatorBaseTy(info), Result(Result),
8531         InvalidBaseOK(InvalidBaseOK) {}
8532 
Success(const APValue & V,const Expr * E)8533   bool Success(const APValue &V, const Expr *E) {
8534     Result.setFrom(Info.Ctx, V);
8535     return true;
8536   }
ZeroInitialization(const Expr * E)8537   bool ZeroInitialization(const Expr *E) {
8538     Result.setNull(Info.Ctx, E->getType());
8539     return true;
8540   }
8541 
8542   bool VisitBinaryOperator(const BinaryOperator *E);
8543   bool VisitCastExpr(const CastExpr* E);
8544   bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)8545   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
8546       { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)8547   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
8548     if (E->isExpressibleAsConstantInitializer())
8549       return Success(E);
8550     if (Info.noteFailure())
8551       EvaluateIgnoredValue(Info, E->getSubExpr());
8552     return Error(E);
8553   }
VisitAddrLabelExpr(const AddrLabelExpr * E)8554   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
8555       { return Success(E); }
8556   bool VisitCallExpr(const CallExpr *E);
8557   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
VisitBlockExpr(const BlockExpr * E)8558   bool VisitBlockExpr(const BlockExpr *E) {
8559     if (!E->getBlockDecl()->hasCaptures())
8560       return Success(E);
8561     return Error(E);
8562   }
VisitCXXThisExpr(const CXXThisExpr * E)8563   bool VisitCXXThisExpr(const CXXThisExpr *E) {
8564     // Can't look at 'this' when checking a potential constant expression.
8565     if (Info.checkingPotentialConstantExpression())
8566       return false;
8567     if (!Info.CurrentCall->This) {
8568       if (Info.getLangOpts().CPlusPlus11)
8569         Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
8570       else
8571         Info.FFDiag(E);
8572       return false;
8573     }
8574     Result = *Info.CurrentCall->This;
8575     // If we are inside a lambda's call operator, the 'this' expression refers
8576     // to the enclosing '*this' object (either by value or reference) which is
8577     // either copied into the closure object's field that represents the '*this'
8578     // or refers to '*this'.
8579     if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
8580       // Ensure we actually have captured 'this'. (an error will have
8581       // been previously reported if not).
8582       if (!Info.CurrentCall->LambdaThisCaptureField)
8583         return false;
8584 
8585       // Update 'Result' to refer to the data member/field of the closure object
8586       // that represents the '*this' capture.
8587       if (!HandleLValueMember(Info, E, Result,
8588                              Info.CurrentCall->LambdaThisCaptureField))
8589         return false;
8590       // If we captured '*this' by reference, replace the field with its referent.
8591       if (Info.CurrentCall->LambdaThisCaptureField->getType()
8592               ->isPointerType()) {
8593         APValue RVal;
8594         if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
8595                                             RVal))
8596           return false;
8597 
8598         Result.setFrom(Info.Ctx, RVal);
8599       }
8600     }
8601     return true;
8602   }
8603 
8604   bool VisitCXXNewExpr(const CXXNewExpr *E);
8605 
VisitSourceLocExpr(const SourceLocExpr * E)8606   bool VisitSourceLocExpr(const SourceLocExpr *E) {
8607     assert(E->isStringType() && "SourceLocExpr isn't a pointer type?");
8608     APValue LValResult = E->EvaluateInContext(
8609         Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
8610     Result.setFrom(Info.Ctx, LValResult);
8611     return true;
8612   }
8613 
8614   // FIXME: Missing: @protocol, @selector
8615 };
8616 } // end anonymous namespace
8617 
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info,bool InvalidBaseOK)8618 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
8619                             bool InvalidBaseOK) {
8620   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
8621   return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
8622 }
8623 
VisitBinaryOperator(const BinaryOperator * E)8624 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8625   if (E->getOpcode() != BO_Add &&
8626       E->getOpcode() != BO_Sub)
8627     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8628 
8629   const Expr *PExp = E->getLHS();
8630   const Expr *IExp = E->getRHS();
8631   if (IExp->getType()->isPointerType())
8632     std::swap(PExp, IExp);
8633 
8634   bool EvalPtrOK = evaluatePointer(PExp, Result);
8635   if (!EvalPtrOK && !Info.noteFailure())
8636     return false;
8637 
8638   llvm::APSInt Offset;
8639   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
8640     return false;
8641 
8642   if (E->getOpcode() == BO_Sub)
8643     negateAsSigned(Offset);
8644 
8645   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
8646   return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
8647 }
8648 
VisitUnaryAddrOf(const UnaryOperator * E)8649 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
8650   return evaluateLValue(E->getSubExpr(), Result);
8651 }
8652 
VisitCastExpr(const CastExpr * E)8653 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
8654   const Expr *SubExpr = E->getSubExpr();
8655 
8656   switch (E->getCastKind()) {
8657   default:
8658     break;
8659   case CK_BitCast:
8660   case CK_CPointerToObjCPointerCast:
8661   case CK_BlockPointerToObjCPointerCast:
8662   case CK_AnyPointerToBlockPointerCast:
8663   case CK_AddressSpaceConversion:
8664     if (!Visit(SubExpr))
8665       return false;
8666     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
8667     // permitted in constant expressions in C++11. Bitcasts from cv void* are
8668     // also static_casts, but we disallow them as a resolution to DR1312.
8669     if (!E->getType()->isVoidPointerType()) {
8670       if (!Result.InvalidBase && !Result.Designator.Invalid &&
8671           !Result.IsNullPtr &&
8672           Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx),
8673                                           E->getType()->getPointeeType()) &&
8674           Info.getStdAllocatorCaller("allocate")) {
8675         // Inside a call to std::allocator::allocate and friends, we permit
8676         // casting from void* back to cv1 T* for a pointer that points to a
8677         // cv2 T.
8678       } else {
8679         Result.Designator.setInvalid();
8680         if (SubExpr->getType()->isVoidPointerType())
8681           CCEDiag(E, diag::note_constexpr_invalid_cast)
8682             << 3 << SubExpr->getType();
8683         else
8684           CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8685       }
8686     }
8687     if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
8688       ZeroInitialization(E);
8689     return true;
8690 
8691   case CK_DerivedToBase:
8692   case CK_UncheckedDerivedToBase:
8693     if (!evaluatePointer(E->getSubExpr(), Result))
8694       return false;
8695     if (!Result.Base && Result.Offset.isZero())
8696       return true;
8697 
8698     // Now figure out the necessary offset to add to the base LV to get from
8699     // the derived class to the base class.
8700     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
8701                                   castAs<PointerType>()->getPointeeType(),
8702                                 Result);
8703 
8704   case CK_BaseToDerived:
8705     if (!Visit(E->getSubExpr()))
8706       return false;
8707     if (!Result.Base && Result.Offset.isZero())
8708       return true;
8709     return HandleBaseToDerivedCast(Info, E, Result);
8710 
8711   case CK_Dynamic:
8712     if (!Visit(E->getSubExpr()))
8713       return false;
8714     return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
8715 
8716   case CK_NullToPointer:
8717     VisitIgnoredValue(E->getSubExpr());
8718     return ZeroInitialization(E);
8719 
8720   case CK_IntegralToPointer: {
8721     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8722 
8723     APValue Value;
8724     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
8725       break;
8726 
8727     if (Value.isInt()) {
8728       unsigned Size = Info.Ctx.getTypeSize(E->getType());
8729       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
8730       Result.Base = (Expr*)nullptr;
8731       Result.InvalidBase = false;
8732       Result.Offset = CharUnits::fromQuantity(N);
8733       Result.Designator.setInvalid();
8734       Result.IsNullPtr = false;
8735       return true;
8736     } else {
8737       // Cast is of an lvalue, no need to change value.
8738       Result.setFrom(Info.Ctx, Value);
8739       return true;
8740     }
8741   }
8742 
8743   case CK_ArrayToPointerDecay: {
8744     if (SubExpr->isGLValue()) {
8745       if (!evaluateLValue(SubExpr, Result))
8746         return false;
8747     } else {
8748       APValue &Value = Info.CurrentCall->createTemporary(
8749           SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result);
8750       if (!EvaluateInPlace(Value, Info, Result, SubExpr))
8751         return false;
8752     }
8753     // The result is a pointer to the first element of the array.
8754     auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
8755     if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
8756       Result.addArray(Info, E, CAT);
8757     else
8758       Result.addUnsizedArray(Info, E, AT->getElementType());
8759     return true;
8760   }
8761 
8762   case CK_FunctionToPointerDecay:
8763     return evaluateLValue(SubExpr, Result);
8764 
8765   case CK_LValueToRValue: {
8766     LValue LVal;
8767     if (!evaluateLValue(E->getSubExpr(), LVal))
8768       return false;
8769 
8770     APValue RVal;
8771     // Note, we use the subexpression's type in order to retain cv-qualifiers.
8772     if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
8773                                         LVal, RVal))
8774       return InvalidBaseOK &&
8775              evaluateLValueAsAllocSize(Info, LVal.Base, Result);
8776     return Success(RVal, E);
8777   }
8778   }
8779 
8780   return ExprEvaluatorBaseTy::VisitCastExpr(E);
8781 }
8782 
GetAlignOfType(EvalInfo & Info,QualType T,UnaryExprOrTypeTrait ExprKind)8783 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
8784                                 UnaryExprOrTypeTrait ExprKind) {
8785   // C++ [expr.alignof]p3:
8786   //     When alignof is applied to a reference type, the result is the
8787   //     alignment of the referenced type.
8788   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
8789     T = Ref->getPointeeType();
8790 
8791   if (T.getQualifiers().hasUnaligned())
8792     return CharUnits::One();
8793 
8794   const bool AlignOfReturnsPreferred =
8795       Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
8796 
8797   // __alignof is defined to return the preferred alignment.
8798   // Before 8, clang returned the preferred alignment for alignof and _Alignof
8799   // as well.
8800   if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
8801     return Info.Ctx.toCharUnitsFromBits(
8802       Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
8803   // alignof and _Alignof are defined to return the ABI alignment.
8804   else if (ExprKind == UETT_AlignOf)
8805     return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
8806   else
8807     llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
8808 }
8809 
GetAlignOfExpr(EvalInfo & Info,const Expr * E,UnaryExprOrTypeTrait ExprKind)8810 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
8811                                 UnaryExprOrTypeTrait ExprKind) {
8812   E = E->IgnoreParens();
8813 
8814   // The kinds of expressions that we have special-case logic here for
8815   // should be kept up to date with the special checks for those
8816   // expressions in Sema.
8817 
8818   // alignof decl is always accepted, even if it doesn't make sense: we default
8819   // to 1 in those cases.
8820   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
8821     return Info.Ctx.getDeclAlign(DRE->getDecl(),
8822                                  /*RefAsPointee*/true);
8823 
8824   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
8825     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
8826                                  /*RefAsPointee*/true);
8827 
8828   return GetAlignOfType(Info, E->getType(), ExprKind);
8829 }
8830 
getBaseAlignment(EvalInfo & Info,const LValue & Value)8831 static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) {
8832   if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>())
8833     return Info.Ctx.getDeclAlign(VD);
8834   if (const auto *E = Value.Base.dyn_cast<const Expr *>())
8835     return GetAlignOfExpr(Info, E, UETT_AlignOf);
8836   return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf);
8837 }
8838 
8839 /// Evaluate the value of the alignment argument to __builtin_align_{up,down},
8840 /// __builtin_is_aligned and __builtin_assume_aligned.
getAlignmentArgument(const Expr * E,QualType ForType,EvalInfo & Info,APSInt & Alignment)8841 static bool getAlignmentArgument(const Expr *E, QualType ForType,
8842                                  EvalInfo &Info, APSInt &Alignment) {
8843   if (!EvaluateInteger(E, Alignment, Info))
8844     return false;
8845   if (Alignment < 0 || !Alignment.isPowerOf2()) {
8846     Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment;
8847     return false;
8848   }
8849   unsigned SrcWidth = Info.Ctx.getIntWidth(ForType);
8850   APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1));
8851   if (APSInt::compareValues(Alignment, MaxValue) > 0) {
8852     Info.FFDiag(E, diag::note_constexpr_alignment_too_big)
8853         << MaxValue << ForType << Alignment;
8854     return false;
8855   }
8856   // Ensure both alignment and source value have the same bit width so that we
8857   // don't assert when computing the resulting value.
8858   APSInt ExtAlignment =
8859       APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true);
8860   assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 &&
8861          "Alignment should not be changed by ext/trunc");
8862   Alignment = ExtAlignment;
8863   assert(Alignment.getBitWidth() == SrcWidth);
8864   return true;
8865 }
8866 
8867 // To be clear: this happily visits unsupported builtins. Better name welcomed.
visitNonBuiltinCallExpr(const CallExpr * E)8868 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
8869   if (ExprEvaluatorBaseTy::VisitCallExpr(E))
8870     return true;
8871 
8872   if (!(InvalidBaseOK && getAllocSizeAttr(E)))
8873     return false;
8874 
8875   Result.setInvalid(E);
8876   QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
8877   Result.addUnsizedArray(Info, E, PointeeTy);
8878   return true;
8879 }
8880 
VisitCallExpr(const CallExpr * E)8881 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
8882   if (IsStringLiteralCall(E))
8883     return Success(E);
8884 
8885   if (unsigned BuiltinOp = E->getBuiltinCallee())
8886     return VisitBuiltinCallExpr(E, BuiltinOp);
8887 
8888   return visitNonBuiltinCallExpr(E);
8889 }
8890 
8891 // Determine if T is a character type for which we guarantee that
8892 // sizeof(T) == 1.
isOneByteCharacterType(QualType T)8893 static bool isOneByteCharacterType(QualType T) {
8894   return T->isCharType() || T->isChar8Type();
8895 }
8896 
VisitBuiltinCallExpr(const CallExpr * E,unsigned BuiltinOp)8897 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
8898                                                 unsigned BuiltinOp) {
8899   switch (BuiltinOp) {
8900   case Builtin::BI__builtin_addressof:
8901     return evaluateLValue(E->getArg(0), Result);
8902   case Builtin::BI__builtin_assume_aligned: {
8903     // We need to be very careful here because: if the pointer does not have the
8904     // asserted alignment, then the behavior is undefined, and undefined
8905     // behavior is non-constant.
8906     if (!evaluatePointer(E->getArg(0), Result))
8907       return false;
8908 
8909     LValue OffsetResult(Result);
8910     APSInt Alignment;
8911     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
8912                               Alignment))
8913       return false;
8914     CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
8915 
8916     if (E->getNumArgs() > 2) {
8917       APSInt Offset;
8918       if (!EvaluateInteger(E->getArg(2), Offset, Info))
8919         return false;
8920 
8921       int64_t AdditionalOffset = -Offset.getZExtValue();
8922       OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
8923     }
8924 
8925     // If there is a base object, then it must have the correct alignment.
8926     if (OffsetResult.Base) {
8927       CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult);
8928 
8929       if (BaseAlignment < Align) {
8930         Result.Designator.setInvalid();
8931         // FIXME: Add support to Diagnostic for long / long long.
8932         CCEDiag(E->getArg(0),
8933                 diag::note_constexpr_baa_insufficient_alignment) << 0
8934           << (unsigned)BaseAlignment.getQuantity()
8935           << (unsigned)Align.getQuantity();
8936         return false;
8937       }
8938     }
8939 
8940     // The offset must also have the correct alignment.
8941     if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
8942       Result.Designator.setInvalid();
8943 
8944       (OffsetResult.Base
8945            ? CCEDiag(E->getArg(0),
8946                      diag::note_constexpr_baa_insufficient_alignment) << 1
8947            : CCEDiag(E->getArg(0),
8948                      diag::note_constexpr_baa_value_insufficient_alignment))
8949         << (int)OffsetResult.Offset.getQuantity()
8950         << (unsigned)Align.getQuantity();
8951       return false;
8952     }
8953 
8954     return true;
8955   }
8956   case Builtin::BI__builtin_align_up:
8957   case Builtin::BI__builtin_align_down: {
8958     if (!evaluatePointer(E->getArg(0), Result))
8959       return false;
8960     APSInt Alignment;
8961     if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info,
8962                               Alignment))
8963       return false;
8964     CharUnits BaseAlignment = getBaseAlignment(Info, Result);
8965     CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset);
8966     // For align_up/align_down, we can return the same value if the alignment
8967     // is known to be greater or equal to the requested value.
8968     if (PtrAlign.getQuantity() >= Alignment)
8969       return true;
8970 
8971     // The alignment could be greater than the minimum at run-time, so we cannot
8972     // infer much about the resulting pointer value. One case is possible:
8973     // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we
8974     // can infer the correct index if the requested alignment is smaller than
8975     // the base alignment so we can perform the computation on the offset.
8976     if (BaseAlignment.getQuantity() >= Alignment) {
8977       assert(Alignment.getBitWidth() <= 64 &&
8978              "Cannot handle > 64-bit address-space");
8979       uint64_t Alignment64 = Alignment.getZExtValue();
8980       CharUnits NewOffset = CharUnits::fromQuantity(
8981           BuiltinOp == Builtin::BI__builtin_align_down
8982               ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64)
8983               : llvm::alignTo(Result.Offset.getQuantity(), Alignment64));
8984       Result.adjustOffset(NewOffset - Result.Offset);
8985       // TODO: diagnose out-of-bounds values/only allow for arrays?
8986       return true;
8987     }
8988     // Otherwise, we cannot constant-evaluate the result.
8989     Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust)
8990         << Alignment;
8991     return false;
8992   }
8993   case Builtin::BI__builtin_operator_new:
8994     return HandleOperatorNewCall(Info, E, Result);
8995   case Builtin::BI__builtin_launder:
8996     return evaluatePointer(E->getArg(0), Result);
8997   case Builtin::BIstrchr:
8998   case Builtin::BIwcschr:
8999   case Builtin::BImemchr:
9000   case Builtin::BIwmemchr:
9001     if (Info.getLangOpts().CPlusPlus11)
9002       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9003         << /*isConstexpr*/0 << /*isConstructor*/0
9004         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
9005     else
9006       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9007     LLVM_FALLTHROUGH;
9008   case Builtin::BI__builtin_strchr:
9009   case Builtin::BI__builtin_wcschr:
9010   case Builtin::BI__builtin_memchr:
9011   case Builtin::BI__builtin_char_memchr:
9012   case Builtin::BI__builtin_wmemchr: {
9013     if (!Visit(E->getArg(0)))
9014       return false;
9015     APSInt Desired;
9016     if (!EvaluateInteger(E->getArg(1), Desired, Info))
9017       return false;
9018     uint64_t MaxLength = uint64_t(-1);
9019     if (BuiltinOp != Builtin::BIstrchr &&
9020         BuiltinOp != Builtin::BIwcschr &&
9021         BuiltinOp != Builtin::BI__builtin_strchr &&
9022         BuiltinOp != Builtin::BI__builtin_wcschr) {
9023       APSInt N;
9024       if (!EvaluateInteger(E->getArg(2), N, Info))
9025         return false;
9026       MaxLength = N.getExtValue();
9027     }
9028     // We cannot find the value if there are no candidates to match against.
9029     if (MaxLength == 0u)
9030       return ZeroInitialization(E);
9031     if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
9032         Result.Designator.Invalid)
9033       return false;
9034     QualType CharTy = Result.Designator.getType(Info.Ctx);
9035     bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
9036                      BuiltinOp == Builtin::BI__builtin_memchr;
9037     assert(IsRawByte ||
9038            Info.Ctx.hasSameUnqualifiedType(
9039                CharTy, E->getArg(0)->getType()->getPointeeType()));
9040     // Pointers to const void may point to objects of incomplete type.
9041     if (IsRawByte && CharTy->isIncompleteType()) {
9042       Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
9043       return false;
9044     }
9045     // Give up on byte-oriented matching against multibyte elements.
9046     // FIXME: We can compare the bytes in the correct order.
9047     if (IsRawByte && !isOneByteCharacterType(CharTy)) {
9048       Info.FFDiag(E, diag::note_constexpr_memchr_unsupported)
9049           << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
9050           << CharTy;
9051       return false;
9052     }
9053     // Figure out what value we're actually looking for (after converting to
9054     // the corresponding unsigned type if necessary).
9055     uint64_t DesiredVal;
9056     bool StopAtNull = false;
9057     switch (BuiltinOp) {
9058     case Builtin::BIstrchr:
9059     case Builtin::BI__builtin_strchr:
9060       // strchr compares directly to the passed integer, and therefore
9061       // always fails if given an int that is not a char.
9062       if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
9063                                                   E->getArg(1)->getType(),
9064                                                   Desired),
9065                                Desired))
9066         return ZeroInitialization(E);
9067       StopAtNull = true;
9068       LLVM_FALLTHROUGH;
9069     case Builtin::BImemchr:
9070     case Builtin::BI__builtin_memchr:
9071     case Builtin::BI__builtin_char_memchr:
9072       // memchr compares by converting both sides to unsigned char. That's also
9073       // correct for strchr if we get this far (to cope with plain char being
9074       // unsigned in the strchr case).
9075       DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
9076       break;
9077 
9078     case Builtin::BIwcschr:
9079     case Builtin::BI__builtin_wcschr:
9080       StopAtNull = true;
9081       LLVM_FALLTHROUGH;
9082     case Builtin::BIwmemchr:
9083     case Builtin::BI__builtin_wmemchr:
9084       // wcschr and wmemchr are given a wchar_t to look for. Just use it.
9085       DesiredVal = Desired.getZExtValue();
9086       break;
9087     }
9088 
9089     for (; MaxLength; --MaxLength) {
9090       APValue Char;
9091       if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
9092           !Char.isInt())
9093         return false;
9094       if (Char.getInt().getZExtValue() == DesiredVal)
9095         return true;
9096       if (StopAtNull && !Char.getInt())
9097         break;
9098       if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
9099         return false;
9100     }
9101     // Not found: return nullptr.
9102     return ZeroInitialization(E);
9103   }
9104 
9105   case Builtin::BImemcpy:
9106   case Builtin::BImemmove:
9107   case Builtin::BIwmemcpy:
9108   case Builtin::BIwmemmove:
9109     if (Info.getLangOpts().CPlusPlus11)
9110       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
9111         << /*isConstexpr*/0 << /*isConstructor*/0
9112         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
9113     else
9114       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
9115     LLVM_FALLTHROUGH;
9116   case Builtin::BI__builtin_memcpy:
9117   case Builtin::BI__builtin_memmove:
9118   case Builtin::BI__builtin_wmemcpy:
9119   case Builtin::BI__builtin_wmemmove: {
9120     bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
9121                  BuiltinOp == Builtin::BIwmemmove ||
9122                  BuiltinOp == Builtin::BI__builtin_wmemcpy ||
9123                  BuiltinOp == Builtin::BI__builtin_wmemmove;
9124     bool Move = BuiltinOp == Builtin::BImemmove ||
9125                 BuiltinOp == Builtin::BIwmemmove ||
9126                 BuiltinOp == Builtin::BI__builtin_memmove ||
9127                 BuiltinOp == Builtin::BI__builtin_wmemmove;
9128 
9129     // The result of mem* is the first argument.
9130     if (!Visit(E->getArg(0)))
9131       return false;
9132     LValue Dest = Result;
9133 
9134     LValue Src;
9135     if (!EvaluatePointer(E->getArg(1), Src, Info))
9136       return false;
9137 
9138     APSInt N;
9139     if (!EvaluateInteger(E->getArg(2), N, Info))
9140       return false;
9141     assert(!N.isSigned() && "memcpy and friends take an unsigned size");
9142 
9143     // If the size is zero, we treat this as always being a valid no-op.
9144     // (Even if one of the src and dest pointers is null.)
9145     if (!N)
9146       return true;
9147 
9148     // Otherwise, if either of the operands is null, we can't proceed. Don't
9149     // try to determine the type of the copied objects, because there aren't
9150     // any.
9151     if (!Src.Base || !Dest.Base) {
9152       APValue Val;
9153       (!Src.Base ? Src : Dest).moveInto(Val);
9154       Info.FFDiag(E, diag::note_constexpr_memcpy_null)
9155           << Move << WChar << !!Src.Base
9156           << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
9157       return false;
9158     }
9159     if (Src.Designator.Invalid || Dest.Designator.Invalid)
9160       return false;
9161 
9162     // We require that Src and Dest are both pointers to arrays of
9163     // trivially-copyable type. (For the wide version, the designator will be
9164     // invalid if the designated object is not a wchar_t.)
9165     QualType T = Dest.Designator.getType(Info.Ctx);
9166     QualType SrcT = Src.Designator.getType(Info.Ctx);
9167     if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
9168       // FIXME: Consider using our bit_cast implementation to support this.
9169       Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
9170       return false;
9171     }
9172     if (T->isIncompleteType()) {
9173       Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
9174       return false;
9175     }
9176     if (!T.isTriviallyCopyableType(Info.Ctx)) {
9177       Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
9178       return false;
9179     }
9180 
9181     // Figure out how many T's we're copying.
9182     uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
9183     if (!WChar) {
9184       uint64_t Remainder;
9185       llvm::APInt OrigN = N;
9186       llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
9187       if (Remainder) {
9188         Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9189             << Move << WChar << 0 << T << OrigN.toString(10, /*Signed*/false)
9190             << (unsigned)TSize;
9191         return false;
9192       }
9193     }
9194 
9195     // Check that the copying will remain within the arrays, just so that we
9196     // can give a more meaningful diagnostic. This implicitly also checks that
9197     // N fits into 64 bits.
9198     uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
9199     uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
9200     if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
9201       Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
9202           << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
9203           << N.toString(10, /*Signed*/false);
9204       return false;
9205     }
9206     uint64_t NElems = N.getZExtValue();
9207     uint64_t NBytes = NElems * TSize;
9208 
9209     // Check for overlap.
9210     int Direction = 1;
9211     if (HasSameBase(Src, Dest)) {
9212       uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
9213       uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
9214       if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
9215         // Dest is inside the source region.
9216         if (!Move) {
9217           Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9218           return false;
9219         }
9220         // For memmove and friends, copy backwards.
9221         if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
9222             !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
9223           return false;
9224         Direction = -1;
9225       } else if (!Move && SrcOffset >= DestOffset &&
9226                  SrcOffset - DestOffset < NBytes) {
9227         // Src is inside the destination region for memcpy: invalid.
9228         Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
9229         return false;
9230       }
9231     }
9232 
9233     while (true) {
9234       APValue Val;
9235       // FIXME: Set WantObjectRepresentation to true if we're copying a
9236       // char-like type?
9237       if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
9238           !handleAssignment(Info, E, Dest, T, Val))
9239         return false;
9240       // Do not iterate past the last element; if we're copying backwards, that
9241       // might take us off the start of the array.
9242       if (--NElems == 0)
9243         return true;
9244       if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
9245           !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
9246         return false;
9247     }
9248   }
9249 
9250   default:
9251     break;
9252   }
9253 
9254   return visitNonBuiltinCallExpr(E);
9255 }
9256 
9257 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
9258                                      APValue &Result, const InitListExpr *ILE,
9259                                      QualType AllocType);
9260 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
9261                                           APValue &Result,
9262                                           const CXXConstructExpr *CCE,
9263                                           QualType AllocType);
9264 
VisitCXXNewExpr(const CXXNewExpr * E)9265 bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) {
9266   if (!Info.getLangOpts().CPlusPlus20)
9267     Info.CCEDiag(E, diag::note_constexpr_new);
9268 
9269   // We cannot speculatively evaluate a delete expression.
9270   if (Info.SpeculativeEvaluationDepth)
9271     return false;
9272 
9273   FunctionDecl *OperatorNew = E->getOperatorNew();
9274 
9275   bool IsNothrow = false;
9276   bool IsPlacement = false;
9277   if (OperatorNew->isReservedGlobalPlacementOperator() &&
9278       Info.CurrentCall->isStdFunction() && !E->isArray()) {
9279     // FIXME Support array placement new.
9280     assert(E->getNumPlacementArgs() == 1);
9281     if (!EvaluatePointer(E->getPlacementArg(0), Result, Info))
9282       return false;
9283     if (Result.Designator.Invalid)
9284       return false;
9285     IsPlacement = true;
9286   } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
9287     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
9288         << isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
9289     return false;
9290   } else if (E->getNumPlacementArgs()) {
9291     // The only new-placement list we support is of the form (std::nothrow).
9292     //
9293     // FIXME: There is no restriction on this, but it's not clear that any
9294     // other form makes any sense. We get here for cases such as:
9295     //
9296     //   new (std::align_val_t{N}) X(int)
9297     //
9298     // (which should presumably be valid only if N is a multiple of
9299     // alignof(int), and in any case can't be deallocated unless N is
9300     // alignof(X) and X has new-extended alignment).
9301     if (E->getNumPlacementArgs() != 1 ||
9302         !E->getPlacementArg(0)->getType()->isNothrowT())
9303       return Error(E, diag::note_constexpr_new_placement);
9304 
9305     LValue Nothrow;
9306     if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info))
9307       return false;
9308     IsNothrow = true;
9309   }
9310 
9311   const Expr *Init = E->getInitializer();
9312   const InitListExpr *ResizedArrayILE = nullptr;
9313   const CXXConstructExpr *ResizedArrayCCE = nullptr;
9314   bool ValueInit = false;
9315 
9316   QualType AllocType = E->getAllocatedType();
9317   if (Optional<const Expr*> ArraySize = E->getArraySize()) {
9318     const Expr *Stripped = *ArraySize;
9319     for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
9320          Stripped = ICE->getSubExpr())
9321       if (ICE->getCastKind() != CK_NoOp &&
9322           ICE->getCastKind() != CK_IntegralCast)
9323         break;
9324 
9325     llvm::APSInt ArrayBound;
9326     if (!EvaluateInteger(Stripped, ArrayBound, Info))
9327       return false;
9328 
9329     // C++ [expr.new]p9:
9330     //   The expression is erroneous if:
9331     //   -- [...] its value before converting to size_t [or] applying the
9332     //      second standard conversion sequence is less than zero
9333     if (ArrayBound.isSigned() && ArrayBound.isNegative()) {
9334       if (IsNothrow)
9335         return ZeroInitialization(E);
9336 
9337       Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative)
9338           << ArrayBound << (*ArraySize)->getSourceRange();
9339       return false;
9340     }
9341 
9342     //   -- its value is such that the size of the allocated object would
9343     //      exceed the implementation-defined limit
9344     if (ConstantArrayType::getNumAddressingBits(Info.Ctx, AllocType,
9345                                                 ArrayBound) >
9346         ConstantArrayType::getMaxSizeBits(Info.Ctx)) {
9347       if (IsNothrow)
9348         return ZeroInitialization(E);
9349 
9350       Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_large)
9351         << ArrayBound << (*ArraySize)->getSourceRange();
9352       return false;
9353     }
9354 
9355     //   -- the new-initializer is a braced-init-list and the number of
9356     //      array elements for which initializers are provided [...]
9357     //      exceeds the number of elements to initialize
9358     if (!Init) {
9359       // No initialization is performed.
9360     } else if (isa<CXXScalarValueInitExpr>(Init) ||
9361                isa<ImplicitValueInitExpr>(Init)) {
9362       ValueInit = true;
9363     } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
9364       ResizedArrayCCE = CCE;
9365     } else {
9366       auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType());
9367       assert(CAT && "unexpected type for array initializer");
9368 
9369       unsigned Bits =
9370           std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth());
9371       llvm::APInt InitBound = CAT->getSize().zextOrSelf(Bits);
9372       llvm::APInt AllocBound = ArrayBound.zextOrSelf(Bits);
9373       if (InitBound.ugt(AllocBound)) {
9374         if (IsNothrow)
9375           return ZeroInitialization(E);
9376 
9377         Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small)
9378             << AllocBound.toString(10, /*Signed=*/false)
9379             << InitBound.toString(10, /*Signed=*/false)
9380             << (*ArraySize)->getSourceRange();
9381         return false;
9382       }
9383 
9384       // If the sizes differ, we must have an initializer list, and we need
9385       // special handling for this case when we initialize.
