1 //===- ThreadSafety.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
10 // conditions), based off of an annotation system.
11 //
12 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
13 // for more information.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "clang/Analysis/Analyses/ThreadSafety.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclGroup.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/OperationKinds.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
29 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
30 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
31 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
32 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
33 #include "clang/Analysis/AnalysisDeclContext.h"
34 #include "clang/Analysis/CFG.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/LLVM.h"
37 #include "clang/Basic/OperatorKinds.h"
38 #include "clang/Basic/SourceLocation.h"
39 #include "clang/Basic/Specifiers.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/ImmutableMap.h"
43 #include "llvm/ADT/Optional.h"
44 #include "llvm/ADT/PointerIntPair.h"
45 #include "llvm/ADT/STLExtras.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/StringRef.h"
48 #include "llvm/Support/Allocator.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <functional>
55 #include <iterator>
56 #include <memory>
57 #include <string>
58 #include <type_traits>
59 #include <utility>
60 #include <vector>
61
62 using namespace clang;
63 using namespace threadSafety;
64
65 // Key method definition
66 ThreadSafetyHandler::~ThreadSafetyHandler() = default;
67
68 /// Issue a warning about an invalid lock expression
warnInvalidLock(ThreadSafetyHandler & Handler,const Expr * MutexExp,const NamedDecl * D,const Expr * DeclExp,StringRef Kind)69 static void warnInvalidLock(ThreadSafetyHandler &Handler,
70 const Expr *MutexExp, const NamedDecl *D,
71 const Expr *DeclExp, StringRef Kind) {
72 SourceLocation Loc;
73 if (DeclExp)
74 Loc = DeclExp->getExprLoc();
75
76 // FIXME: add a note about the attribute location in MutexExp or D
77 if (Loc.isValid())
78 Handler.handleInvalidLockExp(Kind, Loc);
79 }
80
81 namespace {
82
83 /// A set of CapabilityExpr objects, which are compiled from thread safety
84 /// attributes on a function.
85 class CapExprSet : public SmallVector<CapabilityExpr, 4> {
86 public:
87 /// Push M onto list, but discard duplicates.
push_back_nodup(const CapabilityExpr & CapE)88 void push_back_nodup(const CapabilityExpr &CapE) {
89 iterator It = std::find_if(begin(), end(),
90 [=](const CapabilityExpr &CapE2) {
91 return CapE.equals(CapE2);
92 });
93 if (It == end())
94 push_back(CapE);
95 }
96 };
97
98 class FactManager;
99 class FactSet;
100
101 /// This is a helper class that stores a fact that is known at a
102 /// particular point in program execution. Currently, a fact is a capability,
103 /// along with additional information, such as where it was acquired, whether
104 /// it is exclusive or shared, etc.
105 ///
106 /// FIXME: this analysis does not currently support re-entrant locking.
107 class FactEntry : public CapabilityExpr {
108 private:
109 /// Exclusive or shared.
110 LockKind LKind;
111
112 /// Where it was acquired.
113 SourceLocation AcquireLoc;
114
115 /// True if the lock was asserted.
116 bool Asserted;
117
118 /// True if the lock was declared.
119 bool Declared;
120
121 public:
FactEntry(const CapabilityExpr & CE,LockKind LK,SourceLocation Loc,bool Asrt,bool Declrd=false)122 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
123 bool Asrt, bool Declrd = false)
124 : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt),
125 Declared(Declrd) {}
126 virtual ~FactEntry() = default;
127
kind() const128 LockKind kind() const { return LKind; }
loc() const129 SourceLocation loc() const { return AcquireLoc; }
asserted() const130 bool asserted() const { return Asserted; }
declared() const131 bool declared() const { return Declared; }
132
setDeclared(bool D)133 void setDeclared(bool D) { Declared = D; }
134
135 virtual void
136 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
137 SourceLocation JoinLoc, LockErrorKind LEK,
138 ThreadSafetyHandler &Handler) const = 0;
139 virtual void handleLock(FactSet &FSet, FactManager &FactMan,
140 const FactEntry &entry, ThreadSafetyHandler &Handler,
141 StringRef DiagKind) const = 0;
142 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
143 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
144 bool FullyRemove, ThreadSafetyHandler &Handler,
145 StringRef DiagKind) const = 0;
146
147 // Return true if LKind >= LK, where exclusive > shared
isAtLeast(LockKind LK) const148 bool isAtLeast(LockKind LK) const {
149 return (LKind == LK_Exclusive) || (LK == LK_Shared);
150 }
151 };
152
153 using FactID = unsigned short;
154
155 /// FactManager manages the memory for all facts that are created during
156 /// the analysis of a single routine.
157 class FactManager {
158 private:
159 std::vector<std::unique_ptr<const FactEntry>> Facts;
160
161 public:
newFact(std::unique_ptr<FactEntry> Entry)162 FactID newFact(std::unique_ptr<FactEntry> Entry) {
163 Facts.push_back(std::move(Entry));
164 return static_cast<unsigned short>(Facts.size() - 1);
165 }
166
operator [](FactID F) const167 const FactEntry &operator[](FactID F) const { return *Facts[F]; }
168 };
169
170 /// A FactSet is the set of facts that are known to be true at a
171 /// particular program point. FactSets must be small, because they are
172 /// frequently copied, and are thus implemented as a set of indices into a
173 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2
174 /// locks, so we can get away with doing a linear search for lookup. Note
175 /// that a hashtable or map is inappropriate in this case, because lookups
176 /// may involve partial pattern matches, rather than exact matches.
177 class FactSet {
178 private:
179 using FactVec = SmallVector<FactID, 4>;
180
181 FactVec FactIDs;
182
183 public:
184 using iterator = FactVec::iterator;
185 using const_iterator = FactVec::const_iterator;
186
begin()187 iterator begin() { return FactIDs.begin(); }
begin() const188 const_iterator begin() const { return FactIDs.begin(); }
189
end()190 iterator end() { return FactIDs.end(); }
end() const191 const_iterator end() const { return FactIDs.end(); }
192
isEmpty() const193 bool isEmpty() const { return FactIDs.size() == 0; }
194
195 // Return true if the set contains only negative facts
isEmpty(FactManager & FactMan) const196 bool isEmpty(FactManager &FactMan) const {
197 for (const auto FID : *this) {
198 if (!FactMan[FID].negative())
199 return false;
200 }
201 return true;
202 }
203
addLockByID(FactID ID)204 void addLockByID(FactID ID) { FactIDs.push_back(ID); }
205
addLock(FactManager & FM,std::unique_ptr<FactEntry> Entry)206 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
207 FactID F = FM.newFact(std::move(Entry));
208 FactIDs.push_back(F);
209 return F;
210 }
211
removeLock(FactManager & FM,const CapabilityExpr & CapE)212 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
213 unsigned n = FactIDs.size();
214 if (n == 0)
215 return false;
216
217 for (unsigned i = 0; i < n-1; ++i) {
218 if (FM[FactIDs[i]].matches(CapE)) {
219 FactIDs[i] = FactIDs[n-1];
220 FactIDs.pop_back();
221 return true;
222 }
223 }
224 if (FM[FactIDs[n-1]].matches(CapE)) {
225 FactIDs.pop_back();
226 return true;
227 }
228 return false;
229 }
230
findLockIter(FactManager & FM,const CapabilityExpr & CapE)231 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
232 return std::find_if(begin(), end(), [&](FactID ID) {
233 return FM[ID].matches(CapE);
234 });
235 }
236
findLock(FactManager & FM,const CapabilityExpr & CapE) const237 const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
238 auto I = std::find_if(begin(), end(), [&](FactID ID) {
239 return FM[ID].matches(CapE);
240 });
241 return I != end() ? &FM[*I] : nullptr;
242 }
243
findLockUniv(FactManager & FM,const CapabilityExpr & CapE) const244 const FactEntry *findLockUniv(FactManager &FM,
245 const CapabilityExpr &CapE) const {
246 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
247 return FM[ID].matchesUniv(CapE);
248 });
249 return I != end() ? &FM[*I] : nullptr;
250 }
251
findPartialMatch(FactManager & FM,const CapabilityExpr & CapE) const252 const FactEntry *findPartialMatch(FactManager &FM,
253 const CapabilityExpr &CapE) const {
254 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
255 return FM[ID].partiallyMatches(CapE);
256 });
257 return I != end() ? &FM[*I] : nullptr;
258 }
259
containsMutexDecl(FactManager & FM,const ValueDecl * Vd) const260 bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
261 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
262 return FM[ID].valueDecl() == Vd;
263 });
264 return I != end();
265 }
266 };
267
268 class ThreadSafetyAnalyzer;
269
270 } // namespace
271
272 namespace clang {
273 namespace threadSafety {
274
275 class BeforeSet {
276 private:
277 using BeforeVect = SmallVector<const ValueDecl *, 4>;
278
279 struct BeforeInfo {
280 BeforeVect Vect;
281 int Visited = 0;
282
283 BeforeInfo() = default;
284 BeforeInfo(BeforeInfo &&) = default;
285 };
286
287 using BeforeMap =
288 llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>;
289 using CycleMap = llvm::DenseMap<const ValueDecl *, bool>;
290
291 public:
292 BeforeSet() = default;
293
294 BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
295 ThreadSafetyAnalyzer& Analyzer);
296
297 BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
298 ThreadSafetyAnalyzer &Analyzer);
299
300 void checkBeforeAfter(const ValueDecl* Vd,
301 const FactSet& FSet,
302 ThreadSafetyAnalyzer& Analyzer,
303 SourceLocation Loc, StringRef CapKind);
304
305 private:
306 BeforeMap BMap;
307 CycleMap CycMap;
308 };
309
310 } // namespace threadSafety
311 } // namespace clang
312
313 namespace {
314
315 class LocalVariableMap;
316
317 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>;
318
319 /// A side (entry or exit) of a CFG node.
320 enum CFGBlockSide { CBS_Entry, CBS_Exit };
321
322 /// CFGBlockInfo is a struct which contains all the information that is
323 /// maintained for each block in the CFG. See LocalVariableMap for more
324 /// information about the contexts.
325 struct CFGBlockInfo {
326 // Lockset held at entry to block
327 FactSet EntrySet;
328
329 // Lockset held at exit from block
330 FactSet ExitSet;
331
332 // Context held at entry to block
333 LocalVarContext EntryContext;
334
335 // Context held at exit from block
336 LocalVarContext ExitContext;
337
338 // Location of first statement in block
339 SourceLocation EntryLoc;
340
341 // Location of last statement in block.
342 SourceLocation ExitLoc;
343
344 // Used to replay contexts later
345 unsigned EntryIndex;
346
347 // Is this block reachable?
348 bool Reachable = false;
349
getSet__anon4528aa0a0811::CFGBlockInfo350 const FactSet &getSet(CFGBlockSide Side) const {
351 return Side == CBS_Entry ? EntrySet : ExitSet;
352 }
353
getLocation__anon4528aa0a0811::CFGBlockInfo354 SourceLocation getLocation(CFGBlockSide Side) const {
355 return Side == CBS_Entry ? EntryLoc : ExitLoc;
356 }
357
358 private:
CFGBlockInfo__anon4528aa0a0811::CFGBlockInfo359 CFGBlockInfo(LocalVarContext EmptyCtx)
360 : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {}
361
362 public:
363 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
364 };
365
366 // A LocalVariableMap maintains a map from local variables to their currently
367 // valid definitions. It provides SSA-like functionality when traversing the
368 // CFG. Like SSA, each definition or assignment to a variable is assigned a
369 // unique name (an integer), which acts as the SSA name for that definition.
370 // The total set of names is shared among all CFG basic blocks.
371 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
372 // with their SSA-names. Instead, we compute a Context for each point in the
373 // code, which maps local variables to the appropriate SSA-name. This map
374 // changes with each assignment.
