1 //===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a class for OpenMP runtime code generation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGOpenMPRuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/OpenMPClause.h"
21 #include "clang/AST/StmtOpenMP.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/BitmaskEnum.h"
24 #include "clang/Basic/FileManager.h"
25 #include "clang/Basic/OpenMPKinds.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/CodeGen/ConstantInitBuilder.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Bitcode/BitcodeReader.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Format.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <cassert>
40 #include <numeric>
41 
42 using namespace clang;
43 using namespace CodeGen;
44 using namespace llvm::omp;
45 
46 namespace {
47 /// Base class for handling code generation inside OpenMP regions.
48 class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
49 public:
50   /// Kinds of OpenMP regions used in codegen.
51   enum CGOpenMPRegionKind {
52     /// Region with outlined function for standalone 'parallel'
53     /// directive.
54     ParallelOutlinedRegion,
55     /// Region with outlined function for standalone 'task' directive.
56     TaskOutlinedRegion,
57     /// Region for constructs that do not require function outlining,
58     /// like 'for', 'sections', 'atomic' etc. directives.
59     InlinedRegion,
60     /// Region with outlined function for standalone 'target' directive.
61     TargetRegion,
62   };
63 
CGOpenMPRegionInfo(const CapturedStmt & CS,const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)64   CGOpenMPRegionInfo(const CapturedStmt &CS,
65                      const CGOpenMPRegionKind RegionKind,
66                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
67                      bool HasCancel)
68       : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
69         CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
70 
CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)71   CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
72                      const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
73                      bool HasCancel)
74       : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
75         Kind(Kind), HasCancel(HasCancel) {}
76 
77   /// Get a variable or parameter for storing global thread id
78   /// inside OpenMP construct.
79   virtual const VarDecl *getThreadIDVariable() const = 0;
80 
81   /// Emit the captured statement body.
82   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
83 
84   /// Get an LValue for the current ThreadID variable.
85   /// \return LValue for thread id variable. This LValue always has type int32*.
86   virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
87 
emitUntiedSwitch(CodeGenFunction &)88   virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
89 
getRegionKind() const90   CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
91 
getDirectiveKind() const92   OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
93 
hasCancel() const94   bool hasCancel() const { return HasCancel; }
95 
classof(const CGCapturedStmtInfo * Info)96   static bool classof(const CGCapturedStmtInfo *Info) {
97     return Info->getKind() == CR_OpenMP;
98   }
99 
100   ~CGOpenMPRegionInfo() override = default;
101 
102 protected:
103   CGOpenMPRegionKind RegionKind;
104   RegionCodeGenTy CodeGen;
105   OpenMPDirectiveKind Kind;
106   bool HasCancel;
107 };
108 
109 /// API for captured statement code generation in OpenMP constructs.
110 class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
111 public:
CGOpenMPOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,StringRef HelperName)112   CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
113                              const RegionCodeGenTy &CodeGen,
114                              OpenMPDirectiveKind Kind, bool HasCancel,
115                              StringRef HelperName)
116       : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
117                            HasCancel),
118         ThreadIDVar(ThreadIDVar), HelperName(HelperName) {
119     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
120   }
121 
122   /// Get a variable or parameter for storing global thread id
123   /// inside OpenMP construct.
getThreadIDVariable() const124   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
125 
126   /// Get the name of the capture helper.
getHelperName() const127   StringRef getHelperName() const override { return HelperName; }
128 
classof(const CGCapturedStmtInfo * Info)129   static bool classof(const CGCapturedStmtInfo *Info) {
130     return CGOpenMPRegionInfo::classof(Info) &&
131            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
132                ParallelOutlinedRegion;
133   }
134 
135 private:
136   /// A variable or parameter storing global thread id for OpenMP
137   /// constructs.
138   const VarDecl *ThreadIDVar;
139   StringRef HelperName;
140 };
141 
142 /// API for captured statement code generation in OpenMP constructs.
143 class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
144 public:
145   class UntiedTaskActionTy final : public PrePostActionTy {
146     bool Untied;
147     const VarDecl *PartIDVar;
148     const RegionCodeGenTy UntiedCodeGen;
149     llvm::SwitchInst *UntiedSwitch = nullptr;
150 
151   public:
UntiedTaskActionTy(bool Tied,const VarDecl * PartIDVar,const RegionCodeGenTy & UntiedCodeGen)152     UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
153                        const RegionCodeGenTy &UntiedCodeGen)
154         : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
Enter(CodeGenFunction & CGF)155     void Enter(CodeGenFunction &CGF) override {
156       if (Untied) {
157         // Emit task switching point.
158         LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
159             CGF.GetAddrOfLocalVar(PartIDVar),
160             PartIDVar->getType()->castAs<PointerType>());
161         llvm::Value *Res =
162             CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation());
163         llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done.");
164         UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
165         CGF.EmitBlock(DoneBB);
166         CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
167         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
168         UntiedSwitch->addCase(CGF.Builder.getInt32(0),
169                               CGF.Builder.GetInsertBlock());
170         emitUntiedSwitch(CGF);
171       }
172     }
emitUntiedSwitch(CodeGenFunction & CGF) const173     void emitUntiedSwitch(CodeGenFunction &CGF) const {
174       if (Untied) {
175         LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
176             CGF.GetAddrOfLocalVar(PartIDVar),
177             PartIDVar->getType()->castAs<PointerType>());
178         CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
179                               PartIdLVal);
180         UntiedCodeGen(CGF);
181         CodeGenFunction::JumpDest CurPoint =
182             CGF.getJumpDestInCurrentScope(".untied.next.");
183         CGF.EmitBranch(CGF.ReturnBlock.getBlock());
184         CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
185         UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
186                               CGF.Builder.GetInsertBlock());
187         CGF.EmitBranchThroughCleanup(CurPoint);
188         CGF.EmitBlock(CurPoint.getBlock());
189       }
190     }
getNumberOfParts() const191     unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
192   };
CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt & CS,const VarDecl * ThreadIDVar,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel,const UntiedTaskActionTy & Action)193   CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
194                                  const VarDecl *ThreadIDVar,
195                                  const RegionCodeGenTy &CodeGen,
196                                  OpenMPDirectiveKind Kind, bool HasCancel,
197                                  const UntiedTaskActionTy &Action)
198       : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
199         ThreadIDVar(ThreadIDVar), Action(Action) {
200     assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
201   }
202 
203   /// Get a variable or parameter for storing global thread id
204   /// inside OpenMP construct.
getThreadIDVariable() const205   const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
206 
207   /// Get an LValue for the current ThreadID variable.
208   LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
209 
210   /// Get the name of the capture helper.
getHelperName() const211   StringRef getHelperName() const override { return ".omp_outlined."; }
212 
emitUntiedSwitch(CodeGenFunction & CGF)213   void emitUntiedSwitch(CodeGenFunction &CGF) override {
214     Action.emitUntiedSwitch(CGF);
215   }
216 
classof(const CGCapturedStmtInfo * Info)217   static bool classof(const CGCapturedStmtInfo *Info) {
218     return CGOpenMPRegionInfo::classof(Info) &&
219            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
220                TaskOutlinedRegion;
221   }
222 
223 private:
224   /// A variable or parameter storing global thread id for OpenMP
225   /// constructs.
226   const VarDecl *ThreadIDVar;
227   /// Action for emitting code for untied tasks.
228   const UntiedTaskActionTy &Action;
229 };
230 
231 /// API for inlined captured statement code generation in OpenMP
232 /// constructs.
233 class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
234 public:
CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo * OldCSI,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)235   CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
236                             const RegionCodeGenTy &CodeGen,
237                             OpenMPDirectiveKind Kind, bool HasCancel)
238       : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
239         OldCSI(OldCSI),
240         OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
241 
242   // Retrieve the value of the context parameter.
getContextValue() const243   llvm::Value *getContextValue() const override {
244     if (OuterRegionInfo)
245       return OuterRegionInfo->getContextValue();
246     llvm_unreachable("No context value for inlined OpenMP region");
247   }
248 
setContextValue(llvm::Value * V)249   void setContextValue(llvm::Value *V) override {
250     if (OuterRegionInfo) {
251       OuterRegionInfo->setContextValue(V);
252       return;
253     }
254     llvm_unreachable("No context value for inlined OpenMP region");
255   }
256 
257   /// Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const258   const FieldDecl *lookup(const VarDecl *VD) const override {
259     if (OuterRegionInfo)
260       return OuterRegionInfo->lookup(VD);
261     // If there is no outer outlined region,no need to lookup in a list of
262     // captured variables, we can use the original one.
263     return nullptr;
264   }
265 
getThisFieldDecl() const266   FieldDecl *getThisFieldDecl() const override {
267     if (OuterRegionInfo)
268       return OuterRegionInfo->getThisFieldDecl();
269     return nullptr;
270   }
271 
272   /// Get a variable or parameter for storing global thread id
273   /// inside OpenMP construct.
getThreadIDVariable() const274   const VarDecl *getThreadIDVariable() const override {
275     if (OuterRegionInfo)
276       return OuterRegionInfo->getThreadIDVariable();
277     return nullptr;
278   }
279 
280   /// Get an LValue for the current ThreadID variable.
getThreadIDVariableLValue(CodeGenFunction & CGF)281   LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override {
282     if (OuterRegionInfo)
283       return OuterRegionInfo->getThreadIDVariableLValue(CGF);
284     llvm_unreachable("No LValue for inlined OpenMP construct");
285   }
286 
287   /// Get the name of the capture helper.
getHelperName() const288   StringRef getHelperName() const override {
289     if (auto *OuterRegionInfo = getOldCSI())
290       return OuterRegionInfo->getHelperName();
291     llvm_unreachable("No helper name for inlined OpenMP construct");
292   }
293 
emitUntiedSwitch(CodeGenFunction & CGF)294   void emitUntiedSwitch(CodeGenFunction &CGF) override {
295     if (OuterRegionInfo)
296       OuterRegionInfo->emitUntiedSwitch(CGF);
297   }
298 
getOldCSI() const299   CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
300 
classof(const CGCapturedStmtInfo * Info)301   static bool classof(const CGCapturedStmtInfo *Info) {
302     return CGOpenMPRegionInfo::classof(Info) &&
303            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
304   }
305 
306   ~CGOpenMPInlinedRegionInfo() override = default;
307 
308 private:
309   /// CodeGen info about outer OpenMP region.
310   CodeGenFunction::CGCapturedStmtInfo *OldCSI;
311   CGOpenMPRegionInfo *OuterRegionInfo;
312 };
313 
314 /// API for captured statement code generation in OpenMP target
315 /// constructs. For this captures, implicit parameters are used instead of the
316 /// captured fields. The name of the target region has to be unique in a given
317 /// application so it is provided by the client, because only the client has
318 /// the information to generate that.
319 class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
320 public:
CGOpenMPTargetRegionInfo(const CapturedStmt & CS,const RegionCodeGenTy & CodeGen,StringRef HelperName)321   CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
322                            const RegionCodeGenTy &CodeGen, StringRef HelperName)
323       : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
324                            /*HasCancel=*/false),
325         HelperName(HelperName) {}
326 
327   /// This is unused for target regions because each starts executing
328   /// with a single thread.
getThreadIDVariable() const329   const VarDecl *getThreadIDVariable() const override { return nullptr; }
330 
331   /// Get the name of the capture helper.
getHelperName() const332   StringRef getHelperName() const override { return HelperName; }
333 
classof(const CGCapturedStmtInfo * Info)334   static bool classof(const CGCapturedStmtInfo *Info) {
335     return CGOpenMPRegionInfo::classof(Info) &&
336            cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
337   }
338 
339 private:
340   StringRef HelperName;
341 };
342 
EmptyCodeGen(CodeGenFunction &,PrePostActionTy &)343 static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
344   llvm_unreachable("No codegen for expressions");
345 }
346 /// API for generation of expressions captured in a innermost OpenMP
347 /// region.
348 class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
349 public:
CGOpenMPInnerExprInfo(CodeGenFunction & CGF,const CapturedStmt & CS)350   CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
351       : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
352                                   OMPD_unknown,
353                                   /*HasCancel=*/false),
354         PrivScope(CGF) {
355     // Make sure the globals captured in the provided statement are local by
356     // using the privatization logic. We assume the same variable is not
357     // captured more than once.
358     for (const auto &C : CS.captures()) {
359       if (!C.capturesVariable() && !C.capturesVariableByCopy())
360         continue;
361 
362       const VarDecl *VD = C.getCapturedVar();
363       if (VD->isLocalVarDeclOrParm())
364         continue;
365 
366       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
367                       /*RefersToEnclosingVariableOrCapture=*/false,
368                       VD->getType().getNonReferenceType(), VK_LValue,
369                       C.getLocation());
370       PrivScope.addPrivate(
371           VD, [&CGF, &DRE]() { return CGF.EmitLValue(&DRE).getAddress(CGF); });
372     }
373     (void)PrivScope.Privatize();
374   }
375 
376   /// Lookup the captured field decl for a variable.
lookup(const VarDecl * VD) const377   const FieldDecl *lookup(const VarDecl *VD) const override {
378     if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
379       return FD;
380     return nullptr;
381   }
382 
383   /// Emit the captured statement body.
EmitBody(CodeGenFunction & CGF,const Stmt * S)384   void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
385     llvm_unreachable("No body for expressions");
386   }
387 
388   /// Get a variable or parameter for storing global thread id
389   /// inside OpenMP construct.
getThreadIDVariable() const390   const VarDecl *getThreadIDVariable() const override {
391     llvm_unreachable("No thread id for expressions");
392   }
393 
394   /// Get the name of the capture helper.
getHelperName() const395   StringRef getHelperName() const override {
396     llvm_unreachable("No helper name for expressions");
397   }
398 
classof(const CGCapturedStmtInfo * Info)399   static bool classof(const CGCapturedStmtInfo *Info) { return false; }
400 
401 private:
402   /// Private scope to capture global variables.
403   CodeGenFunction::OMPPrivateScope PrivScope;
404 };
405 
406 /// RAII for emitting code of OpenMP constructs.
407 class InlinedOpenMPRegionRAII {
408   CodeGenFunction &CGF;
409   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
410   FieldDecl *LambdaThisCaptureField = nullptr;
411   const CodeGen::CGBlockInfo *BlockInfo = nullptr;
412 
413 public:
414   /// Constructs region for combined constructs.
415   /// \param CodeGen Code generation sequence for combined directives. Includes
416   /// a list of functions used for code generation of implicitly inlined
417   /// regions.
InlinedOpenMPRegionRAII(CodeGenFunction & CGF,const RegionCodeGenTy & CodeGen,OpenMPDirectiveKind Kind,bool HasCancel)418   InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
419                           OpenMPDirectiveKind Kind, bool HasCancel)
420       : CGF(CGF) {
421     // Start emission for the construct.
422     CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
423         CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
424     std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
425     LambdaThisCaptureField = CGF.LambdaThisCaptureField;
426     CGF.LambdaThisCaptureField = nullptr;
427     BlockInfo = CGF.BlockInfo;
428     CGF.BlockInfo = nullptr;
429   }
430 
~InlinedOpenMPRegionRAII()431   ~InlinedOpenMPRegionRAII() {
432     // Restore original CapturedStmtInfo only if we're done with code emission.
433     auto *OldCSI =
434         cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
435     delete CGF.CapturedStmtInfo;
436     CGF.CapturedStmtInfo = OldCSI;
437     std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
438     CGF.LambdaThisCaptureField = LambdaThisCaptureField;
439     CGF.BlockInfo = BlockInfo;
440   }
441 };
442 
443 /// Values for bit flags used in the ident_t to describe the fields.
444 /// All enumeric elements are named and described in accordance with the code
445 /// from https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
446 enum OpenMPLocationFlags : unsigned {
447   /// Use trampoline for internal microtask.
448   OMP_IDENT_IMD = 0x01,
449   /// Use c-style ident structure.
450   OMP_IDENT_KMPC = 0x02,
451   /// Atomic reduction option for kmpc_reduce.
452   OMP_ATOMIC_REDUCE = 0x10,
453   /// Explicit 'barrier' directive.
454   OMP_IDENT_BARRIER_EXPL = 0x20,
455   /// Implicit barrier in code.
456   OMP_IDENT_BARRIER_IMPL = 0x40,
457   /// Implicit barrier in 'for' directive.
458   OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
459   /// Implicit barrier in 'sections' directive.
460   OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
461   /// Implicit barrier in 'single' directive.
462   OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140,
463   /// Call of __kmp_for_static_init for static loop.
464   OMP_IDENT_WORK_LOOP = 0x200,
465   /// Call of __kmp_for_static_init for sections.
466   OMP_IDENT_WORK_SECTIONS = 0x400,
467   /// Call of __kmp_for_static_init for distribute.
468   OMP_IDENT_WORK_DISTRIBUTE = 0x800,
469   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE)
470 };
471 
472 namespace {
473 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
474 /// Values for bit flags for marking which requires clauses have been used.
475 enum OpenMPOffloadingRequiresDirFlags : int64_t {
476   /// flag undefined.
477   OMP_REQ_UNDEFINED               = 0x000,
478   /// no requires clause present.
479   OMP_REQ_NONE                    = 0x001,
480   /// reverse_offload clause.
481   OMP_REQ_REVERSE_OFFLOAD         = 0x002,
482   /// unified_address clause.
483   OMP_REQ_UNIFIED_ADDRESS         = 0x004,
484   /// unified_shared_memory clause.
485   OMP_REQ_UNIFIED_SHARED_MEMORY   = 0x008,
486   /// dynamic_allocators clause.
487   OMP_REQ_DYNAMIC_ALLOCATORS      = 0x010,
488   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS)
489 };
490 
491 enum OpenMPOffloadingReservedDeviceIDs {
492   /// Device ID if the device was not defined, runtime should get it
493   /// from environment variables in the spec.
494   OMP_DEVICEID_UNDEF = -1,
495 };
496 } // anonymous namespace
497 
498 /// Describes ident structure that describes a source location.
499 /// All descriptions are taken from
500 /// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
501 /// Original structure:
502 /// typedef struct ident {
503 ///    kmp_int32 reserved_1;   /**<  might be used in Fortran;
504 ///                                  see above  */
505 ///    kmp_int32 flags;        /**<  also f.flags; KMP_IDENT_xxx flags;
506 ///                                  KMP_IDENT_KMPC identifies this union
507 ///                                  member  */
508 ///    kmp_int32 reserved_2;   /**<  not really used in Fortran any more;
509 ///                                  see above */
510 ///#if USE_ITT_BUILD
511 ///                            /*  but currently used for storing
512 ///                                region-specific ITT */
513 ///                            /*  contextual information. */
514 ///#endif /* USE_ITT_BUILD */
515 ///    kmp_int32 reserved_3;   /**< source[4] in Fortran, do not use for
516 ///                                 C++  */
517 ///    char const *psource;    /**< String describing the source location.
518 ///                            The string is composed of semi-colon separated
519 //                             fields which describe the source file,
520 ///                            the function and a pair of line numbers that
521 ///                            delimit the construct.
522 ///                             */
523 /// } ident_t;
524 enum IdentFieldIndex {
525   /// might be used in Fortran
526   IdentField_Reserved_1,
527   /// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
528   IdentField_Flags,
529   /// Not really used in Fortran any more
530   IdentField_Reserved_2,
531   /// Source[4] in Fortran, do not use for C++
532   IdentField_Reserved_3,
533   /// String describing the source location. The string is composed of
534   /// semi-colon separated fields which describe the source file, the function
535   /// and a pair of line numbers that delimit the construct.
536   IdentField_PSource
537 };
538 
539 /// Schedule types for 'omp for' loops (these enumerators are taken from
540 /// the enum sched_type in kmp.h).
541 enum OpenMPSchedType {
542   /// Lower bound for default (unordered) versions.
543   OMP_sch_lower = 32,
544   OMP_sch_static_chunked = 33,
545   OMP_sch_static = 34,
546   OMP_sch_dynamic_chunked = 35,
547   OMP_sch_guided_chunked = 36,
548   OMP_sch_runtime = 37,
549   OMP_sch_auto = 38,
550   /// static with chunk adjustment (e.g., simd)
551   OMP_sch_static_balanced_chunked = 45,
552   /// Lower bound for 'ordered' versions.
553   OMP_ord_lower = 64,
554   OMP_ord_static_chunked = 65,
555   OMP_ord_static = 66,
556   OMP_ord_dynamic_chunked = 67,
557   OMP_ord_guided_chunked = 68,
558   OMP_ord_runtime = 69,
559   OMP_ord_auto = 70,
560   OMP_sch_default = OMP_sch_static,
561   /// dist_schedule types
562   OMP_dist_sch_static_chunked = 91,
563   OMP_dist_sch_static = 92,
564   /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
565   /// Set if the monotonic schedule modifier was present.
566   OMP_sch_modifier_monotonic = (1 << 29),
567   /// Set if the nonmonotonic schedule modifier was present.
568   OMP_sch_modifier_nonmonotonic = (1 << 30),
569 };
570 
571 /// A basic class for pre|post-action for advanced codegen sequence for OpenMP
572 /// region.
573 class CleanupTy final : public EHScopeStack::Cleanup {
574   PrePostActionTy *Action;
575 
576 public:
CleanupTy(PrePostActionTy * Action)577   explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
Emit(CodeGenFunction & CGF,Flags)578   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
579     if (!CGF.HaveInsertPoint())
580       return;
581     Action->Exit(CGF);
582   }
583 };
584 
585 } // anonymous namespace
586 
operator ()(CodeGenFunction & CGF) const587 void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
588   CodeGenFunction::RunCleanupsScope Scope(CGF);
589   if (PrePostAction) {
590     CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
591     Callback(CodeGen, CGF, *PrePostAction);
592   } else {
593     PrePostActionTy Action;
594     Callback(CodeGen, CGF, Action);
595   }
596 }
597 
598 /// Check if the combiner is a call to UDR combiner and if it is so return the
599 /// UDR decl used for reduction.
600 static const OMPDeclareReductionDecl *
getReductionInit(const Expr * ReductionOp)601 getReductionInit(const Expr *ReductionOp) {
602   if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
603     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
604       if (const auto *DRE =
605               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
606         if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
607           return DRD;
608   return nullptr;
609 }
610 
emitInitWithReductionInitializer(CodeGenFunction & CGF,const OMPDeclareReductionDecl * DRD,const Expr * InitOp,Address Private,Address Original,QualType Ty)611 static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
612                                              const OMPDeclareReductionDecl *DRD,
613                                              const Expr *InitOp,
614                                              Address Private, Address Original,
615                                              QualType Ty) {
616   if (DRD->getInitializer()) {
617     std::pair<llvm::Function *, llvm::Function *> Reduction =
618         CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
619     const auto *CE = cast<CallExpr>(InitOp);
620     const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
621     const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
622     const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
623     const auto *LHSDRE =
624         cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
625     const auto *RHSDRE =
626         cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
627     CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
628     PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
629                             [=]() { return Private; });
630     PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
631                             [=]() { return Original; });
632     (void)PrivateScope.Privatize();
633     RValue Func = RValue::get(Reduction.second);
634     CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
635     CGF.EmitIgnoredExpr(InitOp);
636   } else {
637     llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
638     std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"});
639     auto *GV = new llvm::GlobalVariable(
640         CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
641         llvm::GlobalValue::PrivateLinkage, Init, Name);
642     LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
643     RValue InitRVal;
644     switch (CGF.getEvaluationKind(Ty)) {
645     case TEK_Scalar:
646       InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation());
647       break;
648     case TEK_Complex:
649       InitRVal =
650           RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation()));
651       break;
652     case TEK_Aggregate:
653       InitRVal = RValue::getAggregate(LV.getAddress(CGF));
654       break;
655     }
656     OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_RValue);
657     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
658     CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
659                          /*IsInitializer=*/false);
660   }
661 }
662 
663 /// Emit initialization of arrays of complex types.
664 /// \param DestAddr Address of the array.
665 /// \param Type Type of array.
666 /// \param Init Initial expression of array.
667 /// \param SrcAddr Address of the original array.
EmitOMPAggregateInit(CodeGenFunction & CGF,Address DestAddr,QualType Type,bool EmitDeclareReductionInit,const Expr * Init,const OMPDeclareReductionDecl * DRD,Address SrcAddr=Address::invalid ())668 static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
669                                  QualType Type, bool EmitDeclareReductionInit,
670                                  const Expr *Init,
671                                  const OMPDeclareReductionDecl *DRD,
672                                  Address SrcAddr = Address::invalid()) {
673   // Perform element-by-element initialization.
674   QualType ElementTy;
675 
676   // Drill down to the base element type on both arrays.
677   const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
678   llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
679   DestAddr =
680       CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
681   if (DRD)
682     SrcAddr =
683         CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
684 
685   llvm::Value *SrcBegin = nullptr;
686   if (DRD)
687     SrcBegin = SrcAddr.getPointer();
688   llvm::Value *DestBegin = DestAddr.getPointer();
689   // Cast from pointer to array type to pointer to single element.
690   llvm::Value *DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
691   // The basic structure here is a while-do loop.
692   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
693   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
694   llvm::Value *IsEmpty =
695       CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
696   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
697 
698   // Enter the loop body, making that address the current address.
699   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
700   CGF.EmitBlock(BodyBB);
701 
702   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
703 
704   llvm::PHINode *SrcElementPHI = nullptr;
705   Address SrcElementCurrent = Address::invalid();
706   if (DRD) {
707     SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
708                                           "omp.arraycpy.srcElementPast");
709     SrcElementPHI->addIncoming(SrcBegin, EntryBB);
710     SrcElementCurrent =
711         Address(SrcElementPHI,
712                 SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
713   }
714   llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
715       DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
716   DestElementPHI->addIncoming(DestBegin, EntryBB);
717   Address DestElementCurrent =
718       Address(DestElementPHI,
719               DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
720 
721   // Emit copy.
722   {
723     CodeGenFunction::RunCleanupsScope InitScope(CGF);
724     if (EmitDeclareReductionInit) {
725       emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
726                                        SrcElementCurrent, ElementTy);
727     } else
728       CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
729                            /*IsInitializer=*/false);
730   }
731 
732   if (DRD) {
733     // Shift the address forward by one element.
734     llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32(
735         SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
736     SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
737   }
738 
739   // Shift the address forward by one element.
740   llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32(
741       DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
742   // Check whether we've reached the end.
743   llvm::Value *Done =
744       CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
745   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
746   DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
747 
748   // Done.
749   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
750 }
751 
emitSharedLValue(CodeGenFunction & CGF,const Expr * E)752 LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) {
753   return CGF.EmitOMPSharedLValue(E);
754 }
755 
emitSharedLValueUB(CodeGenFunction & CGF,const Expr * E)756 LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF,
757                                             const Expr *E) {
758   if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E))
759     return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
760   return LValue();
761 }
762 
emitAggregateInitialization(CodeGenFunction & CGF,unsigned N,Address PrivateAddr,LValue SharedLVal,const OMPDeclareReductionDecl * DRD)763 void ReductionCodeGen::emitAggregateInitialization(
764     CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
765     const OMPDeclareReductionDecl *DRD) {
766   // Emit VarDecl with copy init for arrays.
767   // Get the address of the original variable captured in current
768   // captured region.
769   const auto *PrivateVD =
770       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
771   bool EmitDeclareReductionInit =
772       DRD && (DRD->getInitializer() || !PrivateVD->hasInit());
773   EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(),
774                        EmitDeclareReductionInit,
775                        EmitDeclareReductionInit ? ClausesData[N].ReductionOp
776                                                 : PrivateVD->getInit(),
777                        DRD, SharedLVal.getAddress(CGF));
778 }
779 
ReductionCodeGen(ArrayRef<const Expr * > Shareds,ArrayRef<const Expr * > Origs,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > ReductionOps)780 ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds,
781                                    ArrayRef<const Expr *> Origs,
782                                    ArrayRef<const Expr *> Privates,
783                                    ArrayRef<const Expr *> ReductionOps) {
784   ClausesData.reserve(Shareds.size());
785   SharedAddresses.reserve(Shareds.size());
786   Sizes.reserve(Shareds.size());
787   BaseDecls.reserve(Shareds.size());
788   const auto *IOrig = Origs.begin();
789   const auto *IPriv = Privates.begin();
790   const auto *IRed = ReductionOps.begin();
791   for (const Expr *Ref : Shareds) {
792     ClausesData.emplace_back(Ref, *IOrig, *IPriv, *IRed);
793     std::advance(IOrig, 1);
794     std::advance(IPriv, 1);
795     std::advance(IRed, 1);
796   }
797 }
798 
emitSharedOrigLValue(CodeGenFunction & CGF,unsigned N)799 void ReductionCodeGen::emitSharedOrigLValue(CodeGenFunction &CGF, unsigned N) {
800   assert(SharedAddresses.size() == N && OrigAddresses.size() == N &&
801          "Number of generated lvalues must be exactly N.");
802   LValue First = emitSharedLValue(CGF, ClausesData[N].Shared);
803   LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Shared);
804   SharedAddresses.emplace_back(First, Second);
805   if (ClausesData[N].Shared == ClausesData[N].Ref) {
806     OrigAddresses.emplace_back(First, Second);
807   } else {
808     LValue First = emitSharedLValue(CGF, ClausesData[N].Ref);
809     LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref);
810     OrigAddresses.emplace_back(First, Second);
811   }
812 }
813 
emitAggregateType(CodeGenFunction & CGF,unsigned N)814 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) {
815   const auto *PrivateVD =
816       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
817   QualType PrivateType = PrivateVD->getType();
818   bool AsArraySection = isa<OMPArraySectionExpr>(ClausesData[N].Ref);
819   if (!PrivateType->isVariablyModifiedType()) {
820     Sizes.emplace_back(
821         CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType()),
822         nullptr);
823     return;
824   }
825   llvm::Value *Size;
826   llvm::Value *SizeInChars;
827   auto *ElemType =
828       cast<llvm::PointerType>(OrigAddresses[N].first.getPointer(CGF)->getType())
829           ->getElementType();
830   auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType);
831   if (AsArraySection) {
832     Size = CGF.Builder.CreatePtrDiff(OrigAddresses[N].second.getPointer(CGF),
833                                      OrigAddresses[N].first.getPointer(CGF));
834     Size = CGF.Builder.CreateNUWAdd(
835         Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
836     SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf);
837   } else {
838     SizeInChars =
839         CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType());
840     Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf);
841   }
842   Sizes.emplace_back(SizeInChars, Size);
843   CodeGenFunction::OpaqueValueMapping OpaqueMap(
844       CGF,
845       cast<OpaqueValueExpr>(
846           CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
847       RValue::get(Size));
848   CGF.EmitVariablyModifiedType(PrivateType);
849 }
850 
emitAggregateType(CodeGenFunction & CGF,unsigned N,llvm::Value * Size)851 void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N,
852                                          llvm::Value *Size) {
853   const auto *PrivateVD =
854       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
855   QualType PrivateType = PrivateVD->getType();
856   if (!PrivateType->isVariablyModifiedType()) {
857     assert(!Size && !Sizes[N].second &&
858            "Size should be nullptr for non-variably modified reduction "
859            "items.");
860     return;
861   }
862   CodeGenFunction::OpaqueValueMapping OpaqueMap(
863       CGF,
864       cast<OpaqueValueExpr>(
865           CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
866       RValue::get(Size));
867   CGF.EmitVariablyModifiedType(PrivateType);
868 }
869 
emitInitialization(CodeGenFunction & CGF,unsigned N,Address PrivateAddr,LValue SharedLVal,llvm::function_ref<bool (CodeGenFunction &)> DefaultInit)870 void ReductionCodeGen::emitInitialization(
871     CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
872     llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) {
873   assert(SharedAddresses.size() > N && "No variable was generated");
874   const auto *PrivateVD =
875       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
876   const OMPDeclareReductionDecl *DRD =
877       getReductionInit(ClausesData[N].ReductionOp);
878   QualType PrivateType = PrivateVD->getType();
879   PrivateAddr = CGF.Builder.CreateElementBitCast(
880       PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
881   QualType SharedType = SharedAddresses[N].first.getType();
882   SharedLVal = CGF.MakeAddrLValue(
883       CGF.Builder.CreateElementBitCast(SharedLVal.getAddress(CGF),
884                                        CGF.ConvertTypeForMem(SharedType)),
885       SharedType, SharedAddresses[N].first.getBaseInfo(),
886       CGF.CGM.getTBAAInfoForSubobject(SharedAddresses[N].first, SharedType));
887   if (CGF.getContext().getAsArrayType(PrivateVD->getType())) {
888     if (DRD && DRD->getInitializer())
889       (void)DefaultInit(CGF);
890     emitAggregateInitialization(CGF, N, PrivateAddr, SharedLVal, DRD);
891   } else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
892     (void)DefaultInit(CGF);
893     emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp,
894                                      PrivateAddr, SharedLVal.getAddress(CGF),
895                                      SharedLVal.getType());
896   } else if (!DefaultInit(CGF) && PrivateVD->hasInit() &&
897              !CGF.isTrivialInitializer(PrivateVD->getInit())) {
898     CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr,
899                          PrivateVD->getType().getQualifiers(),
900                          /*IsInitializer=*/false);
901   }
902 }
903 
needCleanups(unsigned N)904 bool ReductionCodeGen::needCleanups(unsigned N) {
905   const auto *PrivateVD =
906       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
907   QualType PrivateType = PrivateVD->getType();
908   QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
909   return DTorKind != QualType::DK_none;
910 }
911 
emitCleanups(CodeGenFunction & CGF,unsigned N,Address PrivateAddr)912 void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N,
913                                     Address PrivateAddr) {
914   const auto *PrivateVD =
915       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
916   QualType PrivateType = PrivateVD->getType();
917   QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
918   if (needCleanups(N)) {
919     PrivateAddr = CGF.Builder.CreateElementBitCast(
920         PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
921     CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType);
922   }
923 }
924 
loadToBegin(CodeGenFunction & CGF,QualType BaseTy,QualType ElTy,LValue BaseLV)925 static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
926                           LValue BaseLV) {
927   BaseTy = BaseTy.getNonReferenceType();
928   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
929          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
930     if (const auto *PtrTy = BaseTy->getAs<PointerType>()) {
931       BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(CGF), PtrTy);
932     } else {
933       LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(CGF), BaseTy);
934       BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal);
935     }
936     BaseTy = BaseTy->getPointeeType();
937   }
938   return CGF.MakeAddrLValue(
939       CGF.Builder.CreateElementBitCast(BaseLV.getAddress(CGF),
940                                        CGF.ConvertTypeForMem(ElTy)),
941       BaseLV.getType(), BaseLV.getBaseInfo(),
942       CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType()));
943 }
944 
castToBase(CodeGenFunction & CGF,QualType BaseTy,QualType ElTy,llvm::Type * BaseLVType,CharUnits BaseLVAlignment,llvm::Value * Addr)945 static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
946                           llvm::Type *BaseLVType, CharUnits BaseLVAlignment,
947                           llvm::Value *Addr) {
948   Address Tmp = Address::invalid();
949   Address TopTmp = Address::invalid();
950   Address MostTopTmp = Address::invalid();
951   BaseTy = BaseTy.getNonReferenceType();
952   while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
953          !CGF.getContext().hasSameType(BaseTy, ElTy)) {
954     Tmp = CGF.CreateMemTemp(BaseTy);
955     if (TopTmp.isValid())
956       CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
957     else
958       MostTopTmp = Tmp;
959     TopTmp = Tmp;
960     BaseTy = BaseTy->getPointeeType();
961   }
962   llvm::Type *Ty = BaseLVType;
963   if (Tmp.isValid())
964     Ty = Tmp.getElementType();
965   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
966   if (Tmp.isValid()) {
967     CGF.Builder.CreateStore(Addr, Tmp);
968     return MostTopTmp;
969   }
970   return Address(Addr, BaseLVAlignment);
971 }
972 
getBaseDecl(const Expr * Ref,const DeclRefExpr * & DE)973 static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) {
974   const VarDecl *OrigVD = nullptr;
975   if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Ref)) {
976     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
977     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
978       Base = TempOASE->getBase()->IgnoreParenImpCasts();
979     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
980       Base = TempASE->getBase()->IgnoreParenImpCasts();
981     DE = cast<DeclRefExpr>(Base);
982     OrigVD = cast<VarDecl>(DE->getDecl());
983   } else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) {
984     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
985     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
986       Base = TempASE->getBase()->IgnoreParenImpCasts();
987     DE = cast<DeclRefExpr>(Base);
988     OrigVD = cast<VarDecl>(DE->getDecl());
989   }
990   return OrigVD;
991 }
992 
adjustPrivateAddress(CodeGenFunction & CGF,unsigned N,Address PrivateAddr)993 Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N,
994                                                Address PrivateAddr) {
995   const DeclRefExpr *DE;
996   if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) {
997     BaseDecls.emplace_back(OrigVD);
998     LValue OriginalBaseLValue = CGF.EmitLValue(DE);
999     LValue BaseLValue =
1000         loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(),
1001                     OriginalBaseLValue);
1002     llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff(
1003         BaseLValue.getPointer(CGF), SharedAddresses[N].first.getPointer(CGF));
1004     llvm::Value *PrivatePointer =
1005         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1006             PrivateAddr.getPointer(),
1007             SharedAddresses[N].first.getAddress(CGF).getType());
1008     llvm::Value *Ptr = CGF.Builder.CreateGEP(PrivatePointer, Adjustment);
1009     return castToBase(CGF, OrigVD->getType(),
1010                       SharedAddresses[N].first.getType(),
1011                       OriginalBaseLValue.getAddress(CGF).getType(),
1012                       OriginalBaseLValue.getAlignment(), Ptr);
1013   }
1014   BaseDecls.emplace_back(
1015       cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl()));
1016   return PrivateAddr;
1017 }
1018 
usesReductionInitializer(unsigned N) const1019 bool ReductionCodeGen::usesReductionInitializer(unsigned N) const {
1020   const OMPDeclareReductionDecl *DRD =
1021       getReductionInit(ClausesData[N].ReductionOp);
1022   return DRD && DRD->getInitializer();
1023 }
1024 
getThreadIDVariableLValue(CodeGenFunction & CGF)1025 LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
1026   return CGF.EmitLoadOfPointerLValue(
1027       CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1028       getThreadIDVariable()->getType()->castAs<PointerType>());
1029 }
1030 
EmitBody(CodeGenFunction & CGF,const Stmt *)1031 void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
1032   if (!CGF.HaveInsertPoint())
1033     return;
1034   // 1.2.2 OpenMP Language Terminology
1035   // Structured block - An executable statement with a single entry at the
1036   // top and a single exit at the bottom.
1037   // The point of exit cannot be a branch out of the structured block.
1038   // longjmp() and throw() must not violate the entry/exit criteria.
1039   CGF.EHStack.pushTerminate();
1040   CodeGen(CGF);
1041   CGF.EHStack.popTerminate();
1042 }
1043 
getThreadIDVariableLValue(CodeGenFunction & CGF)1044 LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
1045     CodeGenFunction &CGF) {
1046   return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
1047                             getThreadIDVariable()->getType(),
1048                             AlignmentSource::Decl);
1049 }
1050 
addFieldToRecordDecl(ASTContext & C,DeclContext * DC,QualType FieldTy)1051 static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
1052                                        QualType FieldTy) {
1053   auto *Field = FieldDecl::Create(
1054       C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
1055       C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
1056       /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
1057   Field->setAccess(AS_public);
1058   DC->addDecl(Field);
1059   return Field;
1060 }
1061 
CGOpenMPRuntime(CodeGenModule & CGM,StringRef FirstSeparator,StringRef Separator)1062 CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM, StringRef FirstSeparator,
1063                                  StringRef Separator)
1064     : CGM(CGM), FirstSeparator(FirstSeparator), Separator(Separator),
1065       OMPBuilder(CGM.getModule()), OffloadEntriesInfoManager(CGM) {
1066   KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
1067 
1068   // Initialize Types used in OpenMPIRBuilder from OMPKinds.def
1069   OMPBuilder.initialize();
1070   loadOffloadInfoMetadata();
1071 }
1072 
clear()1073 void CGOpenMPRuntime::clear() {
1074   InternalVars.clear();
1075   // Clean non-target variable declarations possibly used only in debug info.
1076   for (const auto &Data : EmittedNonTargetVariables) {
1077     if (!Data.getValue().pointsToAliveValue())
1078       continue;
1079     auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue());
1080     if (!GV)
1081       continue;
1082     if (!GV->isDeclaration() || GV->getNumUses() > 0)
1083       continue;
1084     GV->eraseFromParent();
1085   }
1086 }
1087 
getName(ArrayRef<StringRef> Parts) const1088 std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const {
1089   SmallString<128> Buffer;
1090   llvm::raw_svector_ostream OS(Buffer);
1091   StringRef Sep = FirstSeparator;
1092   for (StringRef Part : Parts) {
1093     OS << Sep << Part;
1094     Sep = Separator;
1095   }
1096   return std::string(OS.str());
1097 }
1098 
1099 static llvm::Function *
emitCombinerOrInitializer(CodeGenModule & CGM,QualType Ty,const Expr * CombinerInitializer,const VarDecl * In,const VarDecl * Out,bool IsCombiner)1100 emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
1101                           const Expr *CombinerInitializer, const VarDecl *In,
1102                           const VarDecl *Out, bool IsCombiner) {
1103   // void .omp_combiner.(Ty *in, Ty *out);
1104   ASTContext &C = CGM.getContext();
1105   QualType PtrTy = C.getPointerType(Ty).withRestrict();
1106   FunctionArgList Args;
1107   ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
1108                                /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1109   ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
1110                               /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
1111   Args.push_back(&OmpOutParm);
1112   Args.push_back(&OmpInParm);
1113   const CGFunctionInfo &FnInfo =
1114       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1115   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
1116   std::string Name = CGM.getOpenMPRuntime().getName(
1117       {IsCombiner ? "omp_combiner" : "omp_initializer", ""});
1118   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
1119                                     Name, &CGM.getModule());
1120   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
1121   if (CGM.getLangOpts().Optimize) {
1122     Fn->removeFnAttr(llvm::Attribute::NoInline);
1123     Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
1124     Fn->addFnAttr(llvm::Attribute::AlwaysInline);
1125   }
1126   CodeGenFunction CGF(CGM);
1127   // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
1128   // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
1129   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(),
1130                     Out->getLocation());
1131   CodeGenFunction::OMPPrivateScope Scope(CGF);
1132   Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
1133   Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() {
1134     return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
1135         .getAddress(CGF);
1136   });
1137   Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
1138   Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() {
1139     return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
1140         .getAddress(CGF);
1141   });
1142   (void)Scope.Privatize();
1143   if (!IsCombiner && Out->hasInit() &&
1144       !CGF.isTrivialInitializer(Out->getInit())) {
1145     CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out),
1146                          Out->getType().getQualifiers(),
1147                          /*IsInitializer=*/true);
1148   }
1149   if (CombinerInitializer)
1150     CGF.EmitIgnoredExpr(CombinerInitializer);
1151   Scope.ForceCleanup();
1152   CGF.FinishFunction();
1153   return Fn;
1154 }
1155 
emitUserDefinedReduction(CodeGenFunction * CGF,const OMPDeclareReductionDecl * D)1156 void CGOpenMPRuntime::emitUserDefinedReduction(
1157     CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
1158   if (UDRMap.count(D) > 0)
1159     return;
1160   llvm::Function *Combiner = emitCombinerOrInitializer(
1161       CGM, D->getType(), D->getCombiner(),
1162       cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()),
1163       cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()),
1164       /*IsCombiner=*/true);
1165   llvm::Function *Initializer = nullptr;
1166   if (const Expr *Init = D->getInitializer()) {
1167     Initializer = emitCombinerOrInitializer(
1168         CGM, D->getType(),
1169         D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init
1170                                                                      : nullptr,
1171         cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()),
1172         cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()),
1173         /*IsCombiner=*/false);
1174   }
1175   UDRMap.try_emplace(D, Combiner, Initializer);
1176   if (CGF) {
1177     auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
1178     Decls.second.push_back(D);
1179   }
1180 }
1181 
1182 std::pair<llvm::Function *, llvm::Function *>
getUserDefinedReduction(const OMPDeclareReductionDecl * D)1183 CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
1184   auto I = UDRMap.find(D);
1185   if (I != UDRMap.end())
1186     return I->second;
1187   emitUserDefinedReduction(/*CGF=*/nullptr, D);
1188   return UDRMap.lookup(D);
1189 }
1190 
1191 namespace {
1192 // Temporary RAII solution to perform a push/pop stack event on the OpenMP IR
1193 // Builder if one is present.
1194 struct PushAndPopStackRAII {
PushAndPopStackRAII__anonbee92f940811::PushAndPopStackRAII1195   PushAndPopStackRAII(llvm::OpenMPIRBuilder *OMPBuilder, CodeGenFunction &CGF,
1196                       bool HasCancel)
1197       : OMPBuilder(OMPBuilder) {
1198     if (!OMPBuilder)
1199       return;
1200 
1201     // The following callback is the crucial part of clangs cleanup process.
1202     //
1203     // NOTE:
1204     // Once the OpenMPIRBuilder is used to create parallel regions (and
1205     // similar), the cancellation destination (Dest below) is determined via
1206     // IP. That means if we have variables to finalize we split the block at IP,
1207     // use the new block (=BB) as destination to build a JumpDest (via
1208     // getJumpDestInCurrentScope(BB)) which then is fed to
1209     // EmitBranchThroughCleanup. Furthermore, there will not be the need
1210     // to push & pop an FinalizationInfo object.
1211     // The FiniCB will still be needed but at the point where the
1212     // OpenMPIRBuilder is asked to construct a parallel (or similar) construct.
1213     auto FiniCB = [&CGF](llvm::OpenMPIRBuilder::InsertPointTy IP) {
1214       assert(IP.getBlock()->end() == IP.getPoint() &&
1215              "Clang CG should cause non-terminated block!");
1216       CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1217       CGF.Builder.restoreIP(IP);
1218       CodeGenFunction::JumpDest Dest =
1219           CGF.getOMPCancelDestination(OMPD_parallel);
1220       CGF.EmitBranchThroughCleanup(Dest);
1221     };
1222 
1223     // TODO: Remove this once we emit parallel regions through the
1224     //       OpenMPIRBuilder as it can do this setup internally.
1225     llvm::OpenMPIRBuilder::FinalizationInfo FI(
1226         {FiniCB, OMPD_parallel, HasCancel});
1227     OMPBuilder->pushFinalizationCB(std::move(FI));
1228   }
~PushAndPopStackRAII__anonbee92f940811::PushAndPopStackRAII1229   ~PushAndPopStackRAII() {
1230     if (OMPBuilder)
1231       OMPBuilder->popFinalizationCB();
1232   }
1233   llvm::OpenMPIRBuilder *OMPBuilder;
1234 };
1235 } // namespace
1236 
emitParallelOrTeamsOutlinedFunction(CodeGenModule & CGM,const OMPExecutableDirective & D,const CapturedStmt * CS,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const StringRef OutlinedHelperName,const RegionCodeGenTy & CodeGen)1237 static llvm::Function *emitParallelOrTeamsOutlinedFunction(
1238     CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS,
1239     const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
1240     const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) {
1241   assert(ThreadIDVar->getType()->isPointerType() &&
1242          "thread id variable must be of type kmp_int32 *");
1243   CodeGenFunction CGF(CGM, true);
1244   bool HasCancel = false;
1245   if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D))
1246     HasCancel = OPD->hasCancel();
1247   else if (const auto *OPD = dyn_cast<OMPTargetParallelDirective>(&D))
1248     HasCancel = OPD->hasCancel();
1249   else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
1250     HasCancel = OPSD->hasCancel();
1251   else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
1252     HasCancel = OPFD->hasCancel();
1253   else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D))
1254     HasCancel = OPFD->hasCancel();
1255   else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D))
1256     HasCancel = OPFD->hasCancel();
1257   else if (const auto *OPFD =
1258                dyn_cast<OMPTeamsDistributeParallelForDirective>(&D))
1259     HasCancel = OPFD->hasCancel();
1260   else if (const auto *OPFD =
1261                dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D))
1262     HasCancel = OPFD->hasCancel();
1263 
1264   // TODO: Temporarily inform the OpenMPIRBuilder, if any, about the new
1265   //       parallel region to make cancellation barriers work properly.
1266   llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
1267   PushAndPopStackRAII PSR(&OMPBuilder, CGF, HasCancel);
1268   CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
1269                                     HasCancel, OutlinedHelperName);
1270   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1271   return CGF.GenerateOpenMPCapturedStmtFunction(*CS, D.getBeginLoc());
1272 }
1273 
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1274 llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction(
1275     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1276     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1277   const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel);
1278   return emitParallelOrTeamsOutlinedFunction(
1279       CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1280 }
1281 
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1282 llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction(
1283     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1284     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1285   const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams);
1286   return emitParallelOrTeamsOutlinedFunction(
1287       CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
1288 }
1289 
emitTaskOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,const VarDecl * PartIDVar,const VarDecl * TaskTVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen,bool Tied,unsigned & NumberOfParts)1290 llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction(
1291     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1292     const VarDecl *PartIDVar, const VarDecl *TaskTVar,
1293     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
1294     bool Tied, unsigned &NumberOfParts) {
1295   auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
1296                                               PrePostActionTy &) {
1297     llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc());
1298     llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc());
1299     llvm::Value *TaskArgs[] = {
1300         UpLoc, ThreadID,
1301         CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
1302                                     TaskTVar->getType()->castAs<PointerType>())
1303             .getPointer(CGF)};
1304     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1305                             CGM.getModule(), OMPRTL___kmpc_omp_task),
1306                         TaskArgs);
1307   };
1308   CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
1309                                                             UntiedCodeGen);
1310   CodeGen.setAction(Action);
1311   assert(!ThreadIDVar->getType()->isPointerType() &&
1312          "thread id variable must be of type kmp_int32 for tasks");
1313   const OpenMPDirectiveKind Region =
1314       isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop
1315                                                       : OMPD_task;
1316   const CapturedStmt *CS = D.getCapturedStmt(Region);
1317   bool HasCancel = false;
1318   if (const auto *TD = dyn_cast<OMPTaskDirective>(&D))
1319     HasCancel = TD->hasCancel();
1320   else if (const auto *TD = dyn_cast<OMPTaskLoopDirective>(&D))
1321     HasCancel = TD->hasCancel();
1322   else if (const auto *TD = dyn_cast<OMPMasterTaskLoopDirective>(&D))
1323     HasCancel = TD->hasCancel();
1324   else if (const auto *TD = dyn_cast<OMPParallelMasterTaskLoopDirective>(&D))
1325     HasCancel = TD->hasCancel();
1326 
1327   CodeGenFunction CGF(CGM, true);
1328   CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
1329                                         InnermostKind, HasCancel, Action);
1330   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
1331   llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS);
1332   if (!Tied)
1333     NumberOfParts = Action.getNumberOfParts();
1334   return Res;
1335 }
1336 
buildStructValue(ConstantStructBuilder & Fields,CodeGenModule & CGM,const RecordDecl * RD,const CGRecordLayout & RL,ArrayRef<llvm::Constant * > Data)1337 static void buildStructValue(ConstantStructBuilder &Fields, CodeGenModule &CGM,
1338                              const RecordDecl *RD, const CGRecordLayout &RL,
1339                              ArrayRef<llvm::Constant *> Data) {
1340   llvm::StructType *StructTy = RL.getLLVMType();
1341   unsigned PrevIdx = 0;
1342   ConstantInitBuilder CIBuilder(CGM);
1343   auto DI = Data.begin();
1344   for (const FieldDecl *FD : RD->fields()) {
1345     unsigned Idx = RL.getLLVMFieldNo(FD);
1346     // Fill the alignment.
1347     for (unsigned I = PrevIdx; I < Idx; ++I)
1348       Fields.add(llvm::Constant::getNullValue(StructTy->getElementType(I)));
1349     PrevIdx = Idx + 1;
1350     Fields.add(*DI);
1351     ++DI;
1352   }
1353 }
1354 
1355 template <class... As>
1356 static llvm::GlobalVariable *
createGlobalStruct(CodeGenModule & CGM,QualType Ty,bool IsConstant,ArrayRef<llvm::Constant * > Data,const Twine & Name,As &&...Args)1357 createGlobalStruct(CodeGenModule &CGM, QualType Ty, bool IsConstant,
1358                    ArrayRef<llvm::Constant *> Data, const Twine &Name,
1359                    As &&... Args) {
1360   const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1361   const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1362   ConstantInitBuilder CIBuilder(CGM);
1363   ConstantStructBuilder Fields = CIBuilder.beginStruct(RL.getLLVMType());
1364   buildStructValue(Fields, CGM, RD, RL, Data);
1365   return Fields.finishAndCreateGlobal(
1366       Name, CGM.getContext().getAlignOfGlobalVarInChars(Ty), IsConstant,
1367       std::forward<As>(Args)...);
1368 }
1369 
1370 template <typename T>
1371 static void
createConstantGlobalStructAndAddToParent(CodeGenModule & CGM,QualType Ty,ArrayRef<llvm::Constant * > Data,T & Parent)1372 createConstantGlobalStructAndAddToParent(CodeGenModule &CGM, QualType Ty,
1373                                          ArrayRef<llvm::Constant *> Data,
1374                                          T &Parent) {
1375   const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
1376   const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
1377   ConstantStructBuilder Fields = Parent.beginStruct(RL.getLLVMType());
1378   buildStructValue(Fields, CGM, RD, RL, Data);
1379   Fields.finishAndAddTo(Parent);
1380 }
1381 
setLocThreadIdInsertPt(CodeGenFunction & CGF,bool AtCurrentPoint)1382 void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF,
1383                                              bool AtCurrentPoint) {
1384   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1385   assert(!Elem.second.ServiceInsertPt && "Insert point is set already.");
1386 
1387   llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty);
1388   if (AtCurrentPoint) {
1389     Elem.second.ServiceInsertPt = new llvm::BitCastInst(
1390         Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock());
1391   } else {
1392     Elem.second.ServiceInsertPt =
1393         new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt");
1394     Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt);
1395   }
1396 }
1397 
clearLocThreadIdInsertPt(CodeGenFunction & CGF)1398 void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) {
1399   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1400   if (Elem.second.ServiceInsertPt) {
1401     llvm::Instruction *Ptr = Elem.second.ServiceInsertPt;
1402     Elem.second.ServiceInsertPt = nullptr;
1403     Ptr->eraseFromParent();
1404   }
1405 }
1406 
getIdentStringFromSourceLocation(CodeGenFunction & CGF,SourceLocation Loc,SmallString<128> & Buffer)1407 static StringRef getIdentStringFromSourceLocation(CodeGenFunction &CGF,
1408                                                   SourceLocation Loc,
1409                                                   SmallString<128> &Buffer) {
1410   llvm::raw_svector_ostream OS(Buffer);
1411   // Build debug location
1412   PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
1413   OS << ";" << PLoc.getFilename() << ";";
1414   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
1415     OS << FD->getQualifiedNameAsString();
1416   OS << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
1417   return OS.str();
1418 }
1419 
emitUpdateLocation(CodeGenFunction & CGF,SourceLocation Loc,unsigned Flags)1420 llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
1421                                                  SourceLocation Loc,
1422                                                  unsigned Flags) {
1423   llvm::Constant *SrcLocStr;
1424   if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo ||
1425       Loc.isInvalid()) {
1426     SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr();
1427   } else {
1428     std::string FunctionName = "";
1429     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
1430       FunctionName = FD->getQualifiedNameAsString();
1431     PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
1432     const char *FileName = PLoc.getFilename();
1433     unsigned Line = PLoc.getLine();
1434     unsigned Column = PLoc.getColumn();
1435     SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(FunctionName.c_str(), FileName,
1436                                                 Line, Column);
1437   }
1438   unsigned Reserved2Flags = getDefaultLocationReserved2Flags();
1439   return OMPBuilder.getOrCreateIdent(SrcLocStr, llvm::omp::IdentFlag(Flags),
1440                                      Reserved2Flags);
1441 }
1442 
getThreadID(CodeGenFunction & CGF,SourceLocation Loc)1443 llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
1444                                           SourceLocation Loc) {
1445   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1446   // If the OpenMPIRBuilder is used we need to use it for all thread id calls as
1447   // the clang invariants used below might be broken.
1448   if (CGM.getLangOpts().OpenMPIRBuilder) {
1449     SmallString<128> Buffer;
1450     OMPBuilder.updateToLocation(CGF.Builder.saveIP());
1451     auto *SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(
1452         getIdentStringFromSourceLocation(CGF, Loc, Buffer));
1453     return OMPBuilder.getOrCreateThreadID(
1454         OMPBuilder.getOrCreateIdent(SrcLocStr));
1455   }
1456 
1457   llvm::Value *ThreadID = nullptr;
1458   // Check whether we've already cached a load of the thread id in this
1459   // function.
1460   auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
1461   if (I != OpenMPLocThreadIDMap.end()) {
1462     ThreadID = I->second.ThreadID;
1463     if (ThreadID != nullptr)
1464       return ThreadID;
1465   }
1466   // If exceptions are enabled, do not use parameter to avoid possible crash.
1467   if (auto *OMPRegionInfo =
1468           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
1469     if (OMPRegionInfo->getThreadIDVariable()) {
1470       // Check if this an outlined function with thread id passed as argument.
1471       LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
1472       llvm::BasicBlock *TopBlock = CGF.AllocaInsertPt->getParent();
1473       if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions ||
1474           !CGF.getLangOpts().CXXExceptions ||
1475           CGF.Builder.GetInsertBlock() == TopBlock ||
1476           !isa<llvm::Instruction>(LVal.getPointer(CGF)) ||
1477           cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
1478               TopBlock ||
1479           cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
1480               CGF.Builder.GetInsertBlock()) {
1481         ThreadID = CGF.EmitLoadOfScalar(LVal, Loc);
1482         // If value loaded in entry block, cache it and use it everywhere in
1483         // function.
1484         if (CGF.Builder.GetInsertBlock() == TopBlock) {
1485           auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1486           Elem.second.ThreadID = ThreadID;
1487         }
1488         return ThreadID;
1489       }
1490     }
1491   }
1492 
1493   // This is not an outlined function region - need to call __kmpc_int32
1494   // kmpc_global_thread_num(ident_t *loc).
1495   // Generate thread id value and cache this value for use across the
1496   // function.