9386       if (InitBound != AllocBound)
9387         ResizedArrayILE = cast<InitListExpr>(Init);
9388     }
9389 
9390     AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr,
9391                                               ArrayType::Normal, 0);
9392   } else {
9393     assert(!AllocType->isArrayType() &&
9394            "array allocation with non-array new");
9395   }
9396 
9397   APValue *Val;
9398   if (IsPlacement) {
9399     AccessKinds AK = AK_Construct;
9400     struct FindObjectHandler {
9401       EvalInfo &Info;
9402       const Expr *E;
9403       QualType AllocType;
9404       const AccessKinds AccessKind;
9405       APValue *Value;
9406 
9407       typedef bool result_type;
9408       bool failed() { return false; }
9409       bool found(APValue &Subobj, QualType SubobjType) {
9410         // FIXME: Reject the cases where [basic.life]p8 would not permit the
9411         // old name of the object to be used to name the new object.
9412         if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) {
9413           Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) <<
9414             SubobjType << AllocType;
9415           return false;
9416         }
9417         Value = &Subobj;
9418         return true;
9419       }
9420       bool found(APSInt &Value, QualType SubobjType) {
9421         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9422         return false;
9423       }
9424       bool found(APFloat &Value, QualType SubobjType) {
9425         Info.FFDiag(E, diag::note_constexpr_construct_complex_elem);
9426         return false;
9427       }
9428     } Handler = {Info, E, AllocType, AK, nullptr};
9429 
9430     CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType);
9431     if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler))
9432       return false;
9433 
9434     Val = Handler.Value;
9435 
9436     // [basic.life]p1:
9437     //   The lifetime of an object o of type T ends when [...] the storage
9438     //   which the object occupies is [...] reused by an object that is not
9439     //   nested within o (6.6.2).
9440     *Val = APValue();
9441   } else {
9442     // Perform the allocation and obtain a pointer to the resulting object.
9443     Val = Info.createHeapAlloc(E, AllocType, Result);
9444     if (!Val)
9445       return false;
9446   }
9447 
9448   if (ValueInit) {
9449     ImplicitValueInitExpr VIE(AllocType);
9450     if (!EvaluateInPlace(*Val, Info, Result, &VIE))
9451       return false;
9452   } else if (ResizedArrayILE) {
9453     if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE,
9454                                   AllocType))
9455       return false;
9456   } else if (ResizedArrayCCE) {
9457     if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE,
9458                                        AllocType))
9459       return false;
9460   } else if (Init) {
9461     if (!EvaluateInPlace(*Val, Info, Result, Init))
9462       return false;
9463   } else if (!getDefaultInitValue(AllocType, *Val)) {
9464     return false;
9465   }
9466 
9467   // Array new returns a pointer to the first element, not a pointer to the
9468   // array.
9469   if (auto *AT = AllocType->getAsArrayTypeUnsafe())
9470     Result.addArray(Info, E, cast<ConstantArrayType>(AT));
9471 
9472   return true;
9473 }
9474 //===----------------------------------------------------------------------===//
9475 // Member Pointer Evaluation
9476 //===----------------------------------------------------------------------===//
9477 
9478 namespace {
9479 class MemberPointerExprEvaluator
9480   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
9481   MemberPtr &Result;
9482 
Success(const ValueDecl * D)9483   bool Success(const ValueDecl *D) {
9484     Result = MemberPtr(D);
9485     return true;
9486   }
9487 public:
9488 
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)9489   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
9490     : ExprEvaluatorBaseTy(Info), Result(Result) {}
9491 
Success(const APValue & V,const Expr * E)9492   bool Success(const APValue &V, const Expr *E) {
9493     Result.setFrom(V);
9494     return true;
9495   }
ZeroInitialization(const Expr * E)9496   bool ZeroInitialization(const Expr *E) {
9497     return Success((const ValueDecl*)nullptr);
9498   }
9499 
9500   bool VisitCastExpr(const CastExpr *E);
9501   bool VisitUnaryAddrOf(const UnaryOperator *E);
9502 };
9503 } // end anonymous namespace
9504 
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)9505 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
9506                                   EvalInfo &Info) {
9507   assert(E->isRValue() && E->getType()->isMemberPointerType());
9508   return MemberPointerExprEvaluator(Info, Result).Visit(E);
9509 }
9510 
VisitCastExpr(const CastExpr * E)9511 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
9512   switch (E->getCastKind()) {
9513   default:
9514     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9515 
9516   case CK_NullToMemberPointer:
9517     VisitIgnoredValue(E->getSubExpr());
9518     return ZeroInitialization(E);
9519 
9520   case CK_BaseToDerivedMemberPointer: {
9521     if (!Visit(E->getSubExpr()))
9522       return false;
9523     if (E->path_empty())
9524       return true;
9525     // Base-to-derived member pointer casts store the path in derived-to-base
9526     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
9527     // the wrong end of the derived->base arc, so stagger the path by one class.
9528     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
9529     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
9530          PathI != PathE; ++PathI) {
9531       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9532       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
9533       if (!Result.castToDerived(Derived))
9534         return Error(E);
9535     }
9536     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
9537     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
9538       return Error(E);
9539     return true;
9540   }
9541 
9542   case CK_DerivedToBaseMemberPointer:
9543     if (!Visit(E->getSubExpr()))
9544       return false;
9545     for (CastExpr::path_const_iterator PathI = E->path_begin(),
9546          PathE = E->path_end(); PathI != PathE; ++PathI) {
9547       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
9548       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9549       if (!Result.castToBase(Base))
9550         return Error(E);
9551     }
9552     return true;
9553   }
9554 }
9555 
VisitUnaryAddrOf(const UnaryOperator * E)9556 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
9557   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
9558   // member can be formed.
9559   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
9560 }
9561 
9562 //===----------------------------------------------------------------------===//
9563 // Record Evaluation
9564 //===----------------------------------------------------------------------===//
9565 
9566 namespace {
9567   class RecordExprEvaluator
9568   : public ExprEvaluatorBase<RecordExprEvaluator> {
9569     const LValue &This;
9570     APValue &Result;
9571   public:
9572 
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)9573     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
9574       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
9575 
Success(const APValue & V,const Expr * E)9576     bool Success(const APValue &V, const Expr *E) {
9577       Result = V;
9578       return true;
9579     }
ZeroInitialization(const Expr * E)9580     bool ZeroInitialization(const Expr *E) {
9581       return ZeroInitialization(E, E->getType());
9582     }
9583     bool ZeroInitialization(const Expr *E, QualType T);
9584 
VisitCallExpr(const CallExpr * E)9585     bool VisitCallExpr(const CallExpr *E) {
9586       return handleCallExpr(E, Result, &This);
9587     }
9588     bool VisitCastExpr(const CastExpr *E);
9589     bool VisitInitListExpr(const InitListExpr *E);
VisitCXXConstructExpr(const CXXConstructExpr * E)9590     bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
9591       return VisitCXXConstructExpr(E, E->getType());
9592     }
9593     bool VisitLambdaExpr(const LambdaExpr *E);
9594     bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
9595     bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
9596     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
9597     bool VisitBinCmp(const BinaryOperator *E);
9598   };
9599 }
9600 
9601 /// Perform zero-initialization on an object of non-union class type.
9602 /// C++11 [dcl.init]p5:
9603 ///  To zero-initialize an object or reference of type T means:
9604 ///    [...]
9605 ///    -- if T is a (possibly cv-qualified) non-union class type,
9606 ///       each non-static data member and each base-class subobject is
9607 ///       zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)9608 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
9609                                           const RecordDecl *RD,
9610                                           const LValue &This, APValue &Result) {
9611   assert(!RD->isUnion() && "Expected non-union class type");
9612   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
9613   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
9614                    std::distance(RD->field_begin(), RD->field_end()));
9615 
9616   if (RD->isInvalidDecl()) return false;
9617   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9618 
9619   if (CD) {
9620     unsigned Index = 0;
9621     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
9622            End = CD->bases_end(); I != End; ++I, ++Index) {
9623       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
9624       LValue Subobject = This;
9625       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
9626         return false;
9627       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
9628                                          Result.getStructBase(Index)))
9629         return false;
9630     }
9631   }
9632 
9633   for (const auto *I : RD->fields()) {
9634     // -- if T is a reference type, no initialization is performed.
9635     if (I->isUnnamedBitfield() || I->getType()->isReferenceType())
9636       continue;
9637 
9638     LValue Subobject = This;
9639     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
9640       return false;
9641 
9642     ImplicitValueInitExpr VIE(I->getType());
9643     if (!EvaluateInPlace(
9644           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
9645       return false;
9646   }
9647 
9648   return true;
9649 }
9650 
ZeroInitialization(const Expr * E,QualType T)9651 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
9652   const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
9653   if (RD->isInvalidDecl()) return false;
9654   if (RD->isUnion()) {
9655     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
9656     // object's first non-static named data member is zero-initialized
9657     RecordDecl::field_iterator I = RD->field_begin();
9658     while (I != RD->field_end() && (*I)->isUnnamedBitfield())
9659       ++I;
9660     if (I == RD->field_end()) {
9661       Result = APValue((const FieldDecl*)nullptr);
9662       return true;
9663     }
9664 
9665     LValue Subobject = This;
9666     if (!HandleLValueMember(Info, E, Subobject, *I))
9667       return false;
9668     Result = APValue(*I);
9669     ImplicitValueInitExpr VIE(I->getType());
9670     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
9671   }
9672 
9673   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
9674     Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
9675     return false;
9676   }
9677 
9678   return HandleClassZeroInitialization(Info, E, RD, This, Result);
9679 }
9680 
VisitCastExpr(const CastExpr * E)9681 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
9682   switch (E->getCastKind()) {
9683   default:
9684     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9685 
9686   case CK_ConstructorConversion:
9687     return Visit(E->getSubExpr());
9688 
9689   case CK_DerivedToBase:
9690   case CK_UncheckedDerivedToBase: {
9691     APValue DerivedObject;
9692     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
9693       return false;
9694     if (!DerivedObject.isStruct())
9695       return Error(E->getSubExpr());
9696 
9697     // Derived-to-base rvalue conversion: just slice off the derived part.
9698     APValue *Value = &DerivedObject;
9699     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
9700     for (CastExpr::path_const_iterator PathI = E->path_begin(),
9701          PathE = E->path_end(); PathI != PathE; ++PathI) {
9702       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
9703       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
9704       Value = &Value->getStructBase(getBaseIndex(RD, Base));
9705       RD = Base;
9706     }
9707     Result = *Value;
9708     return true;
9709   }
9710   }
9711 }
9712 
VisitInitListExpr(const InitListExpr * E)9713 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
9714   if (E->isTransparent())
9715     return Visit(E->getInit(0));
9716 
9717   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
9718   if (RD->isInvalidDecl()) return false;
9719   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
9720   auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
9721 
9722   EvalInfo::EvaluatingConstructorRAII EvalObj(
9723       Info,
9724       ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
9725       CXXRD && CXXRD->getNumBases());
9726 
9727   if (RD->isUnion()) {
9728     const FieldDecl *Field = E->getInitializedFieldInUnion();
9729     Result = APValue(Field);
9730     if (!Field)
9731       return true;
9732 
9733     // If the initializer list for a union does not contain any elements, the
9734     // first element of the union is value-initialized.
9735     // FIXME: The element should be initialized from an initializer list.
9736     //        Is this difference ever observable for initializer lists which
9737     //        we don't build?
9738     ImplicitValueInitExpr VIE(Field->getType());
9739     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
9740 
9741     LValue Subobject = This;
9742     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
9743       return false;
9744 
9745     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9746     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9747                                   isa<CXXDefaultInitExpr>(InitExpr));
9748 
9749     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
9750   }
9751 
9752   if (!Result.hasValue())
9753     Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
9754                      std::distance(RD->field_begin(), RD->field_end()));
9755   unsigned ElementNo = 0;
9756   bool Success = true;
9757 
9758   // Initialize base classes.
9759   if (CXXRD && CXXRD->getNumBases()) {
9760     for (const auto &Base : CXXRD->bases()) {
9761       assert(ElementNo < E->getNumInits() && "missing init for base class");
9762       const Expr *Init = E->getInit(ElementNo);
9763 
9764       LValue Subobject = This;
9765       if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
9766         return false;
9767 
9768       APValue &FieldVal = Result.getStructBase(ElementNo);
9769       if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
9770         if (!Info.noteFailure())
9771           return false;
9772         Success = false;
9773       }
9774       ++ElementNo;
9775     }
9776 
9777     EvalObj.finishedConstructingBases();
9778   }
9779 
9780   // Initialize members.
9781   for (const auto *Field : RD->fields()) {
9782     // Anonymous bit-fields are not considered members of the class for
9783     // purposes of aggregate initialization.
9784     if (Field->isUnnamedBitfield())
9785       continue;
9786 
9787     LValue Subobject = This;
9788 
9789     bool HaveInit = ElementNo < E->getNumInits();
9790 
9791     // FIXME: Diagnostics here should point to the end of the initializer
9792     // list, not the start.
9793     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
9794                             Subobject, Field, &Layout))
9795       return false;
9796 
9797     // Perform an implicit value-initialization for members beyond the end of
9798     // the initializer list.
9799     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
9800     const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
9801 
9802     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
9803     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
9804                                   isa<CXXDefaultInitExpr>(Init));
9805 
9806     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
9807     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
9808         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
9809                                                        FieldVal, Field))) {
9810       if (!Info.noteFailure())
9811         return false;
9812       Success = false;
9813     }
9814   }
9815 
9816   EvalObj.finishedConstructingFields();
9817 
9818   return Success;
9819 }
9820 
VisitCXXConstructExpr(const CXXConstructExpr * E,QualType T)9821 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
9822                                                 QualType T) {
9823   // Note that E's type is not necessarily the type of our class here; we might
9824   // be initializing an array element instead.
9825   const CXXConstructorDecl *FD = E->getConstructor();
9826   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
9827 
9828   bool ZeroInit = E->requiresZeroInitialization();
9829   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
9830     // If we've already performed zero-initialization, we're already done.
9831     if (Result.hasValue())
9832       return true;
9833 
9834     if (ZeroInit)
9835       return ZeroInitialization(E, T);
9836 
9837     return getDefaultInitValue(T, Result);
9838   }
9839 
9840   const FunctionDecl *Definition = nullptr;
9841   auto Body = FD->getBody(Definition);
9842 
9843   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9844     return false;
9845 
9846   // Avoid materializing a temporary for an elidable copy/move constructor.
9847   if (E->isElidable() && !ZeroInit)
9848     if (const MaterializeTemporaryExpr *ME
9849           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
9850       return Visit(ME->getSubExpr());
9851 
9852   if (ZeroInit && !ZeroInitialization(E, T))
9853     return false;
9854 
9855   auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
9856   return HandleConstructorCall(E, This, Args,
9857                                cast<CXXConstructorDecl>(Definition), Info,
9858                                Result);
9859 }
9860 
VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr * E)9861 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
9862     const CXXInheritedCtorInitExpr *E) {
9863   if (!Info.CurrentCall) {
9864     assert(Info.checkingPotentialConstantExpression());
9865     return false;
9866   }
9867 
9868   const CXXConstructorDecl *FD = E->getConstructor();
9869   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
9870     return false;
9871 
9872   const FunctionDecl *Definition = nullptr;
9873   auto Body = FD->getBody(Definition);
9874 
9875   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
9876     return false;
9877 
9878   return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
9879                                cast<CXXConstructorDecl>(Definition), Info,
9880                                Result);
9881 }
9882 
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)9883 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
9884     const CXXStdInitializerListExpr *E) {
9885   const ConstantArrayType *ArrayType =
9886       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
9887 
9888   LValue Array;
9889   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
9890     return false;
9891 
9892   // Get a pointer to the first element of the array.
9893   Array.addArray(Info, E, ArrayType);
9894 
9895   auto InvalidType = [&] {
9896     Info.FFDiag(E, diag::note_constexpr_unsupported_layout)
9897       << E->getType();
9898     return false;
9899   };
9900 
9901   // FIXME: Perform the checks on the field types in SemaInit.
9902   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
9903   RecordDecl::field_iterator Field = Record->field_begin();
9904   if (Field == Record->field_end())
9905     return InvalidType();
9906 
9907   // Start pointer.
9908   if (!Field->getType()->isPointerType() ||
9909       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
9910                             ArrayType->getElementType()))
9911     return InvalidType();
9912 
9913   // FIXME: What if the initializer_list type has base classes, etc?
9914   Result = APValue(APValue::UninitStruct(), 0, 2);
9915   Array.moveInto(Result.getStructField(0));
9916 
9917   if (++Field == Record->field_end())
9918     return InvalidType();
9919 
9920   if (Field->getType()->isPointerType() &&
9921       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
9922                            ArrayType->getElementType())) {
9923     // End pointer.
9924     if (!HandleLValueArrayAdjustment(Info, E, Array,
9925                                      ArrayType->getElementType(),
9926                                      ArrayType->getSize().getZExtValue()))
9927       return false;
9928     Array.moveInto(Result.getStructField(1));
9929   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
9930     // Length.
9931     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
9932   else
9933     return InvalidType();
9934 
9935   if (++Field != Record->field_end())
9936     return InvalidType();
9937 
9938   return true;
9939 }
9940 
VisitLambdaExpr(const LambdaExpr * E)9941 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
9942   const CXXRecordDecl *ClosureClass = E->getLambdaClass();
9943   if (ClosureClass->isInvalidDecl())
9944     return false;
9945 
9946   const size_t NumFields =
9947       std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
9948 
9949   assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
9950                                             E->capture_init_end()) &&
9951          "The number of lambda capture initializers should equal the number of "
9952          "fields within the closure type");
9953 
9954   Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
9955   // Iterate through all the lambda's closure object's fields and initialize
9956   // them.
9957   auto *CaptureInitIt = E->capture_init_begin();
9958   const LambdaCapture *CaptureIt = ClosureClass->captures_begin();
9959   bool Success = true;
9960   for (const auto *Field : ClosureClass->fields()) {
9961     assert(CaptureInitIt != E->capture_init_end());
9962     // Get the initializer for this field
9963     Expr *const CurFieldInit = *CaptureInitIt++;
9964 
9965     // If there is no initializer, either this is a VLA or an error has
9966     // occurred.
9967     if (!CurFieldInit)
9968       return Error(E);
9969 
9970     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
9971     if (!EvaluateInPlace(FieldVal, Info, This, CurFieldInit)) {
9972       if (!Info.keepEvaluatingAfterFailure())
9973         return false;
9974       Success = false;
9975     }
9976     ++CaptureIt;
9977   }
9978   return Success;
9979 }
9980 
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)9981 static bool EvaluateRecord(const Expr *E, const LValue &This,
9982                            APValue &Result, EvalInfo &Info) {
9983   assert(E->isRValue() && E->getType()->isRecordType() &&
9984          "can't evaluate expression as a record rvalue");
9985   return RecordExprEvaluator(Info, This, Result).Visit(E);
9986 }
9987 
9988 //===----------------------------------------------------------------------===//
9989 // Temporary Evaluation
9990 //
9991 // Temporaries are represented in the AST as rvalues, but generally behave like
9992 // lvalues. The full-object of which the temporary is a subobject is implicitly
9993 // materialized so that a reference can bind to it.
9994 //===----------------------------------------------------------------------===//
9995 namespace {
9996 class TemporaryExprEvaluator
9997   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
9998 public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)9999   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
10000     LValueExprEvaluatorBaseTy(Info, Result, false) {}
10001 
10002   /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)10003   bool VisitConstructExpr(const Expr *E) {
10004     APValue &Value = Info.CurrentCall->createTemporary(
10005         E, E->getType(), ScopeKind::FullExpression, Result);
10006     return EvaluateInPlace(Value, Info, Result, E);
10007   }
10008 
VisitCastExpr(const CastExpr * E)10009   bool VisitCastExpr(const CastExpr *E) {
10010     switch (E->getCastKind()) {
10011     default:
10012       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
10013 
10014     case CK_ConstructorConversion:
10015       return VisitConstructExpr(E->getSubExpr());
10016     }
10017   }
VisitInitListExpr(const InitListExpr * E)10018   bool VisitInitListExpr(const InitListExpr *E) {
10019     return VisitConstructExpr(E);
10020   }
VisitCXXConstructExpr(const CXXConstructExpr * E)10021   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
10022     return VisitConstructExpr(E);
10023   }
VisitCallExpr(const CallExpr * E)10024   bool VisitCallExpr(const CallExpr *E) {
10025     return VisitConstructExpr(E);
10026   }
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)10027   bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
10028     return VisitConstructExpr(E);
10029   }
VisitLambdaExpr(const LambdaExpr * E)10030   bool VisitLambdaExpr(const LambdaExpr *E) {
10031     return VisitConstructExpr(E);
10032   }
10033 };
10034 } // end anonymous namespace
10035 
10036 /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)10037 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
10038   assert(E->isRValue() && E->getType()->isRecordType());
10039   return TemporaryExprEvaluator(Info, Result).Visit(E);
10040 }
10041 
10042 //===----------------------------------------------------------------------===//
10043 // Vector Evaluation
10044 //===----------------------------------------------------------------------===//
10045 
10046 namespace {
10047   class VectorExprEvaluator
10048   : public ExprEvaluatorBase<VectorExprEvaluator> {
10049     APValue &Result;
10050   public:
10051 
VectorExprEvaluator(EvalInfo & info,APValue & Result)10052     VectorExprEvaluator(EvalInfo &info, APValue &Result)
10053       : ExprEvaluatorBaseTy(info), Result(Result) {}
10054 
Success(ArrayRef<APValue> V,const Expr * E)10055     bool Success(ArrayRef<APValue> V, const Expr *E) {
10056       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
10057       // FIXME: remove this APValue copy.
10058       Result = APValue(V.data(), V.size());
10059       return true;
10060     }
Success(const APValue & V,const Expr * E)10061     bool Success(const APValue &V, const Expr *E) {
10062       assert(V.isVector());
10063       Result = V;
10064       return true;
10065     }
10066     bool ZeroInitialization(const Expr *E);
10067 
VisitUnaryReal(const UnaryOperator * E)10068     bool VisitUnaryReal(const UnaryOperator *E)
10069       { return Visit(E->getSubExpr()); }
10070     bool VisitCastExpr(const CastExpr* E);
10071     bool VisitInitListExpr(const InitListExpr *E);
10072     bool VisitUnaryImag(const UnaryOperator *E);
10073     bool VisitBinaryOperator(const BinaryOperator *E);
10074     // FIXME: Missing: unary -, unary ~, conditional operator (for GNU
10075     //                 conditional select), shufflevector, ExtVectorElementExpr
10076   };
10077 } // end anonymous namespace
10078 
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)10079 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
10080   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
10081   return VectorExprEvaluator(Info, Result).Visit(E);
10082 }
10083 
VisitCastExpr(const CastExpr * E)10084 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
10085   const VectorType *VTy = E->getType()->castAs<VectorType>();
10086   unsigned NElts = VTy->getNumElements();
10087 
10088   const Expr *SE = E->getSubExpr();
10089   QualType SETy = SE->getType();
10090 
10091   switch (E->getCastKind()) {
10092   case CK_VectorSplat: {
10093     APValue Val = APValue();
10094     if (SETy->isIntegerType()) {
10095       APSInt IntResult;
10096       if (!EvaluateInteger(SE, IntResult, Info))
10097         return false;
10098       Val = APValue(std::move(IntResult));
10099     } else if (SETy->isRealFloatingType()) {
10100       APFloat FloatResult(0.0);
10101       if (!EvaluateFloat(SE, FloatResult, Info))
10102         return false;
10103       Val = APValue(std::move(FloatResult));
10104     } else {
10105       return Error(E);
10106     }
10107 
10108     // Splat and create vector APValue.
10109     SmallVector<APValue, 4> Elts(NElts, Val);
10110     return Success(Elts, E);
10111   }
10112   case CK_BitCast: {
10113     // Evaluate the operand into an APInt we can extract from.
10114     llvm::APInt SValInt;
10115     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
10116       return false;
10117     // Extract the elements
10118     QualType EltTy = VTy->getElementType();
10119     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
10120     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
10121     SmallVector<APValue, 4> Elts;
10122     if (EltTy->isRealFloatingType()) {
10123       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
10124       unsigned FloatEltSize = EltSize;
10125       if (&Sem == &APFloat::x87DoubleExtended())
10126         FloatEltSize = 80;
10127       for (unsigned i = 0; i < NElts; i++) {
10128         llvm::APInt Elt;
10129         if (BigEndian)
10130           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
10131         else
10132           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
10133         Elts.push_back(APValue(APFloat(Sem, Elt)));
10134       }
10135     } else if (EltTy->isIntegerType()) {
10136       for (unsigned i = 0; i < NElts; i++) {
10137         llvm::APInt Elt;
10138         if (BigEndian)
10139           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
10140         else
10141           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
10142         Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
10143       }
10144     } else {
10145       return Error(E);
10146     }
10147     return Success(Elts, E);
10148   }
10149   default:
10150     return ExprEvaluatorBaseTy::VisitCastExpr(E);
10151   }
10152 }
10153 
10154 bool
VisitInitListExpr(const InitListExpr * E)10155 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10156   const VectorType *VT = E->getType()->castAs<VectorType>();
10157   unsigned NumInits = E->getNumInits();
10158   unsigned NumElements = VT->getNumElements();
10159 
10160   QualType EltTy = VT->getElementType();
10161   SmallVector<APValue, 4> Elements;
10162 
10163   // The number of initializers can be less than the number of
10164   // vector elements. For OpenCL, this can be due to nested vector
10165   // initialization. For GCC compatibility, missing trailing elements
10166   // should be initialized with zeroes.
10167   unsigned CountInits = 0, CountElts = 0;
10168   while (CountElts < NumElements) {
10169     // Handle nested vector initialization.
10170     if (CountInits < NumInits
10171         && E->getInit(CountInits)->getType()->isVectorType()) {
10172       APValue v;
10173       if (!EvaluateVector(E->getInit(CountInits), v, Info))
10174         return Error(E);
10175       unsigned vlen = v.getVectorLength();
10176       for (unsigned j = 0; j < vlen; j++)
10177         Elements.push_back(v.getVectorElt(j));
10178       CountElts += vlen;
10179     } else if (EltTy->isIntegerType()) {
10180       llvm::APSInt sInt(32);
10181       if (CountInits < NumInits) {
10182         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
10183           return false;
10184       } else // trailing integer zero.
10185         sInt = Info.Ctx.MakeIntValue(0, EltTy);
10186       Elements.push_back(APValue(sInt));
10187       CountElts++;
10188     } else {
10189       llvm::APFloat f(0.0);
10190       if (CountInits < NumInits) {
10191         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
10192           return false;
10193       } else // trailing float zero.
10194         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
10195       Elements.push_back(APValue(f));
10196       CountElts++;
10197     }
10198     CountInits++;
10199   }
10200   return Success(Elements, E);
10201 }
10202 
10203 bool
ZeroInitialization(const Expr * E)10204 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
10205   const auto *VT = E->getType()->castAs<VectorType>();
10206   QualType EltTy = VT->getElementType();
10207   APValue ZeroElement;
10208   if (EltTy->isIntegerType())
10209     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
10210   else
10211     ZeroElement =
10212         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
10213 
10214   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
10215   return Success(Elements, E);
10216 }
10217 
VisitUnaryImag(const UnaryOperator * E)10218 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
10219   VisitIgnoredValue(E->getSubExpr());
10220   return ZeroInitialization(E);
10221 }
10222 
VisitBinaryOperator(const BinaryOperator * E)10223 bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
10224   BinaryOperatorKind Op = E->getOpcode();
10225   assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp &&
10226          "Operation not supported on vector types");
10227 
10228   if (Op == BO_Comma)
10229     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
10230 
10231   Expr *LHS = E->getLHS();
10232   Expr *RHS = E->getRHS();
10233 
10234   assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() &&
10235          "Must both be vector types");
10236   // Checking JUST the types are the same would be fine, except shifts don't
10237   // need to have their types be the same (since you always shift by an int).
10238   assert(LHS->getType()->getAs<VectorType>()->getNumElements() ==
10239              E->getType()->getAs<VectorType>()->getNumElements() &&
10240          RHS->getType()->getAs<VectorType>()->getNumElements() ==
10241              E->getType()->getAs<VectorType>()->getNumElements() &&
10242          "All operands must be the same size.");
10243 
10244   APValue LHSValue;
10245   APValue RHSValue;
10246   bool LHSOK = Evaluate(LHSValue, Info, LHS);
10247   if (!LHSOK && !Info.noteFailure())
10248     return false;
10249   if (!Evaluate(RHSValue, Info, RHS) || !LHSOK)
10250     return false;
10251 
10252   if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue))
10253     return false;
10254 
10255   return Success(LHSValue, E);
10256 }
10257 
10258 //===----------------------------------------------------------------------===//
10259 // Array Evaluation
10260 //===----------------------------------------------------------------------===//
10261 
10262 namespace {
10263   class ArrayExprEvaluator
10264   : public ExprEvaluatorBase<ArrayExprEvaluator> {
10265     const LValue &This;
10266     APValue &Result;
10267   public:
10268 
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)10269     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
10270       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
10271 
Success(const APValue & V,const Expr * E)10272     bool Success(const APValue &V, const Expr *E) {
10273       assert(V.isArray() && "expected array");
10274       Result = V;
10275       return true;
10276     }
10277 
ZeroInitialization(const Expr * E)10278     bool ZeroInitialization(const Expr *E) {
10279       const ConstantArrayType *CAT =
10280           Info.Ctx.getAsConstantArrayType(E->getType());
10281       if (!CAT) {
10282         if (E->getType()->isIncompleteArrayType()) {
10283           // We can be asked to zero-initialize a flexible array member; this
10284           // is represented as an ImplicitValueInitExpr of incomplete array
10285           // type. In this case, the array has zero elements.
10286           Result = APValue(APValue::UninitArray(), 0, 0);
10287           return true;
10288         }
10289         // FIXME: We could handle VLAs here.
10290         return Error(E);
10291       }
10292 
10293       Result = APValue(APValue::UninitArray(), 0,
10294                        CAT->getSize().getZExtValue());
10295       if (!Result.hasArrayFiller()) return true;
10296 
10297       // Zero-initialize all elements.