375 //
376 // The map is computed in a single pass over the CFG. Subsequent analyses can
377 // then query the map to find the appropriate Context for a statement, and use
378 // that Context to look up the definitions of variables.
379 class LocalVariableMap {
380 public:
381 using Context = LocalVarContext;
382
383 /// A VarDefinition consists of an expression, representing the value of the
384 /// variable, along with the context in which that expression should be
385 /// interpreted. A reference VarDefinition does not itself contain this
386 /// information, but instead contains a pointer to a previous VarDefinition.
387 struct VarDefinition {
388 public:
389 friend class LocalVariableMap;
390
391 // The original declaration for this variable.
392 const NamedDecl *Dec;
393
394 // The expression for this variable, OR
395 const Expr *Exp = nullptr;
396
397 // Reference to another VarDefinition
398 unsigned Ref = 0;
399
400 // The map with which Exp should be interpreted.
401 Context Ctx;
402
isReference__anon4528aa0a0811::LocalVariableMap::VarDefinition403 bool isReference() { return !Exp; }
404
405 private:
406 // Create ordinary variable definition
VarDefinition__anon4528aa0a0811::LocalVariableMap::VarDefinition407 VarDefinition(const NamedDecl *D, const Expr *E, Context C)
408 : Dec(D), Exp(E), Ctx(C) {}
409
410 // Create reference to previous definition
VarDefinition__anon4528aa0a0811::LocalVariableMap::VarDefinition411 VarDefinition(const NamedDecl *D, unsigned R, Context C)
412 : Dec(D), Ref(R), Ctx(C) {}
413 };
414
415 private:
416 Context::Factory ContextFactory;
417 std::vector<VarDefinition> VarDefinitions;
418 std::vector<unsigned> CtxIndices;
419 std::vector<std::pair<const Stmt *, Context>> SavedContexts;
420
421 public:
LocalVariableMap()422 LocalVariableMap() {
423 // index 0 is a placeholder for undefined variables (aka phi-nodes).
424 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
425 }
426
427 /// Look up a definition, within the given context.
lookup(const NamedDecl * D,Context Ctx)428 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
429 const unsigned *i = Ctx.lookup(D);
430 if (!i)
431 return nullptr;
432 assert(*i < VarDefinitions.size());
433 return &VarDefinitions[*i];
434 }
435
436 /// Look up the definition for D within the given context. Returns
437 /// NULL if the expression is not statically known. If successful, also
438 /// modifies Ctx to hold the context of the return Expr.
lookupExpr(const NamedDecl * D,Context & Ctx)439 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
440 const unsigned *P = Ctx.lookup(D);
441 if (!P)
442 return nullptr;
443
444 unsigned i = *P;
445 while (i > 0) {
446 if (VarDefinitions[i].Exp) {
447 Ctx = VarDefinitions[i].Ctx;
448 return VarDefinitions[i].Exp;
449 }
450 i = VarDefinitions[i].Ref;
451 }
452 return nullptr;
453 }
454
getEmptyContext()455 Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
456
457 /// Return the next context after processing S. This function is used by
458 /// clients of the class to get the appropriate context when traversing the
459 /// CFG. It must be called for every assignment or DeclStmt.
getNextContext(unsigned & CtxIndex,const Stmt * S,Context C)460 Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) {
461 if (SavedContexts[CtxIndex+1].first == S) {
462 CtxIndex++;
463 Context Result = SavedContexts[CtxIndex].second;
464 return Result;
465 }
466 return C;
467 }
468
dumpVarDefinitionName(unsigned i)469 void dumpVarDefinitionName(unsigned i) {
470 if (i == 0) {
471 llvm::errs() << "Undefined";
472 return;
473 }
474 const NamedDecl *Dec = VarDefinitions[i].Dec;
475 if (!Dec) {
476 llvm::errs() << "<<NULL>>";
477 return;
478 }
479 Dec->printName(llvm::errs());
480 llvm::errs() << "." << i << " " << ((const void*) Dec);
481 }
482
483 /// Dumps an ASCII representation of the variable map to llvm::errs()
dump()484 void dump() {
485 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
486 const Expr *Exp = VarDefinitions[i].Exp;
487 unsigned Ref = VarDefinitions[i].Ref;
488
489 dumpVarDefinitionName(i);
490 llvm::errs() << " = ";
491 if (Exp) Exp->dump();
492 else {
493 dumpVarDefinitionName(Ref);
494 llvm::errs() << "\n";
495 }
496 }
497 }
498
499 /// Dumps an ASCII representation of a Context to llvm::errs()
dumpContext(Context C)500 void dumpContext(Context C) {
501 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
502 const NamedDecl *D = I.getKey();
503 D->printName(llvm::errs());
504 const unsigned *i = C.lookup(D);
505 llvm::errs() << " -> ";
506 dumpVarDefinitionName(*i);
507 llvm::errs() << "\n";
508 }
509 }
510
511 /// Builds the variable map.
512 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
513 std::vector<CFGBlockInfo> &BlockInfo);
514
515 protected:
516 friend class VarMapBuilder;
517
518 // Get the current context index
getContextIndex()519 unsigned getContextIndex() { return SavedContexts.size()-1; }
520
521 // Save the current context for later replay
saveContext(const Stmt * S,Context C)522 void saveContext(const Stmt *S, Context C) {
523 SavedContexts.push_back(std::make_pair(S, C));
524 }
525
526 // Adds a new definition to the given context, and returns a new context.
527 // This method should be called when declaring a new variable.
addDefinition(const NamedDecl * D,const Expr * Exp,Context Ctx)528 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
529 assert(!Ctx.contains(D));
530 unsigned newID = VarDefinitions.size();
531 Context NewCtx = ContextFactory.add(Ctx, D, newID);
532 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
533 return NewCtx;
534 }
535
536 // Add a new reference to an existing definition.
addReference(const NamedDecl * D,unsigned i,Context Ctx)537 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
538 unsigned newID = VarDefinitions.size();
539 Context NewCtx = ContextFactory.add(Ctx, D, newID);
540 VarDefinitions.push_back(VarDefinition(D, i, Ctx));
541 return NewCtx;
542 }
543
544 // Updates a definition only if that definition is already in the map.
545 // This method should be called when assigning to an existing variable.
updateDefinition(const NamedDecl * D,Expr * Exp,Context Ctx)546 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
547 if (Ctx.contains(D)) {
548 unsigned newID = VarDefinitions.size();
549 Context NewCtx = ContextFactory.remove(Ctx, D);
550 NewCtx = ContextFactory.add(NewCtx, D, newID);
551 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
552 return NewCtx;
553 }
554 return Ctx;
555 }
556
557 // Removes a definition from the context, but keeps the variable name
558 // as a valid variable. The index 0 is a placeholder for cleared definitions.
clearDefinition(const NamedDecl * D,Context Ctx)559 Context clearDefinition(const NamedDecl *D, Context Ctx) {
560 Context NewCtx = Ctx;
561 if (NewCtx.contains(D)) {
562 NewCtx = ContextFactory.remove(NewCtx, D);
563 NewCtx = ContextFactory.add(NewCtx, D, 0);
564 }
565 return NewCtx;
566 }
567
568 // Remove a definition entirely frmo the context.
removeDefinition(const NamedDecl * D,Context Ctx)569 Context removeDefinition(const NamedDecl *D, Context Ctx) {
570 Context NewCtx = Ctx;
571 if (NewCtx.contains(D)) {
572 NewCtx = ContextFactory.remove(NewCtx, D);
573 }
574 return NewCtx;
575 }
576
577 Context intersectContexts(Context C1, Context C2);
578 Context createReferenceContext(Context C);
579 void intersectBackEdge(Context C1, Context C2);
580 };
581
582 } // namespace
583
584 // This has to be defined after LocalVariableMap.
getEmptyBlockInfo(LocalVariableMap & M)585 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
586 return CFGBlockInfo(M.getEmptyContext());
587 }
588
589 namespace {
590
591 /// Visitor which builds a LocalVariableMap
592 class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> {
593 public:
594 LocalVariableMap* VMap;
595 LocalVariableMap::Context Ctx;
596
VarMapBuilder(LocalVariableMap * VM,LocalVariableMap::Context C)597 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
598 : VMap(VM), Ctx(C) {}
599
600 void VisitDeclStmt(const DeclStmt *S);
601 void VisitBinaryOperator(const BinaryOperator *BO);
602 };
603
604 } // namespace
605
606 // Add new local variables to the variable map
VisitDeclStmt(const DeclStmt * S)607 void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) {
608 bool modifiedCtx = false;
609 const DeclGroupRef DGrp = S->getDeclGroup();
610 for (const auto *D : DGrp) {
611 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
612 const Expr *E = VD->getInit();
613
614 // Add local variables with trivial type to the variable map
615 QualType T = VD->getType();
616 if (T.isTrivialType(VD->getASTContext())) {
617 Ctx = VMap->addDefinition(VD, E, Ctx);
618 modifiedCtx = true;
619 }
620 }
621 }
622 if (modifiedCtx)
623 VMap->saveContext(S, Ctx);
624 }
625
626 // Update local variable definitions in variable map
VisitBinaryOperator(const BinaryOperator * BO)627 void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) {
628 if (!BO->isAssignmentOp())
629 return;
630
631 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
632
633 // Update the variable map and current context.
634 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
635 const ValueDecl *VDec = DRE->getDecl();
636 if (Ctx.lookup(VDec)) {
637 if (BO->getOpcode() == BO_Assign)
638 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
639 else
640 // FIXME -- handle compound assignment operators
641 Ctx = VMap->clearDefinition(VDec, Ctx);
642 VMap->saveContext(BO, Ctx);
643 }
644 }
645 }
646
647 // Computes the intersection of two contexts. The intersection is the
648 // set of variables which have the same definition in both contexts;
649 // variables with different definitions are discarded.
650 LocalVariableMap::Context
intersectContexts(Context C1,Context C2)651 LocalVariableMap::intersectContexts(Context C1, Context C2) {
652 Context Result = C1;
653 for (const auto &P : C1) {
654 const NamedDecl *Dec = P.first;
655 const unsigned *i2 = C2.lookup(Dec);
656 if (!i2) // variable doesn't exist on second path
657 Result = removeDefinition(Dec, Result);
658 else if (*i2 != P.second) // variable exists, but has different definition
659 Result = clearDefinition(Dec, Result);
660 }
661 return Result;
662 }
663
664 // For every variable in C, create a new variable that refers to the
665 // definition in C. Return a new context that contains these new variables.
666 // (We use this for a naive implementation of SSA on loop back-edges.)
createReferenceContext(Context C)667 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
668 Context Result = getEmptyContext();
669 for (const auto &P : C)
670 Result = addReference(P.first, P.second, Result);
671 return Result;
672 }
673
674 // This routine also takes the intersection of C1 and C2, but it does so by
675 // altering the VarDefinitions. C1 must be the result of an earlier call to
676 // createReferenceContext.
intersectBackEdge(Context C1,Context C2)677 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
678 for (const auto &P : C1) {
679 unsigned i1 = P.second;
680 VarDefinition *VDef = &VarDefinitions[i1];
681 assert(VDef->isReference());
682
683 const unsigned *i2 = C2.lookup(P.first);
684 if (!i2 || (*i2 != i1))
685 VDef->Ref = 0; // Mark this variable as undefined
686 }
687 }
688
689 // Traverse the CFG in topological order, so all predecessors of a block
690 // (excluding back-edges) are visited before the block itself. At
691 // each point in the code, we calculate a Context, which holds the set of
692 // variable definitions which are visible at that point in execution.
693 // Visible variables are mapped to their definitions using an array that
694 // contains all definitions.
695 //
696 // At join points in the CFG, the set is computed as the intersection of
697 // the incoming sets along each edge, E.g.
