1 //===- ThreadSafetyCommon.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the interfaces declared in ThreadSafetyCommon.h
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclGroup.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/OperationKinds.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/Type.h"
24 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Basic/LLVM.h"
27 #include "clang/Basic/OperatorKinds.h"
28 #include "clang/Basic/Specifiers.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Support/Casting.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <string>
34 #include <utility>
35 
36 using namespace clang;
37 using namespace threadSafety;
38 
39 // From ThreadSafetyUtil.h
getSourceLiteralString(const Expr * CE)40 std::string threadSafety::getSourceLiteralString(const Expr *CE) {
41   switch (CE->getStmtClass()) {
42     case Stmt::IntegerLiteralClass:
43       return cast<IntegerLiteral>(CE)->getValue().toString(10, true);
44     case Stmt::StringLiteralClass: {
45       std::string ret("\"");
46       ret += cast<StringLiteral>(CE)->getString();
47       ret += "\"";
48       return ret;
49     }
50     case Stmt::CharacterLiteralClass:
51     case Stmt::CXXNullPtrLiteralExprClass:
52     case Stmt::GNUNullExprClass:
53     case Stmt::CXXBoolLiteralExprClass:
54     case Stmt::FloatingLiteralClass:
55     case Stmt::ImaginaryLiteralClass:
56     case Stmt::ObjCStringLiteralClass:
57     default:
58       return "#lit";
59   }
60 }
61 
62 // Return true if E is a variable that points to an incomplete Phi node.
isIncompletePhi(const til::SExpr * E)63 static bool isIncompletePhi(const til::SExpr *E) {
64   if (const auto *Ph = dyn_cast<til::Phi>(E))
65     return Ph->status() == til::Phi::PH_Incomplete;
66   return false;
67 }
68 
69 using CallingContext = SExprBuilder::CallingContext;
70 
lookupStmt(const Stmt * S)71 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) {
72   auto It = SMap.find(S);
73   if (It != SMap.end())
74     return It->second;
75   return nullptr;
76 }
77 
buildCFG(CFGWalker & Walker)78 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
79   Walker.walk(*this);
80   return Scfg;
81 }
82 
isCalleeArrow(const Expr * E)83 static bool isCalleeArrow(const Expr *E) {
84   const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
85   return ME ? ME->isArrow() : false;
86 }
87 
88 /// Translate a clang expression in an attribute to a til::SExpr.
89 /// Constructs the context from D, DeclExp, and SelfDecl.
90 ///
91 /// \param AttrExp The expression to translate.
92 /// \param D       The declaration to which the attribute is attached.
93 /// \param DeclExp An expression involving the Decl to which the attribute
94 ///                is attached.  E.g. the call to a function.
translateAttrExpr(const Expr * AttrExp,const NamedDecl * D,const Expr * DeclExp,VarDecl * SelfDecl)95 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
96                                                const NamedDecl *D,
97                                                const Expr *DeclExp,
98                                                VarDecl *SelfDecl) {
99   // If we are processing a raw attribute expression, with no substitutions.
100   if (!DeclExp)
101     return translateAttrExpr(AttrExp, nullptr);
102 
103   CallingContext Ctx(nullptr, D);
104 
105   // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
106   // for formal parameters when we call buildMutexID later.
107   if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) {
108     Ctx.SelfArg   = ME->getBase();
109     Ctx.SelfArrow = ME->isArrow();
110   } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
111     Ctx.SelfArg   = CE->getImplicitObjectArgument();
112     Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
113     Ctx.NumArgs   = CE->getNumArgs();
114     Ctx.FunArgs   = CE->getArgs();
115   } else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) {
116     Ctx.NumArgs = CE->getNumArgs();
117     Ctx.FunArgs = CE->getArgs();
118   } else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
119     Ctx.SelfArg = nullptr;  // Will be set below
120     Ctx.NumArgs = CE->getNumArgs();
121     Ctx.FunArgs = CE->getArgs();
122   } else if (D && isa<CXXDestructorDecl>(D)) {
123     // There's no such thing as a "destructor call" in the AST.
124     Ctx.SelfArg = DeclExp;
125   }
126 
127   // Hack to handle constructors, where self cannot be recovered from
128   // the expression.
129   if (SelfDecl && !Ctx.SelfArg) {
130     DeclRefExpr SelfDRE(SelfDecl->getASTContext(), SelfDecl, false,
131                         SelfDecl->getType(), VK_LValue,
132                         SelfDecl->getLocation());
133     Ctx.SelfArg = &SelfDRE;
134 
135     // If the attribute has no arguments, then assume the argument is "this".
136     if (!AttrExp)
137       return translateAttrExpr(Ctx.SelfArg, nullptr);
138     else  // For most attributes.
139       return translateAttrExpr(AttrExp, &Ctx);
140   }
141 
142   // If the attribute has no arguments, then assume the argument is "this".