10298       LValue Subobject = This;
10299       Subobject.addArray(Info, E, CAT);
10300       ImplicitValueInitExpr VIE(CAT->getElementType());
10301       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
10302     }
10303 
VisitCallExpr(const CallExpr * E)10304     bool VisitCallExpr(const CallExpr *E) {
10305       return handleCallExpr(E, Result, &This);
10306     }
10307     bool VisitInitListExpr(const InitListExpr *E,
10308                            QualType AllocType = QualType());
10309     bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
10310     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
10311     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
10312                                const LValue &Subobject,
10313                                APValue *Value, QualType Type);
VisitStringLiteral(const StringLiteral * E,QualType AllocType=QualType ())10314     bool VisitStringLiteral(const StringLiteral *E,
10315                             QualType AllocType = QualType()) {
10316       expandStringLiteral(Info, E, Result, AllocType);
10317       return true;
10318     }
10319   };
10320 } // end anonymous namespace
10321 
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)10322 static bool EvaluateArray(const Expr *E, const LValue &This,
10323                           APValue &Result, EvalInfo &Info) {
10324   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
10325   return ArrayExprEvaluator(Info, This, Result).Visit(E);
10326 }
10327 
EvaluateArrayNewInitList(EvalInfo & Info,LValue & This,APValue & Result,const InitListExpr * ILE,QualType AllocType)10328 static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This,
10329                                      APValue &Result, const InitListExpr *ILE,
10330                                      QualType AllocType) {
10331   assert(ILE->isRValue() && ILE->getType()->isArrayType() &&
10332          "not an array rvalue");
10333   return ArrayExprEvaluator(Info, This, Result)
10334       .VisitInitListExpr(ILE, AllocType);
10335 }
10336 
EvaluateArrayNewConstructExpr(EvalInfo & Info,LValue & This,APValue & Result,const CXXConstructExpr * CCE,QualType AllocType)10337 static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This,
10338                                           APValue &Result,
10339                                           const CXXConstructExpr *CCE,
10340                                           QualType AllocType) {
10341   assert(CCE->isRValue() && CCE->getType()->isArrayType() &&
10342          "not an array rvalue");
10343   return ArrayExprEvaluator(Info, This, Result)
10344       .VisitCXXConstructExpr(CCE, This, &Result, AllocType);
10345 }
10346 
10347 // Return true iff the given array filler may depend on the element index.
MaybeElementDependentArrayFiller(const Expr * FillerExpr)10348 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
10349   // For now, just allow non-class value-initialization and initialization
10350   // lists comprised of them.
10351   if (isa<ImplicitValueInitExpr>(FillerExpr))
10352     return false;
10353   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
10354     for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
10355       if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
10356         return true;
10357     }
10358     return false;
10359   }
10360   return true;
10361 }
10362 
VisitInitListExpr(const InitListExpr * E,QualType AllocType)10363 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E,
10364                                            QualType AllocType) {
10365   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(
10366       AllocType.isNull() ? E->getType() : AllocType);
10367   if (!CAT)
10368     return Error(E);
10369 
10370   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
10371   // an appropriately-typed string literal enclosed in braces.
10372   if (E->isStringLiteralInit()) {
10373     auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParens());
10374     // FIXME: Support ObjCEncodeExpr here once we support it in
10375     // ArrayExprEvaluator generally.
10376     if (!SL)
10377       return Error(E);
10378     return VisitStringLiteral(SL, AllocType);
10379   }
10380 
10381   bool Success = true;
10382 
10383   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
10384          "zero-initialized array shouldn't have any initialized elts");
10385   APValue Filler;
10386   if (Result.isArray() && Result.hasArrayFiller())
10387     Filler = Result.getArrayFiller();
10388 
10389   unsigned NumEltsToInit = E->getNumInits();
10390   unsigned NumElts = CAT->getSize().getZExtValue();
10391   const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
10392 
10393   // If the initializer might depend on the array index, run it for each
10394   // array element.
10395   if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
10396     NumEltsToInit = NumElts;
10397 
10398   LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
10399                           << NumEltsToInit << ".\n");
10400 
10401   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
10402 
10403   // If the array was previously zero-initialized, preserve the
10404   // zero-initialized values.
10405   if (Filler.hasValue()) {
10406     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
10407       Result.getArrayInitializedElt(I) = Filler;
10408     if (Result.hasArrayFiller())
10409       Result.getArrayFiller() = Filler;
10410   }
10411 
10412   LValue Subobject = This;
10413   Subobject.addArray(Info, E, CAT);
10414   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
10415     const Expr *Init =
10416         Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
10417     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10418                          Info, Subobject, Init) ||
10419         !HandleLValueArrayAdjustment(Info, Init, Subobject,
10420                                      CAT->getElementType(), 1)) {
10421       if (!Info.noteFailure())
10422         return false;
10423       Success = false;
10424     }
10425   }
10426 
10427   if (!Result.hasArrayFiller())
10428     return Success;
10429 
10430   // If we get here, we have a trivial filler, which we can just evaluate
10431   // once and splat over the rest of the array elements.
10432   assert(FillerExpr && "no array filler for incomplete init list");
10433   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
10434                          FillerExpr) && Success;
10435 }
10436 
VisitArrayInitLoopExpr(const ArrayInitLoopExpr * E)10437 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
10438   LValue CommonLV;
10439   if (E->getCommonExpr() &&
10440       !Evaluate(Info.CurrentCall->createTemporary(
10441                     E->getCommonExpr(),
10442                     getStorageType(Info.Ctx, E->getCommonExpr()),
10443                     ScopeKind::FullExpression, CommonLV),
10444                 Info, E->getCommonExpr()->getSourceExpr()))
10445     return false;
10446 
10447   auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
10448 
10449   uint64_t Elements = CAT->getSize().getZExtValue();
10450   Result = APValue(APValue::UninitArray(), Elements, Elements);
10451 
10452   LValue Subobject = This;
10453   Subobject.addArray(Info, E, CAT);
10454 
10455   bool Success = true;
10456   for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
10457     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
10458                          Info, Subobject, E->getSubExpr()) ||
10459         !HandleLValueArrayAdjustment(Info, E, Subobject,
10460                                      CAT->getElementType(), 1)) {
10461       if (!Info.noteFailure())
10462         return false;
10463       Success = false;
10464     }
10465   }
10466 
10467   return Success;
10468 }
10469 
VisitCXXConstructExpr(const CXXConstructExpr * E)10470 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
10471   return VisitCXXConstructExpr(E, This, &Result, E->getType());
10472 }
10473 
VisitCXXConstructExpr(const CXXConstructExpr * E,const LValue & Subobject,APValue * Value,QualType Type)10474 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
10475                                                const LValue &Subobject,
10476                                                APValue *Value,
10477                                                QualType Type) {
10478   bool HadZeroInit = Value->hasValue();
10479 
10480   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
10481     unsigned N = CAT->getSize().getZExtValue();
10482 
10483     // Preserve the array filler if we had prior zero-initialization.
10484     APValue Filler =
10485       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
10486                                              : APValue();
10487 
10488     *Value = APValue(APValue::UninitArray(), N, N);
10489 
10490     if (HadZeroInit)
10491       for (unsigned I = 0; I != N; ++I)
10492         Value->getArrayInitializedElt(I) = Filler;
10493 
10494     // Initialize the elements.
10495     LValue ArrayElt = Subobject;
10496     ArrayElt.addArray(Info, E, CAT);
10497     for (unsigned I = 0; I != N; ++I)
10498       if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
10499                                  CAT->getElementType()) ||
10500           !HandleLValueArrayAdjustment(Info, E, ArrayElt,
10501                                        CAT->getElementType(), 1))
10502         return false;
10503 
10504     return true;
10505   }
10506 
10507   if (!Type->isRecordType())
10508     return Error(E);
10509 
10510   return RecordExprEvaluator(Info, Subobject, *Value)
10511              .VisitCXXConstructExpr(E, Type);
10512 }
10513 
10514 //===----------------------------------------------------------------------===//
10515 // Integer Evaluation
10516 //
10517 // As a GNU extension, we support casting pointers to sufficiently-wide integer
10518 // types and back in constant folding. Integer values are thus represented
10519 // either as an integer-valued APValue, or as an lvalue-valued APValue.
10520 //===----------------------------------------------------------------------===//
10521 
10522 namespace {
10523 class IntExprEvaluator
10524         : public ExprEvaluatorBase<IntExprEvaluator> {
10525   APValue &Result;
10526 public:
IntExprEvaluator(EvalInfo & info,APValue & result)10527   IntExprEvaluator(EvalInfo &info, APValue &result)
10528       : ExprEvaluatorBaseTy(info), Result(result) {}
10529 
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)10530   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
10531     assert(E->getType()->isIntegralOrEnumerationType() &&
10532            "Invalid evaluation result.");
10533     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
10534            "Invalid evaluation result.");
10535     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10536            "Invalid evaluation result.");
10537     Result = APValue(SI);
10538     return true;
10539   }
Success(const llvm::APSInt & SI,const Expr * E)10540   bool Success(const llvm::APSInt &SI, const Expr *E) {
10541     return Success(SI, E, Result);
10542   }
10543 
Success(const llvm::APInt & I,const Expr * E,APValue & Result)10544   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
10545     assert(E->getType()->isIntegralOrEnumerationType() &&
10546            "Invalid evaluation result.");
10547     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10548            "Invalid evaluation result.");
10549     Result = APValue(APSInt(I));
10550     Result.getInt().setIsUnsigned(
10551                             E->getType()->isUnsignedIntegerOrEnumerationType());
10552     return true;
10553   }
Success(const llvm::APInt & I,const Expr * E)10554   bool Success(const llvm::APInt &I, const Expr *E) {
10555     return Success(I, E, Result);
10556   }
10557 
Success(uint64_t Value,const Expr * E,APValue & Result)10558   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
10559     assert(E->getType()->isIntegralOrEnumerationType() &&
10560            "Invalid evaluation result.");
10561     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
10562     return true;
10563   }
Success(uint64_t Value,const Expr * E)10564   bool Success(uint64_t Value, const Expr *E) {
10565     return Success(Value, E, Result);
10566   }
10567 
Success(CharUnits Size,const Expr * E)10568   bool Success(CharUnits Size, const Expr *E) {
10569     return Success(Size.getQuantity(), E);
10570   }
10571 
Success(const APValue & V,const Expr * E)10572   bool Success(const APValue &V, const Expr *E) {
10573     if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
10574       Result = V;
10575       return true;
10576     }
10577     return Success(V.getInt(), E);
10578   }
10579 
ZeroInitialization(const Expr * E)10580   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
10581 
10582   //===--------------------------------------------------------------------===//
10583   //                            Visitor Methods
10584   //===--------------------------------------------------------------------===//
10585 
VisitIntegerLiteral(const IntegerLiteral * E)10586   bool VisitIntegerLiteral(const IntegerLiteral *E) {
10587     return Success(E->getValue(), E);
10588   }
VisitCharacterLiteral(const CharacterLiteral * E)10589   bool VisitCharacterLiteral(const CharacterLiteral *E) {
10590     return Success(E->getValue(), E);
10591   }
10592 
10593   bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)10594   bool VisitDeclRefExpr(const DeclRefExpr *E) {
10595     if (CheckReferencedDecl(E, E->getDecl()))
10596       return true;
10597 
10598     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
10599   }
VisitMemberExpr(const MemberExpr * E)10600   bool VisitMemberExpr(const MemberExpr *E) {
10601     if (CheckReferencedDecl(E, E->getMemberDecl())) {
10602       VisitIgnoredBaseExpression(E->getBase());
10603       return true;
10604     }
10605 
10606     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
10607   }
10608 
10609   bool VisitCallExpr(const CallExpr *E);
10610   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
10611   bool VisitBinaryOperator(const BinaryOperator *E);
10612   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
10613   bool VisitUnaryOperator(const UnaryOperator *E);
10614 
10615   bool VisitCastExpr(const CastExpr* E);
10616   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
10617 
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)10618   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
10619     return Success(E->getValue(), E);
10620   }
10621 
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)10622   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
10623     return Success(E->getValue(), E);
10624   }
10625 
VisitArrayInitIndexExpr(const ArrayInitIndexExpr * E)10626   bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
10627     if (Info.ArrayInitIndex == uint64_t(-1)) {
10628       // We were asked to evaluate this subexpression independent of the
10629       // enclosing ArrayInitLoopExpr. We can't do that.
10630       Info.FFDiag(E);
10631       return false;
10632     }
10633     return Success(Info.ArrayInitIndex, E);
10634   }
10635 
10636   // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)10637   bool VisitGNUNullExpr(const GNUNullExpr *E) {
10638     return ZeroInitialization(E);
10639   }
10640 
VisitTypeTraitExpr(const TypeTraitExpr * E)10641   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
10642     return Success(E->getValue(), E);
10643   }
10644 
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)10645   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
10646     return Success(E->getValue(), E);
10647   }
10648 
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)10649   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
10650     return Success(E->getValue(), E);
10651   }
10652 
10653   bool VisitUnaryReal(const UnaryOperator *E);
10654   bool VisitUnaryImag(const UnaryOperator *E);
10655 
10656   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
10657   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
10658   bool VisitSourceLocExpr(const SourceLocExpr *E);
10659   bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E);
10660   bool VisitRequiresExpr(const RequiresExpr *E);
10661   // FIXME: Missing: array subscript of vector, member of vector
10662 };
10663 
10664 class FixedPointExprEvaluator
10665     : public ExprEvaluatorBase<FixedPointExprEvaluator> {
10666   APValue &Result;
10667 
10668  public:
FixedPointExprEvaluator(EvalInfo & info,APValue & result)10669   FixedPointExprEvaluator(EvalInfo &info, APValue &result)
10670       : ExprEvaluatorBaseTy(info), Result(result) {}
10671 
Success(const llvm::APInt & I,const Expr * E)10672   bool Success(const llvm::APInt &I, const Expr *E) {
10673     return Success(
10674         APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
10675   }
10676 
Success(uint64_t Value,const Expr * E)10677   bool Success(uint64_t Value, const Expr *E) {
10678     return Success(
10679         APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
10680   }
10681 
Success(const APValue & V,const Expr * E)10682   bool Success(const APValue &V, const Expr *E) {
10683     return Success(V.getFixedPoint(), E);
10684   }
10685 
Success(const APFixedPoint & V,const Expr * E)10686   bool Success(const APFixedPoint &V, const Expr *E) {
10687     assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
10688     assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
10689            "Invalid evaluation result.");
10690     Result = APValue(V);
10691     return true;
10692   }
10693 
10694   //===--------------------------------------------------------------------===//
10695   //                            Visitor Methods
10696   //===--------------------------------------------------------------------===//
10697 
VisitFixedPointLiteral(const FixedPointLiteral * E)10698   bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
10699     return Success(E->getValue(), E);
10700   }
10701 
10702   bool VisitCastExpr(const CastExpr *E);
10703   bool VisitUnaryOperator(const UnaryOperator *E);
10704   bool VisitBinaryOperator(const BinaryOperator *E);
10705 };
10706 } // end anonymous namespace
10707 
10708 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
10709 /// produce either the integer value or a pointer.
10710 ///
10711 /// GCC has a heinous extension which folds casts between pointer types and
10712 /// pointer-sized integral types. We support this by allowing the evaluation of
10713 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
10714 /// Some simple arithmetic on such values is supported (they are treated much
10715 /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)10716 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
10717                                     EvalInfo &Info) {
10718   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
10719   return IntExprEvaluator(Info, Result).Visit(E);
10720 }
10721 
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)10722 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
10723   APValue Val;
10724   if (!EvaluateIntegerOrLValue(E, Val, Info))
10725     return false;
10726   if (!Val.isInt()) {
10727     // FIXME: It would be better to produce the diagnostic for casting
10728     //        a pointer to an integer.
10729     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
10730     return false;
10731   }
10732   Result = Val.getInt();
10733   return true;
10734 }
10735 
VisitSourceLocExpr(const SourceLocExpr * E)10736 bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
10737   APValue Evaluated = E->EvaluateInContext(
10738       Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
10739   return Success(Evaluated, E);
10740 }
10741 
EvaluateFixedPoint(const Expr * E,APFixedPoint & Result,EvalInfo & Info)10742 static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
10743                                EvalInfo &Info) {
10744   if (E->getType()->isFixedPointType()) {
10745     APValue Val;
10746     if (!FixedPointExprEvaluator(Info, Val).Visit(E))
10747       return false;
10748     if (!Val.isFixedPoint())
10749       return false;
10750 
10751     Result = Val.getFixedPoint();
10752     return true;
10753   }
10754   return false;
10755 }
10756 
EvaluateFixedPointOrInteger(const Expr * E,APFixedPoint & Result,EvalInfo & Info)10757 static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
10758                                         EvalInfo &Info) {
10759   if (E->getType()->isIntegerType()) {
10760     auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
10761     APSInt Val;
10762     if (!EvaluateInteger(E, Val, Info))
10763       return false;
10764     Result = APFixedPoint(Val, FXSema);
10765     return true;
10766   } else if (E->getType()->isFixedPointType()) {
10767     return EvaluateFixedPoint(E, Result, Info);
10768   }
10769   return false;
10770 }
10771 
10772 /// Check whether the given declaration can be directly converted to an integral
10773 /// rvalue. If not, no diagnostic is produced; there are other things we can
10774 /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)10775 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
10776   // Enums are integer constant exprs.
10777   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
10778     // Check for signedness/width mismatches between E type and ECD value.
10779     bool SameSign = (ECD->getInitVal().isSigned()
10780                      == E->getType()->isSignedIntegerOrEnumerationType());
10781     bool SameWidth = (ECD->getInitVal().getBitWidth()
10782                       == Info.Ctx.getIntWidth(E->getType()));
10783     if (SameSign && SameWidth)
10784       return Success(ECD->getInitVal(), E);
10785     else {
10786       // Get rid of mismatch (otherwise Success assertions will fail)
10787       // by computing a new value matching the type of E.
10788       llvm::APSInt Val = ECD->getInitVal();
10789       if (!SameSign)
10790         Val.setIsSigned(!ECD->getInitVal().isSigned());
10791       if (!SameWidth)
10792         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
10793       return Success(Val, E);
10794     }
10795   }
10796   return false;
10797 }
10798 
10799 /// Values returned by __builtin_classify_type, chosen to match the values
10800 /// produced by GCC's builtin.
10801 enum class GCCTypeClass {
10802   None = -1,
10803   Void = 0,
10804   Integer = 1,
10805   // GCC reserves 2 for character types, but instead classifies them as
10806   // integers.
10807   Enum = 3,
10808   Bool = 4,
10809   Pointer = 5,
10810   // GCC reserves 6 for references, but appears to never use it (because
10811   // expressions never have reference type, presumably).
10812   PointerToDataMember = 7,
10813   RealFloat = 8,
10814   Complex = 9,
10815   // GCC reserves 10 for functions, but does not use it since GCC version 6 due
10816   // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
10817   // GCC claims to reserve 11 for pointers to member functions, but *actually*
10818   // uses 12 for that purpose, same as for a class or struct. Maybe it
10819   // internally implements a pointer to member as a struct?  Who knows.
10820   PointerToMemberFunction = 12, // Not a bug, see above.
10821   ClassOrStruct = 12,
10822   Union = 13,
10823   // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
10824   // decay to pointer. (Prior to version 6 it was only used in C++ mode).
10825   // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
10826   // literals.
10827 };
10828 
10829 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
10830 /// as GCC.
10831 static GCCTypeClass
EvaluateBuiltinClassifyType(QualType T,const LangOptions & LangOpts)10832 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
10833   assert(!T->isDependentType() && "unexpected dependent type");
10834 
10835   QualType CanTy = T.getCanonicalType();
10836   const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
10837 
10838   switch (CanTy->getTypeClass()) {
10839 #define TYPE(ID, BASE)
10840 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
10841 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
10842 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
10843 #include "clang/AST/TypeNodes.inc"
10844   case Type::Auto:
10845   case Type::DeducedTemplateSpecialization:
10846       llvm_unreachable("unexpected non-canonical or dependent type");
10847 
10848   case Type::Builtin:
10849     switch (BT->getKind()) {
10850 #define BUILTIN_TYPE(ID, SINGLETON_ID)
10851 #define SIGNED_TYPE(ID, SINGLETON_ID) \
10852     case BuiltinType::ID: return GCCTypeClass::Integer;
10853 #define FLOATING_TYPE(ID, SINGLETON_ID) \
10854     case BuiltinType::ID: return GCCTypeClass::RealFloat;
10855 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
10856     case BuiltinType::ID: break;
10857 #include "clang/AST/BuiltinTypes.def"
10858     case BuiltinType::Void:
10859       return GCCTypeClass::Void;
10860 
10861     case BuiltinType::Bool:
10862       return GCCTypeClass::Bool;
10863 
10864     case BuiltinType::Char_U:
10865     case BuiltinType::UChar:
10866     case BuiltinType::WChar_U:
10867     case BuiltinType::Char8:
10868     case BuiltinType::Char16:
10869     case BuiltinType::Char32:
10870     case BuiltinType::UShort:
10871     case BuiltinType::UInt:
10872     case BuiltinType::ULong:
10873     case BuiltinType::ULongLong:
10874     case BuiltinType::UInt128:
10875       return GCCTypeClass::Integer;
10876 
10877     case BuiltinType::UShortAccum:
10878     case BuiltinType::UAccum:
10879     case BuiltinType::ULongAccum:
10880     case BuiltinType::UShortFract:
10881     case BuiltinType::UFract:
10882     case BuiltinType::ULongFract:
10883     case BuiltinType::SatUShortAccum:
10884     case BuiltinType::SatUAccum:
10885     case BuiltinType::SatULongAccum:
10886     case BuiltinType::SatUShortFract:
10887     case BuiltinType::SatUFract:
10888     case BuiltinType::SatULongFract:
10889       return GCCTypeClass::None;
10890 
10891     case BuiltinType::NullPtr:
10892 
10893     case BuiltinType::ObjCId:
10894     case BuiltinType::ObjCClass:
10895     case BuiltinType::ObjCSel:
10896 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
10897     case BuiltinType::Id:
10898 #include "clang/Basic/OpenCLImageTypes.def"
10899 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
10900     case BuiltinType::Id:
10901 #include "clang/Basic/OpenCLExtensionTypes.def"
10902     case BuiltinType::OCLSampler:
10903     case BuiltinType::OCLEvent:
10904     case BuiltinType::OCLClkEvent:
10905     case BuiltinType::OCLQueue:
10906     case BuiltinType::OCLReserveID:
10907 #define SVE_TYPE(Name, Id, SingletonId) \
10908     case BuiltinType::Id:
10909 #include "clang/Basic/AArch64SVEACLETypes.def"
10910 #define PPC_MMA_VECTOR_TYPE(Name, Id, Size) \
10911     case BuiltinType::Id:
10912 #include "clang/Basic/PPCTypes.def"
10913       return GCCTypeClass::None;
10914 
10915     case BuiltinType::Dependent:
10916       llvm_unreachable("unexpected dependent type");
10917     };
10918     llvm_unreachable("unexpected placeholder type");
10919 
10920   case Type::Enum:
10921     return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
10922 
10923   case Type::Pointer:
10924   case Type::ConstantArray:
10925   case Type::VariableArray:
10926   case Type::IncompleteArray:
10927   case Type::FunctionNoProto:
10928   case Type::FunctionProto:
10929     return GCCTypeClass::Pointer;
10930 
10931   case Type::MemberPointer:
10932     return CanTy->isMemberDataPointerType()
10933                ? GCCTypeClass::PointerToDataMember
10934                : GCCTypeClass::PointerToMemberFunction;
10935 
10936   case Type::Complex:
10937     return GCCTypeClass::Complex;
10938 
10939   case Type::Record:
10940     return CanTy->isUnionType() ? GCCTypeClass::Union
10941                                 : GCCTypeClass::ClassOrStruct;
10942 
10943   case Type::Atomic:
10944     // GCC classifies _Atomic T the same as T.
10945     return EvaluateBuiltinClassifyType(
10946         CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
10947 
10948   case Type::BlockPointer:
10949   case Type::Vector:
10950   case Type::ExtVector:
10951   case Type::ConstantMatrix:
10952   case Type::ObjCObject:
10953   case Type::ObjCInterface:
10954   case Type::ObjCObjectPointer:
10955   case Type::Pipe:
10956   case Type::ExtInt:
10957     // GCC classifies vectors as None. We follow its lead and classify all
10958     // other types that don't fit into the regular classification the same way.
10959     return GCCTypeClass::None;
10960 
10961   case Type::LValueReference:
10962   case Type::RValueReference:
10963     llvm_unreachable("invalid type for expression");
10964   }
10965 
10966   llvm_unreachable("unexpected type class");
10967 }
10968 
10969 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
10970 /// as GCC.
10971 static GCCTypeClass
EvaluateBuiltinClassifyType(const CallExpr * E,const LangOptions & LangOpts)10972 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
10973   // If no argument was supplied, default to None. This isn't
10974   // ideal, however it is what gcc does.
10975   if (E->getNumArgs() == 0)
10976     return GCCTypeClass::None;
10977 
10978   // FIXME: Bizarrely, GCC treats a call with more than one argument as not
10979   // being an ICE, but still folds it to a constant using the type of the first
10980   // argument.
10981   return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
10982 }
10983 
10984 /// EvaluateBuiltinConstantPForLValue - Determine the result of
10985 /// __builtin_constant_p when applied to the given pointer.
10986 ///
10987 /// A pointer is only "constant" if it is null (or a pointer cast to integer)
10988 /// or it points to the first character of a string literal.
EvaluateBuiltinConstantPForLValue(const APValue & LV)10989 static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
10990   APValue::LValueBase Base = LV.getLValueBase();
10991   if (Base.isNull()) {
10992     // A null base is acceptable.
10993     return true;
10994   } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
10995     if (!isa<StringLiteral>(E))
10996       return false;
10997     return LV.getLValueOffset().isZero();
10998   } else if (Base.is<TypeInfoLValue>()) {
10999     // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
11000     // evaluate to true.
11001     return true;
11002   } else {
11003     // Any other base is not constant enough for GCC.
11004     return false;
11005   }
11006 }
11007 
11008 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
11009 /// GCC as we can manage.
EvaluateBuiltinConstantP(EvalInfo & Info,const Expr * Arg)11010 static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
11011   // This evaluation is not permitted to have side-effects, so evaluate it in
11012   // a speculative evaluation context.
11013   SpeculativeEvaluationRAII SpeculativeEval(Info);
11014 
11015   // Constant-folding is always enabled for the operand of __builtin_constant_p
11016   // (even when the enclosing evaluation context otherwise requires a strict
11017   // language-specific constant expression).
11018   FoldConstant Fold(Info, true);
11019 
11020   QualType ArgType = Arg->getType();
11021 
11022   // __builtin_constant_p always has one operand. The rules which gcc follows
11023   // are not precisely documented, but are as follows:
11024   //
11025   //  - If the operand is of integral, floating, complex or enumeration type,
11026   //    and can be folded to a known value of that type, it returns 1.
11027   //  - If the operand can be folded to a pointer to the first character
11028   //    of a string literal (or such a pointer cast to an integral type)
11029   //    or to a null pointer or an integer cast to a pointer, it returns 1.
11030   //
11031   // Otherwise, it returns 0.
11032   //
11033   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
11034   // its support for this did not work prior to GCC 9 and is not yet well
11035   // understood.
11036   if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
11037       ArgType->isAnyComplexType() || ArgType->isPointerType() ||
11038       ArgType->isNullPtrType()) {
11039     APValue V;
11040     if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) {
11041       Fold.keepDiagnostics();
11042       return false;
11043     }
11044 
11045     // For a pointer (possibly cast to integer), there are special rules.
11046     if (V.getKind() == APValue::LValue)
11047       return EvaluateBuiltinConstantPForLValue(V);
11048 
11049     // Otherwise, any constant value is good enough.
11050     return V.hasValue();
11051   }
11052 
11053   // Anything else isn't considered to be sufficiently constant.
11054   return false;
11055 }
11056 
11057 /// Retrieves the "underlying object type" of the given expression,
11058 /// as used by __builtin_object_size.
getObjectType(APValue::LValueBase B)11059 static QualType getObjectType(APValue::LValueBase B) {
11060   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
11061     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
11062       return VD->getType();
11063   } else if (const Expr *E = B.dyn_cast<const Expr*>()) {
11064     if (isa<CompoundLiteralExpr>(E))
11065       return E->getType();
11066   } else if (B.is<TypeInfoLValue>()) {
11067     return B.getTypeInfoType();
11068   } else if (B.is<DynamicAllocLValue>()) {
11069     return B.getDynamicAllocType();
11070   }
11071 
11072   return QualType();
11073 }
11074 
11075 /// A more selective version of E->IgnoreParenCasts for
11076 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
11077 /// to change the type of E.
11078 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
11079 ///
11080 /// Always returns an RValue with a pointer representation.
ignorePointerCastsAndParens(const Expr * E)11081 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
11082   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
11083 
11084   auto *NoParens = E->IgnoreParens();
11085   auto *Cast = dyn_cast<CastExpr>(NoParens);
11086   if (Cast == nullptr)
11087     return NoParens;
11088 
11089   // We only conservatively allow a few kinds of casts, because this code is
11090   // inherently a simple solution that seeks to support the common case.
11091   auto CastKind = Cast->getCastKind();
11092   if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
11093       CastKind != CK_AddressSpaceConversion)
11094     return NoParens;
11095 
11096   auto *SubExpr = Cast->getSubExpr();
11097   if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
11098     return NoParens;
11099   return ignorePointerCastsAndParens(SubExpr);
11100 }
11101 
11102 /// Checks to see if the given LValue's Designator is at the end of the LValue's
11103 /// record layout. e.g.
11104 ///   struct { struct { int a, b; } fst, snd; } obj;
11105 ///   obj.fst   // no
11106 ///   obj.snd   // yes
11107 ///   obj.fst.a // no
11108 ///   obj.fst.b // no
11109 ///   obj.snd.a // no
11110 ///   obj.snd.b // yes
11111 ///
11112 /// Please note: this function is specialized for how __builtin_object_size
11113 /// views "objects".
11114 ///
11115 /// If this encounters an invalid RecordDecl or otherwise cannot determine the
11116 /// correct result, it will always return true.
isDesignatorAtObjectEnd(const ASTContext & Ctx,const LValue & LVal)11117 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
11118   assert(!LVal.Designator.Invalid);
11119 
11120   auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
11121     const RecordDecl *Parent = FD->getParent();
11122     Invalid = Parent->isInvalidDecl();
11123     if (Invalid || Parent->isUnion())
11124       return true;
11125     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
11126     return FD->getFieldIndex() + 1 == Layout.getFieldCount();
11127   };
11128 
11129   auto &Base = LVal.getLValueBase();
11130   if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
11131     if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
11132       bool Invalid;
11133       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11134         return Invalid;
11135     } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
11136       for (auto *FD : IFD->chain()) {
11137         bool Invalid;
11138         if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
11139           return Invalid;
11140       }
11141     }
11142   }
11143 
11144   unsigned I = 0;
11145   QualType BaseType = getType(Base);
11146   if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
11147     // If we don't know the array bound, conservatively assume we're looking at
11148     // the final array element.
11149     ++I;
11150     if (BaseType->isIncompleteArrayType())
11151       BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
11152     else
11153       BaseType = BaseType->castAs<PointerType>()->getPointeeType();
11154   }
11155 
11156   for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
11157     const auto &Entry = LVal.Designator.Entries[I];
11158     if (BaseType->isArrayType()) {
11159       // Because __builtin_object_size treats arrays as objects, we can ignore
11160       // the index iff this is the last array in the Designator.
11161       if (I + 1 == E)
11162         return true;
11163       const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
11164       uint64_t Index = Entry.getAsArrayIndex();
11165       if (Index + 1 != CAT->getSize())
11166         return false;
11167       BaseType = CAT->getElementType();
11168     } else if (BaseType->isAnyComplexType()) {
11169       const auto *CT = BaseType->castAs<ComplexType>();
11170       uint64_t Index = Entry.getAsArrayIndex();
11171       if (Index != 1)
11172         return false;
11173       BaseType = CT->getElementType();
11174     } else if (auto *FD = getAsField(Entry)) {
11175       bool Invalid;
11176       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
11177         return Invalid;
11178       BaseType = FD->getType();
11179     } else {
11180       assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
11181       return false;
11182     }
11183   }
11184   return true;
11185 }
11186 
11187 /// Tests to see if the LValue has a user-specified designator (that isn't
11188 /// necessarily valid). Note that this always returns 'true' if the LValue has
11189 /// an unsized array as its first designator entry, because there's currently no
11190 /// way to tell if the user typed *foo or foo[0].
refersToCompleteObject(const LValue & LVal)11191 static bool refersToCompleteObject(const LValue &LVal) {
11192   if (LVal.Designator.Invalid)
11193     return false;
11194 
11195   if (!LVal.Designator.Entries.empty())
11196     return LVal.Designator.isMostDerivedAnUnsizedArray();
11197 
11198   if (!LVal.InvalidBase)
11199     return true;
11200 
11201   // If `E` is a MemberExpr, then the first part of the designator is hiding in
11202   // the LValueBase.