1497   auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
1498   if (!Elem.second.ServiceInsertPt)
1499     setLocThreadIdInsertPt(CGF);
1500   CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1501   CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
1502   llvm::CallInst *Call = CGF.Builder.CreateCall(
1503       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
1504                                             OMPRTL___kmpc_global_thread_num),
1505       emitUpdateLocation(CGF, Loc));
1506   Call->setCallingConv(CGF.getRuntimeCC());
1507   Elem.second.ThreadID = Call;
1508   return Call;
1509 }
1510 
functionFinished(CodeGenFunction & CGF)1511 void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
1512   assert(CGF.CurFn && "No function in current CodeGenFunction.");
1513   if (OpenMPLocThreadIDMap.count(CGF.CurFn)) {
1514     clearLocThreadIdInsertPt(CGF);
1515     OpenMPLocThreadIDMap.erase(CGF.CurFn);
1516   }
1517   if (FunctionUDRMap.count(CGF.CurFn) > 0) {
1518     for(const auto *D : FunctionUDRMap[CGF.CurFn])
1519       UDRMap.erase(D);
1520     FunctionUDRMap.erase(CGF.CurFn);
1521   }
1522   auto I = FunctionUDMMap.find(CGF.CurFn);
1523   if (I != FunctionUDMMap.end()) {
1524     for(const auto *D : I->second)
1525       UDMMap.erase(D);
1526     FunctionUDMMap.erase(I);
1527   }
1528   LastprivateConditionalToTypes.erase(CGF.CurFn);
1529   FunctionToUntiedTaskStackMap.erase(CGF.CurFn);
1530 }
1531 
getIdentTyPointerTy()1532 llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
1533   return OMPBuilder.IdentPtr;
1534 }
1535 
getKmpc_MicroPointerTy()1536 llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
1537   if (!Kmpc_MicroTy) {
1538     // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
1539     llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
1540                                  llvm::PointerType::getUnqual(CGM.Int32Ty)};
1541     Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
1542   }
1543   return llvm::PointerType::getUnqual(Kmpc_MicroTy);
1544 }
1545 
1546 llvm::FunctionCallee
createForStaticInitFunction(unsigned IVSize,bool IVSigned)1547 CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned) {
1548   assert((IVSize == 32 || IVSize == 64) &&
1549          "IV size is not compatible with the omp runtime");
1550   StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
1551                                             : "__kmpc_for_static_init_4u")
1552                                 : (IVSigned ? "__kmpc_for_static_init_8"
1553                                             : "__kmpc_for_static_init_8u");
1554   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1555   auto *PtrTy = llvm::PointerType::getUnqual(ITy);
1556   llvm::Type *TypeParams[] = {
1557     getIdentTyPointerTy(),                     // loc
1558     CGM.Int32Ty,                               // tid
1559     CGM.Int32Ty,                               // schedtype
1560     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
1561     PtrTy,                                     // p_lower
1562     PtrTy,                                     // p_upper
1563     PtrTy,                                     // p_stride
1564     ITy,                                       // incr
1565     ITy                                        // chunk
1566   };
1567   auto *FnTy =
1568       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1569   return CGM.CreateRuntimeFunction(FnTy, Name);
1570 }
1571 
1572 llvm::FunctionCallee
createDispatchInitFunction(unsigned IVSize,bool IVSigned)1573 CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) {
1574   assert((IVSize == 32 || IVSize == 64) &&
1575          "IV size is not compatible with the omp runtime");
1576   StringRef Name =
1577       IVSize == 32
1578           ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
1579           : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
1580   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1581   llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
1582                                CGM.Int32Ty,           // tid
1583                                CGM.Int32Ty,           // schedtype
1584                                ITy,                   // lower
1585                                ITy,                   // upper
1586                                ITy,                   // stride
1587                                ITy                    // chunk
1588   };
1589   auto *FnTy =
1590       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
1591   return CGM.CreateRuntimeFunction(FnTy, Name);
1592 }
1593 
1594 llvm::FunctionCallee
createDispatchFiniFunction(unsigned IVSize,bool IVSigned)1595 CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) {
1596   assert((IVSize == 32 || IVSize == 64) &&
1597          "IV size is not compatible with the omp runtime");
1598   StringRef Name =
1599       IVSize == 32
1600           ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
1601           : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
1602   llvm::Type *TypeParams[] = {
1603       getIdentTyPointerTy(), // loc
1604       CGM.Int32Ty,           // tid
1605   };
1606   auto *FnTy =
1607       llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
1608   return CGM.CreateRuntimeFunction(FnTy, Name);
1609 }
1610 
1611 llvm::FunctionCallee
createDispatchNextFunction(unsigned IVSize,bool IVSigned)1612 CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) {
1613   assert((IVSize == 32 || IVSize == 64) &&
1614          "IV size is not compatible with the omp runtime");
1615   StringRef Name =
1616       IVSize == 32
1617           ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
1618           : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
1619   llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
1620   auto *PtrTy = llvm::PointerType::getUnqual(ITy);
1621   llvm::Type *TypeParams[] = {
1622     getIdentTyPointerTy(),                     // loc
1623     CGM.Int32Ty,                               // tid
1624     llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
1625     PtrTy,                                     // p_lower
1626     PtrTy,                                     // p_upper
1627     PtrTy                                      // p_stride
1628   };
1629   auto *FnTy =
1630       llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
1631   return CGM.CreateRuntimeFunction(FnTy, Name);
1632 }
1633 
1634 /// Obtain information that uniquely identifies a target entry. This
1635 /// consists of the file and device IDs as well as line number associated with
1636 /// the relevant entry source location.
getTargetEntryUniqueInfo(ASTContext & C,SourceLocation Loc,unsigned & DeviceID,unsigned & FileID,unsigned & LineNum)1637 static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
1638                                      unsigned &DeviceID, unsigned &FileID,
1639                                      unsigned &LineNum) {
1640   SourceManager &SM = C.getSourceManager();
1641 
1642   // The loc should be always valid and have a file ID (the user cannot use
1643   // #pragma directives in macros)
1644 
1645   assert(Loc.isValid() && "Source location is expected to be always valid.");
1646 
1647   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1648   assert(PLoc.isValid() && "Source location is expected to be always valid.");
1649 
1650   llvm::sys::fs::UniqueID ID;
1651   if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
1652     SM.getDiagnostics().Report(diag::err_cannot_open_file)
1653         << PLoc.getFilename() << EC.message();
1654 
1655   DeviceID = ID.getDevice();
1656   FileID = ID.getFile();
1657   LineNum = PLoc.getLine();
1658 }
1659 
getAddrOfDeclareTargetVar(const VarDecl * VD)1660 Address CGOpenMPRuntime::getAddrOfDeclareTargetVar(const VarDecl *VD) {
1661   if (CGM.getLangOpts().OpenMPSimd)
1662     return Address::invalid();
1663   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
1664       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
1665   if (Res && (*Res == OMPDeclareTargetDeclAttr::MT_Link ||
1666               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
1667                HasRequiresUnifiedSharedMemory))) {
1668     SmallString<64> PtrName;
1669     {
1670       llvm::raw_svector_ostream OS(PtrName);
1671       OS << CGM.getMangledName(GlobalDecl(VD));
1672       if (!VD->isExternallyVisible()) {
1673         unsigned DeviceID, FileID, Line;
1674         getTargetEntryUniqueInfo(CGM.getContext(),
1675                                  VD->getCanonicalDecl()->getBeginLoc(),
1676                                  DeviceID, FileID, Line);
1677         OS << llvm::format("_%x", FileID);
1678       }
1679       OS << "_decl_tgt_ref_ptr";
1680     }
1681     llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName);
1682     if (!Ptr) {
1683       QualType PtrTy = CGM.getContext().getPointerType(VD->getType());
1684       Ptr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(PtrTy),
1685                                         PtrName);
1686 
1687       auto *GV = cast<llvm::GlobalVariable>(Ptr);
1688       GV->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
1689 
1690       if (!CGM.getLangOpts().OpenMPIsDevice)
1691         GV->setInitializer(CGM.GetAddrOfGlobal(VD));
1692       registerTargetGlobalVariable(VD, cast<llvm::Constant>(Ptr));
1693     }
1694     return Address(Ptr, CGM.getContext().getDeclAlign(VD));
1695   }
1696   return Address::invalid();
1697 }
1698 
1699 llvm::Constant *
getOrCreateThreadPrivateCache(const VarDecl * VD)1700 CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
1701   assert(!CGM.getLangOpts().OpenMPUseTLS ||
1702          !CGM.getContext().getTargetInfo().isTLSSupported());
1703   // Lookup the entry, lazily creating it if necessary.
1704   std::string Suffix = getName({"cache", ""});
1705   return getOrCreateInternalVariable(
1706       CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix));
1707 }
1708 
getAddrOfThreadPrivate(CodeGenFunction & CGF,const VarDecl * VD,Address VDAddr,SourceLocation Loc)1709 Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
1710                                                 const VarDecl *VD,
1711                                                 Address VDAddr,
1712                                                 SourceLocation Loc) {
1713   if (CGM.getLangOpts().OpenMPUseTLS &&
1714       CGM.getContext().getTargetInfo().isTLSSupported())
1715     return VDAddr;
1716 
1717   llvm::Type *VarTy = VDAddr.getElementType();
1718   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
1719                          CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
1720                                                        CGM.Int8PtrTy),
1721                          CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
1722                          getOrCreateThreadPrivateCache(VD)};
1723   return Address(CGF.EmitRuntimeCall(
1724                      OMPBuilder.getOrCreateRuntimeFunction(
1725                          CGM.getModule(), OMPRTL___kmpc_threadprivate_cached),
1726                      Args),
1727                  VDAddr.getAlignment());
1728 }
1729 
emitThreadPrivateVarInit(CodeGenFunction & CGF,Address VDAddr,llvm::Value * Ctor,llvm::Value * CopyCtor,llvm::Value * Dtor,SourceLocation Loc)1730 void CGOpenMPRuntime::emitThreadPrivateVarInit(
1731     CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
1732     llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
1733   // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
1734   // library.
1735   llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc);
1736   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1737                           CGM.getModule(), OMPRTL___kmpc_global_thread_num),
1738                       OMPLoc);
1739   // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
1740   // to register constructor/destructor for variable.
1741   llvm::Value *Args[] = {
1742       OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy),
1743       Ctor, CopyCtor, Dtor};
1744   CGF.EmitRuntimeCall(
1745       OMPBuilder.getOrCreateRuntimeFunction(
1746           CGM.getModule(), OMPRTL___kmpc_threadprivate_register),
1747       Args);
1748 }
1749 
emitThreadPrivateVarDefinition(const VarDecl * VD,Address VDAddr,SourceLocation Loc,bool PerformInit,CodeGenFunction * CGF)1750 llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
1751     const VarDecl *VD, Address VDAddr, SourceLocation Loc,
1752     bool PerformInit, CodeGenFunction *CGF) {
1753   if (CGM.getLangOpts().OpenMPUseTLS &&
1754       CGM.getContext().getTargetInfo().isTLSSupported())
1755     return nullptr;
1756 
1757   VD = VD->getDefinition(CGM.getContext());
1758   if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) {
1759     QualType ASTTy = VD->getType();
1760 
1761     llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
1762     const Expr *Init = VD->getAnyInitializer();
1763     if (CGM.getLangOpts().CPlusPlus && PerformInit) {
1764       // Generate function that re-emits the declaration's initializer into the
1765       // threadprivate copy of the variable VD
1766       CodeGenFunction CtorCGF(CGM);
1767       FunctionArgList Args;
1768       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
1769                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
1770                             ImplicitParamDecl::Other);
1771       Args.push_back(&Dst);
1772 
1773       const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
1774           CGM.getContext().VoidPtrTy, Args);
1775       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1776       std::string Name = getName({"__kmpc_global_ctor_", ""});
1777       llvm::Function *Fn =
1778           CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc);
1779       CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
1780                             Args, Loc, Loc);
1781       llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar(
1782           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
1783           CGM.getContext().VoidPtrTy, Dst.getLocation());
1784       Address Arg = Address(ArgVal, VDAddr.getAlignment());
1785       Arg = CtorCGF.Builder.CreateElementBitCast(
1786           Arg, CtorCGF.ConvertTypeForMem(ASTTy));
1787       CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
1788                                /*IsInitializer=*/true);
1789       ArgVal = CtorCGF.EmitLoadOfScalar(
1790           CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
1791           CGM.getContext().VoidPtrTy, Dst.getLocation());
1792       CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
1793       CtorCGF.FinishFunction();
1794       Ctor = Fn;
1795     }
1796     if (VD->getType().isDestructedType() != QualType::DK_none) {
1797       // Generate function that emits destructor call for the threadprivate copy
1798       // of the variable VD
1799       CodeGenFunction DtorCGF(CGM);
1800       FunctionArgList Args;
1801       ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
1802                             /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
1803                             ImplicitParamDecl::Other);
1804       Args.push_back(&Dst);
1805 
1806       const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
1807           CGM.getContext().VoidTy, Args);
1808       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1809       std::string Name = getName({"__kmpc_global_dtor_", ""});
1810       llvm::Function *Fn =
1811           CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc);
1812       auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
1813       DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
1814                             Loc, Loc);
1815       // Create a scope with an artificial location for the body of this function.
1816       auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
1817       llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar(
1818           DtorCGF.GetAddrOfLocalVar(&Dst),
1819           /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
1820       DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
1821                           DtorCGF.getDestroyer(ASTTy.isDestructedType()),
1822                           DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
1823       DtorCGF.FinishFunction();
1824       Dtor = Fn;
1825     }
1826     // Do not emit init function if it is not required.
1827     if (!Ctor && !Dtor)
1828       return nullptr;
1829 
1830     llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
1831     auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
1832                                                /*isVarArg=*/false)
1833                            ->getPointerTo();
1834     // Copying constructor for the threadprivate variable.
1835     // Must be NULL - reserved by runtime, but currently it requires that this
1836     // parameter is always NULL. Otherwise it fires assertion.
1837     CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
1838     if (Ctor == nullptr) {
1839       auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
1840                                              /*isVarArg=*/false)
1841                          ->getPointerTo();
1842       Ctor = llvm::Constant::getNullValue(CtorTy);
1843     }
1844     if (Dtor == nullptr) {
1845       auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
1846                                              /*isVarArg=*/false)
1847                          ->getPointerTo();
1848       Dtor = llvm::Constant::getNullValue(DtorTy);
1849     }
1850     if (!CGF) {
1851       auto *InitFunctionTy =
1852           llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
1853       std::string Name = getName({"__omp_threadprivate_init_", ""});
1854       llvm::Function *InitFunction = CGM.CreateGlobalInitOrCleanUpFunction(
1855           InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction());
1856       CodeGenFunction InitCGF(CGM);
1857       FunctionArgList ArgList;
1858       InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
1859                             CGM.getTypes().arrangeNullaryFunction(), ArgList,
1860                             Loc, Loc);
1861       emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
1862       InitCGF.FinishFunction();
1863       return InitFunction;
1864     }
1865     emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
1866   }
1867   return nullptr;
1868 }
1869 
emitDeclareTargetVarDefinition(const VarDecl * VD,llvm::GlobalVariable * Addr,bool PerformInit)1870 bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD,
1871                                                      llvm::GlobalVariable *Addr,
1872                                                      bool PerformInit) {
1873   if (CGM.getLangOpts().OMPTargetTriples.empty() &&
1874       !CGM.getLangOpts().OpenMPIsDevice)
1875     return false;
1876   Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
1877       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
1878   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
1879       (*Res == OMPDeclareTargetDeclAttr::MT_To &&
1880        HasRequiresUnifiedSharedMemory))
1881     return CGM.getLangOpts().OpenMPIsDevice;
1882   VD = VD->getDefinition(CGM.getContext());
1883   assert(VD && "Unknown VarDecl");
1884 
1885   if (!DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second)
1886     return CGM.getLangOpts().OpenMPIsDevice;
1887 
1888   QualType ASTTy = VD->getType();
1889   SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc();
1890 
1891   // Produce the unique prefix to identify the new target regions. We use
1892   // the source location of the variable declaration which we know to not
1893   // conflict with any target region.
1894   unsigned DeviceID;
1895   unsigned FileID;
1896   unsigned Line;
1897   getTargetEntryUniqueInfo(CGM.getContext(), Loc, DeviceID, FileID, Line);
1898   SmallString<128> Buffer, Out;
1899   {
1900     llvm::raw_svector_ostream OS(Buffer);
1901     OS << "__omp_offloading_" << llvm::format("_%x", DeviceID)
1902        << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
1903   }
1904 
1905   const Expr *Init = VD->getAnyInitializer();
1906   if (CGM.getLangOpts().CPlusPlus && PerformInit) {
1907     llvm::Constant *Ctor;
1908     llvm::Constant *ID;
1909     if (CGM.getLangOpts().OpenMPIsDevice) {
1910       // Generate function that re-emits the declaration's initializer into
1911       // the threadprivate copy of the variable VD
1912       CodeGenFunction CtorCGF(CGM);
1913 
1914       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
1915       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1916       llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction(
1917           FTy, Twine(Buffer, "_ctor"), FI, Loc);
1918       auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF);
1919       CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
1920                             FunctionArgList(), Loc, Loc);
1921       auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF);
1922       CtorCGF.EmitAnyExprToMem(Init,
1923                                Address(Addr, CGM.getContext().getDeclAlign(VD)),
1924                                Init->getType().getQualifiers(),
1925                                /*IsInitializer=*/true);
1926       CtorCGF.FinishFunction();
1927       Ctor = Fn;
1928       ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
1929       CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ctor));
1930     } else {
1931       Ctor = new llvm::GlobalVariable(
1932           CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1933           llvm::GlobalValue::PrivateLinkage,
1934           llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor"));
1935       ID = Ctor;
1936     }
1937 
1938     // Register the information for the entry associated with the constructor.
1939     Out.clear();
1940     OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
1941         DeviceID, FileID, Twine(Buffer, "_ctor").toStringRef(Out), Line, Ctor,
1942         ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryCtor);
1943   }
1944   if (VD->getType().isDestructedType() != QualType::DK_none) {
1945     llvm::Constant *Dtor;
1946     llvm::Constant *ID;
1947     if (CGM.getLangOpts().OpenMPIsDevice) {
1948       // Generate function that emits destructor call for the threadprivate
1949       // copy of the variable VD
1950       CodeGenFunction DtorCGF(CGM);
1951 
1952       const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
1953       llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
1954       llvm::Function *Fn = CGM.CreateGlobalInitOrCleanUpFunction(
1955           FTy, Twine(Buffer, "_dtor"), FI, Loc);
1956       auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
1957       DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
1958                             FunctionArgList(), Loc, Loc);
1959       // Create a scope with an artificial location for the body of this
1960       // function.
1961       auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
1962       DtorCGF.emitDestroy(Address(Addr, CGM.getContext().getDeclAlign(VD)),
1963                           ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()),
1964                           DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
1965       DtorCGF.FinishFunction();
1966       Dtor = Fn;
1967       ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
1968       CGM.addUsedGlobal(cast<llvm::GlobalValue>(Dtor));
1969     } else {
1970       Dtor = new llvm::GlobalVariable(
1971           CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1972           llvm::GlobalValue::PrivateLinkage,
1973           llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor"));
1974       ID = Dtor;
1975     }
1976     // Register the information for the entry associated with the destructor.
1977     Out.clear();
1978     OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
1979         DeviceID, FileID, Twine(Buffer, "_dtor").toStringRef(Out), Line, Dtor,
1980         ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryDtor);
1981   }
1982   return CGM.getLangOpts().OpenMPIsDevice;
1983 }
1984 
getAddrOfArtificialThreadPrivate(CodeGenFunction & CGF,QualType VarType,StringRef Name)1985 Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF,
1986                                                           QualType VarType,
1987                                                           StringRef Name) {
1988   std::string Suffix = getName({"artificial", ""});
1989   llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType);
1990   llvm::Value *GAddr =
1991       getOrCreateInternalVariable(VarLVType, Twine(Name).concat(Suffix));
1992   if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPUseTLS &&
1993       CGM.getTarget().isTLSSupported()) {
1994     cast<llvm::GlobalVariable>(GAddr)->setThreadLocal(/*Val=*/true);
1995     return Address(GAddr, CGM.getContext().getTypeAlignInChars(VarType));
1996   }
1997   std::string CacheSuffix = getName({"cache", ""});
1998   llvm::Value *Args[] = {
1999       emitUpdateLocation(CGF, SourceLocation()),
2000       getThreadID(CGF, SourceLocation()),
2001       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy),
2002       CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy,
2003                                 /*isSigned=*/false),
2004       getOrCreateInternalVariable(
2005           CGM.VoidPtrPtrTy, Twine(Name).concat(Suffix).concat(CacheSuffix))};
2006   return Address(
2007       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2008           CGF.EmitRuntimeCall(
2009               OMPBuilder.getOrCreateRuntimeFunction(
2010                   CGM.getModule(), OMPRTL___kmpc_threadprivate_cached),
2011               Args),
2012           VarLVType->getPointerTo(/*AddrSpace=*/0)),
2013       CGM.getContext().getTypeAlignInChars(VarType));
2014 }
2015 
emitIfClause(CodeGenFunction & CGF,const Expr * Cond,const RegionCodeGenTy & ThenGen,const RegionCodeGenTy & ElseGen)2016 void CGOpenMPRuntime::emitIfClause(CodeGenFunction &CGF, const Expr *Cond,
2017                                    const RegionCodeGenTy &ThenGen,
2018                                    const RegionCodeGenTy &ElseGen) {
2019   CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
2020 
2021   // If the condition constant folds and can be elided, try to avoid emitting
2022   // the condition and the dead arm of the if/else.
2023   bool CondConstant;
2024   if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
2025     if (CondConstant)
2026       ThenGen(CGF);
2027     else
2028       ElseGen(CGF);
2029     return;
2030   }
2031 
2032   // Otherwise, the condition did not fold, or we couldn't elide it.  Just
2033   // emit the conditional branch.
2034   llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then");
2035   llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else");
2036   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end");
2037   CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
2038 
2039   // Emit the 'then' code.
2040   CGF.EmitBlock(ThenBlock);
2041   ThenGen(CGF);
2042   CGF.EmitBranch(ContBlock);
2043   // Emit the 'else' code if present.
2044   // There is no need to emit line number for unconditional branch.
2045   (void)ApplyDebugLocation::CreateEmpty(CGF);
2046   CGF.EmitBlock(ElseBlock);
2047   ElseGen(CGF);
2048   // There is no need to emit line number for unconditional branch.
2049   (void)ApplyDebugLocation::CreateEmpty(CGF);
2050   CGF.EmitBranch(ContBlock);
2051   // Emit the continuation block for code after the if.
2052   CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
2053 }
2054 
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)2055 void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
2056                                        llvm::Function *OutlinedFn,
2057                                        ArrayRef<llvm::Value *> CapturedVars,
2058                                        const Expr *IfCond) {
2059   if (!CGF.HaveInsertPoint())
2060     return;
2061   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2062   auto &M = CGM.getModule();
2063   auto &&ThenGen = [&M, OutlinedFn, CapturedVars, RTLoc,
2064                     this](CodeGenFunction &CGF, PrePostActionTy &) {
2065     // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
2066     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2067     llvm::Value *Args[] = {
2068         RTLoc,
2069         CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
2070         CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
2071     llvm::SmallVector<llvm::Value *, 16> RealArgs;
2072     RealArgs.append(std::begin(Args), std::end(Args));
2073     RealArgs.append(CapturedVars.begin(), CapturedVars.end());
2074 
2075     llvm::FunctionCallee RTLFn =
2076         OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_fork_call);
2077     CGF.EmitRuntimeCall(RTLFn, RealArgs);
2078   };
2079   auto &&ElseGen = [&M, OutlinedFn, CapturedVars, RTLoc, Loc,
2080                     this](CodeGenFunction &CGF, PrePostActionTy &) {
2081     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
2082     llvm::Value *ThreadID = RT.getThreadID(CGF, Loc);
2083     // Build calls:
2084     // __kmpc_serialized_parallel(&Loc, GTid);
2085     llvm::Value *Args[] = {RTLoc, ThreadID};
2086     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2087                             M, OMPRTL___kmpc_serialized_parallel),
2088                         Args);
2089 
2090     // OutlinedFn(&GTid, &zero_bound, CapturedStruct);
2091     Address ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc);
2092     Address ZeroAddrBound =
2093         CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
2094                                          /*Name=*/".bound.zero.addr");
2095     CGF.InitTempAlloca(ZeroAddrBound, CGF.Builder.getInt32(/*C*/ 0));
2096     llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
2097     // ThreadId for serialized parallels is 0.
2098     OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
2099     OutlinedFnArgs.push_back(ZeroAddrBound.getPointer());
2100     OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
2101     RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
2102 
2103     // __kmpc_end_serialized_parallel(&Loc, GTid);
2104     llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
2105     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2106                             M, OMPRTL___kmpc_end_serialized_parallel),
2107                         EndArgs);
2108   };
2109   if (IfCond) {
2110     emitIfClause(CGF, IfCond, ThenGen, ElseGen);
2111   } else {
2112     RegionCodeGenTy ThenRCG(ThenGen);
2113     ThenRCG(CGF);
2114   }
2115 }
2116 
2117 // If we're inside an (outlined) parallel region, use the region info's
2118 // thread-ID variable (it is passed in a first argument of the outlined function
2119 // as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
2120 // regular serial code region, get thread ID by calling kmp_int32
2121 // kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
2122 // return the address of that temp.
emitThreadIDAddress(CodeGenFunction & CGF,SourceLocation Loc)2123 Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
2124                                              SourceLocation Loc) {
2125   if (auto *OMPRegionInfo =
2126           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
2127     if (OMPRegionInfo->getThreadIDVariable())
2128       return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress(CGF);
2129 
2130   llvm::Value *ThreadID = getThreadID(CGF, Loc);
2131   QualType Int32Ty =
2132       CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
2133   Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
2134   CGF.EmitStoreOfScalar(ThreadID,
2135                         CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
2136 
2137   return ThreadIDTemp;
2138 }
2139 
getOrCreateInternalVariable(llvm::Type * Ty,const llvm::Twine & Name,unsigned AddressSpace)2140 llvm::Constant *CGOpenMPRuntime::getOrCreateInternalVariable(
2141     llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) {
2142   SmallString<256> Buffer;
2143   llvm::raw_svector_ostream Out(Buffer);
2144   Out << Name;
2145   StringRef RuntimeName = Out.str();
2146   auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first;
2147   if (Elem.second) {
2148     assert(Elem.second->getType()->getPointerElementType() == Ty &&
2149            "OMP internal variable has different type than requested");
2150     return &*Elem.second;
2151   }
2152 
2153   return Elem.second = new llvm::GlobalVariable(
2154              CGM.getModule(), Ty, /*IsConstant*/ false,
2155              llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
2156              Elem.first(), /*InsertBefore=*/nullptr,
2157              llvm::GlobalValue::NotThreadLocal, AddressSpace);
2158 }
2159 
getCriticalRegionLock(StringRef CriticalName)2160 llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
2161   std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
2162   std::string Name = getName({Prefix, "var"});
2163   return getOrCreateInternalVariable(KmpCriticalNameTy, Name);
2164 }
2165 
2166 namespace {
2167 /// Common pre(post)-action for different OpenMP constructs.
2168 class CommonActionTy final : public PrePostActionTy {
2169   llvm::FunctionCallee EnterCallee;
2170   ArrayRef<llvm::Value *> EnterArgs;
2171   llvm::FunctionCallee ExitCallee;
2172   ArrayRef<llvm::Value *> ExitArgs;
2173   bool Conditional;
2174   llvm::BasicBlock *ContBlock = nullptr;
2175 
2176 public:
CommonActionTy(llvm::FunctionCallee EnterCallee,ArrayRef<llvm::Value * > EnterArgs,llvm::FunctionCallee ExitCallee,ArrayRef<llvm::Value * > ExitArgs,bool Conditional=false)2177   CommonActionTy(llvm::FunctionCallee EnterCallee,
2178                  ArrayRef<llvm::Value *> EnterArgs,
2179                  llvm::FunctionCallee ExitCallee,
2180                  ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
2181       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
2182         ExitArgs(ExitArgs), Conditional(Conditional) {}
Enter(CodeGenFunction & CGF)2183   void Enter(CodeGenFunction &CGF) override {
2184     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
2185     if (Conditional) {
2186       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
2187       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
2188       ContBlock = CGF.createBasicBlock("omp_if.end");
2189       // Generate the branch (If-stmt)
2190       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
2191       CGF.EmitBlock(ThenBlock);
2192     }
2193   }
Done(CodeGenFunction & CGF)2194   void Done(CodeGenFunction &CGF) {
2195     // Emit the rest of blocks/branches
2196     CGF.EmitBranch(ContBlock);
2197     CGF.EmitBlock(ContBlock, true);
2198   }
Exit(CodeGenFunction & CGF)2199   void Exit(CodeGenFunction &CGF) override {
2200     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
2201   }
2202 };
2203 } // anonymous namespace
2204 
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)2205 void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
2206                                          StringRef CriticalName,
2207                                          const RegionCodeGenTy &CriticalOpGen,
2208                                          SourceLocation Loc, const Expr *Hint) {
2209   // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
2210   // CriticalOpGen();
2211   // __kmpc_end_critical(ident_t *, gtid, Lock);
2212   // Prepare arguments and build a call to __kmpc_critical
2213   if (!CGF.HaveInsertPoint())
2214     return;
2215   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2216                          getCriticalRegionLock(CriticalName)};
2217   llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
2218                                                 std::end(Args));
2219   if (Hint) {
2220     EnterArgs.push_back(CGF.Builder.CreateIntCast(
2221         CGF.EmitScalarExpr(Hint), CGM.Int32Ty, /*isSigned=*/false));
2222   }
2223   CommonActionTy Action(
2224       OMPBuilder.getOrCreateRuntimeFunction(
2225           CGM.getModule(),
2226           Hint ? OMPRTL___kmpc_critical_with_hint : OMPRTL___kmpc_critical),
2227       EnterArgs,
2228       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
2229                                             OMPRTL___kmpc_end_critical),
2230       Args);
2231   CriticalOpGen.setAction(Action);
2232   emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
2233 }
2234 
emitMasterRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc)2235 void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
2236                                        const RegionCodeGenTy &MasterOpGen,
2237                                        SourceLocation Loc) {
2238   if (!CGF.HaveInsertPoint())
2239     return;
2240   // if(__kmpc_master(ident_t *, gtid)) {
2241   //   MasterOpGen();
2242   //   __kmpc_end_master(ident_t *, gtid);
2243   // }
2244   // Prepare arguments and build a call to __kmpc_master
2245   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2246   CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2247                             CGM.getModule(), OMPRTL___kmpc_master),
2248                         Args,
2249                         OMPBuilder.getOrCreateRuntimeFunction(
2250                             CGM.getModule(), OMPRTL___kmpc_end_master),
2251                         Args,
2252                         /*Conditional=*/true);
2253   MasterOpGen.setAction(Action);
2254   emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
2255   Action.Done(CGF);
2256 }
2257 
emitTaskyieldCall(CodeGenFunction & CGF,SourceLocation Loc)2258 void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
2259                                         SourceLocation Loc) {
2260   if (!CGF.HaveInsertPoint())
2261     return;
2262   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2263     OMPBuilder.createTaskyield(CGF.Builder);
2264   } else {
2265     // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
2266     llvm::Value *Args[] = {
2267         emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2268         llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
2269     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2270                             CGM.getModule(), OMPRTL___kmpc_omp_taskyield),
2271                         Args);
2272   }
2273 
2274   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
2275     Region->emitUntiedSwitch(CGF);
2276 }
2277 
emitTaskgroupRegion(CodeGenFunction & CGF,const RegionCodeGenTy & TaskgroupOpGen,SourceLocation Loc)2278 void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
2279                                           const RegionCodeGenTy &TaskgroupOpGen,
2280                                           SourceLocation Loc) {
2281   if (!CGF.HaveInsertPoint())
2282     return;
2283   // __kmpc_taskgroup(ident_t *, gtid);
2284   // TaskgroupOpGen();
2285   // __kmpc_end_taskgroup(ident_t *, gtid);
2286   // Prepare arguments and build a call to __kmpc_taskgroup
2287   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2288   CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2289                             CGM.getModule(), OMPRTL___kmpc_taskgroup),
2290                         Args,
2291                         OMPBuilder.getOrCreateRuntimeFunction(
2292                             CGM.getModule(), OMPRTL___kmpc_end_taskgroup),
2293                         Args);
2294   TaskgroupOpGen.setAction(Action);
2295   emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
2296 }
2297 
2298 /// Given an array of pointers to variables, project the address of a
2299 /// given variable.
emitAddrOfVarFromArray(CodeGenFunction & CGF,Address Array,unsigned Index,const VarDecl * Var)2300 static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
2301                                       unsigned Index, const VarDecl *Var) {
2302   // Pull out the pointer to the variable.
2303   Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index);
2304   llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
2305 
2306   Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
2307   Addr = CGF.Builder.CreateElementBitCast(
2308       Addr, CGF.ConvertTypeForMem(Var->getType()));
2309   return Addr;
2310 }
2311 
emitCopyprivateCopyFunction(CodeGenModule & CGM,llvm::Type * ArgsType,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > DestExprs,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > AssignmentOps,SourceLocation Loc)2312 static llvm::Value *emitCopyprivateCopyFunction(
2313     CodeGenModule &CGM, llvm::Type *ArgsType,
2314     ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
2315     ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps,
2316     SourceLocation Loc) {
2317   ASTContext &C = CGM.getContext();
2318   // void copy_func(void *LHSArg, void *RHSArg);
2319   FunctionArgList Args;
2320   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
2321                            ImplicitParamDecl::Other);
2322   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
2323                            ImplicitParamDecl::Other);
2324   Args.push_back(&LHSArg);
2325   Args.push_back(&RHSArg);
2326   const auto &CGFI =
2327       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2328   std::string Name =
2329       CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"});
2330   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2331                                     llvm::GlobalValue::InternalLinkage, Name,
2332                                     &CGM.getModule());
2333   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2334   Fn->setDoesNotRecurse();
2335   CodeGenFunction CGF(CGM);
2336   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2337   // Dest = (void*[n])(LHSArg);
2338   // Src = (void*[n])(RHSArg);
2339   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2340       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
2341       ArgsType), CGF.getPointerAlign());
2342   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2343       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
2344       ArgsType), CGF.getPointerAlign());
2345   // *(Type0*)Dst[0] = *(Type0*)Src[0];
2346   // *(Type1*)Dst[1] = *(Type1*)Src[1];
2347   // ...
2348   // *(Typen*)Dst[n] = *(Typen*)Src[n];
2349   for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
2350     const auto *DestVar =
2351         cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
2352     Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
2353 
2354     const auto *SrcVar =
2355         cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
2356     Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
2357 
2358     const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
2359     QualType Type = VD->getType();
2360     CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
2361   }
2362   CGF.FinishFunction();
2363   return Fn;
2364 }
2365 
emitSingleRegion(CodeGenFunction & CGF,const RegionCodeGenTy & SingleOpGen,SourceLocation Loc,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > DstExprs,ArrayRef<const Expr * > AssignmentOps)2366 void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
2367                                        const RegionCodeGenTy &SingleOpGen,
2368                                        SourceLocation Loc,
2369                                        ArrayRef<const Expr *> CopyprivateVars,
2370                                        ArrayRef<const Expr *> SrcExprs,
2371                                        ArrayRef<const Expr *> DstExprs,
2372                                        ArrayRef<const Expr *> AssignmentOps) {
2373   if (!CGF.HaveInsertPoint())
2374     return;
2375   assert(CopyprivateVars.size() == SrcExprs.size() &&
2376          CopyprivateVars.size() == DstExprs.size() &&
2377          CopyprivateVars.size() == AssignmentOps.size());
2378   ASTContext &C = CGM.getContext();
2379   // int32 did_it = 0;
2380   // if(__kmpc_single(ident_t *, gtid)) {
2381   //   SingleOpGen();
2382   //   __kmpc_end_single(ident_t *, gtid);
2383   //   did_it = 1;
2384   // }
2385   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
2386   // <copy_func>, did_it);
2387 
2388   Address DidIt = Address::invalid();
2389   if (!CopyprivateVars.empty()) {
2390     // int32 did_it = 0;
2391     QualType KmpInt32Ty =
2392         C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
2393     DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
2394     CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
2395   }
2396   // Prepare arguments and build a call to __kmpc_single
2397   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2398   CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2399                             CGM.getModule(), OMPRTL___kmpc_single),
2400                         Args,
2401                         OMPBuilder.getOrCreateRuntimeFunction(
2402                             CGM.getModule(), OMPRTL___kmpc_end_single),
2403                         Args,
2404                         /*Conditional=*/true);
2405   SingleOpGen.setAction(Action);
2406   emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
2407   if (DidIt.isValid()) {
2408     // did_it = 1;
2409     CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
2410   }
2411   Action.Done(CGF);
2412   // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
2413   // <copy_func>, did_it);
2414   if (DidIt.isValid()) {
2415     llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
2416     QualType CopyprivateArrayTy = C.getConstantArrayType(
2417         C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
2418         /*IndexTypeQuals=*/0);
2419     // Create a list of all private variables for copyprivate.
2420     Address CopyprivateList =
2421         CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
2422     for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
2423       Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I);
2424       CGF.Builder.CreateStore(
2425           CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2426               CGF.EmitLValue(CopyprivateVars[I]).getPointer(CGF),
2427               CGF.VoidPtrTy),
2428           Elem);
2429     }
2430     // Build function that copies private values from single region to all other
2431     // threads in the corresponding parallel region.
2432     llvm::Value *CpyFn = emitCopyprivateCopyFunction(
2433         CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
2434         CopyprivateVars, SrcExprs, DstExprs, AssignmentOps, Loc);
2435     llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
2436     Address CL =
2437       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
2438                                                       CGF.VoidPtrTy);
2439     llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt);
2440     llvm::Value *Args[] = {
2441         emitUpdateLocation(CGF, Loc), // ident_t *<loc>
2442         getThreadID(CGF, Loc),        // i32 <gtid>
2443         BufSize,                      // size_t <buf_size>
2444         CL.getPointer(),              // void *<copyprivate list>
2445         CpyFn,                        // void (*) (void *, void *) <copy_func>
2446         DidItVal                      // i32 did_it
2447     };
2448     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2449                             CGM.getModule(), OMPRTL___kmpc_copyprivate),
2450                         Args);
2451   }
2452 }
2453 
emitOrderedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & OrderedOpGen,SourceLocation Loc,bool IsThreads)2454 void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
2455                                         const RegionCodeGenTy &OrderedOpGen,
2456                                         SourceLocation Loc, bool IsThreads) {
2457   if (!CGF.HaveInsertPoint())
2458     return;
2459   // __kmpc_ordered(ident_t *, gtid);
2460   // OrderedOpGen();
2461   // __kmpc_end_ordered(ident_t *, gtid);
2462   // Prepare arguments and build a call to __kmpc_ordered
2463   if (IsThreads) {
2464     llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2465     CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
2466                               CGM.getModule(), OMPRTL___kmpc_ordered),
2467                           Args,
2468                           OMPBuilder.getOrCreateRuntimeFunction(
2469                               CGM.getModule(), OMPRTL___kmpc_end_ordered),
2470                           Args);
2471     OrderedOpGen.setAction(Action);
2472     emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
2473     return;
2474   }
2475   emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
2476 }
2477 
getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind)2478 unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) {
2479   unsigned Flags;
2480   if (Kind == OMPD_for)
2481     Flags = OMP_IDENT_BARRIER_IMPL_FOR;
2482   else if (Kind == OMPD_sections)
2483     Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
2484   else if (Kind == OMPD_single)
2485     Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
2486   else if (Kind == OMPD_barrier)
2487     Flags = OMP_IDENT_BARRIER_EXPL;
2488   else
2489     Flags = OMP_IDENT_BARRIER_IMPL;
2490   return Flags;
2491 }
2492 
getDefaultScheduleAndChunk(CodeGenFunction & CGF,const OMPLoopDirective & S,OpenMPScheduleClauseKind & ScheduleKind,const Expr * & ChunkExpr) const2493 void CGOpenMPRuntime::getDefaultScheduleAndChunk(
2494     CodeGenFunction &CGF, const OMPLoopDirective &S,
2495     OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const {
2496   // Check if the loop directive is actually a doacross loop directive. In this
2497   // case choose static, 1 schedule.
2498   if (llvm::any_of(
2499           S.getClausesOfKind<OMPOrderedClause>(),
2500           [](const OMPOrderedClause *C) { return C->getNumForLoops(); })) {
2501     ScheduleKind = OMPC_SCHEDULE_static;
2502     // Chunk size is 1 in this case.
2503     llvm::APInt ChunkSize(32, 1);
2504     ChunkExpr = IntegerLiteral::Create(
2505         CGF.getContext(), ChunkSize,
2506         CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
2507         SourceLocation());
2508   }
2509 }
2510 
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool EmitChecks,bool ForceSimpleCall)2511 void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
2512                                       OpenMPDirectiveKind Kind, bool EmitChecks,
2513                                       bool ForceSimpleCall) {
2514   // Check if we should use the OMPBuilder
2515   auto *OMPRegionInfo =
2516       dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo);
2517   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2518     CGF.Builder.restoreIP(OMPBuilder.createBarrier(
2519         CGF.Builder, Kind, ForceSimpleCall, EmitChecks));
2520     return;
2521   }
2522 
2523   if (!CGF.HaveInsertPoint())
2524     return;
2525   // Build call __kmpc_cancel_barrier(loc, thread_id);
2526   // Build call __kmpc_barrier(loc, thread_id);
2527   unsigned Flags = getDefaultFlagsForBarriers(Kind);
2528   // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
2529   // thread_id);
2530   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
2531                          getThreadID(CGF, Loc)};
2532   if (OMPRegionInfo) {
2533     if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
2534       llvm::Value *Result = CGF.EmitRuntimeCall(
2535           OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
2536                                                 OMPRTL___kmpc_cancel_barrier),
2537           Args);
2538       if (EmitChecks) {
2539         // if (__kmpc_cancel_barrier()) {
2540         //   exit from construct;
2541         // }
2542         llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
2543         llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
2544         llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
2545         CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
2546         CGF.EmitBlock(ExitBB);
2547         //   exit from construct;
2548         CodeGenFunction::JumpDest CancelDestination =
2549             CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
2550         CGF.EmitBranchThroughCleanup(CancelDestination);
2551         CGF.EmitBlock(ContBB, /*IsFinished=*/true);
2552       }
2553       return;
2554     }
2555   }
2556   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2557                           CGM.getModule(), OMPRTL___kmpc_barrier),
2558                       Args);
2559 }
2560 
2561 /// Map the OpenMP loop schedule to the runtime enumeration.
getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,bool Chunked,bool Ordered)2562 static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
2563                                           bool Chunked, bool Ordered) {
2564   switch (ScheduleKind) {
2565   case OMPC_SCHEDULE_static:
2566     return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
2567                    : (Ordered ? OMP_ord_static : OMP_sch_static);
2568   case OMPC_SCHEDULE_dynamic:
2569     return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
2570   case OMPC_SCHEDULE_guided:
2571     return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
2572   case OMPC_SCHEDULE_runtime:
2573     return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
2574   case OMPC_SCHEDULE_auto:
2575     return Ordered ? OMP_ord_auto : OMP_sch_auto;
2576   case OMPC_SCHEDULE_unknown:
2577     assert(!Chunked && "chunk was specified but schedule kind not known");
2578     return Ordered ? OMP_ord_static : OMP_sch_static;
2579   }
2580   llvm_unreachable("Unexpected runtime schedule");
2581 }
2582 
2583 /// Map the OpenMP distribute schedule to the runtime enumeration.
2584 static OpenMPSchedType
getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked)2585 getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
2586   // only static is allowed for dist_schedule
2587   return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
2588 }
2589 
isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,bool Chunked) const2590 bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
2591                                          bool Chunked) const {
2592   OpenMPSchedType Schedule =
2593       getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
2594   return Schedule == OMP_sch_static;
2595 }
2596 
isStaticNonchunked(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked) const2597 bool CGOpenMPRuntime::isStaticNonchunked(
2598     OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
2599   OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
2600   return Schedule == OMP_dist_sch_static;
2601 }
2602 
isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,bool Chunked) const2603 bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,
2604                                       bool Chunked) const {
2605   OpenMPSchedType Schedule =
2606       getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
2607   return Schedule == OMP_sch_static_chunked;
2608 }
2609 
isStaticChunked(OpenMPDistScheduleClauseKind ScheduleKind,bool Chunked) const2610 bool CGOpenMPRuntime::isStaticChunked(
2611     OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
2612   OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
2613   return Schedule == OMP_dist_sch_static_chunked;
2614 }
2615 
isDynamic(OpenMPScheduleClauseKind ScheduleKind) const2616 bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
2617   OpenMPSchedType Schedule =
2618       getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
2619   assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
2620   return Schedule != OMP_sch_static;
2621 }
2622 
addMonoNonMonoModifier(CodeGenModule & CGM,OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2)2623 static int addMonoNonMonoModifier(CodeGenModule &CGM, OpenMPSchedType Schedule,
2624                                   OpenMPScheduleClauseModifier M1,
2625                                   OpenMPScheduleClauseModifier M2) {
2626   int Modifier = 0;
2627   switch (M1) {
2628   case OMPC_SCHEDULE_MODIFIER_monotonic:
2629     Modifier = OMP_sch_modifier_monotonic;
2630     break;
2631   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
2632     Modifier = OMP_sch_modifier_nonmonotonic;
2633     break;
2634   case OMPC_SCHEDULE_MODIFIER_simd:
2635     if (Schedule == OMP_sch_static_chunked)
2636       Schedule = OMP_sch_static_balanced_chunked;
2637     break;
2638   case OMPC_SCHEDULE_MODIFIER_last:
2639   case OMPC_SCHEDULE_MODIFIER_unknown:
2640     break;
2641   }
2642   switch (M2) {
2643   case OMPC_SCHEDULE_MODIFIER_monotonic:
2644     Modifier = OMP_sch_modifier_monotonic;
2645     break;
2646   case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
2647     Modifier = OMP_sch_modifier_nonmonotonic;
2648     break;
2649   case OMPC_SCHEDULE_MODIFIER_simd:
2650     if (Schedule == OMP_sch_static_chunked)
2651       Schedule = OMP_sch_static_balanced_chunked;
2652     break;
2653   case OMPC_SCHEDULE_MODIFIER_last:
2654   case OMPC_SCHEDULE_MODIFIER_unknown:
2655     break;
2656   }
2657   // OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Desription.
2658   // If the static schedule kind is specified or if the ordered clause is
2659   // specified, and if the nonmonotonic modifier is not specified, the effect is
2660   // as if the monotonic modifier is specified. Otherwise, unless the monotonic
2661   // modifier is specified, the effect is as if the nonmonotonic modifier is
2662   // specified.
2663   if (CGM.getLangOpts().OpenMP >= 50 && Modifier == 0) {
2664     if (!(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static ||
2665           Schedule == OMP_sch_static_balanced_chunked ||
2666           Schedule == OMP_ord_static_chunked || Schedule == OMP_ord_static ||
2667           Schedule == OMP_dist_sch_static_chunked ||
2668           Schedule == OMP_dist_sch_static))
2669       Modifier = OMP_sch_modifier_nonmonotonic;
2670   }
2671   return Schedule | Modifier;
2672 }
2673 
emitForDispatchInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,const DispatchRTInput & DispatchValues)2674 void CGOpenMPRuntime::emitForDispatchInit(
2675     CodeGenFunction &CGF, SourceLocation Loc,
2676     const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
2677     bool Ordered, const DispatchRTInput &DispatchValues) {
2678   if (!CGF.HaveInsertPoint())
2679     return;
2680   OpenMPSchedType Schedule = getRuntimeSchedule(
2681       ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered);
2682   assert(Ordered ||
2683          (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
2684           Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
2685           Schedule != OMP_sch_static_balanced_chunked));
2686   // Call __kmpc_dispatch_init(
2687   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
2688   //          kmp_int[32|64] lower, kmp_int[32|64] upper,
2689   //          kmp_int[32|64] stride, kmp_int[32|64] chunk);
2690 
2691   // If the Chunk was not specified in the clause - use default value 1.
2692   llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk
2693                                             : CGF.Builder.getIntN(IVSize, 1);
2694   llvm::Value *Args[] = {
2695       emitUpdateLocation(CGF, Loc),
2696       getThreadID(CGF, Loc),
2697       CGF.Builder.getInt32(addMonoNonMonoModifier(
2698           CGM, Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
2699       DispatchValues.LB,                                     // Lower
2700       DispatchValues.UB,                                     // Upper
2701       CGF.Builder.getIntN(IVSize, 1),                        // Stride
2702       Chunk                                                  // Chunk
2703   };
2704   CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
2705 }
2706 
emitForStaticInitCall(CodeGenFunction & CGF,llvm::Value * UpdateLocation,llvm::Value * ThreadId,llvm::FunctionCallee ForStaticInitFunction,OpenMPSchedType Schedule,OpenMPScheduleClauseModifier M1,OpenMPScheduleClauseModifier M2,const CGOpenMPRuntime::StaticRTInput & Values)2707 static void emitForStaticInitCall(
2708     CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
2709     llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule,
2710     OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
2711     const CGOpenMPRuntime::StaticRTInput &Values) {
2712   if (!CGF.HaveInsertPoint())
2713     return;
2714 
2715   assert(!Values.Ordered);
2716   assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
2717          Schedule == OMP_sch_static_balanced_chunked ||
2718          Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
2719          Schedule == OMP_dist_sch_static ||
2720          Schedule == OMP_dist_sch_static_chunked);
2721 
2722   // Call __kmpc_for_static_init(
2723   //          ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
2724   //          kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
2725   //          kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
2726   //          kmp_int[32|64] incr, kmp_int[32|64] chunk);
2727   llvm::Value *Chunk = Values.Chunk;
2728   if (Chunk == nullptr) {
2729     assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
2730             Schedule == OMP_dist_sch_static) &&
2731            "expected static non-chunked schedule");
2732     // If the Chunk was not specified in the clause - use default value 1.
2733     Chunk = CGF.Builder.getIntN(Values.IVSize, 1);
2734   } else {
2735     assert((Schedule == OMP_sch_static_chunked ||
2736             Schedule == OMP_sch_static_balanced_chunked ||
2737             Schedule == OMP_ord_static_chunked ||
2738             Schedule == OMP_dist_sch_static_chunked) &&
2739            "expected static chunked schedule");
2740   }
2741   llvm::Value *Args[] = {
2742       UpdateLocation,
2743       ThreadId,
2744       CGF.Builder.getInt32(addMonoNonMonoModifier(CGF.CGM, Schedule, M1,
2745                                                   M2)), // Schedule type
2746       Values.IL.getPointer(),                           // &isLastIter
2747       Values.LB.getPointer(),                           // &LB
2748       Values.UB.getPointer(),                           // &UB
2749       Values.ST.getPointer(),                           // &Stride
2750       CGF.Builder.getIntN(Values.IVSize, 1),            // Incr
2751       Chunk                                             // Chunk
2752   };
2753   CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
2754 }
2755 
emitForStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind,const OpenMPScheduleTy & ScheduleKind,const StaticRTInput & Values)2756 void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
2757                                         SourceLocation Loc,
2758                                         OpenMPDirectiveKind DKind,
2759                                         const OpenMPScheduleTy &ScheduleKind,
2760                                         const StaticRTInput &Values) {
2761   OpenMPSchedType ScheduleNum = getRuntimeSchedule(
2762       ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered);
2763   assert(isOpenMPWorksharingDirective(DKind) &&
2764          "Expected loop-based or sections-based directive.");
2765   llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc,
2766                                              isOpenMPLoopDirective(DKind)
2767                                                  ? OMP_IDENT_WORK_LOOP
2768                                                  : OMP_IDENT_WORK_SECTIONS);
2769   llvm::Value *ThreadId = getThreadID(CGF, Loc);
2770   llvm::FunctionCallee StaticInitFunction =
2771       createForStaticInitFunction(Values.IVSize, Values.IVSigned);
2772   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
2773   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
2774                         ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values);
2775 }
2776 
emitDistributeStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDistScheduleClauseKind SchedKind,const CGOpenMPRuntime::StaticRTInput & Values)2777 void CGOpenMPRuntime::emitDistributeStaticInit(
2778     CodeGenFunction &CGF, SourceLocation Loc,
2779     OpenMPDistScheduleClauseKind SchedKind,
2780     const CGOpenMPRuntime::StaticRTInput &Values) {
2781   OpenMPSchedType ScheduleNum =
2782       getRuntimeSchedule(SchedKind, Values.Chunk != nullptr);
2783   llvm::Value *UpdatedLocation =
2784       emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE);
2785   llvm::Value *ThreadId = getThreadID(CGF, Loc);
2786   llvm::FunctionCallee StaticInitFunction =
2787       createForStaticInitFunction(Values.IVSize, Values.IVSigned);
2788   emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
2789                         ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
2790                         OMPC_SCHEDULE_MODIFIER_unknown, Values);
2791 }
2792 
emitForStaticFinish(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind)2793 void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
2794                                           SourceLocation Loc,
2795                                           OpenMPDirectiveKind DKind) {
2796   if (!CGF.HaveInsertPoint())
2797     return;
2798   // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
2799   llvm::Value *Args[] = {
2800       emitUpdateLocation(CGF, Loc,
2801                          isOpenMPDistributeDirective(DKind)
2802                              ? OMP_IDENT_WORK_DISTRIBUTE
2803                              : isOpenMPLoopDirective(DKind)
2804                                    ? OMP_IDENT_WORK_LOOP
2805                                    : OMP_IDENT_WORK_SECTIONS),
2806       getThreadID(CGF, Loc)};
2807   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
2808   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2809                           CGM.getModule(), OMPRTL___kmpc_for_static_fini),
2810                       Args);
2811 }
2812 
emitForOrderedIterationEnd(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned)2813 void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
2814                                                  SourceLocation Loc,
2815                                                  unsigned IVSize,
2816                                                  bool IVSigned) {
2817   if (!CGF.HaveInsertPoint())
2818     return;
2819   // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
2820   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
2821   CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
2822 }
2823 
emitForNext(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned,Address IL,Address LB,Address UB,Address ST)2824 llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
2825                                           SourceLocation Loc, unsigned IVSize,
2826                                           bool IVSigned, Address IL,
2827                                           Address LB, Address UB,
2828                                           Address ST) {
2829   // Call __kmpc_dispatch_next(
2830   //          ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
2831   //          kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
2832   //          kmp_int[32|64] *p_stride);
2833   llvm::Value *Args[] = {
2834       emitUpdateLocation(CGF, Loc),
2835       getThreadID(CGF, Loc),
2836       IL.getPointer(), // &isLastIter
2837       LB.getPointer(), // &Lower
2838       UB.getPointer(), // &Upper
2839       ST.getPointer()  // &Stride
2840   };
2841   llvm::Value *Call =
2842       CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
2843   return CGF.EmitScalarConversion(
2844       Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1),
2845       CGF.getContext().BoolTy, Loc);
2846 }
2847 
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)2848 void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
2849                                            llvm::Value *NumThreads,
2850                                            SourceLocation Loc) {
2851   if (!CGF.HaveInsertPoint())
2852     return;
2853   // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
2854   llvm::Value *Args[] = {
2855       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2856       CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
2857   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2858                           CGM.getModule(), OMPRTL___kmpc_push_num_threads),
2859                       Args);
2860 }
2861 
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)2862 void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
2863                                          ProcBindKind ProcBind,
2864                                          SourceLocation Loc) {
2865   if (!CGF.HaveInsertPoint())
2866     return;
2867   assert(ProcBind != OMP_PROC_BIND_unknown && "Unsupported proc_bind value.");
2868   // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
2869   llvm::Value *Args[] = {
2870       emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
2871       llvm::ConstantInt::get(CGM.IntTy, unsigned(ProcBind), /*isSigned=*/true)};
2872   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2873                           CGM.getModule(), OMPRTL___kmpc_push_proc_bind),
2874                       Args);
2875 }
2876 
emitFlush(CodeGenFunction & CGF,ArrayRef<const Expr * >,SourceLocation Loc,llvm::AtomicOrdering AO)2877 void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
2878                                 SourceLocation Loc, llvm::AtomicOrdering AO) {
2879   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
2880     OMPBuilder.createFlush(CGF.Builder);
2881   } else {
2882     if (!CGF.HaveInsertPoint())
2883       return;
2884     // Build call void __kmpc_flush(ident_t *loc)
2885     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
2886                             CGM.getModule(), OMPRTL___kmpc_flush),
2887                         emitUpdateLocation(CGF, Loc));
2888   }
2889 }
2890 
2891 namespace {
2892 /// Indexes of fields for type kmp_task_t.
2893 enum KmpTaskTFields {
2894   /// List of shared variables.
2895   KmpTaskTShareds,
2896   /// Task routine.
2897   KmpTaskTRoutine,
2898   /// Partition id for the untied tasks.
2899   KmpTaskTPartId,
2900   /// Function with call of destructors for private variables.
2901   Data1,
2902   /// Task priority.
2903   Data2,
2904   /// (Taskloops only) Lower bound.
2905   KmpTaskTLowerBound,
2906   /// (Taskloops only) Upper bound.
2907   KmpTaskTUpperBound,
2908   /// (Taskloops only) Stride.
2909   KmpTaskTStride,
2910   /// (Taskloops only) Is last iteration flag.
2911   KmpTaskTLastIter,
2912   /// (Taskloops only) Reduction data.
2913   KmpTaskTReductions,
2914 };
2915 } // anonymous namespace
2916 
empty() const2917 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const {
2918   return OffloadEntriesTargetRegion.empty() &&
2919          OffloadEntriesDeviceGlobalVar.empty();
2920 }
2921 
2922 /// Initialize target region entry.
2923 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,unsigned Order)2924     initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
2925                                     StringRef ParentName, unsigned LineNum,
2926                                     unsigned Order) {
2927   assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
2928                                              "only required for the device "
2929                                              "code generation.");
2930   OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] =
2931       OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
2932                                    OMPTargetRegionEntryTargetRegion);
2933   ++OffloadingEntriesNum;
2934 }
2935 
2936 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,llvm::Constant * Addr,llvm::Constant * ID,OMPTargetRegionEntryKind Flags)2937     registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
2938                                   StringRef ParentName, unsigned LineNum,
2939                                   llvm::Constant *Addr, llvm::Constant *ID,
2940                                   OMPTargetRegionEntryKind Flags) {
2941   // If we are emitting code for a target, the entry is already initialized,
2942   // only has to be registered.
2943   if (CGM.getLangOpts().OpenMPIsDevice) {
2944     if (!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum)) {
2945       unsigned DiagID = CGM.getDiags().getCustomDiagID(
2946           DiagnosticsEngine::Error,
2947           "Unable to find target region on line '%0' in the device code.");
2948       CGM.getDiags().Report(DiagID) << LineNum;
2949       return;
2950     }
2951     auto &Entry =
2952         OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum];
2953     assert(Entry.isValid() && "Entry not initialized!");
2954     Entry.setAddress(Addr);
2955     Entry.setID(ID);
2956     Entry.setFlags(Flags);
2957   } else {
2958     if (Flags ==
2959             OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion &&
2960         hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum,
2961                                  /*IgnoreAddressId*/ true))
2962       return;
2963     assert(!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum) &&
2964            "Target region entry already registered!");
2965     OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
2966     OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry;
2967     ++OffloadingEntriesNum;
2968   }
2969 }
2970 
hasTargetRegionEntryInfo(unsigned DeviceID,unsigned FileID,StringRef ParentName,unsigned LineNum,bool IgnoreAddressId) const2971 bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo(
2972     unsigned DeviceID, unsigned FileID, StringRef ParentName, unsigned LineNum,
2973     bool IgnoreAddressId) const {
2974   auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID);
2975   if (PerDevice == OffloadEntriesTargetRegion.end())
2976     return false;
2977   auto PerFile = PerDevice->second.find(FileID);
2978   if (PerFile == PerDevice->second.end())
2979     return false;
2980   auto PerParentName = PerFile->second.find(ParentName);
2981   if (PerParentName == PerFile->second.end())
2982     return false;
2983   auto PerLine = PerParentName->second.find(LineNum);
2984   if (PerLine == PerParentName->second.end())
2985     return false;
2986   // Fail if this entry is already registered.
2987   if (!IgnoreAddressId &&
2988       (PerLine->second.getAddress() || PerLine->second.getID()))
2989     return false;
2990   return true;
2991 }
2992 
actOnTargetRegionEntriesInfo(const OffloadTargetRegionEntryInfoActTy & Action)2993 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo(
2994     const OffloadTargetRegionEntryInfoActTy &Action) {
2995   // Scan all target region entries and perform the provided action.