143   if (!AttrExp)
144     return translateAttrExpr(Ctx.SelfArg, nullptr);
145   else  // For most attributes.
146     return translateAttrExpr(AttrExp, &Ctx);
147 }
148 
149 /// Translate a clang expression in an attribute to a til::SExpr.
150 // This assumes a CallingContext has already been created.
translateAttrExpr(const Expr * AttrExp,CallingContext * Ctx)151 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
152                                                CallingContext *Ctx) {
153   if (!AttrExp)
154     return CapabilityExpr(nullptr, false);
155 
156   if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
157     if (SLit->getString() == StringRef("*"))
158       // The "*" expr is a universal lock, which essentially turns off
159       // checks until it is removed from the lockset.
160       return CapabilityExpr(new (Arena) til::Wildcard(), false);
161     else
162       // Ignore other string literals for now.
163       return CapabilityExpr(nullptr, false);
164   }
165 
166   bool Neg = false;
167   if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
168     if (OE->getOperator() == OO_Exclaim) {
169       Neg = true;
170       AttrExp = OE->getArg(0);
171     }
172   }
173   else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
174     if (UO->getOpcode() == UO_LNot) {
175       Neg = true;
176       AttrExp = UO->getSubExpr();
177     }
178   }
179 
180   til::SExpr *E = translate(AttrExp, Ctx);
181 
182   // Trap mutex expressions like nullptr, or 0.
183   // Any literal value is nonsense.
184   if (!E || isa<til::Literal>(E))
185     return CapabilityExpr(nullptr, false);
186 
187   // Hack to deal with smart pointers -- strip off top-level pointer casts.
188   if (const auto *CE = dyn_cast<til::Cast>(E)) {
189     if (CE->castOpcode() == til::CAST_objToPtr)
190       return CapabilityExpr(CE->expr(), Neg);
191   }
192   return CapabilityExpr(E, Neg);
193 }
194 
195 // Translate a clang statement or expression to a TIL expression.
196 // Also performs substitution of variables; Ctx provides the context.
197 // Dispatches on the type of S.
translate(const Stmt * S,CallingContext * Ctx)198 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
199   if (!S)
200     return nullptr;
201 
202   // Check if S has already been translated and cached.
203   // This handles the lookup of SSA names for DeclRefExprs here.
204   if (til::SExpr *E = lookupStmt(S))
205     return E;
206 
207   switch (S->getStmtClass()) {
208   case Stmt::DeclRefExprClass:
209     return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
210   case Stmt::CXXThisExprClass:
211     return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
212   case Stmt::MemberExprClass:
213     return translateMemberExpr(cast<MemberExpr>(S), Ctx);
214   case Stmt::ObjCIvarRefExprClass:
215     return translateObjCIVarRefExpr(cast<ObjCIvarRefExpr>(S), Ctx);
216   case Stmt::CallExprClass:
217     return translateCallExpr(cast<CallExpr>(S), Ctx);
218   case Stmt::CXXMemberCallExprClass:
219     return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
220   case Stmt::CXXOperatorCallExprClass:
221     return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
222   case Stmt::UnaryOperatorClass:
223     return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
224   case Stmt::BinaryOperatorClass:
225   case Stmt::CompoundAssignOperatorClass:
226     return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
227 
228   case Stmt::ArraySubscriptExprClass:
229     return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
230   case Stmt::ConditionalOperatorClass:
231     return translateAbstractConditionalOperator(
232              cast<ConditionalOperator>(S), Ctx);
233   case Stmt::BinaryConditionalOperatorClass:
234     return translateAbstractConditionalOperator(
235              cast<BinaryConditionalOperator>(S), Ctx);
236 
237   // We treat these as no-ops
238   case Stmt::ConstantExprClass:
239     return translate(cast<ConstantExpr>(S)->getSubExpr(), Ctx);
240   case Stmt::ParenExprClass:
241     return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
242   case Stmt::ExprWithCleanupsClass:
243     return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
244   case Stmt::CXXBindTemporaryExprClass:
245     return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
246   case Stmt::MaterializeTemporaryExprClass:
247     return translate(cast<MaterializeTemporaryExpr>(S)->getSubExpr(), Ctx);
248 
249   // Collect all literals
250   case Stmt::CharacterLiteralClass:
251   case Stmt::CXXNullPtrLiteralExprClass:
252   case Stmt::GNUNullExprClass:
253   case Stmt::CXXBoolLiteralExprClass:
254   case Stmt::FloatingLiteralClass:
255   case Stmt::ImaginaryLiteralClass:
256   case Stmt::IntegerLiteralClass:
257   case Stmt::StringLiteralClass:
258   case Stmt::ObjCStringLiteralClass:
259     return new (Arena) til::Literal(cast<Expr>(S));
260 
261   case Stmt::DeclStmtClass:
262     return translateDeclStmt(cast<DeclStmt>(S), Ctx);
263   default:
264     break;
265   }
266   if (const auto *CE = dyn_cast<CastExpr>(S))
267     return translateCastExpr(CE, Ctx);
268 
269   return new (Arena) til::Undefined(S);
270 }
271 
translateDeclRefExpr(const DeclRefExpr * DRE,CallingContext * Ctx)272 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
273                                                CallingContext *Ctx) {
274   const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
275 
276   // Function parameters require substitution and/or renaming.