11203   const auto *E = LVal.Base.dyn_cast<const Expr *>();
11204   return !E || !isa<MemberExpr>(E);
11205 }
11206 
11207 /// Attempts to detect a user writing into a piece of memory that's impossible
11208 /// to figure out the size of by just using types.
isUserWritingOffTheEnd(const ASTContext & Ctx,const LValue & LVal)11209 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
11210   const SubobjectDesignator &Designator = LVal.Designator;
11211   // Notes:
11212   // - Users can only write off of the end when we have an invalid base. Invalid
11213   //   bases imply we don't know where the memory came from.
11214   // - We used to be a bit more aggressive here; we'd only be conservative if
11215   //   the array at the end was flexible, or if it had 0 or 1 elements. This
11216   //   broke some common standard library extensions (PR30346), but was
11217   //   otherwise seemingly fine. It may be useful to reintroduce this behavior
11218   //   with some sort of list. OTOH, it seems that GCC is always
11219   //   conservative with the last element in structs (if it's an array), so our
11220   //   current behavior is more compatible than an explicit list approach would
11221   //   be.
11222   return LVal.InvalidBase &&
11223          Designator.Entries.size() == Designator.MostDerivedPathLength &&
11224          Designator.MostDerivedIsArrayElement &&
11225          isDesignatorAtObjectEnd(Ctx, LVal);
11226 }
11227 
11228 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
11229 /// Fails if the conversion would cause loss of precision.
convertUnsignedAPIntToCharUnits(const llvm::APInt & Int,CharUnits & Result)11230 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
11231                                             CharUnits &Result) {
11232   auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
11233   if (Int.ugt(CharUnitsMax))
11234     return false;
11235   Result = CharUnits::fromQuantity(Int.getZExtValue());
11236   return true;
11237 }
11238 
11239 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
11240 /// determine how many bytes exist from the beginning of the object to either
11241 /// the end of the current subobject, or the end of the object itself, depending
11242 /// on what the LValue looks like + the value of Type.
11243 ///
11244 /// If this returns false, the value of Result is undefined.
determineEndOffset(EvalInfo & Info,SourceLocation ExprLoc,unsigned Type,const LValue & LVal,CharUnits & EndOffset)11245 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
11246                                unsigned Type, const LValue &LVal,
11247                                CharUnits &EndOffset) {
11248   bool DetermineForCompleteObject = refersToCompleteObject(LVal);
11249 
11250   auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
11251     if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
11252       return false;
11253     return HandleSizeof(Info, ExprLoc, Ty, Result);
11254   };
11255 
11256   // We want to evaluate the size of the entire object. This is a valid fallback
11257   // for when Type=1 and the designator is invalid, because we're asked for an
11258   // upper-bound.
11259   if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
11260     // Type=3 wants a lower bound, so we can't fall back to this.
11261     if (Type == 3 && !DetermineForCompleteObject)
11262       return false;
11263 
11264     llvm::APInt APEndOffset;
11265     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11266         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11267       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11268 
11269     if (LVal.InvalidBase)
11270       return false;
11271 
11272     QualType BaseTy = getObjectType(LVal.getLValueBase());
11273     return CheckedHandleSizeof(BaseTy, EndOffset);
11274   }
11275 
11276   // We want to evaluate the size of a subobject.
11277   const SubobjectDesignator &Designator = LVal.Designator;
11278 
11279   // The following is a moderately common idiom in C:
11280   //
11281   // struct Foo { int a; char c[1]; };
11282   // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
11283   // strcpy(&F->c[0], Bar);
11284   //
11285   // In order to not break too much legacy code, we need to support it.
11286   if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
11287     // If we can resolve this to an alloc_size call, we can hand that back,
11288     // because we know for certain how many bytes there are to write to.
11289     llvm::APInt APEndOffset;
11290     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
11291         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
11292       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
11293 
11294     // If we cannot determine the size of the initial allocation, then we can't
11295     // given an accurate upper-bound. However, we are still able to give
11296     // conservative lower-bounds for Type=3.
11297     if (Type == 1)
11298       return false;
11299   }
11300 
11301   CharUnits BytesPerElem;
11302   if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
11303     return false;
11304 
11305   // According to the GCC documentation, we want the size of the subobject
11306   // denoted by the pointer. But that's not quite right -- what we actually
11307   // want is the size of the immediately-enclosing array, if there is one.
11308   int64_t ElemsRemaining;
11309   if (Designator.MostDerivedIsArrayElement &&
11310       Designator.Entries.size() == Designator.MostDerivedPathLength) {
11311     uint64_t ArraySize = Designator.getMostDerivedArraySize();
11312     uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
11313     ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
11314   } else {
11315     ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
11316   }
11317 
11318   EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
11319   return true;
11320 }
11321 
11322 /// Tries to evaluate the __builtin_object_size for @p E. If successful,
11323 /// returns true and stores the result in @p Size.
11324 ///
11325 /// If @p WasError is non-null, this will report whether the failure to evaluate
11326 /// is to be treated as an Error in IntExprEvaluator.
tryEvaluateBuiltinObjectSize(const Expr * E,unsigned Type,EvalInfo & Info,uint64_t & Size)11327 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
11328                                          EvalInfo &Info, uint64_t &Size) {
11329   // Determine the denoted object.
11330   LValue LVal;
11331   {
11332     // The operand of __builtin_object_size is never evaluated for side-effects.
11333     // If there are any, but we can determine the pointed-to object anyway, then
11334     // ignore the side-effects.
11335     SpeculativeEvaluationRAII SpeculativeEval(Info);
11336     IgnoreSideEffectsRAII Fold(Info);
11337 
11338     if (E->isGLValue()) {
11339       // It's possible for us to be given GLValues if we're called via
11340       // Expr::tryEvaluateObjectSize.
11341       APValue RVal;
11342       if (!EvaluateAsRValue(Info, E, RVal))
11343         return false;
11344       LVal.setFrom(Info.Ctx, RVal);
11345     } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
11346                                 /*InvalidBaseOK=*/true))
11347       return false;
11348   }
11349 
11350   // If we point to before the start of the object, there are no accessible
11351   // bytes.
11352   if (LVal.getLValueOffset().isNegative()) {
11353     Size = 0;
11354     return true;
11355   }
11356 
11357   CharUnits EndOffset;
11358   if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
11359     return false;
11360 
11361   // If we've fallen outside of the end offset, just pretend there's nothing to
11362   // write to/read from.
11363   if (EndOffset <= LVal.getLValueOffset())
11364     Size = 0;
11365   else
11366     Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
11367   return true;
11368 }
11369 
VisitCallExpr(const CallExpr * E)11370 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
11371   if (unsigned BuiltinOp = E->getBuiltinCallee())
11372     return VisitBuiltinCallExpr(E, BuiltinOp);
11373 
11374   return ExprEvaluatorBaseTy::VisitCallExpr(E);
11375 }
11376 
getBuiltinAlignArguments(const CallExpr * E,EvalInfo & Info,APValue & Val,APSInt & Alignment)11377 static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info,
11378                                      APValue &Val, APSInt &Alignment) {
11379   QualType SrcTy = E->getArg(0)->getType();
11380   if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment))
11381     return false;
11382   // Even though we are evaluating integer expressions we could get a pointer
11383   // argument for the __builtin_is_aligned() case.
11384   if (SrcTy->isPointerType()) {
11385     LValue Ptr;
11386     if (!EvaluatePointer(E->getArg(0), Ptr, Info))
11387       return false;
11388     Ptr.moveInto(Val);
11389   } else if (!SrcTy->isIntegralOrEnumerationType()) {
11390     Info.FFDiag(E->getArg(0));
11391     return false;
11392   } else {
11393     APSInt SrcInt;
11394     if (!EvaluateInteger(E->getArg(0), SrcInt, Info))
11395       return false;
11396     assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() &&
11397            "Bit widths must be the same");
11398     Val = APValue(SrcInt);
11399   }
11400   assert(Val.hasValue());
11401   return true;
11402 }
11403 
VisitBuiltinCallExpr(const CallExpr * E,unsigned BuiltinOp)11404 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
11405                                             unsigned BuiltinOp) {
11406   switch (BuiltinOp) {
11407   default:
11408     return ExprEvaluatorBaseTy::VisitCallExpr(E);
11409 
11410   case Builtin::BI__builtin_dynamic_object_size:
11411   case Builtin::BI__builtin_object_size: {
11412     // The type was checked when we built the expression.
11413     unsigned Type =
11414         E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11415     assert(Type <= 3 && "unexpected type");
11416 
11417     uint64_t Size;
11418     if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
11419       return Success(Size, E);
11420 
11421     if (E->getArg(0)->HasSideEffects(Info.Ctx))
11422       return Success((Type & 2) ? 0 : -1, E);
11423 
11424     // Expression had no side effects, but we couldn't statically determine the
11425     // size of the referenced object.
11426     switch (Info.EvalMode) {
11427     case EvalInfo::EM_ConstantExpression:
11428     case EvalInfo::EM_ConstantFold:
11429     case EvalInfo::EM_IgnoreSideEffects:
11430       // Leave it to IR generation.
11431       return Error(E);
11432     case EvalInfo::EM_ConstantExpressionUnevaluated:
11433       // Reduce it to a constant now.
11434       return Success((Type & 2) ? 0 : -1, E);
11435     }
11436 
11437     llvm_unreachable("unexpected EvalMode");
11438   }
11439 
11440   case Builtin::BI__builtin_os_log_format_buffer_size: {
11441     analyze_os_log::OSLogBufferLayout Layout;
11442     analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
11443     return Success(Layout.size().getQuantity(), E);
11444   }
11445 
11446   case Builtin::BI__builtin_is_aligned: {
11447     APValue Src;
11448     APSInt Alignment;
11449     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11450       return false;
11451     if (Src.isLValue()) {
11452       // If we evaluated a pointer, check the minimum known alignment.
11453       LValue Ptr;
11454       Ptr.setFrom(Info.Ctx, Src);
11455       CharUnits BaseAlignment = getBaseAlignment(Info, Ptr);
11456       CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset);
11457       // We can return true if the known alignment at the computed offset is
11458       // greater than the requested alignment.
11459       assert(PtrAlign.isPowerOfTwo());
11460       assert(Alignment.isPowerOf2());
11461       if (PtrAlign.getQuantity() >= Alignment)
11462         return Success(1, E);
11463       // If the alignment is not known to be sufficient, some cases could still
11464       // be aligned at run time. However, if the requested alignment is less or
11465       // equal to the base alignment and the offset is not aligned, we know that
11466       // the run-time value can never be aligned.
11467       if (BaseAlignment.getQuantity() >= Alignment &&
11468           PtrAlign.getQuantity() < Alignment)
11469         return Success(0, E);
11470       // Otherwise we can't infer whether the value is sufficiently aligned.
11471       // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N)
11472       //  in cases where we can't fully evaluate the pointer.
11473       Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute)
11474           << Alignment;
11475       return false;
11476     }
11477     assert(Src.isInt());
11478     return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E);
11479   }
11480   case Builtin::BI__builtin_align_up: {
11481     APValue Src;
11482     APSInt Alignment;
11483     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11484       return false;
11485     if (!Src.isInt())
11486       return Error(E);
11487     APSInt AlignedVal =
11488         APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1),
11489                Src.getInt().isUnsigned());
11490     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11491     return Success(AlignedVal, E);
11492   }
11493   case Builtin::BI__builtin_align_down: {
11494     APValue Src;
11495     APSInt Alignment;
11496     if (!getBuiltinAlignArguments(E, Info, Src, Alignment))
11497       return false;
11498     if (!Src.isInt())
11499       return Error(E);
11500     APSInt AlignedVal =
11501         APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned());
11502     assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth());
11503     return Success(AlignedVal, E);
11504   }
11505 
11506   case Builtin::BI__builtin_bitreverse8:
11507   case Builtin::BI__builtin_bitreverse16:
11508   case Builtin::BI__builtin_bitreverse32:
11509   case Builtin::BI__builtin_bitreverse64: {
11510     APSInt Val;
11511     if (!EvaluateInteger(E->getArg(0), Val, Info))
11512       return false;
11513 
11514     return Success(Val.reverseBits(), E);
11515   }
11516 
11517   case Builtin::BI__builtin_bswap16:
11518   case Builtin::BI__builtin_bswap32:
11519   case Builtin::BI__builtin_bswap64: {
11520     APSInt Val;
11521     if (!EvaluateInteger(E->getArg(0), Val, Info))
11522       return false;
11523 
11524     return Success(Val.byteSwap(), E);
11525   }
11526 
11527   case Builtin::BI__builtin_classify_type:
11528     return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
11529 
11530   case Builtin::BI__builtin_clrsb:
11531   case Builtin::BI__builtin_clrsbl:
11532   case Builtin::BI__builtin_clrsbll: {
11533     APSInt Val;
11534     if (!EvaluateInteger(E->getArg(0), Val, Info))
11535       return false;
11536 
11537     return Success(Val.getBitWidth() - Val.getMinSignedBits(), E);
11538   }
11539 
11540   case Builtin::BI__builtin_clz:
11541   case Builtin::BI__builtin_clzl:
11542   case Builtin::BI__builtin_clzll:
11543   case Builtin::BI__builtin_clzs: {
11544     APSInt Val;
11545     if (!EvaluateInteger(E->getArg(0), Val, Info))
11546       return false;
11547     if (!Val)
11548       return Error(E);
11549 
11550     return Success(Val.countLeadingZeros(), E);
11551   }
11552 
11553   case Builtin::BI__builtin_constant_p: {
11554     const Expr *Arg = E->getArg(0);
11555     if (EvaluateBuiltinConstantP(Info, Arg))
11556       return Success(true, E);
11557     if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
11558       // Outside a constant context, eagerly evaluate to false in the presence
11559       // of side-effects in order to avoid -Wunsequenced false-positives in
11560       // a branch on __builtin_constant_p(expr).
11561       return Success(false, E);
11562     }
11563     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
11564     return false;
11565   }
11566 
11567   case Builtin::BI__builtin_is_constant_evaluated: {
11568     const auto *Callee = Info.CurrentCall->getCallee();
11569     if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression &&
11570         (Info.CallStackDepth == 1 ||
11571          (Info.CallStackDepth == 2 && Callee->isInStdNamespace() &&
11572           Callee->getIdentifier() &&
11573           Callee->getIdentifier()->isStr("is_constant_evaluated")))) {
11574       // FIXME: Find a better way to avoid duplicated diagnostics.
11575       if (Info.EvalStatus.Diag)
11576         Info.report((Info.CallStackDepth == 1) ? E->getExprLoc()
11577                                                : Info.CurrentCall->CallLoc,
11578                     diag::warn_is_constant_evaluated_always_true_constexpr)
11579             << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated"
11580                                          : "std::is_constant_evaluated");
11581     }
11582 
11583     return Success(Info.InConstantContext, E);
11584   }
11585 
11586   case Builtin::BI__builtin_ctz:
11587   case Builtin::BI__builtin_ctzl:
11588   case Builtin::BI__builtin_ctzll:
11589   case Builtin::BI__builtin_ctzs: {
11590     APSInt Val;
11591     if (!EvaluateInteger(E->getArg(0), Val, Info))
11592       return false;
11593     if (!Val)
11594       return Error(E);
11595 
11596     return Success(Val.countTrailingZeros(), E);
11597   }
11598 
11599   case Builtin::BI__builtin_eh_return_data_regno: {
11600     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
11601     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
11602     return Success(Operand, E);
11603   }
11604 
11605   case Builtin::BI__builtin_expect:
11606   case Builtin::BI__builtin_expect_with_probability:
11607     return Visit(E->getArg(0));
11608 
11609   case Builtin::BI__builtin_ffs:
11610   case Builtin::BI__builtin_ffsl:
11611   case Builtin::BI__builtin_ffsll: {
11612     APSInt Val;
11613     if (!EvaluateInteger(E->getArg(0), Val, Info))
11614       return false;
11615 
11616     unsigned N = Val.countTrailingZeros();
11617     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
11618   }
11619 
11620   case Builtin::BI__builtin_fpclassify: {
11621     APFloat Val(0.0);
11622     if (!EvaluateFloat(E->getArg(5), Val, Info))
11623       return false;
11624     unsigned Arg;
11625     switch (Val.getCategory()) {
11626     case APFloat::fcNaN: Arg = 0; break;
11627     case APFloat::fcInfinity: Arg = 1; break;
11628     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
11629     case APFloat::fcZero: Arg = 4; break;
11630     }
11631     return Visit(E->getArg(Arg));
11632   }
11633 
11634   case Builtin::BI__builtin_isinf_sign: {
11635     APFloat Val(0.0);
11636     return EvaluateFloat(E->getArg(0), Val, Info) &&
11637            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
11638   }
11639 
11640   case Builtin::BI__builtin_isinf: {
11641     APFloat Val(0.0);
11642     return EvaluateFloat(E->getArg(0), Val, Info) &&
11643            Success(Val.isInfinity() ? 1 : 0, E);
11644   }
11645 
11646   case Builtin::BI__builtin_isfinite: {
11647     APFloat Val(0.0);
11648     return EvaluateFloat(E->getArg(0), Val, Info) &&
11649            Success(Val.isFinite() ? 1 : 0, E);
11650   }
11651 
11652   case Builtin::BI__builtin_isnan: {
11653     APFloat Val(0.0);
11654     return EvaluateFloat(E->getArg(0), Val, Info) &&
11655            Success(Val.isNaN() ? 1 : 0, E);
11656   }
11657 
11658   case Builtin::BI__builtin_isnormal: {
11659     APFloat Val(0.0);
11660     return EvaluateFloat(E->getArg(0), Val, Info) &&
11661            Success(Val.isNormal() ? 1 : 0, E);
11662   }
11663 
11664   case Builtin::BI__builtin_parity:
11665   case Builtin::BI__builtin_parityl:
11666   case Builtin::BI__builtin_parityll: {
11667     APSInt Val;
11668     if (!EvaluateInteger(E->getArg(0), Val, Info))
11669       return false;
11670 
11671     return Success(Val.countPopulation() % 2, E);
11672   }
11673 
11674   case Builtin::BI__builtin_popcount:
11675   case Builtin::BI__builtin_popcountl:
11676   case Builtin::BI__builtin_popcountll: {
11677     APSInt Val;
11678     if (!EvaluateInteger(E->getArg(0), Val, Info))
11679       return false;
11680 
11681     return Success(Val.countPopulation(), E);
11682   }
11683 
11684   case Builtin::BI__builtin_rotateleft8:
11685   case Builtin::BI__builtin_rotateleft16:
11686   case Builtin::BI__builtin_rotateleft32:
11687   case Builtin::BI__builtin_rotateleft64:
11688   case Builtin::BI_rotl8: // Microsoft variants of rotate right
11689   case Builtin::BI_rotl16:
11690   case Builtin::BI_rotl:
11691   case Builtin::BI_lrotl:
11692   case Builtin::BI_rotl64: {
11693     APSInt Val, Amt;
11694     if (!EvaluateInteger(E->getArg(0), Val, Info) ||
11695         !EvaluateInteger(E->getArg(1), Amt, Info))
11696       return false;
11697 
11698     return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E);
11699   }
11700 
11701   case Builtin::BI__builtin_rotateright8:
11702   case Builtin::BI__builtin_rotateright16:
11703   case Builtin::BI__builtin_rotateright32:
11704   case Builtin::BI__builtin_rotateright64:
11705   case Builtin::BI_rotr8: // Microsoft variants of rotate right
11706   case Builtin::BI_rotr16:
11707   case Builtin::BI_rotr:
11708   case Builtin::BI_lrotr:
11709   case Builtin::BI_rotr64: {
11710     APSInt Val, Amt;
11711     if (!EvaluateInteger(E->getArg(0), Val, Info) ||
11712         !EvaluateInteger(E->getArg(1), Amt, Info))
11713       return false;
11714 
11715     return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E);
11716   }
11717 
11718   case Builtin::BIstrlen:
11719   case Builtin::BIwcslen:
11720     // A call to strlen is not a constant expression.
11721     if (Info.getLangOpts().CPlusPlus11)
11722       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
11723         << /*isConstexpr*/0 << /*isConstructor*/0
11724         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
11725     else
11726       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
11727     LLVM_FALLTHROUGH;
11728   case Builtin::BI__builtin_strlen:
11729   case Builtin::BI__builtin_wcslen: {
11730     // As an extension, we support __builtin_strlen() as a constant expression,
11731     // and support folding strlen() to a constant.
11732     LValue String;
11733     if (!EvaluatePointer(E->getArg(0), String, Info))
11734       return false;
11735 
11736     QualType CharTy = E->getArg(0)->getType()->getPointeeType();
11737 
11738     // Fast path: if it's a string literal, search the string value.
11739     if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
11740             String.getLValueBase().dyn_cast<const Expr *>())) {
11741       // The string literal may have embedded null characters. Find the first
11742       // one and truncate there.
11743       StringRef Str = S->getBytes();
11744       int64_t Off = String.Offset.getQuantity();
11745       if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
11746           S->getCharByteWidth() == 1 &&
11747           // FIXME: Add fast-path for wchar_t too.
11748           Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
11749         Str = Str.substr(Off);
11750 
11751         StringRef::size_type Pos = Str.find(0);
11752         if (Pos != StringRef::npos)
11753           Str = Str.substr(0, Pos);
11754 
11755         return Success(Str.size(), E);
11756       }
11757 
11758       // Fall through to slow path to issue appropriate diagnostic.
11759     }
11760 
11761     // Slow path: scan the bytes of the string looking for the terminating 0.
11762     for (uint64_t Strlen = 0; /**/; ++Strlen) {
11763       APValue Char;
11764       if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
11765           !Char.isInt())
11766         return false;
11767       if (!Char.getInt())
11768         return Success(Strlen, E);
11769       if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
11770         return false;
11771     }
11772   }
11773 
11774   case Builtin::BIstrcmp:
11775   case Builtin::BIwcscmp:
11776   case Builtin::BIstrncmp:
11777   case Builtin::BIwcsncmp:
11778   case Builtin::BImemcmp:
11779   case Builtin::BIbcmp:
11780   case Builtin::BIwmemcmp:
11781     // A call to strlen is not a constant expression.
11782     if (Info.getLangOpts().CPlusPlus11)
11783       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
11784         << /*isConstexpr*/0 << /*isConstructor*/0
11785         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
11786     else
11787       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
11788     LLVM_FALLTHROUGH;
11789   case Builtin::BI__builtin_strcmp:
11790   case Builtin::BI__builtin_wcscmp:
11791   case Builtin::BI__builtin_strncmp:
11792   case Builtin::BI__builtin_wcsncmp:
11793   case Builtin::BI__builtin_memcmp:
11794   case Builtin::BI__builtin_bcmp:
11795   case Builtin::BI__builtin_wmemcmp: {
11796     LValue String1, String2;
11797     if (!EvaluatePointer(E->getArg(0), String1, Info) ||
11798         !EvaluatePointer(E->getArg(1), String2, Info))
11799       return false;
11800 
11801     uint64_t MaxLength = uint64_t(-1);
11802     if (BuiltinOp != Builtin::BIstrcmp &&
11803         BuiltinOp != Builtin::BIwcscmp &&
11804         BuiltinOp != Builtin::BI__builtin_strcmp &&
11805         BuiltinOp != Builtin::BI__builtin_wcscmp) {
11806       APSInt N;
11807       if (!EvaluateInteger(E->getArg(2), N, Info))
11808         return false;
11809       MaxLength = N.getExtValue();
11810     }
11811 
11812     // Empty substrings compare equal by definition.
11813     if (MaxLength == 0u)
11814       return Success(0, E);
11815 
11816     if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
11817         !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
11818         String1.Designator.Invalid || String2.Designator.Invalid)
11819       return false;
11820 
11821     QualType CharTy1 = String1.Designator.getType(Info.Ctx);
11822     QualType CharTy2 = String2.Designator.getType(Info.Ctx);
11823 
11824     bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
11825                      BuiltinOp == Builtin::BIbcmp ||
11826                      BuiltinOp == Builtin::BI__builtin_memcmp ||
11827                      BuiltinOp == Builtin::BI__builtin_bcmp;
11828 
11829     assert(IsRawByte ||
11830            (Info.Ctx.hasSameUnqualifiedType(
11831                 CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
11832             Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
11833 
11834     // For memcmp, allow comparing any arrays of '[[un]signed] char' or
11835     // 'char8_t', but no other types.
11836     if (IsRawByte &&
11837         !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) {
11838       // FIXME: Consider using our bit_cast implementation to support this.
11839       Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported)
11840           << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'")
11841           << CharTy1 << CharTy2;
11842       return false;
11843     }
11844 
11845     const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
11846       return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
11847              handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
11848              Char1.isInt() && Char2.isInt();
11849     };
11850     const auto &AdvanceElems = [&] {
11851       return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
11852              HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
11853     };
11854 
11855     bool StopAtNull =
11856         (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
11857          BuiltinOp != Builtin::BIwmemcmp &&
11858          BuiltinOp != Builtin::BI__builtin_memcmp &&
11859          BuiltinOp != Builtin::BI__builtin_bcmp &&
11860          BuiltinOp != Builtin::BI__builtin_wmemcmp);
11861     bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
11862                   BuiltinOp == Builtin::BIwcsncmp ||
11863                   BuiltinOp == Builtin::BIwmemcmp ||
11864                   BuiltinOp == Builtin::BI__builtin_wcscmp ||
11865                   BuiltinOp == Builtin::BI__builtin_wcsncmp ||
11866                   BuiltinOp == Builtin::BI__builtin_wmemcmp;
11867 
11868     for (; MaxLength; --MaxLength) {
11869       APValue Char1, Char2;
11870       if (!ReadCurElems(Char1, Char2))
11871         return false;
11872       if (Char1.getInt().ne(Char2.getInt())) {
11873         if (IsWide) // wmemcmp compares with wchar_t signedness.
11874           return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
11875         // memcmp always compares unsigned chars.
11876         return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
11877       }
11878       if (StopAtNull && !Char1.getInt())
11879         return Success(0, E);
11880       assert(!(StopAtNull && !Char2.getInt()));
11881       if (!AdvanceElems())
11882         return false;
11883     }
11884     // We hit the strncmp / memcmp limit.
11885     return Success(0, E);
11886   }
11887 
11888   case Builtin::BI__atomic_always_lock_free:
11889   case Builtin::BI__atomic_is_lock_free:
11890   case Builtin::BI__c11_atomic_is_lock_free: {
11891     APSInt SizeVal;
11892     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
11893       return false;
11894 
11895     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
11896     // of two less than or equal to the maximum inline atomic width, we know it
11897     // is lock-free.  If the size isn't a power of two, or greater than the
11898     // maximum alignment where we promote atomics, we know it is not lock-free
11899     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
11900     // the answer can only be determined at runtime; for example, 16-byte
11901     // atomics have lock-free implementations on some, but not all,
11902     // x86-64 processors.
11903 
11904     // Check power-of-two.
11905     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
11906     if (Size.isPowerOfTwo()) {
11907       // Check against inlining width.
11908       unsigned InlineWidthBits =
11909           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
11910       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
11911         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
11912             Size == CharUnits::One() ||
11913             E->getArg(1)->isNullPointerConstant(Info.Ctx,
11914                                                 Expr::NPC_NeverValueDependent))
11915           // OK, we will inline appropriately-aligned operations of this size,
11916           // and _Atomic(T) is appropriately-aligned.
11917           return Success(1, E);
11918 
11919         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
11920           castAs<PointerType>()->getPointeeType();
11921         if (!PointeeType->isIncompleteType() &&
11922             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
11923           // OK, we will inline operations on this object.
11924           return Success(1, E);
11925         }
11926       }
11927     }
11928 
11929     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
11930         Success(0, E) : Error(E);
11931   }
11932   case Builtin::BIomp_is_initial_device:
11933     // We can decide statically which value the runtime would return if called.
11934     return Success(Info.getLangOpts().OpenMPIsDevice ? 0 : 1, E);
11935   case Builtin::BI__builtin_add_overflow:
11936   case Builtin::BI__builtin_sub_overflow:
11937   case Builtin::BI__builtin_mul_overflow:
11938   case Builtin::BI__builtin_sadd_overflow:
11939   case Builtin::BI__builtin_uadd_overflow:
11940   case Builtin::BI__builtin_uaddl_overflow:
11941   case Builtin::BI__builtin_uaddll_overflow:
11942   case Builtin::BI__builtin_usub_overflow:
11943   case Builtin::BI__builtin_usubl_overflow:
11944   case Builtin::BI__builtin_usubll_overflow:
11945   case Builtin::BI__builtin_umul_overflow:
11946   case Builtin::BI__builtin_umull_overflow:
11947   case Builtin::BI__builtin_umulll_overflow:
11948   case Builtin::BI__builtin_saddl_overflow:
11949   case Builtin::BI__builtin_saddll_overflow:
11950   case Builtin::BI__builtin_ssub_overflow:
11951   case Builtin::BI__builtin_ssubl_overflow:
11952   case Builtin::BI__builtin_ssubll_overflow:
11953   case Builtin::BI__builtin_smul_overflow:
11954   case Builtin::BI__builtin_smull_overflow:
11955   case Builtin::BI__builtin_smulll_overflow: {
11956     LValue ResultLValue;
11957     APSInt LHS, RHS;
11958 
11959     QualType ResultType = E->getArg(2)->getType()->getPointeeType();
11960     if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
11961         !EvaluateInteger(E->getArg(1), RHS, Info) ||
11962         !EvaluatePointer(E->getArg(2), ResultLValue, Info))
11963       return false;
11964 
11965     APSInt Result;
11966     bool DidOverflow = false;
11967 
11968     // If the types don't have to match, enlarge all 3 to the largest of them.
11969     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
11970         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
11971         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
11972       bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
11973                       ResultType->isSignedIntegerOrEnumerationType();
11974       bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
11975                       ResultType->isSignedIntegerOrEnumerationType();
11976       uint64_t LHSSize = LHS.getBitWidth();
11977       uint64_t RHSSize = RHS.getBitWidth();
11978       uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
11979       uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
11980 
11981       // Add an additional bit if the signedness isn't uniformly agreed to. We
11982       // could do this ONLY if there is a signed and an unsigned that both have
11983       // MaxBits, but the code to check that is pretty nasty.  The issue will be
11984       // caught in the shrink-to-result later anyway.
11985       if (IsSigned && !AllSigned)
11986         ++MaxBits;
11987 
11988       LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
11989       RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
11990       Result = APSInt(MaxBits, !IsSigned);
11991     }
11992 
11993     // Find largest int.