2996   for (const auto &D : OffloadEntriesTargetRegion)
2997     for (const auto &F : D.second)
2998       for (const auto &P : F.second)
2999         for (const auto &L : P.second)
3000           Action(D.first, F.first, P.first(), L.first, L.second);
3001 }
3002 
3003 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeDeviceGlobalVarEntryInfo(StringRef Name,OMPTargetGlobalVarEntryKind Flags,unsigned Order)3004     initializeDeviceGlobalVarEntryInfo(StringRef Name,
3005                                        OMPTargetGlobalVarEntryKind Flags,
3006                                        unsigned Order) {
3007   assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
3008                                              "only required for the device "
3009                                              "code generation.");
3010   OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags);
3011   ++OffloadingEntriesNum;
3012 }
3013 
3014 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerDeviceGlobalVarEntryInfo(StringRef VarName,llvm::Constant * Addr,CharUnits VarSize,OMPTargetGlobalVarEntryKind Flags,llvm::GlobalValue::LinkageTypes Linkage)3015     registerDeviceGlobalVarEntryInfo(StringRef VarName, llvm::Constant *Addr,
3016                                      CharUnits VarSize,
3017                                      OMPTargetGlobalVarEntryKind Flags,
3018                                      llvm::GlobalValue::LinkageTypes Linkage) {
3019   if (CGM.getLangOpts().OpenMPIsDevice) {
3020     auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
3021     assert(Entry.isValid() && Entry.getFlags() == Flags &&
3022            "Entry not initialized!");
3023     assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
3024            "Resetting with the new address.");
3025     if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) {
3026       if (Entry.getVarSize().isZero()) {
3027         Entry.setVarSize(VarSize);
3028         Entry.setLinkage(Linkage);
3029       }
3030       return;
3031     }
3032     Entry.setVarSize(VarSize);
3033     Entry.setLinkage(Linkage);
3034     Entry.setAddress(Addr);
3035   } else {
3036     if (hasDeviceGlobalVarEntryInfo(VarName)) {
3037       auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
3038       assert(Entry.isValid() && Entry.getFlags() == Flags &&
3039              "Entry not initialized!");
3040       assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
3041              "Resetting with the new address.");
3042       if (Entry.getVarSize().isZero()) {
3043         Entry.setVarSize(VarSize);
3044         Entry.setLinkage(Linkage);
3045       }
3046       return;
3047     }
3048     OffloadEntriesDeviceGlobalVar.try_emplace(
3049         VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage);
3050     ++OffloadingEntriesNum;
3051   }
3052 }
3053 
3054 void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
actOnDeviceGlobalVarEntriesInfo(const OffloadDeviceGlobalVarEntryInfoActTy & Action)3055     actOnDeviceGlobalVarEntriesInfo(
3056         const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
3057   // Scan all target region entries and perform the provided action.
3058   for (const auto &E : OffloadEntriesDeviceGlobalVar)
3059     Action(E.getKey(), E.getValue());
3060 }
3061 
createOffloadEntry(llvm::Constant * ID,llvm::Constant * Addr,uint64_t Size,int32_t Flags,llvm::GlobalValue::LinkageTypes Linkage)3062 void CGOpenMPRuntime::createOffloadEntry(
3063     llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t Flags,
3064     llvm::GlobalValue::LinkageTypes Linkage) {
3065   StringRef Name = Addr->getName();
3066   llvm::Module &M = CGM.getModule();
3067   llvm::LLVMContext &C = M.getContext();
3068 
3069   // Create constant string with the name.
3070   llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name);
3071 
3072   std::string StringName = getName({"omp_offloading", "entry_name"});
3073   auto *Str = new llvm::GlobalVariable(
3074       M, StrPtrInit->getType(), /*isConstant=*/true,
3075       llvm::GlobalValue::InternalLinkage, StrPtrInit, StringName);
3076   Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3077 
3078   llvm::Constant *Data[] = {llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy),
3079                             llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy),
3080                             llvm::ConstantInt::get(CGM.SizeTy, Size),
3081                             llvm::ConstantInt::get(CGM.Int32Ty, Flags),
3082                             llvm::ConstantInt::get(CGM.Int32Ty, 0)};
3083   std::string EntryName = getName({"omp_offloading", "entry", ""});
3084   llvm::GlobalVariable *Entry = createGlobalStruct(
3085       CGM, getTgtOffloadEntryQTy(), /*IsConstant=*/true, Data,
3086       Twine(EntryName).concat(Name), llvm::GlobalValue::WeakAnyLinkage);
3087 
3088   // The entry has to be created in the section the linker expects it to be.
3089   Entry->setSection("omp_offloading_entries");
3090 }
3091 
createOffloadEntriesAndInfoMetadata()3092 void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
3093   // Emit the offloading entries and metadata so that the device codegen side
3094   // can easily figure out what to emit. The produced metadata looks like
3095   // this:
3096   //
3097   // !omp_offload.info = !{!1, ...}
3098   //
3099   // Right now we only generate metadata for function that contain target
3100   // regions.
3101 
3102   // If we are in simd mode or there are no entries, we don't need to do
3103   // anything.
3104   if (CGM.getLangOpts().OpenMPSimd || OffloadEntriesInfoManager.empty())
3105     return;
3106 
3107   llvm::Module &M = CGM.getModule();
3108   llvm::LLVMContext &C = M.getContext();
3109   SmallVector<std::tuple<const OffloadEntriesInfoManagerTy::OffloadEntryInfo *,
3110                          SourceLocation, StringRef>,
3111               16>
3112       OrderedEntries(OffloadEntriesInfoManager.size());
3113   llvm::SmallVector<StringRef, 16> ParentFunctions(
3114       OffloadEntriesInfoManager.size());
3115 
3116   // Auxiliary methods to create metadata values and strings.
3117   auto &&GetMDInt = [this](unsigned V) {
3118     return llvm::ConstantAsMetadata::get(
3119         llvm::ConstantInt::get(CGM.Int32Ty, V));
3120   };
3121 
3122   auto &&GetMDString = [&C](StringRef V) { return llvm::MDString::get(C, V); };
3123 
3124   // Create the offloading info metadata node.
3125   llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
3126 
3127   // Create function that emits metadata for each target region entry;
3128   auto &&TargetRegionMetadataEmitter =
3129       [this, &C, MD, &OrderedEntries, &ParentFunctions, &GetMDInt,
3130        &GetMDString](
3131           unsigned DeviceID, unsigned FileID, StringRef ParentName,
3132           unsigned Line,
3133           const OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) {
3134         // Generate metadata for target regions. Each entry of this metadata
3135         // contains:
3136         // - Entry 0 -> Kind of this type of metadata (0).
3137         // - Entry 1 -> Device ID of the file where the entry was identified.
3138         // - Entry 2 -> File ID of the file where the entry was identified.
3139         // - Entry 3 -> Mangled name of the function where the entry was
3140         // identified.
3141         // - Entry 4 -> Line in the file where the entry was identified.
3142         // - Entry 5 -> Order the entry was created.
3143         // The first element of the metadata node is the kind.
3144         llvm::Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDInt(DeviceID),
3145                                  GetMDInt(FileID),      GetMDString(ParentName),
3146                                  GetMDInt(Line),        GetMDInt(E.getOrder())};
3147 
3148         SourceLocation Loc;
3149         for (auto I = CGM.getContext().getSourceManager().fileinfo_begin(),
3150                   E = CGM.getContext().getSourceManager().fileinfo_end();
3151              I != E; ++I) {
3152           if (I->getFirst()->getUniqueID().getDevice() == DeviceID &&
3153               I->getFirst()->getUniqueID().getFile() == FileID) {
3154             Loc = CGM.getContext().getSourceManager().translateFileLineCol(
3155                 I->getFirst(), Line, 1);
3156             break;
3157           }
3158         }
3159         // Save this entry in the right position of the ordered entries array.
3160         OrderedEntries[E.getOrder()] = std::make_tuple(&E, Loc, ParentName);
3161         ParentFunctions[E.getOrder()] = ParentName;
3162 
3163         // Add metadata to the named metadata node.
3164         MD->addOperand(llvm::MDNode::get(C, Ops));
3165       };
3166 
3167   OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
3168       TargetRegionMetadataEmitter);
3169 
3170   // Create function that emits metadata for each device global variable entry;
3171   auto &&DeviceGlobalVarMetadataEmitter =
3172       [&C, &OrderedEntries, &GetMDInt, &GetMDString,
3173        MD](StringRef MangledName,
3174            const OffloadEntriesInfoManagerTy::OffloadEntryInfoDeviceGlobalVar
3175                &E) {
3176         // Generate metadata for global variables. Each entry of this metadata
3177         // contains:
3178         // - Entry 0 -> Kind of this type of metadata (1).
3179         // - Entry 1 -> Mangled name of the variable.
3180         // - Entry 2 -> Declare target kind.
3181         // - Entry 3 -> Order the entry was created.
3182         // The first element of the metadata node is the kind.
3183         llvm::Metadata *Ops[] = {
3184             GetMDInt(E.getKind()), GetMDString(MangledName),
3185             GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
3186 
3187         // Save this entry in the right position of the ordered entries array.
3188         OrderedEntries[E.getOrder()] =
3189             std::make_tuple(&E, SourceLocation(), MangledName);
3190 
3191         // Add metadata to the named metadata node.
3192         MD->addOperand(llvm::MDNode::get(C, Ops));
3193       };
3194 
3195   OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo(
3196       DeviceGlobalVarMetadataEmitter);
3197 
3198   for (const auto &E : OrderedEntries) {
3199     assert(std::get<0>(E) && "All ordered entries must exist!");
3200     if (const auto *CE =
3201             dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>(
3202                 std::get<0>(E))) {
3203       if (!CE->getID() || !CE->getAddress()) {
3204         // Do not blame the entry if the parent funtion is not emitted.
3205         StringRef FnName = ParentFunctions[CE->getOrder()];
3206         if (!CGM.GetGlobalValue(FnName))
3207           continue;
3208         unsigned DiagID = CGM.getDiags().getCustomDiagID(
3209             DiagnosticsEngine::Error,
3210             "Offloading entry for target region in %0 is incorrect: either the "
3211             "address or the ID is invalid.");
3212         CGM.getDiags().Report(std::get<1>(E), DiagID) << FnName;
3213         continue;
3214       }
3215       createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0,
3216                          CE->getFlags(), llvm::GlobalValue::WeakAnyLinkage);
3217     } else if (const auto *CE = dyn_cast<OffloadEntriesInfoManagerTy::
3218                                              OffloadEntryInfoDeviceGlobalVar>(
3219                    std::get<0>(E))) {
3220       OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags =
3221           static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
3222               CE->getFlags());
3223       switch (Flags) {
3224       case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo: {
3225         if (CGM.getLangOpts().OpenMPIsDevice &&
3226             CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())
3227           continue;
3228         if (!CE->getAddress()) {
3229           unsigned DiagID = CGM.getDiags().getCustomDiagID(
3230               DiagnosticsEngine::Error, "Offloading entry for declare target "
3231                                         "variable %0 is incorrect: the "
3232                                         "address is invalid.");
3233           CGM.getDiags().Report(std::get<1>(E), DiagID) << std::get<2>(E);
3234           continue;
3235         }
3236         // The vaiable has no definition - no need to add the entry.
3237         if (CE->getVarSize().isZero())
3238           continue;
3239         break;
3240       }
3241       case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink:
3242         assert(((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) ||
3243                 (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) &&
3244                "Declaret target link address is set.");
3245         if (CGM.getLangOpts().OpenMPIsDevice)
3246           continue;
3247         if (!CE->getAddress()) {
3248           unsigned DiagID = CGM.getDiags().getCustomDiagID(
3249               DiagnosticsEngine::Error,
3250               "Offloading entry for declare target variable is incorrect: the "
3251               "address is invalid.");
3252           CGM.getDiags().Report(DiagID);
3253           continue;
3254         }
3255         break;
3256       }
3257       createOffloadEntry(CE->getAddress(), CE->getAddress(),
3258                          CE->getVarSize().getQuantity(), Flags,
3259                          CE->getLinkage());
3260     } else {
3261       llvm_unreachable("Unsupported entry kind.");
3262     }
3263   }
3264 }
3265 
3266 /// Loads all the offload entries information from the host IR
3267 /// metadata.
loadOffloadInfoMetadata()3268 void CGOpenMPRuntime::loadOffloadInfoMetadata() {
3269   // If we are in target mode, load the metadata from the host IR. This code has
3270   // to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
3271 
3272   if (!CGM.getLangOpts().OpenMPIsDevice)
3273     return;
3274 
3275   if (CGM.getLangOpts().OMPHostIRFile.empty())
3276     return;
3277 
3278   auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
3279   if (auto EC = Buf.getError()) {
3280     CGM.getDiags().Report(diag::err_cannot_open_file)
3281         << CGM.getLangOpts().OMPHostIRFile << EC.message();
3282     return;
3283   }
3284 
3285   llvm::LLVMContext C;
3286   auto ME = expectedToErrorOrAndEmitErrors(
3287       C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C));
3288 
3289   if (auto EC = ME.getError()) {
3290     unsigned DiagID = CGM.getDiags().getCustomDiagID(
3291         DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'");
3292     CGM.getDiags().Report(DiagID)
3293         << CGM.getLangOpts().OMPHostIRFile << EC.message();
3294     return;
3295   }
3296 
3297   llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info");
3298   if (!MD)
3299     return;
3300 
3301   for (llvm::MDNode *MN : MD->operands()) {
3302     auto &&GetMDInt = [MN](unsigned Idx) {
3303       auto *V = cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx));
3304       return cast<llvm::ConstantInt>(V->getValue())->getZExtValue();
3305     };
3306 
3307     auto &&GetMDString = [MN](unsigned Idx) {
3308       auto *V = cast<llvm::MDString>(MN->getOperand(Idx));
3309       return V->getString();
3310     };
3311 
3312     switch (GetMDInt(0)) {
3313     default:
3314       llvm_unreachable("Unexpected metadata!");
3315       break;
3316     case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
3317         OffloadingEntryInfoTargetRegion:
3318       OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
3319           /*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2),
3320           /*ParentName=*/GetMDString(3), /*Line=*/GetMDInt(4),
3321           /*Order=*/GetMDInt(5));
3322       break;
3323     case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
3324         OffloadingEntryInfoDeviceGlobalVar:
3325       OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo(
3326           /*MangledName=*/GetMDString(1),
3327           static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
3328               /*Flags=*/GetMDInt(2)),
3329           /*Order=*/GetMDInt(3));
3330       break;
3331     }
3332   }
3333 }
3334 
emitKmpRoutineEntryT(QualType KmpInt32Ty)3335 void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
3336   if (!KmpRoutineEntryPtrTy) {
3337     // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
3338     ASTContext &C = CGM.getContext();
3339     QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
3340     FunctionProtoType::ExtProtoInfo EPI;
3341     KmpRoutineEntryPtrQTy = C.getPointerType(
3342         C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
3343     KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
3344   }
3345 }
3346 
getTgtOffloadEntryQTy()3347 QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() {
3348   // Make sure the type of the entry is already created. This is the type we
3349   // have to create:
3350   // struct __tgt_offload_entry{
3351   //   void      *addr;       // Pointer to the offload entry info.
3352   //                          // (function or global)
3353   //   char      *name;       // Name of the function or global.
3354   //   size_t     size;       // Size of the entry info (0 if it a function).
3355   //   int32_t    flags;      // Flags associated with the entry, e.g. 'link'.
3356   //   int32_t    reserved;   // Reserved, to use by the runtime library.
3357   // };
3358   if (TgtOffloadEntryQTy.isNull()) {
3359     ASTContext &C = CGM.getContext();
3360     RecordDecl *RD = C.buildImplicitRecord("__tgt_offload_entry");
3361     RD->startDefinition();
3362     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3363     addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy));
3364     addFieldToRecordDecl(C, RD, C.getSizeType());
3365     addFieldToRecordDecl(
3366         C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
3367     addFieldToRecordDecl(
3368         C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
3369     RD->completeDefinition();
3370     RD->addAttr(PackedAttr::CreateImplicit(C));
3371     TgtOffloadEntryQTy = C.getRecordType(RD);
3372   }
3373   return TgtOffloadEntryQTy;
3374 }
3375 
3376 namespace {
3377 struct PrivateHelpersTy {
PrivateHelpersTy__anonbee92f941611::PrivateHelpersTy3378   PrivateHelpersTy(const Expr *OriginalRef, const VarDecl *Original,
3379                    const VarDecl *PrivateCopy, const VarDecl *PrivateElemInit)
3380       : OriginalRef(OriginalRef), Original(Original), PrivateCopy(PrivateCopy),
3381         PrivateElemInit(PrivateElemInit) {}
PrivateHelpersTy__anonbee92f941611::PrivateHelpersTy3382   PrivateHelpersTy(const VarDecl *Original) : Original(Original) {}
3383   const Expr *OriginalRef = nullptr;
3384   const VarDecl *Original = nullptr;
3385   const VarDecl *PrivateCopy = nullptr;
3386   const VarDecl *PrivateElemInit = nullptr;
isLocalPrivate__anonbee92f941611::PrivateHelpersTy3387   bool isLocalPrivate() const {
3388     return !OriginalRef && !PrivateCopy && !PrivateElemInit;
3389   }
3390 };
3391 typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
3392 } // anonymous namespace
3393 
isAllocatableDecl(const VarDecl * VD)3394 static bool isAllocatableDecl(const VarDecl *VD) {
3395   const VarDecl *CVD = VD->getCanonicalDecl();
3396   if (!CVD->hasAttr<OMPAllocateDeclAttr>())
3397     return false;
3398   const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
3399   // Use the default allocation.
3400   return !((AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc ||
3401             AA->getAllocatorType() == OMPAllocateDeclAttr::OMPNullMemAlloc) &&
3402            !AA->getAllocator());
3403 }
3404 
3405 static RecordDecl *
createPrivatesRecordDecl(CodeGenModule & CGM,ArrayRef<PrivateDataTy> Privates)3406 createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
3407   if (!Privates.empty()) {
3408     ASTContext &C = CGM.getContext();
3409     // Build struct .kmp_privates_t. {
3410     //         /*  private vars  */
3411     //       };
3412     RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t");
3413     RD->startDefinition();
3414     for (const auto &Pair : Privates) {
3415       const VarDecl *VD = Pair.second.Original;
3416       QualType Type = VD->getType().getNonReferenceType();
3417       // If the private variable is a local variable with lvalue ref type,
3418       // allocate the pointer instead of the pointee type.
3419       if (Pair.second.isLocalPrivate()) {
3420         if (VD->getType()->isLValueReferenceType())
3421           Type = C.getPointerType(Type);
3422         if (isAllocatableDecl(VD))
3423           Type = C.getPointerType(Type);
3424       }
3425       FieldDecl *FD = addFieldToRecordDecl(C, RD, Type);
3426       if (VD->hasAttrs()) {
3427         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
3428              E(VD->getAttrs().end());
3429              I != E; ++I)
3430           FD->addAttr(*I);
3431       }
3432     }
3433     RD->completeDefinition();
3434     return RD;
3435   }
3436   return nullptr;
3437 }
3438 
3439 static RecordDecl *
createKmpTaskTRecordDecl(CodeGenModule & CGM,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpRoutineEntryPointerQTy)3440 createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
3441                          QualType KmpInt32Ty,
3442                          QualType KmpRoutineEntryPointerQTy) {
3443   ASTContext &C = CGM.getContext();
3444   // Build struct kmp_task_t {
3445   //         void *              shareds;
3446   //         kmp_routine_entry_t routine;
3447   //         kmp_int32           part_id;
3448   //         kmp_cmplrdata_t data1;
3449   //         kmp_cmplrdata_t data2;
3450   // For taskloops additional fields:
3451   //         kmp_uint64          lb;
3452   //         kmp_uint64          ub;
3453   //         kmp_int64           st;
3454   //         kmp_int32           liter;
3455   //         void *              reductions;
3456   //       };
3457   RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
3458   UD->startDefinition();
3459   addFieldToRecordDecl(C, UD, KmpInt32Ty);
3460   addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
3461   UD->completeDefinition();
3462   QualType KmpCmplrdataTy = C.getRecordType(UD);
3463   RecordDecl *RD = C.buildImplicitRecord("kmp_task_t");
3464   RD->startDefinition();
3465   addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3466   addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
3467   addFieldToRecordDecl(C, RD, KmpInt32Ty);
3468   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
3469   addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
3470   if (isOpenMPTaskLoopDirective(Kind)) {
3471     QualType KmpUInt64Ty =
3472         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
3473     QualType KmpInt64Ty =
3474         CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
3475     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
3476     addFieldToRecordDecl(C, RD, KmpUInt64Ty);
3477     addFieldToRecordDecl(C, RD, KmpInt64Ty);
3478     addFieldToRecordDecl(C, RD, KmpInt32Ty);
3479     addFieldToRecordDecl(C, RD, C.VoidPtrTy);
3480   }
3481   RD->completeDefinition();
3482   return RD;
3483 }
3484 
3485 static RecordDecl *
createKmpTaskTWithPrivatesRecordDecl(CodeGenModule & CGM,QualType KmpTaskTQTy,ArrayRef<PrivateDataTy> Privates)3486 createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
3487                                      ArrayRef<PrivateDataTy> Privates) {
3488   ASTContext &C = CGM.getContext();
3489   // Build struct kmp_task_t_with_privates {
3490   //         kmp_task_t task_data;
3491   //         .kmp_privates_t. privates;
3492   //       };
3493   RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
3494   RD->startDefinition();
3495   addFieldToRecordDecl(C, RD, KmpTaskTQTy);
3496   if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates))
3497     addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
3498   RD->completeDefinition();
3499   return RD;
3500 }
3501 
3502 /// Emit a proxy function which accepts kmp_task_t as the second
3503 /// argument.
3504 /// \code
3505 /// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
3506 ///   TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
3507 ///   For taskloops:
3508 ///   tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
3509 ///   tt->reductions, tt->shareds);
3510 ///   return 0;
3511 /// }
3512 /// \endcode
3513 static llvm::Function *
emitProxyTaskFunction(CodeGenModule & CGM,SourceLocation Loc,OpenMPDirectiveKind Kind,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy,QualType KmpTaskTQTy,QualType SharedsPtrTy,llvm::Function * TaskFunction,llvm::Value * TaskPrivatesMap)3514 emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
3515                       OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
3516                       QualType KmpTaskTWithPrivatesPtrQTy,
3517                       QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
3518                       QualType SharedsPtrTy, llvm::Function *TaskFunction,
3519                       llvm::Value *TaskPrivatesMap) {
3520   ASTContext &C = CGM.getContext();
3521   FunctionArgList Args;
3522   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
3523                             ImplicitParamDecl::Other);
3524   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3525                                 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
3526                                 ImplicitParamDecl::Other);
3527   Args.push_back(&GtidArg);
3528   Args.push_back(&TaskTypeArg);
3529   const auto &TaskEntryFnInfo =
3530       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
3531   llvm::FunctionType *TaskEntryTy =
3532       CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
3533   std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""});
3534   auto *TaskEntry = llvm::Function::Create(
3535       TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
3536   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo);
3537   TaskEntry->setDoesNotRecurse();
3538   CodeGenFunction CGF(CGM);
3539   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args,
3540                     Loc, Loc);
3541 
3542   // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
3543   // tt,
3544   // For taskloops:
3545   // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
3546   // tt->task_data.shareds);
3547   llvm::Value *GtidParam = CGF.EmitLoadOfScalar(
3548       CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
3549   LValue TDBase = CGF.EmitLoadOfPointerLValue(
3550       CGF.GetAddrOfLocalVar(&TaskTypeArg),
3551       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3552   const auto *KmpTaskTWithPrivatesQTyRD =
3553       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
3554   LValue Base =
3555       CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3556   const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
3557   auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
3558   LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
3559   llvm::Value *PartidParam = PartIdLVal.getPointer(CGF);
3560 
3561   auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
3562   LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
3563   llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3564       CGF.EmitLoadOfScalar(SharedsLVal, Loc),
3565       CGF.ConvertTypeForMem(SharedsPtrTy));
3566 
3567   auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
3568   llvm::Value *PrivatesParam;
3569   if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
3570     LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
3571     PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3572         PrivatesLVal.getPointer(CGF), CGF.VoidPtrTy);
3573   } else {
3574     PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
3575   }
3576 
3577   llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam,
3578                                TaskPrivatesMap,
3579                                CGF.Builder
3580                                    .CreatePointerBitCastOrAddrSpaceCast(
3581                                        TDBase.getAddress(CGF), CGF.VoidPtrTy)
3582                                    .getPointer()};
3583   SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
3584                                           std::end(CommonArgs));
3585   if (isOpenMPTaskLoopDirective(Kind)) {
3586     auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
3587     LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI);
3588     llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc);
3589     auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
3590     LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI);
3591     llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc);
3592     auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
3593     LValue StLVal = CGF.EmitLValueForField(Base, *StFI);
3594     llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc);
3595     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
3596     LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
3597     llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc);
3598     auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions);
3599     LValue RLVal = CGF.EmitLValueForField(Base, *RFI);
3600     llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc);
3601     CallArgs.push_back(LBParam);
3602     CallArgs.push_back(UBParam);
3603     CallArgs.push_back(StParam);
3604     CallArgs.push_back(LIParam);
3605     CallArgs.push_back(RParam);
3606   }
3607   CallArgs.push_back(SharedsParam);
3608 
3609   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction,
3610                                                   CallArgs);
3611   CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)),
3612                              CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
3613   CGF.FinishFunction();
3614   return TaskEntry;
3615 }
3616 
emitDestructorsFunction(CodeGenModule & CGM,SourceLocation Loc,QualType KmpInt32Ty,QualType KmpTaskTWithPrivatesPtrQTy,QualType KmpTaskTWithPrivatesQTy)3617 static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
3618                                             SourceLocation Loc,
3619                                             QualType KmpInt32Ty,
3620                                             QualType KmpTaskTWithPrivatesPtrQTy,
3621                                             QualType KmpTaskTWithPrivatesQTy) {
3622   ASTContext &C = CGM.getContext();
3623   FunctionArgList Args;
3624   ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
3625                             ImplicitParamDecl::Other);
3626   ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3627                                 KmpTaskTWithPrivatesPtrQTy.withRestrict(),
3628                                 ImplicitParamDecl::Other);
3629   Args.push_back(&GtidArg);
3630   Args.push_back(&TaskTypeArg);
3631   const auto &DestructorFnInfo =
3632       CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
3633   llvm::FunctionType *DestructorFnTy =
3634       CGM.getTypes().GetFunctionType(DestructorFnInfo);
3635   std::string Name =
3636       CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""});
3637   auto *DestructorFn =
3638       llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
3639                              Name, &CGM.getModule());
3640   CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn,
3641                                     DestructorFnInfo);
3642   DestructorFn->setDoesNotRecurse();
3643   CodeGenFunction CGF(CGM);
3644   CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
3645                     Args, Loc, Loc);
3646 
3647   LValue Base = CGF.EmitLoadOfPointerLValue(
3648       CGF.GetAddrOfLocalVar(&TaskTypeArg),
3649       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3650   const auto *KmpTaskTWithPrivatesQTyRD =
3651       cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
3652   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
3653   Base = CGF.EmitLValueForField(Base, *FI);
3654   for (const auto *Field :
3655        cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
3656     if (QualType::DestructionKind DtorKind =
3657             Field->getType().isDestructedType()) {
3658       LValue FieldLValue = CGF.EmitLValueForField(Base, Field);
3659       CGF.pushDestroy(DtorKind, FieldLValue.getAddress(CGF), Field->getType());
3660     }
3661   }
3662   CGF.FinishFunction();
3663   return DestructorFn;
3664 }
3665 
3666 /// Emit a privates mapping function for correct handling of private and
3667 /// firstprivate variables.
3668 /// \code
3669 /// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
3670 /// **noalias priv1,...,  <tyn> **noalias privn) {
3671 ///   *priv1 = &.privates.priv1;
3672 ///   ...;
3673 ///   *privn = &.privates.privn;
3674 /// }
3675 /// \endcode
3676 static llvm::Value *
emitTaskPrivateMappingFunction(CodeGenModule & CGM,SourceLocation Loc,const OMPTaskDataTy & Data,QualType PrivatesQTy,ArrayRef<PrivateDataTy> Privates)3677 emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
3678                                const OMPTaskDataTy &Data, QualType PrivatesQTy,
3679                                ArrayRef<PrivateDataTy> Privates) {
3680   ASTContext &C = CGM.getContext();
3681   FunctionArgList Args;
3682   ImplicitParamDecl TaskPrivatesArg(
3683       C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3684       C.getPointerType(PrivatesQTy).withConst().withRestrict(),
3685       ImplicitParamDecl::Other);
3686   Args.push_back(&TaskPrivatesArg);
3687   llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, unsigned> PrivateVarsPos;
3688   unsigned Counter = 1;
3689   for (const Expr *E : Data.PrivateVars) {
3690     Args.push_back(ImplicitParamDecl::Create(
3691         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3692         C.getPointerType(C.getPointerType(E->getType()))
3693             .withConst()
3694             .withRestrict(),
3695         ImplicitParamDecl::Other));
3696     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3697     PrivateVarsPos[VD] = Counter;
3698     ++Counter;
3699   }
3700   for (const Expr *E : Data.FirstprivateVars) {
3701     Args.push_back(ImplicitParamDecl::Create(
3702         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3703         C.getPointerType(C.getPointerType(E->getType()))
3704             .withConst()
3705             .withRestrict(),
3706         ImplicitParamDecl::Other));
3707     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3708     PrivateVarsPos[VD] = Counter;
3709     ++Counter;
3710   }
3711   for (const Expr *E : Data.LastprivateVars) {
3712     Args.push_back(ImplicitParamDecl::Create(
3713         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3714         C.getPointerType(C.getPointerType(E->getType()))
3715             .withConst()
3716             .withRestrict(),
3717         ImplicitParamDecl::Other));
3718     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
3719     PrivateVarsPos[VD] = Counter;
3720     ++Counter;
3721   }
3722   for (const VarDecl *VD : Data.PrivateLocals) {
3723     QualType Ty = VD->getType().getNonReferenceType();
3724     if (VD->getType()->isLValueReferenceType())
3725       Ty = C.getPointerType(Ty);
3726     if (isAllocatableDecl(VD))
3727       Ty = C.getPointerType(Ty);
3728     Args.push_back(ImplicitParamDecl::Create(
3729         C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3730         C.getPointerType(C.getPointerType(Ty)).withConst().withRestrict(),
3731         ImplicitParamDecl::Other));
3732     PrivateVarsPos[VD] = Counter;
3733     ++Counter;
3734   }
3735   const auto &TaskPrivatesMapFnInfo =
3736       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3737   llvm::FunctionType *TaskPrivatesMapTy =
3738       CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
3739   std::string Name =
3740       CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""});
3741   auto *TaskPrivatesMap = llvm::Function::Create(
3742       TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name,
3743       &CGM.getModule());
3744   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap,
3745                                     TaskPrivatesMapFnInfo);
3746   if (CGM.getLangOpts().Optimize) {
3747     TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline);
3748     TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone);
3749     TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
3750   }
3751   CodeGenFunction CGF(CGM);
3752   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
3753                     TaskPrivatesMapFnInfo, Args, Loc, Loc);
3754 
3755   // *privi = &.privates.privi;
3756   LValue Base = CGF.EmitLoadOfPointerLValue(
3757       CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
3758       TaskPrivatesArg.getType()->castAs<PointerType>());
3759   const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
3760   Counter = 0;
3761   for (const FieldDecl *Field : PrivatesQTyRD->fields()) {
3762     LValue FieldLVal = CGF.EmitLValueForField(Base, Field);
3763     const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
3764     LValue RefLVal =
3765         CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
3766     LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue(
3767         RefLVal.getAddress(CGF), RefLVal.getType()->castAs<PointerType>());
3768     CGF.EmitStoreOfScalar(FieldLVal.getPointer(CGF), RefLoadLVal);
3769     ++Counter;
3770   }
3771   CGF.FinishFunction();
3772   return TaskPrivatesMap;
3773 }
3774 
3775 /// Emit initialization for private variables in task-based directives.
emitPrivatesInit(CodeGenFunction & CGF,const OMPExecutableDirective & D,Address KmpTaskSharedsPtr,LValue TDBase,const RecordDecl * KmpTaskTWithPrivatesQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool ForDup)3776 static void emitPrivatesInit(CodeGenFunction &CGF,
3777                              const OMPExecutableDirective &D,
3778                              Address KmpTaskSharedsPtr, LValue TDBase,
3779                              const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3780                              QualType SharedsTy, QualType SharedsPtrTy,
3781                              const OMPTaskDataTy &Data,
3782                              ArrayRef<PrivateDataTy> Privates, bool ForDup) {
3783   ASTContext &C = CGF.getContext();
3784   auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
3785   LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
3786   OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind())
3787                                  ? OMPD_taskloop
3788                                  : OMPD_task;
3789   const CapturedStmt &CS = *D.getCapturedStmt(Kind);
3790   CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS);
3791   LValue SrcBase;
3792   bool IsTargetTask =
3793       isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) ||
3794       isOpenMPTargetExecutionDirective(D.getDirectiveKind());
3795   // For target-based directives skip 4 firstprivate arrays BasePointersArray,
3796   // PointersArray, SizesArray, and MappersArray. The original variables for
3797   // these arrays are not captured and we get their addresses explicitly.
3798   if ((!IsTargetTask && !Data.FirstprivateVars.empty() && ForDup) ||
3799       (IsTargetTask && KmpTaskSharedsPtr.isValid())) {
3800     SrcBase = CGF.MakeAddrLValue(
3801         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3802             KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
3803         SharedsTy);
3804   }
3805   FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
3806   for (const PrivateDataTy &Pair : Privates) {
3807     // Do not initialize private locals.
3808     if (Pair.second.isLocalPrivate()) {
3809       ++FI;
3810       continue;
3811     }
3812     const VarDecl *VD = Pair.second.PrivateCopy;
3813     const Expr *Init = VD->getAnyInitializer();
3814     if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
3815                              !CGF.isTrivialInitializer(Init)))) {
3816       LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
3817       if (const VarDecl *Elem = Pair.second.PrivateElemInit) {
3818         const VarDecl *OriginalVD = Pair.second.Original;
3819         // Check if the variable is the target-based BasePointersArray,
3820         // PointersArray, SizesArray, or MappersArray.
3821         LValue SharedRefLValue;
3822         QualType Type = PrivateLValue.getType();
3823         const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD);
3824         if (IsTargetTask && !SharedField) {
3825           assert(isa<ImplicitParamDecl>(OriginalVD) &&
3826                  isa<CapturedDecl>(OriginalVD->getDeclContext()) &&
3827                  cast<CapturedDecl>(OriginalVD->getDeclContext())
3828                          ->getNumParams() == 0 &&
3829                  isa<TranslationUnitDecl>(
3830                      cast<CapturedDecl>(OriginalVD->getDeclContext())
3831                          ->getDeclContext()) &&
3832                  "Expected artificial target data variable.");
3833           SharedRefLValue =
3834               CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type);
3835         } else if (ForDup) {
3836           SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
3837           SharedRefLValue = CGF.MakeAddrLValue(
3838               Address(SharedRefLValue.getPointer(CGF),
3839                       C.getDeclAlign(OriginalVD)),
3840               SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl),
3841               SharedRefLValue.getTBAAInfo());
3842         } else if (CGF.LambdaCaptureFields.count(
3843                        Pair.second.Original->getCanonicalDecl()) > 0 ||
3844                    dyn_cast_or_null<BlockDecl>(CGF.CurCodeDecl)) {
3845           SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef);
3846         } else {
3847           // Processing for implicitly captured variables.
3848           InlinedOpenMPRegionRAII Region(
3849               CGF, [](CodeGenFunction &, PrePostActionTy &) {}, OMPD_unknown,
3850               /*HasCancel=*/false);
3851           SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef);
3852         }
3853         if (Type->isArrayType()) {
3854           // Initialize firstprivate array.
3855           if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
3856             // Perform simple memcpy.
3857             CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type);
3858           } else {
3859             // Initialize firstprivate array using element-by-element
3860             // initialization.
3861             CGF.EmitOMPAggregateAssign(
3862                 PrivateLValue.getAddress(CGF), SharedRefLValue.getAddress(CGF),
3863                 Type,
3864                 [&CGF, Elem, Init, &CapturesInfo](Address DestElement,
3865                                                   Address SrcElement) {
3866                   // Clean up any temporaries needed by the initialization.
3867                   CodeGenFunction::OMPPrivateScope InitScope(CGF);
3868                   InitScope.addPrivate(
3869                       Elem, [SrcElement]() -> Address { return SrcElement; });
3870                   (void)InitScope.Privatize();
3871                   // Emit initialization for single element.
3872                   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
3873                       CGF, &CapturesInfo);
3874                   CGF.EmitAnyExprToMem(Init, DestElement,
3875                                        Init->getType().getQualifiers(),
3876                                        /*IsInitializer=*/false);
3877                 });
3878           }
3879         } else {
3880           CodeGenFunction::OMPPrivateScope InitScope(CGF);
3881           InitScope.addPrivate(Elem, [SharedRefLValue, &CGF]() -> Address {
3882             return SharedRefLValue.getAddress(CGF);
3883           });
3884           (void)InitScope.Privatize();
3885           CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
3886           CGF.EmitExprAsInit(Init, VD, PrivateLValue,
3887                              /*capturedByInit=*/false);
3888         }
3889       } else {
3890         CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
3891       }
3892     }
3893     ++FI;
3894   }
3895 }
3896 
3897 /// Check if duplication function is required for taskloops.
checkInitIsRequired(CodeGenFunction & CGF,ArrayRef<PrivateDataTy> Privates)3898 static bool checkInitIsRequired(CodeGenFunction &CGF,
3899                                 ArrayRef<PrivateDataTy> Privates) {
3900   bool InitRequired = false;
3901   for (const PrivateDataTy &Pair : Privates) {
3902     if (Pair.second.isLocalPrivate())
3903       continue;
3904     const VarDecl *VD = Pair.second.PrivateCopy;
3905     const Expr *Init = VD->getAnyInitializer();
3906     InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) &&
3907                                     !CGF.isTrivialInitializer(Init));
3908     if (InitRequired)
3909       break;
3910   }
3911   return InitRequired;
3912 }
3913 
3914 
3915 /// Emit task_dup function (for initialization of
3916 /// private/firstprivate/lastprivate vars and last_iter flag)
3917 /// \code
3918 /// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
3919 /// lastpriv) {
3920 /// // setup lastprivate flag
3921 ///    task_dst->last = lastpriv;
3922 /// // could be constructor calls here...
3923 /// }
3924 /// \endcode
3925 static llvm::Value *
emitTaskDupFunction(CodeGenModule & CGM,SourceLocation Loc,const OMPExecutableDirective & D,QualType KmpTaskTWithPrivatesPtrQTy,const RecordDecl * KmpTaskTWithPrivatesQTyRD,const RecordDecl * KmpTaskTQTyRD,QualType SharedsTy,QualType SharedsPtrTy,const OMPTaskDataTy & Data,ArrayRef<PrivateDataTy> Privates,bool WithLastIter)3926 emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
3927                     const OMPExecutableDirective &D,
3928                     QualType KmpTaskTWithPrivatesPtrQTy,
3929                     const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3930                     const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
3931                     QualType SharedsPtrTy, const OMPTaskDataTy &Data,
3932                     ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
3933   ASTContext &C = CGM.getContext();
3934   FunctionArgList Args;
3935   ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3936                            KmpTaskTWithPrivatesPtrQTy,
3937                            ImplicitParamDecl::Other);
3938   ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
3939                            KmpTaskTWithPrivatesPtrQTy,
3940                            ImplicitParamDecl::Other);
3941   ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
3942                                 ImplicitParamDecl::Other);
3943   Args.push_back(&DstArg);
3944   Args.push_back(&SrcArg);
3945   Args.push_back(&LastprivArg);
3946   const auto &TaskDupFnInfo =
3947       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
3948   llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
3949   std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""});
3950   auto *TaskDup = llvm::Function::Create(
3951       TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
3952   CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo);
3953   TaskDup->setDoesNotRecurse();
3954   CodeGenFunction CGF(CGM);
3955   CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc,
3956                     Loc);
3957 
3958   LValue TDBase = CGF.EmitLoadOfPointerLValue(
3959       CGF.GetAddrOfLocalVar(&DstArg),
3960       KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3961   // task_dst->liter = lastpriv;
3962   if (WithLastIter) {
3963     auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
3964     LValue Base = CGF.EmitLValueForField(
3965         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3966     LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
3967     llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
3968         CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
3969     CGF.EmitStoreOfScalar(Lastpriv, LILVal);
3970   }
3971 
3972   // Emit initial values for private copies (if any).
3973   assert(!Privates.empty());
3974   Address KmpTaskSharedsPtr = Address::invalid();
3975   if (!Data.FirstprivateVars.empty()) {
3976     LValue TDBase = CGF.EmitLoadOfPointerLValue(
3977         CGF.GetAddrOfLocalVar(&SrcArg),
3978         KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
3979     LValue Base = CGF.EmitLValueForField(
3980         TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
3981     KmpTaskSharedsPtr = Address(
3982         CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
3983                                  Base, *std::next(KmpTaskTQTyRD->field_begin(),
3984                                                   KmpTaskTShareds)),
3985                              Loc),
3986         CGM.getNaturalTypeAlignment(SharedsTy));
3987   }
3988   emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
3989                    SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
3990   CGF.FinishFunction();
3991   return TaskDup;
3992 }
3993 
3994 /// Checks if destructor function is required to be generated.
3995 /// \return true if cleanups are required, false otherwise.
3996 static bool
checkDestructorsRequired(const RecordDecl * KmpTaskTWithPrivatesQTyRD,ArrayRef<PrivateDataTy> Privates)3997 checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD,
3998                          ArrayRef<PrivateDataTy> Privates) {
3999   for (const PrivateDataTy &P : Privates) {
4000     if (P.second.isLocalPrivate())
4001       continue;
4002     QualType Ty = P.second.Original->getType().getNonReferenceType();
4003     if (Ty.isDestructedType())
4004       return true;
4005   }
4006   return false;
4007 }
4008 
4009 namespace {
4010 /// Loop generator for OpenMP iterator expression.
4011 class OMPIteratorGeneratorScope final
4012     : public CodeGenFunction::OMPPrivateScope {
4013   CodeGenFunction &CGF;
4014   const OMPIteratorExpr *E = nullptr;
4015   SmallVector<CodeGenFunction::JumpDest, 4> ContDests;
4016   SmallVector<CodeGenFunction::JumpDest, 4> ExitDests;
4017   OMPIteratorGeneratorScope() = delete;
4018   OMPIteratorGeneratorScope(OMPIteratorGeneratorScope &) = delete;
4019 
4020 public:
OMPIteratorGeneratorScope(CodeGenFunction & CGF,const OMPIteratorExpr * E)4021   OMPIteratorGeneratorScope(CodeGenFunction &CGF, const OMPIteratorExpr *E)
4022       : CodeGenFunction::OMPPrivateScope(CGF), CGF(CGF), E(E) {
4023     if (!E)
4024       return;
4025     SmallVector<llvm::Value *, 4> Uppers;
4026     for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) {
4027       Uppers.push_back(CGF.EmitScalarExpr(E->getHelper(I).Upper));
4028       const auto *VD = cast<VarDecl>(E->getIteratorDecl(I));
4029       addPrivate(VD, [&CGF, VD]() {
4030         return CGF.CreateMemTemp(VD->getType(), VD->getName());
4031       });
4032       const OMPIteratorHelperData &HelperData = E->getHelper(I);
4033       addPrivate(HelperData.CounterVD, [&CGF, &HelperData]() {
4034         return CGF.CreateMemTemp(HelperData.CounterVD->getType(),
4035                                  "counter.addr");
4036       });
4037     }
4038     Privatize();
4039 
4040     for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) {
4041       const OMPIteratorHelperData &HelperData = E->getHelper(I);
4042       LValue CLVal =
4043           CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(HelperData.CounterVD),
4044                              HelperData.CounterVD->getType());
4045       // Counter = 0;
4046       CGF.EmitStoreOfScalar(
4047           llvm::ConstantInt::get(CLVal.getAddress(CGF).getElementType(), 0),
4048           CLVal);
4049       CodeGenFunction::JumpDest &ContDest =
4050           ContDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.cont"));
4051       CodeGenFunction::JumpDest &ExitDest =
4052           ExitDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.exit"));
4053       // N = <number-of_iterations>;
4054       llvm::Value *N = Uppers[I];
4055       // cont:
4056       // if (Counter < N) goto body; else goto exit;
4057       CGF.EmitBlock(ContDest.getBlock());
4058       auto *CVal =
4059           CGF.EmitLoadOfScalar(CLVal, HelperData.CounterVD->getLocation());
4060       llvm::Value *Cmp =
4061           HelperData.CounterVD->getType()->isSignedIntegerOrEnumerationType()
4062               ? CGF.Builder.CreateICmpSLT(CVal, N)
4063               : CGF.Builder.CreateICmpULT(CVal, N);
4064       llvm::BasicBlock *BodyBB = CGF.createBasicBlock("iter.body");
4065       CGF.Builder.CreateCondBr(Cmp, BodyBB, ExitDest.getBlock());
4066       // body:
4067       CGF.EmitBlock(BodyBB);
4068       // Iteri = Begini + Counter * Stepi;
4069       CGF.EmitIgnoredExpr(HelperData.Update);
4070     }
4071   }
~OMPIteratorGeneratorScope()4072   ~OMPIteratorGeneratorScope() {
4073     if (!E)
4074       return;
4075     for (unsigned I = E->numOfIterators(); I > 0; --I) {
4076       // Counter = Counter + 1;
4077       const OMPIteratorHelperData &HelperData = E->getHelper(I - 1);
4078       CGF.EmitIgnoredExpr(HelperData.CounterUpdate);
4079       // goto cont;
4080       CGF.EmitBranchThroughCleanup(ContDests[I - 1]);
4081       // exit:
4082       CGF.EmitBlock(ExitDests[I - 1].getBlock(), /*IsFinished=*/I == 1);
4083     }
4084   }
4085 };
4086 } // namespace
4087 
4088 static std::pair<llvm::Value *, llvm::Value *>
getPointerAndSize(CodeGenFunction & CGF,const Expr * E)4089 getPointerAndSize(CodeGenFunction &CGF, const Expr *E) {
4090   const auto *OASE = dyn_cast<OMPArrayShapingExpr>(E);
4091   llvm::Value *Addr;
4092   if (OASE) {
4093     const Expr *Base = OASE->getBase();
4094     Addr = CGF.EmitScalarExpr(Base);
4095   } else {
4096     Addr = CGF.EmitLValue(E).getPointer(CGF);
4097   }
4098   llvm::Value *SizeVal;
4099   QualType Ty = E->getType();
4100   if (OASE) {
4101     SizeVal = CGF.getTypeSize(OASE->getBase()->getType()->getPointeeType());
4102     for (const Expr *SE : OASE->getDimensions()) {
4103       llvm::Value *Sz = CGF.EmitScalarExpr(SE);
4104       Sz = CGF.EmitScalarConversion(
4105           Sz, SE->getType(), CGF.getContext().getSizeType(), SE->getExprLoc());
4106       SizeVal = CGF.Builder.CreateNUWMul(SizeVal, Sz);
4107     }
4108   } else if (const auto *ASE =
4109                  dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
4110     LValue UpAddrLVal =
4111         CGF.EmitOMPArraySectionExpr(ASE, /*IsLowerBound=*/false);
4112     llvm::Value *UpAddr =
4113         CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(CGF), /*Idx0=*/1);
4114     llvm::Value *LowIntPtr = CGF.Builder.CreatePtrToInt(Addr, CGF.SizeTy);
4115     llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGF.SizeTy);
4116     SizeVal = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
4117   } else {
4118     SizeVal = CGF.getTypeSize(Ty);
4119   }
4120   return std::make_pair(Addr, SizeVal);
4121 }
4122 
4123 /// Builds kmp_depend_info, if it is not built yet, and builds flags type.
getKmpAffinityType(ASTContext & C,QualType & KmpTaskAffinityInfoTy)4124 static void getKmpAffinityType(ASTContext &C, QualType &KmpTaskAffinityInfoTy) {
4125   QualType FlagsTy = C.getIntTypeForBitwidth(32, /*Signed=*/false);
4126   if (KmpTaskAffinityInfoTy.isNull()) {
4127     RecordDecl *KmpAffinityInfoRD =
4128         C.buildImplicitRecord("kmp_task_affinity_info_t");
4129     KmpAffinityInfoRD->startDefinition();
4130     addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getIntPtrType());
4131     addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getSizeType());
4132     addFieldToRecordDecl(C, KmpAffinityInfoRD, FlagsTy);
4133     KmpAffinityInfoRD->completeDefinition();
4134     KmpTaskAffinityInfoTy = C.getRecordType(KmpAffinityInfoRD);
4135   }
4136 }
4137 
4138 CGOpenMPRuntime::TaskResultTy
emitTaskInit(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const OMPTaskDataTy & Data)4139 CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
4140                               const OMPExecutableDirective &D,
4141                               llvm::Function *TaskFunction, QualType SharedsTy,
4142                               Address Shareds, const OMPTaskDataTy &Data) {
4143   ASTContext &C = CGM.getContext();
4144   llvm::SmallVector<PrivateDataTy, 4> Privates;
4145   // Aggregate privates and sort them by the alignment.
4146   const auto *I = Data.PrivateCopies.begin();
4147   for (const Expr *E : Data.PrivateVars) {
4148     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4149     Privates.emplace_back(
4150         C.getDeclAlign(VD),
4151         PrivateHelpersTy(E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4152                          /*PrivateElemInit=*/nullptr));
4153     ++I;
4154   }
4155   I = Data.FirstprivateCopies.begin();
4156   const auto *IElemInitRef = Data.FirstprivateInits.begin();
4157   for (const Expr *E : Data.FirstprivateVars) {
4158     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4159     Privates.emplace_back(
4160         C.getDeclAlign(VD),
4161         PrivateHelpersTy(
4162             E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4163             cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl())));
4164     ++I;
4165     ++IElemInitRef;
4166   }
4167   I = Data.LastprivateCopies.begin();
4168   for (const Expr *E : Data.LastprivateVars) {
4169     const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
4170     Privates.emplace_back(
4171         C.getDeclAlign(VD),
4172         PrivateHelpersTy(E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
4173                          /*PrivateElemInit=*/nullptr));
4174     ++I;
4175   }
4176   for (const VarDecl *VD : Data.PrivateLocals) {
4177     if (isAllocatableDecl(VD))
4178       Privates.emplace_back(CGM.getPointerAlign(), PrivateHelpersTy(VD));
4179     else
4180       Privates.emplace_back(C.getDeclAlign(VD), PrivateHelpersTy(VD));
4181   }
4182   llvm::stable_sort(Privates,
4183                     [](const PrivateDataTy &L, const PrivateDataTy &R) {
4184                       return L.first > R.first;
4185                     });
4186   QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
4187   // Build type kmp_routine_entry_t (if not built yet).
4188   emitKmpRoutineEntryT(KmpInt32Ty);
4189   // Build type kmp_task_t (if not built yet).
4190   if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) {
4191     if (SavedKmpTaskloopTQTy.isNull()) {
4192       SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl(
4193           CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
4194     }
4195     KmpTaskTQTy = SavedKmpTaskloopTQTy;
4196   } else {
4197     assert((D.getDirectiveKind() == OMPD_task ||
4198             isOpenMPTargetExecutionDirective(D.getDirectiveKind()) ||
4199             isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) &&
4200            "Expected taskloop, task or target directive");
4201     if (SavedKmpTaskTQTy.isNull()) {
4202       SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
4203           CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
4204     }
4205     KmpTaskTQTy = SavedKmpTaskTQTy;
4206   }
4207   const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
4208   // Build particular struct kmp_task_t for the given task.
4209   const RecordDecl *KmpTaskTWithPrivatesQTyRD =
4210       createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
4211   QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
4212   QualType KmpTaskTWithPrivatesPtrQTy =
4213       C.getPointerType(KmpTaskTWithPrivatesQTy);
4214   llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
4215   llvm::Type *KmpTaskTWithPrivatesPtrTy =
4216       KmpTaskTWithPrivatesTy->getPointerTo();
4217   llvm::Value *KmpTaskTWithPrivatesTySize =
4218       CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
4219   QualType SharedsPtrTy = C.getPointerType(SharedsTy);
4220 
4221   // Emit initial values for private copies (if any).
4222   llvm::Value *TaskPrivatesMap = nullptr;
4223   llvm::Type *TaskPrivatesMapTy =
4224       std::next(TaskFunction->arg_begin(), 3)->getType();
4225   if (!Privates.empty()) {
4226     auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
4227     TaskPrivatesMap =
4228         emitTaskPrivateMappingFunction(CGM, Loc, Data, FI->getType(), Privates);
4229     TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4230         TaskPrivatesMap, TaskPrivatesMapTy);
4231   } else {
4232     TaskPrivatesMap = llvm::ConstantPointerNull::get(
4233         cast<llvm::PointerType>(TaskPrivatesMapTy));
4234   }
4235   // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
4236   // kmp_task_t *tt);
4237   llvm::Function *TaskEntry = emitProxyTaskFunction(
4238       CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
4239       KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
4240       TaskPrivatesMap);
4241 
4242   // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
4243   // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
4244   // kmp_routine_entry_t *task_entry);
4245   // Task flags. Format is taken from
4246   // https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h,
4247   // description of kmp_tasking_flags struct.
4248   enum {
4249     TiedFlag = 0x1,
4250     FinalFlag = 0x2,
4251     DestructorsFlag = 0x8,
4252     PriorityFlag = 0x20,
4253     DetachableFlag = 0x40,
4254   };
4255   unsigned Flags = Data.Tied ? TiedFlag : 0;
4256   bool NeedsCleanup = false;
4257   if (!Privates.empty()) {
4258     NeedsCleanup =
4259         checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD, Privates);
4260     if (NeedsCleanup)
4261       Flags = Flags | DestructorsFlag;
4262   }
4263   if (Data.Priority.getInt())
4264     Flags = Flags | PriorityFlag;
4265   if (D.hasClausesOfKind<OMPDetachClause>())
4266     Flags = Flags | DetachableFlag;
4267   llvm::Value *TaskFlags =
4268       Data.Final.getPointer()
4269           ? CGF.Builder.CreateSelect(Data.Final.getPointer(),
4270                                      CGF.Builder.getInt32(FinalFlag),
4271                                      CGF.Builder.getInt32(/*C=*/0))
4272           : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
4273   TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
4274   llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
4275   SmallVector<llvm::Value *, 8> AllocArgs = {emitUpdateLocation(CGF, Loc),
4276       getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize,
4277       SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4278           TaskEntry, KmpRoutineEntryPtrTy)};
4279   llvm::Value *NewTask;
4280   if (D.hasClausesOfKind<OMPNowaitClause>()) {
4281     // Check if we have any device clause associated with the directive.
4282     const Expr *Device = nullptr;
4283     if (auto *C = D.getSingleClause<OMPDeviceClause>())
4284       Device = C->getDevice();
4285     // Emit device ID if any otherwise use default value.
4286     llvm::Value *DeviceID;
4287     if (Device)
4288       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
4289                                            CGF.Int64Ty, /*isSigned=*/true);
4290     else
4291       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
4292     AllocArgs.push_back(DeviceID);
4293     NewTask = CGF.EmitRuntimeCall(
4294         OMPBuilder.getOrCreateRuntimeFunction(
4295             CGM.getModule(), OMPRTL___kmpc_omp_target_task_alloc),
4296         AllocArgs);
4297   } else {
4298     NewTask =
4299         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4300                                 CGM.getModule(), OMPRTL___kmpc_omp_task_alloc),
4301                             AllocArgs);
4302   }
4303   // Emit detach clause initialization.
4304   // evt = (typeof(evt))__kmpc_task_allow_completion_event(loc, tid,
4305   // task_descriptor);
4306   if (const auto *DC = D.getSingleClause<OMPDetachClause>()) {
4307     const Expr *Evt = DC->getEventHandler()->IgnoreParenImpCasts();
4308     LValue EvtLVal = CGF.EmitLValue(Evt);
4309 
4310     // Build kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
4311     // int gtid, kmp_task_t *task);
4312     llvm::Value *Loc = emitUpdateLocation(CGF, DC->getBeginLoc());
4313     llvm::Value *Tid = getThreadID(CGF, DC->getBeginLoc());
4314     Tid = CGF.Builder.CreateIntCast(Tid, CGF.IntTy, /*isSigned=*/false);
4315     llvm::Value *EvtVal = CGF.EmitRuntimeCall(
4316         OMPBuilder.getOrCreateRuntimeFunction(
4317             CGM.getModule(), OMPRTL___kmpc_task_allow_completion_event),
4318         {Loc, Tid, NewTask});
4319     EvtVal = CGF.EmitScalarConversion(EvtVal, C.VoidPtrTy, Evt->getType(),
4320                                       Evt->getExprLoc());
4321     CGF.EmitStoreOfScalar(EvtVal, EvtLVal);
4322   }
4323   // Process affinity clauses.
4324   if (D.hasClausesOfKind<OMPAffinityClause>()) {
4325     // Process list of affinity data.
4326     ASTContext &C = CGM.getContext();
4327     Address AffinitiesArray = Address::invalid();
4328     // Calculate number of elements to form the array of affinity data.
4329     llvm::Value *NumOfElements = nullptr;
4330     unsigned NumAffinities = 0;
4331     for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
4332       if (const Expr *Modifier = C->getModifier()) {
4333         const auto *IE = cast<OMPIteratorExpr>(Modifier->IgnoreParenImpCasts());
4334         for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
4335           llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
4336           Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false);
4337           NumOfElements =
4338               NumOfElements ? CGF.Builder.CreateNUWMul(NumOfElements, Sz) : Sz;
4339         }
4340       } else {
4341         NumAffinities += C->varlist_size();
4342       }
4343     }
4344     getKmpAffinityType(CGM.getContext(), KmpTaskAffinityInfoTy);
4345     // Fields ids in kmp_task_affinity_info record.
4346     enum RTLAffinityInfoFieldsTy { BaseAddr, Len, Flags };
4347 
4348     QualType KmpTaskAffinityInfoArrayTy;
4349     if (NumOfElements) {
4350       NumOfElements = CGF.Builder.CreateNUWAdd(
4351           llvm::ConstantInt::get(CGF.SizeTy, NumAffinities), NumOfElements);
4352       OpaqueValueExpr OVE(
4353           Loc,
4354           C.getIntTypeForBitwidth(C.getTypeSize(C.getSizeType()), /*Signed=*/0),
4355           VK_RValue);
4356       CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE,
4357                                                     RValue::get(NumOfElements));
4358       KmpTaskAffinityInfoArrayTy =
4359           C.getVariableArrayType(KmpTaskAffinityInfoTy, &OVE, ArrayType::Normal,
4360                                  /*IndexTypeQuals=*/0, SourceRange(Loc, Loc));
4361       // Properly emit variable-sized array.
4362       auto *PD = ImplicitParamDecl::Create(C, KmpTaskAffinityInfoArrayTy,
4363                                            ImplicitParamDecl::Other);
4364       CGF.EmitVarDecl(*PD);
4365       AffinitiesArray = CGF.GetAddrOfLocalVar(PD);
4366       NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty,
4367                                                 /*isSigned=*/false);
4368     } else {
4369       KmpTaskAffinityInfoArrayTy = C.getConstantArrayType(
4370           KmpTaskAffinityInfoTy,
4371           llvm::APInt(C.getTypeSize(C.getSizeType()), NumAffinities), nullptr,
4372           ArrayType::Normal, /*IndexTypeQuals=*/0);
4373       AffinitiesArray =
4374           CGF.CreateMemTemp(KmpTaskAffinityInfoArrayTy, ".affs.arr.addr");
4375       AffinitiesArray = CGF.Builder.CreateConstArrayGEP(AffinitiesArray, 0);
4376       NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumAffinities,
4377                                              /*isSigned=*/false);
4378     }
4379 
4380     const auto *KmpAffinityInfoRD = KmpTaskAffinityInfoTy->getAsRecordDecl();
4381     // Fill array by elements without iterators.
4382     unsigned Pos = 0;
4383     bool HasIterator = false;
4384     for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
4385       if (C->getModifier()) {
4386         HasIterator = true;
4387         continue;
4388       }
4389       for (const Expr *E : C->varlists()) {
4390         llvm::Value *Addr;
4391         llvm::Value *Size;
4392         std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4393         LValue Base =
4394             CGF.MakeAddrLValue(CGF.Builder.CreateConstGEP(AffinitiesArray, Pos),
4395                                KmpTaskAffinityInfoTy);
4396         // affs[i].base_addr = &<Affinities[i].second>;
4397         LValue BaseAddrLVal = CGF.EmitLValueForField(
4398             Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr));
4399         CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
4400                               BaseAddrLVal);
4401         // affs[i].len = sizeof(<Affinities[i].second>);
4402         LValue LenLVal = CGF.EmitLValueForField(
4403             Base, *std::next(KmpAffinityInfoRD->field_begin(), Len));
4404         CGF.EmitStoreOfScalar(Size, LenLVal);
4405         ++Pos;
4406       }
4407     }
4408     LValue PosLVal;
4409     if (HasIterator) {
4410       PosLVal = CGF.MakeAddrLValue(
4411           CGF.CreateMemTemp(C.getSizeType(), "affs.counter.addr"),
4412           C.getSizeType());
4413       CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal);
4414     }
4415     // Process elements with iterators.