277   if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) {
278     unsigned I = PV->getFunctionScopeIndex();
279     const DeclContext *D = PV->getDeclContext();
280     if (Ctx && Ctx->FunArgs) {
281       const Decl *Canonical = Ctx->AttrDecl->getCanonicalDecl();
282       if (isa<FunctionDecl>(D)
283               ? (cast<FunctionDecl>(D)->getCanonicalDecl() == Canonical)
284               : (cast<ObjCMethodDecl>(D)->getCanonicalDecl() == Canonical)) {
285         // Substitute call arguments for references to function parameters
286         assert(I < Ctx->NumArgs);
287         return translate(Ctx->FunArgs[I], Ctx->Prev);
288       }
289     }
290     // Map the param back to the param of the original function declaration
291     // for consistent comparisons.
292     VD = isa<FunctionDecl>(D)
293              ? cast<FunctionDecl>(D)->getCanonicalDecl()->getParamDecl(I)
294              : cast<ObjCMethodDecl>(D)->getCanonicalDecl()->getParamDecl(I);
295   }
296 
297   // For non-local variables, treat it as a reference to a named object.
298   return new (Arena) til::LiteralPtr(VD);
299 }
300 
translateCXXThisExpr(const CXXThisExpr * TE,CallingContext * Ctx)301 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
302                                                CallingContext *Ctx) {
303   // Substitute for 'this'
304   if (Ctx && Ctx->SelfArg)
305     return translate(Ctx->SelfArg, Ctx->Prev);
306   assert(SelfVar && "We have no variable for 'this'!");
307   return SelfVar;
308 }
309 
getValueDeclFromSExpr(const til::SExpr * E)310 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
311   if (const auto *V = dyn_cast<til::Variable>(E))
312     return V->clangDecl();
313   if (const auto *Ph = dyn_cast<til::Phi>(E))
314     return Ph->clangDecl();
315   if (const auto *P = dyn_cast<til::Project>(E))
316     return P->clangDecl();
317   if (const auto *L = dyn_cast<til::LiteralPtr>(E))
318     return L->clangDecl();
319   return nullptr;
320 }
321 
hasAnyPointerType(const til::SExpr * E)322 static bool hasAnyPointerType(const til::SExpr *E) {
323   auto *VD = getValueDeclFromSExpr(E);
324   if (VD && VD->getType()->isAnyPointerType())
325     return true;
326   if (const auto *C = dyn_cast<til::Cast>(E))
327     return C->castOpcode() == til::CAST_objToPtr;
328 
329   return false;
330 }
331 
332 // Grab the very first declaration of virtual method D
getFirstVirtualDecl(const CXXMethodDecl * D)333 static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) {
334   while (true) {
335     D = D->getCanonicalDecl();
336     auto OverriddenMethods = D->overridden_methods();
337     if (OverriddenMethods.begin() == OverriddenMethods.end())
338       return D;  // Method does not override anything
339     // FIXME: this does not work with multiple inheritance.