698 //
699 // { Context | VarDefinitions }
700 // int x = 0; { x -> x1 | x1 = 0 }
701 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
702 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... }
703 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... }
704 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... }
705 //
706 // This is essentially a simpler and more naive version of the standard SSA
707 // algorithm. Those definitions that remain in the intersection are from blocks
708 // that strictly dominate the current block. We do not bother to insert proper
709 // phi nodes, because they are not used in our analysis; instead, wherever
710 // a phi node would be required, we simply remove that definition from the
711 // context (E.g. x above).
712 //
713 // The initial traversal does not capture back-edges, so those need to be
714 // handled on a separate pass. Whenever the first pass encounters an
715 // incoming back edge, it duplicates the context, creating new definitions
716 // that refer back to the originals. (These correspond to places where SSA
717 // might have to insert a phi node.) On the second pass, these definitions are
718 // set to NULL if the variable has changed on the back-edge (i.e. a phi
719 // node was actually required.) E.g.
720 //
721 // { Context | VarDefinitions }
722 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
723 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; }
724 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... }
725 // ... { y -> y1 | x3 = 2, x2 = 1, ... }
traverseCFG(CFG * CFGraph,const PostOrderCFGView * SortedGraph,std::vector<CFGBlockInfo> & BlockInfo)726 void LocalVariableMap::traverseCFG(CFG *CFGraph,
727 const PostOrderCFGView *SortedGraph,
728 std::vector<CFGBlockInfo> &BlockInfo) {
729 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
730
731 CtxIndices.resize(CFGraph->getNumBlockIDs());
732
733 for (const auto *CurrBlock : *SortedGraph) {
734 unsigned CurrBlockID = CurrBlock->getBlockID();
735 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
736
737 VisitedBlocks.insert(CurrBlock);
738
739 // Calculate the entry context for the current block
740 bool HasBackEdges = false;
741 bool CtxInit = true;
742 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
743 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
744 // if *PI -> CurrBlock is a back edge, so skip it
745 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
746 HasBackEdges = true;
747 continue;
748 }
749
750 unsigned PrevBlockID = (*PI)->getBlockID();
751 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
752
753 if (CtxInit) {
754 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
755 CtxInit = false;
756 }
757 else {
758 CurrBlockInfo->EntryContext =
759 intersectContexts(CurrBlockInfo->EntryContext,
760 PrevBlockInfo->ExitContext);
761 }
762 }
763
764 // Duplicate the context if we have back-edges, so we can call
765 // intersectBackEdges later.
766 if (HasBackEdges)
767 CurrBlockInfo->EntryContext =
768 createReferenceContext(CurrBlockInfo->EntryContext);
769
770 // Create a starting context index for the current block
771 saveContext(nullptr, CurrBlockInfo->EntryContext);
772 CurrBlockInfo->EntryIndex = getContextIndex();
773
774 // Visit all the statements in the basic block.
775 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
776 for (const auto &BI : *CurrBlock) {
777 switch (BI.getKind()) {
778 case CFGElement::Statement: {
779 CFGStmt CS = BI.castAs<CFGStmt>();
780 VMapBuilder.Visit(CS.getStmt());
781 break;
782 }
783 default:
784 break;
785 }
786 }
787 CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
788
789 // Mark variables on back edges as "unknown" if they've been changed.
790 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
791 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
792 // if CurrBlock -> *SI is *not* a back edge
793 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
794 continue;
795
796 CFGBlock *FirstLoopBlock = *SI;
797 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
798 Context LoopEnd = CurrBlockInfo->ExitContext;
799 intersectBackEdge(LoopBegin, LoopEnd);
800 }
801 }
802
803 // Put an extra entry at the end of the indexed context array
804 unsigned exitID = CFGraph->getExit().getBlockID();
805 saveContext(nullptr, BlockInfo[exitID].ExitContext);
806 }
807
808 /// Find the appropriate source locations to use when producing diagnostics for
809 /// each block in the CFG.
findBlockLocations(CFG * CFGraph,const PostOrderCFGView * SortedGraph,std::vector<CFGBlockInfo> & BlockInfo)810 static void findBlockLocations(CFG *CFGraph,
811 const PostOrderCFGView *SortedGraph,
812 std::vector<CFGBlockInfo> &BlockInfo) {
813 for (const auto *CurrBlock : *SortedGraph) {
814 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
815
816 // Find the source location of the last statement in the block, if the
817 // block is not empty.
818 if (const Stmt *S = CurrBlock->getTerminatorStmt()) {
819 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc();
820 } else {
821 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
822 BE = CurrBlock->rend(); BI != BE; ++BI) {
823 // FIXME: Handle other CFGElement kinds.
824 if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
825 CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc();
826 break;
827 }
828 }
829 }
830
831 if (CurrBlockInfo->ExitLoc.isValid()) {
832 // This block contains at least one statement. Find the source location
833 // of the first statement in the block.
834 for (const auto &BI : *CurrBlock) {
835 // FIXME: Handle other CFGElement kinds.
836 if (Optional<CFGStmt> CS = BI.getAs<CFGStmt>()) {
837 CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc();
838 break;
839 }
840 }
841 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
842 CurrBlock != &CFGraph->getExit()) {
843 // The block is empty, and has a single predecessor. Use its exit
844 // location.
845 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
846 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
847 }
848 }
849 }
850
851 namespace {
852
853 class LockableFactEntry : public FactEntry {
854 private:
855 /// managed by ScopedLockable object
856 bool Managed;
857
858 public:
LockableFactEntry(const CapabilityExpr & CE,LockKind LK,SourceLocation Loc,bool Mng=false,bool Asrt=false)859 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
860 bool Mng = false, bool Asrt = false)
861 : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {}
862
863 void
handleRemovalFromIntersection(const FactSet & FSet,FactManager & FactMan,SourceLocation JoinLoc,LockErrorKind LEK,ThreadSafetyHandler & Handler) const864 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
865 SourceLocation JoinLoc, LockErrorKind LEK,
866 ThreadSafetyHandler &Handler) const override {
867 if (!Managed && !asserted() && !negative() && !isUniversal()) {
868 Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc,
869 LEK);
870 }
871 }
872
handleLock(FactSet & FSet,FactManager & FactMan,const FactEntry & entry,ThreadSafetyHandler & Handler,StringRef DiagKind) const873 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
874 ThreadSafetyHandler &Handler,
875 StringRef DiagKind) const override {
876 Handler.handleDoubleLock(DiagKind, entry.toString(), loc(), entry.loc());
877 }
878
handleUnlock(FactSet & FSet,FactManager & FactMan,const CapabilityExpr & Cp,SourceLocation UnlockLoc,bool FullyRemove,ThreadSafetyHandler & Handler,StringRef DiagKind) const879 void handleUnlock(FactSet &FSet, FactManager &FactMan,
880 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
881 bool FullyRemove, ThreadSafetyHandler &Handler,
882 StringRef DiagKind) const override {
883 FSet.removeLock(FactMan, Cp);
884 if (!Cp.negative()) {
885 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
886 !Cp, LK_Exclusive, UnlockLoc));
887 }
888 }
889 };
890
891 class ScopedLockableFactEntry : public FactEntry {
892 private:
893 enum UnderlyingCapabilityKind {
894 UCK_Acquired, ///< Any kind of acquired capability.
895 UCK_ReleasedShared, ///< Shared capability that was released.
896 UCK_ReleasedExclusive, ///< Exclusive capability that was released.
897 };
898
899 using UnderlyingCapability =
900 llvm::PointerIntPair<const til::SExpr *, 2, UnderlyingCapabilityKind>;
901
902 SmallVector<UnderlyingCapability, 4> UnderlyingMutexes;
903
904 public:
ScopedLockableFactEntry(const CapabilityExpr & CE,SourceLocation Loc)905 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc)
906 : FactEntry(CE, LK_Exclusive, Loc, false) {}
907
addLock(const CapabilityExpr & M)908 void addLock(const CapabilityExpr &M) {
909 UnderlyingMutexes.emplace_back(M.sexpr(), UCK_Acquired);
910 }
911
addExclusiveUnlock(const CapabilityExpr & M)912 void addExclusiveUnlock(const CapabilityExpr &M) {
913 UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedExclusive);
914 }
915
addSharedUnlock(const CapabilityExpr & M)916 void addSharedUnlock(const CapabilityExpr &M) {
917 UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedShared);
918 }
919
920 void
handleRemovalFromIntersection(const FactSet & FSet,FactManager & FactMan,SourceLocation JoinLoc,LockErrorKind LEK,ThreadSafetyHandler & Handler) const921 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
922 SourceLocation JoinLoc, LockErrorKind LEK,
923 ThreadSafetyHandler &Handler) const override {
924 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
925 const auto *Entry = FSet.findLock(
926 FactMan, CapabilityExpr(UnderlyingMutex.getPointer(), false));
927 if ((UnderlyingMutex.getInt() == UCK_Acquired && Entry) ||
928 (UnderlyingMutex.getInt() != UCK_Acquired && !Entry)) {
929 // If this scoped lock manages another mutex, and if the underlying
930 // mutex is still/not held, then warn about the underlying mutex.
931 Handler.handleMutexHeldEndOfScope(
932 "mutex", sx::toString(UnderlyingMutex.getPointer()), loc(), JoinLoc,
933 LEK);
934 }
935 }
936 }
937
handleLock(FactSet & FSet,FactManager & FactMan,const FactEntry & entry,ThreadSafetyHandler & Handler,StringRef DiagKind) const938 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
939 ThreadSafetyHandler &Handler,
940 StringRef DiagKind) const override {
941 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
942 CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false);
943
944 if (UnderlyingMutex.getInt() == UCK_Acquired)
945 lock(FSet, FactMan, UnderCp, entry.kind(), entry.loc(), &Handler,
946 DiagKind);
947 else
948 unlock(FSet, FactMan, UnderCp, entry.loc(), &Handler, DiagKind);
949 }
950 }
951
handleUnlock(FactSet & FSet,FactManager & FactMan,const CapabilityExpr & Cp,SourceLocation UnlockLoc,bool FullyRemove,ThreadSafetyHandler & Handler,StringRef DiagKind) const952 void handleUnlock(FactSet &FSet, FactManager &FactMan,
953 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
954 bool FullyRemove, ThreadSafetyHandler &Handler,
955 StringRef DiagKind) const override {
956 assert(!Cp.negative() && "Managing object cannot be negative.");
957 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
958 CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false);
959
960 // Remove/lock the underlying mutex if it exists/is still unlocked; warn
961 // on double unlocking/locking if we're not destroying the scoped object.
962 ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler;
963 if (UnderlyingMutex.getInt() == UCK_Acquired) {
964 unlock(FSet, FactMan, UnderCp, UnlockLoc, TSHandler, DiagKind);
965 } else {
966 LockKind kind = UnderlyingMutex.getInt() == UCK_ReleasedShared
967 ? LK_Shared
968 : LK_Exclusive;
969 lock(FSet, FactMan, UnderCp, kind, UnlockLoc, TSHandler, DiagKind);
970 }
971 }
972 if (FullyRemove)
973 FSet.removeLock(FactMan, Cp);
974 }
975
976 private:
lock(FactSet & FSet,FactManager & FactMan,const CapabilityExpr & Cp,LockKind kind,SourceLocation loc,ThreadSafetyHandler * Handler,StringRef DiagKind) const977 void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
978 LockKind kind, SourceLocation loc, ThreadSafetyHandler *Handler,
979 StringRef DiagKind) const {
980 if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) {
981 if (Handler)
982 Handler->handleDoubleLock(DiagKind, Cp.toString(), Fact->loc(), loc);
983 } else {
984 FSet.removeLock(FactMan, !Cp);
985 FSet.addLock(FactMan,
986 std::make_unique<LockableFactEntry>(Cp, kind, loc));
987 }
988 }
989
unlock(FactSet & FSet,FactManager & FactMan,const CapabilityExpr & Cp,SourceLocation loc,ThreadSafetyHandler * Handler,StringRef DiagKind) const990 void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
991 SourceLocation loc, ThreadSafetyHandler *Handler,
992 StringRef DiagKind) const {
993 if (FSet.findLock(FactMan, Cp)) {
994 FSet.removeLock(FactMan, Cp);
995 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
996 !Cp, LK_Exclusive, loc));
997 } else if (Handler) {
998 SourceLocation PrevLoc;
999 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1000 PrevLoc = Neg->loc();
1001 Handler->handleUnmatchedUnlock(DiagKind, Cp.toString(), loc, PrevLoc);
1002 }
1003 }
1004 };
1005
1006 /// Class which implements the core thread safety analysis routines.