4416     for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
4417       const Expr *Modifier = C->getModifier();
4418       if (!Modifier)
4419         continue;
4420       OMPIteratorGeneratorScope IteratorScope(
4421           CGF, cast_or_null<OMPIteratorExpr>(Modifier->IgnoreParenImpCasts()));
4422       for (const Expr *E : C->varlists()) {
4423         llvm::Value *Addr;
4424         llvm::Value *Size;
4425         std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4426         llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4427         LValue Base = CGF.MakeAddrLValue(
4428             Address(CGF.Builder.CreateGEP(AffinitiesArray.getPointer(), Idx),
4429                     AffinitiesArray.getAlignment()),
4430             KmpTaskAffinityInfoTy);
4431         // affs[i].base_addr = &<Affinities[i].second>;
4432         LValue BaseAddrLVal = CGF.EmitLValueForField(
4433             Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr));
4434         CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
4435                               BaseAddrLVal);
4436         // affs[i].len = sizeof(<Affinities[i].second>);
4437         LValue LenLVal = CGF.EmitLValueForField(
4438             Base, *std::next(KmpAffinityInfoRD->field_begin(), Len));
4439         CGF.EmitStoreOfScalar(Size, LenLVal);
4440         Idx = CGF.Builder.CreateNUWAdd(
4441             Idx, llvm::ConstantInt::get(Idx->getType(), 1));
4442         CGF.EmitStoreOfScalar(Idx, PosLVal);
4443       }
4444     }
4445     // Call to kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref,
4446     // kmp_int32 gtid, kmp_task_t *new_task, kmp_int32
4447     // naffins, kmp_task_affinity_info_t *affin_list);
4448     llvm::Value *LocRef = emitUpdateLocation(CGF, Loc);
4449     llvm::Value *GTid = getThreadID(CGF, Loc);
4450     llvm::Value *AffinListPtr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4451         AffinitiesArray.getPointer(), CGM.VoidPtrTy);
4452     // FIXME: Emit the function and ignore its result for now unless the
4453     // runtime function is properly implemented.
4454     (void)CGF.EmitRuntimeCall(
4455         OMPBuilder.getOrCreateRuntimeFunction(
4456             CGM.getModule(), OMPRTL___kmpc_omp_reg_task_with_affinity),
4457         {LocRef, GTid, NewTask, NumOfElements, AffinListPtr});
4458   }
4459   llvm::Value *NewTaskNewTaskTTy =
4460       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4461           NewTask, KmpTaskTWithPrivatesPtrTy);
4462   LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
4463                                                KmpTaskTWithPrivatesQTy);
4464   LValue TDBase =
4465       CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
4466   // Fill the data in the resulting kmp_task_t record.
4467   // Copy shareds if there are any.
4468   Address KmpTaskSharedsPtr = Address::invalid();
4469   if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
4470     KmpTaskSharedsPtr =
4471         Address(CGF.EmitLoadOfScalar(
4472                     CGF.EmitLValueForField(
4473                         TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
4474                                            KmpTaskTShareds)),
4475                     Loc),
4476                 CGM.getNaturalTypeAlignment(SharedsTy));
4477     LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy);
4478     LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy);
4479     CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap);
4480   }
4481   // Emit initial values for private copies (if any).
4482   TaskResultTy Result;
4483   if (!Privates.empty()) {
4484     emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
4485                      SharedsTy, SharedsPtrTy, Data, Privates,
4486                      /*ForDup=*/false);
4487     if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
4488         (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
4489       Result.TaskDupFn = emitTaskDupFunction(
4490           CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
4491           KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
4492           /*WithLastIter=*/!Data.LastprivateVars.empty());
4493     }
4494   }
4495   // Fields of union "kmp_cmplrdata_t" for destructors and priority.
4496   enum { Priority = 0, Destructors = 1 };
4497   // Provide pointer to function with destructors for privates.
4498   auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
4499   const RecordDecl *KmpCmplrdataUD =
4500       (*FI)->getType()->getAsUnionType()->getDecl();
4501   if (NeedsCleanup) {
4502     llvm::Value *DestructorFn = emitDestructorsFunction(
4503         CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
4504         KmpTaskTWithPrivatesQTy);
4505     LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
4506     LValue DestructorsLV = CGF.EmitLValueForField(
4507         Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
4508     CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4509                               DestructorFn, KmpRoutineEntryPtrTy),
4510                           DestructorsLV);
4511   }
4512   // Set priority.
4513   if (Data.Priority.getInt()) {
4514     LValue Data2LV = CGF.EmitLValueForField(
4515         TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
4516     LValue PriorityLV = CGF.EmitLValueForField(
4517         Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
4518     CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
4519   }
4520   Result.NewTask = NewTask;
4521   Result.TaskEntry = TaskEntry;
4522   Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
4523   Result.TDBase = TDBase;
4524   Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
4525   return Result;
4526 }
4527 
4528 namespace {
4529 /// Dependence kind for RTL.
4530 enum RTLDependenceKindTy {
4531   DepIn = 0x01,
4532   DepInOut = 0x3,
4533   DepMutexInOutSet = 0x4
4534 };
4535 /// Fields ids in kmp_depend_info record.
4536 enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
4537 } // namespace
4538 
4539 /// Translates internal dependency kind into the runtime kind.
translateDependencyKind(OpenMPDependClauseKind K)4540 static RTLDependenceKindTy translateDependencyKind(OpenMPDependClauseKind K) {
4541   RTLDependenceKindTy DepKind;
4542   switch (K) {
4543   case OMPC_DEPEND_in:
4544     DepKind = DepIn;
4545     break;
4546   // Out and InOut dependencies must use the same code.
4547   case OMPC_DEPEND_out:
4548   case OMPC_DEPEND_inout:
4549     DepKind = DepInOut;
4550     break;
4551   case OMPC_DEPEND_mutexinoutset:
4552     DepKind = DepMutexInOutSet;
4553     break;
4554   case OMPC_DEPEND_source:
4555   case OMPC_DEPEND_sink:
4556   case OMPC_DEPEND_depobj:
4557   case OMPC_DEPEND_unknown:
4558     llvm_unreachable("Unknown task dependence type");
4559   }
4560   return DepKind;
4561 }
4562 
4563 /// Builds kmp_depend_info, if it is not built yet, and builds flags type.
getDependTypes(ASTContext & C,QualType & KmpDependInfoTy,QualType & FlagsTy)4564 static void getDependTypes(ASTContext &C, QualType &KmpDependInfoTy,
4565                            QualType &FlagsTy) {
4566   FlagsTy = C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
4567   if (KmpDependInfoTy.isNull()) {
4568     RecordDecl *KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
4569     KmpDependInfoRD->startDefinition();
4570     addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
4571     addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
4572     addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
4573     KmpDependInfoRD->completeDefinition();
4574     KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
4575   }
4576 }
4577 
4578 std::pair<llvm::Value *, LValue>
getDepobjElements(CodeGenFunction & CGF,LValue DepobjLVal,SourceLocation Loc)4579 CGOpenMPRuntime::getDepobjElements(CodeGenFunction &CGF, LValue DepobjLVal,
4580                                    SourceLocation Loc) {
4581   ASTContext &C = CGM.getContext();
4582   QualType FlagsTy;
4583   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4584   RecordDecl *KmpDependInfoRD =
4585       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4586   LValue Base = CGF.EmitLoadOfPointerLValue(
4587       DepobjLVal.getAddress(CGF),
4588       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4589   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4590   Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4591           Base.getAddress(CGF), CGF.ConvertTypeForMem(KmpDependInfoPtrTy));
4592   Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(),
4593                             Base.getTBAAInfo());
4594   llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
4595       Addr.getPointer(),
4596       llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4597   LValue NumDepsBase = CGF.MakeAddrLValue(
4598       Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy,
4599       Base.getBaseInfo(), Base.getTBAAInfo());
4600   // NumDeps = deps[i].base_addr;
4601   LValue BaseAddrLVal = CGF.EmitLValueForField(
4602       NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4603   llvm::Value *NumDeps = CGF.EmitLoadOfScalar(BaseAddrLVal, Loc);
4604   return std::make_pair(NumDeps, Base);
4605 }
4606 
emitDependData(CodeGenFunction & CGF,QualType & KmpDependInfoTy,llvm::PointerUnion<unsigned *,LValue * > Pos,const OMPTaskDataTy::DependData & Data,Address DependenciesArray)4607 static void emitDependData(CodeGenFunction &CGF, QualType &KmpDependInfoTy,
4608                            llvm::PointerUnion<unsigned *, LValue *> Pos,
4609                            const OMPTaskDataTy::DependData &Data,
4610                            Address DependenciesArray) {
4611   CodeGenModule &CGM = CGF.CGM;
4612   ASTContext &C = CGM.getContext();
4613   QualType FlagsTy;
4614   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4615   RecordDecl *KmpDependInfoRD =
4616       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4617   llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
4618 
4619   OMPIteratorGeneratorScope IteratorScope(
4620       CGF, cast_or_null<OMPIteratorExpr>(
4621                Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4622                                  : nullptr));
4623   for (const Expr *E : Data.DepExprs) {
4624     llvm::Value *Addr;
4625     llvm::Value *Size;
4626     std::tie(Addr, Size) = getPointerAndSize(CGF, E);
4627     LValue Base;
4628     if (unsigned *P = Pos.dyn_cast<unsigned *>()) {
4629       Base = CGF.MakeAddrLValue(
4630           CGF.Builder.CreateConstGEP(DependenciesArray, *P), KmpDependInfoTy);
4631     } else {
4632       LValue &PosLVal = *Pos.get<LValue *>();
4633       llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4634       Base = CGF.MakeAddrLValue(
4635           Address(CGF.Builder.CreateGEP(DependenciesArray.getPointer(), Idx),
4636                   DependenciesArray.getAlignment()),
4637           KmpDependInfoTy);
4638     }
4639     // deps[i].base_addr = &<Dependencies[i].second>;
4640     LValue BaseAddrLVal = CGF.EmitLValueForField(
4641         Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4642     CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
4643                           BaseAddrLVal);
4644     // deps[i].len = sizeof(<Dependencies[i].second>);
4645     LValue LenLVal = CGF.EmitLValueForField(
4646         Base, *std::next(KmpDependInfoRD->field_begin(), Len));
4647     CGF.EmitStoreOfScalar(Size, LenLVal);
4648     // deps[i].flags = <Dependencies[i].first>;
4649     RTLDependenceKindTy DepKind = translateDependencyKind(Data.DepKind);
4650     LValue FlagsLVal = CGF.EmitLValueForField(
4651         Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
4652     CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
4653                           FlagsLVal);
4654     if (unsigned *P = Pos.dyn_cast<unsigned *>()) {
4655       ++(*P);
4656     } else {
4657       LValue &PosLVal = *Pos.get<LValue *>();
4658       llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4659       Idx = CGF.Builder.CreateNUWAdd(Idx,
4660                                      llvm::ConstantInt::get(Idx->getType(), 1));
4661       CGF.EmitStoreOfScalar(Idx, PosLVal);
4662     }
4663   }
4664 }
4665 
4666 static SmallVector<llvm::Value *, 4>
emitDepobjElementsSizes(CodeGenFunction & CGF,QualType & KmpDependInfoTy,const OMPTaskDataTy::DependData & Data)4667 emitDepobjElementsSizes(CodeGenFunction &CGF, QualType &KmpDependInfoTy,
4668                         const OMPTaskDataTy::DependData &Data) {
4669   assert(Data.DepKind == OMPC_DEPEND_depobj &&
4670          "Expected depobj dependecy kind.");
4671   SmallVector<llvm::Value *, 4> Sizes;
4672   SmallVector<LValue, 4> SizeLVals;
4673   ASTContext &C = CGF.getContext();
4674   QualType FlagsTy;
4675   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4676   RecordDecl *KmpDependInfoRD =
4677       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4678   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4679   llvm::Type *KmpDependInfoPtrT = CGF.ConvertTypeForMem(KmpDependInfoPtrTy);
4680   {
4681     OMPIteratorGeneratorScope IteratorScope(
4682         CGF, cast_or_null<OMPIteratorExpr>(
4683                  Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4684                                    : nullptr));
4685     for (const Expr *E : Data.DepExprs) {
4686       LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts());
4687       LValue Base = CGF.EmitLoadOfPointerLValue(
4688           DepobjLVal.getAddress(CGF),
4689           C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4690       Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4691           Base.getAddress(CGF), KmpDependInfoPtrT);
4692       Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(),
4693                                 Base.getTBAAInfo());
4694       llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
4695           Addr.getPointer(),
4696           llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4697       LValue NumDepsBase = CGF.MakeAddrLValue(
4698           Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy,
4699           Base.getBaseInfo(), Base.getTBAAInfo());
4700       // NumDeps = deps[i].base_addr;
4701       LValue BaseAddrLVal = CGF.EmitLValueForField(
4702           NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4703       llvm::Value *NumDeps =
4704           CGF.EmitLoadOfScalar(BaseAddrLVal, E->getExprLoc());
4705       LValue NumLVal = CGF.MakeAddrLValue(
4706           CGF.CreateMemTemp(C.getUIntPtrType(), "depobj.size.addr"),
4707           C.getUIntPtrType());
4708       CGF.InitTempAlloca(NumLVal.getAddress(CGF),
4709                          llvm::ConstantInt::get(CGF.IntPtrTy, 0));
4710       llvm::Value *PrevVal = CGF.EmitLoadOfScalar(NumLVal, E->getExprLoc());
4711       llvm::Value *Add = CGF.Builder.CreateNUWAdd(PrevVal, NumDeps);
4712       CGF.EmitStoreOfScalar(Add, NumLVal);
4713       SizeLVals.push_back(NumLVal);
4714     }
4715   }
4716   for (unsigned I = 0, E = SizeLVals.size(); I < E; ++I) {
4717     llvm::Value *Size =
4718         CGF.EmitLoadOfScalar(SizeLVals[I], Data.DepExprs[I]->getExprLoc());
4719     Sizes.push_back(Size);
4720   }
4721   return Sizes;
4722 }
4723 
emitDepobjElements(CodeGenFunction & CGF,QualType & KmpDependInfoTy,LValue PosLVal,const OMPTaskDataTy::DependData & Data,Address DependenciesArray)4724 static void emitDepobjElements(CodeGenFunction &CGF, QualType &KmpDependInfoTy,
4725                                LValue PosLVal,
4726                                const OMPTaskDataTy::DependData &Data,
4727                                Address DependenciesArray) {
4728   assert(Data.DepKind == OMPC_DEPEND_depobj &&
4729          "Expected depobj dependecy kind.");
4730   ASTContext &C = CGF.getContext();
4731   QualType FlagsTy;
4732   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4733   RecordDecl *KmpDependInfoRD =
4734       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4735   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4736   llvm::Type *KmpDependInfoPtrT = CGF.ConvertTypeForMem(KmpDependInfoPtrTy);
4737   llvm::Value *ElSize = CGF.getTypeSize(KmpDependInfoTy);
4738   {
4739     OMPIteratorGeneratorScope IteratorScope(
4740         CGF, cast_or_null<OMPIteratorExpr>(
4741                  Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
4742                                    : nullptr));
4743     for (unsigned I = 0, End = Data.DepExprs.size(); I < End; ++I) {
4744       const Expr *E = Data.DepExprs[I];
4745       LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts());
4746       LValue Base = CGF.EmitLoadOfPointerLValue(
4747           DepobjLVal.getAddress(CGF),
4748           C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4749       Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4750           Base.getAddress(CGF), KmpDependInfoPtrT);
4751       Base = CGF.MakeAddrLValue(Addr, KmpDependInfoTy, Base.getBaseInfo(),
4752                                 Base.getTBAAInfo());
4753 
4754       // Get number of elements in a single depobj.
4755       llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
4756           Addr.getPointer(),
4757           llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
4758       LValue NumDepsBase = CGF.MakeAddrLValue(
4759           Address(DepObjAddr, Addr.getAlignment()), KmpDependInfoTy,
4760           Base.getBaseInfo(), Base.getTBAAInfo());
4761       // NumDeps = deps[i].base_addr;
4762       LValue BaseAddrLVal = CGF.EmitLValueForField(
4763           NumDepsBase, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4764       llvm::Value *NumDeps =
4765           CGF.EmitLoadOfScalar(BaseAddrLVal, E->getExprLoc());
4766 
4767       // memcopy dependency data.
4768       llvm::Value *Size = CGF.Builder.CreateNUWMul(
4769           ElSize,
4770           CGF.Builder.CreateIntCast(NumDeps, CGF.SizeTy, /*isSigned=*/false));
4771       llvm::Value *Pos = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
4772       Address DepAddr =
4773           Address(CGF.Builder.CreateGEP(DependenciesArray.getPointer(), Pos),
4774                   DependenciesArray.getAlignment());
4775       CGF.Builder.CreateMemCpy(DepAddr, Base.getAddress(CGF), Size);
4776 
4777       // Increase pos.
4778       // pos += size;
4779       llvm::Value *Add = CGF.Builder.CreateNUWAdd(Pos, NumDeps);
4780       CGF.EmitStoreOfScalar(Add, PosLVal);
4781     }
4782   }
4783 }
4784 
emitDependClause(CodeGenFunction & CGF,ArrayRef<OMPTaskDataTy::DependData> Dependencies,SourceLocation Loc)4785 std::pair<llvm::Value *, Address> CGOpenMPRuntime::emitDependClause(
4786     CodeGenFunction &CGF, ArrayRef<OMPTaskDataTy::DependData> Dependencies,
4787     SourceLocation Loc) {
4788   if (llvm::all_of(Dependencies, [](const OMPTaskDataTy::DependData &D) {
4789         return D.DepExprs.empty();
4790       }))
4791     return std::make_pair(nullptr, Address::invalid());
4792   // Process list of dependencies.
4793   ASTContext &C = CGM.getContext();
4794   Address DependenciesArray = Address::invalid();
4795   llvm::Value *NumOfElements = nullptr;
4796   unsigned NumDependencies = std::accumulate(
4797       Dependencies.begin(), Dependencies.end(), 0,
4798       [](unsigned V, const OMPTaskDataTy::DependData &D) {
4799         return D.DepKind == OMPC_DEPEND_depobj
4800                    ? V
4801                    : (V + (D.IteratorExpr ? 0 : D.DepExprs.size()));
4802       });
4803   QualType FlagsTy;
4804   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4805   bool HasDepobjDeps = false;
4806   bool HasRegularWithIterators = false;
4807   llvm::Value *NumOfDepobjElements = llvm::ConstantInt::get(CGF.IntPtrTy, 0);
4808   llvm::Value *NumOfRegularWithIterators =
4809       llvm::ConstantInt::get(CGF.IntPtrTy, 1);
4810   // Calculate number of depobj dependecies and regular deps with the iterators.
4811   for (const OMPTaskDataTy::DependData &D : Dependencies) {
4812     if (D.DepKind == OMPC_DEPEND_depobj) {
4813       SmallVector<llvm::Value *, 4> Sizes =
4814           emitDepobjElementsSizes(CGF, KmpDependInfoTy, D);
4815       for (llvm::Value *Size : Sizes) {
4816         NumOfDepobjElements =
4817             CGF.Builder.CreateNUWAdd(NumOfDepobjElements, Size);
4818       }
4819       HasDepobjDeps = true;
4820       continue;
4821     }
4822     // Include number of iterations, if any.
4823     if (const auto *IE = cast_or_null<OMPIteratorExpr>(D.IteratorExpr)) {
4824       for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
4825         llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
4826         Sz = CGF.Builder.CreateIntCast(Sz, CGF.IntPtrTy, /*isSigned=*/false);
4827         NumOfRegularWithIterators =
4828             CGF.Builder.CreateNUWMul(NumOfRegularWithIterators, Sz);
4829       }
4830       HasRegularWithIterators = true;
4831       continue;
4832     }
4833   }
4834 
4835   QualType KmpDependInfoArrayTy;
4836   if (HasDepobjDeps || HasRegularWithIterators) {
4837     NumOfElements = llvm::ConstantInt::get(CGM.IntPtrTy, NumDependencies,
4838                                            /*isSigned=*/false);
4839     if (HasDepobjDeps) {
4840       NumOfElements =
4841           CGF.Builder.CreateNUWAdd(NumOfDepobjElements, NumOfElements);
4842     }
4843     if (HasRegularWithIterators) {
4844       NumOfElements =
4845           CGF.Builder.CreateNUWAdd(NumOfRegularWithIterators, NumOfElements);
4846     }
4847     OpaqueValueExpr OVE(Loc,
4848                         C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0),
4849                         VK_RValue);
4850     CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE,
4851                                                   RValue::get(NumOfElements));
4852     KmpDependInfoArrayTy =
4853         C.getVariableArrayType(KmpDependInfoTy, &OVE, ArrayType::Normal,
4854                                /*IndexTypeQuals=*/0, SourceRange(Loc, Loc));
4855     // CGF.EmitVariablyModifiedType(KmpDependInfoArrayTy);
4856     // Properly emit variable-sized array.
4857     auto *PD = ImplicitParamDecl::Create(C, KmpDependInfoArrayTy,
4858                                          ImplicitParamDecl::Other);
4859     CGF.EmitVarDecl(*PD);
4860     DependenciesArray = CGF.GetAddrOfLocalVar(PD);
4861     NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty,
4862                                               /*isSigned=*/false);
4863   } else {
4864     KmpDependInfoArrayTy = C.getConstantArrayType(
4865         KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies), nullptr,
4866         ArrayType::Normal, /*IndexTypeQuals=*/0);
4867     DependenciesArray =
4868         CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
4869     DependenciesArray = CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0);
4870     NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumDependencies,
4871                                            /*isSigned=*/false);
4872   }
4873   unsigned Pos = 0;
4874   for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4875     if (Dependencies[I].DepKind == OMPC_DEPEND_depobj ||
4876         Dependencies[I].IteratorExpr)
4877       continue;
4878     emitDependData(CGF, KmpDependInfoTy, &Pos, Dependencies[I],
4879                    DependenciesArray);
4880   }
4881   // Copy regular dependecies with iterators.
4882   LValue PosLVal = CGF.MakeAddrLValue(
4883       CGF.CreateMemTemp(C.getSizeType(), "dep.counter.addr"), C.getSizeType());
4884   CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal);
4885   for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4886     if (Dependencies[I].DepKind == OMPC_DEPEND_depobj ||
4887         !Dependencies[I].IteratorExpr)
4888       continue;
4889     emitDependData(CGF, KmpDependInfoTy, &PosLVal, Dependencies[I],
4890                    DependenciesArray);
4891   }
4892   // Copy final depobj arrays without iterators.
4893   if (HasDepobjDeps) {
4894     for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
4895       if (Dependencies[I].DepKind != OMPC_DEPEND_depobj)
4896         continue;
4897       emitDepobjElements(CGF, KmpDependInfoTy, PosLVal, Dependencies[I],
4898                          DependenciesArray);
4899     }
4900   }
4901   DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4902       DependenciesArray, CGF.VoidPtrTy);
4903   return std::make_pair(NumOfElements, DependenciesArray);
4904 }
4905 
emitDepobjDependClause(CodeGenFunction & CGF,const OMPTaskDataTy::DependData & Dependencies,SourceLocation Loc)4906 Address CGOpenMPRuntime::emitDepobjDependClause(
4907     CodeGenFunction &CGF, const OMPTaskDataTy::DependData &Dependencies,
4908     SourceLocation Loc) {
4909   if (Dependencies.DepExprs.empty())
4910     return Address::invalid();
4911   // Process list of dependencies.
4912   ASTContext &C = CGM.getContext();
4913   Address DependenciesArray = Address::invalid();
4914   unsigned NumDependencies = Dependencies.DepExprs.size();
4915   QualType FlagsTy;
4916   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4917   RecordDecl *KmpDependInfoRD =
4918       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
4919 
4920   llvm::Value *Size;
4921   // Define type kmp_depend_info[<Dependencies.size()>];
4922   // For depobj reserve one extra element to store the number of elements.
4923   // It is required to handle depobj(x) update(in) construct.
4924   // kmp_depend_info[<Dependencies.size()>] deps;
4925   llvm::Value *NumDepsVal;
4926   CharUnits Align = C.getTypeAlignInChars(KmpDependInfoTy);
4927   if (const auto *IE =
4928           cast_or_null<OMPIteratorExpr>(Dependencies.IteratorExpr)) {
4929     NumDepsVal = llvm::ConstantInt::get(CGF.SizeTy, 1);
4930     for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
4931       llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
4932       Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false);
4933       NumDepsVal = CGF.Builder.CreateNUWMul(NumDepsVal, Sz);
4934     }
4935     Size = CGF.Builder.CreateNUWAdd(llvm::ConstantInt::get(CGF.SizeTy, 1),
4936                                     NumDepsVal);
4937     CharUnits SizeInBytes =
4938         C.getTypeSizeInChars(KmpDependInfoTy).alignTo(Align);
4939     llvm::Value *RecSize = CGM.getSize(SizeInBytes);
4940     Size = CGF.Builder.CreateNUWMul(Size, RecSize);
4941     NumDepsVal =
4942         CGF.Builder.CreateIntCast(NumDepsVal, CGF.IntPtrTy, /*isSigned=*/false);
4943   } else {
4944     QualType KmpDependInfoArrayTy = C.getConstantArrayType(
4945         KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies + 1),
4946         nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
4947     CharUnits Sz = C.getTypeSizeInChars(KmpDependInfoArrayTy);
4948     Size = CGM.getSize(Sz.alignTo(Align));
4949     NumDepsVal = llvm::ConstantInt::get(CGF.IntPtrTy, NumDependencies);
4950   }
4951   // Need to allocate on the dynamic memory.
4952   llvm::Value *ThreadID = getThreadID(CGF, Loc);
4953   // Use default allocator.
4954   llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
4955   llvm::Value *Args[] = {ThreadID, Size, Allocator};
4956 
4957   llvm::Value *Addr =
4958       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4959                               CGM.getModule(), OMPRTL___kmpc_alloc),
4960                           Args, ".dep.arr.addr");
4961   Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4962       Addr, CGF.ConvertTypeForMem(KmpDependInfoTy)->getPointerTo());
4963   DependenciesArray = Address(Addr, Align);
4964   // Write number of elements in the first element of array for depobj.
4965   LValue Base = CGF.MakeAddrLValue(DependenciesArray, KmpDependInfoTy);
4966   // deps[i].base_addr = NumDependencies;
4967   LValue BaseAddrLVal = CGF.EmitLValueForField(
4968       Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
4969   CGF.EmitStoreOfScalar(NumDepsVal, BaseAddrLVal);
4970   llvm::PointerUnion<unsigned *, LValue *> Pos;
4971   unsigned Idx = 1;
4972   LValue PosLVal;
4973   if (Dependencies.IteratorExpr) {
4974     PosLVal = CGF.MakeAddrLValue(
4975         CGF.CreateMemTemp(C.getSizeType(), "iterator.counter.addr"),
4976         C.getSizeType());
4977     CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Idx), PosLVal,
4978                           /*IsInit=*/true);
4979     Pos = &PosLVal;
4980   } else {
4981     Pos = &Idx;
4982   }
4983   emitDependData(CGF, KmpDependInfoTy, Pos, Dependencies, DependenciesArray);
4984   DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4985       CGF.Builder.CreateConstGEP(DependenciesArray, 1), CGF.VoidPtrTy);
4986   return DependenciesArray;
4987 }
4988 
emitDestroyClause(CodeGenFunction & CGF,LValue DepobjLVal,SourceLocation Loc)4989 void CGOpenMPRuntime::emitDestroyClause(CodeGenFunction &CGF, LValue DepobjLVal,
4990                                         SourceLocation Loc) {
4991   ASTContext &C = CGM.getContext();
4992   QualType FlagsTy;
4993   getDependTypes(C, KmpDependInfoTy, FlagsTy);
4994   LValue Base = CGF.EmitLoadOfPointerLValue(
4995       DepobjLVal.getAddress(CGF),
4996       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
4997   QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
4998   Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
4999       Base.getAddress(CGF), CGF.ConvertTypeForMem(KmpDependInfoPtrTy));
5000   llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
5001       Addr.getPointer(),
5002       llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
5003   DepObjAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(DepObjAddr,
5004                                                                CGF.VoidPtrTy);
5005   llvm::Value *ThreadID = getThreadID(CGF, Loc);
5006   // Use default allocator.
5007   llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5008   llvm::Value *Args[] = {ThreadID, DepObjAddr, Allocator};
5009 
5010   // _kmpc_free(gtid, addr, nullptr);
5011   (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
5012                                 CGM.getModule(), OMPRTL___kmpc_free),
5013                             Args);
5014 }
5015 
emitUpdateClause(CodeGenFunction & CGF,LValue DepobjLVal,OpenMPDependClauseKind NewDepKind,SourceLocation Loc)5016 void CGOpenMPRuntime::emitUpdateClause(CodeGenFunction &CGF, LValue DepobjLVal,
5017                                        OpenMPDependClauseKind NewDepKind,
5018                                        SourceLocation Loc) {
5019   ASTContext &C = CGM.getContext();
5020   QualType FlagsTy;
5021   getDependTypes(C, KmpDependInfoTy, FlagsTy);
5022   RecordDecl *KmpDependInfoRD =
5023       cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
5024   llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
5025   llvm::Value *NumDeps;
5026   LValue Base;
5027   std::tie(NumDeps, Base) = getDepobjElements(CGF, DepobjLVal, Loc);
5028 
5029   Address Begin = Base.getAddress(CGF);
5030   // Cast from pointer to array type to pointer to single element.
5031   llvm::Value *End = CGF.Builder.CreateGEP(Begin.getPointer(), NumDeps);
5032   // The basic structure here is a while-do loop.
5033   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.body");
5034   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.done");
5035   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
5036   CGF.EmitBlock(BodyBB);
5037   llvm::PHINode *ElementPHI =
5038       CGF.Builder.CreatePHI(Begin.getType(), 2, "omp.elementPast");
5039   ElementPHI->addIncoming(Begin.getPointer(), EntryBB);
5040   Begin = Address(ElementPHI, Begin.getAlignment());
5041   Base = CGF.MakeAddrLValue(Begin, KmpDependInfoTy, Base.getBaseInfo(),
5042                             Base.getTBAAInfo());
5043   // deps[i].flags = NewDepKind;
5044   RTLDependenceKindTy DepKind = translateDependencyKind(NewDepKind);
5045   LValue FlagsLVal = CGF.EmitLValueForField(
5046       Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
5047   CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
5048                         FlagsLVal);
5049 
5050   // Shift the address forward by one element.
5051   Address ElementNext =
5052       CGF.Builder.CreateConstGEP(Begin, /*Index=*/1, "omp.elementNext");
5053   ElementPHI->addIncoming(ElementNext.getPointer(),
5054                           CGF.Builder.GetInsertBlock());
5055   llvm::Value *IsEmpty =
5056       CGF.Builder.CreateICmpEQ(ElementNext.getPointer(), End, "omp.isempty");
5057   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
5058   // Done.
5059   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
5060 }
5061 
emitTaskCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)5062 void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
5063                                    const OMPExecutableDirective &D,
5064                                    llvm::Function *TaskFunction,
5065                                    QualType SharedsTy, Address Shareds,
5066                                    const Expr *IfCond,
5067                                    const OMPTaskDataTy &Data) {
5068   if (!CGF.HaveInsertPoint())
5069     return;
5070 
5071   TaskResultTy Result =
5072       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
5073   llvm::Value *NewTask = Result.NewTask;
5074   llvm::Function *TaskEntry = Result.TaskEntry;
5075   llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
5076   LValue TDBase = Result.TDBase;
5077   const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
5078   // Process list of dependences.
5079   Address DependenciesArray = Address::invalid();
5080   llvm::Value *NumOfElements;
5081   std::tie(NumOfElements, DependenciesArray) =
5082       emitDependClause(CGF, Data.Dependences, Loc);
5083 
5084   // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5085   // libcall.
5086   // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
5087   // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
5088   // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
5089   // list is not empty
5090   llvm::Value *ThreadID = getThreadID(CGF, Loc);
5091   llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5092   llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
5093   llvm::Value *DepTaskArgs[7];
5094   if (!Data.Dependences.empty()) {
5095     DepTaskArgs[0] = UpLoc;
5096     DepTaskArgs[1] = ThreadID;
5097     DepTaskArgs[2] = NewTask;
5098     DepTaskArgs[3] = NumOfElements;
5099     DepTaskArgs[4] = DependenciesArray.getPointer();
5100     DepTaskArgs[5] = CGF.Builder.getInt32(0);
5101     DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5102   }
5103   auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, &TaskArgs,
5104                         &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
5105     if (!Data.Tied) {
5106       auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
5107       LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
5108       CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
5109     }
5110     if (!Data.Dependences.empty()) {
5111       CGF.EmitRuntimeCall(
5112           OMPBuilder.getOrCreateRuntimeFunction(
5113               CGM.getModule(), OMPRTL___kmpc_omp_task_with_deps),
5114           DepTaskArgs);
5115     } else {
5116       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
5117                               CGM.getModule(), OMPRTL___kmpc_omp_task),
5118                           TaskArgs);
5119     }
5120     // Check if parent region is untied and build return for untied task;
5121     if (auto *Region =
5122             dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
5123       Region->emitUntiedSwitch(CGF);
5124   };
5125 
5126   llvm::Value *DepWaitTaskArgs[6];
5127   if (!Data.Dependences.empty()) {
5128     DepWaitTaskArgs[0] = UpLoc;
5129     DepWaitTaskArgs[1] = ThreadID;
5130     DepWaitTaskArgs[2] = NumOfElements;
5131     DepWaitTaskArgs[3] = DependenciesArray.getPointer();
5132     DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
5133     DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
5134   }
5135   auto &M = CGM.getModule();
5136   auto &&ElseCodeGen = [this, &M, &TaskArgs, ThreadID, NewTaskNewTaskTTy,
5137                         TaskEntry, &Data, &DepWaitTaskArgs,
5138                         Loc](CodeGenFunction &CGF, PrePostActionTy &) {
5139     CodeGenFunction::RunCleanupsScope LocalScope(CGF);
5140     // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
5141     // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
5142     // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
5143     // is specified.
5144     if (!Data.Dependences.empty())
5145       CGF.EmitRuntimeCall(
5146           OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_omp_wait_deps),
5147           DepWaitTaskArgs);
5148     // Call proxy_task_entry(gtid, new_task);
5149     auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy,
5150                       Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
5151       Action.Enter(CGF);
5152       llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
5153       CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry,
5154                                                           OutlinedFnArgs);
5155     };
5156 
5157     // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
5158     // kmp_task_t *new_task);
5159     // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
5160     // kmp_task_t *new_task);
5161     RegionCodeGenTy RCG(CodeGen);
5162     CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
5163                               M, OMPRTL___kmpc_omp_task_begin_if0),
5164                           TaskArgs,
5165                           OMPBuilder.getOrCreateRuntimeFunction(
5166                               M, OMPRTL___kmpc_omp_task_complete_if0),
5167                           TaskArgs);
5168     RCG.setAction(Action);
5169     RCG(CGF);
5170   };
5171 
5172   if (IfCond) {
5173     emitIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
5174   } else {
5175     RegionCodeGenTy ThenRCG(ThenCodeGen);
5176     ThenRCG(CGF);
5177   }
5178 }
5179 
emitTaskLoopCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPLoopDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)5180 void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
5181                                        const OMPLoopDirective &D,
5182                                        llvm::Function *TaskFunction,
5183                                        QualType SharedsTy, Address Shareds,
5184                                        const Expr *IfCond,
5185                                        const OMPTaskDataTy &Data) {
5186   if (!CGF.HaveInsertPoint())
5187     return;
5188   TaskResultTy Result =
5189       emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
5190   // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
5191   // libcall.
5192   // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
5193   // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
5194   // sched, kmp_uint64 grainsize, void *task_dup);
5195   llvm::Value *ThreadID = getThreadID(CGF, Loc);
5196   llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
5197   llvm::Value *IfVal;
5198   if (IfCond) {
5199     IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
5200                                       /*isSigned=*/true);
5201   } else {
5202     IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
5203   }
5204 
5205   LValue LBLVal = CGF.EmitLValueForField(
5206       Result.TDBase,
5207       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
5208   const auto *LBVar =
5209       cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
5210   CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(CGF),
5211                        LBLVal.getQuals(),
5212                        /*IsInitializer=*/true);
5213   LValue UBLVal = CGF.EmitLValueForField(
5214       Result.TDBase,
5215       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
5216   const auto *UBVar =
5217       cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
5218   CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(CGF),
5219                        UBLVal.getQuals(),
5220                        /*IsInitializer=*/true);
5221   LValue StLVal = CGF.EmitLValueForField(
5222       Result.TDBase,
5223       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
5224   const auto *StVar =
5225       cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
5226   CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(CGF),
5227                        StLVal.getQuals(),
5228                        /*IsInitializer=*/true);
5229   // Store reductions address.
5230   LValue RedLVal = CGF.EmitLValueForField(
5231       Result.TDBase,
5232       *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions));
5233   if (Data.Reductions) {
5234     CGF.EmitStoreOfScalar(Data.Reductions, RedLVal);
5235   } else {
5236     CGF.EmitNullInitialization(RedLVal.getAddress(CGF),
5237                                CGF.getContext().VoidPtrTy);
5238   }
5239   enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
5240   llvm::Value *TaskArgs[] = {
5241       UpLoc,
5242       ThreadID,
5243       Result.NewTask,
5244       IfVal,
5245       LBLVal.getPointer(CGF),
5246       UBLVal.getPointer(CGF),
5247       CGF.EmitLoadOfScalar(StLVal, Loc),
5248       llvm::ConstantInt::getSigned(
5249           CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler
5250       llvm::ConstantInt::getSigned(
5251           CGF.IntTy, Data.Schedule.getPointer()
5252                          ? Data.Schedule.getInt() ? NumTasks : Grainsize
5253                          : NoSchedule),
5254       Data.Schedule.getPointer()
5255           ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
5256                                       /*isSigned=*/false)
5257           : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
5258       Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5259                              Result.TaskDupFn, CGF.VoidPtrTy)
5260                        : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
5261   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
5262                           CGM.getModule(), OMPRTL___kmpc_taskloop),
5263                       TaskArgs);
5264 }
5265 
5266 /// Emit reduction operation for each element of array (required for
5267 /// array sections) LHS op = RHS.
5268 /// \param Type Type of array.
5269 /// \param LHSVar Variable on the left side of the reduction operation
5270 /// (references element of array in original variable).
5271 /// \param RHSVar Variable on the right side of the reduction operation
5272 /// (references element of array in original variable).
5273 /// \param RedOpGen Generator of reduction operation with use of LHSVar and
5274 /// RHSVar.
EmitOMPAggregateReduction(CodeGenFunction & CGF,QualType Type,const VarDecl * LHSVar,const VarDecl * RHSVar,const llvm::function_ref<void (CodeGenFunction & CGF,const Expr *,const Expr *,const Expr *)> & RedOpGen,const Expr * XExpr=nullptr,const Expr * EExpr=nullptr,const Expr * UpExpr=nullptr)5275 static void EmitOMPAggregateReduction(
5276     CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
5277     const VarDecl *RHSVar,
5278     const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
5279                                   const Expr *, const Expr *)> &RedOpGen,
5280     const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
5281     const Expr *UpExpr = nullptr) {
5282   // Perform element-by-element initialization.
5283   QualType ElementTy;
5284   Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
5285   Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
5286 
5287   // Drill down to the base element type on both arrays.
5288   const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
5289   llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
5290 
5291   llvm::Value *RHSBegin = RHSAddr.getPointer();
5292   llvm::Value *LHSBegin = LHSAddr.getPointer();
5293   // Cast from pointer to array type to pointer to single element.
5294   llvm::Value *LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
5295   // The basic structure here is a while-do loop.
5296   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
5297   llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
5298   llvm::Value *IsEmpty =
5299       CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
5300   CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
5301 
5302   // Enter the loop body, making that address the current address.
5303   llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
5304   CGF.EmitBlock(BodyBB);
5305 
5306   CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
5307 
5308   llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
5309       RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
5310   RHSElementPHI->addIncoming(RHSBegin, EntryBB);
5311   Address RHSElementCurrent =
5312       Address(RHSElementPHI,
5313               RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5314 
5315   llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
5316       LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
5317   LHSElementPHI->addIncoming(LHSBegin, EntryBB);
5318   Address LHSElementCurrent =
5319       Address(LHSElementPHI,
5320               LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
5321 
5322   // Emit copy.
5323   CodeGenFunction::OMPPrivateScope Scope(CGF);
5324   Scope.addPrivate(LHSVar, [=]() { return LHSElementCurrent; });
5325   Scope.addPrivate(RHSVar, [=]() { return RHSElementCurrent; });
5326   Scope.Privatize();
5327   RedOpGen(CGF, XExpr, EExpr, UpExpr);
5328   Scope.ForceCleanup();
5329 
5330   // Shift the address forward by one element.
5331   llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32(
5332       LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
5333   llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32(
5334       RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
5335   // Check whether we've reached the end.
5336   llvm::Value *Done =
5337       CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
5338   CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
5339   LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
5340   RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
5341 
5342   // Done.
5343   CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
5344 }
5345 
5346 /// Emit reduction combiner. If the combiner is a simple expression emit it as
5347 /// is, otherwise consider it as combiner of UDR decl and emit it as a call of
5348 /// UDR combiner function.
emitReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp)5349 static void emitReductionCombiner(CodeGenFunction &CGF,
5350                                   const Expr *ReductionOp) {
5351   if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
5352     if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
5353       if (const auto *DRE =
5354               dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
5355         if (const auto *DRD =
5356                 dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
5357           std::pair<llvm::Function *, llvm::Function *> Reduction =
5358               CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
5359           RValue Func = RValue::get(Reduction.first);
5360           CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
5361           CGF.EmitIgnoredExpr(ReductionOp);
5362           return;
5363         }
5364   CGF.EmitIgnoredExpr(ReductionOp);
5365 }
5366 
emitReductionFunction(SourceLocation Loc,llvm::Type * ArgsType,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps)5367 llvm::Function *CGOpenMPRuntime::emitReductionFunction(
5368     SourceLocation Loc, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates,
5369     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
5370     ArrayRef<const Expr *> ReductionOps) {
5371   ASTContext &C = CGM.getContext();
5372 
5373   // void reduction_func(void *LHSArg, void *RHSArg);
5374   FunctionArgList Args;
5375   ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5376                            ImplicitParamDecl::Other);
5377   ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5378                            ImplicitParamDecl::Other);
5379   Args.push_back(&LHSArg);
5380   Args.push_back(&RHSArg);
5381   const auto &CGFI =
5382       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5383   std::string Name = getName({"omp", "reduction", "reduction_func"});
5384   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
5385                                     llvm::GlobalValue::InternalLinkage, Name,
5386                                     &CGM.getModule());
5387   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
5388   Fn->setDoesNotRecurse();
5389   CodeGenFunction CGF(CGM);
5390   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
5391 
5392   // Dst = (void*[n])(LHSArg);
5393   // Src = (void*[n])(RHSArg);
5394   Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5395       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
5396       ArgsType), CGF.getPointerAlign());
5397   Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5398       CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
5399       ArgsType), CGF.getPointerAlign());
5400 
5401   //  ...
5402   //  *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
5403   //  ...
5404   CodeGenFunction::OMPPrivateScope Scope(CGF);
5405   auto IPriv = Privates.begin();
5406   unsigned Idx = 0;
5407   for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
5408     const auto *RHSVar =
5409         cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
5410     Scope.addPrivate(RHSVar, [&CGF, RHS, Idx, RHSVar]() {
5411       return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
5412     });
5413     const auto *LHSVar =
5414         cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
5415     Scope.addPrivate(LHSVar, [&CGF, LHS, Idx, LHSVar]() {
5416       return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
5417     });
5418     QualType PrivTy = (*IPriv)->getType();
5419     if (PrivTy->isVariablyModifiedType()) {
5420       // Get array size and emit VLA type.
5421       ++Idx;
5422       Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx);
5423       llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
5424       const VariableArrayType *VLA =
5425           CGF.getContext().getAsVariableArrayType(PrivTy);
5426       const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
5427       CodeGenFunction::OpaqueValueMapping OpaqueMap(
5428           CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
5429       CGF.EmitVariablyModifiedType(PrivTy);
5430     }
5431   }
5432   Scope.Privatize();
5433   IPriv = Privates.begin();
5434   auto ILHS = LHSExprs.begin();
5435   auto IRHS = RHSExprs.begin();
5436   for (const Expr *E : ReductionOps) {
5437     if ((*IPriv)->getType()->isArrayType()) {
5438       // Emit reduction for array section.
5439       const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5440       const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5441       EmitOMPAggregateReduction(
5442           CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5443           [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5444             emitReductionCombiner(CGF, E);
5445           });
5446     } else {
5447       // Emit reduction for array subscript or single variable.
5448       emitReductionCombiner(CGF, E);
5449     }
5450     ++IPriv;
5451     ++ILHS;
5452     ++IRHS;
5453   }
5454   Scope.ForceCleanup();
5455   CGF.FinishFunction();
5456   return Fn;
5457 }
5458 
emitSingleReductionCombiner(CodeGenFunction & CGF,const Expr * ReductionOp,const Expr * PrivateRef,const DeclRefExpr * LHS,const DeclRefExpr * RHS)5459 void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF,
5460                                                   const Expr *ReductionOp,
5461                                                   const Expr *PrivateRef,
5462                                                   const DeclRefExpr *LHS,
5463                                                   const DeclRefExpr *RHS) {
5464   if (PrivateRef->getType()->isArrayType()) {
5465     // Emit reduction for array section.
5466     const auto *LHSVar = cast<VarDecl>(LHS->getDecl());
5467     const auto *RHSVar = cast<VarDecl>(RHS->getDecl());
5468     EmitOMPAggregateReduction(
5469         CGF, PrivateRef->getType(), LHSVar, RHSVar,
5470         [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
5471           emitReductionCombiner(CGF, ReductionOp);
5472         });
5473   } else {
5474     // Emit reduction for array subscript or single variable.
5475     emitReductionCombiner(CGF, ReductionOp);
5476   }
5477 }
5478 
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)5479 void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
5480                                     ArrayRef<const Expr *> Privates,
5481                                     ArrayRef<const Expr *> LHSExprs,
5482                                     ArrayRef<const Expr *> RHSExprs,
5483                                     ArrayRef<const Expr *> ReductionOps,
5484                                     ReductionOptionsTy Options) {
5485   if (!CGF.HaveInsertPoint())
5486     return;
5487 
5488   bool WithNowait = Options.WithNowait;
5489   bool SimpleReduction = Options.SimpleReduction;
5490 
5491   // Next code should be emitted for reduction:
5492   //
5493   // static kmp_critical_name lock = { 0 };
5494   //
5495   // void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
5496   //  *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
5497   //  ...
5498   //  *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
5499   //  *(Type<n>-1*)rhs[<n>-1]);
5500   // }
5501   //
5502   // ...
5503   // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
5504   // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5505   // RedList, reduce_func, &<lock>)) {
5506   // case 1:
5507   //  ...
5508   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5509   //  ...
5510   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5511   // break;
5512   // case 2:
5513   //  ...
5514   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5515   //  ...
5516   // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
5517   // break;
5518   // default:;
5519   // }
5520   //
5521   // if SimpleReduction is true, only the next code is generated:
5522   //  ...
5523   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5524   //  ...
5525 
5526   ASTContext &C = CGM.getContext();
5527 
5528   if (SimpleReduction) {
5529     CodeGenFunction::RunCleanupsScope Scope(CGF);
5530     auto IPriv = Privates.begin();
5531     auto ILHS = LHSExprs.begin();
5532     auto IRHS = RHSExprs.begin();
5533     for (const Expr *E : ReductionOps) {
5534       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5535                                   cast<DeclRefExpr>(*IRHS));
5536       ++IPriv;
5537       ++ILHS;
5538       ++IRHS;
5539     }
5540     return;
5541   }
5542 
5543   // 1. Build a list of reduction variables.
5544   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
5545   auto Size = RHSExprs.size();
5546   for (const Expr *E : Privates) {
5547     if (E->getType()->isVariablyModifiedType())
5548       // Reserve place for array size.
5549       ++Size;
5550   }
5551   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
5552   QualType ReductionArrayTy =
5553       C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
5554                              /*IndexTypeQuals=*/0);
5555   Address ReductionList =
5556       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
5557   auto IPriv = Privates.begin();
5558   unsigned Idx = 0;
5559   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
5560     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5561     CGF.Builder.CreateStore(
5562         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5563             CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
5564         Elem);
5565     if ((*IPriv)->getType()->isVariablyModifiedType()) {
5566       // Store array size.
5567       ++Idx;
5568       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
5569       llvm::Value *Size = CGF.Builder.CreateIntCast(
5570           CGF.getVLASize(
5571                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
5572               .NumElts,
5573           CGF.SizeTy, /*isSigned=*/false);
5574       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
5575                               Elem);
5576     }
5577   }
5578 
5579   // 2. Emit reduce_func().
5580   llvm::Function *ReductionFn = emitReductionFunction(
5581       Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
5582       LHSExprs, RHSExprs, ReductionOps);
5583 
5584   // 3. Create static kmp_critical_name lock = { 0 };
5585   std::string Name = getName({"reduction"});
5586   llvm::Value *Lock = getCriticalRegionLock(Name);
5587 
5588   // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
5589   // RedList, reduce_func, &<lock>);
5590   llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
5591   llvm::Value *ThreadId = getThreadID(CGF, Loc);
5592   llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
5593   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
5594       ReductionList.getPointer(), CGF.VoidPtrTy);
5595   llvm::Value *Args[] = {
5596       IdentTLoc,                             // ident_t *<loc>
5597       ThreadId,                              // i32 <gtid>
5598       CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
5599       ReductionArrayTySize,                  // size_type sizeof(RedList)
5600       RL,                                    // void *RedList
5601       ReductionFn, // void (*) (void *, void *) <reduce_func>
5602       Lock         // kmp_critical_name *&<lock>
5603   };
5604   llvm::Value *Res = CGF.EmitRuntimeCall(
5605       OMPBuilder.getOrCreateRuntimeFunction(
5606           CGM.getModule(),
5607           WithNowait ? OMPRTL___kmpc_reduce_nowait : OMPRTL___kmpc_reduce),
5608       Args);
5609 
5610   // 5. Build switch(res)
5611   llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
5612   llvm::SwitchInst *SwInst =
5613       CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
5614 
5615   // 6. Build case 1:
5616   //  ...
5617   //  <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
5618   //  ...
5619   // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5620   // break;
5621   llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
5622   SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
5623   CGF.EmitBlock(Case1BB);
5624 
5625   // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
5626   llvm::Value *EndArgs[] = {
5627       IdentTLoc, // ident_t *<loc>
5628       ThreadId,  // i32 <gtid>
5629       Lock       // kmp_critical_name *&<lock>
5630   };
5631   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps](
5632                        CodeGenFunction &CGF, PrePostActionTy &Action) {
5633     CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5634     auto IPriv = Privates.begin();
5635     auto ILHS = LHSExprs.begin();
5636     auto IRHS = RHSExprs.begin();
5637     for (const Expr *E : ReductionOps) {
5638       RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
5639                                      cast<DeclRefExpr>(*IRHS));
5640       ++IPriv;
5641       ++ILHS;
5642       ++IRHS;
5643     }
5644   };
5645   RegionCodeGenTy RCG(CodeGen);
5646   CommonActionTy Action(
5647       nullptr, llvm::None,
5648       OMPBuilder.getOrCreateRuntimeFunction(
5649           CGM.getModule(), WithNowait ? OMPRTL___kmpc_end_reduce_nowait
5650                                       : OMPRTL___kmpc_end_reduce),
5651       EndArgs);
5652   RCG.setAction(Action);
5653   RCG(CGF);
5654 
5655   CGF.EmitBranch(DefaultBB);
5656 
5657   // 7. Build case 2:
5658   //  ...
5659   //  Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
5660   //  ...
5661   // break;
5662   llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
5663   SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
5664   CGF.EmitBlock(Case2BB);
5665 
5666   auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps](
5667                              CodeGenFunction &CGF, PrePostActionTy &Action) {
5668     auto ILHS = LHSExprs.begin();
5669     auto IRHS = RHSExprs.begin();
5670     auto IPriv = Privates.begin();
5671     for (const Expr *E : ReductionOps) {
5672       const Expr *XExpr = nullptr;
5673       const Expr *EExpr = nullptr;
5674       const Expr *UpExpr = nullptr;
5675       BinaryOperatorKind BO = BO_Comma;
5676       if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
5677         if (BO->getOpcode() == BO_Assign) {
5678           XExpr = BO->getLHS();
5679           UpExpr = BO->getRHS();
5680         }
5681       }
5682       // Try to emit update expression as a simple atomic.
5683       const Expr *RHSExpr = UpExpr;
5684       if (RHSExpr) {
5685         // Analyze RHS part of the whole expression.
5686         if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(
5687                 RHSExpr->IgnoreParenImpCasts())) {
5688           // If this is a conditional operator, analyze its condition for
5689           // min/max reduction operator.
5690           RHSExpr = ACO->getCond();
5691         }
5692         if (const auto *BORHS =
5693                 dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
5694           EExpr = BORHS->getRHS();
5695           BO = BORHS->getOpcode();
5696         }
5697       }
5698       if (XExpr) {
5699         const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5700         auto &&AtomicRedGen = [BO, VD,
5701                                Loc](CodeGenFunction &CGF, const Expr *XExpr,
5702                                     const Expr *EExpr, const Expr *UpExpr) {
5703           LValue X = CGF.EmitLValue(XExpr);
5704           RValue E;
5705           if (EExpr)
5706             E = CGF.EmitAnyExpr(EExpr);
5707           CGF.EmitOMPAtomicSimpleUpdateExpr(
5708               X, E, BO, /*IsXLHSInRHSPart=*/true,
5709               llvm::AtomicOrdering::Monotonic, Loc,
5710               [&CGF, UpExpr, VD, Loc](RValue XRValue) {
5711                 CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5712                 PrivateScope.addPrivate(
5713                     VD, [&CGF, VD, XRValue, Loc]() {
5714                       Address LHSTemp = CGF.CreateMemTemp(VD->getType());
5715                       CGF.emitOMPSimpleStore(
5716                           CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
5717                           VD->getType().getNonReferenceType(), Loc);
5718                       return LHSTemp;
5719                     });
5720                 (void)PrivateScope.Privatize();
5721                 return CGF.EmitAnyExpr(UpExpr);
5722               });
5723         };
5724         if ((*IPriv)->getType()->isArrayType()) {
5725           // Emit atomic reduction for array section.
5726           const auto *RHSVar =
5727               cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5728           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
5729                                     AtomicRedGen, XExpr, EExpr, UpExpr);
5730         } else {
5731           // Emit atomic reduction for array subscript or single variable.
5732           AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
5733         }
5734       } else {
5735         // Emit as a critical region.
5736         auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
5737                                            const Expr *, const Expr *) {
5738           CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
5739           std::string Name = RT.getName({"atomic_reduction"});
5740           RT.emitCriticalRegion(
5741               CGF, Name,
5742               [=](CodeGenFunction &CGF, PrePostActionTy &Action) {
5743                 Action.Enter(CGF);
5744                 emitReductionCombiner(CGF, E);
5745               },
5746               Loc);
5747         };
5748         if ((*IPriv)->getType()->isArrayType()) {
5749           const auto *LHSVar =
5750               cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
5751           const auto *RHSVar =
5752               cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
5753           EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
5754                                     CritRedGen);
5755         } else {
5756           CritRedGen(CGF, nullptr, nullptr, nullptr);
5757         }
5758       }
5759       ++ILHS;
5760       ++IRHS;
5761       ++IPriv;
5762     }
5763   };
5764   RegionCodeGenTy AtomicRCG(AtomicCodeGen);
5765   if (!WithNowait) {
5766     // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
5767     llvm::Value *EndArgs[] = {
5768         IdentTLoc, // ident_t *<loc>
5769         ThreadId,  // i32 <gtid>
5770         Lock       // kmp_critical_name *&<lock>
5771     };
5772     CommonActionTy Action(nullptr, llvm::None,
5773                           OMPBuilder.getOrCreateRuntimeFunction(
5774                               CGM.getModule(), OMPRTL___kmpc_end_reduce),
5775                           EndArgs);
5776     AtomicRCG.setAction(Action);
5777     AtomicRCG(CGF);
5778   } else {
5779     AtomicRCG(CGF);
5780   }
5781 
5782   CGF.EmitBranch(DefaultBB);
5783   CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
5784 }
5785 
5786 /// Generates unique name for artificial threadprivate variables.
5787 /// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>"
generateUniqueName(CodeGenModule & CGM,StringRef Prefix,const Expr * Ref)5788 static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix,
5789                                       const Expr *Ref) {
5790   SmallString<256> Buffer;
5791   llvm::raw_svector_ostream Out(Buffer);
5792   const clang::DeclRefExpr *DE;
5793   const VarDecl *D = ::getBaseDecl(Ref, DE);
5794   if (!D)
5795     D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl());
5796   D = D->getCanonicalDecl();
5797   std::string Name = CGM.getOpenMPRuntime().getName(
5798       {D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)});
5799   Out << Prefix << Name << "_"
5800       << D->getCanonicalDecl()->getBeginLoc().getRawEncoding();
5801   return std::string(Out.str());
5802 }
5803 
5804 /// Emits reduction initializer function:
5805 /// \code
5806 /// void @.red_init(void* %arg, void* %orig) {
5807 /// %0 = bitcast void* %arg to <type>*
5808 /// store <type> <init>, <type>* %0
5809 /// ret void
5810 /// }
5811 /// \endcode
emitReduceInitFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)5812 static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM,
5813                                            SourceLocation Loc,
5814                                            ReductionCodeGen &RCG, unsigned N) {
5815   ASTContext &C = CGM.getContext();
5816   QualType VoidPtrTy = C.VoidPtrTy;
5817   VoidPtrTy.addRestrict();
5818   FunctionArgList Args;
5819   ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy,
5820                           ImplicitParamDecl::Other);
5821   ImplicitParamDecl ParamOrig(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy,
5822                               ImplicitParamDecl::Other);
5823   Args.emplace_back(&Param);
5824   Args.emplace_back(&ParamOrig);
5825   const auto &FnInfo =
5826       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5827   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5828   std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""});
5829   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5830                                     Name, &CGM.getModule());
5831   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5832   Fn->setDoesNotRecurse();
5833   CodeGenFunction CGF(CGM);
5834   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5835   Address PrivateAddr = CGF.EmitLoadOfPointer(
5836       CGF.GetAddrOfLocalVar(&Param),
5837       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5838   llvm::Value *Size = nullptr;
5839   // If the size of the reduction item is non-constant, load it from global
5840   // threadprivate variable.