340     D = *OverriddenMethods.begin();
341   }
342   return nullptr;
343 }
344 
translateMemberExpr(const MemberExpr * ME,CallingContext * Ctx)345 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
346                                               CallingContext *Ctx) {
347   til::SExpr *BE = translate(ME->getBase(), Ctx);
348   til::SExpr *E  = new (Arena) til::SApply(BE);
349 
350   const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
351   if (const auto *VD = dyn_cast<CXXMethodDecl>(D))
352     D = getFirstVirtualDecl(VD);
353 
354   til::Project *P = new (Arena) til::Project(E, D);
355   if (hasAnyPointerType(BE))
356     P->setArrow(true);
357   return P;
358 }
359 
translateObjCIVarRefExpr(const ObjCIvarRefExpr * IVRE,CallingContext * Ctx)360 til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE,
361                                                    CallingContext *Ctx) {
362   til::SExpr *BE = translate(IVRE->getBase(), Ctx);
363   til::SExpr *E = new (Arena) til::SApply(BE);
364 
365   const auto *D = cast<ObjCIvarDecl>(IVRE->getDecl()->getCanonicalDecl());
366 
367   til::Project *P = new (Arena) til::Project(E, D);
368   if (hasAnyPointerType(BE))
369     P->setArrow(true);
370   return P;
371 }
372 
translateCallExpr(const CallExpr * CE,CallingContext * Ctx,const Expr * SelfE)373 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
374                                             CallingContext *Ctx,
375                                             const Expr *SelfE) {
376   if (CapabilityExprMode) {
377     // Handle LOCK_RETURNED
378     if (const FunctionDecl *FD = CE->getDirectCallee()) {
379       FD = FD->getMostRecentDecl();
380       if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) {
381         CallingContext LRCallCtx(Ctx);
382         LRCallCtx.AttrDecl = CE->getDirectCallee();
383         LRCallCtx.SelfArg = SelfE;
384         LRCallCtx.NumArgs = CE->getNumArgs();
385         LRCallCtx.FunArgs = CE->getArgs();
386         return const_cast<til::SExpr *>(
387             translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
388       }
389     }
390   }
391 
392   til::SExpr *E = translate(CE->getCallee(), Ctx);
393   for (const auto *Arg : CE->arguments()) {
394     til::SExpr *A = translate(Arg, Ctx);
395     E = new (Arena) til::Apply(E, A);
396   }
397   return new (Arena) til::Call(E, CE);
398 }
399 
translateCXXMemberCallExpr(const CXXMemberCallExpr * ME,CallingContext * Ctx)400 til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
401     const CXXMemberCallExpr *ME, CallingContext *Ctx) {
402   if (CapabilityExprMode) {
403     // Ignore calls to get() on smart pointers.
404     if (ME->getMethodDecl()->getNameAsString() == "get" &&
405         ME->getNumArgs() == 0) {
406       auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
407       return new (Arena) til::Cast(til::CAST_objToPtr, E);
408       // return E;
409     }
410   }
411   return translateCallExpr(cast<CallExpr>(ME), Ctx,
412                            ME->getImplicitObjectArgument());
413 }
414 
translateCXXOperatorCallExpr(const CXXOperatorCallExpr * OCE,CallingContext * Ctx)415 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
416     const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
417   if (CapabilityExprMode) {
418     // Ignore operator * and operator -> on smart pointers.
419     OverloadedOperatorKind k = OCE->getOperator();
420     if (k == OO_Star || k == OO_Arrow) {
421       auto *E = translate(OCE->getArg(0), Ctx);
422       return new (Arena) til::Cast(til::CAST_objToPtr, E);
423       // return E;
424     }
425   }
426   return translateCallExpr(cast<CallExpr>(OCE), Ctx);
427 }
428 
translateUnaryOperator(const UnaryOperator * UO,CallingContext * Ctx)429 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
430                                                  CallingContext *Ctx) {
431   switch (UO->getOpcode()) {
432   case UO_PostInc:
433   case UO_PostDec:
434   case UO_PreInc:
435   case UO_PreDec:
436     return new (Arena) til::Undefined(UO);
437 
438   case UO_AddrOf:
439     if (CapabilityExprMode) {
440       // interpret &Graph::mu_ as an existential.
441       if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
442         if (DRE->getDecl()->isCXXInstanceMember()) {
443           // This is a pointer-to-member expression, e.g. &MyClass::mu_.
444           // We interpret this syntax specially, as a wildcard.
445           auto *W = new (Arena) til::Wildcard();
446           return new (Arena) til::Project(W, DRE->getDecl());
447         }
448       }
449     }
450     // otherwise, & is a no-op
451     return translate(UO->getSubExpr(), Ctx);
452 
453   // We treat these as no-ops
454   case UO_Deref:
455   case UO_Plus:
456     return translate(UO->getSubExpr(), Ctx);
457 
458   case UO_Minus:
459     return new (Arena)
460       til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
461   case UO_Not:
462     return new (Arena)
463       til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
464   case UO_LNot:
465     return new (Arena)
466       til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
467 
468   // Currently unsupported
469   case UO_Real:
470   case UO_Imag:
471   case UO_Extension:
472   case UO_Coawait:
473     return new (Arena) til::Undefined(UO);
474   }
475   return new (Arena) til::Undefined(UO);
476 }
477 
translateBinOp(til::TIL_BinaryOpcode Op,const BinaryOperator * BO,CallingContext * Ctx,bool Reverse)478 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
479                                          const BinaryOperator *BO,
480                                          CallingContext *Ctx, bool Reverse) {
481    til::SExpr *E0 = translate(BO->getLHS(), Ctx);
482    til::SExpr *E1 = translate(BO->getRHS(), Ctx);
483    if (Reverse)
484      return new (Arena) til::BinaryOp(Op, E1, E0);
485    else
486      return new (Arena) til::BinaryOp(Op, E0, E1);
487 }
488 
translateBinAssign(til::TIL_BinaryOpcode Op,const BinaryOperator * BO,CallingContext * Ctx,bool Assign)489 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
490                                              const BinaryOperator *BO,
491                                              CallingContext *Ctx,
492                                              bool Assign) {
493   const Expr *LHS = BO->getLHS();
494   const Expr *RHS = BO->getRHS();
495   til::SExpr *E0 = translate(LHS, Ctx);
496   til::SExpr *E1 = translate(RHS, Ctx);
497 
498   const ValueDecl *VD = nullptr;
499   til::SExpr *CV = nullptr;
500   if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
501     VD = DRE->getDecl();
502     CV = lookupVarDecl(VD);
503   }
504 
505   if (!Assign) {
506     til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
507     E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
508     E1 = addStatement(E1, nullptr, VD);
509   }
510   if (VD && CV)
511     return updateVarDecl(VD, E1);
512   return new (Arena) til::Store(E0, E1);
513 }
514 
translateBinaryOperator(const BinaryOperator * BO,CallingContext * Ctx)515 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
516                                                   CallingContext *Ctx) {
517   switch (BO->getOpcode()) {
518   case BO_PtrMemD:
519   case BO_PtrMemI:
520     return new (Arena) til::Undefined(BO);
521 
522   case BO_Mul:  return translateBinOp(til::BOP_Mul, BO, Ctx);
523   case BO_Div:  return translateBinOp(til::BOP_Div, BO, Ctx);
524   case BO_Rem:  return translateBinOp(til::BOP_Rem, BO, Ctx);
525   case BO_Add:  return translateBinOp(til::BOP_Add, BO, Ctx);
526   case BO_Sub:  return translateBinOp(til::BOP_Sub, BO, Ctx);
527   case BO_Shl:  return translateBinOp(til::BOP_Shl, BO, Ctx);
528   case BO_Shr:  return translateBinOp(til::BOP_Shr, BO, Ctx);
529   case BO_LT:   return translateBinOp(til::BOP_Lt,  BO, Ctx);
530   case BO_GT:   return translateBinOp(til::BOP_Lt,  BO, Ctx, true);
531   case BO_LE:   return translateBinOp(til::BOP_Leq, BO, Ctx);
532   case BO_GE:   return translateBinOp(til::BOP_Leq, BO, Ctx, true);
533   case BO_EQ:   return translateBinOp(til::BOP_Eq,  BO, Ctx);
534   case BO_NE:   return translateBinOp(til::BOP_Neq, BO, Ctx);
535   case BO_Cmp:  return translateBinOp(til::BOP_Cmp, BO, Ctx);
536   case BO_And:  return translateBinOp(til::BOP_BitAnd,   BO, Ctx);
537   case BO_Xor:  return translateBinOp(til::BOP_BitXor,   BO, Ctx);
538   case BO_Or:   return translateBinOp(til::BOP_BitOr,    BO, Ctx);
539   case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
540   case BO_LOr:  return translateBinOp(til::BOP_LogicOr,  BO, Ctx);
541 
542   case BO_Assign:    return translateBinAssign(til::BOP_Eq,  BO, Ctx, true);
543   case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
544   case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
545   case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
546   case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
547   case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
548   case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
549   case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
550   case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
551   case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
552   case BO_OrAssign:  return translateBinAssign(til::BOP_BitOr,  BO, Ctx);
553 
554   case BO_Comma:
555     // The clang CFG should have already processed both sides.
556     return translate(BO->getRHS(), Ctx);
557   }
558   return new (Arena) til::Undefined(BO);
559 }
560 
translateCastExpr(const CastExpr * CE,CallingContext * Ctx)561 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
562                                             CallingContext *Ctx) {
563   CastKind K = CE->getCastKind();
564   switch (K) {
565   case CK_LValueToRValue: {
566     if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
567       til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
568       if (E0)
569         return E0;
570     }
571     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
572     return E0;
573     // FIXME!! -- get Load working properly
574     // return new (Arena) til::Load(E0);
575   }
576   case CK_NoOp:
577   case CK_DerivedToBase:
578   case CK_UncheckedDerivedToBase:
579   case CK_ArrayToPointerDecay:
580   case CK_FunctionToPointerDecay: {
581     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
582     return E0;
583   }
584   default: {
585     // FIXME: handle different kinds of casts.