1007 class ThreadSafetyAnalyzer {
1008 friend class BuildLockset;
1009 friend class threadSafety::BeforeSet;
1010
1011 llvm::BumpPtrAllocator Bpa;
1012 threadSafety::til::MemRegionRef Arena;
1013 threadSafety::SExprBuilder SxBuilder;
1014
1015 ThreadSafetyHandler &Handler;
1016 const CXXMethodDecl *CurrentMethod;
1017 LocalVariableMap LocalVarMap;
1018 FactManager FactMan;
1019 std::vector<CFGBlockInfo> BlockInfo;
1020
1021 BeforeSet *GlobalBeforeSet;
1022
1023 public:
ThreadSafetyAnalyzer(ThreadSafetyHandler & H,BeforeSet * Bset)1024 ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
1025 : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
1026
1027 bool inCurrentScope(const CapabilityExpr &CapE);
1028
1029 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
1030 StringRef DiagKind, bool ReqAttr = false);
1031 void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
1032 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind,
1033 StringRef DiagKind);
1034
1035 template <typename AttrType>
1036 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1037 const NamedDecl *D, VarDecl *SelfDecl = nullptr);
1038
1039 template <class AttrType>
1040 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1041 const NamedDecl *D,
1042 const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1043 Expr *BrE, bool Neg);
1044
1045 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1046 bool &Negate);
1047
1048 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1049 const CFGBlock* PredBlock,
1050 const CFGBlock *CurrBlock);
1051
1052 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1053 SourceLocation JoinLoc,
1054 LockErrorKind LEK1, LockErrorKind LEK2,
1055 bool Modify=true);
1056
intersectAndWarn(FactSet & FSet1,const FactSet & FSet2,SourceLocation JoinLoc,LockErrorKind LEK1,bool Modify=true)1057 void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1058 SourceLocation JoinLoc, LockErrorKind LEK1,
1059 bool Modify=true) {
1060 intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
1061 }
1062
1063 void runAnalysis(AnalysisDeclContext &AC);
1064 };
1065
1066 } // namespace
1067
1068 /// Process acquired_before and acquired_after attributes on Vd.
insertAttrExprs(const ValueDecl * Vd,ThreadSafetyAnalyzer & Analyzer)1069 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
1070 ThreadSafetyAnalyzer& Analyzer) {
1071 // Create a new entry for Vd.
1072 BeforeInfo *Info = nullptr;
1073 {
1074 // Keep InfoPtr in its own scope in case BMap is modified later and the
1075 // reference becomes invalid.
1076 std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
1077 if (!InfoPtr)
1078 InfoPtr.reset(new BeforeInfo());
1079 Info = InfoPtr.get();
1080 }
1081
1082 for (const auto *At : Vd->attrs()) {
1083 switch (At->getKind()) {
1084 case attr::AcquiredBefore: {
1085 const auto *A = cast<AcquiredBeforeAttr>(At);
1086
1087 // Read exprs from the attribute, and add them to BeforeVect.
1088 for (const auto *Arg : A->args()) {
1089 CapabilityExpr Cp =
1090 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1091 if (const ValueDecl *Cpvd = Cp.valueDecl()) {
1092 Info->Vect.push_back(Cpvd);
1093 const auto It = BMap.find(Cpvd);
1094 if (It == BMap.end())
1095 insertAttrExprs(Cpvd, Analyzer);
1096 }
1097 }
1098 break;
1099 }
1100 case attr::AcquiredAfter: {
1101 const auto *A = cast<AcquiredAfterAttr>(At);
1102
1103 // Read exprs from the attribute, and add them to BeforeVect.
1104 for (const auto *Arg : A->args()) {
1105 CapabilityExpr Cp =
1106 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1107 if (const ValueDecl *ArgVd = Cp.valueDecl()) {
1108 // Get entry for mutex listed in attribute
1109 BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
1110 ArgInfo->Vect.push_back(Vd);
1111 }
1112 }
1113 break;
1114 }
1115 default:
1116 break;
1117 }
1118 }
1119
1120 return Info;
1121 }
1122
1123 BeforeSet::BeforeInfo *
getBeforeInfoForDecl(const ValueDecl * Vd,ThreadSafetyAnalyzer & Analyzer)1124 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
1125 ThreadSafetyAnalyzer &Analyzer) {
1126 auto It = BMap.find(Vd);
1127 BeforeInfo *Info = nullptr;
1128 if (It == BMap.end())
1129 Info = insertAttrExprs(Vd, Analyzer);
1130 else
1131 Info = It->second.get();
1132 assert(Info && "BMap contained nullptr?");
1133 return Info;
1134 }
1135
1136 /// Return true if any mutexes in FSet are in the acquired_before set of Vd.
checkBeforeAfter(const ValueDecl * StartVd,const FactSet & FSet,ThreadSafetyAnalyzer & Analyzer,SourceLocation Loc,StringRef CapKind)1137 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
1138 const FactSet& FSet,
1139 ThreadSafetyAnalyzer& Analyzer,
1140 SourceLocation Loc, StringRef CapKind) {
1141 SmallVector<BeforeInfo*, 8> InfoVect;
1142
1143 // Do a depth-first traversal of Vd.
1144 // Return true if there are cycles.
1145 std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
1146 if (!Vd)
1147 return false;
1148
1149 BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
1150
1151 if (Info->Visited == 1)
1152 return true;
1153
1154 if (Info->Visited == 2)
1155 return false;
1156
1157 if (Info->Vect.empty())
1158 return false;
1159
1160 InfoVect.push_back(Info);
1161 Info->Visited = 1;
1162 for (const auto *Vdb : Info->Vect) {
1163 // Exclude mutexes in our immediate before set.
1164 if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
1165 StringRef L1 = StartVd->getName();
1166 StringRef L2 = Vdb->getName();
1167 Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
1168 }
1169 // Transitively search other before sets, and warn on cycles.
1170 if (traverse(Vdb)) {
1171 if (CycMap.find(Vd) == CycMap.end()) {
1172 CycMap.insert(std::make_pair(Vd, true));
1173 StringRef L1 = Vd->getName();
1174 Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
1175 }
1176 }
1177 }
1178 Info->Visited = 2;
1179 return false;
1180 };
1181
1182 traverse(StartVd);
1183
1184 for (auto *Info : InfoVect)
1185 Info->Visited = 0;
1186 }
1187
1188 /// Gets the value decl pointer from DeclRefExprs or MemberExprs.
getValueDecl(const Expr * Exp)1189 static const ValueDecl *getValueDecl(const Expr *Exp) {
1190 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
1191 return getValueDecl(CE->getSubExpr());
1192
1193 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
1194 return DR->getDecl();
1195
1196 if (const auto *ME = dyn_cast<MemberExpr>(Exp))
1197 return ME->getMemberDecl();
1198
1199 return nullptr;
1200 }
1201
1202 namespace {
1203
1204 template <typename Ty>
1205 class has_arg_iterator_range {
1206 using yes = char[1];
1207 using no = char[2];
1208
1209 template <typename Inner>
1210 static yes& test(Inner *I, decltype(I->args()) * = nullptr);
1211
1212 template <typename>
1213 static no& test(...);
1214
1215 public:
1216 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
1217 };
1218
1219 } // namespace
1220
ClassifyDiagnostic(const CapabilityAttr * A)1221 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
1222 return A->getName();
1223 }
1224
ClassifyDiagnostic(QualType VDT)1225 static StringRef ClassifyDiagnostic(QualType VDT) {
1226 // We need to look at the declaration of the type of the value to determine
1227 // which it is. The type should either be a record or a typedef, or a pointer
1228 // or reference thereof.
1229 if (const auto *RT = VDT->getAs<RecordType>()) {
1230 if (const auto *RD = RT->getDecl())
1231 if (const auto *CA = RD->getAttr<CapabilityAttr>())
1232 return ClassifyDiagnostic(CA);
1233 } else if (const auto *TT = VDT->getAs<TypedefType>()) {
1234 if (const auto *TD = TT->getDecl())
1235 if (const auto *CA = TD->getAttr<CapabilityAttr>())
1236 return ClassifyDiagnostic(CA);
1237 } else if (VDT->isPointerType() || VDT->isReferenceType())
1238 return ClassifyDiagnostic(VDT->getPointeeType());
1239
1240 return "mutex";
1241 }
1242
ClassifyDiagnostic(const ValueDecl * VD)1243 static StringRef ClassifyDiagnostic(const ValueDecl *VD) {
1244 assert(VD && "No ValueDecl passed");
1245
1246 // The ValueDecl is the declaration of a mutex or role (hopefully).
1247 return ClassifyDiagnostic(VD->getType());
1248 }
1249
1250 template <typename AttrTy>
1251 static std::enable_if_t<!has_arg_iterator_range<AttrTy>::value, StringRef>
ClassifyDiagnostic(const AttrTy * A)1252 ClassifyDiagnostic(const AttrTy *A) {
1253 if (const ValueDecl *VD = getValueDecl(A->getArg()))
1254 return ClassifyDiagnostic(VD);
1255 return "mutex";
1256 }
1257
1258 template <typename AttrTy>
1259 static std::enable_if_t<has_arg_iterator_range<AttrTy>::value, StringRef>
ClassifyDiagnostic(const AttrTy * A)1260 ClassifyDiagnostic(const AttrTy *A) {
1261 for (const auto *Arg : A->args()) {
1262 if (const ValueDecl *VD = getValueDecl(Arg))
1263 return ClassifyDiagnostic(VD);
1264 }
1265 return "mutex";
1266 }
1267
inCurrentScope(const CapabilityExpr & CapE)1268 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
1269 const threadSafety::til::SExpr *SExp = CapE.sexpr();
1270 assert(SExp && "Null expressions should be ignored");
1271
1272 if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) {
1273 const ValueDecl *VD = LP->clangDecl();
1274 // Variables defined in a function are always inaccessible.
1275 if (!VD->isDefinedOutsideFunctionOrMethod())
1276 return false;
1277 // For now we consider static class members to be inaccessible.
1278 if (isa<CXXRecordDecl>(VD->getDeclContext()))
1279 return false;
1280 // Global variables are always in scope.
1281 return true;
1282 }
1283
1284 // Members are in scope from methods of the same class.
1285 if (const auto *P = dyn_cast<til::Project>(SExp)) {
1286 if (!CurrentMethod)
1287 return false;
1288 const ValueDecl *VD = P->clangDecl();
1289 return VD->getDeclContext() == CurrentMethod->getDeclContext();
1290 }
1291
1292 return false;
1293 }
1294
1295 /// Add a new lock to the lockset, warning if the lock is already there.
1296 /// \param ReqAttr -- true if this is part of an initial Requires attribute.
addLock(FactSet & FSet,std::unique_ptr<FactEntry> Entry,StringRef DiagKind,bool ReqAttr)1297 void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
1298 std::unique_ptr<FactEntry> Entry,
1299 StringRef DiagKind, bool ReqAttr) {
1300 if (Entry->shouldIgnore())
1301 return;
1302
1303 if (!ReqAttr && !Entry->negative()) {
1304 // look for the negative capability, and remove it from the fact set.