5841   if (RCG.getSizes(N).second) {
5842     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5843         CGF, CGM.getContext().getSizeType(),
5844         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5845     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5846                                 CGM.getContext().getSizeType(), Loc);
5847   }
5848   RCG.emitAggregateType(CGF, N, Size);
5849   LValue OrigLVal;
5850   // If initializer uses initializer from declare reduction construct, emit a
5851   // pointer to the address of the original reduction item (reuired by reduction
5852   // initializer)
5853   if (RCG.usesReductionInitializer(N)) {
5854     Address SharedAddr = CGF.GetAddrOfLocalVar(&ParamOrig);
5855     SharedAddr = CGF.EmitLoadOfPointer(
5856         SharedAddr,
5857         CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr());
5858     OrigLVal = CGF.MakeAddrLValue(SharedAddr, CGM.getContext().VoidPtrTy);
5859   } else {
5860     OrigLVal = CGF.MakeNaturalAlignAddrLValue(
5861         llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
5862         CGM.getContext().VoidPtrTy);
5863   }
5864   // Emit the initializer:
5865   // %0 = bitcast void* %arg to <type>*
5866   // store <type> <init>, <type>* %0
5867   RCG.emitInitialization(CGF, N, PrivateAddr, OrigLVal,
5868                          [](CodeGenFunction &) { return false; });
5869   CGF.FinishFunction();
5870   return Fn;
5871 }
5872 
5873 /// Emits reduction combiner function:
5874 /// \code
5875 /// void @.red_comb(void* %arg0, void* %arg1) {
5876 /// %lhs = bitcast void* %arg0 to <type>*
5877 /// %rhs = bitcast void* %arg1 to <type>*
5878 /// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs)
5879 /// store <type> %2, <type>* %lhs
5880 /// ret void
5881 /// }
5882 /// \endcode
emitReduceCombFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N,const Expr * ReductionOp,const Expr * LHS,const Expr * RHS,const Expr * PrivateRef)5883 static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM,
5884                                            SourceLocation Loc,
5885                                            ReductionCodeGen &RCG, unsigned N,
5886                                            const Expr *ReductionOp,
5887                                            const Expr *LHS, const Expr *RHS,
5888                                            const Expr *PrivateRef) {
5889   ASTContext &C = CGM.getContext();
5890   const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl());
5891   const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl());
5892   FunctionArgList Args;
5893   ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
5894                                C.VoidPtrTy, ImplicitParamDecl::Other);
5895   ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5896                             ImplicitParamDecl::Other);
5897   Args.emplace_back(&ParamInOut);
5898   Args.emplace_back(&ParamIn);
5899   const auto &FnInfo =
5900       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5901   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5902   std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""});
5903   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5904                                     Name, &CGM.getModule());
5905   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5906   Fn->setDoesNotRecurse();
5907   CodeGenFunction CGF(CGM);
5908   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5909   llvm::Value *Size = nullptr;
5910   // If the size of the reduction item is non-constant, load it from global
5911   // threadprivate variable.
5912   if (RCG.getSizes(N).second) {
5913     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5914         CGF, CGM.getContext().getSizeType(),
5915         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5916     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5917                                 CGM.getContext().getSizeType(), Loc);
5918   }
5919   RCG.emitAggregateType(CGF, N, Size);
5920   // Remap lhs and rhs variables to the addresses of the function arguments.
5921   // %lhs = bitcast void* %arg0 to <type>*
5922   // %rhs = bitcast void* %arg1 to <type>*
5923   CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
5924   PrivateScope.addPrivate(LHSVD, [&C, &CGF, &ParamInOut, LHSVD]() {
5925     // Pull out the pointer to the variable.
5926     Address PtrAddr = CGF.EmitLoadOfPointer(
5927         CGF.GetAddrOfLocalVar(&ParamInOut),
5928         C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5929     return CGF.Builder.CreateElementBitCast(
5930         PtrAddr, CGF.ConvertTypeForMem(LHSVD->getType()));
5931   });
5932   PrivateScope.addPrivate(RHSVD, [&C, &CGF, &ParamIn, RHSVD]() {
5933     // Pull out the pointer to the variable.
5934     Address PtrAddr = CGF.EmitLoadOfPointer(
5935         CGF.GetAddrOfLocalVar(&ParamIn),
5936         C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5937     return CGF.Builder.CreateElementBitCast(
5938         PtrAddr, CGF.ConvertTypeForMem(RHSVD->getType()));
5939   });
5940   PrivateScope.Privatize();
5941   // Emit the combiner body:
5942   // %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs)
5943   // store <type> %2, <type>* %lhs
5944   CGM.getOpenMPRuntime().emitSingleReductionCombiner(
5945       CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS),
5946       cast<DeclRefExpr>(RHS));
5947   CGF.FinishFunction();
5948   return Fn;
5949 }
5950 
5951 /// Emits reduction finalizer function:
5952 /// \code
5953 /// void @.red_fini(void* %arg) {
5954 /// %0 = bitcast void* %arg to <type>*
5955 /// <destroy>(<type>* %0)
5956 /// ret void
5957 /// }
5958 /// \endcode
emitReduceFiniFunction(CodeGenModule & CGM,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)5959 static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM,
5960                                            SourceLocation Loc,
5961                                            ReductionCodeGen &RCG, unsigned N) {
5962   if (!RCG.needCleanups(N))
5963     return nullptr;
5964   ASTContext &C = CGM.getContext();
5965   FunctionArgList Args;
5966   ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
5967                           ImplicitParamDecl::Other);
5968   Args.emplace_back(&Param);
5969   const auto &FnInfo =
5970       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
5971   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
5972   std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""});
5973   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
5974                                     Name, &CGM.getModule());
5975   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
5976   Fn->setDoesNotRecurse();
5977   CodeGenFunction CGF(CGM);
5978   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
5979   Address PrivateAddr = CGF.EmitLoadOfPointer(
5980       CGF.GetAddrOfLocalVar(&Param),
5981       C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
5982   llvm::Value *Size = nullptr;
5983   // If the size of the reduction item is non-constant, load it from global
5984   // threadprivate variable.
5985   if (RCG.getSizes(N).second) {
5986     Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
5987         CGF, CGM.getContext().getSizeType(),
5988         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
5989     Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
5990                                 CGM.getContext().getSizeType(), Loc);
5991   }
5992   RCG.emitAggregateType(CGF, N, Size);
5993   // Emit the finalizer body:
5994   // <destroy>(<type>* %0)
5995   RCG.emitCleanups(CGF, N, PrivateAddr);
5996   CGF.FinishFunction(Loc);
5997   return Fn;
5998 }
5999 
emitTaskReductionInit(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,const OMPTaskDataTy & Data)6000 llvm::Value *CGOpenMPRuntime::emitTaskReductionInit(
6001     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
6002     ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
6003   if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty())
6004     return nullptr;
6005 
6006   // Build typedef struct:
6007   // kmp_taskred_input {
6008   //   void *reduce_shar; // shared reduction item
6009   //   void *reduce_orig; // original reduction item used for initialization
6010   //   size_t reduce_size; // size of data item
6011   //   void *reduce_init; // data initialization routine
6012   //   void *reduce_fini; // data finalization routine
6013   //   void *reduce_comb; // data combiner routine
6014   //   kmp_task_red_flags_t flags; // flags for additional info from compiler
6015   // } kmp_taskred_input_t;
6016   ASTContext &C = CGM.getContext();
6017   RecordDecl *RD = C.buildImplicitRecord("kmp_taskred_input_t");
6018   RD->startDefinition();
6019   const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6020   const FieldDecl *OrigFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6021   const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType());
6022   const FieldDecl *InitFD  = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6023   const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6024   const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
6025   const FieldDecl *FlagsFD = addFieldToRecordDecl(
6026       C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false));
6027   RD->completeDefinition();
6028   QualType RDType = C.getRecordType(RD);
6029   unsigned Size = Data.ReductionVars.size();
6030   llvm::APInt ArraySize(/*numBits=*/64, Size);
6031   QualType ArrayRDType = C.getConstantArrayType(
6032       RDType, ArraySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
6033   // kmp_task_red_input_t .rd_input.[Size];
6034   Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input.");
6035   ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionOrigs,
6036                        Data.ReductionCopies, Data.ReductionOps);
6037   for (unsigned Cnt = 0; Cnt < Size; ++Cnt) {
6038     // kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt];
6039     llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0),
6040                            llvm::ConstantInt::get(CGM.SizeTy, Cnt)};
6041     llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP(
6042         TaskRedInput.getPointer(), Idxs,
6043         /*SignedIndices=*/false, /*IsSubtraction=*/false, Loc,
6044         ".rd_input.gep.");
6045     LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType);
6046     // ElemLVal.reduce_shar = &Shareds[Cnt];
6047     LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD);
6048     RCG.emitSharedOrigLValue(CGF, Cnt);
6049     llvm::Value *CastedShared =
6050         CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer(CGF));
6051     CGF.EmitStoreOfScalar(CastedShared, SharedLVal);
6052     // ElemLVal.reduce_orig = &Origs[Cnt];
6053     LValue OrigLVal = CGF.EmitLValueForField(ElemLVal, OrigFD);
6054     llvm::Value *CastedOrig =
6055         CGF.EmitCastToVoidPtr(RCG.getOrigLValue(Cnt).getPointer(CGF));
6056     CGF.EmitStoreOfScalar(CastedOrig, OrigLVal);
6057     RCG.emitAggregateType(CGF, Cnt);
6058     llvm::Value *SizeValInChars;
6059     llvm::Value *SizeVal;
6060     std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt);
6061     // We use delayed creation/initialization for VLAs and array sections. It is
6062     // required because runtime does not provide the way to pass the sizes of
6063     // VLAs/array sections to initializer/combiner/finalizer functions. Instead
6064     // threadprivate global variables are used to store these values and use
6065     // them in the functions.
6066     bool DelayedCreation = !!SizeVal;
6067     SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy,
6068                                                /*isSigned=*/false);
6069     LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD);
6070     CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal);
6071     // ElemLVal.reduce_init = init;
6072     LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD);
6073     llvm::Value *InitAddr =
6074         CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt));
6075     CGF.EmitStoreOfScalar(InitAddr, InitLVal);
6076     // ElemLVal.reduce_fini = fini;
6077     LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD);
6078     llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt);
6079     llvm::Value *FiniAddr = Fini
6080                                 ? CGF.EmitCastToVoidPtr(Fini)
6081                                 : llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
6082     CGF.EmitStoreOfScalar(FiniAddr, FiniLVal);
6083     // ElemLVal.reduce_comb = comb;
6084     LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD);
6085     llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction(
6086         CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt],
6087         RHSExprs[Cnt], Data.ReductionCopies[Cnt]));
6088     CGF.EmitStoreOfScalar(CombAddr, CombLVal);
6089     // ElemLVal.flags = 0;
6090     LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD);
6091     if (DelayedCreation) {
6092       CGF.EmitStoreOfScalar(
6093           llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*isSigned=*/true),
6094           FlagsLVal);
6095     } else
6096       CGF.EmitNullInitialization(FlagsLVal.getAddress(CGF),
6097                                  FlagsLVal.getType());
6098   }
6099   if (Data.IsReductionWithTaskMod) {
6100     // Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int
6101     // is_ws, int num, void *data);
6102     llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc);
6103     llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
6104                                                   CGM.IntTy, /*isSigned=*/true);
6105     llvm::Value *Args[] = {
6106         IdentTLoc, GTid,
6107         llvm::ConstantInt::get(CGM.IntTy, Data.IsWorksharingReduction ? 1 : 0,
6108                                /*isSigned=*/true),
6109         llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
6110         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6111             TaskRedInput.getPointer(), CGM.VoidPtrTy)};
6112     return CGF.EmitRuntimeCall(
6113         OMPBuilder.getOrCreateRuntimeFunction(
6114             CGM.getModule(), OMPRTL___kmpc_taskred_modifier_init),
6115         Args);
6116   }
6117   // Build call void *__kmpc_taskred_init(int gtid, int num_data, void *data);
6118   llvm::Value *Args[] = {
6119       CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
6120                                 /*isSigned=*/true),
6121       llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
6122       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(),
6123                                                       CGM.VoidPtrTy)};
6124   return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
6125                                  CGM.getModule(), OMPRTL___kmpc_taskred_init),
6126                              Args);
6127 }
6128 
emitTaskReductionFini(CodeGenFunction & CGF,SourceLocation Loc,bool IsWorksharingReduction)6129 void CGOpenMPRuntime::emitTaskReductionFini(CodeGenFunction &CGF,
6130                                             SourceLocation Loc,
6131                                             bool IsWorksharingReduction) {
6132   // Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int
6133   // is_ws, int num, void *data);
6134   llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc);
6135   llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
6136                                                 CGM.IntTy, /*isSigned=*/true);
6137   llvm::Value *Args[] = {IdentTLoc, GTid,
6138                          llvm::ConstantInt::get(CGM.IntTy,
6139                                                 IsWorksharingReduction ? 1 : 0,
6140                                                 /*isSigned=*/true)};
6141   (void)CGF.EmitRuntimeCall(
6142       OMPBuilder.getOrCreateRuntimeFunction(
6143           CGM.getModule(), OMPRTL___kmpc_task_reduction_modifier_fini),
6144       Args);
6145 }
6146 
emitTaskReductionFixups(CodeGenFunction & CGF,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)6147 void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
6148                                               SourceLocation Loc,
6149                                               ReductionCodeGen &RCG,
6150                                               unsigned N) {
6151   auto Sizes = RCG.getSizes(N);
6152   // Emit threadprivate global variable if the type is non-constant
6153   // (Sizes.second = nullptr).
6154   if (Sizes.second) {
6155     llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy,
6156                                                      /*isSigned=*/false);
6157     Address SizeAddr = getAddrOfArtificialThreadPrivate(
6158         CGF, CGM.getContext().getSizeType(),
6159         generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
6160     CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false);
6161   }
6162 }
6163 
getTaskReductionItem(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * ReductionsPtr,LValue SharedLVal)6164 Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF,
6165                                               SourceLocation Loc,
6166                                               llvm::Value *ReductionsPtr,
6167                                               LValue SharedLVal) {
6168   // Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
6169   // *d);
6170   llvm::Value *Args[] = {CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
6171                                                    CGM.IntTy,
6172                                                    /*isSigned=*/true),
6173                          ReductionsPtr,
6174                          CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6175                              SharedLVal.getPointer(CGF), CGM.VoidPtrTy)};
6176   return Address(
6177       CGF.EmitRuntimeCall(
6178           OMPBuilder.getOrCreateRuntimeFunction(
6179               CGM.getModule(), OMPRTL___kmpc_task_reduction_get_th_data),
6180           Args),
6181       SharedLVal.getAlignment());
6182 }
6183 
emitTaskwaitCall(CodeGenFunction & CGF,SourceLocation Loc)6184 void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
6185                                        SourceLocation Loc) {
6186   if (!CGF.HaveInsertPoint())
6187     return;
6188 
6189   if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
6190     OMPBuilder.createTaskwait(CGF.Builder);
6191   } else {
6192     // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
6193     // global_tid);
6194     llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
6195     // Ignore return result until untied tasks are supported.
6196     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
6197                             CGM.getModule(), OMPRTL___kmpc_omp_taskwait),
6198                         Args);
6199   }
6200 
6201   if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
6202     Region->emitUntiedSwitch(CGF);
6203 }
6204 
emitInlinedDirective(CodeGenFunction & CGF,OpenMPDirectiveKind InnerKind,const RegionCodeGenTy & CodeGen,bool HasCancel)6205 void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
6206                                            OpenMPDirectiveKind InnerKind,
6207                                            const RegionCodeGenTy &CodeGen,
6208                                            bool HasCancel) {
6209   if (!CGF.HaveInsertPoint())
6210     return;
6211   InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel);
6212   CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
6213 }
6214 
6215 namespace {
6216 enum RTCancelKind {
6217   CancelNoreq = 0,
6218   CancelParallel = 1,
6219   CancelLoop = 2,
6220   CancelSections = 3,
6221   CancelTaskgroup = 4
6222 };
6223 } // anonymous namespace
6224 
getCancellationKind(OpenMPDirectiveKind CancelRegion)6225 static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
6226   RTCancelKind CancelKind = CancelNoreq;
6227   if (CancelRegion == OMPD_parallel)
6228     CancelKind = CancelParallel;
6229   else if (CancelRegion == OMPD_for)
6230     CancelKind = CancelLoop;
6231   else if (CancelRegion == OMPD_sections)
6232     CancelKind = CancelSections;
6233   else {
6234     assert(CancelRegion == OMPD_taskgroup);
6235     CancelKind = CancelTaskgroup;
6236   }
6237   return CancelKind;
6238 }
6239 
emitCancellationPointCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind CancelRegion)6240 void CGOpenMPRuntime::emitCancellationPointCall(
6241     CodeGenFunction &CGF, SourceLocation Loc,
6242     OpenMPDirectiveKind CancelRegion) {
6243   if (!CGF.HaveInsertPoint())
6244     return;
6245   // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
6246   // global_tid, kmp_int32 cncl_kind);
6247   if (auto *OMPRegionInfo =
6248           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6249     // For 'cancellation point taskgroup', the task region info may not have a
6250     // cancel. This may instead happen in another adjacent task.
6251     if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) {
6252       llvm::Value *Args[] = {
6253           emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
6254           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6255       // Ignore return result until untied tasks are supported.
6256       llvm::Value *Result = CGF.EmitRuntimeCall(
6257           OMPBuilder.getOrCreateRuntimeFunction(
6258               CGM.getModule(), OMPRTL___kmpc_cancellationpoint),
6259           Args);
6260       // if (__kmpc_cancellationpoint()) {
6261       //   exit from construct;
6262       // }
6263       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6264       llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6265       llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6266       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6267       CGF.EmitBlock(ExitBB);
6268       // exit from construct;
6269       CodeGenFunction::JumpDest CancelDest =
6270           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6271       CGF.EmitBranchThroughCleanup(CancelDest);
6272       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6273     }
6274   }
6275 }
6276 
emitCancelCall(CodeGenFunction & CGF,SourceLocation Loc,const Expr * IfCond,OpenMPDirectiveKind CancelRegion)6277 void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
6278                                      const Expr *IfCond,
6279                                      OpenMPDirectiveKind CancelRegion) {
6280   if (!CGF.HaveInsertPoint())
6281     return;
6282   // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
6283   // kmp_int32 cncl_kind);
6284   auto &M = CGM.getModule();
6285   if (auto *OMPRegionInfo =
6286           dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
6287     auto &&ThenGen = [this, &M, Loc, CancelRegion,
6288                       OMPRegionInfo](CodeGenFunction &CGF, PrePostActionTy &) {
6289       CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
6290       llvm::Value *Args[] = {
6291           RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
6292           CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
6293       // Ignore return result until untied tasks are supported.
6294       llvm::Value *Result = CGF.EmitRuntimeCall(
6295           OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_cancel), Args);
6296       // if (__kmpc_cancel()) {
6297       //   exit from construct;
6298       // }
6299       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
6300       llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
6301       llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
6302       CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
6303       CGF.EmitBlock(ExitBB);
6304       // exit from construct;
6305       CodeGenFunction::JumpDest CancelDest =
6306           CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
6307       CGF.EmitBranchThroughCleanup(CancelDest);
6308       CGF.EmitBlock(ContBB, /*IsFinished=*/true);
6309     };
6310     if (IfCond) {
6311       emitIfClause(CGF, IfCond, ThenGen,
6312                    [](CodeGenFunction &, PrePostActionTy &) {});
6313     } else {
6314       RegionCodeGenTy ThenRCG(ThenGen);
6315       ThenRCG(CGF);
6316     }
6317   }
6318 }
6319 
6320 namespace {
6321 /// Cleanup action for uses_allocators support.
6322 class OMPUsesAllocatorsActionTy final : public PrePostActionTy {
6323   ArrayRef<std::pair<const Expr *, const Expr *>> Allocators;
6324 
6325 public:
OMPUsesAllocatorsActionTy(ArrayRef<std::pair<const Expr *,const Expr * >> Allocators)6326   OMPUsesAllocatorsActionTy(
6327       ArrayRef<std::pair<const Expr *, const Expr *>> Allocators)
6328       : Allocators(Allocators) {}
Enter(CodeGenFunction & CGF)6329   void Enter(CodeGenFunction &CGF) override {
6330     if (!CGF.HaveInsertPoint())
6331       return;
6332     for (const auto &AllocatorData : Allocators) {
6333       CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsInit(
6334           CGF, AllocatorData.first, AllocatorData.second);
6335     }
6336   }
Exit(CodeGenFunction & CGF)6337   void Exit(CodeGenFunction &CGF) override {
6338     if (!CGF.HaveInsertPoint())
6339       return;
6340     for (const auto &AllocatorData : Allocators) {
6341       CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsFini(CGF,
6342                                                         AllocatorData.first);
6343     }
6344   }
6345 };
6346 } // namespace
6347 
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)6348 void CGOpenMPRuntime::emitTargetOutlinedFunction(
6349     const OMPExecutableDirective &D, StringRef ParentName,
6350     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6351     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6352   assert(!ParentName.empty() && "Invalid target region parent name!");
6353   HasEmittedTargetRegion = true;
6354   SmallVector<std::pair<const Expr *, const Expr *>, 4> Allocators;
6355   for (const auto *C : D.getClausesOfKind<OMPUsesAllocatorsClause>()) {
6356     for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
6357       const OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
6358       if (!D.AllocatorTraits)
6359         continue;
6360       Allocators.emplace_back(D.Allocator, D.AllocatorTraits);
6361     }
6362   }
6363   OMPUsesAllocatorsActionTy UsesAllocatorAction(Allocators);
6364   CodeGen.setAction(UsesAllocatorAction);
6365   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
6366                                    IsOffloadEntry, CodeGen);
6367 }
6368 
emitUsesAllocatorsInit(CodeGenFunction & CGF,const Expr * Allocator,const Expr * AllocatorTraits)6369 void CGOpenMPRuntime::emitUsesAllocatorsInit(CodeGenFunction &CGF,
6370                                              const Expr *Allocator,
6371                                              const Expr *AllocatorTraits) {
6372   llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc());
6373   ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true);
6374   // Use default memspace handle.
6375   llvm::Value *MemSpaceHandle = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
6376   llvm::Value *NumTraits = llvm::ConstantInt::get(
6377       CGF.IntTy, cast<ConstantArrayType>(
6378                      AllocatorTraits->getType()->getAsArrayTypeUnsafe())
6379                      ->getSize()
6380                      .getLimitedValue());
6381   LValue AllocatorTraitsLVal = CGF.EmitLValue(AllocatorTraits);
6382   Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
6383       AllocatorTraitsLVal.getAddress(CGF), CGF.VoidPtrPtrTy);
6384   AllocatorTraitsLVal = CGF.MakeAddrLValue(Addr, CGF.getContext().VoidPtrTy,
6385                                            AllocatorTraitsLVal.getBaseInfo(),
6386                                            AllocatorTraitsLVal.getTBAAInfo());
6387   llvm::Value *Traits =
6388       CGF.EmitLoadOfScalar(AllocatorTraitsLVal, AllocatorTraits->getExprLoc());
6389 
6390   llvm::Value *AllocatorVal =
6391       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
6392                               CGM.getModule(), OMPRTL___kmpc_init_allocator),
6393                           {ThreadId, MemSpaceHandle, NumTraits, Traits});
6394   // Store to allocator.
6395   CGF.EmitVarDecl(*cast<VarDecl>(
6396       cast<DeclRefExpr>(Allocator->IgnoreParenImpCasts())->getDecl()));
6397   LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts());
6398   AllocatorVal =
6399       CGF.EmitScalarConversion(AllocatorVal, CGF.getContext().VoidPtrTy,
6400                                Allocator->getType(), Allocator->getExprLoc());
6401   CGF.EmitStoreOfScalar(AllocatorVal, AllocatorLVal);
6402 }
6403 
emitUsesAllocatorsFini(CodeGenFunction & CGF,const Expr * Allocator)6404 void CGOpenMPRuntime::emitUsesAllocatorsFini(CodeGenFunction &CGF,
6405                                              const Expr *Allocator) {
6406   llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc());
6407   ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true);
6408   LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts());
6409   llvm::Value *AllocatorVal =
6410       CGF.EmitLoadOfScalar(AllocatorLVal, Allocator->getExprLoc());
6411   AllocatorVal = CGF.EmitScalarConversion(AllocatorVal, Allocator->getType(),
6412                                           CGF.getContext().VoidPtrTy,
6413                                           Allocator->getExprLoc());
6414   (void)CGF.EmitRuntimeCall(
6415       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
6416                                             OMPRTL___kmpc_destroy_allocator),
6417       {ThreadId, AllocatorVal});
6418 }
6419 
emitTargetOutlinedFunctionHelper(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)6420 void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
6421     const OMPExecutableDirective &D, StringRef ParentName,
6422     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
6423     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
6424   // Create a unique name for the entry function using the source location
6425   // information of the current target region. The name will be something like:
6426   //
6427   // __omp_offloading_DD_FFFF_PP_lBB
6428   //
6429   // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the
6430   // mangled name of the function that encloses the target region and BB is the
6431   // line number of the target region.
6432 
6433   unsigned DeviceID;
6434   unsigned FileID;
6435   unsigned Line;
6436   getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), DeviceID, FileID,
6437                            Line);
6438   SmallString<64> EntryFnName;
6439   {
6440     llvm::raw_svector_ostream OS(EntryFnName);
6441     OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
6442        << llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
6443   }
6444 
6445   const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
6446 
6447   CodeGenFunction CGF(CGM, true);
6448   CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
6449   CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6450 
6451   OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS, D.getBeginLoc());
6452 
6453   // If this target outline function is not an offload entry, we don't need to
6454   // register it.
6455   if (!IsOffloadEntry)
6456     return;
6457 
6458   // The target region ID is used by the runtime library to identify the current
6459   // target region, so it only has to be unique and not necessarily point to
6460   // anything. It could be the pointer to the outlined function that implements
6461   // the target region, but we aren't using that so that the compiler doesn't
6462   // need to keep that, and could therefore inline the host function if proven
6463   // worthwhile during optimization. In the other hand, if emitting code for the
6464   // device, the ID has to be the function address so that it can retrieved from
6465   // the offloading entry and launched by the runtime library. We also mark the
6466   // outlined function to have external linkage in case we are emitting code for
6467   // the device, because these functions will be entry points to the device.
6468 
6469   if (CGM.getLangOpts().OpenMPIsDevice) {
6470     OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy);
6471     OutlinedFn->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
6472     OutlinedFn->setDSOLocal(false);
6473   } else {
6474     std::string Name = getName({EntryFnName, "region_id"});
6475     OutlinedFnID = new llvm::GlobalVariable(
6476         CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
6477         llvm::GlobalValue::WeakAnyLinkage,
6478         llvm::Constant::getNullValue(CGM.Int8Ty), Name);
6479   }
6480 
6481   // Register the information for the entry associated with this target region.
6482   OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
6483       DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID,
6484       OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion);
6485 }
6486 
6487 /// Checks if the expression is constant or does not have non-trivial function
6488 /// calls.
isTrivial(ASTContext & Ctx,const Expr * E)6489 static bool isTrivial(ASTContext &Ctx, const Expr * E) {
6490   // We can skip constant expressions.
6491   // We can skip expressions with trivial calls or simple expressions.
6492   return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) ||
6493           !E->hasNonTrivialCall(Ctx)) &&
6494          !E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true);
6495 }
6496 
getSingleCompoundChild(ASTContext & Ctx,const Stmt * Body)6497 const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx,
6498                                                     const Stmt *Body) {
6499   const Stmt *Child = Body->IgnoreContainers();
6500   while (const auto *C = dyn_cast_or_null<CompoundStmt>(Child)) {
6501     Child = nullptr;
6502     for (const Stmt *S : C->body()) {
6503       if (const auto *E = dyn_cast<Expr>(S)) {
6504         if (isTrivial(Ctx, E))
6505           continue;
6506       }
6507       // Some of the statements can be ignored.
6508       if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) ||
6509           isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S))
6510         continue;
6511       // Analyze declarations.
6512       if (const auto *DS = dyn_cast<DeclStmt>(S)) {
6513         if (llvm::all_of(DS->decls(), [&Ctx](const Decl *D) {
6514               if (isa<EmptyDecl>(D) || isa<DeclContext>(D) ||
6515                   isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) ||
6516                   isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) ||
6517                   isa<UsingDirectiveDecl>(D) ||
6518                   isa<OMPDeclareReductionDecl>(D) ||
6519                   isa<OMPThreadPrivateDecl>(D) || isa<OMPAllocateDecl>(D))
6520                 return true;
6521               const auto *VD = dyn_cast<VarDecl>(D);
6522               if (!VD)
6523                 return false;
6524               return VD->isConstexpr() ||
6525                      ((VD->getType().isTrivialType(Ctx) ||
6526                        VD->getType()->isReferenceType()) &&
6527                       (!VD->hasInit() || isTrivial(Ctx, VD->getInit())));
6528             }))
6529           continue;
6530       }
6531       // Found multiple children - cannot get the one child only.
6532       if (Child)
6533         return nullptr;
6534       Child = S;
6535     }
6536     if (Child)
6537       Child = Child->IgnoreContainers();
6538   }
6539   return Child;
6540 }
6541 
6542 /// Emit the number of teams for a target directive.  Inspect the num_teams
6543 /// clause associated with a teams construct combined or closely nested
6544 /// with the target directive.
6545 ///
6546 /// Emit a team of size one for directives such as 'target parallel' that
6547 /// have no associated teams construct.
6548 ///
6549 /// Otherwise, return nullptr.
6550 static llvm::Value *
emitNumTeamsForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D)6551 emitNumTeamsForTargetDirective(CodeGenFunction &CGF,
6552                                const OMPExecutableDirective &D) {
6553   assert(!CGF.getLangOpts().OpenMPIsDevice &&
6554          "Clauses associated with the teams directive expected to be emitted "
6555          "only for the host!");
6556   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6557   assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
6558          "Expected target-based executable directive.");
6559   CGBuilderTy &Bld = CGF.Builder;
6560   switch (DirectiveKind) {
6561   case OMPD_target: {
6562     const auto *CS = D.getInnermostCapturedStmt();
6563     const auto *Body =
6564         CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
6565     const Stmt *ChildStmt =
6566         CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body);
6567     if (const auto *NestedDir =
6568             dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
6569       if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) {
6570         if (NestedDir->hasClausesOfKind<OMPNumTeamsClause>()) {
6571           CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6572           CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6573           const Expr *NumTeams =
6574               NestedDir->getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6575           llvm::Value *NumTeamsVal =
6576               CGF.EmitScalarExpr(NumTeams,
6577                                  /*IgnoreResultAssign*/ true);
6578           return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6579                                    /*isSigned=*/true);
6580         }
6581         return Bld.getInt32(0);
6582       }
6583       if (isOpenMPParallelDirective(NestedDir->getDirectiveKind()) ||
6584           isOpenMPSimdDirective(NestedDir->getDirectiveKind()))
6585         return Bld.getInt32(1);
6586       return Bld.getInt32(0);
6587     }
6588     return nullptr;
6589   }
6590   case OMPD_target_teams:
6591   case OMPD_target_teams_distribute:
6592   case OMPD_target_teams_distribute_simd:
6593   case OMPD_target_teams_distribute_parallel_for:
6594   case OMPD_target_teams_distribute_parallel_for_simd: {
6595     if (D.hasClausesOfKind<OMPNumTeamsClause>()) {
6596       CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF);
6597       const Expr *NumTeams =
6598           D.getSingleClause<OMPNumTeamsClause>()->getNumTeams();
6599       llvm::Value *NumTeamsVal =
6600           CGF.EmitScalarExpr(NumTeams,
6601                              /*IgnoreResultAssign*/ true);
6602       return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
6603                                /*isSigned=*/true);
6604     }
6605     return Bld.getInt32(0);
6606   }
6607   case OMPD_target_parallel:
6608   case OMPD_target_parallel_for:
6609   case OMPD_target_parallel_for_simd:
6610   case OMPD_target_simd:
6611     return Bld.getInt32(1);
6612   case OMPD_parallel:
6613   case OMPD_for:
6614   case OMPD_parallel_for:
6615   case OMPD_parallel_master:
6616   case OMPD_parallel_sections:
6617   case OMPD_for_simd:
6618   case OMPD_parallel_for_simd:
6619   case OMPD_cancel:
6620   case OMPD_cancellation_point:
6621   case OMPD_ordered:
6622   case OMPD_threadprivate:
6623   case OMPD_allocate:
6624   case OMPD_task:
6625   case OMPD_simd:
6626   case OMPD_sections:
6627   case OMPD_section:
6628   case OMPD_single:
6629   case OMPD_master:
6630   case OMPD_critical:
6631   case OMPD_taskyield:
6632   case OMPD_barrier:
6633   case OMPD_taskwait:
6634   case OMPD_taskgroup:
6635   case OMPD_atomic:
6636   case OMPD_flush:
6637   case OMPD_depobj:
6638   case OMPD_scan:
6639   case OMPD_teams:
6640   case OMPD_target_data:
6641   case OMPD_target_exit_data:
6642   case OMPD_target_enter_data:
6643   case OMPD_distribute:
6644   case OMPD_distribute_simd:
6645   case OMPD_distribute_parallel_for:
6646   case OMPD_distribute_parallel_for_simd:
6647   case OMPD_teams_distribute:
6648   case OMPD_teams_distribute_simd:
6649   case OMPD_teams_distribute_parallel_for:
6650   case OMPD_teams_distribute_parallel_for_simd:
6651   case OMPD_target_update:
6652   case OMPD_declare_simd:
6653   case OMPD_declare_variant:
6654   case OMPD_begin_declare_variant:
6655   case OMPD_end_declare_variant:
6656   case OMPD_declare_target:
6657   case OMPD_end_declare_target:
6658   case OMPD_declare_reduction:
6659   case OMPD_declare_mapper:
6660   case OMPD_taskloop:
6661   case OMPD_taskloop_simd:
6662   case OMPD_master_taskloop:
6663   case OMPD_master_taskloop_simd:
6664   case OMPD_parallel_master_taskloop:
6665   case OMPD_parallel_master_taskloop_simd:
6666   case OMPD_requires:
6667   case OMPD_unknown:
6668     break;
6669   default:
6670     break;
6671   }
6672   llvm_unreachable("Unexpected directive kind.");
6673 }
6674 
getNumThreads(CodeGenFunction & CGF,const CapturedStmt * CS,llvm::Value * DefaultThreadLimitVal)6675 static llvm::Value *getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS,
6676                                   llvm::Value *DefaultThreadLimitVal) {
6677   const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6678       CGF.getContext(), CS->getCapturedStmt());
6679   if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6680     if (isOpenMPParallelDirective(Dir->getDirectiveKind())) {
6681       llvm::Value *NumThreads = nullptr;
6682       llvm::Value *CondVal = nullptr;
6683       // Handle if clause. If if clause present, the number of threads is
6684       // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6685       if (Dir->hasClausesOfKind<OMPIfClause>()) {
6686         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6687         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6688         const OMPIfClause *IfClause = nullptr;
6689         for (const auto *C : Dir->getClausesOfKind<OMPIfClause>()) {
6690           if (C->getNameModifier() == OMPD_unknown ||
6691               C->getNameModifier() == OMPD_parallel) {
6692             IfClause = C;
6693             break;
6694           }
6695         }
6696         if (IfClause) {
6697           const Expr *Cond = IfClause->getCondition();
6698           bool Result;
6699           if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6700             if (!Result)
6701               return CGF.Builder.getInt32(1);
6702           } else {
6703             CodeGenFunction::LexicalScope Scope(CGF, Cond->getSourceRange());
6704             if (const auto *PreInit =
6705                     cast_or_null<DeclStmt>(IfClause->getPreInitStmt())) {
6706               for (const auto *I : PreInit->decls()) {
6707                 if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6708                   CGF.EmitVarDecl(cast<VarDecl>(*I));
6709                 } else {
6710                   CodeGenFunction::AutoVarEmission Emission =
6711                       CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6712                   CGF.EmitAutoVarCleanups(Emission);
6713                 }
6714               }
6715             }
6716             CondVal = CGF.EvaluateExprAsBool(Cond);
6717           }
6718         }
6719       }
6720       // Check the value of num_threads clause iff if clause was not specified
6721       // or is not evaluated to false.
6722       if (Dir->hasClausesOfKind<OMPNumThreadsClause>()) {
6723         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6724         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6725         const auto *NumThreadsClause =
6726             Dir->getSingleClause<OMPNumThreadsClause>();
6727         CodeGenFunction::LexicalScope Scope(
6728             CGF, NumThreadsClause->getNumThreads()->getSourceRange());
6729         if (const auto *PreInit =
6730                 cast_or_null<DeclStmt>(NumThreadsClause->getPreInitStmt())) {
6731           for (const auto *I : PreInit->decls()) {
6732             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6733               CGF.EmitVarDecl(cast<VarDecl>(*I));
6734             } else {
6735               CodeGenFunction::AutoVarEmission Emission =
6736                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6737               CGF.EmitAutoVarCleanups(Emission);
6738             }
6739           }
6740         }
6741         NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads());
6742         NumThreads = CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty,
6743                                                /*isSigned=*/false);
6744         if (DefaultThreadLimitVal)
6745           NumThreads = CGF.Builder.CreateSelect(
6746               CGF.Builder.CreateICmpULT(DefaultThreadLimitVal, NumThreads),
6747               DefaultThreadLimitVal, NumThreads);
6748       } else {
6749         NumThreads = DefaultThreadLimitVal ? DefaultThreadLimitVal
6750                                            : CGF.Builder.getInt32(0);
6751       }
6752       // Process condition of the if clause.
6753       if (CondVal) {
6754         NumThreads = CGF.Builder.CreateSelect(CondVal, NumThreads,
6755                                               CGF.Builder.getInt32(1));
6756       }
6757       return NumThreads;
6758     }
6759     if (isOpenMPSimdDirective(Dir->getDirectiveKind()))
6760       return CGF.Builder.getInt32(1);
6761     return DefaultThreadLimitVal;
6762   }
6763   return DefaultThreadLimitVal ? DefaultThreadLimitVal
6764                                : CGF.Builder.getInt32(0);
6765 }
6766 
6767 /// Emit the number of threads for a target directive.  Inspect the
6768 /// thread_limit clause associated with a teams construct combined or closely
6769 /// nested with the target directive.
6770 ///
6771 /// Emit the num_threads clause for directives such as 'target parallel' that
6772 /// have no associated teams construct.
6773 ///
6774 /// Otherwise, return nullptr.
6775 static llvm::Value *
emitNumThreadsForTargetDirective(CodeGenFunction & CGF,const OMPExecutableDirective & D)6776 emitNumThreadsForTargetDirective(CodeGenFunction &CGF,
6777                                  const OMPExecutableDirective &D) {
6778   assert(!CGF.getLangOpts().OpenMPIsDevice &&
6779          "Clauses associated with the teams directive expected to be emitted "
6780          "only for the host!");
6781   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
6782   assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
6783          "Expected target-based executable directive.");
6784   CGBuilderTy &Bld = CGF.Builder;
6785   llvm::Value *ThreadLimitVal = nullptr;
6786   llvm::Value *NumThreadsVal = nullptr;
6787   switch (DirectiveKind) {
6788   case OMPD_target: {
6789     const CapturedStmt *CS = D.getInnermostCapturedStmt();
6790     if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6791       return NumThreads;
6792     const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6793         CGF.getContext(), CS->getCapturedStmt());
6794     if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6795       if (Dir->hasClausesOfKind<OMPThreadLimitClause>()) {
6796         CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
6797         CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
6798         const auto *ThreadLimitClause =
6799             Dir->getSingleClause<OMPThreadLimitClause>();
6800         CodeGenFunction::LexicalScope Scope(
6801             CGF, ThreadLimitClause->getThreadLimit()->getSourceRange());
6802         if (const auto *PreInit =
6803                 cast_or_null<DeclStmt>(ThreadLimitClause->getPreInitStmt())) {
6804           for (const auto *I : PreInit->decls()) {
6805             if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
6806               CGF.EmitVarDecl(cast<VarDecl>(*I));
6807             } else {
6808               CodeGenFunction::AutoVarEmission Emission =
6809                   CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
6810               CGF.EmitAutoVarCleanups(Emission);
6811             }
6812           }
6813         }
6814         llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6815             ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6816         ThreadLimitVal =
6817             Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6818       }
6819       if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) &&
6820           !isOpenMPDistributeDirective(Dir->getDirectiveKind())) {
6821         CS = Dir->getInnermostCapturedStmt();
6822         const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6823             CGF.getContext(), CS->getCapturedStmt());
6824         Dir = dyn_cast_or_null<OMPExecutableDirective>(Child);
6825       }
6826       if (Dir && isOpenMPDistributeDirective(Dir->getDirectiveKind()) &&
6827           !isOpenMPSimdDirective(Dir->getDirectiveKind())) {
6828         CS = Dir->getInnermostCapturedStmt();
6829         if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6830           return NumThreads;
6831       }
6832       if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind()))
6833         return Bld.getInt32(1);
6834     }
6835     return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6836   }
6837   case OMPD_target_teams: {
6838     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6839       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6840       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6841       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6842           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6843       ThreadLimitVal =
6844           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6845     }
6846     const CapturedStmt *CS = D.getInnermostCapturedStmt();
6847     if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6848       return NumThreads;
6849     const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
6850         CGF.getContext(), CS->getCapturedStmt());
6851     if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
6852       if (Dir->getDirectiveKind() == OMPD_distribute) {
6853         CS = Dir->getInnermostCapturedStmt();
6854         if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
6855           return NumThreads;
6856       }
6857     }
6858     return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
6859   }
6860   case OMPD_target_teams_distribute:
6861     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6862       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6863       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6864       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6865           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6866       ThreadLimitVal =
6867           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6868     }
6869     return getNumThreads(CGF, D.getInnermostCapturedStmt(), ThreadLimitVal);
6870   case OMPD_target_parallel:
6871   case OMPD_target_parallel_for:
6872   case OMPD_target_parallel_for_simd:
6873   case OMPD_target_teams_distribute_parallel_for:
6874   case OMPD_target_teams_distribute_parallel_for_simd: {
6875     llvm::Value *CondVal = nullptr;
6876     // Handle if clause. If if clause present, the number of threads is
6877     // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
6878     if (D.hasClausesOfKind<OMPIfClause>()) {
6879       const OMPIfClause *IfClause = nullptr;
6880       for (const auto *C : D.getClausesOfKind<OMPIfClause>()) {
6881         if (C->getNameModifier() == OMPD_unknown ||
6882             C->getNameModifier() == OMPD_parallel) {
6883           IfClause = C;
6884           break;
6885         }
6886       }
6887       if (IfClause) {
6888         const Expr *Cond = IfClause->getCondition();
6889         bool Result;
6890         if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
6891           if (!Result)
6892             return Bld.getInt32(1);
6893         } else {
6894           CodeGenFunction::RunCleanupsScope Scope(CGF);
6895           CondVal = CGF.EvaluateExprAsBool(Cond);
6896         }
6897       }
6898     }
6899     if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
6900       CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
6901       const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
6902       llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
6903           ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
6904       ThreadLimitVal =
6905           Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
6906     }
6907     if (D.hasClausesOfKind<OMPNumThreadsClause>()) {
6908       CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
6909       const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>();
6910       llvm::Value *NumThreads = CGF.EmitScalarExpr(
6911           NumThreadsClause->getNumThreads(), /*IgnoreResultAssign=*/true);
6912       NumThreadsVal =
6913           Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned=*/false);
6914       ThreadLimitVal = ThreadLimitVal
6915                            ? Bld.CreateSelect(Bld.CreateICmpULT(NumThreadsVal,
6916                                                                 ThreadLimitVal),
6917                                               NumThreadsVal, ThreadLimitVal)
6918                            : NumThreadsVal;
6919     }
6920     if (!ThreadLimitVal)
6921       ThreadLimitVal = Bld.getInt32(0);
6922     if (CondVal)
6923       return Bld.CreateSelect(CondVal, ThreadLimitVal, Bld.getInt32(1));
6924     return ThreadLimitVal;
6925   }
6926   case OMPD_target_teams_distribute_simd:
6927   case OMPD_target_simd:
6928     return Bld.getInt32(1);
6929   case OMPD_parallel:
6930   case OMPD_for:
6931   case OMPD_parallel_for:
6932   case OMPD_parallel_master:
6933   case OMPD_parallel_sections:
6934   case OMPD_for_simd:
6935   case OMPD_parallel_for_simd:
6936   case OMPD_cancel:
6937   case OMPD_cancellation_point:
6938   case OMPD_ordered:
6939   case OMPD_threadprivate:
6940   case OMPD_allocate:
6941   case OMPD_task:
6942   case OMPD_simd:
6943   case OMPD_sections:
6944   case OMPD_section:
6945   case OMPD_single:
6946   case OMPD_master:
6947   case OMPD_critical:
6948   case OMPD_taskyield:
6949   case OMPD_barrier:
6950   case OMPD_taskwait:
6951   case OMPD_taskgroup:
6952   case OMPD_atomic:
6953   case OMPD_flush:
6954   case OMPD_depobj:
6955   case OMPD_scan:
6956   case OMPD_teams:
6957   case OMPD_target_data:
6958   case OMPD_target_exit_data:
6959   case OMPD_target_enter_data:
6960   case OMPD_distribute:
6961   case OMPD_distribute_simd:
6962   case OMPD_distribute_parallel_for:
6963   case OMPD_distribute_parallel_for_simd:
6964   case OMPD_teams_distribute:
6965   case OMPD_teams_distribute_simd:
6966   case OMPD_teams_distribute_parallel_for:
6967   case OMPD_teams_distribute_parallel_for_simd:
6968   case OMPD_target_update:
6969   case OMPD_declare_simd:
6970   case OMPD_declare_variant:
6971   case OMPD_begin_declare_variant:
6972   case OMPD_end_declare_variant:
6973   case OMPD_declare_target:
6974   case OMPD_end_declare_target:
6975   case OMPD_declare_reduction:
6976   case OMPD_declare_mapper:
6977   case OMPD_taskloop:
6978   case OMPD_taskloop_simd:
6979   case OMPD_master_taskloop:
6980   case OMPD_master_taskloop_simd:
6981   case OMPD_parallel_master_taskloop:
6982   case OMPD_parallel_master_taskloop_simd:
6983   case OMPD_requires:
6984   case OMPD_unknown:
6985     break;
6986   default:
6987     break;
6988   }
6989   llvm_unreachable("Unsupported directive kind.");
6990 }
6991 
6992 namespace {
6993 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
6994 
6995 // Utility to handle information from clauses associated with a given
6996 // construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
6997 // It provides a convenient interface to obtain the information and generate
6998 // code for that information.
6999 class MappableExprsHandler {
7000 public:
7001   /// Values for bit flags used to specify the mapping type for
7002   /// offloading.
7003   enum OpenMPOffloadMappingFlags : uint64_t {
7004     /// No flags
7005     OMP_MAP_NONE = 0x0,
7006     /// Allocate memory on the device and move data from host to device.
7007     OMP_MAP_TO = 0x01,
7008     /// Allocate memory on the device and move data from device to host.
7009     OMP_MAP_FROM = 0x02,
7010     /// Always perform the requested mapping action on the element, even
7011     /// if it was already mapped before.
7012     OMP_MAP_ALWAYS = 0x04,
7013     /// Delete the element from the device environment, ignoring the
7014     /// current reference count associated with the element.
7015     OMP_MAP_DELETE = 0x08,
7016     /// The element being mapped is a pointer-pointee pair; both the
7017     /// pointer and the pointee should be mapped.
7018     OMP_MAP_PTR_AND_OBJ = 0x10,
7019     /// This flags signals that the base address of an entry should be
7020     /// passed to the target kernel as an argument.
7021     OMP_MAP_TARGET_PARAM = 0x20,
7022     /// Signal that the runtime library has to return the device pointer
7023     /// in the current position for the data being mapped. Used when we have the
7024     /// use_device_ptr or use_device_addr clause.
7025     OMP_MAP_RETURN_PARAM = 0x40,
7026     /// This flag signals that the reference being passed is a pointer to
7027     /// private data.
7028     OMP_MAP_PRIVATE = 0x80,
7029     /// Pass the element to the device by value.
7030     OMP_MAP_LITERAL = 0x100,
7031     /// Implicit map
7032     OMP_MAP_IMPLICIT = 0x200,
7033     /// Close is a hint to the runtime to allocate memory close to
7034     /// the target device.
7035     OMP_MAP_CLOSE = 0x400,
7036     /// 0x800 is reserved for compatibility with XLC.
7037     /// Produce a runtime error if the data is not already allocated.
7038     OMP_MAP_PRESENT = 0x1000,
7039     /// Signal that the runtime library should use args as an array of
7040     /// descriptor_dim pointers and use args_size as dims. Used when we have
7041     /// non-contiguous list items in target update directive
7042     OMP_MAP_NON_CONTIG = 0x100000000000,
7043     /// The 16 MSBs of the flags indicate whether the entry is member of some
7044     /// struct/class.
7045     OMP_MAP_MEMBER_OF = 0xffff000000000000,
7046     LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ OMP_MAP_MEMBER_OF),
7047   };
7048 
7049   /// Get the offset of the OMP_MAP_MEMBER_OF field.
getFlagMemberOffset()7050   static unsigned getFlagMemberOffset() {
7051     unsigned Offset = 0;
7052     for (uint64_t Remain = OMP_MAP_MEMBER_OF; !(Remain & 1);
7053          Remain = Remain >> 1)
7054       Offset++;
7055     return Offset;
7056   }
7057 
7058   /// Class that associates information with a base pointer to be passed to the
7059   /// runtime library.
7060   class BasePointerInfo {
7061     /// The base pointer.
7062     llvm::Value *Ptr = nullptr;
7063     /// The base declaration that refers to this device pointer, or null if
7064     /// there is none.
7065     const ValueDecl *DevPtrDecl = nullptr;
7066 
7067   public:
BasePointerInfo(llvm::Value * Ptr,const ValueDecl * DevPtrDecl=nullptr)7068     BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr)
7069         : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {}
operator *() const7070     llvm::Value *operator*() const { return Ptr; }
getDevicePtrDecl() const7071     const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; }
setDevicePtrDecl(const ValueDecl * D)7072     void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; }
7073   };
7074 
7075   using MapBaseValuesArrayTy = SmallVector<BasePointerInfo, 4>;
7076   using MapValuesArrayTy = SmallVector<llvm::Value *, 4>;
7077   using MapFlagsArrayTy = SmallVector<OpenMPOffloadMappingFlags, 4>;
7078   using MapMappersArrayTy = SmallVector<const ValueDecl *, 4>;
7079   using MapDimArrayTy = SmallVector<uint64_t, 4>;
7080   using MapNonContiguousArrayTy = SmallVector<MapValuesArrayTy, 4>;
7081 
7082   /// This structure contains combined information generated for mappable
7083   /// clauses, including base pointers, pointers, sizes, map types, user-defined
7084   /// mappers, and non-contiguous information.
7085   struct MapCombinedInfoTy {
7086     struct StructNonContiguousInfo {
7087       bool IsNonContiguous = false;
7088       MapDimArrayTy Dims;
7089       MapNonContiguousArrayTy Offsets;
7090       MapNonContiguousArrayTy Counts;
7091       MapNonContiguousArrayTy Strides;
7092     };
7093     MapBaseValuesArrayTy BasePointers;
7094     MapValuesArrayTy Pointers;
7095     MapValuesArrayTy Sizes;
7096     MapFlagsArrayTy Types;
7097     MapMappersArrayTy Mappers;
7098     StructNonContiguousInfo NonContigInfo;
7099 
7100     /// Append arrays in \a CurInfo.
append__anonbee92f943d11::MappableExprsHandler::MapCombinedInfoTy7101     void append(MapCombinedInfoTy &CurInfo) {
7102       BasePointers.append(CurInfo.BasePointers.begin(),
7103                           CurInfo.BasePointers.end());
7104       Pointers.append(CurInfo.Pointers.begin(), CurInfo.Pointers.end());
7105       Sizes.append(CurInfo.Sizes.begin(), CurInfo.Sizes.end());
7106       Types.append(CurInfo.Types.begin(), CurInfo.Types.end());
7107       Mappers.append(CurInfo.Mappers.begin(), CurInfo.Mappers.end());
7108       NonContigInfo.Dims.append(CurInfo.NonContigInfo.Dims.begin(),
7109                                  CurInfo.NonContigInfo.Dims.end());
7110       NonContigInfo.Offsets.append(CurInfo.NonContigInfo.Offsets.begin(),
7111                                     CurInfo.NonContigInfo.Offsets.end());
7112       NonContigInfo.Counts.append(CurInfo.NonContigInfo.Counts.begin(),
7113                                    CurInfo.NonContigInfo.Counts.end());
7114       NonContigInfo.Strides.append(CurInfo.NonContigInfo.Strides.begin(),
7115                                     CurInfo.NonContigInfo.Strides.end());
7116     }
7117   };
7118 
7119   /// Map between a struct and the its lowest & highest elements which have been
7120   /// mapped.
7121   /// [ValueDecl *] --> {LE(FieldIndex, Pointer),
7122   ///                    HE(FieldIndex, Pointer)}
7123   struct StructRangeInfoTy {
7124     std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = {
7125         0, Address::invalid()};
7126     std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = {
7127         0, Address::invalid()};
7128     Address Base = Address::invalid();
7129   };
7130 
7131 private:
7132   /// Kind that defines how a device pointer has to be returned.
7133   struct MapInfo {
7134     OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
7135     OpenMPMapClauseKind MapType = OMPC_MAP_unknown;
7136     ArrayRef<OpenMPMapModifierKind> MapModifiers;
7137     ArrayRef<OpenMPMotionModifierKind> MotionModifiers;
7138     bool ReturnDevicePointer = false;
7139     bool IsImplicit = false;
7140     const ValueDecl *Mapper = nullptr;
7141     bool ForDeviceAddr = false;
7142 
7143     MapInfo() = default;
MapInfo__anonbee92f943d11::MappableExprsHandler::MapInfo7144     MapInfo(
7145         OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
7146         OpenMPMapClauseKind MapType,
7147         ArrayRef<OpenMPMapModifierKind> MapModifiers,
7148         ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
7149         bool ReturnDevicePointer, bool IsImplicit,
7150         const ValueDecl *Mapper = nullptr, bool ForDeviceAddr = false)
7151         : Components(Components), MapType(MapType), MapModifiers(MapModifiers),
7152           MotionModifiers(MotionModifiers),
7153           ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit),
7154           Mapper(Mapper), ForDeviceAddr(ForDeviceAddr) {}
7155   };
7156 
7157   /// If use_device_ptr or use_device_addr is used on a decl which is a struct
7158   /// member and there is no map information about it, then emission of that
7159   /// entry is deferred until the whole struct has been processed.
7160   struct DeferredDevicePtrEntryTy {
7161     const Expr *IE = nullptr;
7162     const ValueDecl *VD = nullptr;
7163     bool ForDeviceAddr = false;
7164 
DeferredDevicePtrEntryTy__anonbee92f943d11::MappableExprsHandler::DeferredDevicePtrEntryTy7165     DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD,
7166                              bool ForDeviceAddr)
7167         : IE(IE), VD(VD), ForDeviceAddr(ForDeviceAddr) {}
7168   };
7169 
7170   /// The target directive from where the mappable clauses were extracted. It
7171   /// is either a executable directive or a user-defined mapper directive.
7172   llvm::PointerUnion<const OMPExecutableDirective *,
7173                      const OMPDeclareMapperDecl *>
7174       CurDir;
7175 
7176   /// Function the directive is being generated for.
7177   CodeGenFunction &CGF;
7178 
7179   /// Set of all first private variables in the current directive.
7180   /// bool data is set to true if the variable is implicitly marked as
7181   /// firstprivate, false otherwise.
7182   llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, bool> FirstPrivateDecls;
7183 
7184   /// Map between device pointer declarations and their expression components.
7185   /// The key value for declarations in 'this' is null.
7186   llvm::DenseMap<
7187       const ValueDecl *,
7188       SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
7189       DevPointersMap;
7190 
getExprTypeSize(const Expr * E) const7191   llvm::Value *getExprTypeSize(const Expr *E) const {
7192     QualType ExprTy = E->getType().getCanonicalType();
7193 
7194     // Calculate the size for array shaping expression.
7195     if (const auto *OAE = dyn_cast<OMPArrayShapingExpr>(E)) {
7196       llvm::Value *Size =
7197           CGF.getTypeSize(OAE->getBase()->getType()->getPointeeType());
7198       for (const Expr *SE : OAE->getDimensions()) {
7199         llvm::Value *Sz = CGF.EmitScalarExpr(SE);
7200         Sz = CGF.EmitScalarConversion(Sz, SE->getType(),
7201                                       CGF.getContext().getSizeType(),
7202                                       SE->getExprLoc());
7203         Size = CGF.Builder.CreateNUWMul(Size, Sz);
7204       }
7205       return Size;
7206     }
7207 
7208     // Reference types are ignored for mapping purposes.
7209     if (const auto *RefTy = ExprTy->getAs<ReferenceType>())
7210       ExprTy = RefTy->getPointeeType().getCanonicalType();
7211 
7212     // Given that an array section is considered a built-in type, we need to
7213     // do the calculation based on the length of the section instead of relying
7214     // on CGF.getTypeSize(E->getType()).
7215     if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
7216       QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
7217                             OAE->getBase()->IgnoreParenImpCasts())
7218                             .getCanonicalType();
7219 
7220       // If there is no length associated with the expression and lower bound is
7221       // not specified too, that means we are using the whole length of the
7222       // base.
7223       if (!OAE->getLength() && OAE->getColonLocFirst().isValid() &&
7224           !OAE->getLowerBound())
7225         return CGF.getTypeSize(BaseTy);
7226 
7227       llvm::Value *ElemSize;
7228       if (const auto *PTy = BaseTy->getAs<PointerType>()) {
7229         ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
7230       } else {
7231         const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
7232         assert(ATy && "Expecting array type if not a pointer type.");
7233         ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
7234       }
7235 
7236       // If we don't have a length at this point, that is because we have an
7237       // array section with a single element.
7238       if (!OAE->getLength() && OAE->getColonLocFirst().isInvalid())
7239         return ElemSize;
7240 
7241       if (const Expr *LenExpr = OAE->getLength()) {
7242         llvm::Value *LengthVal = CGF.EmitScalarExpr(LenExpr);
7243         LengthVal = CGF.EmitScalarConversion(LengthVal, LenExpr->getType(),
7244                                              CGF.getContext().getSizeType(),
7245                                              LenExpr->getExprLoc());
7246         return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
7247       }
7248       assert(!OAE->getLength() && OAE->getColonLocFirst().isValid() &&
7249              OAE->getLowerBound() && "expected array_section[lb:].");
7250       // Size = sizetype - lb * elemtype;
7251       llvm::Value *LengthVal = CGF.getTypeSize(BaseTy);
7252       llvm::Value *LBVal = CGF.EmitScalarExpr(OAE->getLowerBound());
7253       LBVal = CGF.EmitScalarConversion(LBVal, OAE->getLowerBound()->getType(),
7254                                        CGF.getContext().getSizeType(),
7255                                        OAE->getLowerBound()->getExprLoc());
7256       LBVal = CGF.Builder.CreateNUWMul(LBVal, ElemSize);
7257       llvm::Value *Cmp = CGF.Builder.CreateICmpUGT(LengthVal, LBVal);
7258       llvm::Value *TrueVal = CGF.Builder.CreateNUWSub(LengthVal, LBVal);
7259       LengthVal = CGF.Builder.CreateSelect(
7260           Cmp, TrueVal, llvm::ConstantInt::get(CGF.SizeTy, 0));
7261       return LengthVal;
7262     }
7263     return CGF.getTypeSize(ExprTy);
7264   }
7265 
7266   /// Return the corresponding bits for a given map clause modifier. Add
7267   /// a flag marking the map as a pointer if requested. Add a flag marking the
7268   /// map as the first one of a series of maps that relate to the same map
7269   /// expression.
getMapTypeBits(OpenMPMapClauseKind MapType,ArrayRef<OpenMPMapModifierKind> MapModifiers,ArrayRef<OpenMPMotionModifierKind> MotionModifiers,bool IsImplicit,bool AddPtrFlag,bool AddIsTargetParamFlag,bool IsNonContiguous) const7270   OpenMPOffloadMappingFlags getMapTypeBits(
7271       OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
7272       ArrayRef<OpenMPMotionModifierKind> MotionModifiers, bool IsImplicit,
7273       bool AddPtrFlag, bool AddIsTargetParamFlag, bool IsNonContiguous) const {
7274     OpenMPOffloadMappingFlags Bits =
7275         IsImplicit ? OMP_MAP_IMPLICIT : OMP_MAP_NONE;
7276     switch (MapType) {
7277     case OMPC_MAP_alloc:
7278     case OMPC_MAP_release:
7279       // alloc and release is the default behavior in the runtime library,  i.e.