586     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
587     if (CapabilityExprMode)
588       return E0;
589     return new (Arena) til::Cast(til::CAST_none, E0);
590   }
591   }
592 }
593 
594 til::SExpr *
translateArraySubscriptExpr(const ArraySubscriptExpr * E,CallingContext * Ctx)595 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
596                                           CallingContext *Ctx) {
597   til::SExpr *E0 = translate(E->getBase(), Ctx);
598   til::SExpr *E1 = translate(E->getIdx(), Ctx);
599   return new (Arena) til::ArrayIndex(E0, E1);
600 }
601 
602 til::SExpr *
translateAbstractConditionalOperator(const AbstractConditionalOperator * CO,CallingContext * Ctx)603 SExprBuilder::translateAbstractConditionalOperator(
604     const AbstractConditionalOperator *CO, CallingContext *Ctx) {
605   auto *C = translate(CO->getCond(), Ctx);
606   auto *T = translate(CO->getTrueExpr(), Ctx);
607   auto *E = translate(CO->getFalseExpr(), Ctx);
608   return new (Arena) til::IfThenElse(C, T, E);
609 }
610 
611 til::SExpr *
translateDeclStmt(const DeclStmt * S,CallingContext * Ctx)612 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
613   DeclGroupRef DGrp = S->getDeclGroup();
614   for (auto I : DGrp) {
615     if (auto *VD = dyn_cast_or_null<VarDecl>(I)) {
616       Expr *E = VD->getInit();
617       til::SExpr* SE = translate(E, Ctx);
618 
619       // Add local variables with trivial type to the variable map
620       QualType T = VD->getType();
621       if (T.isTrivialType(VD->getASTContext()))
622         return addVarDecl(VD, SE);
623       else {
624         // TODO: add alloca
625       }
626     }
627   }
628   return nullptr;
629 }
630 
631 // If (E) is non-trivial, then add it to the current basic block, and
632 // update the statement map so that S refers to E.  Returns a new variable
633 // that refers to E.
634 // If E is trivial returns E.
addStatement(til::SExpr * E,const Stmt * S,const ValueDecl * VD)635 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
636                                        const ValueDecl *VD) {
637   if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
638     return E;
639   if (VD)
640     E = new (Arena) til::Variable(E, VD);
641   CurrentInstructions.push_back(E);
642   if (S)
643     insertStmt(S, E);
644   return E;
645 }
646 
647 // Returns the current value of VD, if known, and nullptr otherwise.
lookupVarDecl(const ValueDecl * VD)648 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
649   auto It = LVarIdxMap.find(VD);
650   if (It != LVarIdxMap.end()) {
651     assert(CurrentLVarMap[It->second].first == VD);
652     return CurrentLVarMap[It->second].second;
653   }
654   return nullptr;
655 }
656 
657 // if E is a til::Variable, update its clangDecl.
maybeUpdateVD(til::SExpr * E,const ValueDecl * VD)658 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
659   if (!E)
660     return;
661   if (auto *V = dyn_cast<til::Variable>(E)) {
662     if (!V->clangDecl())
663       V->setClangDecl(VD);
664   }
665 }
666 
667 // Adds a new variable declaration.
addVarDecl(const ValueDecl * VD,til::SExpr * E)668 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
669   maybeUpdateVD(E, VD);
670   LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
671   CurrentLVarMap.makeWritable();
672   CurrentLVarMap.push_back(std::make_pair(VD, E));
673   return E;
674 }
675 
676 // Updates a current variable declaration.  (E.g. by assignment)
updateVarDecl(const ValueDecl * VD,til::SExpr * E)677 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
678   maybeUpdateVD(E, VD);
679   auto It = LVarIdxMap.find(VD);
680   if (It == LVarIdxMap.end()) {
681     til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
682     til::SExpr *St  = new (Arena) til::Store(Ptr, E);
683     return St;
684   }
685   CurrentLVarMap.makeWritable();
686   CurrentLVarMap.elem(It->second).second = E;
687   return E;
688 }
689 
690 // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
691 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
692 // If E == null, this is a backedge and will be set later.
makePhiNodeVar(unsigned i,unsigned NPreds,til::SExpr * E)693 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
694   unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
695   assert(ArgIndex > 0 && ArgIndex < NPreds);
696 
697   til::SExpr *CurrE = CurrentLVarMap[i].second;
698   if (CurrE->block() == CurrentBB) {
699     // We already have a Phi node in the current block,
700     // so just add the new variable to the Phi node.
701     auto *Ph = dyn_cast<til::Phi>(CurrE);
702     assert(Ph && "Expecting Phi node.");
703     if (E)
704       Ph->values()[ArgIndex] = E;
705     return;
706   }
707 
708   // Make a new phi node: phi(..., E)
709   // All phi args up to the current index are set to the current value.
710   til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
711   Ph->values().setValues(NPreds, nullptr);
712   for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
713     Ph->values()[PIdx] = CurrE;
714   if (E)
715     Ph->values()[ArgIndex] = E;
716   Ph->setClangDecl(CurrentLVarMap[i].first);
717   // If E is from a back-edge, or either E or CurrE are incomplete, then
718   // mark this node as incomplete; we may need to remove it later.