11994     switch (BuiltinOp) {
11995     default:
11996       llvm_unreachable("Invalid value for BuiltinOp");
11997     case Builtin::BI__builtin_add_overflow:
11998     case Builtin::BI__builtin_sadd_overflow:
11999     case Builtin::BI__builtin_saddl_overflow:
12000     case Builtin::BI__builtin_saddll_overflow:
12001     case Builtin::BI__builtin_uadd_overflow:
12002     case Builtin::BI__builtin_uaddl_overflow:
12003     case Builtin::BI__builtin_uaddll_overflow:
12004       Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
12005                               : LHS.uadd_ov(RHS, DidOverflow);
12006       break;
12007     case Builtin::BI__builtin_sub_overflow:
12008     case Builtin::BI__builtin_ssub_overflow:
12009     case Builtin::BI__builtin_ssubl_overflow:
12010     case Builtin::BI__builtin_ssubll_overflow:
12011     case Builtin::BI__builtin_usub_overflow:
12012     case Builtin::BI__builtin_usubl_overflow:
12013     case Builtin::BI__builtin_usubll_overflow:
12014       Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
12015                               : LHS.usub_ov(RHS, DidOverflow);
12016       break;
12017     case Builtin::BI__builtin_mul_overflow:
12018     case Builtin::BI__builtin_smul_overflow:
12019     case Builtin::BI__builtin_smull_overflow:
12020     case Builtin::BI__builtin_smulll_overflow:
12021     case Builtin::BI__builtin_umul_overflow:
12022     case Builtin::BI__builtin_umull_overflow:
12023     case Builtin::BI__builtin_umulll_overflow:
12024       Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
12025                               : LHS.umul_ov(RHS, DidOverflow);
12026       break;
12027     }
12028 
12029     // In the case where multiple sizes are allowed, truncate and see if
12030     // the values are the same.
12031     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
12032         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
12033         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
12034       // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
12035       // since it will give us the behavior of a TruncOrSelf in the case where
12036       // its parameter <= its size.  We previously set Result to be at least the
12037       // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
12038       // will work exactly like TruncOrSelf.
12039       APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
12040       Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
12041 
12042       if (!APSInt::isSameValue(Temp, Result))
12043         DidOverflow = true;
12044       Result = Temp;
12045     }
12046 
12047     APValue APV{Result};
12048     if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
12049       return false;
12050     return Success(DidOverflow, E);
12051   }
12052   }
12053 }
12054 
12055 /// Determine whether this is a pointer past the end of the complete
12056 /// object referred to by the lvalue.
isOnePastTheEndOfCompleteObject(const ASTContext & Ctx,const LValue & LV)12057 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
12058                                             const LValue &LV) {
12059   // A null pointer can be viewed as being "past the end" but we don't
12060   // choose to look at it that way here.
12061   if (!LV.getLValueBase())
12062     return false;
12063 
12064   // If the designator is valid and refers to a subobject, we're not pointing
12065   // past the end.
12066   if (!LV.getLValueDesignator().Invalid &&
12067       !LV.getLValueDesignator().isOnePastTheEnd())
12068     return false;
12069 
12070   // A pointer to an incomplete type might be past-the-end if the type's size is
12071   // zero.  We cannot tell because the type is incomplete.
12072   QualType Ty = getType(LV.getLValueBase());
12073   if (Ty->isIncompleteType())
12074     return true;
12075 
12076   // We're a past-the-end pointer if we point to the byte after the object,
12077   // no matter what our type or path is.
12078   auto Size = Ctx.getTypeSizeInChars(Ty);
12079   return LV.getLValueOffset() == Size;
12080 }
12081 
12082 namespace {
12083 
12084 /// Data recursive integer evaluator of certain binary operators.
12085 ///
12086 /// We use a data recursive algorithm for binary operators so that we are able
12087 /// to handle extreme cases of chained binary operators without causing stack
12088 /// overflow.
12089 class DataRecursiveIntBinOpEvaluator {
12090   struct EvalResult {
12091     APValue Val;
12092     bool Failed;
12093 
EvalResult__anon4717f8732811::DataRecursiveIntBinOpEvaluator::EvalResult12094     EvalResult() : Failed(false) { }
12095 
swap__anon4717f8732811::DataRecursiveIntBinOpEvaluator::EvalResult12096     void swap(EvalResult &RHS) {
12097       Val.swap(RHS.Val);
12098       Failed = RHS.Failed;
12099       RHS.Failed = false;
12100     }
12101   };
12102 
12103   struct Job {
12104     const Expr *E;
12105     EvalResult LHSResult; // meaningful only for binary operator expression.
12106     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
12107 
12108     Job() = default;
12109     Job(Job &&) = default;
12110 
startSpeculativeEval__anon4717f8732811::DataRecursiveIntBinOpEvaluator::Job12111     void startSpeculativeEval(EvalInfo &Info) {
12112       SpecEvalRAII = SpeculativeEvaluationRAII(Info);
12113     }
12114 
12115   private:
12116     SpeculativeEvaluationRAII SpecEvalRAII;
12117   };
12118 
12119   SmallVector<Job, 16> Queue;
12120 
12121   IntExprEvaluator &IntEval;
12122   EvalInfo &Info;
12123   APValue &FinalResult;
12124 
12125 public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)12126   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
12127     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
12128 
12129   /// True if \param E is a binary operator that we are going to handle
12130   /// data recursively.
12131   /// We handle binary operators that are comma, logical, or that have operands
12132   /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)12133   static bool shouldEnqueue(const BinaryOperator *E) {
12134     return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
12135            (E->isRValue() && E->getType()->isIntegralOrEnumerationType() &&
12136             E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12137             E->getRHS()->getType()->isIntegralOrEnumerationType());
12138   }
12139 
Traverse(const BinaryOperator * E)12140   bool Traverse(const BinaryOperator *E) {
12141     enqueue(E);
12142     EvalResult PrevResult;
12143     while (!Queue.empty())
12144       process(PrevResult);
12145 
12146     if (PrevResult.Failed) return false;
12147 
12148     FinalResult.swap(PrevResult.Val);
12149     return true;
12150   }
12151 
12152 private:
Success(uint64_t Value,const Expr * E,APValue & Result)12153   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
12154     return IntEval.Success(Value, E, Result);
12155   }
Success(const APSInt & Value,const Expr * E,APValue & Result)12156   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
12157     return IntEval.Success(Value, E, Result);
12158   }
Error(const Expr * E)12159   bool Error(const Expr *E) {
12160     return IntEval.Error(E);
12161   }
Error(const Expr * E,diag::kind D)12162   bool Error(const Expr *E, diag::kind D) {
12163     return IntEval.Error(E, D);
12164   }
12165 
CCEDiag(const Expr * E,diag::kind D)12166   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
12167     return Info.CCEDiag(E, D);
12168   }
12169 
12170   // Returns true if visiting the RHS is necessary, false otherwise.
12171   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12172                          bool &SuppressRHSDiags);
12173 
12174   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12175                   const BinaryOperator *E, APValue &Result);
12176 
EvaluateExpr(const Expr * E,EvalResult & Result)12177   void EvaluateExpr(const Expr *E, EvalResult &Result) {
12178     Result.Failed = !Evaluate(Result.Val, Info, E);
12179     if (Result.Failed)
12180       Result.Val = APValue();
12181   }
12182 
12183   void process(EvalResult &Result);
12184 
enqueue(const Expr * E)12185   void enqueue(const Expr *E) {
12186     E = E->IgnoreParens();
12187     Queue.resize(Queue.size()+1);
12188     Queue.back().E = E;
12189     Queue.back().Kind = Job::AnyExprKind;
12190   }
12191 };
12192 
12193 }
12194 
12195 bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)12196        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
12197                          bool &SuppressRHSDiags) {
12198   if (E->getOpcode() == BO_Comma) {
12199     // Ignore LHS but note if we could not evaluate it.
12200     if (LHSResult.Failed)
12201       return Info.noteSideEffect();
12202     return true;
12203   }
12204 
12205   if (E->isLogicalOp()) {
12206     bool LHSAsBool;
12207     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
12208       // We were able to evaluate the LHS, see if we can get away with not
12209       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
12210       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
12211         Success(LHSAsBool, E, LHSResult.Val);
12212         return false; // Ignore RHS
12213       }
12214     } else {
12215       LHSResult.Failed = true;
12216 
12217       // Since we weren't able to evaluate the left hand side, it
12218       // might have had side effects.
12219       if (!Info.noteSideEffect())
12220         return false;
12221 
12222       // We can't evaluate the LHS; however, sometimes the result
12223       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12224       // Don't ignore RHS and suppress diagnostics from this arm.
12225       SuppressRHSDiags = true;
12226     }
12227 
12228     return true;
12229   }
12230 
12231   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12232          E->getRHS()->getType()->isIntegralOrEnumerationType());
12233 
12234   if (LHSResult.Failed && !Info.noteFailure())
12235     return false; // Ignore RHS;
12236 
12237   return true;
12238 }
12239 
addOrSubLValueAsInteger(APValue & LVal,const APSInt & Index,bool IsSub)12240 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
12241                                     bool IsSub) {
12242   // Compute the new offset in the appropriate width, wrapping at 64 bits.
12243   // FIXME: When compiling for a 32-bit target, we should use 32-bit
12244   // offsets.
12245   assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
12246   CharUnits &Offset = LVal.getLValueOffset();
12247   uint64_t Offset64 = Offset.getQuantity();
12248   uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
12249   Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
12250                                          : Offset64 + Index64);
12251 }
12252 
12253 bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)12254        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
12255                   const BinaryOperator *E, APValue &Result) {
12256   if (E->getOpcode() == BO_Comma) {
12257     if (RHSResult.Failed)
12258       return false;
12259     Result = RHSResult.Val;
12260     return true;
12261   }
12262 
12263   if (E->isLogicalOp()) {
12264     bool lhsResult, rhsResult;
12265     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
12266     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
12267 
12268     if (LHSIsOK) {
12269       if (RHSIsOK) {
12270         if (E->getOpcode() == BO_LOr)
12271           return Success(lhsResult || rhsResult, E, Result);
12272         else
12273           return Success(lhsResult && rhsResult, E, Result);
12274       }
12275     } else {
12276       if (RHSIsOK) {
12277         // We can't evaluate the LHS; however, sometimes the result
12278         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
12279         if (rhsResult == (E->getOpcode() == BO_LOr))
12280           return Success(rhsResult, E, Result);
12281       }
12282     }
12283 
12284     return false;
12285   }
12286 
12287   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
12288          E->getRHS()->getType()->isIntegralOrEnumerationType());
12289 
12290   if (LHSResult.Failed || RHSResult.Failed)
12291     return false;
12292 
12293   const APValue &LHSVal = LHSResult.Val;
12294   const APValue &RHSVal = RHSResult.Val;
12295 
12296   // Handle cases like (unsigned long)&a + 4.
12297   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
12298     Result = LHSVal;
12299     addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
12300     return true;
12301   }
12302 
12303   // Handle cases like 4 + (unsigned long)&a
12304   if (E->getOpcode() == BO_Add &&
12305       RHSVal.isLValue() && LHSVal.isInt()) {
12306     Result = RHSVal;
12307     addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
12308     return true;
12309   }
12310 
12311   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
12312     // Handle (intptr_t)&&A - (intptr_t)&&B.
12313     if (!LHSVal.getLValueOffset().isZero() ||
12314         !RHSVal.getLValueOffset().isZero())
12315       return false;
12316     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
12317     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
12318     if (!LHSExpr || !RHSExpr)
12319       return false;
12320     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
12321     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
12322     if (!LHSAddrExpr || !RHSAddrExpr)
12323       return false;
12324     // Make sure both labels come from the same function.
12325     if (LHSAddrExpr->getLabel()->getDeclContext() !=
12326         RHSAddrExpr->getLabel()->getDeclContext())
12327       return false;
12328     Result = APValue(LHSAddrExpr, RHSAddrExpr);
12329     return true;
12330   }
12331 
12332   // All the remaining cases expect both operands to be an integer
12333   if (!LHSVal.isInt() || !RHSVal.isInt())
12334     return Error(E);
12335 
12336   // Set up the width and signedness manually, in case it can't be deduced
12337   // from the operation we're performing.
12338   // FIXME: Don't do this in the cases where we can deduce it.
12339   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
12340                E->getType()->isUnsignedIntegerOrEnumerationType());
12341   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
12342                          RHSVal.getInt(), Value))
12343     return false;
12344   return Success(Value, E, Result);
12345 }
12346 
process(EvalResult & Result)12347 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
12348   Job &job = Queue.back();
12349 
12350   switch (job.Kind) {
12351     case Job::AnyExprKind: {
12352       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
12353         if (shouldEnqueue(Bop)) {
12354           job.Kind = Job::BinOpKind;
12355           enqueue(Bop->getLHS());
12356           return;
12357         }
12358       }
12359 
12360       EvaluateExpr(job.E, Result);
12361       Queue.pop_back();
12362       return;
12363     }
12364 
12365     case Job::BinOpKind: {
12366       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12367       bool SuppressRHSDiags = false;
12368       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
12369         Queue.pop_back();
12370         return;
12371       }
12372       if (SuppressRHSDiags)
12373         job.startSpeculativeEval(Info);
12374       job.LHSResult.swap(Result);
12375       job.Kind = Job::BinOpVisitedLHSKind;
12376       enqueue(Bop->getRHS());
12377       return;
12378     }
12379 
12380     case Job::BinOpVisitedLHSKind: {
12381       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
12382       EvalResult RHS;
12383       RHS.swap(Result);
12384       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
12385       Queue.pop_back();
12386       return;
12387     }
12388   }
12389 
12390   llvm_unreachable("Invalid Job::Kind!");
12391 }
12392 
12393 namespace {
12394 /// Used when we determine that we should fail, but can keep evaluating prior to
12395 /// noting that we had a failure.
12396 class DelayedNoteFailureRAII {
12397   EvalInfo &Info;
12398   bool NoteFailure;
12399 
12400 public:
DelayedNoteFailureRAII(EvalInfo & Info,bool NoteFailure=true)12401   DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true)
12402       : Info(Info), NoteFailure(NoteFailure) {}
~DelayedNoteFailureRAII()12403   ~DelayedNoteFailureRAII() {
12404     if (NoteFailure) {
12405       bool ContinueAfterFailure = Info.noteFailure();
12406       (void)ContinueAfterFailure;
12407       assert(ContinueAfterFailure &&
12408              "Shouldn't have kept evaluating on failure.");
12409     }
12410   }
12411 };
12412 
12413 enum class CmpResult {
12414   Unequal,
12415   Less,
12416   Equal,
12417   Greater,
12418   Unordered,
12419 };
12420 }
12421 
12422 template <class SuccessCB, class AfterCB>
12423 static bool
EvaluateComparisonBinaryOperator(EvalInfo & Info,const BinaryOperator * E,SuccessCB && Success,AfterCB && DoAfter)12424 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
12425                                  SuccessCB &&Success, AfterCB &&DoAfter) {
12426   assert(E->isComparisonOp() && "expected comparison operator");
12427   assert((E->getOpcode() == BO_Cmp ||
12428           E->getType()->isIntegralOrEnumerationType()) &&
12429          "unsupported binary expression evaluation");
12430   auto Error = [&](const Expr *E) {
12431     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
12432     return false;
12433   };
12434 
12435   bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp;
12436   bool IsEquality = E->isEqualityOp();
12437 
12438   QualType LHSTy = E->getLHS()->getType();
12439   QualType RHSTy = E->getRHS()->getType();
12440 
12441   if (LHSTy->isIntegralOrEnumerationType() &&
12442       RHSTy->isIntegralOrEnumerationType()) {
12443     APSInt LHS, RHS;
12444     bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
12445     if (!LHSOK && !Info.noteFailure())
12446       return false;
12447     if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
12448       return false;
12449     if (LHS < RHS)
12450       return Success(CmpResult::Less, E);
12451     if (LHS > RHS)
12452       return Success(CmpResult::Greater, E);
12453     return Success(CmpResult::Equal, E);
12454   }
12455 
12456   if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
12457     APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
12458     APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
12459 
12460     bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
12461     if (!LHSOK && !Info.noteFailure())
12462       return false;
12463     if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
12464       return false;
12465     if (LHSFX < RHSFX)
12466       return Success(CmpResult::Less, E);
12467     if (LHSFX > RHSFX)
12468       return Success(CmpResult::Greater, E);
12469     return Success(CmpResult::Equal, E);
12470   }
12471 
12472   if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
12473     ComplexValue LHS, RHS;
12474     bool LHSOK;
12475     if (E->isAssignmentOp()) {
12476       LValue LV;
12477       EvaluateLValue(E->getLHS(), LV, Info);
12478       LHSOK = false;
12479     } else if (LHSTy->isRealFloatingType()) {
12480       LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
12481       if (LHSOK) {
12482         LHS.makeComplexFloat();
12483         LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
12484       }
12485     } else {
12486       LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
12487     }
12488     if (!LHSOK && !Info.noteFailure())
12489       return false;
12490 
12491     if (E->getRHS()->getType()->isRealFloatingType()) {
12492       if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
12493         return false;
12494       RHS.makeComplexFloat();
12495       RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
12496     } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
12497       return false;
12498 
12499     if (LHS.isComplexFloat()) {
12500       APFloat::cmpResult CR_r =
12501         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
12502       APFloat::cmpResult CR_i =
12503         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
12504       bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
12505       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12506     } else {
12507       assert(IsEquality && "invalid complex comparison");
12508       bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
12509                      LHS.getComplexIntImag() == RHS.getComplexIntImag();
12510       return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E);
12511     }
12512   }
12513 
12514   if (LHSTy->isRealFloatingType() &&
12515       RHSTy->isRealFloatingType()) {
12516     APFloat RHS(0.0), LHS(0.0);
12517 
12518     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
12519     if (!LHSOK && !Info.noteFailure())
12520       return false;
12521 
12522     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
12523       return false;
12524 
12525     assert(E->isComparisonOp() && "Invalid binary operator!");
12526     llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS);
12527     if (!Info.InConstantContext &&
12528         APFloatCmpResult == APFloat::cmpUnordered &&
12529         E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) {
12530       // Note: Compares may raise invalid in some cases involving NaN or sNaN.
12531       Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
12532       return false;
12533     }
12534     auto GetCmpRes = [&]() {
12535       switch (APFloatCmpResult) {
12536       case APFloat::cmpEqual:
12537         return CmpResult::Equal;
12538       case APFloat::cmpLessThan:
12539         return CmpResult::Less;
12540       case APFloat::cmpGreaterThan:
12541         return CmpResult::Greater;
12542       case APFloat::cmpUnordered:
12543         return CmpResult::Unordered;
12544       }
12545       llvm_unreachable("Unrecognised APFloat::cmpResult enum");
12546     };
12547     return Success(GetCmpRes(), E);
12548   }
12549 
12550   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
12551     LValue LHSValue, RHSValue;
12552 
12553     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
12554     if (!LHSOK && !Info.noteFailure())
12555       return false;
12556 
12557     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12558       return false;
12559 
12560     // Reject differing bases from the normal codepath; we special-case
12561     // comparisons to null.
12562     if (!HasSameBase(LHSValue, RHSValue)) {
12563       // Inequalities and subtractions between unrelated pointers have
12564       // unspecified or undefined behavior.
12565       if (!IsEquality) {
12566         Info.FFDiag(E, diag::note_constexpr_pointer_comparison_unspecified);
12567         return false;
12568       }
12569       // A constant address may compare equal to the address of a symbol.
12570       // The one exception is that address of an object cannot compare equal
12571       // to a null pointer constant.
12572       if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
12573           (!RHSValue.Base && !RHSValue.Offset.isZero()))
12574         return Error(E);
12575       // It's implementation-defined whether distinct literals will have
12576       // distinct addresses. In clang, the result of such a comparison is
12577       // unspecified, so it is not a constant expression. However, we do know
12578       // that the address of a literal will be non-null.
12579       if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
12580           LHSValue.Base && RHSValue.Base)
12581         return Error(E);
12582       // We can't tell whether weak symbols will end up pointing to the same
12583       // object.
12584       if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
12585         return Error(E);
12586       // We can't compare the address of the start of one object with the
12587       // past-the-end address of another object, per C++ DR1652.
12588       if ((LHSValue.Base && LHSValue.Offset.isZero() &&
12589            isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
12590           (RHSValue.Base && RHSValue.Offset.isZero() &&
12591            isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
12592         return Error(E);
12593       // We can't tell whether an object is at the same address as another
12594       // zero sized object.
12595       if ((RHSValue.Base && isZeroSized(LHSValue)) ||
12596           (LHSValue.Base && isZeroSized(RHSValue)))
12597         return Error(E);
12598       return Success(CmpResult::Unequal, E);
12599     }
12600 
12601     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
12602     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
12603 
12604     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
12605     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
12606 
12607     // C++11 [expr.rel]p3:
12608     //   Pointers to void (after pointer conversions) can be compared, with a
12609     //   result defined as follows: If both pointers represent the same
12610     //   address or are both the null pointer value, the result is true if the
12611     //   operator is <= or >= and false otherwise; otherwise the result is
12612     //   unspecified.
12613     // We interpret this as applying to pointers to *cv* void.
12614     if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
12615       Info.CCEDiag(E, diag::note_constexpr_void_comparison);
12616 
12617     // C++11 [expr.rel]p2:
12618     // - If two pointers point to non-static data members of the same object,
12619     //   or to subobjects or array elements fo such members, recursively, the
12620     //   pointer to the later declared member compares greater provided the
12621     //   two members have the same access control and provided their class is
12622     //   not a union.
12623     //   [...]
12624     // - Otherwise pointer comparisons are unspecified.
12625     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
12626       bool WasArrayIndex;
12627       unsigned Mismatch = FindDesignatorMismatch(
12628           getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
12629       // At the point where the designators diverge, the comparison has a
12630       // specified value if:
12631       //  - we are comparing array indices
12632       //  - we are comparing fields of a union, or fields with the same access
12633       // Otherwise, the result is unspecified and thus the comparison is not a
12634       // constant expression.
12635       if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
12636           Mismatch < RHSDesignator.Entries.size()) {
12637         const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
12638         const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
12639         if (!LF && !RF)
12640           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
12641         else if (!LF)
12642           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12643               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
12644               << RF->getParent() << RF;
12645         else if (!RF)
12646           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
12647               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
12648               << LF->getParent() << LF;
12649         else if (!LF->getParent()->isUnion() &&
12650                  LF->getAccess() != RF->getAccess())
12651           Info.CCEDiag(E,
12652                        diag::note_constexpr_pointer_comparison_differing_access)
12653               << LF << LF->getAccess() << RF << RF->getAccess()
12654               << LF->getParent();
12655       }
12656     }
12657 
12658     // The comparison here must be unsigned, and performed with the same
12659     // width as the pointer.
12660     unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
12661     uint64_t CompareLHS = LHSOffset.getQuantity();
12662     uint64_t CompareRHS = RHSOffset.getQuantity();
12663     assert(PtrSize <= 64 && "Unexpected pointer width");
12664     uint64_t Mask = ~0ULL >> (64 - PtrSize);
12665     CompareLHS &= Mask;
12666     CompareRHS &= Mask;
12667 
12668     // If there is a base and this is a relational operator, we can only
12669     // compare pointers within the object in question; otherwise, the result
12670     // depends on where the object is located in memory.
12671     if (!LHSValue.Base.isNull() && IsRelational) {
12672       QualType BaseTy = getType(LHSValue.Base);
12673       if (BaseTy->isIncompleteType())
12674         return Error(E);
12675       CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
12676       uint64_t OffsetLimit = Size.getQuantity();
12677       if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
12678         return Error(E);
12679     }
12680 
12681     if (CompareLHS < CompareRHS)
12682       return Success(CmpResult::Less, E);
12683     if (CompareLHS > CompareRHS)
12684       return Success(CmpResult::Greater, E);
12685     return Success(CmpResult::Equal, E);
12686   }
12687 
12688   if (LHSTy->isMemberPointerType()) {
12689     assert(IsEquality && "unexpected member pointer operation");
12690     assert(RHSTy->isMemberPointerType() && "invalid comparison");
12691 
12692     MemberPtr LHSValue, RHSValue;
12693 
12694     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
12695     if (!LHSOK && !Info.noteFailure())
12696       return false;
12697 
12698     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12699       return false;
12700 
12701     // C++11 [expr.eq]p2:
12702     //   If both operands are null, they compare equal. Otherwise if only one is
12703     //   null, they compare unequal.
12704     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
12705       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
12706       return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
12707     }
12708 
12709     //   Otherwise if either is a pointer to a virtual member function, the
12710     //   result is unspecified.
12711     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
12712       if (MD->isVirtual())
12713         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
12714     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
12715       if (MD->isVirtual())
12716         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
12717 
12718     //   Otherwise they compare equal if and only if they would refer to the
12719     //   same member of the same most derived object or the same subobject if
12720     //   they were dereferenced with a hypothetical object of the associated
12721     //   class type.
12722     bool Equal = LHSValue == RHSValue;
12723     return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E);
12724   }
12725 
12726   if (LHSTy->isNullPtrType()) {
12727     assert(E->isComparisonOp() && "unexpected nullptr operation");
12728     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
12729     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
12730     // are compared, the result is true of the operator is <=, >= or ==, and
12731     // false otherwise.
12732     return Success(CmpResult::Equal, E);
12733   }
12734 
12735   return DoAfter();
12736 }
12737 
VisitBinCmp(const BinaryOperator * E)12738 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
12739   if (!CheckLiteralType(Info, E))
12740     return false;
12741 
12742   auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
12743     ComparisonCategoryResult CCR;
12744     switch (CR) {
12745     case CmpResult::Unequal:
12746       llvm_unreachable("should never produce Unequal for three-way comparison");
12747     case CmpResult::Less:
12748       CCR = ComparisonCategoryResult::Less;
12749       break;
12750     case CmpResult::Equal:
12751       CCR = ComparisonCategoryResult::Equal;
12752       break;
12753     case CmpResult::Greater:
12754       CCR = ComparisonCategoryResult::Greater;
12755       break;
12756     case CmpResult::Unordered:
12757       CCR = ComparisonCategoryResult::Unordered;
12758       break;
12759     }
12760     // Evaluation succeeded. Lookup the information for the comparison category
12761     // type and fetch the VarDecl for the result.
12762     const ComparisonCategoryInfo &CmpInfo =
12763         Info.Ctx.CompCategories.getInfoForType(E->getType());
12764     const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD;
12765     // Check and evaluate the result as a constant expression.
12766     LValue LV;
12767     LV.set(VD);
12768     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
12769       return false;
12770     return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
12771                                    ConstantExprKind::Normal);
12772   };
12773   return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
12774     return ExprEvaluatorBaseTy::VisitBinCmp(E);
12775   });
12776 }
12777 
VisitBinaryOperator(const BinaryOperator * E)12778 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
12779   // We don't call noteFailure immediately because the assignment happens after
12780   // we evaluate LHS and RHS.
12781   if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
12782     return Error(E);
12783 
12784   DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp());
12785   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
12786     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
12787 
12788   assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
12789           !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
12790          "DataRecursiveIntBinOpEvaluator should have handled integral types");
12791 
12792   if (E->isComparisonOp()) {
12793     // Evaluate builtin binary comparisons by evaluating them as three-way
12794     // comparisons and then translating the result.
12795     auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) {
12796       assert((CR != CmpResult::Unequal || E->isEqualityOp()) &&
12797              "should only produce Unequal for equality comparisons");
12798       bool IsEqual   = CR == CmpResult::Equal,
12799            IsLess    = CR == CmpResult::Less,
12800            IsGreater = CR == CmpResult::Greater;
12801       auto Op = E->getOpcode();
12802       switch (Op) {
12803       default:
12804         llvm_unreachable("unsupported binary operator");
12805       case BO_EQ:
12806       case BO_NE:
12807         return Success(IsEqual == (Op == BO_EQ), E);
12808       case BO_LT:
12809         return Success(IsLess, E);
12810       case BO_GT:
12811         return Success(IsGreater, E);
12812       case BO_LE:
12813         return Success(IsEqual || IsLess, E);
12814       case BO_GE:
12815         return Success(IsEqual || IsGreater, E);
12816       }
12817     };
12818     return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
12819       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
12820     });
12821   }
12822 
12823   QualType LHSTy = E->getLHS()->getType();
12824   QualType RHSTy = E->getRHS()->getType();
12825 
12826   if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
12827       E->getOpcode() == BO_Sub) {
12828     LValue LHSValue, RHSValue;
12829 
12830     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
12831     if (!LHSOK && !Info.noteFailure())
12832       return false;
12833 
12834     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
12835       return false;
12836 
12837     // Reject differing bases from the normal codepath; we special-case
12838     // comparisons to null.
12839     if (!HasSameBase(LHSValue, RHSValue)) {
12840       // Handle &&A - &&B.
12841       if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
12842         return Error(E);
12843       const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
12844       const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
12845       if (!LHSExpr || !RHSExpr)
12846         return Error(E);
12847       const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
12848       const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
12849       if (!LHSAddrExpr || !RHSAddrExpr)
12850         return Error(E);
12851       // Make sure both labels come from the same function.
12852       if (LHSAddrExpr->getLabel()->getDeclContext() !=
12853           RHSAddrExpr->getLabel()->getDeclContext())
12854         return Error(E);
12855       return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
12856     }
12857     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
12858     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
12859 
12860     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
12861     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
12862 
12863     // C++11 [expr.add]p6:
12864     //   Unless both pointers point to elements of the same array object, or
12865     //   one past the last element of the array object, the behavior is
12866     //   undefined.
12867     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
12868         !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
12869                                 RHSDesignator))
12870       Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
12871 
12872     QualType Type = E->getLHS()->getType();
12873     QualType ElementType = Type->castAs<PointerType>()->getPointeeType();
12874 
12875     CharUnits ElementSize;
12876     if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
12877       return false;
12878 
12879     // As an extension, a type may have zero size (empty struct or union in
12880     // C, array of zero length). Pointer subtraction in such cases has
12881     // undefined behavior, so is not constant.
12882     if (ElementSize.isZero()) {
12883       Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
12884           << ElementType;
12885       return false;
12886     }
12887 
12888     // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
12889     // and produce incorrect results when it overflows. Such behavior
12890     // appears to be non-conforming, but is common, so perhaps we should
12891     // assume the standard intended for such cases to be undefined behavior
12892     // and check for them.
12893 
12894     // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
12895     // overflow in the final conversion to ptrdiff_t.
12896     APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
12897     APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
12898     APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
12899                     false);
12900     APSInt TrueResult = (LHS - RHS) / ElemSize;
12901     APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
12902 
12903     if (Result.extend(65) != TrueResult &&
12904         !HandleOverflow(Info, E, TrueResult, E->getType()))
12905       return false;
12906     return Success(Result, E);
12907   }
12908 
12909   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
12910 }
12911 
12912 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
12913 /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)12914 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
12915                                     const UnaryExprOrTypeTraitExpr *E) {
12916   switch(E->getKind()) {
12917   case UETT_PreferredAlignOf:
12918   case UETT_AlignOf: {
12919     if (E->isArgumentType())
12920       return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
12921                      E);
12922     else
12923       return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
12924                      E);
12925   }
12926 
12927   case UETT_VecStep: {
12928     QualType Ty = E->getTypeOfArgument();
12929 
12930     if (Ty->isVectorType()) {
12931       unsigned n = Ty->castAs<VectorType>()->getNumElements();
12932 
12933       // The vec_step built-in functions that take a 3-component
12934       // vector return 4. (OpenCL 1.1 spec 6.11.12)
12935       if (n == 3)
12936         n = 4;
12937 
12938       return Success(n, E);
12939     } else
12940       return Success(1, E);
12941   }
12942 
12943   case UETT_SizeOf: {
12944     QualType SrcTy = E->getTypeOfArgument();
12945     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
12946     //   the result is the size of the referenced type."