7280       // if we don't pass any bits alloc/release that is what the runtime is
7281       // going to do. Therefore, we don't need to signal anything for these two
7282       // type modifiers.
7283       break;
7284     case OMPC_MAP_to:
7285       Bits |= OMP_MAP_TO;
7286       break;
7287     case OMPC_MAP_from:
7288       Bits |= OMP_MAP_FROM;
7289       break;
7290     case OMPC_MAP_tofrom:
7291       Bits |= OMP_MAP_TO | OMP_MAP_FROM;
7292       break;
7293     case OMPC_MAP_delete:
7294       Bits |= OMP_MAP_DELETE;
7295       break;
7296     case OMPC_MAP_unknown:
7297       llvm_unreachable("Unexpected map type!");
7298     }
7299     if (AddPtrFlag)
7300       Bits |= OMP_MAP_PTR_AND_OBJ;
7301     if (AddIsTargetParamFlag)
7302       Bits |= OMP_MAP_TARGET_PARAM;
7303     if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_always)
7304         != MapModifiers.end())
7305       Bits |= OMP_MAP_ALWAYS;
7306     if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_close)
7307         != MapModifiers.end())
7308       Bits |= OMP_MAP_CLOSE;
7309     if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_present)
7310         != MapModifiers.end())
7311       Bits |= OMP_MAP_PRESENT;
7312     if (llvm::find(MotionModifiers, OMPC_MOTION_MODIFIER_present)
7313         != MotionModifiers.end())
7314       Bits |= OMP_MAP_PRESENT;
7315     if (IsNonContiguous)
7316       Bits |= OMP_MAP_NON_CONTIG;
7317     return Bits;
7318   }
7319 
7320   /// Return true if the provided expression is a final array section. A
7321   /// final array section, is one whose length can't be proved to be one.
isFinalArraySectionExpression(const Expr * E) const7322   bool isFinalArraySectionExpression(const Expr *E) const {
7323     const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
7324 
7325     // It is not an array section and therefore not a unity-size one.
7326     if (!OASE)
7327       return false;
7328 
7329     // An array section with no colon always refer to a single element.
7330     if (OASE->getColonLocFirst().isInvalid())
7331       return false;
7332 
7333     const Expr *Length = OASE->getLength();
7334 
7335     // If we don't have a length we have to check if the array has size 1
7336     // for this dimension. Also, we should always expect a length if the
7337     // base type is pointer.
7338     if (!Length) {
7339       QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
7340                              OASE->getBase()->IgnoreParenImpCasts())
7341                              .getCanonicalType();
7342       if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
7343         return ATy->getSize().getSExtValue() != 1;
7344       // If we don't have a constant dimension length, we have to consider
7345       // the current section as having any size, so it is not necessarily
7346       // unitary. If it happen to be unity size, that's user fault.
7347       return true;
7348     }
7349 
7350     // Check if the length evaluates to 1.
7351     Expr::EvalResult Result;
7352     if (!Length->EvaluateAsInt(Result, CGF.getContext()))
7353       return true; // Can have more that size 1.
7354 
7355     llvm::APSInt ConstLength = Result.Val.getInt();
7356     return ConstLength.getSExtValue() != 1;
7357   }
7358 
7359   /// Generate the base pointers, section pointers, sizes, map type bits, and
7360   /// user-defined mappers (all included in \a CombinedInfo) for the provided
7361   /// map type, map or motion modifiers, and expression components.
7362   /// \a IsFirstComponent should be set to true if the provided set of
7363   /// components is the first associated with a capture.
generateInfoForComponentList(OpenMPMapClauseKind MapType,ArrayRef<OpenMPMapModifierKind> MapModifiers,ArrayRef<OpenMPMotionModifierKind> MotionModifiers,OMPClauseMappableExprCommon::MappableExprComponentListRef Components,MapCombinedInfoTy & CombinedInfo,StructRangeInfoTy & PartialStruct,bool IsFirstComponentList,bool IsImplicit,const ValueDecl * Mapper=nullptr,bool ForDeviceAddr=false,ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef> OverlappedElements=llvm::None) const7364   void generateInfoForComponentList(
7365       OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
7366       ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
7367       OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
7368       MapCombinedInfoTy &CombinedInfo, StructRangeInfoTy &PartialStruct,
7369       bool IsFirstComponentList, bool IsImplicit,
7370       const ValueDecl *Mapper = nullptr, bool ForDeviceAddr = false,
7371       ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
7372           OverlappedElements = llvm::None) const {
7373     // The following summarizes what has to be generated for each map and the
7374     // types below. The generated information is expressed in this order:
7375     // base pointer, section pointer, size, flags
7376     // (to add to the ones that come from the map type and modifier).
7377     //
7378     // double d;
7379     // int i[100];
7380     // float *p;
7381     //
7382     // struct S1 {
7383     //   int i;
7384     //   float f[50];
7385     // }
7386     // struct S2 {
7387     //   int i;
7388     //   float f[50];
7389     //   S1 s;
7390     //   double *p;
7391     //   struct S2 *ps;
7392     // }
7393     // S2 s;
7394     // S2 *ps;
7395     //
7396     // map(d)
7397     // &d, &d, sizeof(double), TARGET_PARAM | TO | FROM
7398     //
7399     // map(i)
7400     // &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM
7401     //
7402     // map(i[1:23])
7403     // &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM
7404     //
7405     // map(p)
7406     // &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM
7407     //
7408     // map(p[1:24])
7409     // &p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM | PTR_AND_OBJ
7410     // in unified shared memory mode or for local pointers
7411     // p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM
7412     //
7413     // map(s)
7414     // &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM
7415     //
7416     // map(s.i)
7417     // &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM
7418     //
7419     // map(s.s.f)
7420     // &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7421     //
7422     // map(s.p)
7423     // &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM
7424     //
7425     // map(to: s.p[:22])
7426     // &s, &(s.p), sizeof(double*), TARGET_PARAM (*)
7427     // &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**)
7428     // &(s.p), &(s.p[0]), 22*sizeof(double),
7429     //   MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
7430     // (*) alloc space for struct members, only this is a target parameter
7431     // (**) map the pointer (nothing to be mapped in this example) (the compiler
7432     //      optimizes this entry out, same in the examples below)
7433     // (***) map the pointee (map: to)
7434     //
7435     // map(s.ps)
7436     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7437     //
7438     // map(from: s.ps->s.i)
7439     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7440     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7441     // &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ  | FROM
7442     //
7443     // map(to: s.ps->ps)
7444     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7445     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7446     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ  | TO
7447     //
7448     // map(s.ps->ps->ps)
7449     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7450     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7451     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7452     // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7453     //
7454     // map(to: s.ps->ps->s.f[:22])
7455     // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
7456     // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
7457     // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7458     // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7459     //
7460     // map(ps)
7461     // &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM
7462     //
7463     // map(ps->i)
7464     // ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM
7465     //
7466     // map(ps->s.f)
7467     // ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
7468     //
7469     // map(from: ps->p)
7470     // ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM
7471     //
7472     // map(to: ps->p[:22])
7473     // ps, &(ps->p), sizeof(double*), TARGET_PARAM
7474     // ps, &(ps->p), sizeof(double*), MEMBER_OF(1)
7475     // &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO
7476     //
7477     // map(ps->ps)
7478     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM
7479     //
7480     // map(from: ps->ps->s.i)
7481     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7482     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7483     // &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7484     //
7485     // map(from: ps->ps->ps)
7486     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7487     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7488     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7489     //
7490     // map(ps->ps->ps->ps)
7491     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7492     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7493     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7494     // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
7495     //
7496     // map(to: ps->ps->ps->s.f[:22])
7497     // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
7498     // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
7499     // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
7500     // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
7501     //
7502     // map(to: s.f[:22]) map(from: s.p[:33])
7503     // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) +
7504     //     sizeof(double*) (**), TARGET_PARAM
7505     // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO
7506     // &s, &(s.p), sizeof(double*), MEMBER_OF(1)
7507     // &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM
7508     // (*) allocate contiguous space needed to fit all mapped members even if
7509     //     we allocate space for members not mapped (in this example,
7510     //     s.f[22..49] and s.s are not mapped, yet we must allocate space for
7511     //     them as well because they fall between &s.f[0] and &s.p)
7512     //
7513     // map(from: s.f[:22]) map(to: ps->p[:33])
7514     // &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM
7515     // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7516     // ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*)
7517     // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO
7518     // (*) the struct this entry pertains to is the 2nd element in the list of
7519     //     arguments, hence MEMBER_OF(2)
7520     //
7521     // map(from: s.f[:22], s.s) map(to: ps->p[:33])
7522     // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM
7523     // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM
7524     // &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM
7525     // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
7526     // ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*)
7527     // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO
7528     // (*) the struct this entry pertains to is the 4th element in the list
7529     //     of arguments, hence MEMBER_OF(4)
7530 
7531     // Track if the map information being generated is the first for a capture.
7532     bool IsCaptureFirstInfo = IsFirstComponentList;
7533     // When the variable is on a declare target link or in a to clause with
7534     // unified memory, a reference is needed to hold the host/device address
7535     // of the variable.
7536     bool RequiresReference = false;
7537 
7538     // Scan the components from the base to the complete expression.
7539     auto CI = Components.rbegin();
7540     auto CE = Components.rend();
7541     auto I = CI;
7542 
7543     // Track if the map information being generated is the first for a list of
7544     // components.
7545     bool IsExpressionFirstInfo = true;
7546     bool FirstPointerInComplexData = false;
7547     Address BP = Address::invalid();
7548     const Expr *AssocExpr = I->getAssociatedExpression();
7549     const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr);
7550     const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
7551     const auto *OAShE = dyn_cast<OMPArrayShapingExpr>(AssocExpr);
7552 
7553     if (isa<MemberExpr>(AssocExpr)) {
7554       // The base is the 'this' pointer. The content of the pointer is going
7555       // to be the base of the field being mapped.
7556       BP = CGF.LoadCXXThisAddress();
7557     } else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) ||
7558                (OASE &&
7559                 isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) {
7560       BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
7561     } else if (OAShE &&
7562                isa<CXXThisExpr>(OAShE->getBase()->IgnoreParenCasts())) {
7563       BP = Address(
7564           CGF.EmitScalarExpr(OAShE->getBase()),
7565           CGF.getContext().getTypeAlignInChars(OAShE->getBase()->getType()));
7566     } else {
7567       // The base is the reference to the variable.
7568       // BP = &Var.
7569       BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
7570       if (const auto *VD =
7571               dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) {
7572         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
7573                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
7574           if ((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
7575               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
7576                CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) {
7577             RequiresReference = true;
7578             BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
7579           }
7580         }
7581       }
7582 
7583       // If the variable is a pointer and is being dereferenced (i.e. is not
7584       // the last component), the base has to be the pointer itself, not its
7585       // reference. References are ignored for mapping purposes.
7586       QualType Ty =
7587           I->getAssociatedDeclaration()->getType().getNonReferenceType();
7588       if (Ty->isAnyPointerType() && std::next(I) != CE) {
7589         // No need to generate individual map information for the pointer, it
7590         // can be associated with the combined storage if shared memory mode is
7591         // active or the base declaration is not global variable.
7592         const auto *VD = dyn_cast<VarDecl>(I->getAssociatedDeclaration());
7593         if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
7594             !VD || VD->hasLocalStorage())
7595           BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7596         else
7597           FirstPointerInComplexData = true;
7598         ++I;
7599       }
7600     }
7601 
7602     // Track whether a component of the list should be marked as MEMBER_OF some
7603     // combined entry (for partial structs). Only the first PTR_AND_OBJ entry
7604     // in a component list should be marked as MEMBER_OF, all subsequent entries
7605     // do not belong to the base struct. E.g.
7606     // struct S2 s;
7607     // s.ps->ps->ps->f[:]
7608     //   (1) (2) (3) (4)
7609     // ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a
7610     // PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3)
7611     // is the pointee of ps(2) which is not member of struct s, so it should not
7612     // be marked as such (it is still PTR_AND_OBJ).
7613     // The variable is initialized to false so that PTR_AND_OBJ entries which
7614     // are not struct members are not considered (e.g. array of pointers to
7615     // data).
7616     bool ShouldBeMemberOf = false;
7617 
7618     // Variable keeping track of whether or not we have encountered a component
7619     // in the component list which is a member expression. Useful when we have a
7620     // pointer or a final array section, in which case it is the previous
7621     // component in the list which tells us whether we have a member expression.
7622     // E.g. X.f[:]
7623     // While processing the final array section "[:]" it is "f" which tells us
7624     // whether we are dealing with a member of a declared struct.
7625     const MemberExpr *EncounteredME = nullptr;
7626 
7627     // Track for the total number of dimension. Start from one for the dummy
7628     // dimension.
7629     uint64_t DimSize = 1;
7630 
7631     bool IsNonContiguous = CombinedInfo.NonContigInfo.IsNonContiguous;
7632 
7633     for (; I != CE; ++I) {
7634       // If the current component is member of a struct (parent struct) mark it.
7635       if (!EncounteredME) {
7636         EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression());
7637         // If we encounter a PTR_AND_OBJ entry from now on it should be marked
7638         // as MEMBER_OF the parent struct.
7639         if (EncounteredME) {
7640           ShouldBeMemberOf = true;
7641           // Do not emit as complex pointer if this is actually not array-like
7642           // expression.
7643           if (FirstPointerInComplexData) {
7644             QualType Ty = std::prev(I)
7645                               ->getAssociatedDeclaration()
7646                               ->getType()
7647                               .getNonReferenceType();
7648             BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
7649             FirstPointerInComplexData = false;
7650           }
7651         }
7652       }
7653 
7654       auto Next = std::next(I);
7655 
7656       // We need to generate the addresses and sizes if this is the last
7657       // component, if the component is a pointer or if it is an array section
7658       // whose length can't be proved to be one. If this is a pointer, it
7659       // becomes the base address for the following components.
7660 
7661       // A final array section, is one whose length can't be proved to be one.
7662       // If the map item is non-contiguous then we don't treat any array section
7663       // as final array section.
7664       bool IsFinalArraySection =
7665           !IsNonContiguous &&
7666           isFinalArraySectionExpression(I->getAssociatedExpression());
7667 
7668       // Get information on whether the element is a pointer. Have to do a
7669       // special treatment for array sections given that they are built-in
7670       // types.
7671       const auto *OASE =
7672           dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
7673       const auto *OAShE =
7674           dyn_cast<OMPArrayShapingExpr>(I->getAssociatedExpression());
7675       const auto *UO = dyn_cast<UnaryOperator>(I->getAssociatedExpression());
7676       const auto *BO = dyn_cast<BinaryOperator>(I->getAssociatedExpression());
7677       bool IsPointer =
7678           OAShE ||
7679           (OASE && OMPArraySectionExpr::getBaseOriginalType(OASE)
7680                        .getCanonicalType()
7681                        ->isAnyPointerType()) ||
7682           I->getAssociatedExpression()->getType()->isAnyPointerType();
7683       bool IsNonDerefPointer = IsPointer && !UO && !BO && !IsNonContiguous;
7684 
7685       if (OASE)
7686         ++DimSize;
7687 
7688       if (Next == CE || IsNonDerefPointer || IsFinalArraySection) {
7689         // If this is not the last component, we expect the pointer to be
7690         // associated with an array expression or member expression.
7691         assert((Next == CE ||
7692                 isa<MemberExpr>(Next->getAssociatedExpression()) ||
7693                 isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
7694                 isa<OMPArraySectionExpr>(Next->getAssociatedExpression()) ||
7695                 isa<OMPArrayShapingExpr>(Next->getAssociatedExpression()) ||
7696                 isa<UnaryOperator>(Next->getAssociatedExpression()) ||
7697                 isa<BinaryOperator>(Next->getAssociatedExpression())) &&
7698                "Unexpected expression");
7699 
7700         Address LB = Address::invalid();
7701         if (OAShE) {
7702           LB = Address(CGF.EmitScalarExpr(OAShE->getBase()),
7703                        CGF.getContext().getTypeAlignInChars(
7704                            OAShE->getBase()->getType()));
7705         } else {
7706           LB = CGF.EmitOMPSharedLValue(I->getAssociatedExpression())
7707                    .getAddress(CGF);
7708         }
7709 
7710         // If this component is a pointer inside the base struct then we don't
7711         // need to create any entry for it - it will be combined with the object
7712         // it is pointing to into a single PTR_AND_OBJ entry.
7713         bool IsMemberPointerOrAddr =
7714             (IsPointer || ForDeviceAddr) && EncounteredME &&
7715             (dyn_cast<MemberExpr>(I->getAssociatedExpression()) ==
7716              EncounteredME);
7717         if (!OverlappedElements.empty()) {
7718           // Handle base element with the info for overlapped elements.
7719           assert(!PartialStruct.Base.isValid() && "The base element is set.");
7720           assert(Next == CE &&
7721                  "Expected last element for the overlapped elements.");
7722           assert(!IsPointer &&
7723                  "Unexpected base element with the pointer type.");
7724           // Mark the whole struct as the struct that requires allocation on the
7725           // device.
7726           PartialStruct.LowestElem = {0, LB};
7727           CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(
7728               I->getAssociatedExpression()->getType());
7729           Address HB = CGF.Builder.CreateConstGEP(
7730               CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(LB,
7731                                                               CGF.VoidPtrTy),
7732               TypeSize.getQuantity() - 1);
7733           PartialStruct.HighestElem = {
7734               std::numeric_limits<decltype(
7735                   PartialStruct.HighestElem.first)>::max(),
7736               HB};
7737           PartialStruct.Base = BP;
7738           // Emit data for non-overlapped data.
7739           OpenMPOffloadMappingFlags Flags =
7740               OMP_MAP_MEMBER_OF |
7741               getMapTypeBits(MapType, MapModifiers, MotionModifiers, IsImplicit,
7742                              /*AddPtrFlag=*/false,
7743                              /*AddIsTargetParamFlag=*/false, IsNonContiguous);
7744           LB = BP;
7745           llvm::Value *Size = nullptr;
7746           // Do bitcopy of all non-overlapped structure elements.
7747           for (OMPClauseMappableExprCommon::MappableExprComponentListRef
7748                    Component : OverlappedElements) {
7749             Address ComponentLB = Address::invalid();
7750             for (const OMPClauseMappableExprCommon::MappableComponent &MC :
7751                  Component) {
7752               if (MC.getAssociatedDeclaration()) {
7753                 ComponentLB =
7754                     CGF.EmitOMPSharedLValue(MC.getAssociatedExpression())
7755                         .getAddress(CGF);
7756                 Size = CGF.Builder.CreatePtrDiff(
7757                     CGF.EmitCastToVoidPtr(ComponentLB.getPointer()),
7758                     CGF.EmitCastToVoidPtr(LB.getPointer()));
7759                 break;
7760               }
7761             }
7762             assert(Size && "Failed to determine structure size");
7763             CombinedInfo.BasePointers.push_back(BP.getPointer());
7764             CombinedInfo.Pointers.push_back(LB.getPointer());
7765             CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
7766                 Size, CGF.Int64Ty, /*isSigned=*/true));
7767             CombinedInfo.Types.push_back(Flags);
7768             CombinedInfo.Mappers.push_back(nullptr);
7769             CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
7770                                                                       : 1);
7771             LB = CGF.Builder.CreateConstGEP(ComponentLB, 1);
7772           }
7773           CombinedInfo.BasePointers.push_back(BP.getPointer());
7774           CombinedInfo.Pointers.push_back(LB.getPointer());
7775           Size = CGF.Builder.CreatePtrDiff(
7776               CGF.EmitCastToVoidPtr(
7777                   CGF.Builder.CreateConstGEP(HB, 1).getPointer()),
7778               CGF.EmitCastToVoidPtr(LB.getPointer()));
7779           CombinedInfo.Sizes.push_back(
7780               CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
7781           CombinedInfo.Types.push_back(Flags);
7782           CombinedInfo.Mappers.push_back(nullptr);
7783           CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
7784                                                                     : 1);
7785           break;
7786         }
7787         llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression());
7788         if (!IsMemberPointerOrAddr) {
7789           CombinedInfo.BasePointers.push_back(BP.getPointer());
7790           CombinedInfo.Pointers.push_back(LB.getPointer());
7791           CombinedInfo.Sizes.push_back(
7792               CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
7793           CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
7794                                                                     : 1);
7795 
7796           // If Mapper is valid, the last component inherits the mapper.
7797           bool HasMapper = Mapper && Next == CE;
7798           CombinedInfo.Mappers.push_back(HasMapper ? Mapper : nullptr);
7799 
7800           // We need to add a pointer flag for each map that comes from the
7801           // same expression except for the first one. We also need to signal
7802           // this map is the first one that relates with the current capture
7803           // (there is a set of entries for each capture).
7804           OpenMPOffloadMappingFlags Flags = getMapTypeBits(
7805               MapType, MapModifiers, MotionModifiers, IsImplicit,
7806               !IsExpressionFirstInfo || RequiresReference ||
7807                   FirstPointerInComplexData,
7808               IsCaptureFirstInfo && !RequiresReference, IsNonContiguous);
7809 
7810           if (!IsExpressionFirstInfo) {
7811             // If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well,
7812             // then we reset the TO/FROM/ALWAYS/DELETE/CLOSE flags.
7813             if (IsPointer)
7814               Flags &= ~(OMP_MAP_TO | OMP_MAP_FROM | OMP_MAP_ALWAYS |
7815                          OMP_MAP_DELETE | OMP_MAP_CLOSE);
7816 
7817             if (ShouldBeMemberOf) {
7818               // Set placeholder value MEMBER_OF=FFFF to indicate that the flag
7819               // should be later updated with the correct value of MEMBER_OF.
7820               Flags |= OMP_MAP_MEMBER_OF;
7821               // From now on, all subsequent PTR_AND_OBJ entries should not be
7822               // marked as MEMBER_OF.
7823               ShouldBeMemberOf = false;
7824             }
7825           }
7826 
7827           CombinedInfo.Types.push_back(Flags);
7828         }
7829 
7830         // If we have encountered a member expression so far, keep track of the
7831         // mapped member. If the parent is "*this", then the value declaration
7832         // is nullptr.
7833         if (EncounteredME) {
7834           const auto *FD = cast<FieldDecl>(EncounteredME->getMemberDecl());
7835           unsigned FieldIndex = FD->getFieldIndex();
7836 
7837           // Update info about the lowest and highest elements for this struct
7838           if (!PartialStruct.Base.isValid()) {
7839             PartialStruct.LowestElem = {FieldIndex, LB};
7840             if (IsFinalArraySection) {
7841               Address HB =
7842                   CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false)
7843                       .getAddress(CGF);
7844               PartialStruct.HighestElem = {FieldIndex, HB};
7845             } else {
7846               PartialStruct.HighestElem = {FieldIndex, LB};
7847             }
7848             PartialStruct.Base = BP;
7849           } else if (FieldIndex < PartialStruct.LowestElem.first) {
7850             PartialStruct.LowestElem = {FieldIndex, LB};
7851           } else if (FieldIndex > PartialStruct.HighestElem.first) {
7852             PartialStruct.HighestElem = {FieldIndex, LB};
7853           }
7854         }
7855 
7856         // If we have a final array section, we are done with this expression.
7857         if (IsFinalArraySection)
7858           break;
7859 
7860         // The pointer becomes the base for the next element.
7861         if (Next != CE)
7862           BP = LB;
7863 
7864         IsExpressionFirstInfo = false;
7865         IsCaptureFirstInfo = false;
7866         FirstPointerInComplexData = false;
7867       }
7868     }
7869 
7870     if (!IsNonContiguous)
7871       return;
7872 
7873     const ASTContext &Context = CGF.getContext();
7874 
7875     // For supporting stride in array section, we need to initialize the first
7876     // dimension size as 1, first offset as 0, and first count as 1
7877     MapValuesArrayTy CurOffsets = {llvm::ConstantInt::get(CGF.CGM.Int64Ty, 0)};
7878     MapValuesArrayTy CurCounts = {llvm::ConstantInt::get(CGF.CGM.Int64Ty, 1)};
7879     MapValuesArrayTy CurStrides;
7880     MapValuesArrayTy DimSizes{llvm::ConstantInt::get(CGF.CGM.Int64Ty, 1)};
7881     uint64_t ElementTypeSize;
7882 
7883     // Collect Size information for each dimension and get the element size as
7884     // the first Stride. For example, for `int arr[10][10]`, the DimSizes
7885     // should be [10, 10] and the first stride is 4 btyes.
7886     for (const OMPClauseMappableExprCommon::MappableComponent &Component :
7887          Components) {
7888       const Expr *AssocExpr = Component.getAssociatedExpression();
7889       const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
7890 
7891       if (!OASE)
7892         continue;
7893 
7894       QualType Ty = OMPArraySectionExpr::getBaseOriginalType(OASE->getBase());
7895       auto *CAT = Context.getAsConstantArrayType(Ty);
7896       auto *VAT = Context.getAsVariableArrayType(Ty);
7897 
7898       // We need all the dimension size except for the last dimension.
7899       assert((VAT || CAT || &Component == &*Components.begin()) &&
7900              "Should be either ConstantArray or VariableArray if not the "
7901              "first Component");
7902 
7903       // Get element size if CurStrides is empty.
7904       if (CurStrides.empty()) {
7905         const Type *ElementType = nullptr;
7906         if (CAT)
7907           ElementType = CAT->getElementType().getTypePtr();
7908         else if (VAT)
7909           ElementType = VAT->getElementType().getTypePtr();
7910         else
7911           assert(&Component == &*Components.begin() &&
7912                  "Only expect pointer (non CAT or VAT) when this is the "
7913                  "first Component");
7914         // If ElementType is null, then it means the base is a pointer
7915         // (neither CAT nor VAT) and we'll attempt to get ElementType again
7916         // for next iteration.
7917         if (ElementType) {
7918           // For the case that having pointer as base, we need to remove one
7919           // level of indirection.
7920           if (&Component != &*Components.begin())
7921             ElementType = ElementType->getPointeeOrArrayElementType();
7922           ElementTypeSize =
7923               Context.getTypeSizeInChars(ElementType).getQuantity();
7924           CurStrides.push_back(
7925               llvm::ConstantInt::get(CGF.Int64Ty, ElementTypeSize));
7926         }
7927       }
7928       // Get dimension value except for the last dimension since we don't need
7929       // it.
7930       if (DimSizes.size() < Components.size() - 1) {
7931         if (CAT)
7932           DimSizes.push_back(llvm::ConstantInt::get(
7933               CGF.Int64Ty, CAT->getSize().getZExtValue()));
7934         else if (VAT)
7935           DimSizes.push_back(CGF.Builder.CreateIntCast(
7936               CGF.EmitScalarExpr(VAT->getSizeExpr()), CGF.Int64Ty,
7937               /*IsSigned=*/false));
7938       }
7939     }
7940 
7941     // Skip the dummy dimension since we have already have its information.
7942     auto DI = DimSizes.begin() + 1;
7943     // Product of dimension.
7944     llvm::Value *DimProd =
7945         llvm::ConstantInt::get(CGF.CGM.Int64Ty, ElementTypeSize);
7946 
7947     // Collect info for non-contiguous. Notice that offset, count, and stride
7948     // are only meaningful for array-section, so we insert a null for anything
7949     // other than array-section.
7950     // Also, the size of offset, count, and stride are not the same as
7951     // pointers, base_pointers, sizes, or dims. Instead, the size of offset,
7952     // count, and stride are the same as the number of non-contiguous
7953     // declaration in target update to/from clause.
7954     for (const OMPClauseMappableExprCommon::MappableComponent &Component :
7955          Components) {
7956       const Expr *AssocExpr = Component.getAssociatedExpression();
7957 
7958       if (const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr)) {
7959         llvm::Value *Offset = CGF.Builder.CreateIntCast(
7960             CGF.EmitScalarExpr(AE->getIdx()), CGF.Int64Ty,
7961             /*isSigned=*/false);
7962         CurOffsets.push_back(Offset);
7963         CurCounts.push_back(llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/1));
7964         CurStrides.push_back(CurStrides.back());
7965         continue;
7966       }
7967 
7968       const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
7969 
7970       if (!OASE)
7971         continue;
7972 
7973       // Offset
7974       const Expr *OffsetExpr = OASE->getLowerBound();
7975       llvm::Value *Offset = nullptr;
7976       if (!OffsetExpr) {
7977         // If offset is absent, then we just set it to zero.
7978         Offset = llvm::ConstantInt::get(CGF.Int64Ty, 0);
7979       } else {
7980         Offset = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(OffsetExpr),
7981                                            CGF.Int64Ty,
7982                                            /*isSigned=*/false);
7983       }
7984       CurOffsets.push_back(Offset);
7985 
7986       // Count
7987       const Expr *CountExpr = OASE->getLength();
7988       llvm::Value *Count = nullptr;
7989       if (!CountExpr) {
7990         // In Clang, once a high dimension is an array section, we construct all
7991         // the lower dimension as array section, however, for case like
7992         // arr[0:2][2], Clang construct the inner dimension as an array section
7993         // but it actually is not in an array section form according to spec.
7994         if (!OASE->getColonLocFirst().isValid() &&
7995             !OASE->getColonLocSecond().isValid()) {
7996           Count = llvm::ConstantInt::get(CGF.Int64Ty, 1);
7997         } else {
7998           // OpenMP 5.0, 2.1.5 Array Sections, Description.
7999           // When the length is absent it defaults to ⌈(size −
8000           // lower-bound)/stride⌉, where size is the size of the array
8001           // dimension.
8002           const Expr *StrideExpr = OASE->getStride();
8003           llvm::Value *Stride =
8004               StrideExpr
8005                   ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(StrideExpr),
8006                                               CGF.Int64Ty, /*isSigned=*/false)
8007                   : nullptr;
8008           if (Stride)
8009             Count = CGF.Builder.CreateUDiv(
8010                 CGF.Builder.CreateNUWSub(*DI, Offset), Stride);
8011           else
8012             Count = CGF.Builder.CreateNUWSub(*DI, Offset);
8013         }
8014       } else {
8015         Count = CGF.EmitScalarExpr(CountExpr);
8016       }
8017       Count = CGF.Builder.CreateIntCast(Count, CGF.Int64Ty, /*isSigned=*/false);
8018       CurCounts.push_back(Count);
8019 
8020       // Stride_n' = Stride_n * (D_0 * D_1 ... * D_n-1) * Unit size
8021       // Take `int arr[5][5][5]` and `arr[0:2:2][1:2:1][0:2:2]` as an example:
8022       //              Offset      Count     Stride
8023       //    D0          0           1         4    (int)    <- dummy dimension
8024       //    D1          0           2         8    (2 * (1) * 4)
8025       //    D2          1           2         20   (1 * (1 * 5) * 4)
8026       //    D3          0           2         200  (2 * (1 * 5 * 4) * 4)
8027       const Expr *StrideExpr = OASE->getStride();
8028       llvm::Value *Stride =
8029           StrideExpr
8030               ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(StrideExpr),
8031                                           CGF.Int64Ty, /*isSigned=*/false)
8032               : nullptr;
8033       DimProd = CGF.Builder.CreateNUWMul(DimProd, *(DI - 1));
8034       if (Stride)
8035         CurStrides.push_back(CGF.Builder.CreateNUWMul(DimProd, Stride));
8036       else
8037         CurStrides.push_back(DimProd);
8038       if (DI != DimSizes.end())
8039         ++DI;
8040     }
8041 
8042     CombinedInfo.NonContigInfo.Offsets.push_back(CurOffsets);
8043     CombinedInfo.NonContigInfo.Counts.push_back(CurCounts);
8044     CombinedInfo.NonContigInfo.Strides.push_back(CurStrides);
8045   }
8046 
8047   /// Return the adjusted map modifiers if the declaration a capture refers to
8048   /// appears in a first-private clause. This is expected to be used only with
8049   /// directives that start with 'target'.
8050   MappableExprsHandler::OpenMPOffloadMappingFlags
getMapModifiersForPrivateClauses(const CapturedStmt::Capture & Cap) const8051   getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const {
8052     assert(Cap.capturesVariable() && "Expected capture by reference only!");
8053 
8054     // A first private variable captured by reference will use only the
8055     // 'private ptr' and 'map to' flag. Return the right flags if the captured
8056     // declaration is known as first-private in this handler.
8057     if (FirstPrivateDecls.count(Cap.getCapturedVar())) {
8058       if (Cap.getCapturedVar()->getType().isConstant(CGF.getContext()) &&
8059           Cap.getCaptureKind() == CapturedStmt::VCK_ByRef)
8060         return MappableExprsHandler::OMP_MAP_ALWAYS |
8061                MappableExprsHandler::OMP_MAP_TO;
8062       if (Cap.getCapturedVar()->getType()->isAnyPointerType())
8063         return MappableExprsHandler::OMP_MAP_TO |
8064                MappableExprsHandler::OMP_MAP_PTR_AND_OBJ;
8065       return MappableExprsHandler::OMP_MAP_PRIVATE |
8066              MappableExprsHandler::OMP_MAP_TO;
8067     }
8068     return MappableExprsHandler::OMP_MAP_TO |
8069            MappableExprsHandler::OMP_MAP_FROM;
8070   }
8071 
getMemberOfFlag(unsigned Position)8072   static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) {
8073     // Rotate by getFlagMemberOffset() bits.
8074     return static_cast<OpenMPOffloadMappingFlags>(((uint64_t)Position + 1)
8075                                                   << getFlagMemberOffset());
8076   }
8077 
setCorrectMemberOfFlag(OpenMPOffloadMappingFlags & Flags,OpenMPOffloadMappingFlags MemberOfFlag)8078   static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags,
8079                                      OpenMPOffloadMappingFlags MemberOfFlag) {
8080     // If the entry is PTR_AND_OBJ but has not been marked with the special
8081     // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be
8082     // marked as MEMBER_OF.
8083     if ((Flags & OMP_MAP_PTR_AND_OBJ) &&
8084         ((Flags & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF))
8085       return;
8086 
8087     // Reset the placeholder value to prepare the flag for the assignment of the
8088     // proper MEMBER_OF value.
8089     Flags &= ~OMP_MAP_MEMBER_OF;
8090     Flags |= MemberOfFlag;
8091   }
8092 
getPlainLayout(const CXXRecordDecl * RD,llvm::SmallVectorImpl<const FieldDecl * > & Layout,bool AsBase) const8093   void getPlainLayout(const CXXRecordDecl *RD,
8094                       llvm::SmallVectorImpl<const FieldDecl *> &Layout,
8095                       bool AsBase) const {
8096     const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD);
8097 
8098     llvm::StructType *St =
8099         AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType();
8100 
8101     unsigned NumElements = St->getNumElements();
8102     llvm::SmallVector<
8103         llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4>
8104         RecordLayout(NumElements);
8105 
8106     // Fill bases.
8107     for (const auto &I : RD->bases()) {
8108       if (I.isVirtual())
8109         continue;
8110       const auto *Base = I.getType()->getAsCXXRecordDecl();
8111       // Ignore empty bases.
8112       if (Base->isEmpty() || CGF.getContext()
8113                                  .getASTRecordLayout(Base)
8114                                  .getNonVirtualSize()
8115                                  .isZero())
8116         continue;
8117 
8118       unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base);
8119       RecordLayout[FieldIndex] = Base;
8120     }
8121     // Fill in virtual bases.
8122     for (const auto &I : RD->vbases()) {
8123       const auto *Base = I.getType()->getAsCXXRecordDecl();
8124       // Ignore empty bases.
8125       if (Base->isEmpty())
8126         continue;
8127       unsigned FieldIndex = RL.getVirtualBaseIndex(Base);
8128       if (RecordLayout[FieldIndex])
8129         continue;
8130       RecordLayout[FieldIndex] = Base;
8131     }
8132     // Fill in all the fields.
8133     assert(!RD->isUnion() && "Unexpected union.");
8134     for (const auto *Field : RD->fields()) {
8135       // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
8136       // will fill in later.)
8137       if (!Field->isBitField() && !Field->isZeroSize(CGF.getContext())) {
8138         unsigned FieldIndex = RL.getLLVMFieldNo(Field);
8139         RecordLayout[FieldIndex] = Field;
8140       }
8141     }
8142     for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>
8143              &Data : RecordLayout) {
8144       if (Data.isNull())
8145         continue;
8146       if (const auto *Base = Data.dyn_cast<const CXXRecordDecl *>())
8147         getPlainLayout(Base, Layout, /*AsBase=*/true);
8148       else
8149         Layout.push_back(Data.get<const FieldDecl *>());
8150     }
8151   }
8152 
8153 public:
MappableExprsHandler(const OMPExecutableDirective & Dir,CodeGenFunction & CGF)8154   MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
8155       : CurDir(&Dir), CGF(CGF) {
8156     // Extract firstprivate clause information.
8157     for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
8158       for (const auto *D : C->varlists())
8159         FirstPrivateDecls.try_emplace(
8160             cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl()), C->isImplicit());
8161     // Extract implicit firstprivates from uses_allocators clauses.
8162     for (const auto *C : Dir.getClausesOfKind<OMPUsesAllocatorsClause>()) {
8163       for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
8164         OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
8165         if (const auto *DRE = dyn_cast_or_null<DeclRefExpr>(D.AllocatorTraits))
8166           FirstPrivateDecls.try_emplace(cast<VarDecl>(DRE->getDecl()),
8167                                         /*Implicit=*/true);
8168         else if (const auto *VD = dyn_cast<VarDecl>(
8169                      cast<DeclRefExpr>(D.Allocator->IgnoreParenImpCasts())
8170                          ->getDecl()))
8171           FirstPrivateDecls.try_emplace(VD, /*Implicit=*/true);
8172       }
8173     }
8174     // Extract device pointer clause information.
8175     for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>())
8176       for (auto L : C->component_lists())
8177         DevPointersMap[std::get<0>(L)].push_back(std::get<1>(L));
8178   }
8179 
8180   /// Constructor for the declare mapper directive.
MappableExprsHandler(const OMPDeclareMapperDecl & Dir,CodeGenFunction & CGF)8181   MappableExprsHandler(const OMPDeclareMapperDecl &Dir, CodeGenFunction &CGF)
8182       : CurDir(&Dir), CGF(CGF) {}
8183 
8184   /// Generate code for the combined entry if we have a partially mapped struct
8185   /// and take care of the mapping flags of the arguments corresponding to
8186   /// individual struct members.
emitCombinedEntry(MapCombinedInfoTy & CombinedInfo,MapFlagsArrayTy & CurTypes,const StructRangeInfoTy & PartialStruct,bool NotTargetParams=false) const8187   void emitCombinedEntry(MapCombinedInfoTy &CombinedInfo,
8188                          MapFlagsArrayTy &CurTypes,
8189                          const StructRangeInfoTy &PartialStruct,
8190                          bool NotTargetParams = false) const {
8191     // Base is the base of the struct
8192     CombinedInfo.BasePointers.push_back(PartialStruct.Base.getPointer());
8193     // Pointer is the address of the lowest element
8194     llvm::Value *LB = PartialStruct.LowestElem.second.getPointer();
8195     CombinedInfo.Pointers.push_back(LB);
8196     // There should not be a mapper for a combined entry.
8197     CombinedInfo.Mappers.push_back(nullptr);
8198     // Size is (addr of {highest+1} element) - (addr of lowest element)
8199     llvm::Value *HB = PartialStruct.HighestElem.second.getPointer();
8200     llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(HB, /*Idx0=*/1);
8201     llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy);
8202     llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy);
8203     llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CHAddr, CLAddr);
8204     llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.Int64Ty,
8205                                                   /*isSigned=*/false);
8206     CombinedInfo.Sizes.push_back(Size);
8207     // Map type is always TARGET_PARAM, if generate info for captures.
8208     CombinedInfo.Types.push_back(NotTargetParams ? OMP_MAP_NONE
8209                                                  : OMP_MAP_TARGET_PARAM);
8210     // If any element has the present modifier, then make sure the runtime
8211     // doesn't attempt to allocate the struct.
8212     if (CurTypes.end() !=
8213         llvm::find_if(CurTypes, [](OpenMPOffloadMappingFlags Type) {
8214           return Type & OMP_MAP_PRESENT;
8215         }))
8216       CombinedInfo.Types.back() |= OMP_MAP_PRESENT;
8217     // Remove TARGET_PARAM flag from the first element
8218     CurTypes.front() &= ~OMP_MAP_TARGET_PARAM;
8219 
8220     // All other current entries will be MEMBER_OF the combined entry
8221     // (except for PTR_AND_OBJ entries which do not have a placeholder value
8222     // 0xFFFF in the MEMBER_OF field).
8223     OpenMPOffloadMappingFlags MemberOfFlag =
8224         getMemberOfFlag(CombinedInfo.BasePointers.size() - 1);
8225     for (auto &M : CurTypes)
8226       setCorrectMemberOfFlag(M, MemberOfFlag);
8227   }
8228 
8229   /// Generate all the base pointers, section pointers, sizes, map types, and
8230   /// mappers for the extracted mappable expressions (all included in \a
8231   /// CombinedInfo). Also, for each item that relates with a device pointer, a
8232   /// pair of the relevant declaration and index where it occurs is appended to
8233   /// the device pointers info array.
generateAllInfo(MapCombinedInfoTy & CombinedInfo,bool NotTargetParams=false,const llvm::DenseSet<CanonicalDeclPtr<const Decl>> & SkipVarSet=llvm::DenseSet<CanonicalDeclPtr<const Decl>> ()) const8234   void generateAllInfo(
8235       MapCombinedInfoTy &CombinedInfo, bool NotTargetParams = false,
8236       const llvm::DenseSet<CanonicalDeclPtr<const Decl>> &SkipVarSet =
8237           llvm::DenseSet<CanonicalDeclPtr<const Decl>>()) const {
8238     // We have to process the component lists that relate with the same
8239     // declaration in a single chunk so that we can generate the map flags
8240     // correctly. Therefore, we organize all lists in a map.
8241     llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
8242 
8243     // Helper function to fill the information map for the different supported
8244     // clauses.
8245     auto &&InfoGen =
8246         [&Info, &SkipVarSet](
8247             const ValueDecl *D,
8248             OMPClauseMappableExprCommon::MappableExprComponentListRef L,
8249             OpenMPMapClauseKind MapType,
8250             ArrayRef<OpenMPMapModifierKind> MapModifiers,
8251             ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
8252             bool ReturnDevicePointer, bool IsImplicit, const ValueDecl *Mapper,
8253             bool ForDeviceAddr = false) {
8254           const ValueDecl *VD =
8255               D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
8256           if (SkipVarSet.count(VD))
8257             return;
8258           Info[VD].emplace_back(L, MapType, MapModifiers, MotionModifiers,
8259                                 ReturnDevicePointer, IsImplicit, Mapper,
8260                                 ForDeviceAddr);
8261         };
8262 
8263     assert(CurDir.is<const OMPExecutableDirective *>() &&
8264            "Expect a executable directive");
8265     const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
8266     for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>())
8267       for (const auto L : C->component_lists()) {
8268         InfoGen(std::get<0>(L), std::get<1>(L), C->getMapType(),
8269                 C->getMapTypeModifiers(), llvm::None,
8270                 /*ReturnDevicePointer=*/false, C->isImplicit(), std::get<2>(L));
8271       }
8272     for (const auto *C : CurExecDir->getClausesOfKind<OMPToClause>())
8273       for (const auto L : C->component_lists()) {
8274         InfoGen(std::get<0>(L), std::get<1>(L), OMPC_MAP_to, llvm::None,
8275                 C->getMotionModifiers(), /*ReturnDevicePointer=*/false,
8276                 C->isImplicit(), std::get<2>(L));
8277       }
8278     for (const auto *C : CurExecDir->getClausesOfKind<OMPFromClause>())
8279       for (const auto L : C->component_lists()) {
8280         InfoGen(std::get<0>(L), std::get<1>(L), OMPC_MAP_from, llvm::None,
8281                 C->getMotionModifiers(), /*ReturnDevicePointer=*/false,
8282                 C->isImplicit(), std::get<2>(L));
8283       }
8284 
8285     // Look at the use_device_ptr clause information and mark the existing map
8286     // entries as such. If there is no map information for an entry in the
8287     // use_device_ptr list, we create one with map type 'alloc' and zero size
8288     // section. It is the user fault if that was not mapped before. If there is
8289     // no map information and the pointer is a struct member, then we defer the
8290     // emission of that entry until the whole struct has been processed.
8291     llvm::MapVector<const ValueDecl *, SmallVector<DeferredDevicePtrEntryTy, 4>>
8292         DeferredInfo;
8293     MapCombinedInfoTy UseDevicePtrCombinedInfo;
8294 
8295     for (const auto *C :
8296          CurExecDir->getClausesOfKind<OMPUseDevicePtrClause>()) {
8297       for (const auto L : C->component_lists()) {
8298         OMPClauseMappableExprCommon::MappableExprComponentListRef Components =
8299             std::get<1>(L);
8300         assert(!Components.empty() &&
8301                "Not expecting empty list of components!");
8302         const ValueDecl *VD = Components.back().getAssociatedDeclaration();
8303         VD = cast<ValueDecl>(VD->getCanonicalDecl());
8304         const Expr *IE = Components.back().getAssociatedExpression();
8305         // If the first component is a member expression, we have to look into
8306         // 'this', which maps to null in the map of map information. Otherwise
8307         // look directly for the information.
8308         auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
8309 
8310         // We potentially have map information for this declaration already.
8311         // Look for the first set of components that refer to it.
8312         if (It != Info.end()) {
8313           auto *CI = llvm::find_if(It->second, [VD](const MapInfo &MI) {
8314             return MI.Components.back().getAssociatedDeclaration() == VD;
8315           });
8316           // If we found a map entry, signal that the pointer has to be returned
8317           // and move on to the next declaration.
8318           // Exclude cases where the base pointer is mapped as array subscript,
8319           // array section or array shaping. The base address is passed as a
8320           // pointer to base in this case and cannot be used as a base for
8321           // use_device_ptr list item.
8322           if (CI != It->second.end()) {
8323             auto PrevCI = std::next(CI->Components.rbegin());
8324             const auto *VarD = dyn_cast<VarDecl>(VD);
8325             if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
8326                 isa<MemberExpr>(IE) ||
8327                 !VD->getType().getNonReferenceType()->isPointerType() ||
8328                 PrevCI == CI->Components.rend() ||
8329                 isa<MemberExpr>(PrevCI->getAssociatedExpression()) || !VarD ||
8330                 VarD->hasLocalStorage()) {
8331               CI->ReturnDevicePointer = true;
8332               continue;
8333             }
8334           }
8335         }
8336 
8337         // We didn't find any match in our map information - generate a zero
8338         // size array section - if the pointer is a struct member we defer this
8339         // action until the whole struct has been processed.
8340         if (isa<MemberExpr>(IE)) {
8341           // Insert the pointer into Info to be processed by
8342           // generateInfoForComponentList. Because it is a member pointer
8343           // without a pointee, no entry will be generated for it, therefore
8344           // we need to generate one after the whole struct has been processed.
8345           // Nonetheless, generateInfoForComponentList must be called to take
8346           // the pointer into account for the calculation of the range of the
8347           // partial struct.
8348           InfoGen(nullptr, Components, OMPC_MAP_unknown, llvm::None, llvm::None,
8349                   /*ReturnDevicePointer=*/false, C->isImplicit(), nullptr);
8350           DeferredInfo[nullptr].emplace_back(IE, VD, /*ForDeviceAddr=*/false);
8351         } else {
8352           llvm::Value *Ptr =
8353               CGF.EmitLoadOfScalar(CGF.EmitLValue(IE), IE->getExprLoc());
8354           UseDevicePtrCombinedInfo.BasePointers.emplace_back(Ptr, VD);
8355           UseDevicePtrCombinedInfo.Pointers.push_back(Ptr);
8356           UseDevicePtrCombinedInfo.Sizes.push_back(
8357               llvm::Constant::getNullValue(CGF.Int64Ty));
8358           UseDevicePtrCombinedInfo.Types.push_back(
8359               OMP_MAP_RETURN_PARAM |
8360               (NotTargetParams ? OMP_MAP_NONE : OMP_MAP_TARGET_PARAM));
8361           UseDevicePtrCombinedInfo.Mappers.push_back(nullptr);
8362         }
8363       }
8364     }
8365 
8366     // Look at the use_device_addr clause information and mark the existing map
8367     // entries as such. If there is no map information for an entry in the
8368     // use_device_addr list, we create one with map type 'alloc' and zero size
8369     // section. It is the user fault if that was not mapped before. If there is
8370     // no map information and the pointer is a struct member, then we defer the
8371     // emission of that entry until the whole struct has been processed.
8372     llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed;
8373     for (const auto *C :
8374          CurExecDir->getClausesOfKind<OMPUseDeviceAddrClause>()) {
8375       for (const auto L : C->component_lists()) {
8376         assert(!std::get<1>(L).empty() &&
8377                "Not expecting empty list of components!");
8378         const ValueDecl *VD = std::get<1>(L).back().getAssociatedDeclaration();
8379         if (!Processed.insert(VD).second)
8380           continue;
8381         VD = cast<ValueDecl>(VD->getCanonicalDecl());
8382         const Expr *IE = std::get<1>(L).back().getAssociatedExpression();
8383         // If the first component is a member expression, we have to look into
8384         // 'this', which maps to null in the map of map information. Otherwise
8385         // look directly for the information.
8386         auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
8387 
8388         // We potentially have map information for this declaration already.
8389         // Look for the first set of components that refer to it.
8390         if (It != Info.end()) {
8391           auto *CI = llvm::find_if(It->second, [VD](const MapInfo &MI) {
8392             return MI.Components.back().getAssociatedDeclaration() == VD;
8393           });
8394           // If we found a map entry, signal that the pointer has to be returned
8395           // and move on to the next declaration.
8396           if (CI != It->second.end()) {
8397             CI->ReturnDevicePointer = true;
8398             continue;
8399           }
8400         }
8401 
8402         // We didn't find any match in our map information - generate a zero
8403         // size array section - if the pointer is a struct member we defer this
8404         // action until the whole struct has been processed.
8405         if (isa<MemberExpr>(IE)) {
8406           // Insert the pointer into Info to be processed by
8407           // generateInfoForComponentList. Because it is a member pointer
8408           // without a pointee, no entry will be generated for it, therefore
8409           // we need to generate one after the whole struct has been processed.
8410           // Nonetheless, generateInfoForComponentList must be called to take
8411           // the pointer into account for the calculation of the range of the
8412           // partial struct.
8413           InfoGen(nullptr, std::get<1>(L), OMPC_MAP_unknown, llvm::None,
8414                   llvm::None, /*ReturnDevicePointer=*/false, C->isImplicit(),
8415                   nullptr, /*ForDeviceAddr=*/true);
8416           DeferredInfo[nullptr].emplace_back(IE, VD, /*ForDeviceAddr=*/true);
8417         } else {
8418           llvm::Value *Ptr;
8419           if (IE->isGLValue())
8420             Ptr = CGF.EmitLValue(IE).getPointer(CGF);
8421           else
8422             Ptr = CGF.EmitScalarExpr(IE);
8423           CombinedInfo.BasePointers.emplace_back(Ptr, VD);
8424           CombinedInfo.Pointers.push_back(Ptr);
8425           CombinedInfo.Sizes.push_back(
8426               llvm::Constant::getNullValue(CGF.Int64Ty));
8427           CombinedInfo.Types.push_back(
8428               OMP_MAP_RETURN_PARAM |
8429               (NotTargetParams ? OMP_MAP_NONE : OMP_MAP_TARGET_PARAM));
8430           CombinedInfo.Mappers.push_back(nullptr);
8431         }
8432       }
8433     }
8434 
8435     for (const auto &M : Info) {
8436       // We need to know when we generate information for the first component
8437       // associated with a capture, because the mapping flags depend on it.
8438       bool IsFirstComponentList = !NotTargetParams;
8439 
8440       // Temporary generated information.
8441       MapCombinedInfoTy CurInfo;
8442       StructRangeInfoTy PartialStruct;
8443 
8444       for (const MapInfo &L : M.second) {
8445         assert(!L.Components.empty() &&
8446                "Not expecting declaration with no component lists.");
8447 
8448         // Remember the current base pointer index.
8449         unsigned CurrentBasePointersIdx = CurInfo.BasePointers.size();
8450         CurInfo.NonContigInfo.IsNonContiguous =
8451             L.Components.back().isNonContiguous();
8452         generateInfoForComponentList(L.MapType, L.MapModifiers,
8453                                      L.MotionModifiers, L.Components, CurInfo,
8454                                      PartialStruct, IsFirstComponentList,
8455                                      L.IsImplicit, L.Mapper, L.ForDeviceAddr);
8456 
8457         // If this entry relates with a device pointer, set the relevant
8458         // declaration and add the 'return pointer' flag.
8459         if (L.ReturnDevicePointer) {
8460           assert(CurInfo.BasePointers.size() > CurrentBasePointersIdx &&
8461                  "Unexpected number of mapped base pointers.");
8462 
8463           const ValueDecl *RelevantVD =
8464               L.Components.back().getAssociatedDeclaration();
8465           assert(RelevantVD &&
8466                  "No relevant declaration related with device pointer??");
8467 
8468           CurInfo.BasePointers[CurrentBasePointersIdx].setDevicePtrDecl(
8469               RelevantVD);
8470           CurInfo.Types[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PARAM;
8471         }
8472         IsFirstComponentList = false;
8473       }
8474 
8475       // Append any pending zero-length pointers which are struct members and
8476       // used with use_device_ptr or use_device_addr.
8477       auto CI = DeferredInfo.find(M.first);
8478       if (CI != DeferredInfo.end()) {
8479         for (const DeferredDevicePtrEntryTy &L : CI->second) {
8480           llvm::Value *BasePtr;
8481           llvm::Value *Ptr;
8482           if (L.ForDeviceAddr) {
8483             if (L.IE->isGLValue())
8484               Ptr = this->CGF.EmitLValue(L.IE).getPointer(CGF);
8485             else
8486               Ptr = this->CGF.EmitScalarExpr(L.IE);
8487             BasePtr = Ptr;
8488             // Entry is RETURN_PARAM. Also, set the placeholder value
8489             // MEMBER_OF=FFFF so that the entry is later updated with the
8490             // correct value of MEMBER_OF.
8491             CurInfo.Types.push_back(OMP_MAP_RETURN_PARAM | OMP_MAP_MEMBER_OF);
8492           } else {
8493             BasePtr = this->CGF.EmitLValue(L.IE).getPointer(CGF);
8494             Ptr = this->CGF.EmitLoadOfScalar(this->CGF.EmitLValue(L.IE),
8495                                              L.IE->getExprLoc());
8496             // Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the placeholder
8497             // value MEMBER_OF=FFFF so that the entry is later updated with the
8498             // correct value of MEMBER_OF.
8499             CurInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_RETURN_PARAM |
8500                                     OMP_MAP_MEMBER_OF);
8501           }
8502           CurInfo.BasePointers.emplace_back(BasePtr, L.VD);
8503           CurInfo.Pointers.push_back(Ptr);
8504           CurInfo.Sizes.push_back(
8505               llvm::Constant::getNullValue(this->CGF.Int64Ty));
8506           CurInfo.Mappers.push_back(nullptr);
8507         }
8508       }
8509 
8510       // If there is an entry in PartialStruct it means we have a struct with
8511       // individual members mapped. Emit an extra combined entry.
8512       if (PartialStruct.Base.isValid())
8513         emitCombinedEntry(CombinedInfo, CurInfo.Types, PartialStruct,
8514                           NotTargetParams);
8515 
8516       // We need to append the results of this capture to what we already have.
8517       CombinedInfo.append(CurInfo);
8518     }
8519     // Append data for use_device_ptr clauses.
8520     CombinedInfo.append(UseDevicePtrCombinedInfo);
8521   }
8522 
8523   /// Generate all the base pointers, section pointers, sizes, map types, and
8524   /// mappers for the extracted map clauses of user-defined mapper (all included
8525   /// in \a CombinedInfo).
generateAllInfoForMapper(MapCombinedInfoTy & CombinedInfo) const8526   void generateAllInfoForMapper(MapCombinedInfoTy &CombinedInfo) const {
8527     assert(CurDir.is<const OMPDeclareMapperDecl *>() &&
8528            "Expect a declare mapper directive");
8529     const auto *CurMapperDir = CurDir.get<const OMPDeclareMapperDecl *>();
8530     // We have to process the component lists that relate with the same
8531     // declaration in a single chunk so that we can generate the map flags
8532     // correctly. Therefore, we organize all lists in a map.
8533     llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
8534 
8535     // Fill the information map for map clauses.
8536     for (const auto *C : CurMapperDir->clauselists()) {
8537       const auto *MC = cast<OMPMapClause>(C);
8538       for (const auto L : MC->component_lists()) {
8539         const ValueDecl *VD =
8540             std::get<0>(L) ? cast<ValueDecl>(std::get<0>(L)->getCanonicalDecl())
8541                            : nullptr;
8542         // Get the corresponding user-defined mapper.
8543         Info[VD].emplace_back(std::get<1>(L), MC->getMapType(),
8544                               MC->getMapTypeModifiers(), llvm::None,
8545                               /*ReturnDevicePointer=*/false, MC->isImplicit(),
8546                               std::get<2>(L));
8547       }
8548     }
8549 
8550     for (const auto &M : Info) {
8551       // We need to know when we generate information for the first component
8552       // associated with a capture, because the mapping flags depend on it.
8553       bool IsFirstComponentList = true;
8554 
8555       // Temporary generated information.
8556       MapCombinedInfoTy CurInfo;
8557       StructRangeInfoTy PartialStruct;
8558 
8559       for (const MapInfo &L : M.second) {
8560         assert(!L.Components.empty() &&
8561                "Not expecting declaration with no component lists.");
8562         generateInfoForComponentList(L.MapType, L.MapModifiers,
8563                                      L.MotionModifiers, L.Components, CurInfo,
8564                                      PartialStruct, IsFirstComponentList,
8565                                      L.IsImplicit, L.Mapper, L.ForDeviceAddr);
8566         IsFirstComponentList = false;
8567       }
8568 
8569       // If there is an entry in PartialStruct it means we have a struct with
8570       // individual members mapped. Emit an extra combined entry.
8571       if (PartialStruct.Base.isValid()) {
8572         CurInfo.NonContigInfo.Dims.push_back(0);
8573         emitCombinedEntry(CombinedInfo, CurInfo.Types, PartialStruct);
8574       }
8575 
8576       // We need to append the results of this capture to what we already have.