719   if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE))
720     Ph->setStatus(til::Phi::PH_Incomplete);
721 
722   // Add Phi node to current block, and update CurrentLVarMap[i]
723   CurrentArguments.push_back(Ph);
724   if (Ph->status() == til::Phi::PH_Incomplete)
725     IncompleteArgs.push_back(Ph);
726 
727   CurrentLVarMap.makeWritable();
728   CurrentLVarMap.elem(i).second = Ph;
729 }
730 
731 // Merge values from Map into the current variable map.
732 // This will construct Phi nodes in the current basic block as necessary.
mergeEntryMap(LVarDefinitionMap Map)733 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
734   assert(CurrentBlockInfo && "Not processing a block!");
735 
736   if (!CurrentLVarMap.valid()) {
737     // Steal Map, using copy-on-write.
738     CurrentLVarMap = std::move(Map);
739     return;
740   }
741   if (CurrentLVarMap.sameAs(Map))
742     return;  // Easy merge: maps from different predecessors are unchanged.
743 
744   unsigned NPreds = CurrentBB->numPredecessors();
745   unsigned ESz = CurrentLVarMap.size();
746   unsigned MSz = Map.size();
747   unsigned Sz  = std::min(ESz, MSz);
748 
749   for (unsigned i = 0; i < Sz; ++i) {
750     if (CurrentLVarMap[i].first != Map[i].first) {
751       // We've reached the end of variables in common.
752       CurrentLVarMap.makeWritable();
753       CurrentLVarMap.downsize(i);
754       break;
755     }
756     if (CurrentLVarMap[i].second != Map[i].second)
757       makePhiNodeVar(i, NPreds, Map[i].second);
758   }
759   if (ESz > MSz) {
760     CurrentLVarMap.makeWritable();
761     CurrentLVarMap.downsize(Map.size());
762   }
763 }
764 
765 // Merge a back edge into the current variable map.
766 // This will create phi nodes for all variables in the variable map.
mergeEntryMapBackEdge()767 void SExprBuilder::mergeEntryMapBackEdge() {
768   // We don't have definitions for variables on the backedge, because we
769   // haven't gotten that far in the CFG.  Thus, when encountering a back edge,
770   // we conservatively create Phi nodes for all variables.  Unnecessary Phi
771   // nodes will be marked as incomplete, and stripped out at the end.
772   //
773   // An Phi node is unnecessary if it only refers to itself and one other
774   // variable, e.g. x = Phi(y, y, x)  can be reduced to x = y.
775 
776   assert(CurrentBlockInfo && "Not processing a block!");
777 
778   if (CurrentBlockInfo->HasBackEdges)
779     return;
780   CurrentBlockInfo->HasBackEdges = true;
781 
782   CurrentLVarMap.makeWritable();
783   unsigned Sz = CurrentLVarMap.size();
784   unsigned NPreds = CurrentBB->numPredecessors();
785 
786   for (unsigned i = 0; i < Sz; ++i)
787     makePhiNodeVar(i, NPreds, nullptr);
788 }
789 
790 // Update the phi nodes that were initially created for a back edge
791 // once the variable definitions have been computed.
792 // I.e., merge the current variable map into the phi nodes for Blk.
mergePhiNodesBackEdge(const CFGBlock * Blk)793 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
794   til::BasicBlock *BB = lookupBlock(Blk);
795   unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
796   assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
797 
798   for (til::SExpr *PE : BB->arguments()) {
799     auto *Ph = dyn_cast_or_null<til::Phi>(PE);
800     assert(Ph && "Expecting Phi Node.");
801     assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
802 
803     til::SExpr *E = lookupVarDecl(Ph->clangDecl());
804     assert(E && "Couldn't find local variable for Phi node.");
805     Ph->values()[ArgIndex] = E;
806   }
807 }
808 
enterCFG(CFG * Cfg,const NamedDecl * D,const CFGBlock * First)809 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
810                             const CFGBlock *First) {
811   // Perform initial setup operations.
812   unsigned NBlocks = Cfg->getNumBlockIDs();
813   Scfg = new (Arena) til::SCFG(Arena, NBlocks);
814 
815   // allocate all basic blocks immediately, to handle forward references.
816   BBInfo.resize(NBlocks);
817   BlockMap.resize(NBlocks, nullptr);
818   // create map from clang blockID to til::BasicBlocks
819   for (auto *B : *Cfg) {
820     auto *BB = new (Arena) til::BasicBlock(Arena);
821     BB->reserveInstructions(B->size());
822     BlockMap[B->getBlockID()] = BB;
823   }
824 
825   CurrentBB = lookupBlock(&Cfg->getEntry());
826   auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
827                                       : cast<FunctionDecl>(D)->parameters();
828   for (auto *Pm : Parms) {
829     QualType T = Pm->getType();
830     if (!T.isTrivialType(Pm->getASTContext()))
831       continue;
832 
833     // Add parameters to local variable map.
834     // FIXME: right now we emulate params with loads; that should be fixed.