12947     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
12948       SrcTy = Ref->getPointeeType();
12949 
12950     CharUnits Sizeof;
12951     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
12952       return false;
12953     return Success(Sizeof, E);
12954   }
12955   case UETT_OpenMPRequiredSimdAlign:
12956     assert(E->isArgumentType());
12957     return Success(
12958         Info.Ctx.toCharUnitsFromBits(
12959                     Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
12960             .getQuantity(),
12961         E);
12962   }
12963 
12964   llvm_unreachable("unknown expr/type trait");
12965 }
12966 
VisitOffsetOfExpr(const OffsetOfExpr * OOE)12967 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
12968   CharUnits Result;
12969   unsigned n = OOE->getNumComponents();
12970   if (n == 0)
12971     return Error(OOE);
12972   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
12973   for (unsigned i = 0; i != n; ++i) {
12974     OffsetOfNode ON = OOE->getComponent(i);
12975     switch (ON.getKind()) {
12976     case OffsetOfNode::Array: {
12977       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
12978       APSInt IdxResult;
12979       if (!EvaluateInteger(Idx, IdxResult, Info))
12980         return false;
12981       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
12982       if (!AT)
12983         return Error(OOE);
12984       CurrentType = AT->getElementType();
12985       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
12986       Result += IdxResult.getSExtValue() * ElementSize;
12987       break;
12988     }
12989 
12990     case OffsetOfNode::Field: {
12991       FieldDecl *MemberDecl = ON.getField();
12992       const RecordType *RT = CurrentType->getAs<RecordType>();
12993       if (!RT)
12994         return Error(OOE);
12995       RecordDecl *RD = RT->getDecl();
12996       if (RD->isInvalidDecl()) return false;
12997       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
12998       unsigned i = MemberDecl->getFieldIndex();
12999       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
13000       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
13001       CurrentType = MemberDecl->getType().getNonReferenceType();
13002       break;
13003     }
13004 
13005     case OffsetOfNode::Identifier:
13006       llvm_unreachable("dependent __builtin_offsetof");
13007 
13008     case OffsetOfNode::Base: {
13009       CXXBaseSpecifier *BaseSpec = ON.getBase();
13010       if (BaseSpec->isVirtual())
13011         return Error(OOE);
13012 
13013       // Find the layout of the class whose base we are looking into.
13014       const RecordType *RT = CurrentType->getAs<RecordType>();
13015       if (!RT)
13016         return Error(OOE);
13017       RecordDecl *RD = RT->getDecl();
13018       if (RD->isInvalidDecl()) return false;
13019       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
13020 
13021       // Find the base class itself.
13022       CurrentType = BaseSpec->getType();
13023       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
13024       if (!BaseRT)
13025         return Error(OOE);
13026 
13027       // Add the offset to the base.
13028       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
13029       break;
13030     }
13031     }
13032   }
13033   return Success(Result, OOE);
13034 }
13035 
VisitUnaryOperator(const UnaryOperator * E)13036 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13037   switch (E->getOpcode()) {
13038   default:
13039     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
13040     // See C99 6.6p3.
13041     return Error(E);
13042   case UO_Extension:
13043     // FIXME: Should extension allow i-c-e extension expressions in its scope?
13044     // If so, we could clear the diagnostic ID.
13045     return Visit(E->getSubExpr());
13046   case UO_Plus:
13047     // The result is just the value.
13048     return Visit(E->getSubExpr());
13049   case UO_Minus: {
13050     if (!Visit(E->getSubExpr()))
13051       return false;
13052     if (!Result.isInt()) return Error(E);
13053     const APSInt &Value = Result.getInt();
13054     if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
13055         !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
13056                         E->getType()))
13057       return false;
13058     return Success(-Value, E);
13059   }
13060   case UO_Not: {
13061     if (!Visit(E->getSubExpr()))
13062       return false;
13063     if (!Result.isInt()) return Error(E);
13064     return Success(~Result.getInt(), E);
13065   }
13066   case UO_LNot: {
13067     bool bres;
13068     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13069       return false;
13070     return Success(!bres, E);
13071   }
13072   }
13073 }
13074 
13075 /// HandleCast - This is used to evaluate implicit or explicit casts where the
13076 /// result type is integer.
VisitCastExpr(const CastExpr * E)13077 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
13078   const Expr *SubExpr = E->getSubExpr();
13079   QualType DestType = E->getType();
13080   QualType SrcType = SubExpr->getType();
13081 
13082   switch (E->getCastKind()) {
13083   case CK_BaseToDerived:
13084   case CK_DerivedToBase:
13085   case CK_UncheckedDerivedToBase:
13086   case CK_Dynamic:
13087   case CK_ToUnion:
13088   case CK_ArrayToPointerDecay:
13089   case CK_FunctionToPointerDecay:
13090   case CK_NullToPointer:
13091   case CK_NullToMemberPointer:
13092   case CK_BaseToDerivedMemberPointer:
13093   case CK_DerivedToBaseMemberPointer:
13094   case CK_ReinterpretMemberPointer:
13095   case CK_ConstructorConversion:
13096   case CK_IntegralToPointer:
13097   case CK_ToVoid:
13098   case CK_VectorSplat:
13099   case CK_IntegralToFloating:
13100   case CK_FloatingCast:
13101   case CK_CPointerToObjCPointerCast:
13102   case CK_BlockPointerToObjCPointerCast:
13103   case CK_AnyPointerToBlockPointerCast:
13104   case CK_ObjCObjectLValueCast:
13105   case CK_FloatingRealToComplex:
13106   case CK_FloatingComplexToReal:
13107   case CK_FloatingComplexCast:
13108   case CK_FloatingComplexToIntegralComplex:
13109   case CK_IntegralRealToComplex:
13110   case CK_IntegralComplexCast:
13111   case CK_IntegralComplexToFloatingComplex:
13112   case CK_BuiltinFnToFnPtr:
13113   case CK_ZeroToOCLOpaqueType:
13114   case CK_NonAtomicToAtomic:
13115   case CK_AddressSpaceConversion:
13116   case CK_IntToOCLSampler:
13117   case CK_FloatingToFixedPoint:
13118   case CK_FixedPointToFloating:
13119   case CK_FixedPointCast:
13120   case CK_IntegralToFixedPoint:
13121     llvm_unreachable("invalid cast kind for integral value");
13122 
13123   case CK_BitCast:
13124   case CK_Dependent:
13125   case CK_LValueBitCast:
13126   case CK_ARCProduceObject:
13127   case CK_ARCConsumeObject:
13128   case CK_ARCReclaimReturnedObject:
13129   case CK_ARCExtendBlockObject:
13130   case CK_CopyAndAutoreleaseBlockObject:
13131     return Error(E);
13132 
13133   case CK_UserDefinedConversion:
13134   case CK_LValueToRValue:
13135   case CK_AtomicToNonAtomic:
13136   case CK_NoOp:
13137   case CK_LValueToRValueBitCast:
13138     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13139 
13140   case CK_MemberPointerToBoolean:
13141   case CK_PointerToBoolean:
13142   case CK_IntegralToBoolean:
13143   case CK_FloatingToBoolean:
13144   case CK_BooleanToSignedIntegral:
13145   case CK_FloatingComplexToBoolean:
13146   case CK_IntegralComplexToBoolean: {
13147     bool BoolResult;
13148     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
13149       return false;
13150     uint64_t IntResult = BoolResult;
13151     if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
13152       IntResult = (uint64_t)-1;
13153     return Success(IntResult, E);
13154   }
13155 
13156   case CK_FixedPointToIntegral: {
13157     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
13158     if (!EvaluateFixedPoint(SubExpr, Src, Info))
13159       return false;
13160     bool Overflowed;
13161     llvm::APSInt Result = Src.convertToInt(
13162         Info.Ctx.getIntWidth(DestType),
13163         DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
13164     if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
13165       return false;
13166     return Success(Result, E);
13167   }
13168 
13169   case CK_FixedPointToBoolean: {
13170     // Unsigned padding does not affect this.
13171     APValue Val;
13172     if (!Evaluate(Val, Info, SubExpr))
13173       return false;
13174     return Success(Val.getFixedPoint().getBoolValue(), E);
13175   }
13176 
13177   case CK_IntegralCast: {
13178     if (!Visit(SubExpr))
13179       return false;
13180 
13181     if (!Result.isInt()) {
13182       // Allow casts of address-of-label differences if they are no-ops
13183       // or narrowing.  (The narrowing case isn't actually guaranteed to
13184       // be constant-evaluatable except in some narrow cases which are hard
13185       // to detect here.  We let it through on the assumption the user knows
13186       // what they are doing.)
13187       if (Result.isAddrLabelDiff())
13188         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
13189       // Only allow casts of lvalues if they are lossless.
13190       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
13191     }
13192 
13193     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
13194                                       Result.getInt()), E);
13195   }
13196 
13197   case CK_PointerToIntegral: {
13198     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
13199 
13200     LValue LV;
13201     if (!EvaluatePointer(SubExpr, LV, Info))
13202       return false;
13203 
13204     if (LV.getLValueBase()) {
13205       // Only allow based lvalue casts if they are lossless.
13206       // FIXME: Allow a larger integer size than the pointer size, and allow
13207       // narrowing back down to pointer width in subsequent integral casts.
13208       // FIXME: Check integer type's active bits, not its type size.
13209       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
13210         return Error(E);
13211 
13212       LV.Designator.setInvalid();
13213       LV.moveInto(Result);
13214       return true;
13215     }
13216 
13217     APSInt AsInt;
13218     APValue V;
13219     LV.moveInto(V);
13220     if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
13221       llvm_unreachable("Can't cast this!");
13222 
13223     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
13224   }
13225 
13226   case CK_IntegralComplexToReal: {
13227     ComplexValue C;
13228     if (!EvaluateComplex(SubExpr, C, Info))
13229       return false;
13230     return Success(C.getComplexIntReal(), E);
13231   }
13232 
13233   case CK_FloatingToIntegral: {
13234     APFloat F(0.0);
13235     if (!EvaluateFloat(SubExpr, F, Info))
13236       return false;
13237 
13238     APSInt Value;
13239     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
13240       return false;
13241     return Success(Value, E);
13242   }
13243   }
13244 
13245   llvm_unreachable("unknown cast resulting in integral value");
13246 }
13247 
VisitUnaryReal(const UnaryOperator * E)13248 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13249   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13250     ComplexValue LV;
13251     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13252       return false;
13253     if (!LV.isComplexInt())
13254       return Error(E);
13255     return Success(LV.getComplexIntReal(), E);
13256   }
13257 
13258   return Visit(E->getSubExpr());
13259 }
13260 
VisitUnaryImag(const UnaryOperator * E)13261 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13262   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
13263     ComplexValue LV;
13264     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
13265       return false;
13266     if (!LV.isComplexInt())
13267       return Error(E);
13268     return Success(LV.getComplexIntImag(), E);
13269   }
13270 
13271   VisitIgnoredValue(E->getSubExpr());
13272   return Success(0, E);
13273 }
13274 
VisitSizeOfPackExpr(const SizeOfPackExpr * E)13275 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
13276   return Success(E->getPackLength(), E);
13277 }
13278 
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)13279 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
13280   return Success(E->getValue(), E);
13281 }
13282 
VisitConceptSpecializationExpr(const ConceptSpecializationExpr * E)13283 bool IntExprEvaluator::VisitConceptSpecializationExpr(
13284        const ConceptSpecializationExpr *E) {
13285   return Success(E->isSatisfied(), E);
13286 }
13287 
VisitRequiresExpr(const RequiresExpr * E)13288 bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) {
13289   return Success(E->isSatisfied(), E);
13290 }
13291 
VisitUnaryOperator(const UnaryOperator * E)13292 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13293   switch (E->getOpcode()) {
13294     default:
13295       // Invalid unary operators
13296       return Error(E);
13297     case UO_Plus:
13298       // The result is just the value.
13299       return Visit(E->getSubExpr());
13300     case UO_Minus: {
13301       if (!Visit(E->getSubExpr())) return false;
13302       if (!Result.isFixedPoint())
13303         return Error(E);
13304       bool Overflowed;
13305       APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
13306       if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
13307         return false;
13308       return Success(Negated, E);
13309     }
13310     case UO_LNot: {
13311       bool bres;
13312       if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
13313         return false;
13314       return Success(!bres, E);
13315     }
13316   }
13317 }
13318 
VisitCastExpr(const CastExpr * E)13319 bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
13320   const Expr *SubExpr = E->getSubExpr();
13321   QualType DestType = E->getType();
13322   assert(DestType->isFixedPointType() &&
13323          "Expected destination type to be a fixed point type");
13324   auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
13325 
13326   switch (E->getCastKind()) {
13327   case CK_FixedPointCast: {
13328     APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
13329     if (!EvaluateFixedPoint(SubExpr, Src, Info))
13330       return false;
13331     bool Overflowed;
13332     APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
13333     if (Overflowed) {
13334       if (Info.checkingForUndefinedBehavior())
13335         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13336                                          diag::warn_fixedpoint_constant_overflow)
13337           << Result.toString() << E->getType();
13338       else if (!HandleOverflow(Info, E, Result, E->getType()))
13339         return false;
13340     }
13341     return Success(Result, E);
13342   }
13343   case CK_IntegralToFixedPoint: {
13344     APSInt Src;
13345     if (!EvaluateInteger(SubExpr, Src, Info))
13346       return false;
13347 
13348     bool Overflowed;
13349     APFixedPoint IntResult = APFixedPoint::getFromIntValue(
13350         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13351 
13352     if (Overflowed) {
13353       if (Info.checkingForUndefinedBehavior())
13354         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13355                                          diag::warn_fixedpoint_constant_overflow)
13356           << IntResult.toString() << E->getType();
13357       else if (!HandleOverflow(Info, E, IntResult, E->getType()))
13358         return false;
13359     }
13360 
13361     return Success(IntResult, E);
13362   }
13363   case CK_FloatingToFixedPoint: {
13364     APFloat Src(0.0);
13365     if (!EvaluateFloat(SubExpr, Src, Info))
13366       return false;
13367 
13368     bool Overflowed;
13369     APFixedPoint Result = APFixedPoint::getFromFloatValue(
13370         Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
13371 
13372     if (Overflowed) {
13373       if (Info.checkingForUndefinedBehavior())
13374         Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13375                                          diag::warn_fixedpoint_constant_overflow)
13376           << Result.toString() << E->getType();
13377       else if (!HandleOverflow(Info, E, Result, E->getType()))
13378         return false;
13379     }
13380 
13381     return Success(Result, E);
13382   }
13383   case CK_NoOp:
13384   case CK_LValueToRValue:
13385     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13386   default:
13387     return Error(E);
13388   }
13389 }
13390 
VisitBinaryOperator(const BinaryOperator * E)13391 bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13392   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13393     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13394 
13395   const Expr *LHS = E->getLHS();
13396   const Expr *RHS = E->getRHS();
13397   FixedPointSemantics ResultFXSema =
13398       Info.Ctx.getFixedPointSemantics(E->getType());
13399 
13400   APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
13401   if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
13402     return false;
13403   APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
13404   if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
13405     return false;
13406 
13407   bool OpOverflow = false, ConversionOverflow = false;
13408   APFixedPoint Result(LHSFX.getSemantics());
13409   switch (E->getOpcode()) {
13410   case BO_Add: {
13411     Result = LHSFX.add(RHSFX, &OpOverflow)
13412                   .convert(ResultFXSema, &ConversionOverflow);
13413     break;
13414   }
13415   case BO_Sub: {
13416     Result = LHSFX.sub(RHSFX, &OpOverflow)
13417                   .convert(ResultFXSema, &ConversionOverflow);
13418     break;
13419   }
13420   case BO_Mul: {
13421     Result = LHSFX.mul(RHSFX, &OpOverflow)
13422                   .convert(ResultFXSema, &ConversionOverflow);
13423     break;
13424   }
13425   case BO_Div: {
13426     if (RHSFX.getValue() == 0) {
13427       Info.FFDiag(E, diag::note_expr_divide_by_zero);
13428       return false;
13429     }
13430     Result = LHSFX.div(RHSFX, &OpOverflow)
13431                   .convert(ResultFXSema, &ConversionOverflow);
13432     break;
13433   }
13434   case BO_Shl:
13435   case BO_Shr: {
13436     FixedPointSemantics LHSSema = LHSFX.getSemantics();
13437     llvm::APSInt RHSVal = RHSFX.getValue();
13438 
13439     unsigned ShiftBW =
13440         LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding();
13441     unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1);
13442     // Embedded-C 4.1.6.2.2:
13443     //   The right operand must be nonnegative and less than the total number
13444     //   of (nonpadding) bits of the fixed-point operand ...
13445     if (RHSVal.isNegative())
13446       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal;
13447     else if (Amt != RHSVal)
13448       Info.CCEDiag(E, diag::note_constexpr_large_shift)
13449           << RHSVal << E->getType() << ShiftBW;
13450 
13451     if (E->getOpcode() == BO_Shl)
13452       Result = LHSFX.shl(Amt, &OpOverflow);
13453     else
13454       Result = LHSFX.shr(Amt, &OpOverflow);
13455     break;
13456   }
13457   default:
13458     return false;
13459   }
13460   if (OpOverflow || ConversionOverflow) {
13461     if (Info.checkingForUndefinedBehavior())
13462       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
13463                                        diag::warn_fixedpoint_constant_overflow)
13464         << Result.toString() << E->getType();
13465     else if (!HandleOverflow(Info, E, Result, E->getType()))
13466       return false;
13467   }
13468   return Success(Result, E);
13469 }
13470 
13471 //===----------------------------------------------------------------------===//
13472 // Float Evaluation
13473 //===----------------------------------------------------------------------===//
13474 
13475 namespace {
13476 class FloatExprEvaluator
13477   : public ExprEvaluatorBase<FloatExprEvaluator> {
13478   APFloat &Result;
13479 public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)13480   FloatExprEvaluator(EvalInfo &info, APFloat &result)
13481     : ExprEvaluatorBaseTy(info), Result(result) {}
13482 
Success(const APValue & V,const Expr * e)13483   bool Success(const APValue &V, const Expr *e) {
13484     Result = V.getFloat();
13485     return true;
13486   }
13487 
ZeroInitialization(const Expr * E)13488   bool ZeroInitialization(const Expr *E) {
13489     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
13490     return true;
13491   }
13492 
13493   bool VisitCallExpr(const CallExpr *E);
13494 
13495   bool VisitUnaryOperator(const UnaryOperator *E);
13496   bool VisitBinaryOperator(const BinaryOperator *E);
13497   bool VisitFloatingLiteral(const FloatingLiteral *E);
13498   bool VisitCastExpr(const CastExpr *E);
13499 
13500   bool VisitUnaryReal(const UnaryOperator *E);
13501   bool VisitUnaryImag(const UnaryOperator *E);
13502 
13503   // FIXME: Missing: array subscript of vector, member of vector
13504 };
13505 } // end anonymous namespace
13506 
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)13507 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
13508   assert(E->isRValue() && E->getType()->isRealFloatingType());
13509   return FloatExprEvaluator(Info, Result).Visit(E);
13510 }
13511 
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)13512 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
13513                                   QualType ResultTy,
13514                                   const Expr *Arg,
13515                                   bool SNaN,
13516                                   llvm::APFloat &Result) {
13517   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
13518   if (!S) return false;
13519 
13520   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
13521 
13522   llvm::APInt fill;
13523 
13524   // Treat empty strings as if they were zero.
13525   if (S->getString().empty())
13526     fill = llvm::APInt(32, 0);
13527   else if (S->getString().getAsInteger(0, fill))
13528     return false;
13529 
13530   if (Context.getTargetInfo().isNan2008()) {
13531     if (SNaN)
13532       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13533     else
13534       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13535   } else {
13536     // Prior to IEEE 754-2008, architectures were allowed to choose whether
13537     // the first bit of their significand was set for qNaN or sNaN. MIPS chose
13538     // a different encoding to what became a standard in 2008, and for pre-
13539     // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
13540     // sNaN. This is now known as "legacy NaN" encoding.
13541     if (SNaN)
13542       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
13543     else
13544       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
13545   }
13546 
13547   return true;
13548 }
13549 
VisitCallExpr(const CallExpr * E)13550 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
13551   switch (E->getBuiltinCallee()) {
13552   default:
13553     return ExprEvaluatorBaseTy::VisitCallExpr(E);
13554 
13555   case Builtin::BI__builtin_huge_val:
13556   case Builtin::BI__builtin_huge_valf:
13557   case Builtin::BI__builtin_huge_vall:
13558   case Builtin::BI__builtin_huge_valf128:
13559   case Builtin::BI__builtin_inf:
13560   case Builtin::BI__builtin_inff:
13561   case Builtin::BI__builtin_infl:
13562   case Builtin::BI__builtin_inff128: {
13563     const llvm::fltSemantics &Sem =
13564       Info.Ctx.getFloatTypeSemantics(E->getType());
13565     Result = llvm::APFloat::getInf(Sem);
13566     return true;
13567   }
13568 
13569   case Builtin::BI__builtin_nans:
13570   case Builtin::BI__builtin_nansf:
13571   case Builtin::BI__builtin_nansl:
13572   case Builtin::BI__builtin_nansf128:
13573     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13574                                true, Result))
13575       return Error(E);
13576     return true;
13577 
13578   case Builtin::BI__builtin_nan:
13579   case Builtin::BI__builtin_nanf:
13580   case Builtin::BI__builtin_nanl:
13581   case Builtin::BI__builtin_nanf128:
13582     // If this is __builtin_nan() turn this into a nan, otherwise we
13583     // can't constant fold it.
13584     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
13585                                false, Result))
13586       return Error(E);
13587     return true;
13588 
13589   case Builtin::BI__builtin_fabs:
13590   case Builtin::BI__builtin_fabsf:
13591   case Builtin::BI__builtin_fabsl:
13592   case Builtin::BI__builtin_fabsf128:
13593     // The C standard says "fabs raises no floating-point exceptions,
13594     // even if x is a signaling NaN. The returned value is independent of
13595     // the current rounding direction mode."  Therefore constant folding can
13596     // proceed without regard to the floating point settings.
13597     // Reference, WG14 N2478 F.10.4.3
13598     if (!EvaluateFloat(E->getArg(0), Result, Info))
13599       return false;
13600 
13601     if (Result.isNegative())
13602       Result.changeSign();
13603     return true;
13604 
13605   // FIXME: Builtin::BI__builtin_powi
13606   // FIXME: Builtin::BI__builtin_powif
13607   // FIXME: Builtin::BI__builtin_powil
13608 
13609   case Builtin::BI__builtin_copysign:
13610   case Builtin::BI__builtin_copysignf:
13611   case Builtin::BI__builtin_copysignl:
13612   case Builtin::BI__builtin_copysignf128: {
13613     APFloat RHS(0.);
13614     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
13615         !EvaluateFloat(E->getArg(1), RHS, Info))
13616       return false;
13617     Result.copySign(RHS);
13618     return true;
13619   }
13620   }
13621 }
13622 
VisitUnaryReal(const UnaryOperator * E)13623 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
13624   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13625     ComplexValue CV;
13626     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13627       return false;
13628     Result = CV.FloatReal;
13629     return true;
13630   }
13631 
13632   return Visit(E->getSubExpr());
13633 }
13634 
VisitUnaryImag(const UnaryOperator * E)13635 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
13636   if (E->getSubExpr()->getType()->isAnyComplexType()) {
13637     ComplexValue CV;
13638     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
13639       return false;
13640     Result = CV.FloatImag;
13641     return true;
13642   }
13643 
13644   VisitIgnoredValue(E->getSubExpr());
13645   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
13646   Result = llvm::APFloat::getZero(Sem);
13647   return true;
13648 }
13649 
VisitUnaryOperator(const UnaryOperator * E)13650 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
13651   switch (E->getOpcode()) {
13652   default: return Error(E);
13653   case UO_Plus:
13654     return EvaluateFloat(E->getSubExpr(), Result, Info);
13655   case UO_Minus:
13656     // In C standard, WG14 N2478 F.3 p4
13657     // "the unary - raises no floating point exceptions,
13658     // even if the operand is signalling."
13659     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
13660       return false;
13661     Result.changeSign();
13662     return true;
13663   }
13664 }
13665 
VisitBinaryOperator(const BinaryOperator * E)13666 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13667   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13668     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13669 
13670   APFloat RHS(0.0);
13671   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
13672   if (!LHSOK && !Info.noteFailure())
13673     return false;
13674   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
13675          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
13676 }
13677 
VisitFloatingLiteral(const FloatingLiteral * E)13678 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
13679   Result = E->getValue();
13680   return true;
13681 }
13682 
VisitCastExpr(const CastExpr * E)13683 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
13684   const Expr* SubExpr = E->getSubExpr();
13685 
13686   switch (E->getCastKind()) {
13687   default:
13688     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13689 
13690   case CK_IntegralToFloating: {
13691     APSInt IntResult;
13692     const FPOptions FPO = E->getFPFeaturesInEffect(
13693                                   Info.Ctx.getLangOpts());
13694     return EvaluateInteger(SubExpr, IntResult, Info) &&
13695            HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(),
13696                                 IntResult, E->getType(), Result);
13697   }
13698 
13699   case CK_FixedPointToFloating: {
13700     APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
13701     if (!EvaluateFixedPoint(SubExpr, FixResult, Info))
13702       return false;
13703     Result =
13704         FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType()));
13705     return true;
13706   }
13707 
13708   case CK_FloatingCast: {
13709     if (!Visit(SubExpr))
13710       return false;
13711     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
13712                                   Result);
13713   }
13714 
13715   case CK_FloatingComplexToReal: {
13716     ComplexValue V;
13717     if (!EvaluateComplex(SubExpr, V, Info))
13718       return false;
13719     Result = V.getComplexFloatReal();
13720     return true;
13721   }
13722   }
13723 }
13724 
13725 //===----------------------------------------------------------------------===//
13726 // Complex Evaluation (for float and integer)
13727 //===----------------------------------------------------------------------===//
13728 
13729 namespace {
13730 class ComplexExprEvaluator
13731   : public ExprEvaluatorBase<ComplexExprEvaluator> {
13732   ComplexValue &Result;
13733 
13734 public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)13735   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
13736     : ExprEvaluatorBaseTy(info), Result(Result) {}
13737 
Success(const APValue & V,const Expr * e)13738   bool Success(const APValue &V, const Expr *e) {
13739     Result.setFrom(V);
13740     return true;
13741   }
13742 
13743   bool ZeroInitialization(const Expr *E);
13744 
13745   //===--------------------------------------------------------------------===//
13746   //                            Visitor Methods
13747   //===--------------------------------------------------------------------===//
13748 
13749   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
13750   bool VisitCastExpr(const CastExpr *E);
13751   bool VisitBinaryOperator(const BinaryOperator *E);
13752   bool VisitUnaryOperator(const UnaryOperator *E);
13753   bool VisitInitListExpr(const InitListExpr *E);
13754   bool VisitCallExpr(const CallExpr *E);
13755 };
13756 } // end anonymous namespace
13757 
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)13758 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
13759                             EvalInfo &Info) {
13760   assert(E->isRValue() && E->getType()->isAnyComplexType());
13761   return ComplexExprEvaluator(Info, Result).Visit(E);
13762 }
13763 
ZeroInitialization(const Expr * E)13764 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
13765   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
13766   if (ElemTy->isRealFloatingType()) {
13767     Result.makeComplexFloat();
13768     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
13769     Result.FloatReal = Zero;
13770     Result.FloatImag = Zero;
13771   } else {
13772     Result.makeComplexInt();
13773     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
13774     Result.IntReal = Zero;
13775     Result.IntImag = Zero;
13776   }
13777   return true;
13778 }
13779 
VisitImaginaryLiteral(const ImaginaryLiteral * E)13780 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
13781   const Expr* SubExpr = E->getSubExpr();
13782 
13783   if (SubExpr->getType()->isRealFloatingType()) {
13784     Result.makeComplexFloat();
13785     APFloat &Imag = Result.FloatImag;
13786     if (!EvaluateFloat(SubExpr, Imag, Info))
13787       return false;
13788 
13789     Result.FloatReal = APFloat(Imag.getSemantics());
13790     return true;
13791   } else {
13792     assert(SubExpr->getType()->isIntegerType() &&
13793            "Unexpected imaginary literal.");
13794 
13795     Result.makeComplexInt();
13796     APSInt &Imag = Result.IntImag;
13797     if (!EvaluateInteger(SubExpr, Imag, Info))
13798       return false;
13799 
13800     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
13801     return true;
13802   }
13803 }
13804 
VisitCastExpr(const CastExpr * E)13805 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
13806 
13807   switch (E->getCastKind()) {
13808   case CK_BitCast:
13809   case CK_BaseToDerived:
13810   case CK_DerivedToBase:
13811   case CK_UncheckedDerivedToBase:
13812   case CK_Dynamic:
13813   case CK_ToUnion:
13814   case CK_ArrayToPointerDecay:
13815   case CK_FunctionToPointerDecay:
13816   case CK_NullToPointer:
13817   case CK_NullToMemberPointer:
13818   case CK_BaseToDerivedMemberPointer:
13819   case CK_DerivedToBaseMemberPointer:
13820   case CK_MemberPointerToBoolean:
13821   case CK_ReinterpretMemberPointer:
13822   case CK_ConstructorConversion:
13823   case CK_IntegralToPointer:
13824   case CK_PointerToIntegral:
13825   case CK_PointerToBoolean:
13826   case CK_ToVoid:
13827   case CK_VectorSplat:
13828   case CK_IntegralCast:
13829   case CK_BooleanToSignedIntegral:
13830   case CK_IntegralToBoolean:
13831   case CK_IntegralToFloating:
13832   case CK_FloatingToIntegral:
13833   case CK_FloatingToBoolean:
13834   case CK_FloatingCast:
13835   case CK_CPointerToObjCPointerCast:
13836   case CK_BlockPointerToObjCPointerCast:
13837   case CK_AnyPointerToBlockPointerCast:
13838   case CK_ObjCObjectLValueCast:
13839   case CK_FloatingComplexToReal:
13840   case CK_FloatingComplexToBoolean:
13841   case CK_IntegralComplexToReal:
13842   case CK_IntegralComplexToBoolean:
13843   case CK_ARCProduceObject:
13844   case CK_ARCConsumeObject:
13845   case CK_ARCReclaimReturnedObject:
13846   case CK_ARCExtendBlockObject:
13847   case CK_CopyAndAutoreleaseBlockObject:
13848   case CK_BuiltinFnToFnPtr:
13849   case CK_ZeroToOCLOpaqueType:
13850   case CK_NonAtomicToAtomic:
13851   case CK_AddressSpaceConversion:
13852   case CK_IntToOCLSampler:
13853   case CK_FloatingToFixedPoint:
13854   case CK_FixedPointToFloating:
13855   case CK_FixedPointCast:
13856   case CK_FixedPointToBoolean:
13857   case CK_FixedPointToIntegral:
13858   case CK_IntegralToFixedPoint:
13859     llvm_unreachable("invalid cast kind for complex value");
13860 
13861   case CK_LValueToRValue:
13862   case CK_AtomicToNonAtomic:
13863   case CK_NoOp:
13864   case CK_LValueToRValueBitCast:
13865     return ExprEvaluatorBaseTy::VisitCastExpr(E);
13866 
13867   case CK_Dependent:
13868   case CK_LValueBitCast:
13869   case CK_UserDefinedConversion:
13870     return Error(E);
13871 
13872   case CK_FloatingRealToComplex: {
13873     APFloat &Real = Result.FloatReal;
13874     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
13875       return false;
13876 
13877     Result.makeComplexFloat();
13878     Result.FloatImag = APFloat(Real.getSemantics());
13879     return true;
13880   }
13881 
13882   case CK_FloatingComplexCast: {
13883     if (!Visit(E->getSubExpr()))
13884       return false;
13885 
13886     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13887     QualType From
13888       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13889 
13890     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
13891            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
13892   }
13893 
13894   case CK_FloatingComplexToIntegralComplex: {
13895     if (!Visit(E->getSubExpr()))
13896       return false;
13897 
13898     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13899     QualType From
13900       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13901     Result.makeComplexInt();
13902     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
13903                                 To, Result.IntReal) &&
13904            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
13905                                 To, Result.IntImag);
13906   }
13907 
13908   case CK_IntegralRealToComplex: {
13909     APSInt &Real = Result.IntReal;
13910     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
13911       return false;
13912 
13913     Result.makeComplexInt();
13914     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
13915     return true;
13916   }
13917 
13918   case CK_IntegralComplexCast: {
13919     if (!Visit(E->getSubExpr()))
13920       return false;
13921 
13922     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13923     QualType From
13924       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13925 
13926     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
13927     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
13928     return true;
13929   }
13930 
13931   case CK_IntegralComplexToFloatingComplex: {
13932     if (!Visit(E->getSubExpr()))
13933       return false;
13934 
13935     const FPOptions FPO = E->getFPFeaturesInEffect(
13936                                   Info.Ctx.getLangOpts());
13937     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
13938     QualType From
13939       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
13940     Result.makeComplexFloat();
13941     return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal,
13942                                 To, Result.FloatReal) &&
13943            HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag,
13944                                 To, Result.FloatImag);
13945   }
13946   }
13947 
13948   llvm_unreachable("unknown cast resulting in complex value");
13949 }
13950 
VisitBinaryOperator(const BinaryOperator * E)13951 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
13952   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
13953     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
13954 
13955   // Track whether the LHS or RHS is real at the type system level. When this is
13956   // the case we can simplify our evaluation strategy.