1305 CapabilityExpr NegC = !*Entry;
1306 const FactEntry *Nen = FSet.findLock(FactMan, NegC);
1307 if (Nen) {
1308 FSet.removeLock(FactMan, NegC);
1309 }
1310 else {
1311 if (inCurrentScope(*Entry) && !Entry->asserted())
1312 Handler.handleNegativeNotHeld(DiagKind, Entry->toString(),
1313 NegC.toString(), Entry->loc());
1314 }
1315 }
1316
1317 // Check before/after constraints
1318 if (Handler.issueBetaWarnings() &&
1319 !Entry->asserted() && !Entry->declared()) {
1320 GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
1321 Entry->loc(), DiagKind);
1322 }
1323
1324 // FIXME: Don't always warn when we have support for reentrant locks.
1325 if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) {
1326 if (!Entry->asserted())
1327 Cp->handleLock(FSet, FactMan, *Entry, Handler, DiagKind);
1328 } else {
1329 FSet.addLock(FactMan, std::move(Entry));
1330 }
1331 }
1332
1333 /// Remove a lock from the lockset, warning if the lock is not there.
1334 /// \param UnlockLoc The source location of the unlock (only used in error msg)
removeLock(FactSet & FSet,const CapabilityExpr & Cp,SourceLocation UnlockLoc,bool FullyRemove,LockKind ReceivedKind,StringRef DiagKind)1335 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
1336 SourceLocation UnlockLoc,
1337 bool FullyRemove, LockKind ReceivedKind,
1338 StringRef DiagKind) {
1339 if (Cp.shouldIgnore())
1340 return;
1341
1342 const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1343 if (!LDat) {
1344 SourceLocation PrevLoc;
1345 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1346 PrevLoc = Neg->loc();
1347 Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc, PrevLoc);
1348 return;
1349 }
1350
1351 // Generic lock removal doesn't care about lock kind mismatches, but
1352 // otherwise diagnose when the lock kinds are mismatched.
1353 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
1354 Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), LDat->kind(),
1355 ReceivedKind, LDat->loc(), UnlockLoc);
1356 }
1357
1358 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler,
1359 DiagKind);
1360 }
1361
1362 /// Extract the list of mutexIDs from the attribute on an expression,
1363 /// and push them onto Mtxs, discarding any duplicates.
1364 template <typename AttrType>
getMutexIDs(CapExprSet & Mtxs,AttrType * Attr,const Expr * Exp,const NamedDecl * D,VarDecl * SelfDecl)1365 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1366 const Expr *Exp, const NamedDecl *D,
1367 VarDecl *SelfDecl) {
1368 if (Attr->args_size() == 0) {
1369 // The mutex held is the "this" object.
1370 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl);
1371 if (Cp.isInvalid()) {
1372 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
1373 return;
1374 }
1375 //else
1376 if (!Cp.shouldIgnore())
1377 Mtxs.push_back_nodup(Cp);
1378 return;
1379 }
1380
1381 for (const auto *Arg : Attr->args()) {
1382 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl);
1383 if (Cp.isInvalid()) {
1384 warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
1385 continue;
1386 }
1387 //else
1388 if (!Cp.shouldIgnore())
1389 Mtxs.push_back_nodup(Cp);
1390 }
1391 }
1392
1393 /// Extract the list of mutexIDs from a trylock attribute. If the
1394 /// trylock applies to the given edge, then push them onto Mtxs, discarding
1395 /// any duplicates.
1396 template <class AttrType>
getMutexIDs(CapExprSet & Mtxs,AttrType * Attr,const Expr * Exp,const NamedDecl * D,const CFGBlock * PredBlock,const CFGBlock * CurrBlock,Expr * BrE,bool Neg)1397 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1398 const Expr *Exp, const NamedDecl *D,
1399 const CFGBlock *PredBlock,
1400 const CFGBlock *CurrBlock,
1401 Expr *BrE, bool Neg) {
1402 // Find out which branch has the lock
1403 bool branch = false;
1404 if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
1405 branch = BLE->getValue();
1406 else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
1407 branch = ILE->getValue().getBoolValue();
1408
1409 int branchnum = branch ? 0 : 1;
1410 if (Neg)
1411 branchnum = !branchnum;
1412
1413 // If we've taken the trylock branch, then add the lock
1414 int i = 0;
1415 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1416 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1417 if (*SI == CurrBlock && i == branchnum)
1418 getMutexIDs(Mtxs, Attr, Exp, D);
1419 }
1420 }
1421
getStaticBooleanValue(Expr * E,bool & TCond)1422 static bool getStaticBooleanValue(Expr *E, bool &TCond) {
1423 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1424 TCond = false;
1425 return true;
1426 } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1427 TCond = BLE->getValue();
1428 return true;
1429 } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) {
1430 TCond = ILE->getValue().getBoolValue();
1431 return true;
1432 } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E))
1433 return getStaticBooleanValue(CE->getSubExpr(), TCond);
1434 return false;
1435 }
1436
1437 // If Cond can be traced back to a function call, return the call expression.
1438 // The negate variable should be called with false, and will be set to true
1439 // if the function call is negated, e.g. if (!mu.tryLock(...))
getTrylockCallExpr(const Stmt * Cond,LocalVarContext C,bool & Negate)1440 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1441 LocalVarContext C,
1442 bool &Negate) {
1443 if (!Cond)
1444 return nullptr;
1445
1446 if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) {
1447 if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect)
1448 return getTrylockCallExpr(CallExp->getArg(0), C, Negate);
1449 return CallExp;
1450 }
1451 else if (const auto *PE = dyn_cast<ParenExpr>(Cond))
1452 return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1453 else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond))
1454 return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1455 else if (const auto *FE = dyn_cast<FullExpr>(Cond))
1456 return getTrylockCallExpr(FE->getSubExpr(), C, Negate);
1457 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1458 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1459 return getTrylockCallExpr(E, C, Negate);
1460 }
1461 else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) {
1462 if (UOP->getOpcode() == UO_LNot) {
1463 Negate = !Negate;
1464 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1465 }
1466 return nullptr;
1467 }
1468 else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) {
1469 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1470 if (BOP->getOpcode() == BO_NE)
1471 Negate = !Negate;
1472
1473 bool TCond = false;
1474 if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1475 if (!TCond) Negate = !Negate;
1476 return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1477 }
1478 TCond = false;
1479 if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1480 if (!TCond) Negate = !Negate;
1481 return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1482 }
1483 return nullptr;
1484 }
1485 if (BOP->getOpcode() == BO_LAnd) {
1486 // LHS must have been evaluated in a different block.
1487 return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1488 }
1489 if (BOP->getOpcode() == BO_LOr)
1490 return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1491 return nullptr;
1492 } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) {
1493 bool TCond, FCond;
1494 if (getStaticBooleanValue(COP->getTrueExpr(), TCond) &&
1495 getStaticBooleanValue(COP->getFalseExpr(), FCond)) {
1496 if (TCond && !FCond)
1497 return getTrylockCallExpr(COP->getCond(), C, Negate);
1498 if (!TCond && FCond) {
1499 Negate = !Negate;
1500 return getTrylockCallExpr(COP->getCond(), C, Negate);
1501 }
1502 }
1503 }
1504 return nullptr;
1505 }
1506
1507 /// Find the lockset that holds on the edge between PredBlock
1508 /// and CurrBlock. The edge set is the exit set of PredBlock (passed
1509 /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
getEdgeLockset(FactSet & Result,const FactSet & ExitSet,const CFGBlock * PredBlock,const CFGBlock * CurrBlock)1510 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1511 const FactSet &ExitSet,
1512 const CFGBlock *PredBlock,
1513 const CFGBlock *CurrBlock) {
1514 Result = ExitSet;
1515
1516 const Stmt *Cond = PredBlock->getTerminatorCondition();
1517 // We don't acquire try-locks on ?: branches, only when its result is used.
1518 if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt()))
1519 return;
1520
1521 bool Negate = false;
1522 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1523 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1524 StringRef CapDiagKind = "mutex";
1525
1526 const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
1527 if (!Exp)
1528 return;
1529
1530 auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1531 if(!FunDecl || !FunDecl->hasAttrs())
1532 return;
1533
1534 CapExprSet ExclusiveLocksToAdd;
1535 CapExprSet SharedLocksToAdd;
1536
1537 // If the condition is a call to a Trylock function, then grab the attributes
1538 for (const auto *Attr : FunDecl->attrs()) {
1539 switch (Attr->getKind()) {
1540 case attr::TryAcquireCapability: {
1541 auto *A = cast<TryAcquireCapabilityAttr>(Attr);
1542 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
1543 Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(),
1544 Negate);
1545 CapDiagKind = ClassifyDiagnostic(A);
1546 break;
1547 };
1548 case attr::ExclusiveTrylockFunction: {
1549 const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr);
1550 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1551 PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1552 CapDiagKind = ClassifyDiagnostic(A);
1553 break;
1554 }
1555 case attr::SharedTrylockFunction: {
1556 const auto *A = cast<SharedTrylockFunctionAttr>(Attr);
1557 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
1558 PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1559 CapDiagKind = ClassifyDiagnostic(A);
1560 break;
1561 }
1562 default:
1563 break;
1564 }
1565 }
1566
1567 // Add and remove locks.
1568 SourceLocation Loc = Exp->getExprLoc();
1569 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
1570 addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
1571 LK_Exclusive, Loc),
1572 CapDiagKind);
1573 for (const auto &SharedLockToAdd : SharedLocksToAdd)
1574 addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd,
1575 LK_Shared, Loc),
1576 CapDiagKind);
1577 }
1578
1579 namespace {
1580
1581 /// We use this class to visit different types of expressions in
1582 /// CFGBlocks, and build up the lockset.
1583 /// An expression may cause us to add or remove locks from the lockset, or else
1584 /// output error messages related to missing locks.
1585 /// FIXME: In future, we may be able to not inherit from a visitor.
1586 class BuildLockset : public ConstStmtVisitor<BuildLockset> {
1587 friend class ThreadSafetyAnalyzer;
1588
1589 ThreadSafetyAnalyzer *Analyzer;
1590 FactSet FSet;
1591 LocalVariableMap::Context LVarCtx;
1592 unsigned CtxIndex;
1593
1594 // helper functions
1595 void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
1596 Expr *MutexExp, ProtectedOperationKind POK,
1597 StringRef DiagKind, SourceLocation Loc);
1598 void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
1599 StringRef DiagKind);
1600
1601 void checkAccess(const Expr *Exp, AccessKind AK,
1602 ProtectedOperationKind POK = POK_VarAccess);
1603 void checkPtAccess(const Expr *Exp, AccessKind AK,
1604 ProtectedOperationKind POK = POK_VarAccess);
1605
1606 void handleCall(const Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr);
1607 void examineArguments(const FunctionDecl *FD,
1608 CallExpr::const_arg_iterator ArgBegin,
1609 CallExpr::const_arg_iterator ArgEnd,
1610 bool SkipFirstParam = false);
1611
1612 public:
BuildLockset(ThreadSafetyAnalyzer * Anlzr,CFGBlockInfo & Info)1613 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1614 : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet),
1615 LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {}
1616
1617 void VisitUnaryOperator(const UnaryOperator *UO);
1618 void VisitBinaryOperator(const BinaryOperator *BO);
1619 void VisitCastExpr(const CastExpr *CE);
1620 void VisitCallExpr(const CallExpr *Exp);
1621 void VisitCXXConstructExpr(const CXXConstructExpr *Exp);
1622 void VisitDeclStmt(const DeclStmt *S);
1623 };
1624
1625 } // namespace
1626
1627 /// Warn if the LSet does not contain a lock sufficient to protect access
1628 /// of at least the passed in AccessKind.
warnIfMutexNotHeld(const NamedDecl * D,const Expr * Exp,AccessKind AK,Expr * MutexExp,ProtectedOperationKind POK,StringRef DiagKind,SourceLocation Loc)1629 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
1630 AccessKind AK, Expr *MutexExp,
1631 ProtectedOperationKind POK,
1632 StringRef DiagKind, SourceLocation Loc) {
1633 LockKind LK = getLockKindFromAccessKind(AK);
1634
1635 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
1636 if (Cp.isInvalid()) {
1637 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
1638 return;
1639 } else if (Cp.shouldIgnore()) {
1640 return;
1641 }
1642
1643 if (Cp.negative()) {
1644 // Negative capabilities act like locks excluded
1645 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
1646 if (LDat) {
1647 Analyzer->Handler.handleFunExcludesLock(
1648 DiagKind, D->getNameAsString(), (!Cp).toString(), Loc);
1649 return;
1650 }
1651
1652 // If this does not refer to a negative capability in the same class,
1653 // then stop here.