835     til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
836     til::SExpr *Ld = new (Arena) til::Load(Lp);
837     til::SExpr *V  = addStatement(Ld, nullptr, Pm);
838     addVarDecl(Pm, V);
839   }
840 }
841 
enterCFGBlock(const CFGBlock * B)842 void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
843   // Initialize TIL basic block and add it to the CFG.
844   CurrentBB = lookupBlock(B);
845   CurrentBB->reservePredecessors(B->pred_size());
846   Scfg->add(CurrentBB);
847 
848   CurrentBlockInfo = &BBInfo[B->getBlockID()];
849 
850   // CurrentLVarMap is moved to ExitMap on block exit.
851   // FIXME: the entry block will hold function parameters.
852   // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
853 }
854 
handlePredecessor(const CFGBlock * Pred)855 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
856   // Compute CurrentLVarMap on entry from ExitMaps of predecessors
857 
858   CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
859   BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
860   assert(PredInfo->UnprocessedSuccessors > 0);
861 
862   if (--PredInfo->UnprocessedSuccessors == 0)
863     mergeEntryMap(std::move(PredInfo->ExitMap));
864   else
865     mergeEntryMap(PredInfo->ExitMap.clone());
866 
867   ++CurrentBlockInfo->ProcessedPredecessors;
868 }
869 
handlePredecessorBackEdge(const CFGBlock * Pred)870 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
871   mergeEntryMapBackEdge();
872 }
873 
enterCFGBlockBody(const CFGBlock * B)874 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
875   // The merge*() methods have created arguments.
876   // Push those arguments onto the basic block.
877   CurrentBB->arguments().reserve(
878     static_cast<unsigned>(CurrentArguments.size()), Arena);
879   for (auto *A : CurrentArguments)
880     CurrentBB->addArgument(A);
881 }
882 
handleStatement(const Stmt * S)883 void SExprBuilder::handleStatement(const Stmt *S) {
884   til::SExpr *E = translate(S, nullptr);
885   addStatement(E, S);
886 }
887 
handleDestructorCall(const VarDecl * VD,const CXXDestructorDecl * DD)888 void SExprBuilder::handleDestructorCall(const VarDecl *VD,
889                                         const CXXDestructorDecl *DD) {
890   til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
891   til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
892   til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
893   til::SExpr *E = new (Arena) til::Call(Ap);
894   addStatement(E, nullptr);
895 }
896 
exitCFGBlockBody(const CFGBlock * B)897 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
898   CurrentBB->instructions().reserve(
899     static_cast<unsigned>(CurrentInstructions.size()), Arena);
900   for (auto *V : CurrentInstructions)
901     CurrentBB->addInstruction(V);
902 
903   // Create an appropriate terminator
904   unsigned N = B->succ_size();
905   auto It = B->succ_begin();
906   if (N == 1) {
907     til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
908     // TODO: set index
909     unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
910     auto *Tm = new (Arena) til::Goto(BB, Idx);
911     CurrentBB->setTerminator(Tm);
912   }
913   else if (N == 2) {
914     til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
915     til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
916     ++It;
917     til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
918     // FIXME: make sure these aren't critical edges.
919     auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
920     CurrentBB->setTerminator(Tm);
921   }
922 }
923 
handleSuccessor(const CFGBlock * Succ)924 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
925   ++CurrentBlockInfo->UnprocessedSuccessors;
926 }
927 
handleSuccessorBackEdge(const CFGBlock * Succ)928 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
929   mergePhiNodesBackEdge(Succ);
930   ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
931 }
932 
exitCFGBlock(const CFGBlock * B)933 void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
934   CurrentArguments.clear();
935   CurrentInstructions.clear();
936   CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
937   CurrentBB = nullptr;
938   CurrentBlockInfo = nullptr;
939 }
940 
exitCFG(const CFGBlock * Last)941 void SExprBuilder::exitCFG(const CFGBlock *Last) {
942   for (auto *Ph : IncompleteArgs) {
943     if (Ph->status() == til::Phi::PH_Incomplete)
944       simplifyIncompleteArg(Ph);
945   }
946 
947   CurrentArguments.clear();
948   CurrentInstructions.clear();
949   IncompleteArgs.clear();
950 }
951 
952 /*
953 namespace {
954 
955 class TILPrinter :
956     public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
957 
958 } // namespace
959 
960 namespace clang {
961 namespace threadSafety {
962 
963 void printSCFG(CFGWalker &Walker) {
964   llvm::BumpPtrAllocator Bpa;
965   til::MemRegionRef Arena(&Bpa);
966   SExprBuilder SxBuilder(Arena);
967   til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
968   TILPrinter::print(Scfg, llvm::errs());
969 }
970 
971 } // namespace threadSafety
972 } // namespace clang
973 */
974