13957   bool LHSReal = false, RHSReal = false;
13958 
13959   bool LHSOK;
13960   if (E->getLHS()->getType()->isRealFloatingType()) {
13961     LHSReal = true;
13962     APFloat &Real = Result.FloatReal;
13963     LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
13964     if (LHSOK) {
13965       Result.makeComplexFloat();
13966       Result.FloatImag = APFloat(Real.getSemantics());
13967     }
13968   } else {
13969     LHSOK = Visit(E->getLHS());
13970   }
13971   if (!LHSOK && !Info.noteFailure())
13972     return false;
13973 
13974   ComplexValue RHS;
13975   if (E->getRHS()->getType()->isRealFloatingType()) {
13976     RHSReal = true;
13977     APFloat &Real = RHS.FloatReal;
13978     if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
13979       return false;
13980     RHS.makeComplexFloat();
13981     RHS.FloatImag = APFloat(Real.getSemantics());
13982   } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
13983     return false;
13984 
13985   assert(!(LHSReal && RHSReal) &&
13986          "Cannot have both operands of a complex operation be real.");
13987   switch (E->getOpcode()) {
13988   default: return Error(E);
13989   case BO_Add:
13990     if (Result.isComplexFloat()) {
13991       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
13992                                        APFloat::rmNearestTiesToEven);
13993       if (LHSReal)
13994         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
13995       else if (!RHSReal)
13996         Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
13997                                          APFloat::rmNearestTiesToEven);
13998     } else {
13999       Result.getComplexIntReal() += RHS.getComplexIntReal();
14000       Result.getComplexIntImag() += RHS.getComplexIntImag();
14001     }
14002     break;
14003   case BO_Sub:
14004     if (Result.isComplexFloat()) {
14005       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
14006                                             APFloat::rmNearestTiesToEven);
14007       if (LHSReal) {
14008         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
14009         Result.getComplexFloatImag().changeSign();
14010       } else if (!RHSReal) {
14011         Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
14012                                               APFloat::rmNearestTiesToEven);
14013       }
14014     } else {
14015       Result.getComplexIntReal() -= RHS.getComplexIntReal();
14016       Result.getComplexIntImag() -= RHS.getComplexIntImag();
14017     }
14018     break;
14019   case BO_Mul:
14020     if (Result.isComplexFloat()) {
14021       // This is an implementation of complex multiplication according to the
14022       // constraints laid out in C11 Annex G. The implementation uses the
14023       // following naming scheme:
14024       //   (a + ib) * (c + id)
14025       ComplexValue LHS = Result;
14026       APFloat &A = LHS.getComplexFloatReal();
14027       APFloat &B = LHS.getComplexFloatImag();
14028       APFloat &C = RHS.getComplexFloatReal();
14029       APFloat &D = RHS.getComplexFloatImag();
14030       APFloat &ResR = Result.getComplexFloatReal();
14031       APFloat &ResI = Result.getComplexFloatImag();
14032       if (LHSReal) {
14033         assert(!RHSReal && "Cannot have two real operands for a complex op!");
14034         ResR = A * C;
14035         ResI = A * D;
14036       } else if (RHSReal) {
14037         ResR = C * A;
14038         ResI = C * B;
14039       } else {
14040         // In the fully general case, we need to handle NaNs and infinities
14041         // robustly.
14042         APFloat AC = A * C;
14043         APFloat BD = B * D;
14044         APFloat AD = A * D;
14045         APFloat BC = B * C;
14046         ResR = AC - BD;
14047         ResI = AD + BC;
14048         if (ResR.isNaN() && ResI.isNaN()) {
14049           bool Recalc = false;
14050           if (A.isInfinity() || B.isInfinity()) {
14051             A = APFloat::copySign(
14052                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14053             B = APFloat::copySign(
14054                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14055             if (C.isNaN())
14056               C = APFloat::copySign(APFloat(C.getSemantics()), C);
14057             if (D.isNaN())
14058               D = APFloat::copySign(APFloat(D.getSemantics()), D);
14059             Recalc = true;
14060           }
14061           if (C.isInfinity() || D.isInfinity()) {
14062             C = APFloat::copySign(
14063                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14064             D = APFloat::copySign(
14065                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14066             if (A.isNaN())
14067               A = APFloat::copySign(APFloat(A.getSemantics()), A);
14068             if (B.isNaN())
14069               B = APFloat::copySign(APFloat(B.getSemantics()), B);
14070             Recalc = true;
14071           }
14072           if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
14073                           AD.isInfinity() || BC.isInfinity())) {
14074             if (A.isNaN())
14075               A = APFloat::copySign(APFloat(A.getSemantics()), A);
14076             if (B.isNaN())
14077               B = APFloat::copySign(APFloat(B.getSemantics()), B);
14078             if (C.isNaN())
14079               C = APFloat::copySign(APFloat(C.getSemantics()), C);
14080             if (D.isNaN())
14081               D = APFloat::copySign(APFloat(D.getSemantics()), D);
14082             Recalc = true;
14083           }
14084           if (Recalc) {
14085             ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
14086             ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
14087           }
14088         }
14089       }
14090     } else {
14091       ComplexValue LHS = Result;
14092       Result.getComplexIntReal() =
14093         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
14094          LHS.getComplexIntImag() * RHS.getComplexIntImag());
14095       Result.getComplexIntImag() =
14096         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
14097          LHS.getComplexIntImag() * RHS.getComplexIntReal());
14098     }
14099     break;
14100   case BO_Div:
14101     if (Result.isComplexFloat()) {
14102       // This is an implementation of complex division according to the
14103       // constraints laid out in C11 Annex G. The implementation uses the
14104       // following naming scheme:
14105       //   (a + ib) / (c + id)
14106       ComplexValue LHS = Result;
14107       APFloat &A = LHS.getComplexFloatReal();
14108       APFloat &B = LHS.getComplexFloatImag();
14109       APFloat &C = RHS.getComplexFloatReal();
14110       APFloat &D = RHS.getComplexFloatImag();
14111       APFloat &ResR = Result.getComplexFloatReal();
14112       APFloat &ResI = Result.getComplexFloatImag();
14113       if (RHSReal) {
14114         ResR = A / C;
14115         ResI = B / C;
14116       } else {
14117         if (LHSReal) {
14118           // No real optimizations we can do here, stub out with zero.
14119           B = APFloat::getZero(A.getSemantics());
14120         }
14121         int DenomLogB = 0;
14122         APFloat MaxCD = maxnum(abs(C), abs(D));
14123         if (MaxCD.isFinite()) {
14124           DenomLogB = ilogb(MaxCD);
14125           C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
14126           D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
14127         }
14128         APFloat Denom = C * C + D * D;
14129         ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
14130                       APFloat::rmNearestTiesToEven);
14131         ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
14132                       APFloat::rmNearestTiesToEven);
14133         if (ResR.isNaN() && ResI.isNaN()) {
14134           if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
14135             ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
14136             ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
14137           } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
14138                      D.isFinite()) {
14139             A = APFloat::copySign(
14140                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
14141             B = APFloat::copySign(
14142                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
14143             ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
14144             ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
14145           } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
14146             C = APFloat::copySign(
14147                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
14148             D = APFloat::copySign(
14149                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
14150             ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
14151             ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
14152           }
14153         }
14154       }
14155     } else {
14156       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
14157         return Error(E, diag::note_expr_divide_by_zero);
14158 
14159       ComplexValue LHS = Result;
14160       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
14161         RHS.getComplexIntImag() * RHS.getComplexIntImag();
14162       Result.getComplexIntReal() =
14163         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
14164          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
14165       Result.getComplexIntImag() =
14166         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
14167          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
14168     }
14169     break;
14170   }
14171 
14172   return true;
14173 }
14174 
VisitUnaryOperator(const UnaryOperator * E)14175 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
14176   // Get the operand value into 'Result'.
14177   if (!Visit(E->getSubExpr()))
14178     return false;
14179 
14180   switch (E->getOpcode()) {
14181   default:
14182     return Error(E);
14183   case UO_Extension:
14184     return true;
14185   case UO_Plus:
14186     // The result is always just the subexpr.
14187     return true;
14188   case UO_Minus:
14189     if (Result.isComplexFloat()) {
14190       Result.getComplexFloatReal().changeSign();
14191       Result.getComplexFloatImag().changeSign();
14192     }
14193     else {
14194       Result.getComplexIntReal() = -Result.getComplexIntReal();
14195       Result.getComplexIntImag() = -Result.getComplexIntImag();
14196     }
14197     return true;
14198   case UO_Not:
14199     if (Result.isComplexFloat())
14200       Result.getComplexFloatImag().changeSign();
14201     else
14202       Result.getComplexIntImag() = -Result.getComplexIntImag();
14203     return true;
14204   }
14205 }
14206 
VisitInitListExpr(const InitListExpr * E)14207 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
14208   if (E->getNumInits() == 2) {
14209     if (E->getType()->isComplexType()) {
14210       Result.makeComplexFloat();
14211       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
14212         return false;
14213       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
14214         return false;
14215     } else {
14216       Result.makeComplexInt();
14217       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
14218         return false;
14219       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
14220         return false;
14221     }
14222     return true;
14223   }
14224   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
14225 }
14226 
VisitCallExpr(const CallExpr * E)14227 bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) {
14228   switch (E->getBuiltinCallee()) {
14229   case Builtin::BI__builtin_complex:
14230     Result.makeComplexFloat();
14231     if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info))
14232       return false;
14233     if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info))
14234       return false;
14235     return true;
14236 
14237   default:
14238     break;
14239   }
14240 
14241   return ExprEvaluatorBaseTy::VisitCallExpr(E);
14242 }
14243 
14244 //===----------------------------------------------------------------------===//
14245 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
14246 // implicit conversion.
14247 //===----------------------------------------------------------------------===//
14248 
14249 namespace {
14250 class AtomicExprEvaluator :
14251     public ExprEvaluatorBase<AtomicExprEvaluator> {
14252   const LValue *This;
14253   APValue &Result;
14254 public:
AtomicExprEvaluator(EvalInfo & Info,const LValue * This,APValue & Result)14255   AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
14256       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
14257 
Success(const APValue & V,const Expr * E)14258   bool Success(const APValue &V, const Expr *E) {
14259     Result = V;
14260     return true;
14261   }
14262 
ZeroInitialization(const Expr * E)14263   bool ZeroInitialization(const Expr *E) {
14264     ImplicitValueInitExpr VIE(
14265         E->getType()->castAs<AtomicType>()->getValueType());
14266     // For atomic-qualified class (and array) types in C++, initialize the
14267     // _Atomic-wrapped subobject directly, in-place.
14268     return This ? EvaluateInPlace(Result, Info, *This, &VIE)
14269                 : Evaluate(Result, Info, &VIE);
14270   }
14271 
VisitCastExpr(const CastExpr * E)14272   bool VisitCastExpr(const CastExpr *E) {
14273     switch (E->getCastKind()) {
14274     default:
14275       return ExprEvaluatorBaseTy::VisitCastExpr(E);
14276     case CK_NonAtomicToAtomic:
14277       return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
14278                   : Evaluate(Result, Info, E->getSubExpr());
14279     }
14280   }
14281 };
14282 } // end anonymous namespace
14283 
EvaluateAtomic(const Expr * E,const LValue * This,APValue & Result,EvalInfo & Info)14284 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
14285                            EvalInfo &Info) {
14286   assert(E->isRValue() && E->getType()->isAtomicType());
14287   return AtomicExprEvaluator(Info, This, Result).Visit(E);
14288 }
14289 
14290 //===----------------------------------------------------------------------===//
14291 // Void expression evaluation, primarily for a cast to void on the LHS of a
14292 // comma operator
14293 //===----------------------------------------------------------------------===//
14294 
14295 namespace {
14296 class VoidExprEvaluator
14297   : public ExprEvaluatorBase<VoidExprEvaluator> {
14298 public:
VoidExprEvaluator(EvalInfo & Info)14299   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
14300 
Success(const APValue & V,const Expr * e)14301   bool Success(const APValue &V, const Expr *e) { return true; }
14302 
ZeroInitialization(const Expr * E)14303   bool ZeroInitialization(const Expr *E) { return true; }
14304 
VisitCastExpr(const CastExpr * E)14305   bool VisitCastExpr(const CastExpr *E) {
14306     switch (E->getCastKind()) {
14307     default:
14308       return ExprEvaluatorBaseTy::VisitCastExpr(E);
14309     case CK_ToVoid:
14310       VisitIgnoredValue(E->getSubExpr());
14311       return true;
14312     }
14313   }
14314 
VisitCallExpr(const CallExpr * E)14315   bool VisitCallExpr(const CallExpr *E) {
14316     switch (E->getBuiltinCallee()) {
14317     case Builtin::BI__assume:
14318     case Builtin::BI__builtin_assume:
14319       // The argument is not evaluated!
14320       return true;
14321 
14322     case Builtin::BI__builtin_operator_delete:
14323       return HandleOperatorDeleteCall(Info, E);
14324 
14325     default:
14326       break;
14327     }
14328 
14329     return ExprEvaluatorBaseTy::VisitCallExpr(E);
14330   }
14331 
14332   bool VisitCXXDeleteExpr(const CXXDeleteExpr *E);
14333 };
14334 } // end anonymous namespace
14335 
VisitCXXDeleteExpr(const CXXDeleteExpr * E)14336 bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
14337   // We cannot speculatively evaluate a delete expression.
14338   if (Info.SpeculativeEvaluationDepth)
14339     return false;
14340 
14341   FunctionDecl *OperatorDelete = E->getOperatorDelete();
14342   if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
14343     Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14344         << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
14345     return false;
14346   }
14347 
14348   const Expr *Arg = E->getArgument();
14349 
14350   LValue Pointer;
14351   if (!EvaluatePointer(Arg, Pointer, Info))
14352     return false;
14353   if (Pointer.Designator.Invalid)
14354     return false;
14355 
14356   // Deleting a null pointer has no effect.
14357   if (Pointer.isNullPointer()) {
14358     // This is the only case where we need to produce an extension warning:
14359     // the only other way we can succeed is if we find a dynamic allocation,
14360     // and we will have warned when we allocated it in that case.
14361     if (!Info.getLangOpts().CPlusPlus20)
14362       Info.CCEDiag(E, diag::note_constexpr_new);
14363     return true;
14364   }
14365 
14366   Optional<DynAlloc *> Alloc = CheckDeleteKind(
14367       Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New);
14368   if (!Alloc)
14369     return false;
14370   QualType AllocType = Pointer.Base.getDynamicAllocType();
14371 
14372   // For the non-array case, the designator must be empty if the static type
14373   // does not have a virtual destructor.
14374   if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 &&
14375       !hasVirtualDestructor(Arg->getType()->getPointeeType())) {
14376     Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor)
14377         << Arg->getType()->getPointeeType() << AllocType;
14378     return false;
14379   }
14380 
14381   // For a class type with a virtual destructor, the selected operator delete
14382   // is the one looked up when building the destructor.
14383   if (!E->isArrayForm() && !E->isGlobalDelete()) {
14384     const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType);
14385     if (VirtualDelete &&
14386         !VirtualDelete->isReplaceableGlobalAllocationFunction()) {
14387       Info.FFDiag(E, diag::note_constexpr_new_non_replaceable)
14388           << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
14389       return false;
14390     }
14391   }
14392 
14393   if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(),
14394                          (*Alloc)->Value, AllocType))
14395     return false;
14396 
14397   if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) {
14398     // The element was already erased. This means the destructor call also
14399     // deleted the object.
14400     // FIXME: This probably results in undefined behavior before we get this
14401     // far, and should be diagnosed elsewhere first.
14402     Info.FFDiag(E, diag::note_constexpr_double_delete);
14403     return false;
14404   }
14405 
14406   return true;
14407 }
14408 
EvaluateVoid(const Expr * E,EvalInfo & Info)14409 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
14410   assert(E->isRValue() && E->getType()->isVoidType());
14411   return VoidExprEvaluator(Info).Visit(E);
14412 }
14413 
14414 //===----------------------------------------------------------------------===//
14415 // Top level Expr::EvaluateAsRValue method.
14416 //===----------------------------------------------------------------------===//
14417 
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)14418 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
14419   // In C, function designators are not lvalues, but we evaluate them as if they
14420   // are.
14421   QualType T = E->getType();
14422   if (E->isGLValue() || T->isFunctionType()) {
14423     LValue LV;
14424     if (!EvaluateLValue(E, LV, Info))
14425       return false;
14426     LV.moveInto(Result);
14427   } else if (T->isVectorType()) {
14428     if (!EvaluateVector(E, Result, Info))
14429       return false;
14430   } else if (T->isIntegralOrEnumerationType()) {
14431     if (!IntExprEvaluator(Info, Result).Visit(E))
14432       return false;
14433   } else if (T->hasPointerRepresentation()) {
14434     LValue LV;
14435     if (!EvaluatePointer(E, LV, Info))
14436       return false;
14437     LV.moveInto(Result);
14438   } else if (T->isRealFloatingType()) {
14439     llvm::APFloat F(0.0);
14440     if (!EvaluateFloat(E, F, Info))
14441       return false;
14442     Result = APValue(F);
14443   } else if (T->isAnyComplexType()) {
14444     ComplexValue C;
14445     if (!EvaluateComplex(E, C, Info))
14446       return false;
14447     C.moveInto(Result);
14448   } else if (T->isFixedPointType()) {
14449     if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
14450   } else if (T->isMemberPointerType()) {
14451     MemberPtr P;
14452     if (!EvaluateMemberPointer(E, P, Info))
14453       return false;
14454     P.moveInto(Result);
14455     return true;
14456   } else if (T->isArrayType()) {
14457     LValue LV;
14458     APValue &Value =
14459         Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
14460     if (!EvaluateArray(E, LV, Value, Info))
14461       return false;
14462     Result = Value;
14463   } else if (T->isRecordType()) {
14464     LValue LV;
14465     APValue &Value =
14466         Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV);
14467     if (!EvaluateRecord(E, LV, Value, Info))
14468       return false;
14469     Result = Value;
14470   } else if (T->isVoidType()) {
14471     if (!Info.getLangOpts().CPlusPlus11)
14472       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
14473         << E->getType();
14474     if (!EvaluateVoid(E, Info))
14475       return false;
14476   } else if (T->isAtomicType()) {
14477     QualType Unqual = T.getAtomicUnqualifiedType();
14478     if (Unqual->isArrayType() || Unqual->isRecordType()) {
14479       LValue LV;
14480       APValue &Value = Info.CurrentCall->createTemporary(
14481           E, Unqual, ScopeKind::FullExpression, LV);
14482       if (!EvaluateAtomic(E, &LV, Value, Info))
14483         return false;
14484     } else {
14485       if (!EvaluateAtomic(E, nullptr, Result, Info))
14486         return false;
14487     }
14488   } else if (Info.getLangOpts().CPlusPlus11) {
14489     Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
14490     return false;
14491   } else {
14492     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
14493     return false;
14494   }
14495 
14496   return true;
14497 }
14498 
14499 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
14500 /// cases, the in-place evaluation is essential, since later initializers for
14501 /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,bool AllowNonLiteralTypes)14502 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
14503                             const Expr *E, bool AllowNonLiteralTypes) {
14504   assert(!E->isValueDependent());
14505 
14506   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
14507     return false;
14508 
14509   if (E->isRValue()) {
14510     // Evaluate arrays and record types in-place, so that later initializers can
14511     // refer to earlier-initialized members of the object.
14512     QualType T = E->getType();
14513     if (T->isArrayType())
14514       return EvaluateArray(E, This, Result, Info);
14515     else if (T->isRecordType())
14516       return EvaluateRecord(E, This, Result, Info);
14517     else if (T->isAtomicType()) {
14518       QualType Unqual = T.getAtomicUnqualifiedType();
14519       if (Unqual->isArrayType() || Unqual->isRecordType())
14520         return EvaluateAtomic(E, &This, Result, Info);
14521     }
14522   }
14523 
14524   // For any other type, in-place evaluation is unimportant.
14525   return Evaluate(Result, Info, E);
14526 }
14527 
14528 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
14529 /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)14530 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
14531   if (Info.EnableNewConstInterp) {
14532     if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result))
14533       return false;
14534   } else {
14535     if (E->getType().isNull())
14536       return false;
14537 
14538     if (!CheckLiteralType(Info, E))
14539       return false;
14540 
14541     if (!::Evaluate(Result, Info, E))
14542       return false;
14543 
14544     if (E->isGLValue()) {
14545       LValue LV;
14546       LV.setFrom(Info.Ctx, Result);
14547       if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
14548         return false;
14549     }
14550   }
14551 
14552   // Check this core constant expression is a constant expression.
14553   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result,
14554                                  ConstantExprKind::Normal) &&
14555          CheckMemoryLeaks(Info);
14556 }
14557 
FastEvaluateAsRValue(const Expr * Exp,Expr::EvalResult & Result,const ASTContext & Ctx,bool & IsConst)14558 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
14559                                  const ASTContext &Ctx, bool &IsConst) {
14560   // Fast-path evaluations of integer literals, since we sometimes see files
14561   // containing vast quantities of these.
14562   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
14563     Result.Val = APValue(APSInt(L->getValue(),
14564                                 L->getType()->isUnsignedIntegerType()));
14565     IsConst = true;
14566     return true;
14567   }
14568 
14569   // This case should be rare, but we need to check it before we check on
14570   // the type below.
14571   if (Exp->getType().isNull()) {
14572     IsConst = false;
14573     return true;
14574   }
14575 
14576   // FIXME: Evaluating values of large array and record types can cause
14577   // performance problems. Only do so in C++11 for now.
14578   if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
14579                           Exp->getType()->isRecordType()) &&
14580       !Ctx.getLangOpts().CPlusPlus11) {
14581     IsConst = false;
14582     return true;
14583   }
14584   return false;
14585 }
14586 
hasUnacceptableSideEffect(Expr::EvalStatus & Result,Expr::SideEffectsKind SEK)14587 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
14588                                       Expr::SideEffectsKind SEK) {
14589   return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
14590          (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
14591 }
14592 
EvaluateAsRValue(const Expr * E,Expr::EvalResult & Result,const ASTContext & Ctx,EvalInfo & Info)14593 static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
14594                              const ASTContext &Ctx, EvalInfo &Info) {
14595   bool IsConst;
14596   if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
14597     return IsConst;
14598 
14599   return EvaluateAsRValue(Info, E, Result.Val);
14600 }
14601 
EvaluateAsInt(const Expr * E,Expr::EvalResult & ExprResult,const ASTContext & Ctx,Expr::SideEffectsKind AllowSideEffects,EvalInfo & Info)14602 static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
14603                           const ASTContext &Ctx,
14604                           Expr::SideEffectsKind AllowSideEffects,
14605                           EvalInfo &Info) {
14606   if (!E->getType()->isIntegralOrEnumerationType())
14607     return false;
14608 
14609   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
14610       !ExprResult.Val.isInt() ||
14611       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14612     return false;
14613 
14614   return true;
14615 }
14616 
EvaluateAsFixedPoint(const Expr * E,Expr::EvalResult & ExprResult,const ASTContext & Ctx,Expr::SideEffectsKind AllowSideEffects,EvalInfo & Info)14617 static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
14618                                  const ASTContext &Ctx,
14619                                  Expr::SideEffectsKind AllowSideEffects,
14620                                  EvalInfo &Info) {
14621   if (!E->getType()->isFixedPointType())
14622     return false;
14623 
14624   if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
14625     return false;
14626 
14627   if (!ExprResult.Val.isFixedPoint() ||
14628       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14629     return false;
14630 
14631   return true;
14632 }
14633 
14634 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
14635 /// any crazy technique (that has nothing to do with language standards) that
14636 /// we want to.  If this function returns true, it returns the folded constant
14637 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
14638 /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx,bool InConstantContext) const14639 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
14640                             bool InConstantContext) const {
14641   assert(!isValueDependent() &&
14642          "Expression evaluator can't be called on a dependent expression.");
14643   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14644   Info.InConstantContext = InConstantContext;
14645   return ::EvaluateAsRValue(this, Result, Ctx, Info);
14646 }
14647 
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx,bool InConstantContext) const14648 bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
14649                                       bool InConstantContext) const {
14650   assert(!isValueDependent() &&
14651          "Expression evaluator can't be called on a dependent expression.");
14652   EvalResult Scratch;
14653   return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
14654          HandleConversionToBool(Scratch.Val, Result);
14655 }
14656 
EvaluateAsInt(EvalResult & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects,bool InConstantContext) const14657 bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
14658                          SideEffectsKind AllowSideEffects,
14659                          bool InConstantContext) const {
14660   assert(!isValueDependent() &&
14661          "Expression evaluator can't be called on a dependent expression.");
14662   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14663   Info.InConstantContext = InConstantContext;
14664   return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
14665 }
14666 
EvaluateAsFixedPoint(EvalResult & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects,bool InConstantContext) const14667 bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
14668                                 SideEffectsKind AllowSideEffects,
14669                                 bool InConstantContext) const {
14670   assert(!isValueDependent() &&
14671          "Expression evaluator can't be called on a dependent expression.");
14672   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
14673   Info.InConstantContext = InConstantContext;
14674   return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
14675 }
14676 
EvaluateAsFloat(APFloat & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects,bool InConstantContext) const14677 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
14678                            SideEffectsKind AllowSideEffects,
14679                            bool InConstantContext) const {
14680   assert(!isValueDependent() &&
14681          "Expression evaluator can't be called on a dependent expression.");
14682 
14683   if (!getType()->isRealFloatingType())
14684     return false;
14685 
14686   EvalResult ExprResult;
14687   if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
14688       !ExprResult.Val.isFloat() ||
14689       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
14690     return false;
14691 
14692   Result = ExprResult.Val.getFloat();
14693   return true;
14694 }
14695 
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx,bool InConstantContext) const14696 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
14697                             bool InConstantContext) const {
14698   assert(!isValueDependent() &&
14699          "Expression evaluator can't be called on a dependent expression.");
14700 
14701   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
14702   Info.InConstantContext = InConstantContext;
14703   LValue LV;
14704   CheckedTemporaries CheckedTemps;
14705   if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() ||
14706       Result.HasSideEffects ||
14707       !CheckLValueConstantExpression(Info, getExprLoc(),
14708                                      Ctx.getLValueReferenceType(getType()), LV,
14709                                      ConstantExprKind::Normal, CheckedTemps))
14710     return false;
14711 
14712   LV.moveInto(Result.Val);
14713   return true;
14714 }
14715 
EvaluateDestruction(const ASTContext & Ctx,APValue::LValueBase Base,APValue DestroyedValue,QualType Type,SourceLocation Loc,Expr::EvalStatus & EStatus)14716 static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base,
14717                                 APValue DestroyedValue, QualType Type,
14718                                 SourceLocation Loc, Expr::EvalStatus &EStatus) {
14719   EvalInfo Info(Ctx, EStatus, EvalInfo::EM_ConstantExpression);
14720   Info.setEvaluatingDecl(Base, DestroyedValue,
14721                          EvalInfo::EvaluatingDeclKind::Dtor);
14722   Info.InConstantContext = true;
14723 
14724   LValue LVal;
14725   LVal.set(Base);
14726 
14727   if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) ||
14728       EStatus.HasSideEffects)
14729     return false;
14730 
14731   if (!Info.discardCleanups())
14732     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
14733 
14734   return true;
14735 }
14736 
EvaluateAsConstantExpr(EvalResult & Result,const ASTContext & Ctx,ConstantExprKind Kind) const14737 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx,
14738                                   ConstantExprKind Kind) const {
14739   assert(!isValueDependent() &&
14740          "Expression evaluator can't be called on a dependent expression.");
14741 
14742   EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
14743   EvalInfo Info(Ctx, Result, EM);
14744   Info.InConstantContext = true;
14745 
14746   // The type of the object we're initializing is 'const T' for a class NTTP.
14747   QualType T = getType();
14748   if (Kind == ConstantExprKind::ClassTemplateArgument)
14749     T.addConst();
14750 
14751   // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to
14752   // represent the result of the evaluation. CheckConstantExpression ensures
14753   // this doesn't escape.
14754   MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true);
14755   APValue::LValueBase Base(&BaseMTE);
14756 
14757   Info.setEvaluatingDecl(Base, Result.Val);
14758   LValue LVal;
14759   LVal.set(Base);
14760 
14761   if (!::EvaluateInPlace(Result.Val, Info, LVal, this) || Result.HasSideEffects)
14762     return false;
14763 
14764   if (!Info.discardCleanups())
14765     llvm_unreachable("Unhandled cleanup; missing full expression marker?");
14766 
14767   if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this),
14768                                Result.Val, Kind))
14769     return false;
14770   if (!CheckMemoryLeaks(Info))
14771     return false;
14772 
14773   // If this is a class template argument, it's required to have constant
14774   // destruction too.
14775   if (Kind == ConstantExprKind::ClassTemplateArgument &&
14776       (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result) ||
14777        Result.HasSideEffects)) {
14778     // FIXME: Prefix a note to indicate that the problem is lack of constant
14779     // destruction.
14780     return false;
14781   }
14782 
14783   return true;
14784 }
14785 
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,SmallVectorImpl<PartialDiagnosticAt> & Notes,bool IsConstantInitialization) const14786 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
14787                                  const VarDecl *VD,
14788                                  SmallVectorImpl<PartialDiagnosticAt> &Notes,
14789                                  bool IsConstantInitialization) const {
14790   assert(!isValueDependent() &&
14791          "Expression evaluator can't be called on a dependent expression.");
14792 
14793   // FIXME: Evaluating initializers for large array and record types can cause
14794   // performance problems. Only do so in C++11 for now.