8577       CombinedInfo.append(CurInfo);
8578     }
8579   }
8580 
8581   /// Emit capture info for lambdas for variables captured by reference.
generateInfoForLambdaCaptures(const ValueDecl * VD,llvm::Value * Arg,MapCombinedInfoTy & CombinedInfo,llvm::DenseMap<llvm::Value *,llvm::Value * > & LambdaPointers) const8582   void generateInfoForLambdaCaptures(
8583       const ValueDecl *VD, llvm::Value *Arg, MapCombinedInfoTy &CombinedInfo,
8584       llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const {
8585     const auto *RD = VD->getType()
8586                          .getCanonicalType()
8587                          .getNonReferenceType()
8588                          ->getAsCXXRecordDecl();
8589     if (!RD || !RD->isLambda())
8590       return;
8591     Address VDAddr = Address(Arg, CGF.getContext().getDeclAlign(VD));
8592     LValue VDLVal = CGF.MakeAddrLValue(
8593         VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
8594     llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
8595     FieldDecl *ThisCapture = nullptr;
8596     RD->getCaptureFields(Captures, ThisCapture);
8597     if (ThisCapture) {
8598       LValue ThisLVal =
8599           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
8600       LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture);
8601       LambdaPointers.try_emplace(ThisLVal.getPointer(CGF),
8602                                  VDLVal.getPointer(CGF));
8603       CombinedInfo.BasePointers.push_back(ThisLVal.getPointer(CGF));
8604       CombinedInfo.Pointers.push_back(ThisLValVal.getPointer(CGF));
8605       CombinedInfo.Sizes.push_back(
8606           CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
8607                                     CGF.Int64Ty, /*isSigned=*/true));
8608       CombinedInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8609                                    OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
8610       CombinedInfo.Mappers.push_back(nullptr);
8611     }
8612     for (const LambdaCapture &LC : RD->captures()) {
8613       if (!LC.capturesVariable())
8614         continue;
8615       const VarDecl *VD = LC.getCapturedVar();
8616       if (LC.getCaptureKind() != LCK_ByRef && !VD->getType()->isPointerType())
8617         continue;
8618       auto It = Captures.find(VD);
8619       assert(It != Captures.end() && "Found lambda capture without field.");
8620       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
8621       if (LC.getCaptureKind() == LCK_ByRef) {
8622         LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second);
8623         LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
8624                                    VDLVal.getPointer(CGF));
8625         CombinedInfo.BasePointers.push_back(VarLVal.getPointer(CGF));
8626         CombinedInfo.Pointers.push_back(VarLValVal.getPointer(CGF));
8627         CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8628             CGF.getTypeSize(
8629                 VD->getType().getCanonicalType().getNonReferenceType()),
8630             CGF.Int64Ty, /*isSigned=*/true));
8631       } else {
8632         RValue VarRVal = CGF.EmitLoadOfLValue(VarLVal, RD->getLocation());
8633         LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
8634                                    VDLVal.getPointer(CGF));
8635         CombinedInfo.BasePointers.push_back(VarLVal.getPointer(CGF));
8636         CombinedInfo.Pointers.push_back(VarRVal.getScalarVal());
8637         CombinedInfo.Sizes.push_back(llvm::ConstantInt::get(CGF.Int64Ty, 0));
8638       }
8639       CombinedInfo.Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8640                                    OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
8641       CombinedInfo.Mappers.push_back(nullptr);
8642     }
8643   }
8644 
8645   /// Set correct indices for lambdas captures.
adjustMemberOfForLambdaCaptures(const llvm::DenseMap<llvm::Value *,llvm::Value * > & LambdaPointers,MapBaseValuesArrayTy & BasePointers,MapValuesArrayTy & Pointers,MapFlagsArrayTy & Types) const8646   void adjustMemberOfForLambdaCaptures(
8647       const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers,
8648       MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
8649       MapFlagsArrayTy &Types) const {
8650     for (unsigned I = 0, E = Types.size(); I < E; ++I) {
8651       // Set correct member_of idx for all implicit lambda captures.
8652       if (Types[I] != (OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
8653                        OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT))
8654         continue;
8655       llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]);
8656       assert(BasePtr && "Unable to find base lambda address.");
8657       int TgtIdx = -1;
8658       for (unsigned J = I; J > 0; --J) {
8659         unsigned Idx = J - 1;
8660         if (Pointers[Idx] != BasePtr)
8661           continue;
8662         TgtIdx = Idx;
8663         break;
8664       }
8665       assert(TgtIdx != -1 && "Unable to find parent lambda.");
8666       // All other current entries will be MEMBER_OF the combined entry
8667       // (except for PTR_AND_OBJ entries which do not have a placeholder value
8668       // 0xFFFF in the MEMBER_OF field).
8669       OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx);
8670       setCorrectMemberOfFlag(Types[I], MemberOfFlag);
8671     }
8672   }
8673 
8674   /// Generate the base pointers, section pointers, sizes, map types, and
8675   /// mappers associated to a given capture (all included in \a CombinedInfo).
generateInfoForCapture(const CapturedStmt::Capture * Cap,llvm::Value * Arg,MapCombinedInfoTy & CombinedInfo,StructRangeInfoTy & PartialStruct) const8676   void generateInfoForCapture(const CapturedStmt::Capture *Cap,
8677                               llvm::Value *Arg, MapCombinedInfoTy &CombinedInfo,
8678                               StructRangeInfoTy &PartialStruct) const {
8679     assert(!Cap->capturesVariableArrayType() &&
8680            "Not expecting to generate map info for a variable array type!");
8681 
8682     // We need to know when we generating information for the first component
8683     const ValueDecl *VD = Cap->capturesThis()
8684                               ? nullptr
8685                               : Cap->getCapturedVar()->getCanonicalDecl();
8686 
8687     // If this declaration appears in a is_device_ptr clause we just have to
8688     // pass the pointer by value. If it is a reference to a declaration, we just
8689     // pass its value.
8690     if (DevPointersMap.count(VD)) {
8691       CombinedInfo.BasePointers.emplace_back(Arg, VD);
8692       CombinedInfo.Pointers.push_back(Arg);
8693       CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8694           CGF.getTypeSize(CGF.getContext().VoidPtrTy), CGF.Int64Ty,
8695           /*isSigned=*/true));
8696       CombinedInfo.Types.push_back(
8697           (Cap->capturesVariable() ? OMP_MAP_TO : OMP_MAP_LITERAL) |
8698           OMP_MAP_TARGET_PARAM);
8699       CombinedInfo.Mappers.push_back(nullptr);
8700       return;
8701     }
8702 
8703     using MapData =
8704         std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef,
8705                    OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool,
8706                    const ValueDecl *>;
8707     SmallVector<MapData, 4> DeclComponentLists;
8708     assert(CurDir.is<const OMPExecutableDirective *>() &&
8709            "Expect a executable directive");
8710     const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
8711     for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) {
8712       for (const auto L : C->decl_component_lists(VD)) {
8713         const ValueDecl *VDecl, *Mapper;
8714         OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8715         std::tie(VDecl, Components, Mapper) = L;
8716         assert(VDecl == VD && "We got information for the wrong declaration??");
8717         assert(!Components.empty() &&
8718                "Not expecting declaration with no component lists.");
8719         DeclComponentLists.emplace_back(Components, C->getMapType(),
8720                                         C->getMapTypeModifiers(),
8721                                         C->isImplicit(), Mapper);
8722       }
8723     }
8724 
8725     // Find overlapping elements (including the offset from the base element).
8726     llvm::SmallDenseMap<
8727         const MapData *,
8728         llvm::SmallVector<
8729             OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>,
8730         4>
8731         OverlappedData;
8732     size_t Count = 0;
8733     for (const MapData &L : DeclComponentLists) {
8734       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8735       OpenMPMapClauseKind MapType;
8736       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8737       bool IsImplicit;
8738       const ValueDecl *Mapper;
8739       std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper) = L;
8740       ++Count;
8741       for (const MapData &L1 : makeArrayRef(DeclComponentLists).slice(Count)) {
8742         OMPClauseMappableExprCommon::MappableExprComponentListRef Components1;
8743         std::tie(Components1, MapType, MapModifiers, IsImplicit, Mapper) = L1;
8744         auto CI = Components.rbegin();
8745         auto CE = Components.rend();
8746         auto SI = Components1.rbegin();
8747         auto SE = Components1.rend();
8748         for (; CI != CE && SI != SE; ++CI, ++SI) {
8749           if (CI->getAssociatedExpression()->getStmtClass() !=
8750               SI->getAssociatedExpression()->getStmtClass())
8751             break;
8752           // Are we dealing with different variables/fields?
8753           if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration())
8754             break;
8755         }
8756         // Found overlapping if, at least for one component, reached the head of
8757         // the components list.
8758         if (CI == CE || SI == SE) {
8759           assert((CI != CE || SI != SE) &&
8760                  "Unexpected full match of the mapping components.");
8761           const MapData &BaseData = CI == CE ? L : L1;
8762           OMPClauseMappableExprCommon::MappableExprComponentListRef SubData =
8763               SI == SE ? Components : Components1;
8764           auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData);
8765           OverlappedElements.getSecond().push_back(SubData);
8766         }
8767       }
8768     }
8769     // Sort the overlapped elements for each item.
8770     llvm::SmallVector<const FieldDecl *, 4> Layout;
8771     if (!OverlappedData.empty()) {
8772       if (const auto *CRD =
8773               VD->getType().getCanonicalType()->getAsCXXRecordDecl())
8774         getPlainLayout(CRD, Layout, /*AsBase=*/false);
8775       else {
8776         const auto *RD = VD->getType().getCanonicalType()->getAsRecordDecl();
8777         Layout.append(RD->field_begin(), RD->field_end());
8778       }
8779     }
8780     for (auto &Pair : OverlappedData) {
8781       llvm::sort(
8782           Pair.getSecond(),
8783           [&Layout](
8784               OMPClauseMappableExprCommon::MappableExprComponentListRef First,
8785               OMPClauseMappableExprCommon::MappableExprComponentListRef
8786                   Second) {
8787             auto CI = First.rbegin();
8788             auto CE = First.rend();
8789             auto SI = Second.rbegin();
8790             auto SE = Second.rend();
8791             for (; CI != CE && SI != SE; ++CI, ++SI) {
8792               if (CI->getAssociatedExpression()->getStmtClass() !=
8793                   SI->getAssociatedExpression()->getStmtClass())
8794                 break;
8795               // Are we dealing with different variables/fields?
8796               if (CI->getAssociatedDeclaration() !=
8797                   SI->getAssociatedDeclaration())
8798                 break;
8799             }
8800 
8801             // Lists contain the same elements.
8802             if (CI == CE && SI == SE)
8803               return false;
8804 
8805             // List with less elements is less than list with more elements.
8806             if (CI == CE || SI == SE)
8807               return CI == CE;
8808 
8809             const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration());
8810             const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration());
8811             if (FD1->getParent() == FD2->getParent())
8812               return FD1->getFieldIndex() < FD2->getFieldIndex();
8813             const auto It =
8814                 llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) {
8815                   return FD == FD1 || FD == FD2;
8816                 });
8817             return *It == FD1;
8818           });
8819     }
8820 
8821     // Associated with a capture, because the mapping flags depend on it.
8822     // Go through all of the elements with the overlapped elements.
8823     for (const auto &Pair : OverlappedData) {
8824       const MapData &L = *Pair.getFirst();
8825       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8826       OpenMPMapClauseKind MapType;
8827       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8828       bool IsImplicit;
8829       const ValueDecl *Mapper;
8830       std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper) = L;
8831       ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
8832           OverlappedComponents = Pair.getSecond();
8833       bool IsFirstComponentList = true;
8834       generateInfoForComponentList(
8835           MapType, MapModifiers, llvm::None, Components, CombinedInfo,
8836           PartialStruct, IsFirstComponentList, IsImplicit, Mapper,
8837           /*ForDeviceAddr=*/false, OverlappedComponents);
8838     }
8839     // Go through other elements without overlapped elements.
8840     bool IsFirstComponentList = OverlappedData.empty();
8841     for (const MapData &L : DeclComponentLists) {
8842       OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
8843       OpenMPMapClauseKind MapType;
8844       ArrayRef<OpenMPMapModifierKind> MapModifiers;
8845       bool IsImplicit;
8846       const ValueDecl *Mapper;
8847       std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper) = L;
8848       auto It = OverlappedData.find(&L);
8849       if (It == OverlappedData.end())
8850         generateInfoForComponentList(MapType, MapModifiers, llvm::None,
8851                                      Components, CombinedInfo, PartialStruct,
8852                                      IsFirstComponentList, IsImplicit, Mapper);
8853       IsFirstComponentList = false;
8854     }
8855   }
8856 
8857   /// Generate the default map information for a given capture \a CI,
8858   /// record field declaration \a RI and captured value \a CV.
generateDefaultMapInfo(const CapturedStmt::Capture & CI,const FieldDecl & RI,llvm::Value * CV,MapCombinedInfoTy & CombinedInfo) const8859   void generateDefaultMapInfo(const CapturedStmt::Capture &CI,
8860                               const FieldDecl &RI, llvm::Value *CV,
8861                               MapCombinedInfoTy &CombinedInfo) const {
8862     bool IsImplicit = true;
8863     // Do the default mapping.
8864     if (CI.capturesThis()) {
8865       CombinedInfo.BasePointers.push_back(CV);
8866       CombinedInfo.Pointers.push_back(CV);
8867       const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
8868       CombinedInfo.Sizes.push_back(
8869           CGF.Builder.CreateIntCast(CGF.getTypeSize(PtrTy->getPointeeType()),
8870                                     CGF.Int64Ty, /*isSigned=*/true));
8871       // Default map type.
8872       CombinedInfo.Types.push_back(OMP_MAP_TO | OMP_MAP_FROM);
8873     } else if (CI.capturesVariableByCopy()) {
8874       CombinedInfo.BasePointers.push_back(CV);
8875       CombinedInfo.Pointers.push_back(CV);
8876       if (!RI.getType()->isAnyPointerType()) {
8877         // We have to signal to the runtime captures passed by value that are
8878         // not pointers.
8879         CombinedInfo.Types.push_back(OMP_MAP_LITERAL);
8880         CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8881             CGF.getTypeSize(RI.getType()), CGF.Int64Ty, /*isSigned=*/true));
8882       } else {
8883         // Pointers are implicitly mapped with a zero size and no flags
8884         // (other than first map that is added for all implicit maps).
8885         CombinedInfo.Types.push_back(OMP_MAP_NONE);
8886         CombinedInfo.Sizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty));
8887       }
8888       const VarDecl *VD = CI.getCapturedVar();
8889       auto I = FirstPrivateDecls.find(VD);
8890       if (I != FirstPrivateDecls.end())
8891         IsImplicit = I->getSecond();
8892     } else {
8893       assert(CI.capturesVariable() && "Expected captured reference.");
8894       const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr());
8895       QualType ElementType = PtrTy->getPointeeType();
8896       CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
8897           CGF.getTypeSize(ElementType), CGF.Int64Ty, /*isSigned=*/true));
8898       // The default map type for a scalar/complex type is 'to' because by
8899       // default the value doesn't have to be retrieved. For an aggregate
8900       // type, the default is 'tofrom'.
8901       CombinedInfo.Types.push_back(getMapModifiersForPrivateClauses(CI));
8902       const VarDecl *VD = CI.getCapturedVar();
8903       auto I = FirstPrivateDecls.find(VD);
8904       if (I != FirstPrivateDecls.end() &&
8905           VD->getType().isConstant(CGF.getContext())) {
8906         llvm::Constant *Addr =
8907             CGF.CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(CGF, VD);
8908         // Copy the value of the original variable to the new global copy.
8909         CGF.Builder.CreateMemCpy(
8910             CGF.MakeNaturalAlignAddrLValue(Addr, ElementType).getAddress(CGF),
8911             Address(CV, CGF.getContext().getTypeAlignInChars(ElementType)),
8912             CombinedInfo.Sizes.back(), /*IsVolatile=*/false);
8913         // Use new global variable as the base pointers.
8914         CombinedInfo.BasePointers.push_back(Addr);
8915         CombinedInfo.Pointers.push_back(Addr);
8916       } else {
8917         CombinedInfo.BasePointers.push_back(CV);
8918         if (I != FirstPrivateDecls.end() && ElementType->isAnyPointerType()) {
8919           Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue(
8920               CV, ElementType, CGF.getContext().getDeclAlign(VD),
8921               AlignmentSource::Decl));
8922           CombinedInfo.Pointers.push_back(PtrAddr.getPointer());
8923         } else {
8924           CombinedInfo.Pointers.push_back(CV);
8925         }
8926       }
8927       if (I != FirstPrivateDecls.end())
8928         IsImplicit = I->getSecond();
8929     }
8930     // Every default map produces a single argument which is a target parameter.
8931     CombinedInfo.Types.back() |= OMP_MAP_TARGET_PARAM;
8932 
8933     // Add flag stating this is an implicit map.
8934     if (IsImplicit)
8935       CombinedInfo.Types.back() |= OMP_MAP_IMPLICIT;
8936 
8937     // No user-defined mapper for default mapping.
8938     CombinedInfo.Mappers.push_back(nullptr);
8939   }
8940 };
8941 } // anonymous namespace
8942 
emitNonContiguousDescriptor(CodeGenFunction & CGF,MappableExprsHandler::MapCombinedInfoTy & CombinedInfo,CGOpenMPRuntime::TargetDataInfo & Info)8943 static void emitNonContiguousDescriptor(
8944     CodeGenFunction &CGF, MappableExprsHandler::MapCombinedInfoTy &CombinedInfo,
8945     CGOpenMPRuntime::TargetDataInfo &Info) {
8946   CodeGenModule &CGM = CGF.CGM;
8947   MappableExprsHandler::MapCombinedInfoTy::StructNonContiguousInfo
8948       &NonContigInfo = CombinedInfo.NonContigInfo;
8949 
8950   // Build an array of struct descriptor_dim and then assign it to
8951   // offload_args.
8952   //
8953   // struct descriptor_dim {
8954   //  uint64_t offset;
8955   //  uint64_t count;
8956   //  uint64_t stride
8957   // };
8958   ASTContext &C = CGF.getContext();
8959   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
8960   RecordDecl *RD;
8961   RD = C.buildImplicitRecord("descriptor_dim");
8962   RD->startDefinition();
8963   addFieldToRecordDecl(C, RD, Int64Ty);
8964   addFieldToRecordDecl(C, RD, Int64Ty);
8965   addFieldToRecordDecl(C, RD, Int64Ty);
8966   RD->completeDefinition();
8967   QualType DimTy = C.getRecordType(RD);
8968 
8969   enum { OffsetFD = 0, CountFD, StrideFD };
8970   // We need two index variable here since the size of "Dims" is the same as the
8971   // size of Components, however, the size of offset, count, and stride is equal
8972   // to the size of base declaration that is non-contiguous.
8973   for (unsigned I = 0, L = 0, E = NonContigInfo.Dims.size(); I < E; ++I) {
8974     // Skip emitting ir if dimension size is 1 since it cannot be
8975     // non-contiguous.
8976     if (NonContigInfo.Dims[I] == 1)
8977       continue;
8978     llvm::APInt Size(/*numBits=*/32, NonContigInfo.Dims[I]);
8979     QualType ArrayTy =
8980         C.getConstantArrayType(DimTy, Size, nullptr, ArrayType::Normal, 0);
8981     Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
8982     for (unsigned II = 0, EE = NonContigInfo.Dims[I]; II < EE; ++II) {
8983       unsigned RevIdx = EE - II - 1;
8984       LValue DimsLVal = CGF.MakeAddrLValue(
8985           CGF.Builder.CreateConstArrayGEP(DimsAddr, II), DimTy);
8986       // Offset
8987       LValue OffsetLVal = CGF.EmitLValueForField(
8988           DimsLVal, *std::next(RD->field_begin(), OffsetFD));
8989       CGF.EmitStoreOfScalar(NonContigInfo.Offsets[L][RevIdx], OffsetLVal);
8990       // Count
8991       LValue CountLVal = CGF.EmitLValueForField(
8992           DimsLVal, *std::next(RD->field_begin(), CountFD));
8993       CGF.EmitStoreOfScalar(NonContigInfo.Counts[L][RevIdx], CountLVal);
8994       // Stride
8995       LValue StrideLVal = CGF.EmitLValueForField(
8996           DimsLVal, *std::next(RD->field_begin(), StrideFD));
8997       CGF.EmitStoreOfScalar(NonContigInfo.Strides[L][RevIdx], StrideLVal);
8998     }
8999     // args[I] = &dims
9000     Address DAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
9001         DimsAddr, CGM.Int8PtrTy);
9002     llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
9003         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9004         Info.PointersArray, 0, I);
9005     Address PAddr(P, CGF.getPointerAlign());
9006     CGF.Builder.CreateStore(DAddr.getPointer(), PAddr);
9007     ++L;
9008   }
9009 }
9010 
9011 /// Emit the arrays used to pass the captures and map information to the
9012 /// offloading runtime library. If there is no map or capture information,
9013 /// return nullptr by reference.
9014 static void
emitOffloadingArrays(CodeGenFunction & CGF,MappableExprsHandler::MapCombinedInfoTy & CombinedInfo,CGOpenMPRuntime::TargetDataInfo & Info,bool IsNonContiguous=false)9015 emitOffloadingArrays(CodeGenFunction &CGF,
9016                      MappableExprsHandler::MapCombinedInfoTy &CombinedInfo,
9017                      CGOpenMPRuntime::TargetDataInfo &Info,
9018                      bool IsNonContiguous = false) {
9019   CodeGenModule &CGM = CGF.CGM;
9020   ASTContext &Ctx = CGF.getContext();
9021 
9022   // Reset the array information.
9023   Info.clearArrayInfo();
9024   Info.NumberOfPtrs = CombinedInfo.BasePointers.size();
9025 
9026   if (Info.NumberOfPtrs) {
9027     // Detect if we have any capture size requiring runtime evaluation of the
9028     // size so that a constant array could be eventually used.
9029     bool hasRuntimeEvaluationCaptureSize = false;
9030     for (llvm::Value *S : CombinedInfo.Sizes)
9031       if (!isa<llvm::Constant>(S)) {
9032         hasRuntimeEvaluationCaptureSize = true;
9033         break;
9034       }
9035 
9036     llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true);
9037     QualType PointerArrayType = Ctx.getConstantArrayType(
9038         Ctx.VoidPtrTy, PointerNumAP, nullptr, ArrayType::Normal,
9039         /*IndexTypeQuals=*/0);
9040 
9041     Info.BasePointersArray =
9042         CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
9043     Info.PointersArray =
9044         CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
9045     Address MappersArray =
9046         CGF.CreateMemTemp(PointerArrayType, ".offload_mappers");
9047     Info.MappersArray = MappersArray.getPointer();
9048 
9049     // If we don't have any VLA types or other types that require runtime
9050     // evaluation, we can use a constant array for the map sizes, otherwise we
9051     // need to fill up the arrays as we do for the pointers.
9052     QualType Int64Ty =
9053         Ctx.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
9054     if (hasRuntimeEvaluationCaptureSize) {
9055       QualType SizeArrayType = Ctx.getConstantArrayType(
9056           Int64Ty, PointerNumAP, nullptr, ArrayType::Normal,
9057           /*IndexTypeQuals=*/0);
9058       Info.SizesArray =
9059           CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
9060     } else {
9061       // We expect all the sizes to be constant, so we collect them to create
9062       // a constant array.
9063       SmallVector<llvm::Constant *, 16> ConstSizes;
9064       for (unsigned I = 0, E = CombinedInfo.Sizes.size(); I < E; ++I) {
9065         if (IsNonContiguous &&
9066             (CombinedInfo.Types[I] & MappableExprsHandler::OMP_MAP_NON_CONTIG)) {
9067           ConstSizes.push_back(llvm::ConstantInt::get(
9068               CGF.Int64Ty, CombinedInfo.NonContigInfo.Dims[I]));
9069         } else {
9070           ConstSizes.push_back(cast<llvm::Constant>(CombinedInfo.Sizes[I]));
9071         }
9072       }
9073 
9074       auto *SizesArrayInit = llvm::ConstantArray::get(
9075           llvm::ArrayType::get(CGM.Int64Ty, ConstSizes.size()), ConstSizes);
9076       std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"});
9077       auto *SizesArrayGbl = new llvm::GlobalVariable(
9078           CGM.getModule(), SizesArrayInit->getType(),
9079           /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
9080           SizesArrayInit, Name);
9081       SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
9082       Info.SizesArray = SizesArrayGbl;
9083     }
9084 
9085     // The map types are always constant so we don't need to generate code to
9086     // fill arrays. Instead, we create an array constant.
9087     SmallVector<uint64_t, 4> Mapping(CombinedInfo.Types.size(), 0);
9088     llvm::copy(CombinedInfo.Types, Mapping.begin());
9089     llvm::Constant *MapTypesArrayInit =
9090         llvm::ConstantDataArray::get(CGF.Builder.getContext(), Mapping);
9091     std::string MaptypesName =
9092         CGM.getOpenMPRuntime().getName({"offload_maptypes"});
9093     auto *MapTypesArrayGbl = new llvm::GlobalVariable(
9094         CGM.getModule(), MapTypesArrayInit->getType(),
9095         /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
9096         MapTypesArrayInit, MaptypesName);
9097     MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
9098     Info.MapTypesArray = MapTypesArrayGbl;
9099 
9100     // If there's a present map type modifier, it must not be applied to the end
9101     // of a region, so generate a separate map type array in that case.
9102     if (Info.separateBeginEndCalls()) {
9103       bool EndMapTypesDiffer = false;
9104       for (uint64_t &Type : Mapping) {
9105         if (Type & MappableExprsHandler::OMP_MAP_PRESENT) {
9106           Type &= ~MappableExprsHandler::OMP_MAP_PRESENT;
9107           EndMapTypesDiffer = true;
9108         }
9109       }
9110       if (EndMapTypesDiffer) {
9111         MapTypesArrayInit =
9112             llvm::ConstantDataArray::get(CGF.Builder.getContext(), Mapping);
9113         MaptypesName = CGM.getOpenMPRuntime().getName({"offload_maptypes"});
9114         MapTypesArrayGbl = new llvm::GlobalVariable(
9115             CGM.getModule(), MapTypesArrayInit->getType(),
9116             /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
9117             MapTypesArrayInit, MaptypesName);
9118         MapTypesArrayGbl->setUnnamedAddr(
9119             llvm::GlobalValue::UnnamedAddr::Global);
9120         Info.MapTypesArrayEnd = MapTypesArrayGbl;
9121       }
9122     }
9123 
9124     for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) {
9125       llvm::Value *BPVal = *CombinedInfo.BasePointers[I];
9126       llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
9127           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9128           Info.BasePointersArray, 0, I);
9129       BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
9130           BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0));
9131       Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
9132       CGF.Builder.CreateStore(BPVal, BPAddr);
9133 
9134       if (Info.requiresDevicePointerInfo())
9135         if (const ValueDecl *DevVD =
9136                 CombinedInfo.BasePointers[I].getDevicePtrDecl())
9137           Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr);
9138 
9139       llvm::Value *PVal = CombinedInfo.Pointers[I];
9140       llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
9141           llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9142           Info.PointersArray, 0, I);
9143       P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
9144           P, PVal->getType()->getPointerTo(/*AddrSpace=*/0));
9145       Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
9146       CGF.Builder.CreateStore(PVal, PAddr);
9147 
9148       if (hasRuntimeEvaluationCaptureSize) {
9149         llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
9150             llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
9151             Info.SizesArray,
9152             /*Idx0=*/0,
9153             /*Idx1=*/I);
9154         Address SAddr(S, Ctx.getTypeAlignInChars(Int64Ty));
9155         CGF.Builder.CreateStore(CGF.Builder.CreateIntCast(CombinedInfo.Sizes[I],
9156                                                           CGM.Int64Ty,
9157                                                           /*isSigned=*/true),
9158                                 SAddr);
9159       }
9160 
9161       // Fill up the mapper array.
9162       llvm::Value *MFunc = llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
9163       if (CombinedInfo.Mappers[I]) {
9164         MFunc = CGM.getOpenMPRuntime().getOrCreateUserDefinedMapperFunc(
9165             cast<OMPDeclareMapperDecl>(CombinedInfo.Mappers[I]));
9166         MFunc = CGF.Builder.CreatePointerCast(MFunc, CGM.VoidPtrTy);
9167         Info.HasMapper = true;
9168       }
9169       Address MAddr = CGF.Builder.CreateConstArrayGEP(MappersArray, I);
9170       CGF.Builder.CreateStore(MFunc, MAddr);
9171     }
9172   }
9173 
9174   if (!IsNonContiguous || CombinedInfo.NonContigInfo.Offsets.empty() ||
9175       Info.NumberOfPtrs == 0)
9176     return;
9177 
9178   emitNonContiguousDescriptor(CGF, CombinedInfo, Info);
9179 }
9180 
9181 namespace {
9182 /// Additional arguments for emitOffloadingArraysArgument function.
9183 struct ArgumentsOptions {
9184   bool ForEndCall = false;
9185   ArgumentsOptions() = default;
ArgumentsOptions__anonbee92f944511::ArgumentsOptions9186   ArgumentsOptions(bool ForEndCall) : ForEndCall(ForEndCall) {}
9187 };
9188 } // namespace
9189 
9190 /// Emit the arguments to be passed to the runtime library based on the
9191 /// arrays of base pointers, pointers, sizes, map types, and mappers.  If
9192 /// ForEndCall, emit map types to be passed for the end of the region instead of
9193 /// the beginning.
emitOffloadingArraysArgument(CodeGenFunction & CGF,llvm::Value * & BasePointersArrayArg,llvm::Value * & PointersArrayArg,llvm::Value * & SizesArrayArg,llvm::Value * & MapTypesArrayArg,llvm::Value * & MappersArrayArg,CGOpenMPRuntime::TargetDataInfo & Info,const ArgumentsOptions & Options=ArgumentsOptions ())9194 static void emitOffloadingArraysArgument(
9195     CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg,
9196     llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg,
9197     llvm::Value *&MapTypesArrayArg, llvm::Value *&MappersArrayArg,
9198     CGOpenMPRuntime::TargetDataInfo &Info,
9199     const ArgumentsOptions &Options = ArgumentsOptions()) {
9200   assert((!Options.ForEndCall || Info.separateBeginEndCalls()) &&
9201          "expected region end call to runtime only when end call is separate");
9202   CodeGenModule &CGM = CGF.CGM;
9203   if (Info.NumberOfPtrs) {
9204     BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9205         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9206         Info.BasePointersArray,
9207         /*Idx0=*/0, /*Idx1=*/0);
9208     PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9209         llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
9210         Info.PointersArray,
9211         /*Idx0=*/0,
9212         /*Idx1=*/0);
9213     SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9214         llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), Info.SizesArray,
9215         /*Idx0=*/0, /*Idx1=*/0);
9216     MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
9217         llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
9218         Options.ForEndCall && Info.MapTypesArrayEnd ? Info.MapTypesArrayEnd
9219                                                     : Info.MapTypesArray,
9220         /*Idx0=*/0,
9221         /*Idx1=*/0);
9222     // If there is no user-defined mapper, set the mapper array to nullptr to
9223     // avoid an unnecessary data privatization
9224     if (!Info.HasMapper)
9225       MappersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9226     else
9227       MappersArrayArg =
9228           CGF.Builder.CreatePointerCast(Info.MappersArray, CGM.VoidPtrPtrTy);
9229   } else {
9230     BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9231     PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9232     SizesArrayArg = llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
9233     MapTypesArrayArg =
9234         llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
9235     MappersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
9236   }
9237 }
9238 
9239 /// Check for inner distribute directive.
9240 static const OMPExecutableDirective *
getNestedDistributeDirective(ASTContext & Ctx,const OMPExecutableDirective & D)9241 getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) {
9242   const auto *CS = D.getInnermostCapturedStmt();
9243   const auto *Body =
9244       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
9245   const Stmt *ChildStmt =
9246       CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
9247 
9248   if (const auto *NestedDir =
9249           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
9250     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
9251     switch (D.getDirectiveKind()) {
9252     case OMPD_target:
9253       if (isOpenMPDistributeDirective(DKind))
9254         return NestedDir;
9255       if (DKind == OMPD_teams) {
9256         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
9257             /*IgnoreCaptured=*/true);
9258         if (!Body)
9259           return nullptr;
9260         ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
9261         if (const auto *NND =
9262                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
9263           DKind = NND->getDirectiveKind();
9264           if (isOpenMPDistributeDirective(DKind))
9265             return NND;
9266         }
9267       }
9268       return nullptr;
9269     case OMPD_target_teams:
9270       if (isOpenMPDistributeDirective(DKind))
9271         return NestedDir;
9272       return nullptr;
9273     case OMPD_target_parallel:
9274     case OMPD_target_simd:
9275     case OMPD_target_parallel_for:
9276     case OMPD_target_parallel_for_simd:
9277       return nullptr;
9278     case OMPD_target_teams_distribute:
9279     case OMPD_target_teams_distribute_simd:
9280     case OMPD_target_teams_distribute_parallel_for:
9281     case OMPD_target_teams_distribute_parallel_for_simd:
9282     case OMPD_parallel:
9283     case OMPD_for:
9284     case OMPD_parallel_for:
9285     case OMPD_parallel_master:
9286     case OMPD_parallel_sections:
9287     case OMPD_for_simd:
9288     case OMPD_parallel_for_simd:
9289     case OMPD_cancel:
9290     case OMPD_cancellation_point:
9291     case OMPD_ordered:
9292     case OMPD_threadprivate:
9293     case OMPD_allocate:
9294     case OMPD_task:
9295     case OMPD_simd:
9296     case OMPD_sections:
9297     case OMPD_section:
9298     case OMPD_single:
9299     case OMPD_master:
9300     case OMPD_critical:
9301     case OMPD_taskyield:
9302     case OMPD_barrier:
9303     case OMPD_taskwait:
9304     case OMPD_taskgroup:
9305     case OMPD_atomic:
9306     case OMPD_flush:
9307     case OMPD_depobj:
9308     case OMPD_scan:
9309     case OMPD_teams:
9310     case OMPD_target_data:
9311     case OMPD_target_exit_data:
9312     case OMPD_target_enter_data:
9313     case OMPD_distribute:
9314     case OMPD_distribute_simd:
9315     case OMPD_distribute_parallel_for:
9316     case OMPD_distribute_parallel_for_simd:
9317     case OMPD_teams_distribute:
9318     case OMPD_teams_distribute_simd:
9319     case OMPD_teams_distribute_parallel_for:
9320     case OMPD_teams_distribute_parallel_for_simd:
9321     case OMPD_target_update:
9322     case OMPD_declare_simd:
9323     case OMPD_declare_variant:
9324     case OMPD_begin_declare_variant:
9325     case OMPD_end_declare_variant:
9326     case OMPD_declare_target:
9327     case OMPD_end_declare_target:
9328     case OMPD_declare_reduction:
9329     case OMPD_declare_mapper:
9330     case OMPD_taskloop:
9331     case OMPD_taskloop_simd:
9332     case OMPD_master_taskloop:
9333     case OMPD_master_taskloop_simd:
9334     case OMPD_parallel_master_taskloop:
9335     case OMPD_parallel_master_taskloop_simd:
9336     case OMPD_requires:
9337     case OMPD_unknown:
9338     default:
9339       llvm_unreachable("Unexpected directive.");
9340     }
9341   }
9342 
9343   return nullptr;
9344 }
9345 
9346 /// Emit the user-defined mapper function. The code generation follows the
9347 /// pattern in the example below.
9348 /// \code
9349 /// void .omp_mapper.<type_name>.<mapper_id>.(void *rt_mapper_handle,
9350 ///                                           void *base, void *begin,
9351 ///                                           int64_t size, int64_t type) {
9352 ///   // Allocate space for an array section first.
9353 ///   if (size > 1 && !maptype.IsDelete)
9354 ///     __tgt_push_mapper_component(rt_mapper_handle, base, begin,
9355 ///                                 size*sizeof(Ty), clearToFrom(type));
9356 ///   // Map members.
9357 ///   for (unsigned i = 0; i < size; i++) {
9358 ///     // For each component specified by this mapper:
9359 ///     for (auto c : all_components) {
9360 ///       if (c.hasMapper())
9361 ///         (*c.Mapper())(rt_mapper_handle, c.arg_base, c.arg_begin, c.arg_size,
9362 ///                       c.arg_type);
9363 ///       else
9364 ///         __tgt_push_mapper_component(rt_mapper_handle, c.arg_base,
9365 ///                                     c.arg_begin, c.arg_size, c.arg_type);
9366 ///     }
9367 ///   }
9368 ///   // Delete the array section.
9369 ///   if (size > 1 && maptype.IsDelete)
9370 ///     __tgt_push_mapper_component(rt_mapper_handle, base, begin,
9371 ///                                 size*sizeof(Ty), clearToFrom(type));
9372 /// }
9373 /// \endcode
emitUserDefinedMapper(const OMPDeclareMapperDecl * D,CodeGenFunction * CGF)9374 void CGOpenMPRuntime::emitUserDefinedMapper(const OMPDeclareMapperDecl *D,
9375                                             CodeGenFunction *CGF) {
9376   if (UDMMap.count(D) > 0)
9377     return;
9378   ASTContext &C = CGM.getContext();
9379   QualType Ty = D->getType();
9380   QualType PtrTy = C.getPointerType(Ty).withRestrict();
9381   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
9382   auto *MapperVarDecl =
9383       cast<VarDecl>(cast<DeclRefExpr>(D->getMapperVarRef())->getDecl());
9384   SourceLocation Loc = D->getLocation();
9385   CharUnits ElementSize = C.getTypeSizeInChars(Ty);
9386 
9387   // Prepare mapper function arguments and attributes.
9388   ImplicitParamDecl HandleArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
9389                               C.VoidPtrTy, ImplicitParamDecl::Other);
9390   ImplicitParamDecl BaseArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
9391                             ImplicitParamDecl::Other);
9392   ImplicitParamDecl BeginArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
9393                              C.VoidPtrTy, ImplicitParamDecl::Other);
9394   ImplicitParamDecl SizeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
9395                             ImplicitParamDecl::Other);
9396   ImplicitParamDecl TypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
9397                             ImplicitParamDecl::Other);
9398   FunctionArgList Args;
9399   Args.push_back(&HandleArg);
9400   Args.push_back(&BaseArg);
9401   Args.push_back(&BeginArg);
9402   Args.push_back(&SizeArg);
9403   Args.push_back(&TypeArg);
9404   const CGFunctionInfo &FnInfo =
9405       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
9406   llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
9407   SmallString<64> TyStr;
9408   llvm::raw_svector_ostream Out(TyStr);
9409   CGM.getCXXABI().getMangleContext().mangleTypeName(Ty, Out);
9410   std::string Name = getName({"omp_mapper", TyStr, D->getName()});
9411   auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
9412                                     Name, &CGM.getModule());
9413   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
9414   Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
9415   // Start the mapper function code generation.
9416   CodeGenFunction MapperCGF(CGM);
9417   MapperCGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
9418   // Compute the starting and end addreses of array elements.
9419   llvm::Value *Size = MapperCGF.EmitLoadOfScalar(
9420       MapperCGF.GetAddrOfLocalVar(&SizeArg), /*Volatile=*/false,
9421       C.getPointerType(Int64Ty), Loc);
9422   // Convert the size in bytes into the number of array elements.
9423   Size = MapperCGF.Builder.CreateExactUDiv(
9424       Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity()));
9425   llvm::Value *PtrBegin = MapperCGF.Builder.CreateBitCast(
9426       MapperCGF.GetAddrOfLocalVar(&BeginArg).getPointer(),
9427       CGM.getTypes().ConvertTypeForMem(C.getPointerType(PtrTy)));
9428   llvm::Value *PtrEnd = MapperCGF.Builder.CreateGEP(PtrBegin, Size);
9429   llvm::Value *MapType = MapperCGF.EmitLoadOfScalar(
9430       MapperCGF.GetAddrOfLocalVar(&TypeArg), /*Volatile=*/false,
9431       C.getPointerType(Int64Ty), Loc);
9432   // Prepare common arguments for array initiation and deletion.
9433   llvm::Value *Handle = MapperCGF.EmitLoadOfScalar(
9434       MapperCGF.GetAddrOfLocalVar(&HandleArg),
9435       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
9436   llvm::Value *BaseIn = MapperCGF.EmitLoadOfScalar(
9437       MapperCGF.GetAddrOfLocalVar(&BaseArg),
9438       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
9439   llvm::Value *BeginIn = MapperCGF.EmitLoadOfScalar(
9440       MapperCGF.GetAddrOfLocalVar(&BeginArg),
9441       /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
9442 
9443   // Emit array initiation if this is an array section and \p MapType indicates
9444   // that memory allocation is required.
9445   llvm::BasicBlock *HeadBB = MapperCGF.createBasicBlock("omp.arraymap.head");
9446   emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
9447                              ElementSize, HeadBB, /*IsInit=*/true);
9448 
9449   // Emit a for loop to iterate through SizeArg of elements and map all of them.
9450 
9451   // Emit the loop header block.
9452   MapperCGF.EmitBlock(HeadBB);
9453   llvm::BasicBlock *BodyBB = MapperCGF.createBasicBlock("omp.arraymap.body");
9454   llvm::BasicBlock *DoneBB = MapperCGF.createBasicBlock("omp.done");
9455   // Evaluate whether the initial condition is satisfied.
9456   llvm::Value *IsEmpty =
9457       MapperCGF.Builder.CreateICmpEQ(PtrBegin, PtrEnd, "omp.arraymap.isempty");
9458   MapperCGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
9459   llvm::BasicBlock *EntryBB = MapperCGF.Builder.GetInsertBlock();
9460 
9461   // Emit the loop body block.
9462   MapperCGF.EmitBlock(BodyBB);
9463   llvm::BasicBlock *LastBB = BodyBB;
9464   llvm::PHINode *PtrPHI = MapperCGF.Builder.CreatePHI(
9465       PtrBegin->getType(), 2, "omp.arraymap.ptrcurrent");
9466   PtrPHI->addIncoming(PtrBegin, EntryBB);
9467   Address PtrCurrent =
9468       Address(PtrPHI, MapperCGF.GetAddrOfLocalVar(&BeginArg)
9469                           .getAlignment()
9470                           .alignmentOfArrayElement(ElementSize));
9471   // Privatize the declared variable of mapper to be the current array element.
9472   CodeGenFunction::OMPPrivateScope Scope(MapperCGF);
9473   Scope.addPrivate(MapperVarDecl, [&MapperCGF, PtrCurrent, PtrTy]() {
9474     return MapperCGF
9475         .EmitLoadOfPointerLValue(PtrCurrent, PtrTy->castAs<PointerType>())
9476         .getAddress(MapperCGF);
9477   });
9478   (void)Scope.Privatize();
9479 
9480   // Get map clause information. Fill up the arrays with all mapped variables.
9481   MappableExprsHandler::MapCombinedInfoTy Info;
9482   MappableExprsHandler MEHandler(*D, MapperCGF);
9483   MEHandler.generateAllInfoForMapper(Info);
9484 
9485   // Call the runtime API __tgt_mapper_num_components to get the number of
9486   // pre-existing components.
9487   llvm::Value *OffloadingArgs[] = {Handle};
9488   llvm::Value *PreviousSize = MapperCGF.EmitRuntimeCall(
9489       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
9490                                             OMPRTL___tgt_mapper_num_components),
9491       OffloadingArgs);
9492   llvm::Value *ShiftedPreviousSize = MapperCGF.Builder.CreateShl(
9493       PreviousSize,
9494       MapperCGF.Builder.getInt64(MappableExprsHandler::getFlagMemberOffset()));
9495 
9496   // Fill up the runtime mapper handle for all components.
9497   for (unsigned I = 0; I < Info.BasePointers.size(); ++I) {
9498     llvm::Value *CurBaseArg = MapperCGF.Builder.CreateBitCast(
9499         *Info.BasePointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
9500     llvm::Value *CurBeginArg = MapperCGF.Builder.CreateBitCast(
9501         Info.Pointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
9502     llvm::Value *CurSizeArg = Info.Sizes[I];
9503 
9504     // Extract the MEMBER_OF field from the map type.
9505     llvm::BasicBlock *MemberBB = MapperCGF.createBasicBlock("omp.member");
9506     MapperCGF.EmitBlock(MemberBB);
9507     llvm::Value *OriMapType = MapperCGF.Builder.getInt64(Info.Types[I]);
9508     llvm::Value *Member = MapperCGF.Builder.CreateAnd(
9509         OriMapType,
9510         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_MEMBER_OF));
9511     llvm::BasicBlock *MemberCombineBB =
9512         MapperCGF.createBasicBlock("omp.member.combine");
9513     llvm::BasicBlock *TypeBB = MapperCGF.createBasicBlock("omp.type");
9514     llvm::Value *IsMember = MapperCGF.Builder.CreateIsNull(Member);
9515     MapperCGF.Builder.CreateCondBr(IsMember, TypeBB, MemberCombineBB);
9516     // Add the number of pre-existing components to the MEMBER_OF field if it
9517     // is valid.
9518     MapperCGF.EmitBlock(MemberCombineBB);
9519     llvm::Value *CombinedMember =
9520         MapperCGF.Builder.CreateNUWAdd(OriMapType, ShiftedPreviousSize);
9521     // Do nothing if it is not a member of previous components.
9522     MapperCGF.EmitBlock(TypeBB);
9523     llvm::PHINode *MemberMapType =
9524         MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.membermaptype");
9525     MemberMapType->addIncoming(OriMapType, MemberBB);
9526     MemberMapType->addIncoming(CombinedMember, MemberCombineBB);
9527 
9528     // Combine the map type inherited from user-defined mapper with that
9529     // specified in the program. According to the OMP_MAP_TO and OMP_MAP_FROM
9530     // bits of the \a MapType, which is the input argument of the mapper
9531     // function, the following code will set the OMP_MAP_TO and OMP_MAP_FROM
9532     // bits of MemberMapType.
9533     // [OpenMP 5.0], 1.2.6. map-type decay.
9534     //        | alloc |  to   | from  | tofrom | release | delete
9535     // ----------------------------------------------------------
9536     // alloc  | alloc | alloc | alloc | alloc  | release | delete
9537     // to     | alloc |  to   | alloc |   to   | release | delete
9538     // from   | alloc | alloc | from  |  from  | release | delete
9539     // tofrom | alloc |  to   | from  | tofrom | release | delete
9540     llvm::Value *LeftToFrom = MapperCGF.Builder.CreateAnd(
9541         MapType,
9542         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO |
9543                                    MappableExprsHandler::OMP_MAP_FROM));
9544     llvm::BasicBlock *AllocBB = MapperCGF.createBasicBlock("omp.type.alloc");
9545     llvm::BasicBlock *AllocElseBB =
9546         MapperCGF.createBasicBlock("omp.type.alloc.else");
9547     llvm::BasicBlock *ToBB = MapperCGF.createBasicBlock("omp.type.to");
9548     llvm::BasicBlock *ToElseBB = MapperCGF.createBasicBlock("omp.type.to.else");
9549     llvm::BasicBlock *FromBB = MapperCGF.createBasicBlock("omp.type.from");
9550     llvm::BasicBlock *EndBB = MapperCGF.createBasicBlock("omp.type.end");
9551     llvm::Value *IsAlloc = MapperCGF.Builder.CreateIsNull(LeftToFrom);
9552     MapperCGF.Builder.CreateCondBr(IsAlloc, AllocBB, AllocElseBB);
9553     // In case of alloc, clear OMP_MAP_TO and OMP_MAP_FROM.
9554     MapperCGF.EmitBlock(AllocBB);
9555     llvm::Value *AllocMapType = MapperCGF.Builder.CreateAnd(
9556         MemberMapType,
9557         MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO |
9558                                      MappableExprsHandler::OMP_MAP_FROM)));
9559     MapperCGF.Builder.CreateBr(EndBB);
9560     MapperCGF.EmitBlock(AllocElseBB);
9561     llvm::Value *IsTo = MapperCGF.Builder.CreateICmpEQ(
9562         LeftToFrom,
9563         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO));
9564     MapperCGF.Builder.CreateCondBr(IsTo, ToBB, ToElseBB);
9565     // In case of to, clear OMP_MAP_FROM.
9566     MapperCGF.EmitBlock(ToBB);
9567     llvm::Value *ToMapType = MapperCGF.Builder.CreateAnd(
9568         MemberMapType,
9569         MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_FROM));
9570     MapperCGF.Builder.CreateBr(EndBB);
9571     MapperCGF.EmitBlock(ToElseBB);
9572     llvm::Value *IsFrom = MapperCGF.Builder.CreateICmpEQ(
9573         LeftToFrom,
9574         MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_FROM));
9575     MapperCGF.Builder.CreateCondBr(IsFrom, FromBB, EndBB);
9576     // In case of from, clear OMP_MAP_TO.
9577     MapperCGF.EmitBlock(FromBB);
9578     llvm::Value *FromMapType = MapperCGF.Builder.CreateAnd(
9579         MemberMapType,
9580         MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_TO));
9581     // In case of tofrom, do nothing.
9582     MapperCGF.EmitBlock(EndBB);
9583     LastBB = EndBB;
9584     llvm::PHINode *CurMapType =
9585         MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.maptype");
9586     CurMapType->addIncoming(AllocMapType, AllocBB);
9587     CurMapType->addIncoming(ToMapType, ToBB);
9588     CurMapType->addIncoming(FromMapType, FromBB);
9589     CurMapType->addIncoming(MemberMapType, ToElseBB);
9590 
9591     llvm::Value *OffloadingArgs[] = {Handle, CurBaseArg, CurBeginArg,
9592                                      CurSizeArg, CurMapType};
9593     if (Info.Mappers[I]) {
9594       // Call the corresponding mapper function.
9595       llvm::Function *MapperFunc = getOrCreateUserDefinedMapperFunc(
9596           cast<OMPDeclareMapperDecl>(Info.Mappers[I]));
9597       assert(MapperFunc && "Expect a valid mapper function is available.");
9598       MapperCGF.EmitNounwindRuntimeCall(MapperFunc, OffloadingArgs);
9599     } else {
9600       // Call the runtime API __tgt_push_mapper_component to fill up the runtime
9601       // data structure.
9602       MapperCGF.EmitRuntimeCall(
9603           OMPBuilder.getOrCreateRuntimeFunction(
9604               CGM.getModule(), OMPRTL___tgt_push_mapper_component),
9605           OffloadingArgs);
9606     }
9607   }
9608 
9609   // Update the pointer to point to the next element that needs to be mapped,
9610   // and check whether we have mapped all elements.
9611   llvm::Value *PtrNext = MapperCGF.Builder.CreateConstGEP1_32(
9612       PtrPHI, /*Idx0=*/1, "omp.arraymap.next");
9613   PtrPHI->addIncoming(PtrNext, LastBB);
9614   llvm::Value *IsDone =
9615       MapperCGF.Builder.CreateICmpEQ(PtrNext, PtrEnd, "omp.arraymap.isdone");
9616   llvm::BasicBlock *ExitBB = MapperCGF.createBasicBlock("omp.arraymap.exit");
9617   MapperCGF.Builder.CreateCondBr(IsDone, ExitBB, BodyBB);
9618 
9619   MapperCGF.EmitBlock(ExitBB);
9620   // Emit array deletion if this is an array section and \p MapType indicates
9621   // that deletion is required.
9622   emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
9623                              ElementSize, DoneBB, /*IsInit=*/false);
9624 
9625   // Emit the function exit block.
9626   MapperCGF.EmitBlock(DoneBB, /*IsFinished=*/true);
9627   MapperCGF.FinishFunction();
9628   UDMMap.try_emplace(D, Fn);
9629   if (CGF) {
9630     auto &Decls = FunctionUDMMap.FindAndConstruct(CGF->CurFn);
9631     Decls.second.push_back(D);
9632   }
9633 }
9634 
9635 /// Emit the array initialization or deletion portion for user-defined mapper
9636 /// code generation. First, it evaluates whether an array section is mapped and
9637 /// whether the \a MapType instructs to delete this section. If \a IsInit is
9638 /// true, and \a MapType indicates to not delete this array, array
9639 /// initialization code is generated. If \a IsInit is false, and \a MapType
9640 /// indicates to not this array, array deletion code is generated.
emitUDMapperArrayInitOrDel(CodeGenFunction & MapperCGF,llvm::Value * Handle,llvm::Value * Base,llvm::Value * Begin,llvm::Value * Size,llvm::Value * MapType,CharUnits ElementSize,llvm::BasicBlock * ExitBB,bool IsInit)9641 void CGOpenMPRuntime::emitUDMapperArrayInitOrDel(
9642     CodeGenFunction &MapperCGF, llvm::Value *Handle, llvm::Value *Base,
9643     llvm::Value *Begin, llvm::Value *Size, llvm::Value *MapType,
9644     CharUnits ElementSize, llvm::BasicBlock *ExitBB, bool IsInit) {
9645   StringRef Prefix = IsInit ? ".init" : ".del";
9646 
9647   // Evaluate if this is an array section.
9648   llvm::BasicBlock *IsDeleteBB =
9649       MapperCGF.createBasicBlock(getName({"omp.array", Prefix, ".evaldelete"}));
9650   llvm::BasicBlock *BodyBB =
9651       MapperCGF.createBasicBlock(getName({"omp.array", Prefix}));
9652   llvm::Value *IsArray = MapperCGF.Builder.CreateICmpSGE(
9653       Size, MapperCGF.Builder.getInt64(1), "omp.arrayinit.isarray");
9654   MapperCGF.Builder.CreateCondBr(IsArray, IsDeleteBB, ExitBB);
9655 
9656   // Evaluate if we are going to delete this section.
9657   MapperCGF.EmitBlock(IsDeleteBB);
9658   llvm::Value *DeleteBit = MapperCGF.Builder.CreateAnd(
9659       MapType,
9660       MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_DELETE));
9661   llvm::Value *DeleteCond;
9662   if (IsInit) {
9663     DeleteCond = MapperCGF.Builder.CreateIsNull(
9664         DeleteBit, getName({"omp.array", Prefix, ".delete"}));
9665   } else {
9666     DeleteCond = MapperCGF.Builder.CreateIsNotNull(
9667         DeleteBit, getName({"omp.array", Prefix, ".delete"}));
9668   }
9669   MapperCGF.Builder.CreateCondBr(DeleteCond, BodyBB, ExitBB);
9670 
9671   MapperCGF.EmitBlock(BodyBB);
9672   // Get the array size by multiplying element size and element number (i.e., \p
9673   // Size).
9674   llvm::Value *ArraySize = MapperCGF.Builder.CreateNUWMul(
9675       Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity()));
9676   // Remove OMP_MAP_TO and OMP_MAP_FROM from the map type, so that it achieves
9677   // memory allocation/deletion purpose only.
9678   llvm::Value *MapTypeArg = MapperCGF.Builder.CreateAnd(
9679       MapType,
9680       MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO |
9681                                    MappableExprsHandler::OMP_MAP_FROM)));
9682   // Call the runtime API __tgt_push_mapper_component to fill up the runtime
9683   // data structure.
9684   llvm::Value *OffloadingArgs[] = {Handle, Base, Begin, ArraySize, MapTypeArg};
9685   MapperCGF.EmitRuntimeCall(
9686       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
9687                                             OMPRTL___tgt_push_mapper_component),
9688       OffloadingArgs);
9689 }
9690 
getOrCreateUserDefinedMapperFunc(const OMPDeclareMapperDecl * D)9691 llvm::Function *CGOpenMPRuntime::getOrCreateUserDefinedMapperFunc(
9692     const OMPDeclareMapperDecl *D) {
9693   auto I = UDMMap.find(D);
9694   if (I != UDMMap.end())
9695     return I->second;
9696   emitUserDefinedMapper(D);
9697   return UDMMap.lookup(D);
9698 }
9699 
emitTargetNumIterationsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Value * DeviceID,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)9700 void CGOpenMPRuntime::emitTargetNumIterationsCall(
9701     CodeGenFunction &CGF, const OMPExecutableDirective &D,
9702     llvm::Value *DeviceID,
9703     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
9704                                      const OMPLoopDirective &D)>
9705         SizeEmitter) {
9706   OpenMPDirectiveKind Kind = D.getDirectiveKind();
9707   const OMPExecutableDirective *TD = &D;
9708   // Get nested teams distribute kind directive, if any.
9709   if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind))
9710     TD = getNestedDistributeDirective(CGM.getContext(), D);
9711   if (!TD)
9712     return;
9713   const auto *LD = cast<OMPLoopDirective>(TD);
9714   auto &&CodeGen = [LD, DeviceID, SizeEmitter, this](CodeGenFunction &CGF,
9715                                                      PrePostActionTy &) {
9716     if (llvm::Value *NumIterations = SizeEmitter(CGF, *LD)) {
9717       llvm::Value *Args[] = {DeviceID, NumIterations};
9718       CGF.EmitRuntimeCall(
9719           OMPBuilder.getOrCreateRuntimeFunction(
9720               CGM.getModule(), OMPRTL___kmpc_push_target_tripcount),
9721           Args);
9722     }
9723   };
9724   emitInlinedDirective(CGF, OMPD_unknown, CodeGen);
9725 }
9726 
emitTargetCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Function * OutlinedFn,llvm::Value * OutlinedFnID,const Expr * IfCond,llvm::PointerIntPair<const Expr *,2,OpenMPDeviceClauseModifier> Device,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)9727 void CGOpenMPRuntime::emitTargetCall(
9728     CodeGenFunction &CGF, const OMPExecutableDirective &D,
9729     llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
9730     llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device,
9731     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
9732                                      const OMPLoopDirective &D)>
9733         SizeEmitter) {
9734   if (!CGF.HaveInsertPoint())
9735     return;
9736 
9737   assert(OutlinedFn && "Invalid outlined function!");
9738 
9739   const bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>() ||
9740                                  D.hasClausesOfKind<OMPNowaitClause>();
9741   llvm::SmallVector<llvm::Value *, 16> CapturedVars;
9742   const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
9743   auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF,
9744                                             PrePostActionTy &) {
9745     CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
9746   };
9747   emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen);
9748 
9749   CodeGenFunction::OMPTargetDataInfo InputInfo;
9750   llvm::Value *MapTypesArray = nullptr;
9751   // Fill up the pointer arrays and transfer execution to the device.
9752   auto &&ThenGen = [this, Device, OutlinedFn, OutlinedFnID, &D, &InputInfo,
9753                     &MapTypesArray, &CS, RequiresOuterTask, &CapturedVars,
9754                     SizeEmitter](CodeGenFunction &CGF, PrePostActionTy &) {
9755     if (Device.getInt() == OMPC_DEVICE_ancestor) {
9756       // Reverse offloading is not supported, so just execute on the host.
9757       if (RequiresOuterTask) {
9758         CapturedVars.clear();
9759         CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
9760       }
9761       emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
9762       return;
9763     }
9764 
9765     // On top of the arrays that were filled up, the target offloading call
9766     // takes as arguments the device id as well as the host pointer. The host
9767     // pointer is used by the runtime library to identify the current target
9768     // region, so it only has to be unique and not necessarily point to
9769     // anything. It could be the pointer to the outlined function that
9770     // implements the target region, but we aren't using that so that the
9771     // compiler doesn't need to keep that, and could therefore inline the host
9772     // function if proven worthwhile during optimization.
9773 
9774     // From this point on, we need to have an ID of the target region defined.
9775     assert(OutlinedFnID && "Invalid outlined function ID!");
9776 
9777     // Emit device ID if any.
9778     llvm::Value *DeviceID;
9779     if (Device.getPointer()) {
9780       assert((Device.getInt() == OMPC_DEVICE_unknown ||
9781               Device.getInt() == OMPC_DEVICE_device_num) &&
9782              "Expected device_num modifier.");
9783       llvm::Value *DevVal = CGF.EmitScalarExpr(Device.getPointer());
9784       DeviceID =
9785           CGF.Builder.CreateIntCast(DevVal, CGF.Int64Ty, /*isSigned=*/true);
9786     } else {
9787       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
9788     }
9789 
9790     // Emit the number of elements in the offloading arrays.
9791     llvm::Value *PointerNum =
9792         CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
9793 
9794     // Return value of the runtime offloading call.
9795     llvm::Value *Return;
9796 
9797     llvm::Value *NumTeams = emitNumTeamsForTargetDirective(CGF, D);
9798     llvm::Value *NumThreads = emitNumThreadsForTargetDirective(CGF, D);
9799 
9800     // Emit tripcount for the target loop-based directive.
9801     emitTargetNumIterationsCall(CGF, D, DeviceID, SizeEmitter);
9802 
9803     bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
9804     // The target region is an outlined function launched by the runtime
9805     // via calls __tgt_target() or __tgt_target_teams().
9806     //
9807     // __tgt_target() launches a target region with one team and one thread,
9808     // executing a serial region.  This master thread may in turn launch
9809     // more threads within its team upon encountering a parallel region,
9810     // however, no additional teams can be launched on the device.
9811     //
9812     // __tgt_target_teams() launches a target region with one or more teams,
9813     // each with one or more threads.  This call is required for target
9814     // constructs such as:
9815     //  'target teams'
9816     //  'target' / 'teams'
9817     //  'target teams distribute parallel for'
9818     //  'target parallel'
9819     // and so on.
9820     //
9821     // Note that on the host and CPU targets, the runtime implementation of
9822     // these calls simply call the outlined function without forking threads.
9823     // The outlined functions themselves have runtime calls to
9824     // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
9825     // the compiler in emitTeamsCall() and emitParallelCall().