1654 if (!Analyzer->inCurrentScope(Cp))
1655 return;
1656
1657 // Otherwise the negative requirement must be propagated to the caller.
1658 LDat = FSet.findLock(Analyzer->FactMan, Cp);
1659 if (!LDat) {
1660 Analyzer->Handler.handleNegativeNotHeld(D, Cp.toString(), Loc);
1661 }
1662 return;
1663 }
1664
1665 const FactEntry *LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
1666 bool NoError = true;
1667 if (!LDat) {
1668 // No exact match found. Look for a partial match.
1669 LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
1670 if (LDat) {
1671 // Warn that there's no precise match.
1672 std::string PartMatchStr = LDat->toString();
1673 StringRef PartMatchName(PartMatchStr);
1674 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1675 LK, Loc, &PartMatchName);
1676 } else {
1677 // Warn that there's no match at all.
1678 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1679 LK, Loc);
1680 }
1681 NoError = false;
1682 }
1683 // Make sure the mutex we found is the right kind.
1684 if (NoError && LDat && !LDat->isAtLeast(LK)) {
1685 Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1686 LK, Loc);
1687 }
1688 }
1689
1690 /// Warn if the LSet contains the given lock.
warnIfMutexHeld(const NamedDecl * D,const Expr * Exp,Expr * MutexExp,StringRef DiagKind)1691 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
1692 Expr *MutexExp, StringRef DiagKind) {
1693 CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
1694 if (Cp.isInvalid()) {
1695 warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
1696 return;
1697 } else if (Cp.shouldIgnore()) {
1698 return;
1699 }
1700
1701 const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp);
1702 if (LDat) {
1703 Analyzer->Handler.handleFunExcludesLock(
1704 DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc());
1705 }
1706 }
1707
1708 /// Checks guarded_by and pt_guarded_by attributes.
1709 /// Whenever we identify an access (read or write) to a DeclRefExpr that is
1710 /// marked with guarded_by, we must ensure the appropriate mutexes are held.
1711 /// Similarly, we check if the access is to an expression that dereferences
1712 /// a pointer marked with pt_guarded_by.
checkAccess(const Expr * Exp,AccessKind AK,ProtectedOperationKind POK)1713 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK,
1714 ProtectedOperationKind POK) {
1715 Exp = Exp->IgnoreImplicit()->IgnoreParenCasts();
1716
1717 SourceLocation Loc = Exp->getExprLoc();
1718
1719 // Local variables of reference type cannot be re-assigned;
1720 // map them to their initializer.
1721 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
1722 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
1723 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
1724 if (const auto *E = VD->getInit()) {
1725 // Guard against self-initialization. e.g., int &i = i;
1726 if (E == Exp)
1727 break;
1728 Exp = E;
1729 continue;
1730 }
1731 }
1732 break;
1733 }
1734
1735 if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) {
1736 // For dereferences
1737 if (UO->getOpcode() == UO_Deref)
1738 checkPtAccess(UO->getSubExpr(), AK, POK);
1739 return;
1740 }
1741
1742 if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
1743 checkPtAccess(AE->getLHS(), AK, POK);
1744 return;
1745 }
1746
1747 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) {
1748 if (ME->isArrow())
1749 checkPtAccess(ME->getBase(), AK, POK);
1750 else
1751 checkAccess(ME->getBase(), AK, POK);
1752 }
1753
1754 const ValueDecl *D = getValueDecl(Exp);
1755 if (!D || !D->hasAttrs())
1756 return;
1757
1758 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
1759 Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc);
1760 }
1761
1762 for (const auto *I : D->specific_attrs<GuardedByAttr>())
1763 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK,
1764 ClassifyDiagnostic(I), Loc);
1765 }
1766
1767 /// Checks pt_guarded_by and pt_guarded_var attributes.
1768 /// POK is the same operationKind that was passed to checkAccess.
checkPtAccess(const Expr * Exp,AccessKind AK,ProtectedOperationKind POK)1769 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK,
1770 ProtectedOperationKind POK) {
1771 while (true) {
1772 if (const auto *PE = dyn_cast<ParenExpr>(Exp)) {
1773 Exp = PE->getSubExpr();
1774 continue;
1775 }
1776 if (const auto *CE = dyn_cast<CastExpr>(Exp)) {
1777 if (CE->getCastKind() == CK_ArrayToPointerDecay) {
1778 // If it's an actual array, and not a pointer, then it's elements
1779 // are protected by GUARDED_BY, not PT_GUARDED_BY;
1780 checkAccess(CE->getSubExpr(), AK, POK);
1781 return;
1782 }
1783 Exp = CE->getSubExpr();
1784 continue;
1785 }
1786 break;
1787 }
1788
1789 // Pass by reference warnings are under a different flag.
1790 ProtectedOperationKind PtPOK = POK_VarDereference;
1791 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
1792
1793 const ValueDecl *D = getValueDecl(Exp);
1794 if (!D || !D->hasAttrs())
1795 return;
1796
1797 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
1798 Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK,
1799 Exp->getExprLoc());
1800
1801 for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
1802 warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK,
1803 ClassifyDiagnostic(I), Exp->getExprLoc());
1804 }
1805
1806 /// Process a function call, method call, constructor call,
1807 /// or destructor call. This involves looking at the attributes on the
1808 /// corresponding function/method/constructor/destructor, issuing warnings,
1809 /// and updating the locksets accordingly.
1810 ///
1811 /// FIXME: For classes annotated with one of the guarded annotations, we need
1812 /// to treat const method calls as reads and non-const method calls as writes,
1813 /// and check that the appropriate locks are held. Non-const method calls with
1814 /// the same signature as const method calls can be also treated as reads.
1815 ///
handleCall(const Expr * Exp,const NamedDecl * D,VarDecl * VD)1816 void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D,
1817 VarDecl *VD) {
1818 SourceLocation Loc = Exp->getExprLoc();
1819 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
1820 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
1821 CapExprSet ScopedReqsAndExcludes;
1822 StringRef CapDiagKind = "mutex";
1823
1824 // Figure out if we're constructing an object of scoped lockable class
1825 bool isScopedVar = false;
1826 if (VD) {
1827 if (const auto *CD = dyn_cast<const CXXConstructorDecl>(D)) {
1828 const CXXRecordDecl* PD = CD->getParent();
1829 if (PD && PD->hasAttr<ScopedLockableAttr>())
1830 isScopedVar = true;
1831 }
1832 }
1833
1834 for(const Attr *At : D->attrs()) {
1835 switch (At->getKind()) {
1836 // When we encounter a lock function, we need to add the lock to our
1837 // lockset.
1838 case attr::AcquireCapability: {
1839 const auto *A = cast<AcquireCapabilityAttr>(At);
1840 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
1841 : ExclusiveLocksToAdd,
1842 A, Exp, D, VD);
1843
1844 CapDiagKind = ClassifyDiagnostic(A);
1845 break;
1846 }
1847
1848 // An assert will add a lock to the lockset, but will not generate
1849 // a warning if it is already there, and will not generate a warning
1850 // if it is not removed.
1851 case attr::AssertExclusiveLock: {
1852 const auto *A = cast<AssertExclusiveLockAttr>(At);
1853
1854 CapExprSet AssertLocks;
1855 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1856 for (const auto &AssertLock : AssertLocks)
1857 Analyzer->addLock(FSet,
1858 std::make_unique<LockableFactEntry>(
1859 AssertLock, LK_Exclusive, Loc, false, true),
1860 ClassifyDiagnostic(A));
1861 break;
1862 }
1863 case attr::AssertSharedLock: {
1864 const auto *A = cast<AssertSharedLockAttr>(At);
1865
1866 CapExprSet AssertLocks;
1867 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1868 for (const auto &AssertLock : AssertLocks)
1869 Analyzer->addLock(FSet,
1870 std::make_unique<LockableFactEntry>(
1871 AssertLock, LK_Shared, Loc, false, true),
1872 ClassifyDiagnostic(A));
1873 break;
1874 }
1875
1876 case attr::AssertCapability: {
1877 const auto *A = cast<AssertCapabilityAttr>(At);
1878 CapExprSet AssertLocks;
1879 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1880 for (const auto &AssertLock : AssertLocks)
1881 Analyzer->addLock(FSet,
1882 std::make_unique<LockableFactEntry>(
1883 AssertLock,
1884 A->isShared() ? LK_Shared : LK_Exclusive, Loc,
1885 false, true),
1886 ClassifyDiagnostic(A));
1887 break;
1888 }
1889
1890 // When we encounter an unlock function, we need to remove unlocked
1891 // mutexes from the lockset, and flag a warning if they are not there.
1892 case attr::ReleaseCapability: {
1893 const auto *A = cast<ReleaseCapabilityAttr>(At);
1894 if (A->isGeneric())
1895 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD);
1896 else if (A->isShared())
1897 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD);
1898 else
1899 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD);
1900
1901 CapDiagKind = ClassifyDiagnostic(A);
1902 break;
1903 }
1904
1905 case attr::RequiresCapability: {
1906 const auto *A = cast<RequiresCapabilityAttr>(At);
1907 for (auto *Arg : A->args()) {
1908 warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
1909 POK_FunctionCall, ClassifyDiagnostic(A),
1910 Exp->getExprLoc());
1911 // use for adopting a lock
1912 if (isScopedVar)
1913 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, VD);
1914 }
1915 break;
1916 }
1917
1918 case attr::LocksExcluded: {
1919 const auto *A = cast<LocksExcludedAttr>(At);
1920 for (auto *Arg : A->args()) {
1921 warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A));
1922 // use for deferring a lock
1923 if (isScopedVar)
1924 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, VD);
1925 }
1926 break;
1927 }
1928
1929 // Ignore attributes unrelated to thread-safety
1930 default:
1931 break;
1932 }
1933 }
1934
1935 // Remove locks first to allow lock upgrading/downgrading.
1936 // FIXME -- should only fully remove if the attribute refers to 'this'.
1937 bool Dtor = isa<CXXDestructorDecl>(D);
1938 for (const auto &M : ExclusiveLocksToRemove)
1939 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind);
1940 for (const auto &M : SharedLocksToRemove)
1941 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind);
1942 for (const auto &M : GenericLocksToRemove)
1943 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind);
1944
1945 // Add locks.
1946 for (const auto &M : ExclusiveLocksToAdd)
1947 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(
1948 M, LK_Exclusive, Loc, isScopedVar),
1949 CapDiagKind);
1950 for (const auto &M : SharedLocksToAdd)
1951 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(
1952 M, LK_Shared, Loc, isScopedVar),
1953 CapDiagKind);
1954
1955 if (isScopedVar) {
1956 // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1957 SourceLocation MLoc = VD->getLocation();
1958 DeclRefExpr DRE(VD->getASTContext(), VD, false, VD->getType(), VK_LValue,
1959 VD->getLocation());
1960 // FIXME: does this store a pointer to DRE?