14795   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
14796       !Ctx.getLangOpts().CPlusPlus11)
14797     return false;
14798 
14799   Expr::EvalStatus EStatus;
14800   EStatus.Diag = &Notes;
14801 
14802   EvalInfo Info(Ctx, EStatus,
14803                 (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11)
14804                     ? EvalInfo::EM_ConstantExpression
14805                     : EvalInfo::EM_ConstantFold);
14806   Info.setEvaluatingDecl(VD, Value);
14807   Info.InConstantContext = IsConstantInitialization;
14808 
14809   SourceLocation DeclLoc = VD->getLocation();
14810   QualType DeclTy = VD->getType();
14811 
14812   if (Info.EnableNewConstInterp) {
14813     auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
14814     if (!InterpCtx.evaluateAsInitializer(Info, VD, Value))
14815       return false;
14816   } else {
14817     LValue LVal;
14818     LVal.set(VD);
14819 
14820     if (!EvaluateInPlace(Value, Info, LVal, this,
14821                          /*AllowNonLiteralTypes=*/true) ||
14822         EStatus.HasSideEffects)
14823       return false;
14824 
14825     // At this point, any lifetime-extended temporaries are completely
14826     // initialized.
14827     Info.performLifetimeExtension();
14828 
14829     if (!Info.discardCleanups())
14830       llvm_unreachable("Unhandled cleanup; missing full expression marker?");
14831   }
14832   return CheckConstantExpression(Info, DeclLoc, DeclTy, Value,
14833                                  ConstantExprKind::Normal) &&
14834          CheckMemoryLeaks(Info);
14835 }
14836 
evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> & Notes) const14837 bool VarDecl::evaluateDestruction(
14838     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
14839   Expr::EvalStatus EStatus;
14840   EStatus.Diag = &Notes;
14841 
14842   // Make a copy of the value for the destructor to mutate, if we know it.
14843   // Otherwise, treat the value as default-initialized; if the destructor works
14844   // anyway, then the destruction is constant (and must be essentially empty).
14845   APValue DestroyedValue;
14846   if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent())
14847     DestroyedValue = *getEvaluatedValue();
14848   else if (!getDefaultInitValue(getType(), DestroyedValue))
14849     return false;
14850 
14851   if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue),
14852                            getType(), getLocation(), EStatus) ||
14853       EStatus.HasSideEffects)
14854     return false;
14855 
14856   ensureEvaluatedStmt()->HasConstantDestruction = true;
14857   return true;
14858 }
14859 
14860 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
14861 /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx,SideEffectsKind SEK) const14862 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
14863   assert(!isValueDependent() &&
14864          "Expression evaluator can't be called on a dependent expression.");
14865 
14866   EvalResult Result;
14867   return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
14868          !hasUnacceptableSideEffect(Result, SEK);
14869 }
14870 
EvaluateKnownConstInt(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const14871 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
14872                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
14873   assert(!isValueDependent() &&
14874          "Expression evaluator can't be called on a dependent expression.");
14875 
14876   EvalResult EVResult;
14877   EVResult.Diag = Diag;
14878   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
14879   Info.InConstantContext = true;
14880 
14881   bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
14882   (void)Result;
14883   assert(Result && "Could not evaluate expression");
14884   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
14885 
14886   return EVResult.Val.getInt();
14887 }
14888 
EvaluateKnownConstIntCheckOverflow(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const14889 APSInt Expr::EvaluateKnownConstIntCheckOverflow(
14890     const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
14891   assert(!isValueDependent() &&
14892          "Expression evaluator can't be called on a dependent expression.");
14893 
14894   EvalResult EVResult;
14895   EVResult.Diag = Diag;
14896   EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
14897   Info.InConstantContext = true;
14898   Info.CheckingForUndefinedBehavior = true;
14899 
14900   bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
14901   (void)Result;
14902   assert(Result && "Could not evaluate expression");
14903   assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
14904 
14905   return EVResult.Val.getInt();
14906 }
14907 
EvaluateForOverflow(const ASTContext & Ctx) const14908 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
14909   assert(!isValueDependent() &&
14910          "Expression evaluator can't be called on a dependent expression.");
14911 
14912   bool IsConst;
14913   EvalResult EVResult;
14914   if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
14915     EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
14916     Info.CheckingForUndefinedBehavior = true;
14917     (void)::EvaluateAsRValue(Info, this, EVResult.Val);
14918   }
14919 }
14920 
isGlobalLValue() const14921 bool Expr::EvalResult::isGlobalLValue() const {
14922   assert(Val.isLValue());
14923   return IsGlobalLValue(Val.getLValueBase());
14924 }
14925 
14926 /// isIntegerConstantExpr - this recursive routine will test if an expression is
14927 /// an integer constant expression.
14928 
14929 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
14930 /// comma, etc
14931 
14932 // CheckICE - This function does the fundamental ICE checking: the returned
14933 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
14934 // and a (possibly null) SourceLocation indicating the location of the problem.
14935 //
14936 // Note that to reduce code duplication, this helper does no evaluation
14937 // itself; the caller checks whether the expression is evaluatable, and
14938 // in the rare cases where CheckICE actually cares about the evaluated
14939 // value, it calls into Evaluate.
14940 
14941 namespace {
14942 
14943 enum ICEKind {
14944   /// This expression is an ICE.
14945   IK_ICE,
14946   /// This expression is not an ICE, but if it isn't evaluated, it's
14947   /// a legal subexpression for an ICE. This return value is used to handle
14948   /// the comma operator in C99 mode, and non-constant subexpressions.
14949   IK_ICEIfUnevaluated,
14950   /// This expression is not an ICE, and is not a legal subexpression for one.
14951   IK_NotICE
14952 };
14953 
14954 struct ICEDiag {
14955   ICEKind Kind;
14956   SourceLocation Loc;
14957 
ICEDiag__anon4717f8733511::ICEDiag14958   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
14959 };
14960 
14961 }
14962 
NoDiag()14963 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
14964 
Worst(ICEDiag A,ICEDiag B)14965 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
14966 
CheckEvalInICE(const Expr * E,const ASTContext & Ctx)14967 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
14968   Expr::EvalResult EVResult;
14969   Expr::EvalStatus Status;
14970   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
14971 
14972   Info.InConstantContext = true;
14973   if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
14974       !EVResult.Val.isInt())
14975     return ICEDiag(IK_NotICE, E->getBeginLoc());
14976 
14977   return NoDiag();
14978 }
14979 
CheckICE(const Expr * E,const ASTContext & Ctx)14980 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
14981   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
14982   if (!E->getType()->isIntegralOrEnumerationType())
14983     return ICEDiag(IK_NotICE, E->getBeginLoc());
14984 
14985   switch (E->getStmtClass()) {
14986 #define ABSTRACT_STMT(Node)
14987 #define STMT(Node, Base) case Expr::Node##Class:
14988 #define EXPR(Node, Base)
14989 #include "clang/AST/StmtNodes.inc"
14990   case Expr::PredefinedExprClass:
14991   case Expr::FloatingLiteralClass:
14992   case Expr::ImaginaryLiteralClass:
14993   case Expr::StringLiteralClass:
14994   case Expr::ArraySubscriptExprClass:
14995   case Expr::MatrixSubscriptExprClass:
14996   case Expr::OMPArraySectionExprClass:
14997   case Expr::OMPArrayShapingExprClass:
14998   case Expr::OMPIteratorExprClass:
14999   case Expr::MemberExprClass:
15000   case Expr::CompoundAssignOperatorClass:
15001   case Expr::CompoundLiteralExprClass:
15002   case Expr::ExtVectorElementExprClass:
15003   case Expr::DesignatedInitExprClass:
15004   case Expr::ArrayInitLoopExprClass:
15005   case Expr::ArrayInitIndexExprClass:
15006   case Expr::NoInitExprClass:
15007   case Expr::DesignatedInitUpdateExprClass:
15008   case Expr::ImplicitValueInitExprClass:
15009   case Expr::ParenListExprClass:
15010   case Expr::VAArgExprClass:
15011   case Expr::AddrLabelExprClass:
15012   case Expr::StmtExprClass:
15013   case Expr::CXXMemberCallExprClass:
15014   case Expr::CUDAKernelCallExprClass:
15015   case Expr::CXXAddrspaceCastExprClass:
15016   case Expr::CXXDynamicCastExprClass:
15017   case Expr::CXXTypeidExprClass:
15018   case Expr::CXXUuidofExprClass:
15019   case Expr::MSPropertyRefExprClass:
15020   case Expr::MSPropertySubscriptExprClass:
15021   case Expr::CXXNullPtrLiteralExprClass:
15022   case Expr::UserDefinedLiteralClass:
15023   case Expr::CXXThisExprClass:
15024   case Expr::CXXThrowExprClass:
15025   case Expr::CXXNewExprClass:
15026   case Expr::CXXDeleteExprClass:
15027   case Expr::CXXPseudoDestructorExprClass:
15028   case Expr::UnresolvedLookupExprClass:
15029   case Expr::TypoExprClass:
15030   case Expr::RecoveryExprClass:
15031   case Expr::DependentScopeDeclRefExprClass:
15032   case Expr::CXXConstructExprClass:
15033   case Expr::CXXInheritedCtorInitExprClass:
15034   case Expr::CXXStdInitializerListExprClass:
15035   case Expr::CXXBindTemporaryExprClass:
15036   case Expr::ExprWithCleanupsClass:
15037   case Expr::CXXTemporaryObjectExprClass:
15038   case Expr::CXXUnresolvedConstructExprClass:
15039   case Expr::CXXDependentScopeMemberExprClass:
15040   case Expr::UnresolvedMemberExprClass:
15041   case Expr::ObjCStringLiteralClass:
15042   case Expr::ObjCBoxedExprClass:
15043   case Expr::ObjCArrayLiteralClass:
15044   case Expr::ObjCDictionaryLiteralClass:
15045   case Expr::ObjCEncodeExprClass:
15046   case Expr::ObjCMessageExprClass:
15047   case Expr::ObjCSelectorExprClass:
15048   case Expr::ObjCProtocolExprClass:
15049   case Expr::ObjCIvarRefExprClass:
15050   case Expr::ObjCPropertyRefExprClass:
15051   case Expr::ObjCSubscriptRefExprClass:
15052   case Expr::ObjCIsaExprClass:
15053   case Expr::ObjCAvailabilityCheckExprClass:
15054   case Expr::ShuffleVectorExprClass:
15055   case Expr::ConvertVectorExprClass:
15056   case Expr::BlockExprClass:
15057   case Expr::NoStmtClass:
15058   case Expr::OpaqueValueExprClass:
15059   case Expr::PackExpansionExprClass:
15060   case Expr::SubstNonTypeTemplateParmPackExprClass:
15061   case Expr::FunctionParmPackExprClass:
15062   case Expr::AsTypeExprClass:
15063   case Expr::ObjCIndirectCopyRestoreExprClass:
15064   case Expr::MaterializeTemporaryExprClass:
15065   case Expr::PseudoObjectExprClass:
15066   case Expr::AtomicExprClass:
15067   case Expr::LambdaExprClass:
15068   case Expr::CXXFoldExprClass:
15069   case Expr::CoawaitExprClass:
15070   case Expr::DependentCoawaitExprClass:
15071   case Expr::CoyieldExprClass:
15072     return ICEDiag(IK_NotICE, E->getBeginLoc());
15073 
15074   case Expr::InitListExprClass: {
15075     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
15076     // form "T x = { a };" is equivalent to "T x = a;".
15077     // Unless we're initializing a reference, T is a scalar as it is known to be
15078     // of integral or enumeration type.
15079     if (E->isRValue())
15080       if (cast<InitListExpr>(E)->getNumInits() == 1)
15081         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
15082     return ICEDiag(IK_NotICE, E->getBeginLoc());
15083   }
15084 
15085   case Expr::SizeOfPackExprClass:
15086   case Expr::GNUNullExprClass:
15087   case Expr::SourceLocExprClass:
15088     return NoDiag();
15089 
15090   case Expr::SubstNonTypeTemplateParmExprClass:
15091     return
15092       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
15093 
15094   case Expr::ConstantExprClass:
15095     return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
15096 
15097   case Expr::ParenExprClass:
15098     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
15099   case Expr::GenericSelectionExprClass:
15100     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
15101   case Expr::IntegerLiteralClass:
15102   case Expr::FixedPointLiteralClass:
15103   case Expr::CharacterLiteralClass:
15104   case Expr::ObjCBoolLiteralExprClass:
15105   case Expr::CXXBoolLiteralExprClass:
15106   case Expr::CXXScalarValueInitExprClass:
15107   case Expr::TypeTraitExprClass:
15108   case Expr::ConceptSpecializationExprClass:
15109   case Expr::RequiresExprClass:
15110   case Expr::ArrayTypeTraitExprClass:
15111   case Expr::ExpressionTraitExprClass:
15112   case Expr::CXXNoexceptExprClass:
15113     return NoDiag();
15114   case Expr::CallExprClass:
15115   case Expr::CXXOperatorCallExprClass: {
15116     // C99 6.6/3 allows function calls within unevaluated subexpressions of
15117     // constant expressions, but they can never be ICEs because an ICE cannot
15118     // contain an operand of (pointer to) function type.
15119     const CallExpr *CE = cast<CallExpr>(E);
15120     if (CE->getBuiltinCallee())
15121       return CheckEvalInICE(E, Ctx);
15122     return ICEDiag(IK_NotICE, E->getBeginLoc());
15123   }
15124   case Expr::CXXRewrittenBinaryOperatorClass:
15125     return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
15126                     Ctx);
15127   case Expr::DeclRefExprClass: {
15128     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
15129     if (isa<EnumConstantDecl>(D))
15130       return NoDiag();
15131 
15132     // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified
15133     // integer variables in constant expressions:
15134     //
15135     // C++ 7.1.5.1p2
15136     //   A variable of non-volatile const-qualified integral or enumeration
15137     //   type initialized by an ICE can be used in ICEs.
15138     //
15139     // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In
15140     // that mode, use of reference variables should not be allowed.
15141     const VarDecl *VD = dyn_cast<VarDecl>(D);
15142     if (VD && VD->isUsableInConstantExpressions(Ctx) &&
15143         !VD->getType()->isReferenceType())
15144       return NoDiag();
15145 
15146     return ICEDiag(IK_NotICE, E->getBeginLoc());
15147   }
15148   case Expr::UnaryOperatorClass: {
15149     const UnaryOperator *Exp = cast<UnaryOperator>(E);
15150     switch (Exp->getOpcode()) {
15151     case UO_PostInc:
15152     case UO_PostDec:
15153     case UO_PreInc:
15154     case UO_PreDec:
15155     case UO_AddrOf:
15156     case UO_Deref:
15157     case UO_Coawait:
15158       // C99 6.6/3 allows increment and decrement within unevaluated
15159       // subexpressions of constant expressions, but they can never be ICEs
15160       // because an ICE cannot contain an lvalue operand.
15161       return ICEDiag(IK_NotICE, E->getBeginLoc());
15162     case UO_Extension:
15163     case UO_LNot:
15164     case UO_Plus:
15165     case UO_Minus:
15166     case UO_Not:
15167     case UO_Real:
15168     case UO_Imag:
15169       return CheckICE(Exp->getSubExpr(), Ctx);
15170     }
15171     llvm_unreachable("invalid unary operator class");
15172   }
15173   case Expr::OffsetOfExprClass: {
15174     // Note that per C99, offsetof must be an ICE. And AFAIK, using
15175     // EvaluateAsRValue matches the proposed gcc behavior for cases like
15176     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
15177     // compliance: we should warn earlier for offsetof expressions with
15178     // array subscripts that aren't ICEs, and if the array subscripts
15179     // are ICEs, the value of the offsetof must be an integer constant.
15180     return CheckEvalInICE(E, Ctx);
15181   }
15182   case Expr::UnaryExprOrTypeTraitExprClass: {
15183     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
15184     if ((Exp->getKind() ==  UETT_SizeOf) &&
15185         Exp->getTypeOfArgument()->isVariableArrayType())
15186       return ICEDiag(IK_NotICE, E->getBeginLoc());
15187     return NoDiag();
15188   }
15189   case Expr::BinaryOperatorClass: {
15190     const BinaryOperator *Exp = cast<BinaryOperator>(E);
15191     switch (Exp->getOpcode()) {
15192     case BO_PtrMemD:
15193     case BO_PtrMemI:
15194     case BO_Assign:
15195     case BO_MulAssign:
15196     case BO_DivAssign:
15197     case BO_RemAssign:
15198     case BO_AddAssign:
15199     case BO_SubAssign:
15200     case BO_ShlAssign:
15201     case BO_ShrAssign:
15202     case BO_AndAssign:
15203     case BO_XorAssign:
15204     case BO_OrAssign:
15205       // C99 6.6/3 allows assignments within unevaluated subexpressions of
15206       // constant expressions, but they can never be ICEs because an ICE cannot
15207       // contain an lvalue operand.
15208       return ICEDiag(IK_NotICE, E->getBeginLoc());
15209 
15210     case BO_Mul:
15211     case BO_Div:
15212     case BO_Rem:
15213     case BO_Add:
15214     case BO_Sub:
15215     case BO_Shl:
15216     case BO_Shr:
15217     case BO_LT:
15218     case BO_GT:
15219     case BO_LE:
15220     case BO_GE:
15221     case BO_EQ:
15222     case BO_NE:
15223     case BO_And:
15224     case BO_Xor:
15225     case BO_Or:
15226     case BO_Comma:
15227     case BO_Cmp: {
15228       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15229       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15230       if (Exp->getOpcode() == BO_Div ||
15231           Exp->getOpcode() == BO_Rem) {
15232         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
15233         // we don't evaluate one.
15234         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
15235           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
15236           if (REval == 0)
15237             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15238           if (REval.isSigned() && REval.isAllOnesValue()) {
15239             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
15240             if (LEval.isMinSignedValue())
15241               return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15242           }
15243         }
15244       }
15245       if (Exp->getOpcode() == BO_Comma) {
15246         if (Ctx.getLangOpts().C99) {
15247           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
15248           // if it isn't evaluated.
15249           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
15250             return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
15251         } else {
15252           // In both C89 and C++, commas in ICEs are illegal.
15253           return ICEDiag(IK_NotICE, E->getBeginLoc());
15254         }
15255       }
15256       return Worst(LHSResult, RHSResult);
15257     }
15258     case BO_LAnd:
15259     case BO_LOr: {
15260       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
15261       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
15262       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
15263         // Rare case where the RHS has a comma "side-effect"; we need
15264         // to actually check the condition to see whether the side
15265         // with the comma is evaluated.
15266         if ((Exp->getOpcode() == BO_LAnd) !=
15267             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
15268           return RHSResult;
15269         return NoDiag();
15270       }
15271 
15272       return Worst(LHSResult, RHSResult);
15273     }
15274     }
15275     llvm_unreachable("invalid binary operator kind");
15276   }
15277   case Expr::ImplicitCastExprClass:
15278   case Expr::CStyleCastExprClass:
15279   case Expr::CXXFunctionalCastExprClass:
15280   case Expr::CXXStaticCastExprClass:
15281   case Expr::CXXReinterpretCastExprClass:
15282   case Expr::CXXConstCastExprClass:
15283   case Expr::ObjCBridgedCastExprClass: {
15284     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
15285     if (isa<ExplicitCastExpr>(E)) {
15286       if (const FloatingLiteral *FL
15287             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
15288         unsigned DestWidth = Ctx.getIntWidth(E->getType());
15289         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
15290         APSInt IgnoredVal(DestWidth, !DestSigned);
15291         bool Ignored;
15292         // If the value does not fit in the destination type, the behavior is
15293         // undefined, so we are not required to treat it as a constant
15294         // expression.
15295         if (FL->getValue().convertToInteger(IgnoredVal,
15296                                             llvm::APFloat::rmTowardZero,
15297                                             &Ignored) & APFloat::opInvalidOp)
15298           return ICEDiag(IK_NotICE, E->getBeginLoc());
15299         return NoDiag();
15300       }
15301     }
15302     switch (cast<CastExpr>(E)->getCastKind()) {
15303     case CK_LValueToRValue:
15304     case CK_AtomicToNonAtomic:
15305     case CK_NonAtomicToAtomic:
15306     case CK_NoOp:
15307     case CK_IntegralToBoolean:
15308     case CK_IntegralCast:
15309       return CheckICE(SubExpr, Ctx);
15310     default:
15311       return ICEDiag(IK_NotICE, E->getBeginLoc());
15312     }
15313   }
15314   case Expr::BinaryConditionalOperatorClass: {
15315     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
15316     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
15317     if (CommonResult.Kind == IK_NotICE) return CommonResult;
15318     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15319     if (FalseResult.Kind == IK_NotICE) return FalseResult;
15320     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
15321     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
15322         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
15323     return FalseResult;
15324   }
15325   case Expr::ConditionalOperatorClass: {
15326     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
15327     // If the condition (ignoring parens) is a __builtin_constant_p call,
15328     // then only the true side is actually considered in an integer constant
15329     // expression, and it is fully evaluated.  This is an important GNU
15330     // extension.  See GCC PR38377 for discussion.
15331     if (const CallExpr *CallCE
15332         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
15333       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
15334         return CheckEvalInICE(E, Ctx);
15335     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
15336     if (CondResult.Kind == IK_NotICE)
15337       return CondResult;
15338 
15339     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
15340     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
15341 
15342     if (TrueResult.Kind == IK_NotICE)
15343       return TrueResult;
15344     if (FalseResult.Kind == IK_NotICE)
15345       return FalseResult;
15346     if (CondResult.Kind == IK_ICEIfUnevaluated)
15347       return CondResult;
15348     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
15349       return NoDiag();
15350     // Rare case where the diagnostics depend on which side is evaluated
15351     // Note that if we get here, CondResult is 0, and at least one of
15352     // TrueResult and FalseResult is non-zero.
15353     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
15354       return FalseResult;
15355     return TrueResult;
15356   }
15357   case Expr::CXXDefaultArgExprClass:
15358     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
15359   case Expr::CXXDefaultInitExprClass:
15360     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
15361   case Expr::ChooseExprClass: {
15362     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
15363   }
15364   case Expr::BuiltinBitCastExprClass: {
15365     if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
15366       return ICEDiag(IK_NotICE, E->getBeginLoc());
15367     return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
15368   }
15369   }
15370 
15371   llvm_unreachable("Invalid StmtClass!");
15372 }
15373 
15374 /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)15375 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
15376                                                     const Expr *E,
15377                                                     llvm::APSInt *Value,
15378                                                     SourceLocation *Loc) {
15379   if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
15380     if (Loc) *Loc = E->getExprLoc();
15381     return false;
15382   }
15383 
15384   APValue Result;
15385   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
15386     return false;
15387 
15388   if (!Result.isInt()) {
15389     if (Loc) *Loc = E->getExprLoc();
15390     return false;
15391   }
15392 
15393   if (Value) *Value = Result.getInt();
15394   return true;
15395 }
15396 
isIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc) const15397 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
15398                                  SourceLocation *Loc) const {
15399   assert(!isValueDependent() &&
15400          "Expression evaluator can't be called on a dependent expression.");
15401 
15402   if (Ctx.getLangOpts().CPlusPlus11)
15403     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
15404 
15405   ICEDiag D = CheckICE(this, Ctx);
15406   if (D.Kind != IK_ICE) {
15407     if (Loc) *Loc = D.Loc;
15408     return false;
15409   }
15410   return true;
15411 }
15412 
getIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const15413 Optional<llvm::APSInt> Expr::getIntegerConstantExpr(const ASTContext &Ctx,
15414                                                     SourceLocation *Loc,
15415                                                     bool isEvaluated) const {
15416   assert(!isValueDependent() &&
15417          "Expression evaluator can't be called on a dependent expression.");
15418 
15419   APSInt Value;
15420 
15421   if (Ctx.getLangOpts().CPlusPlus11) {
15422     if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc))
15423       return Value;
15424     return None;
15425   }
15426 
15427   if (!isIntegerConstantExpr(Ctx, Loc))
15428     return None;
15429 
15430   // The only possible side-effects here are due to UB discovered in the
15431   // evaluation (for instance, INT_MAX + 1). In such a case, we are still
15432   // required to treat the expression as an ICE, so we produce the folded
15433   // value.
15434   EvalResult ExprResult;
15435   Expr::EvalStatus Status;
15436   EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
15437   Info.InConstantContext = true;
15438 
15439   if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
15440     llvm_unreachable("ICE cannot be evaluated!");
15441 
15442   return ExprResult.Val.getInt();
15443 }
15444 
isCXX98IntegralConstantExpr(const ASTContext & Ctx) const15445 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
15446   assert(!isValueDependent() &&
15447          "Expression evaluator can't be called on a dependent expression.");
15448 
15449   return CheckICE(this, Ctx).Kind == IK_ICE;
15450 }
15451 
isCXX11ConstantExpr(const ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const15452 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
15453                                SourceLocation *Loc) const {
15454   assert(!isValueDependent() &&
15455          "Expression evaluator can't be called on a dependent expression.");
15456 
15457   // We support this checking in C++98 mode in order to diagnose compatibility
15458   // issues.
15459   assert(Ctx.getLangOpts().CPlusPlus);
15460 
15461   // Build evaluation settings.
15462   Expr::EvalStatus Status;
15463   SmallVector<PartialDiagnosticAt, 8> Diags;
15464   Status.Diag = &Diags;
15465   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
15466 
15467   APValue Scratch;
15468   bool IsConstExpr =
15469       ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) &&
15470       // FIXME: We don't produce a diagnostic for this, but the callers that
15471       // call us on arbitrary full-expressions should generally not care.
15472       Info.discardCleanups() && !Status.HasSideEffects;
15473 
15474   if (!Diags.empty()) {
15475     IsConstExpr = false;
15476     if (Loc) *Loc = Diags[0].first;
15477   } else if (!IsConstExpr) {
15478     // FIXME: This shouldn't happen.
15479     if (Loc) *Loc = getExprLoc();
15480   }
15481 
15482   return IsConstExpr;
15483 }
15484 
EvaluateWithSubstitution(APValue & Value,ASTContext & Ctx,const FunctionDecl * Callee,ArrayRef<const Expr * > Args,const Expr * This) const15485 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
15486                                     const FunctionDecl *Callee,
15487                                     ArrayRef<const Expr*> Args,
15488                                     const Expr *This) const {
15489   assert(!isValueDependent() &&
15490          "Expression evaluator can't be called on a dependent expression.");
15491 
15492   Expr::EvalStatus Status;
15493   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
15494   Info.InConstantContext = true;
15495 
15496   LValue ThisVal;
15497   const LValue *ThisPtr = nullptr;
15498   if (This) {
15499 #ifndef NDEBUG
15500     auto *MD = dyn_cast<CXXMethodDecl>(Callee);
15501     assert(MD && "Don't provide `this` for non-methods.");
15502     assert(!MD->isStatic() && "Don't provide `this` for static methods.");
15503 #endif
15504     if (!This->isValueDependent() &&
15505         EvaluateObjectArgument(Info, This, ThisVal) &&
15506         !Info.EvalStatus.HasSideEffects)
15507       ThisPtr = &ThisVal;
15508 
15509     // Ignore any side-effects from a failed evaluation. This is safe because
15510     // they can't interfere with any other argument evaluation.
15511     Info.EvalStatus.HasSideEffects = false;
15512   }
15513 
15514   CallRef Call = Info.CurrentCall->createCall(Callee);
15515   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
15516        I != E; ++I) {
15517     unsigned Idx = I - Args.begin();
15518     if (Idx >= Callee->getNumParams())
15519       break;
15520     const ParmVarDecl *PVD = Callee->getParamDecl(Idx);
15521     if ((*I)->isValueDependent() ||
15522         !EvaluateCallArg(PVD, *I, Call, Info) ||
15523         Info.EvalStatus.HasSideEffects) {
15524       // If evaluation fails, throw away the argument entirely.
15525       if (APValue *Slot = Info.getParamSlot(Call, PVD))
15526         *Slot = APValue();
15527     }
15528 
15529     // Ignore any side-effects from a failed evaluation. This is safe because
15530     // they can't interfere with any other argument evaluation.
15531     Info.EvalStatus.HasSideEffects = false;
15532   }
15533 
15534   // Parameter cleanups happen in the caller and are not part of this
15535   // evaluation.
15536   Info.discardCleanups();
15537   Info.EvalStatus.HasSideEffects = false;
15538 
15539   // Build fake call to Callee.
15540   CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, Call);
15541   // FIXME: Missing ExprWithCleanups in enable_if conditions?
15542   FullExpressionRAII Scope(Info);
15543   return Evaluate(Value, Info, this) && Scope.destroy() &&
15544          !Info.EvalStatus.HasSideEffects;
15545 }
15546 
isPotentialConstantExpr(const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)15547 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
15548                                    SmallVectorImpl<
15549                                      PartialDiagnosticAt> &Diags) {
15550   // FIXME: It would be useful to check constexpr function templates, but at the
15551   // moment the constant expression evaluator cannot cope with the non-rigorous
15552   // ASTs which we build for dependent expressions.
15553   if (FD->isDependentContext())
15554     return true;
15555 
15556   // Bail out if a constexpr constructor has an initializer that contains an
15557   // error. We deliberately don't produce a diagnostic, as we have produced a
15558   // relevant diagnostic when parsing the error initializer.
15559   if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
15560     for (const auto *InitExpr : Ctor->inits()) {
15561       if (InitExpr->getInit() && InitExpr->getInit()->containsErrors())
15562         return false;
15563     }
15564   }
15565   Expr::EvalStatus Status;
15566   Status.Diag = &Diags;
15567 
15568   EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression);
15569   Info.InConstantContext = true;
15570   Info.CheckingPotentialConstantExpression = true;
15571 
15572   // The constexpr VM attempts to compile all methods to bytecode here.
15573   if (Info.EnableNewConstInterp) {
15574     Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD);
15575     return Diags.empty();
15576   }
15577 
15578   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
15579   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
15580 
15581   // Fabricate an arbitrary expression on the stack and pretend that it
15582   // is a temporary being used as the 'this' pointer.
15583   LValue This;
15584   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
15585   This.set({&VIE, Info.CurrentCall->Index});
15586 
15587   ArrayRef<const Expr*> Args;
15588 
15589   APValue Scratch;
15590   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
15591     // Evaluate the call as a constant initializer, to allow the construction
15592     // of objects of non-literal types.
15593     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
15594     HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
15595   } else {
15596     SourceLocation Loc = FD->getLocation();
15597     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
15598                        Args, CallRef(), FD->getBody(), Info, Scratch, nullptr);
15599   }
15600 
15601   return Diags.empty();
15602 }
15603 
isPotentialConstantExprUnevaluated(Expr * E,const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)15604 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
15605                                               const FunctionDecl *FD,
15606                                               SmallVectorImpl<
15607                                                 PartialDiagnosticAt> &Diags) {
15608   assert(!E->isValueDependent() &&
15609          "Expression evaluator can't be called on a dependent expression.");
15610 
15611   Expr::EvalStatus Status;
15612   Status.Diag = &Diags;
15613 
15614   EvalInfo Info(FD->getASTContext(), Status,
15615                 EvalInfo::EM_ConstantExpressionUnevaluated);
15616   Info.InConstantContext = true;
15617   Info.CheckingPotentialConstantExpression = true;
15618 
15619   // Fabricate a call stack frame to give the arguments a plausible cover story.
15620   CallStackFrame Frame(Info, SourceLocation(), FD, /*This*/ nullptr, CallRef());
15621 
15622   APValue ResultScratch;
15623   Evaluate(ResultScratch, Info, E);
15624   return Diags.empty();
15625 }
15626 
tryEvaluateObjectSize(uint64_t & Result,ASTContext & Ctx,unsigned Type) const15627 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
15628                                  unsigned Type) const {
15629   if (!getType()->isPointerType())
15630     return false;
15631 
15632   Expr::EvalStatus Status;
15633   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
15634   return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
15635 }
15636