1961 CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr);
1962
1963 auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, MLoc);
1964 for (const auto &M : ExclusiveLocksToAdd)
1965 ScopedEntry->addLock(M);
1966 for (const auto &M : SharedLocksToAdd)
1967 ScopedEntry->addLock(M);
1968 for (const auto &M : ScopedReqsAndExcludes)
1969 ScopedEntry->addLock(M);
1970 for (const auto &M : ExclusiveLocksToRemove)
1971 ScopedEntry->addExclusiveUnlock(M);
1972 for (const auto &M : SharedLocksToRemove)
1973 ScopedEntry->addSharedUnlock(M);
1974 Analyzer->addLock(FSet, std::move(ScopedEntry), CapDiagKind);
1975 }
1976 }
1977
1978 /// For unary operations which read and write a variable, we need to
1979 /// check whether we hold any required mutexes. Reads are checked in
1980 /// VisitCastExpr.
VisitUnaryOperator(const UnaryOperator * UO)1981 void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) {
1982 switch (UO->getOpcode()) {
1983 case UO_PostDec:
1984 case UO_PostInc:
1985 case UO_PreDec:
1986 case UO_PreInc:
1987 checkAccess(UO->getSubExpr(), AK_Written);
1988 break;
1989 default:
1990 break;
1991 }
1992 }
1993
1994 /// For binary operations which assign to a variable (writes), we need to check
1995 /// whether we hold any required mutexes.
1996 /// FIXME: Deal with non-primitive types.
VisitBinaryOperator(const BinaryOperator * BO)1997 void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) {
1998 if (!BO->isAssignmentOp())
1999 return;
2000
2001 // adjust the context
2002 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
2003
2004 checkAccess(BO->getLHS(), AK_Written);
2005 }
2006
2007 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
2008 /// need to ensure we hold any required mutexes.
2009 /// FIXME: Deal with non-primitive types.
VisitCastExpr(const CastExpr * CE)2010 void BuildLockset::VisitCastExpr(const CastExpr *CE) {
2011 if (CE->getCastKind() != CK_LValueToRValue)
2012 return;
2013 checkAccess(CE->getSubExpr(), AK_Read);
2014 }
2015
examineArguments(const FunctionDecl * FD,CallExpr::const_arg_iterator ArgBegin,CallExpr::const_arg_iterator ArgEnd,bool SkipFirstParam)2016 void BuildLockset::examineArguments(const FunctionDecl *FD,
2017 CallExpr::const_arg_iterator ArgBegin,
2018 CallExpr::const_arg_iterator ArgEnd,
2019 bool SkipFirstParam) {
2020 // Currently we can't do anything if we don't know the function declaration.
2021 if (!FD)
2022 return;
2023
2024 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it
2025 // only turns off checking within the body of a function, but we also
2026 // use it to turn off checking in arguments to the function. This
2027 // could result in some false negatives, but the alternative is to
2028 // create yet another attribute.
2029 if (FD->hasAttr<NoThreadSafetyAnalysisAttr>())
2030 return;
2031
2032 const ArrayRef<ParmVarDecl *> Params = FD->parameters();
2033 auto Param = Params.begin();
2034 if (SkipFirstParam)
2035 ++Param;
2036
2037 // There can be default arguments, so we stop when one iterator is at end().
2038 for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd;
2039 ++Param, ++Arg) {
2040 QualType Qt = (*Param)->getType();
2041 if (Qt->isReferenceType())
2042 checkAccess(*Arg, AK_Read, POK_PassByRef);
2043 }
2044 }
2045
VisitCallExpr(const CallExpr * Exp)2046 void BuildLockset::VisitCallExpr(const CallExpr *Exp) {
2047 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
2048 const auto *ME = dyn_cast<MemberExpr>(CE->getCallee());
2049 // ME can be null when calling a method pointer
2050 const CXXMethodDecl *MD = CE->getMethodDecl();
2051
2052 if (ME && MD) {
2053 if (ME->isArrow()) {
2054 if (MD->isConst())
2055 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2056 else // FIXME -- should be AK_Written
2057 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2058 } else {
2059 if (MD->isConst())
2060 checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2061 else // FIXME -- should be AK_Written
2062 checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2063 }
2064 }
2065
2066 examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end());
2067 } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
2068 auto OEop = OE->getOperator();
2069 switch (OEop) {
2070 case OO_Equal: {
2071 const Expr *Target = OE->getArg(0);
2072 const Expr *Source = OE->getArg(1);
2073 checkAccess(Target, AK_Written);
2074 checkAccess(Source, AK_Read);
2075 break;
2076 }
2077 case OO_Star:
2078 case OO_Arrow:
2079 case OO_Subscript:
2080 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
2081 // Grrr. operator* can be multiplication...
2082 checkPtAccess(OE->getArg(0), AK_Read);
2083 }
2084 LLVM_FALLTHROUGH;
2085 default: {
2086 // TODO: get rid of this, and rely on pass-by-ref instead.
2087 const Expr *Obj = OE->getArg(0);
2088 checkAccess(Obj, AK_Read);
2089 // Check the remaining arguments. For method operators, the first
2090 // argument is the implicit self argument, and doesn't appear in the
2091 // FunctionDecl, but for non-methods it does.
2092 const FunctionDecl *FD = OE->getDirectCallee();
2093 examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(),
2094 /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD));
2095 break;
2096 }
2097 }
2098 } else {
2099 examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end());
2100 }
2101
2102 auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2103 if(!D || !D->hasAttrs())
2104 return;
2105 handleCall(Exp, D);
2106 }
2107
VisitCXXConstructExpr(const CXXConstructExpr * Exp)2108 void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) {
2109 const CXXConstructorDecl *D = Exp->getConstructor();
2110 if (D && D->isCopyConstructor()) {
2111 const Expr* Source = Exp->getArg(0);
2112 checkAccess(Source, AK_Read);
2113 } else {
2114 examineArguments(D, Exp->arg_begin(), Exp->arg_end());
2115 }
2116 }
2117
2118 static CXXConstructorDecl *
findConstructorForByValueReturn(const CXXRecordDecl * RD)2119 findConstructorForByValueReturn(const CXXRecordDecl *RD) {
2120 // Prefer a move constructor over a copy constructor. If there's more than
2121 // one copy constructor or more than one move constructor, we arbitrarily
2122 // pick the first declared such constructor rather than trying to guess which
2123 // one is more appropriate.
2124 CXXConstructorDecl *CopyCtor = nullptr;
2125 for (auto *Ctor : RD->ctors()) {
2126 if (Ctor->isDeleted())
2127 continue;
2128 if (Ctor->isMoveConstructor())
2129 return Ctor;
2130 if (!CopyCtor && Ctor->isCopyConstructor())
2131 CopyCtor = Ctor;
2132 }
2133 return CopyCtor;
2134 }
2135
buildFakeCtorCall(CXXConstructorDecl * CD,ArrayRef<Expr * > Args,SourceLocation Loc)2136 static Expr *buildFakeCtorCall(CXXConstructorDecl *CD, ArrayRef<Expr *> Args,
2137 SourceLocation Loc) {
2138 ASTContext &Ctx = CD->getASTContext();
2139 return CXXConstructExpr::Create(Ctx, Ctx.getRecordType(CD->getParent()), Loc,
2140 CD, true, Args, false, false, false, false,
2141 CXXConstructExpr::CK_Complete,
2142 SourceRange(Loc, Loc));
2143 }
2144
VisitDeclStmt(const DeclStmt * S)2145 void BuildLockset::VisitDeclStmt(const DeclStmt *S) {
2146 // adjust the context
2147 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2148
2149 for (auto *D : S->getDeclGroup()) {
2150 if (auto *VD = dyn_cast_or_null<VarDecl>(D)) {
2151 Expr *E = VD->getInit();
2152 if (!E)
2153 continue;
2154 E = E->IgnoreParens();
2155
2156 // handle constructors that involve temporaries
2157 if (auto *EWC = dyn_cast<ExprWithCleanups>(E))
2158 E = EWC->getSubExpr()->IgnoreParens();
2159 if (auto *CE = dyn_cast<CastExpr>(E))
2160 if (CE->getCastKind() == CK_NoOp ||
2161 CE->getCastKind() == CK_ConstructorConversion ||
2162 CE->getCastKind() == CK_UserDefinedConversion)
2163 E = CE->getSubExpr()->IgnoreParens();
2164 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2165 E = BTE->getSubExpr()->IgnoreParens();
2166
2167 if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
2168 const auto *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
2169 if (!CtorD || !CtorD->hasAttrs())
2170 continue;
2171 handleCall(E, CtorD, VD);
2172 } else if (isa<CallExpr>(E) && E->isRValue()) {
2173 // If the object is initialized by a function call that returns a
2174 // scoped lockable by value, use the attributes on the copy or move
2175 // constructor to figure out what effect that should have on the
2176 // lockset.
2177 // FIXME: Is this really the best way to handle this situation?
2178 auto *RD = E->getType()->getAsCXXRecordDecl();
2179 if (!RD || !RD->hasAttr<ScopedLockableAttr>())
2180 continue;
2181 CXXConstructorDecl *CtorD = findConstructorForByValueReturn(RD);
2182 if (!CtorD || !CtorD->hasAttrs())
2183 continue;
2184 handleCall(buildFakeCtorCall(CtorD, {E}, E->getBeginLoc()), CtorD, VD);
2185 }
2186 }
2187 }
2188 }
2189
2190 /// Compute the intersection of two locksets and issue warnings for any
2191 /// locks in the symmetric difference.
2192 ///
2193 /// This function is used at a merge point in the CFG when comparing the lockset
2194 /// of each branch being merged. For example, given the following sequence:
2195 /// A; if () then B; else C; D; we need to check that the lockset after B and C
2196 /// are the same. In the event of a difference, we use the intersection of these
2197 /// two locksets at the start of D.
2198 ///
2199 /// \param FSet1 The first lockset.
2200 /// \param FSet2 The second lockset.
2201 /// \param JoinLoc The location of the join point for error reporting
2202 /// \param LEK1 The error message to report if a mutex is missing from LSet1
2203 /// \param LEK2 The error message to report if a mutex is missing from Lset2
intersectAndWarn(FactSet & FSet1,const FactSet & FSet2,SourceLocation JoinLoc,LockErrorKind LEK1,LockErrorKind LEK2,bool Modify)2204 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
2205 const FactSet &FSet2,
2206 SourceLocation JoinLoc,
2207 LockErrorKind LEK1,
2208 LockErrorKind LEK2,
2209 bool Modify) {
2210 FactSet FSet1Orig = FSet1;
2211
2212 // Find locks in FSet2 that conflict or are not in FSet1, and warn.
2213 for (const auto &Fact : FSet2) {
2214 const FactEntry *LDat1 = nullptr;
2215 const FactEntry *LDat2 = &FactMan[Fact];
2216 FactSet::iterator Iter1 = FSet1.findLockIter(FactMan, *LDat2);
2217 if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1];
2218
2219 if (LDat1) {
2220 if (LDat1->kind() != LDat2->kind()) {
2221 Handler.handleExclusiveAndShared("mutex", LDat2->toString(),
2222 LDat2->loc(), LDat1->loc());
2223 if (Modify && LDat1->kind() != LK_Exclusive) {
2224 // Take the exclusive lock, which is the one in FSet2.
2225 *Iter1 = Fact;
2226 }
2227 }
2228 else if (Modify && LDat1->asserted() && !LDat2->asserted()) {
2229 // The non-asserted lock in FSet2 is the one we want to track.
2230 *Iter1 = Fact;
2231 }
2232 } else {
2233 LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1,
2234 Handler);
2235 }
2236 }
2237
2238 // Find locks in FSet1 that are not in FSet2, and remove them.
2239 for (const auto &Fact : FSet1Orig) {
2240 const FactEntry *LDat1 = &FactMan[Fact];
2241 const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1);
2242
2243 if (!LDat2) {
2244 LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2,
2245 Handler);
2246 if (Modify)
2247 FSet1.removeLock(FactMan, *LDat1);
2248 }
2249 }
2250 }
2251
2252 // Return true if block B never continues to its successors.
neverReturns(const CFGBlock * B)2253 static bool neverReturns(const CFGBlock *B) {
2254 if (B->hasNoReturnElement())
2255 return true;
2256 if (B->empty())
2257 return false;
2258
2259 CFGElement Last = B->back();
2260 if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2261 if (isa<CXXThrowExpr>(S->getStmt()))
2262 return true;
2263 }
2264 return false;
2265 }
2266
2267 /// Check a function's CFG for thread-safety violations.
2268 ///
2269 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2270 /// at the end of each block, and issue warnings for thread safety violations.
2271 /// Each block in the CFG is traversed exactly once.
runAnalysis(AnalysisDeclContext & AC)2272 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2273 // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
2274 // For now, we just use the walker to set things up.
2275 threadSafety::CFGWalker walker;
2276 if (!walker.init(AC))
2277 return;
2278
2279 // AC.dumpCFG(true);
2280 // threadSafety::printSCFG(walker);
2281
2282 CFG *CFGraph = walker.getGraph();
2283 const NamedDecl *D = walker.getDecl();
2284 const auto *CurrentFunction = dyn_cast<FunctionDecl>(D);
2285 CurrentMethod = dyn_cast<CXXMethodDecl>(D);
2286
2287 if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
2288 return;
2289
2290 // FIXME: Do something a bit more intelligent inside constructor and
2291 // destructor code. Constructors and destructors must assume unique access
2292 // to 'this', so checks on member variable access is disabled, but we should
2293 // still enable checks on other objects.
2294 if (isa<CXXConstructorDecl>(D))
2295 return; // Don't check inside constructors.
2296 if (isa<CXXDestructorDecl>(D))
2297 return; // Don't check inside destructors.
2298
2299 Handler.enterFunction(CurrentFunction);
2300
2301 BlockInfo.resize(CFGraph->getNumBlockIDs(),
2302 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2303
2304 // We need to explore the CFG via a "topological" ordering.
2305 // That way, we will be guaranteed to have information about required
2306 // predecessor locksets when exploring a new block.
2307 const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
2308 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2309
2310 // Mark entry block as reachable
2311 BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
2312
2313 // Compute SSA names for local variables
2314 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2315
2316 // Fill in source locations for all CFGBlocks.
2317 findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2318
2319 CapExprSet ExclusiveLocksAcquired;
2320 CapExprSet SharedLocksAcquired;
2321 CapExprSet LocksReleased;
2322
2323 // Add locks from exclusive_locks_required and shared_locks_required
2324 // to initial lockset. Also turn off checking for lock and unlock functions.
2325 // FIXME: is there a more intelligent way to check lock/unlock functions?
2326 if (!SortedGraph->empty() && D->hasAttrs()) {
2327 const CFGBlock *FirstBlock = *SortedGraph->begin();
2328 FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
2329
2330 CapExprSet ExclusiveLocksToAdd;
2331 CapExprSet SharedLocksToAdd;
2332 StringRef CapDiagKind = "mutex";
2333
2334 SourceLocation Loc = D->getLocation();
2335 for (const auto *Attr : D->attrs()) {
2336 Loc = Attr->getLocation();
2337 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
2338 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2339 nullptr, D);
2340 CapDiagKind = ClassifyDiagnostic(A);
2341 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
2342 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2343 // We must ignore such methods.
2344 if (A->args_size() == 0)
2345 return;
2346 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2347 nullptr, D);
2348 getMutexIDs(LocksReleased, A, nullptr, D);
2349 CapDiagKind = ClassifyDiagnostic(A);
2350 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
2351 if (A->args_size() == 0)
2352 return;
2353 getMutexIDs(A->isShared() ? SharedLocksAcquired
2354 : ExclusiveLocksAcquired,
2355 A, nullptr, D);
2356 CapDiagKind = ClassifyDiagnostic(A);
2357 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2358 // Don't try to check trylock functions for now.
2359 return;
2360 } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2361 // Don't try to check trylock functions for now.
2362 return;
2363 } else if (isa<TryAcquireCapabilityAttr>(Attr)) {
2364 // Don't try to check trylock functions for now.
2365 return;
2366 }
2367 }
2368
2369 // FIXME -- Loc can be wrong here.
2370 for (const auto &Mu : ExclusiveLocksToAdd) {
2371 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc);
2372 Entry->setDeclared(true);
2373 addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
2374 }
2375 for (const auto &Mu : SharedLocksToAdd) {
2376 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc);
2377 Entry->setDeclared(true);
2378 addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
2379 }
2380 }
2381
2382 for (const auto *CurrBlock : *SortedGraph) {
2383 unsigned CurrBlockID = CurrBlock->getBlockID();
2384 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2385
2386 // Use the default initial lockset in case there are no predecessors.
2387 VisitedBlocks.insert(CurrBlock);
2388
2389 // Iterate through the predecessor blocks and warn if the lockset for all
2390 // predecessors is not the same. We take the entry lockset of the current
2391 // block to be the intersection of all previous locksets.
2392 // FIXME: By keeping the intersection, we may output more errors in future
2393 // for a lock which is not in the intersection, but was in the union. We
2394 // may want to also keep the union in future. As an example, let's say
2395 // the intersection contains Mutex L, and the union contains L and M.
2396 // Later we unlock M. At this point, we would output an error because we
2397 // never locked M; although the real error is probably that we forgot to
2398 // lock M on all code paths. Conversely, let's say that later we lock M.
2399 // In this case, we should compare against the intersection instead of the
2400 // union because the real error is probably that we forgot to unlock M on
2401 // all code paths.
2402 bool LocksetInitialized = false;
2403 SmallVector<CFGBlock *, 8> SpecialBlocks;
2404 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2405 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
2406 // if *PI -> CurrBlock is a back edge
2407 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
2408 continue;
2409
2410 unsigned PrevBlockID = (*PI)->getBlockID();
2411 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2412
2413 // Ignore edges from blocks that can't return.
2414 if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
2415 continue;
2416
2417 // Okay, we can reach this block from the entry.
2418 CurrBlockInfo->Reachable = true;
2419
2420 // If the previous block ended in a 'continue' or 'break' statement, then
2421 // a difference in locksets is probably due to a bug in that block, rather
2422 // than in some other predecessor. In that case, keep the other
2423 // predecessor's lockset.
2424 if (const Stmt *Terminator = (*PI)->getTerminatorStmt()) {
2425 if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
2426 SpecialBlocks.push_back(*PI);
2427 continue;
2428 }
2429 }
2430
2431 FactSet PrevLockset;
2432 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2433
2434 if (!LocksetInitialized) {
2435 CurrBlockInfo->EntrySet = PrevLockset;
2436 LocksetInitialized = true;
2437 } else {
2438 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2439 CurrBlockInfo->EntryLoc,
2440 LEK_LockedSomePredecessors);
2441 }
2442 }
2443
2444 // Skip rest of block if it's not reachable.
2445 if (!CurrBlockInfo->Reachable)
2446 continue;
2447
2448 // Process continue and break blocks. Assume that the lockset for the
2449 // resulting block is unaffected by any discrepancies in them.
2450 for (const auto *PrevBlock : SpecialBlocks) {
2451 unsigned PrevBlockID = PrevBlock->getBlockID();
2452 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2453
2454 if (!LocksetInitialized) {
2455 CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
2456 LocksetInitialized = true;
2457 } else {
2458 // Determine whether this edge is a loop terminator for diagnostic
2459 // purposes. FIXME: A 'break' statement might be a loop terminator, but
2460 // it might also be part of a switch. Also, a subsequent destructor
2461 // might add to the lockset, in which case the real issue might be a
2462 // double lock on the other path.
2463 const Stmt *Terminator = PrevBlock->getTerminatorStmt();
2464 bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
2465
2466 FactSet PrevLockset;
2467 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
2468 PrevBlock, CurrBlock);
2469
2470 // Do not update EntrySet.
2471 intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2472 PrevBlockInfo->ExitLoc,
2473 IsLoop ? LEK_LockedSomeLoopIterations
2474 : LEK_LockedSomePredecessors,
2475 false);
2476 }
2477 }
2478
2479 BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2480
2481 // Visit all the statements in the basic block.
2482 for (const auto &BI : *CurrBlock) {
2483 switch (BI.getKind()) {
2484 case CFGElement::Statement: {
2485 CFGStmt CS = BI.castAs<CFGStmt>();
2486 LocksetBuilder.Visit(CS.getStmt());
2487 break;
2488 }
2489 // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
2490 case CFGElement::AutomaticObjectDtor: {
2491 CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>();
2492 const auto *DD = AD.getDestructorDecl(AC.getASTContext());
2493 if (!DD->hasAttrs())
2494 break;
2495
2496 // Create a dummy expression,
2497 auto *VD = const_cast<VarDecl *>(AD.getVarDecl());
2498 DeclRefExpr DRE(VD->getASTContext(), VD, false,
2499 VD->getType().getNonReferenceType(), VK_LValue,
2500 AD.getTriggerStmt()->getEndLoc());
2501 LocksetBuilder.handleCall(&DRE, DD);
2502 break;
2503 }
2504 default:
2505 break;
2506 }
2507 }
2508 CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2509
2510 // For every back edge from CurrBlock (the end of the loop) to another block
2511 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2512 // the one held at the beginning of FirstLoopBlock. We can look up the
2513 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2514 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2515 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
2516 // if CurrBlock -> *SI is *not* a back edge
2517 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
2518 continue;
2519
2520 CFGBlock *FirstLoopBlock = *SI;
2521 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2522 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2523 intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
2524 PreLoop->EntryLoc,
2525 LEK_LockedSomeLoopIterations,
2526 false);
2527 }
2528 }
2529
2530 CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2531 CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()];
2532
2533 // Skip the final check if the exit block is unreachable.
2534 if (!Final->Reachable)
2535 return;
2536
2537 // By default, we expect all locks held on entry to be held on exit.
2538 FactSet ExpectedExitSet = Initial->EntrySet;
2539
2540 // Adjust the expected exit set by adding or removing locks, as declared
2541 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then
2542 // issue the appropriate warning.
2543 // FIXME: the location here is not quite right.
2544 for (const auto &Lock : ExclusiveLocksAcquired)
2545 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
2546 Lock, LK_Exclusive, D->getLocation()));
2547 for (const auto &Lock : SharedLocksAcquired)
2548 ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
2549 Lock, LK_Shared, D->getLocation()));
2550 for (const auto &Lock : LocksReleased)
2551 ExpectedExitSet.removeLock(FactMan, Lock);
2552
2553 // FIXME: Should we call this function for all blocks which exit the function?
2554 intersectAndWarn(ExpectedExitSet, Final->ExitSet,
2555 Final->ExitLoc,
2556 LEK_LockedAtEndOfFunction,
2557 LEK_NotLockedAtEndOfFunction,
2558 false);
2559
2560 Handler.leaveFunction(CurrentFunction);
2561 }
2562
2563 /// Check a function's CFG for thread-safety violations.
2564 ///
2565 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2566 /// at the end of each block, and issue warnings for thread safety violations.
2567 /// Each block in the CFG is traversed exactly once.
runThreadSafetyAnalysis(AnalysisDeclContext & AC,ThreadSafetyHandler & Handler,BeforeSet ** BSet)2568 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2569 ThreadSafetyHandler &Handler,
2570 BeforeSet **BSet) {
2571 if (!*BSet)
2572 *BSet = new BeforeSet;
2573 ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
2574 Analyzer.runAnalysis(AC);
2575 }
2576
threadSafetyCleanup(BeforeSet * Cache)2577 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
2578
2579 /// Helper function that returns a LockKind required for the given level
2580 /// of access.
getLockKindFromAccessKind(AccessKind AK)2581 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
2582 switch (AK) {
2583 case AK_Read :
2584 return LK_Shared;
2585 case AK_Written :
2586 return LK_Exclusive;
2587 }
2588 llvm_unreachable("Unknown AccessKind");
2589 }
2590