9826     //
9827     // In contrast, on the NVPTX target, the implementation of
9828     // __tgt_target_teams() launches a GPU kernel with the requested number
9829     // of teams and threads so no additional calls to the runtime are required.
9830     if (NumTeams) {
9831       // If we have NumTeams defined this means that we have an enclosed teams
9832       // region. Therefore we also expect to have NumThreads defined. These two
9833       // values should be defined in the presence of a teams directive,
9834       // regardless of having any clauses associated. If the user is using teams
9835       // but no clauses, these two values will be the default that should be
9836       // passed to the runtime library - a 32-bit integer with the value zero.
9837       assert(NumThreads && "Thread limit expression should be available along "
9838                            "with number of teams.");
9839       llvm::Value *OffloadingArgs[] = {DeviceID,
9840                                        OutlinedFnID,
9841                                        PointerNum,
9842                                        InputInfo.BasePointersArray.getPointer(),
9843                                        InputInfo.PointersArray.getPointer(),
9844                                        InputInfo.SizesArray.getPointer(),
9845                                        MapTypesArray,
9846                                        InputInfo.MappersArray.getPointer(),
9847                                        NumTeams,
9848                                        NumThreads};
9849       Return = CGF.EmitRuntimeCall(
9850           OMPBuilder.getOrCreateRuntimeFunction(
9851               CGM.getModule(), HasNowait
9852                                    ? OMPRTL___tgt_target_teams_nowait_mapper
9853                                    : OMPRTL___tgt_target_teams_mapper),
9854           OffloadingArgs);
9855     } else {
9856       llvm::Value *OffloadingArgs[] = {DeviceID,
9857                                        OutlinedFnID,
9858                                        PointerNum,
9859                                        InputInfo.BasePointersArray.getPointer(),
9860                                        InputInfo.PointersArray.getPointer(),
9861                                        InputInfo.SizesArray.getPointer(),
9862                                        MapTypesArray,
9863                                        InputInfo.MappersArray.getPointer()};
9864       Return = CGF.EmitRuntimeCall(
9865           OMPBuilder.getOrCreateRuntimeFunction(
9866               CGM.getModule(), HasNowait ? OMPRTL___tgt_target_nowait_mapper
9867                                          : OMPRTL___tgt_target_mapper),
9868           OffloadingArgs);
9869     }
9870 
9871     // Check the error code and execute the host version if required.
9872     llvm::BasicBlock *OffloadFailedBlock =
9873         CGF.createBasicBlock("omp_offload.failed");
9874     llvm::BasicBlock *OffloadContBlock =
9875         CGF.createBasicBlock("omp_offload.cont");
9876     llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return);
9877     CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
9878 
9879     CGF.EmitBlock(OffloadFailedBlock);
9880     if (RequiresOuterTask) {
9881       CapturedVars.clear();
9882       CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
9883     }
9884     emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
9885     CGF.EmitBranch(OffloadContBlock);
9886 
9887     CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
9888   };
9889 
9890   // Notify that the host version must be executed.
9891   auto &&ElseGen = [this, &D, OutlinedFn, &CS, &CapturedVars,
9892                     RequiresOuterTask](CodeGenFunction &CGF,
9893                                        PrePostActionTy &) {
9894     if (RequiresOuterTask) {
9895       CapturedVars.clear();
9896       CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
9897     }
9898     emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
9899   };
9900 
9901   auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
9902                           &CapturedVars, RequiresOuterTask,
9903                           &CS](CodeGenFunction &CGF, PrePostActionTy &) {
9904     // Fill up the arrays with all the captured variables.
9905     MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
9906 
9907     // Get mappable expression information.
9908     MappableExprsHandler MEHandler(D, CGF);
9909     llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers;
9910     llvm::DenseSet<CanonicalDeclPtr<const Decl>> MappedVarSet;
9911 
9912     auto RI = CS.getCapturedRecordDecl()->field_begin();
9913     auto CV = CapturedVars.begin();
9914     for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
9915                                               CE = CS.capture_end();
9916          CI != CE; ++CI, ++RI, ++CV) {
9917       MappableExprsHandler::MapCombinedInfoTy CurInfo;
9918       MappableExprsHandler::StructRangeInfoTy PartialStruct;
9919 
9920       // VLA sizes are passed to the outlined region by copy and do not have map
9921       // information associated.
9922       if (CI->capturesVariableArrayType()) {
9923         CurInfo.BasePointers.push_back(*CV);
9924         CurInfo.Pointers.push_back(*CV);
9925         CurInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
9926             CGF.getTypeSize(RI->getType()), CGF.Int64Ty, /*isSigned=*/true));
9927         // Copy to the device as an argument. No need to retrieve it.
9928         CurInfo.Types.push_back(MappableExprsHandler::OMP_MAP_LITERAL |
9929                                 MappableExprsHandler::OMP_MAP_TARGET_PARAM |
9930                                 MappableExprsHandler::OMP_MAP_IMPLICIT);
9931         CurInfo.Mappers.push_back(nullptr);
9932       } else {
9933         // If we have any information in the map clause, we use it, otherwise we
9934         // just do a default mapping.
9935         MEHandler.generateInfoForCapture(CI, *CV, CurInfo, PartialStruct);
9936         if (!CI->capturesThis())
9937           MappedVarSet.insert(CI->getCapturedVar());
9938         else
9939           MappedVarSet.insert(nullptr);
9940         if (CurInfo.BasePointers.empty())
9941           MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurInfo);
9942         // Generate correct mapping for variables captured by reference in
9943         // lambdas.
9944         if (CI->capturesVariable())
9945           MEHandler.generateInfoForLambdaCaptures(CI->getCapturedVar(), *CV,
9946                                                   CurInfo, LambdaPointers);
9947       }
9948       // We expect to have at least an element of information for this capture.
9949       assert(!CurInfo.BasePointers.empty() &&
9950              "Non-existing map pointer for capture!");
9951       assert(CurInfo.BasePointers.size() == CurInfo.Pointers.size() &&
9952              CurInfo.BasePointers.size() == CurInfo.Sizes.size() &&
9953              CurInfo.BasePointers.size() == CurInfo.Types.size() &&
9954              CurInfo.BasePointers.size() == CurInfo.Mappers.size() &&
9955              "Inconsistent map information sizes!");
9956 
9957       // If there is an entry in PartialStruct it means we have a struct with
9958       // individual members mapped. Emit an extra combined entry.
9959       if (PartialStruct.Base.isValid())
9960         MEHandler.emitCombinedEntry(CombinedInfo, CurInfo.Types, PartialStruct);
9961 
9962       // We need to append the results of this capture to what we already have.
9963       CombinedInfo.append(CurInfo);
9964     }
9965     // Adjust MEMBER_OF flags for the lambdas captures.
9966     MEHandler.adjustMemberOfForLambdaCaptures(
9967         LambdaPointers, CombinedInfo.BasePointers, CombinedInfo.Pointers,
9968         CombinedInfo.Types);
9969     // Map any list items in a map clause that were not captures because they
9970     // weren't referenced within the construct.
9971     MEHandler.generateAllInfo(CombinedInfo, /*NotTargetParams=*/true,
9972                               MappedVarSet);
9973 
9974     TargetDataInfo Info;
9975     // Fill up the arrays and create the arguments.
9976     emitOffloadingArrays(CGF, CombinedInfo, Info);
9977     emitOffloadingArraysArgument(
9978         CGF, Info.BasePointersArray, Info.PointersArray, Info.SizesArray,
9979         Info.MapTypesArray, Info.MappersArray, Info, {/*ForEndTask=*/false});
9980     InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
9981     InputInfo.BasePointersArray =
9982         Address(Info.BasePointersArray, CGM.getPointerAlign());
9983     InputInfo.PointersArray =
9984         Address(Info.PointersArray, CGM.getPointerAlign());
9985     InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign());
9986     InputInfo.MappersArray = Address(Info.MappersArray, CGM.getPointerAlign());
9987     MapTypesArray = Info.MapTypesArray;
9988     if (RequiresOuterTask)
9989       CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
9990     else
9991       emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
9992   };
9993 
9994   auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask](
9995                              CodeGenFunction &CGF, PrePostActionTy &) {
9996     if (RequiresOuterTask) {
9997       CodeGenFunction::OMPTargetDataInfo InputInfo;
9998       CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo);
9999     } else {
10000       emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen);
10001     }
10002   };
10003 
10004   // If we have a target function ID it means that we need to support
10005   // offloading, otherwise, just execute on the host. We need to execute on host
10006   // regardless of the conditional in the if clause if, e.g., the user do not
10007   // specify target triples.
10008   if (OutlinedFnID) {
10009     if (IfCond) {
10010       emitIfClause(CGF, IfCond, TargetThenGen, TargetElseGen);
10011     } else {
10012       RegionCodeGenTy ThenRCG(TargetThenGen);
10013       ThenRCG(CGF);
10014     }
10015   } else {
10016     RegionCodeGenTy ElseRCG(TargetElseGen);
10017     ElseRCG(CGF);
10018   }
10019 }
10020 
scanForTargetRegionsFunctions(const Stmt * S,StringRef ParentName)10021 void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
10022                                                     StringRef ParentName) {
10023   if (!S)
10024     return;
10025 
10026   // Codegen OMP target directives that offload compute to the device.
10027   bool RequiresDeviceCodegen =
10028       isa<OMPExecutableDirective>(S) &&
10029       isOpenMPTargetExecutionDirective(
10030           cast<OMPExecutableDirective>(S)->getDirectiveKind());
10031 
10032   if (RequiresDeviceCodegen) {
10033     const auto &E = *cast<OMPExecutableDirective>(S);
10034     unsigned DeviceID;
10035     unsigned FileID;
10036     unsigned Line;
10037     getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), DeviceID,
10038                              FileID, Line);
10039 
10040     // Is this a target region that should not be emitted as an entry point? If
10041     // so just signal we are done with this target region.
10042     if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID,
10043                                                             ParentName, Line))
10044       return;
10045 
10046     switch (E.getDirectiveKind()) {
10047     case OMPD_target:
10048       CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName,
10049                                                    cast<OMPTargetDirective>(E));
10050       break;
10051     case OMPD_target_parallel:
10052       CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
10053           CGM, ParentName, cast<OMPTargetParallelDirective>(E));
10054       break;
10055     case OMPD_target_teams:
10056       CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
10057           CGM, ParentName, cast<OMPTargetTeamsDirective>(E));
10058       break;
10059     case OMPD_target_teams_distribute:
10060       CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
10061           CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E));
10062       break;
10063     case OMPD_target_teams_distribute_simd:
10064       CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
10065           CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E));
10066       break;
10067     case OMPD_target_parallel_for:
10068       CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
10069           CGM, ParentName, cast<OMPTargetParallelForDirective>(E));
10070       break;
10071     case OMPD_target_parallel_for_simd:
10072       CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
10073           CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E));
10074       break;
10075     case OMPD_target_simd:
10076       CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
10077           CGM, ParentName, cast<OMPTargetSimdDirective>(E));
10078       break;
10079     case OMPD_target_teams_distribute_parallel_for:
10080       CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
10081           CGM, ParentName,
10082           cast<OMPTargetTeamsDistributeParallelForDirective>(E));
10083       break;
10084     case OMPD_target_teams_distribute_parallel_for_simd:
10085       CodeGenFunction::
10086           EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
10087               CGM, ParentName,
10088               cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E));
10089       break;
10090     case OMPD_parallel:
10091     case OMPD_for:
10092     case OMPD_parallel_for:
10093     case OMPD_parallel_master:
10094     case OMPD_parallel_sections:
10095     case OMPD_for_simd:
10096     case OMPD_parallel_for_simd:
10097     case OMPD_cancel:
10098     case OMPD_cancellation_point:
10099     case OMPD_ordered:
10100     case OMPD_threadprivate:
10101     case OMPD_allocate:
10102     case OMPD_task:
10103     case OMPD_simd:
10104     case OMPD_sections:
10105     case OMPD_section:
10106     case OMPD_single:
10107     case OMPD_master:
10108     case OMPD_critical:
10109     case OMPD_taskyield:
10110     case OMPD_barrier:
10111     case OMPD_taskwait:
10112     case OMPD_taskgroup:
10113     case OMPD_atomic:
10114     case OMPD_flush:
10115     case OMPD_depobj:
10116     case OMPD_scan:
10117     case OMPD_teams:
10118     case OMPD_target_data:
10119     case OMPD_target_exit_data:
10120     case OMPD_target_enter_data:
10121     case OMPD_distribute:
10122     case OMPD_distribute_simd:
10123     case OMPD_distribute_parallel_for:
10124     case OMPD_distribute_parallel_for_simd:
10125     case OMPD_teams_distribute:
10126     case OMPD_teams_distribute_simd:
10127     case OMPD_teams_distribute_parallel_for:
10128     case OMPD_teams_distribute_parallel_for_simd:
10129     case OMPD_target_update:
10130     case OMPD_declare_simd:
10131     case OMPD_declare_variant:
10132     case OMPD_begin_declare_variant:
10133     case OMPD_end_declare_variant:
10134     case OMPD_declare_target:
10135     case OMPD_end_declare_target:
10136     case OMPD_declare_reduction:
10137     case OMPD_declare_mapper:
10138     case OMPD_taskloop:
10139     case OMPD_taskloop_simd:
10140     case OMPD_master_taskloop:
10141     case OMPD_master_taskloop_simd:
10142     case OMPD_parallel_master_taskloop:
10143     case OMPD_parallel_master_taskloop_simd:
10144     case OMPD_requires:
10145     case OMPD_unknown:
10146     default:
10147       llvm_unreachable("Unknown target directive for OpenMP device codegen.");
10148     }
10149     return;
10150   }
10151 
10152   if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) {
10153     if (!E->hasAssociatedStmt() || !E->getAssociatedStmt())
10154       return;
10155 
10156     scanForTargetRegionsFunctions(E->getRawStmt(), ParentName);
10157     return;
10158   }
10159 
10160   // If this is a lambda function, look into its body.
10161   if (const auto *L = dyn_cast<LambdaExpr>(S))
10162     S = L->getBody();
10163 
10164   // Keep looking for target regions recursively.
10165   for (const Stmt *II : S->children())
10166     scanForTargetRegionsFunctions(II, ParentName);
10167 }
10168 
emitTargetFunctions(GlobalDecl GD)10169 bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
10170   // If emitting code for the host, we do not process FD here. Instead we do
10171   // the normal code generation.
10172   if (!CGM.getLangOpts().OpenMPIsDevice) {
10173     if (const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) {
10174       Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
10175           OMPDeclareTargetDeclAttr::getDeviceType(FD);
10176       // Do not emit device_type(nohost) functions for the host.
10177       if (DevTy && *DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
10178         return true;
10179     }
10180     return false;
10181   }
10182 
10183   const ValueDecl *VD = cast<ValueDecl>(GD.getDecl());
10184   // Try to detect target regions in the function.
10185   if (const auto *FD = dyn_cast<FunctionDecl>(VD)) {
10186     StringRef Name = CGM.getMangledName(GD);
10187     scanForTargetRegionsFunctions(FD->getBody(), Name);
10188     Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
10189         OMPDeclareTargetDeclAttr::getDeviceType(FD);
10190     // Do not emit device_type(nohost) functions for the host.
10191     if (DevTy && *DevTy == OMPDeclareTargetDeclAttr::DT_Host)
10192       return true;
10193   }
10194 
10195   // Do not to emit function if it is not marked as declare target.
10196   return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) &&
10197          AlreadyEmittedTargetDecls.count(VD) == 0;
10198 }
10199 
emitTargetGlobalVariable(GlobalDecl GD)10200 bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
10201   if (!CGM.getLangOpts().OpenMPIsDevice)
10202     return false;
10203 
10204   // Check if there are Ctors/Dtors in this declaration and look for target
10205   // regions in it. We use the complete variant to produce the kernel name
10206   // mangling.
10207   QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
10208   if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
10209     for (const CXXConstructorDecl *Ctor : RD->ctors()) {
10210       StringRef ParentName =
10211           CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
10212       scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
10213     }
10214     if (const CXXDestructorDecl *Dtor = RD->getDestructor()) {
10215       StringRef ParentName =
10216           CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
10217       scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
10218     }
10219   }
10220 
10221   // Do not to emit variable if it is not marked as declare target.
10222   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
10223       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
10224           cast<VarDecl>(GD.getDecl()));
10225   if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
10226       (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10227        HasRequiresUnifiedSharedMemory)) {
10228     DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl()));
10229     return true;
10230   }
10231   return false;
10232 }
10233 
10234 llvm::Constant *
registerTargetFirstprivateCopy(CodeGenFunction & CGF,const VarDecl * VD)10235 CGOpenMPRuntime::registerTargetFirstprivateCopy(CodeGenFunction &CGF,
10236                                                 const VarDecl *VD) {
10237   assert(VD->getType().isConstant(CGM.getContext()) &&
10238          "Expected constant variable.");
10239   StringRef VarName;
10240   llvm::Constant *Addr;
10241   llvm::GlobalValue::LinkageTypes Linkage;
10242   QualType Ty = VD->getType();
10243   SmallString<128> Buffer;
10244   {
10245     unsigned DeviceID;
10246     unsigned FileID;
10247     unsigned Line;
10248     getTargetEntryUniqueInfo(CGM.getContext(), VD->getLocation(), DeviceID,
10249                              FileID, Line);
10250     llvm::raw_svector_ostream OS(Buffer);
10251     OS << "__omp_offloading_firstprivate_" << llvm::format("_%x", DeviceID)
10252        << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
10253     VarName = OS.str();
10254   }
10255   Linkage = llvm::GlobalValue::InternalLinkage;
10256   Addr =
10257       getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(Ty), VarName,
10258                                   getDefaultFirstprivateAddressSpace());
10259   cast<llvm::GlobalValue>(Addr)->setLinkage(Linkage);
10260   CharUnits VarSize = CGM.getContext().getTypeSizeInChars(Ty);
10261   CGM.addCompilerUsedGlobal(cast<llvm::GlobalValue>(Addr));
10262   OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
10263       VarName, Addr, VarSize,
10264       OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo, Linkage);
10265   return Addr;
10266 }
10267 
registerTargetGlobalVariable(const VarDecl * VD,llvm::Constant * Addr)10268 void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD,
10269                                                    llvm::Constant *Addr) {
10270   if (CGM.getLangOpts().OMPTargetTriples.empty() &&
10271       !CGM.getLangOpts().OpenMPIsDevice)
10272     return;
10273   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
10274       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
10275   if (!Res) {
10276     if (CGM.getLangOpts().OpenMPIsDevice) {
10277       // Register non-target variables being emitted in device code (debug info
10278       // may cause this).
10279       StringRef VarName = CGM.getMangledName(VD);
10280       EmittedNonTargetVariables.try_emplace(VarName, Addr);
10281     }
10282     return;
10283   }
10284   // Register declare target variables.
10285   OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags;
10286   StringRef VarName;
10287   CharUnits VarSize;
10288   llvm::GlobalValue::LinkageTypes Linkage;
10289 
10290   if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10291       !HasRequiresUnifiedSharedMemory) {
10292     Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
10293     VarName = CGM.getMangledName(VD);
10294     if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) {
10295       VarSize = CGM.getContext().getTypeSizeInChars(VD->getType());
10296       assert(!VarSize.isZero() && "Expected non-zero size of the variable");
10297     } else {
10298       VarSize = CharUnits::Zero();
10299     }
10300     Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false);
10301     // Temp solution to prevent optimizations of the internal variables.
10302     if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) {
10303       std::string RefName = getName({VarName, "ref"});
10304       if (!CGM.GetGlobalValue(RefName)) {
10305         llvm::Constant *AddrRef =
10306             getOrCreateInternalVariable(Addr->getType(), RefName);
10307         auto *GVAddrRef = cast<llvm::GlobalVariable>(AddrRef);
10308         GVAddrRef->setConstant(/*Val=*/true);
10309         GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage);
10310         GVAddrRef->setInitializer(Addr);
10311         CGM.addCompilerUsedGlobal(GVAddrRef);
10312       }
10313     }
10314   } else {
10315     assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
10316             (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10317              HasRequiresUnifiedSharedMemory)) &&
10318            "Declare target attribute must link or to with unified memory.");
10319     if (*Res == OMPDeclareTargetDeclAttr::MT_Link)
10320       Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink;
10321     else
10322       Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
10323 
10324     if (CGM.getLangOpts().OpenMPIsDevice) {
10325       VarName = Addr->getName();
10326       Addr = nullptr;
10327     } else {
10328       VarName = getAddrOfDeclareTargetVar(VD).getName();
10329       Addr = cast<llvm::Constant>(getAddrOfDeclareTargetVar(VD).getPointer());
10330     }
10331     VarSize = CGM.getPointerSize();
10332     Linkage = llvm::GlobalValue::WeakAnyLinkage;
10333   }
10334 
10335   OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
10336       VarName, Addr, VarSize, Flags, Linkage);
10337 }
10338 
emitTargetGlobal(GlobalDecl GD)10339 bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
10340   if (isa<FunctionDecl>(GD.getDecl()) ||
10341       isa<OMPDeclareReductionDecl>(GD.getDecl()))
10342     return emitTargetFunctions(GD);
10343 
10344   return emitTargetGlobalVariable(GD);
10345 }
10346 
emitDeferredTargetDecls() const10347 void CGOpenMPRuntime::emitDeferredTargetDecls() const {
10348   for (const VarDecl *VD : DeferredGlobalVariables) {
10349     llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
10350         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
10351     if (!Res)
10352       continue;
10353     if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10354         !HasRequiresUnifiedSharedMemory) {
10355       CGM.EmitGlobal(VD);
10356     } else {
10357       assert((*Res == OMPDeclareTargetDeclAttr::MT_Link ||
10358               (*Res == OMPDeclareTargetDeclAttr::MT_To &&
10359                HasRequiresUnifiedSharedMemory)) &&
10360              "Expected link clause or to clause with unified memory.");
10361       (void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
10362     }
10363   }
10364 }
10365 
adjustTargetSpecificDataForLambdas(CodeGenFunction & CGF,const OMPExecutableDirective & D) const10366 void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas(
10367     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
10368   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
10369          " Expected target-based directive.");
10370 }
10371 
processRequiresDirective(const OMPRequiresDecl * D)10372 void CGOpenMPRuntime::processRequiresDirective(const OMPRequiresDecl *D) {
10373   for (const OMPClause *Clause : D->clauselists()) {
10374     if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
10375       HasRequiresUnifiedSharedMemory = true;
10376     } else if (const auto *AC =
10377                    dyn_cast<OMPAtomicDefaultMemOrderClause>(Clause)) {
10378       switch (AC->getAtomicDefaultMemOrderKind()) {
10379       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_acq_rel:
10380         RequiresAtomicOrdering = llvm::AtomicOrdering::AcquireRelease;
10381         break;
10382       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_seq_cst:
10383         RequiresAtomicOrdering = llvm::AtomicOrdering::SequentiallyConsistent;
10384         break;
10385       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_relaxed:
10386         RequiresAtomicOrdering = llvm::AtomicOrdering::Monotonic;
10387         break;
10388       case OMPC_ATOMIC_DEFAULT_MEM_ORDER_unknown:
10389         break;
10390       }
10391     }
10392   }
10393 }
10394 
getDefaultMemoryOrdering() const10395 llvm::AtomicOrdering CGOpenMPRuntime::getDefaultMemoryOrdering() const {
10396   return RequiresAtomicOrdering;
10397 }
10398 
hasAllocateAttributeForGlobalVar(const VarDecl * VD,LangAS & AS)10399 bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
10400                                                        LangAS &AS) {
10401   if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
10402     return false;
10403   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
10404   switch(A->getAllocatorType()) {
10405   case OMPAllocateDeclAttr::OMPNullMemAlloc:
10406   case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
10407   // Not supported, fallback to the default mem space.
10408   case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
10409   case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
10410   case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
10411   case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
10412   case OMPAllocateDeclAttr::OMPThreadMemAlloc:
10413   case OMPAllocateDeclAttr::OMPConstMemAlloc:
10414   case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
10415     AS = LangAS::Default;
10416     return true;
10417   case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
10418     llvm_unreachable("Expected predefined allocator for the variables with the "
10419                      "static storage.");
10420   }
10421   return false;
10422 }
10423 
hasRequiresUnifiedSharedMemory() const10424 bool CGOpenMPRuntime::hasRequiresUnifiedSharedMemory() const {
10425   return HasRequiresUnifiedSharedMemory;
10426 }
10427 
DisableAutoDeclareTargetRAII(CodeGenModule & CGM)10428 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII(
10429     CodeGenModule &CGM)
10430     : CGM(CGM) {
10431   if (CGM.getLangOpts().OpenMPIsDevice) {
10432     SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal;
10433     CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false;
10434   }
10435 }
10436 
~DisableAutoDeclareTargetRAII()10437 CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() {
10438   if (CGM.getLangOpts().OpenMPIsDevice)
10439     CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal;
10440 }
10441 
markAsGlobalTarget(GlobalDecl GD)10442 bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) {
10443   if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal)
10444     return true;
10445 
10446   const auto *D = cast<FunctionDecl>(GD.getDecl());
10447   // Do not to emit function if it is marked as declare target as it was already
10448   // emitted.
10449   if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) {
10450     if (D->hasBody() && AlreadyEmittedTargetDecls.count(D) == 0) {
10451       if (auto *F = dyn_cast_or_null<llvm::Function>(
10452               CGM.GetGlobalValue(CGM.getMangledName(GD))))
10453         return !F->isDeclaration();
10454       return false;
10455     }
10456     return true;
10457   }
10458 
10459   return !AlreadyEmittedTargetDecls.insert(D).second;
10460 }
10461 
emitRequiresDirectiveRegFun()10462 llvm::Function *CGOpenMPRuntime::emitRequiresDirectiveRegFun() {
10463   // If we don't have entries or if we are emitting code for the device, we
10464   // don't need to do anything.
10465   if (CGM.getLangOpts().OMPTargetTriples.empty() ||
10466       CGM.getLangOpts().OpenMPSimd || CGM.getLangOpts().OpenMPIsDevice ||
10467       (OffloadEntriesInfoManager.empty() &&
10468        !HasEmittedDeclareTargetRegion &&
10469        !HasEmittedTargetRegion))
10470     return nullptr;
10471 
10472   // Create and register the function that handles the requires directives.
10473   ASTContext &C = CGM.getContext();
10474 
10475   llvm::Function *RequiresRegFn;
10476   {
10477     CodeGenFunction CGF(CGM);
10478     const auto &FI = CGM.getTypes().arrangeNullaryFunction();
10479     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
10480     std::string ReqName = getName({"omp_offloading", "requires_reg"});
10481     RequiresRegFn = CGM.CreateGlobalInitOrCleanUpFunction(FTy, ReqName, FI);
10482     CGF.StartFunction(GlobalDecl(), C.VoidTy, RequiresRegFn, FI, {});
10483     OpenMPOffloadingRequiresDirFlags Flags = OMP_REQ_NONE;
10484     // TODO: check for other requires clauses.
10485     // The requires directive takes effect only when a target region is
10486     // present in the compilation unit. Otherwise it is ignored and not
10487     // passed to the runtime. This avoids the runtime from throwing an error
10488     // for mismatching requires clauses across compilation units that don't
10489     // contain at least 1 target region.
10490     assert((HasEmittedTargetRegion ||
10491             HasEmittedDeclareTargetRegion ||
10492             !OffloadEntriesInfoManager.empty()) &&
10493            "Target or declare target region expected.");
10494     if (HasRequiresUnifiedSharedMemory)
10495       Flags = OMP_REQ_UNIFIED_SHARED_MEMORY;
10496     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
10497                             CGM.getModule(), OMPRTL___tgt_register_requires),
10498                         llvm::ConstantInt::get(CGM.Int64Ty, Flags));
10499     CGF.FinishFunction();
10500   }
10501   return RequiresRegFn;
10502 }
10503 
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)10504 void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
10505                                     const OMPExecutableDirective &D,
10506                                     SourceLocation Loc,
10507                                     llvm::Function *OutlinedFn,
10508                                     ArrayRef<llvm::Value *> CapturedVars) {
10509   if (!CGF.HaveInsertPoint())
10510     return;
10511 
10512   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
10513   CodeGenFunction::RunCleanupsScope Scope(CGF);
10514 
10515   // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
10516   llvm::Value *Args[] = {
10517       RTLoc,
10518       CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
10519       CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
10520   llvm::SmallVector<llvm::Value *, 16> RealArgs;
10521   RealArgs.append(std::begin(Args), std::end(Args));
10522   RealArgs.append(CapturedVars.begin(), CapturedVars.end());
10523 
10524   llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction(
10525       CGM.getModule(), OMPRTL___kmpc_fork_teams);
10526   CGF.EmitRuntimeCall(RTLFn, RealArgs);
10527 }
10528 
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)10529 void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
10530                                          const Expr *NumTeams,
10531                                          const Expr *ThreadLimit,
10532                                          SourceLocation Loc) {
10533   if (!CGF.HaveInsertPoint())
10534     return;
10535 
10536   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
10537 
10538   llvm::Value *NumTeamsVal =
10539       NumTeams
10540           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
10541                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
10542           : CGF.Builder.getInt32(0);
10543 
10544   llvm::Value *ThreadLimitVal =
10545       ThreadLimit
10546           ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
10547                                       CGF.CGM.Int32Ty, /* isSigned = */ true)
10548           : CGF.Builder.getInt32(0);
10549 
10550   // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
10551   llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
10552                                      ThreadLimitVal};
10553   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
10554                           CGM.getModule(), OMPRTL___kmpc_push_num_teams),
10555                       PushNumTeamsArgs);
10556 }
10557 
emitTargetDataCalls(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device,const RegionCodeGenTy & CodeGen,TargetDataInfo & Info)10558 void CGOpenMPRuntime::emitTargetDataCalls(
10559     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
10560     const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
10561   if (!CGF.HaveInsertPoint())
10562     return;
10563 
10564   // Action used to replace the default codegen action and turn privatization
10565   // off.
10566   PrePostActionTy NoPrivAction;
10567 
10568   // Generate the code for the opening of the data environment. Capture all the
10569   // arguments of the runtime call by reference because they are used in the
10570   // closing of the region.
10571   auto &&BeginThenGen = [this, &D, Device, &Info,
10572                          &CodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
10573     // Fill up the arrays with all the mapped variables.
10574     MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
10575 
10576     // Get map clause information.
10577     MappableExprsHandler MEHandler(D, CGF);
10578     MEHandler.generateAllInfo(CombinedInfo);
10579 
10580     // Fill up the arrays and create the arguments.
10581     emitOffloadingArrays(CGF, CombinedInfo, Info, /*IsNonContiguous=*/true);
10582 
10583     llvm::Value *BasePointersArrayArg = nullptr;
10584     llvm::Value *PointersArrayArg = nullptr;
10585     llvm::Value *SizesArrayArg = nullptr;
10586     llvm::Value *MapTypesArrayArg = nullptr;
10587     llvm::Value *MappersArrayArg = nullptr;
10588     emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
10589                                  SizesArrayArg, MapTypesArrayArg,
10590                                  MappersArrayArg, Info);
10591 
10592     // Emit device ID if any.
10593     llvm::Value *DeviceID = nullptr;
10594     if (Device) {
10595       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10596                                            CGF.Int64Ty, /*isSigned=*/true);
10597     } else {
10598       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10599     }
10600 
10601     // Emit the number of elements in the offloading arrays.
10602     llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
10603 
10604     llvm::Value *OffloadingArgs[] = {
10605         DeviceID,      PointerNum,       BasePointersArrayArg, PointersArrayArg,
10606         SizesArrayArg, MapTypesArrayArg, MappersArrayArg};
10607     CGF.EmitRuntimeCall(
10608         OMPBuilder.getOrCreateRuntimeFunction(
10609             CGM.getModule(), OMPRTL___tgt_target_data_begin_mapper),
10610         OffloadingArgs);
10611 
10612     // If device pointer privatization is required, emit the body of the region
10613     // here. It will have to be duplicated: with and without privatization.
10614     if (!Info.CaptureDeviceAddrMap.empty())
10615       CodeGen(CGF);
10616   };
10617 
10618   // Generate code for the closing of the data region.
10619   auto &&EndThenGen = [this, Device, &Info](CodeGenFunction &CGF,
10620                                             PrePostActionTy &) {
10621     assert(Info.isValid() && "Invalid data environment closing arguments.");
10622 
10623     llvm::Value *BasePointersArrayArg = nullptr;
10624     llvm::Value *PointersArrayArg = nullptr;
10625     llvm::Value *SizesArrayArg = nullptr;
10626     llvm::Value *MapTypesArrayArg = nullptr;
10627     llvm::Value *MappersArrayArg = nullptr;
10628     emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
10629                                  SizesArrayArg, MapTypesArrayArg,
10630                                  MappersArrayArg, Info, {/*ForEndCall=*/true});
10631 
10632     // Emit device ID if any.
10633     llvm::Value *DeviceID = nullptr;
10634     if (Device) {
10635       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10636                                            CGF.Int64Ty, /*isSigned=*/true);
10637     } else {
10638       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10639     }
10640 
10641     // Emit the number of elements in the offloading arrays.
10642     llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
10643 
10644     llvm::Value *OffloadingArgs[] = {
10645         DeviceID,      PointerNum,       BasePointersArrayArg, PointersArrayArg,
10646         SizesArrayArg, MapTypesArrayArg, MappersArrayArg};
10647     CGF.EmitRuntimeCall(
10648         OMPBuilder.getOrCreateRuntimeFunction(
10649             CGM.getModule(), OMPRTL___tgt_target_data_end_mapper),
10650         OffloadingArgs);
10651   };
10652 
10653   // If we need device pointer privatization, we need to emit the body of the
10654   // region with no privatization in the 'else' branch of the conditional.
10655   // Otherwise, we don't have to do anything.
10656   auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF,
10657                                                          PrePostActionTy &) {
10658     if (!Info.CaptureDeviceAddrMap.empty()) {
10659       CodeGen.setAction(NoPrivAction);
10660       CodeGen(CGF);
10661     }
10662   };
10663 
10664   // We don't have to do anything to close the region if the if clause evaluates
10665   // to false.
10666   auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
10667 
10668   if (IfCond) {
10669     emitIfClause(CGF, IfCond, BeginThenGen, BeginElseGen);
10670   } else {
10671     RegionCodeGenTy RCG(BeginThenGen);
10672     RCG(CGF);
10673   }
10674 
10675   // If we don't require privatization of device pointers, we emit the body in
10676   // between the runtime calls. This avoids duplicating the body code.
10677   if (Info.CaptureDeviceAddrMap.empty()) {
10678     CodeGen.setAction(NoPrivAction);
10679     CodeGen(CGF);
10680   }
10681 
10682   if (IfCond) {
10683     emitIfClause(CGF, IfCond, EndThenGen, EndElseGen);
10684   } else {
10685     RegionCodeGenTy RCG(EndThenGen);
10686     RCG(CGF);
10687   }
10688 }
10689 
emitTargetDataStandAloneCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device)10690 void CGOpenMPRuntime::emitTargetDataStandAloneCall(
10691     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
10692     const Expr *Device) {
10693   if (!CGF.HaveInsertPoint())
10694     return;
10695 
10696   assert((isa<OMPTargetEnterDataDirective>(D) ||
10697           isa<OMPTargetExitDataDirective>(D) ||
10698           isa<OMPTargetUpdateDirective>(D)) &&
10699          "Expecting either target enter, exit data, or update directives.");
10700 
10701   CodeGenFunction::OMPTargetDataInfo InputInfo;
10702   llvm::Value *MapTypesArray = nullptr;
10703   // Generate the code for the opening of the data environment.
10704   auto &&ThenGen = [this, &D, Device, &InputInfo,
10705                     &MapTypesArray](CodeGenFunction &CGF, PrePostActionTy &) {
10706     // Emit device ID if any.
10707     llvm::Value *DeviceID = nullptr;
10708     if (Device) {
10709       DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
10710                                            CGF.Int64Ty, /*isSigned=*/true);
10711     } else {
10712       DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
10713     }
10714 
10715     // Emit the number of elements in the offloading arrays.
10716     llvm::Constant *PointerNum =
10717         CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
10718 
10719     llvm::Value *OffloadingArgs[] = {DeviceID,
10720                                      PointerNum,
10721                                      InputInfo.BasePointersArray.getPointer(),
10722                                      InputInfo.PointersArray.getPointer(),
10723                                      InputInfo.SizesArray.getPointer(),
10724                                      MapTypesArray,
10725                                      InputInfo.MappersArray.getPointer()};
10726 
10727     // Select the right runtime function call for each standalone
10728     // directive.
10729     const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
10730     RuntimeFunction RTLFn;
10731     switch (D.getDirectiveKind()) {
10732     case OMPD_target_enter_data:
10733       RTLFn = HasNowait ? OMPRTL___tgt_target_data_begin_nowait_mapper
10734                         : OMPRTL___tgt_target_data_begin_mapper;
10735       break;
10736     case OMPD_target_exit_data:
10737       RTLFn = HasNowait ? OMPRTL___tgt_target_data_end_nowait_mapper
10738                         : OMPRTL___tgt_target_data_end_mapper;
10739       break;
10740     case OMPD_target_update:
10741       RTLFn = HasNowait ? OMPRTL___tgt_target_data_update_nowait_mapper
10742                         : OMPRTL___tgt_target_data_update_mapper;
10743       break;
10744     case OMPD_parallel:
10745     case OMPD_for:
10746     case OMPD_parallel_for:
10747     case OMPD_parallel_master:
10748     case OMPD_parallel_sections:
10749     case OMPD_for_simd:
10750     case OMPD_parallel_for_simd:
10751     case OMPD_cancel:
10752     case OMPD_cancellation_point:
10753     case OMPD_ordered:
10754     case OMPD_threadprivate:
10755     case OMPD_allocate:
10756     case OMPD_task:
10757     case OMPD_simd:
10758     case OMPD_sections:
10759     case OMPD_section:
10760     case OMPD_single:
10761     case OMPD_master:
10762     case OMPD_critical:
10763     case OMPD_taskyield:
10764     case OMPD_barrier:
10765     case OMPD_taskwait:
10766     case OMPD_taskgroup:
10767     case OMPD_atomic:
10768     case OMPD_flush:
10769     case OMPD_depobj:
10770     case OMPD_scan:
10771     case OMPD_teams:
10772     case OMPD_target_data:
10773     case OMPD_distribute:
10774     case OMPD_distribute_simd:
10775     case OMPD_distribute_parallel_for:
10776     case OMPD_distribute_parallel_for_simd:
10777     case OMPD_teams_distribute:
10778     case OMPD_teams_distribute_simd:
10779     case OMPD_teams_distribute_parallel_for:
10780     case OMPD_teams_distribute_parallel_for_simd:
10781     case OMPD_declare_simd:
10782     case OMPD_declare_variant:
10783     case OMPD_begin_declare_variant:
10784     case OMPD_end_declare_variant:
10785     case OMPD_declare_target:
10786     case OMPD_end_declare_target:
10787     case OMPD_declare_reduction:
10788     case OMPD_declare_mapper:
10789     case OMPD_taskloop:
10790     case OMPD_taskloop_simd:
10791     case OMPD_master_taskloop:
10792     case OMPD_master_taskloop_simd:
10793     case OMPD_parallel_master_taskloop:
10794     case OMPD_parallel_master_taskloop_simd:
10795     case OMPD_target:
10796     case OMPD_target_simd:
10797     case OMPD_target_teams_distribute:
10798     case OMPD_target_teams_distribute_simd:
10799     case OMPD_target_teams_distribute_parallel_for:
10800     case OMPD_target_teams_distribute_parallel_for_simd:
10801     case OMPD_target_teams:
10802     case OMPD_target_parallel:
10803     case OMPD_target_parallel_for:
10804     case OMPD_target_parallel_for_simd:
10805     case OMPD_requires:
10806     case OMPD_unknown:
10807     default:
10808       llvm_unreachable("Unexpected standalone target data directive.");
10809       break;
10810     }
10811     CGF.EmitRuntimeCall(
10812         OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), RTLFn),
10813         OffloadingArgs);
10814   };
10815 
10816   auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray](
10817                              CodeGenFunction &CGF, PrePostActionTy &) {
10818     // Fill up the arrays with all the mapped variables.
10819     MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
10820 
10821     // Get map clause information.
10822     MappableExprsHandler MEHandler(D, CGF);
10823     MEHandler.generateAllInfo(CombinedInfo);
10824 
10825     TargetDataInfo Info;
10826     // Fill up the arrays and create the arguments.
10827     emitOffloadingArrays(CGF, CombinedInfo, Info, /*IsNonContiguous=*/true);
10828     bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>() ||
10829                              D.hasClausesOfKind<OMPNowaitClause>();
10830     emitOffloadingArraysArgument(
10831         CGF, Info.BasePointersArray, Info.PointersArray, Info.SizesArray,
10832         Info.MapTypesArray, Info.MappersArray, Info, {/*ForEndTask=*/false});
10833     InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
10834     InputInfo.BasePointersArray =
10835         Address(Info.BasePointersArray, CGM.getPointerAlign());
10836     InputInfo.PointersArray =
10837         Address(Info.PointersArray, CGM.getPointerAlign());
10838     InputInfo.SizesArray =
10839         Address(Info.SizesArray, CGM.getPointerAlign());
10840     InputInfo.MappersArray = Address(Info.MappersArray, CGM.getPointerAlign());
10841     MapTypesArray = Info.MapTypesArray;
10842     if (RequiresOuterTask)
10843       CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
10844     else
10845       emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
10846   };
10847 
10848   if (IfCond) {
10849     emitIfClause(CGF, IfCond, TargetThenGen,
10850                  [](CodeGenFunction &CGF, PrePostActionTy &) {});
10851   } else {
10852     RegionCodeGenTy ThenRCG(TargetThenGen);
10853     ThenRCG(CGF);
10854   }
10855 }
10856 
10857 namespace {
10858   /// Kind of parameter in a function with 'declare simd' directive.
10859   enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector };
10860   /// Attribute set of the parameter.
10861   struct ParamAttrTy {
10862     ParamKindTy Kind = Vector;
10863     llvm::APSInt StrideOrArg;
10864     llvm::APSInt Alignment;
10865   };
10866 } // namespace
10867 
evaluateCDTSize(const FunctionDecl * FD,ArrayRef<ParamAttrTy> ParamAttrs)10868 static unsigned evaluateCDTSize(const FunctionDecl *FD,
10869                                 ArrayRef<ParamAttrTy> ParamAttrs) {
10870   // Every vector variant of a SIMD-enabled function has a vector length (VLEN).
10871   // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
10872   // of that clause. The VLEN value must be power of 2.
10873   // In other case the notion of the function`s "characteristic data type" (CDT)
10874   // is used to compute the vector length.
10875   // CDT is defined in the following order:
10876   //   a) For non-void function, the CDT is the return type.
10877   //   b) If the function has any non-uniform, non-linear parameters, then the
10878   //   CDT is the type of the first such parameter.
10879   //   c) If the CDT determined by a) or b) above is struct, union, or class
10880   //   type which is pass-by-value (except for the type that maps to the
10881   //   built-in complex data type), the characteristic data type is int.
10882   //   d) If none of the above three cases is applicable, the CDT is int.
10883   // The VLEN is then determined based on the CDT and the size of vector
10884   // register of that ISA for which current vector version is generated. The
10885   // VLEN is computed using the formula below:
10886   //   VLEN  = sizeof(vector_register) / sizeof(CDT),
10887   // where vector register size specified in section 3.2.1 Registers and the
10888   // Stack Frame of original AMD64 ABI document.
10889   QualType RetType = FD->getReturnType();
10890   if (RetType.isNull())
10891     return 0;
10892   ASTContext &C = FD->getASTContext();
10893   QualType CDT;
10894   if (!RetType.isNull() && !RetType->isVoidType()) {
10895     CDT = RetType;
10896   } else {
10897     unsigned Offset = 0;
10898     if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
10899       if (ParamAttrs[Offset].Kind == Vector)
10900         CDT = C.getPointerType(C.getRecordType(MD->getParent()));
10901       ++Offset;
10902     }
10903     if (CDT.isNull()) {
10904       for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
10905         if (ParamAttrs[I + Offset].Kind == Vector) {
10906           CDT = FD->getParamDecl(I)->getType();
10907           break;
10908         }
10909       }
10910     }
10911   }
10912   if (CDT.isNull())
10913     CDT = C.IntTy;
10914   CDT = CDT->getCanonicalTypeUnqualified();
10915   if (CDT->isRecordType() || CDT->isUnionType())
10916     CDT = C.IntTy;
10917   return C.getTypeSize(CDT);
10918 }
10919 
10920 static void
emitX86DeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn,const llvm::APSInt & VLENVal,ArrayRef<ParamAttrTy> ParamAttrs,OMPDeclareSimdDeclAttr::BranchStateTy State)10921 emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
10922                            const llvm::APSInt &VLENVal,
10923                            ArrayRef<ParamAttrTy> ParamAttrs,
10924                            OMPDeclareSimdDeclAttr::BranchStateTy State) {
10925   struct ISADataTy {
10926     char ISA;
10927     unsigned VecRegSize;
10928   };
10929   ISADataTy ISAData[] = {
10930       {
10931           'b', 128
10932       }, // SSE
10933       {
10934           'c', 256
10935       }, // AVX
10936       {
10937           'd', 256
10938       }, // AVX2
10939       {
10940           'e', 512
10941       }, // AVX512
10942   };
10943   llvm::SmallVector<char, 2> Masked;
10944   switch (State) {
10945   case OMPDeclareSimdDeclAttr::BS_Undefined:
10946     Masked.push_back('N');
10947     Masked.push_back('M');
10948     break;
10949   case OMPDeclareSimdDeclAttr::BS_Notinbranch:
10950     Masked.push_back('N');
10951     break;
10952   case OMPDeclareSimdDeclAttr::BS_Inbranch:
10953     Masked.push_back('M');
10954     break;
10955   }
10956   for (char Mask : Masked) {
10957     for (const ISADataTy &Data : ISAData) {
10958       SmallString<256> Buffer;
10959       llvm::raw_svector_ostream Out(Buffer);
10960       Out << "_ZGV" << Data.ISA << Mask;
10961       if (!VLENVal) {
10962         unsigned NumElts = evaluateCDTSize(FD, ParamAttrs);
10963         assert(NumElts && "Non-zero simdlen/cdtsize expected");
10964         Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts);
10965       } else {
10966         Out << VLENVal;
10967       }
10968       for (const ParamAttrTy &ParamAttr : ParamAttrs) {
10969         switch (ParamAttr.Kind){
10970         case LinearWithVarStride:
10971           Out << 's' << ParamAttr.StrideOrArg;
10972           break;
10973         case Linear:
10974           Out << 'l';
10975           if (ParamAttr.StrideOrArg != 1)
10976             Out << ParamAttr.StrideOrArg;
10977           break;
10978         case Uniform:
10979           Out << 'u';
10980           break;
10981         case Vector:
10982           Out << 'v';
10983           break;
10984         }
10985         if (!!ParamAttr.Alignment)
10986           Out << 'a' << ParamAttr.Alignment;
10987       }
10988       Out << '_' << Fn->getName();
10989       Fn->addFnAttr(Out.str());
10990     }
10991   }
10992 }
10993 
10994 // This are the Functions that are needed to mangle the name of the
10995 // vector functions generated by the compiler, according to the rules
10996 // defined in the "Vector Function ABI specifications for AArch64",
10997 // available at
10998 // https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi.
10999 
11000 /// Maps To Vector (MTV), as defined in 3.1.1 of the AAVFABI.
11001 ///
11002 /// TODO: Need to implement the behavior for reference marked with a
11003 /// var or no linear modifiers (1.b in the section). For this, we
11004 /// need to extend ParamKindTy to support the linear modifiers.
getAArch64MTV(QualType QT,ParamKindTy Kind)11005 static bool getAArch64MTV(QualType QT, ParamKindTy Kind) {
11006   QT = QT.getCanonicalType();
11007 
11008   if (QT->isVoidType())
11009     return false;
11010 
11011   if (Kind == ParamKindTy::Uniform)
11012     return false;
11013 
11014   if (Kind == ParamKindTy::Linear)
11015     return false;
11016 
11017   // TODO: Handle linear references with modifiers
11018 
11019   if (Kind == ParamKindTy::LinearWithVarStride)
11020     return false;
11021 
11022   return true;
11023 }
11024 
11025 /// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI.
getAArch64PBV(QualType QT,ASTContext & C)11026 static bool getAArch64PBV(QualType QT, ASTContext &C) {
11027   QT = QT.getCanonicalType();
11028   unsigned Size = C.getTypeSize(QT);
11029 
11030   // Only scalars and complex within 16 bytes wide set PVB to true.
11031   if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128)
11032     return false;
11033 
11034   if (QT->isFloatingType())
11035     return true;
11036 
11037   if (QT->isIntegerType())
11038     return true;
11039 
11040   if (QT->isPointerType())
11041     return true;
11042 
11043   // TODO: Add support for complex types (section 3.1.2, item 2).
11044 
11045   return false;
11046 }
11047 
11048 /// Computes the lane size (LS) of a return type or of an input parameter,
11049 /// as defined by `LS(P)` in 3.2.1 of the AAVFABI.
11050 /// TODO: Add support for references, section 3.2.1, item 1.
getAArch64LS(QualType QT,ParamKindTy Kind,ASTContext & C)11051 static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) {
11052   if (!getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) {
11053     QualType PTy = QT.getCanonicalType()->getPointeeType();
11054     if (getAArch64PBV(PTy, C))
11055       return C.getTypeSize(PTy);
11056   }
11057   if (getAArch64PBV(QT, C))
11058     return C.getTypeSize(QT);
11059 
11060   return C.getTypeSize(C.getUIntPtrType());
11061 }
11062 
11063 // Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the
11064 // signature of the scalar function, as defined in 3.2.2 of the
11065 // AAVFABI.
11066 static std::tuple<unsigned, unsigned, bool>
getNDSWDS(const FunctionDecl * FD,ArrayRef<ParamAttrTy> ParamAttrs)11067 getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) {
11068   QualType RetType = FD->getReturnType().getCanonicalType();
11069 
11070   ASTContext &C = FD->getASTContext();
11071 
11072   bool OutputBecomesInput = false;
11073 
11074   llvm::SmallVector<unsigned, 8> Sizes;
11075   if (!RetType->isVoidType()) {
11076     Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C));
11077     if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {}))
11078       OutputBecomesInput = true;
11079   }
11080   for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
11081     QualType QT = FD->getParamDecl(I)->getType().getCanonicalType();
11082     Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C));
11083   }
11084 
11085   assert(!Sizes.empty() && "Unable to determine NDS and WDS.");
11086   // The LS of a function parameter / return value can only be a power
11087   // of 2, starting from 8 bits, up to 128.
11088   assert(std::all_of(Sizes.begin(), Sizes.end(),
11089                      [](unsigned Size) {
11090                        return Size == 8 || Size == 16 || Size == 32 ||
11091                               Size == 64 || Size == 128;
11092                      }) &&
11093          "Invalid size");
11094 
11095   return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)),
11096                          *std::max_element(std::begin(Sizes), std::end(Sizes)),
11097                          OutputBecomesInput);
11098 }
11099 
11100 /// Mangle the parameter part of the vector function name according to
11101 /// their OpenMP classification. The mangling function is defined in
11102 /// section 3.5 of the AAVFABI.
mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs)11103 static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) {
11104   SmallString<256> Buffer;
11105   llvm::raw_svector_ostream Out(Buffer);
11106   for (const auto &ParamAttr : ParamAttrs) {
11107     switch (ParamAttr.Kind) {
11108     case LinearWithVarStride:
11109       Out << "ls" << ParamAttr.StrideOrArg;
11110       break;
11111     case Linear:
11112       Out << 'l';
11113       // Don't print the step value if it is not present or if it is
11114       // equal to 1.
11115       if (ParamAttr.StrideOrArg != 1)
11116         Out << ParamAttr.StrideOrArg;
11117       break;
11118     case Uniform:
11119       Out << 'u';
11120       break;
11121     case Vector:
11122       Out << 'v';
11123       break;
11124     }
11125 
11126     if (!!ParamAttr.Alignment)
11127       Out << 'a' << ParamAttr.Alignment;
11128   }
11129 
11130   return std::string(Out.str());
11131 }
11132 
11133 // Function used to add the attribute. The parameter `VLEN` is
11134 // templated to allow the use of "x" when targeting scalable functions
11135 // for SVE.
11136 template <typename T>
addAArch64VectorName(T VLEN,StringRef LMask,StringRef Prefix,char ISA,StringRef ParSeq,StringRef MangledName,bool OutputBecomesInput,llvm::Function * Fn)11137 static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix,
11138                                  char ISA, StringRef ParSeq,
11139                                  StringRef MangledName, bool OutputBecomesInput,
11140                                  llvm::Function *Fn) {
11141   SmallString<256> Buffer;
11142   llvm::raw_svector_ostream Out(Buffer);
11143   Out << Prefix << ISA << LMask << VLEN;
11144   if (OutputBecomesInput)
11145     Out << "v";
11146   Out << ParSeq << "_" << MangledName;
11147   Fn->addFnAttr(Out.str());
11148 }
11149 
11150 // Helper function to generate the Advanced SIMD names depending on
11151 // the value of the NDS when simdlen is not present.
addAArch64AdvSIMDNDSNames(unsigned NDS,StringRef Mask,StringRef Prefix,char ISA,StringRef ParSeq,StringRef MangledName,bool OutputBecomesInput,llvm::Function * Fn)11152 static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask,
11153                                       StringRef Prefix, char ISA,
11154                                       StringRef ParSeq, StringRef MangledName,
11155                                       bool OutputBecomesInput,
11156                                       llvm::Function *Fn) {
11157   switch (NDS) {
11158   case 8:
11159     addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
11160                          OutputBecomesInput, Fn);
11161     addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName,
11162                          OutputBecomesInput, Fn);
11163     break;
11164   case 16:
11165     addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
11166                          OutputBecomesInput, Fn);
11167     addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
11168                          OutputBecomesInput, Fn);
11169     break;
11170   case 32:
11171     addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
11172                          OutputBecomesInput, Fn);
11173     addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
11174                          OutputBecomesInput, Fn);
11175     break;
11176   case 64:
11177   case 128:
11178     addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
11179                          OutputBecomesInput, Fn);
11180     break;
11181   default:
11182     llvm_unreachable("Scalar type is too wide.");
11183   }
11184 }
11185 
11186 /// Emit vector function attributes for AArch64, as defined in the AAVFABI.
emitAArch64DeclareSimdFunction(CodeGenModule & CGM,const FunctionDecl * FD,unsigned UserVLEN,ArrayRef<ParamAttrTy> ParamAttrs,OMPDeclareSimdDeclAttr::BranchStateTy State,StringRef MangledName,char ISA,unsigned VecRegSize,llvm::Function * Fn,SourceLocation SLoc)11187 static void emitAArch64DeclareSimdFunction(
11188     CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN,
11189     ArrayRef<ParamAttrTy> ParamAttrs,
11190     OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName,
11191     char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) {
11192 
11193   // Get basic data for building the vector signature.
11194   const auto Data = getNDSWDS(FD, ParamAttrs);
11195   const unsigned NDS = std::get<0>(Data);
11196   const unsigned WDS = std::get<1>(Data);
11197   const bool OutputBecomesInput = std::get<2>(Data);
11198 
11199   // Check the values provided via `simdlen` by the user.
11200   // 1. A `simdlen(1)` doesn't produce vector signatures,
11201   if (UserVLEN == 1) {
11202     unsigned DiagID = CGM.getDiags().getCustomDiagID(
11203         DiagnosticsEngine::Warning,
11204         "The clause simdlen(1) has no effect when targeting aarch64.");
11205     CGM.getDiags().Report(SLoc, DiagID);
11206     return;
11207   }
11208 
11209   // 2. Section 3.3.1, item 1: user input must be a power of 2 for
11210   // Advanced SIMD output.
11211   if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) {
11212     unsigned DiagID = CGM.getDiags().getCustomDiagID(
11213         DiagnosticsEngine::Warning, "The value specified in simdlen must be a "
11214                                     "power of 2 when targeting Advanced SIMD.");
11215     CGM.getDiags().Report(SLoc, DiagID);
11216     return;
11217   }
11218 
11219   // 3. Section 3.4.1. SVE fixed lengh must obey the architectural
11220   // limits.
11221   if (ISA == 's' && UserVLEN != 0) {
11222     if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) {
11223       unsigned DiagID = CGM.getDiags().getCustomDiagID(
11224           DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit "
11225                                       "lanes in the architectural constraints "
11226                                       "for SVE (min is 128-bit, max is "
11227                                       "2048-bit, by steps of 128-bit)");
11228       CGM.getDiags().Report(SLoc, DiagID) << WDS;
11229       return;
11230     }
11231   }
11232 
11233   // Sort out parameter sequence.
11234   const std::string ParSeq = mangleVectorParameters(ParamAttrs);
11235   StringRef Prefix = "_ZGV";
11236   // Generate simdlen from user input (if any).
11237   if (UserVLEN) {
11238     if (ISA == 's') {
11239       // SVE generates only a masked function.
11240       addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
11241                            OutputBecomesInput, Fn);
11242     } else {
11243       assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
11244       // Advanced SIMD generates one or two functions, depending on
11245       // the `[not]inbranch` clause.
11246       switch (State) {
11247       case OMPDeclareSimdDeclAttr::BS_Undefined:
11248         addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
11249                              OutputBecomesInput, Fn);
11250         addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
11251                              OutputBecomesInput, Fn);
11252         break;
11253       case OMPDeclareSimdDeclAttr::BS_Notinbranch:
11254         addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
11255                              OutputBecomesInput, Fn);
11256         break;
11257       case OMPDeclareSimdDeclAttr::BS_Inbranch:
11258         addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
11259                              OutputBecomesInput, Fn);
11260         break;
11261       }
11262     }
11263   } else {
11264     // If no user simdlen is provided, follow the AAVFABI rules for
11265     // generating the vector length.
11266     if (ISA == 's') {
11267       // SVE, section 3.4.1, item 1.
11268       addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName,
11269                            OutputBecomesInput, Fn);
11270     } else {
11271       assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
11272       // Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or
11273       // two vector names depending on the use of the clause
11274       // `[not]inbranch`.
11275       switch (State) {
11276       case OMPDeclareSimdDeclAttr::BS_Undefined:
11277         addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
11278                                   OutputBecomesInput, Fn);
11279         addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
11280                                   OutputBecomesInput, Fn);
11281         break;
11282       case OMPDeclareSimdDeclAttr::BS_Notinbranch:
11283         addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
11284                                   OutputBecomesInput, Fn);
11285         break;
11286       case OMPDeclareSimdDeclAttr::BS_Inbranch:
11287         addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
11288                                   OutputBecomesInput, Fn);
11289         break;
11290       }
11291     }
11292   }
11293 }
11294 
emitDeclareSimdFunction(const FunctionDecl * FD,llvm::Function * Fn)11295 void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
11296                                               llvm::Function *Fn) {
11297   ASTContext &C = CGM.getContext();
11298   FD = FD->getMostRecentDecl();
11299   // Map params to their positions in function decl.
11300   llvm::DenseMap<const Decl *, unsigned> ParamPositions;
11301   if (isa<CXXMethodDecl>(FD))
11302     ParamPositions.try_emplace(FD, 0);
11303   unsigned ParamPos = ParamPositions.size();
11304   for (const ParmVarDecl *P : FD->parameters()) {
11305     ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos);
11306     ++ParamPos;
11307   }
11308   while (FD) {
11309     for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
11310       llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
11311       // Mark uniform parameters.
11312       for (const Expr *E : Attr->uniforms()) {
11313         E = E->IgnoreParenImpCasts();
11314         unsigned Pos;
11315         if (isa<CXXThisExpr>(E)) {
11316           Pos = ParamPositions[FD];
11317         } else {
11318           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
11319                                 ->getCanonicalDecl();
11320           Pos = ParamPositions[PVD];
11321         }
11322         ParamAttrs[Pos].Kind = Uniform;
11323       }
11324       // Get alignment info.
11325       auto NI = Attr->alignments_begin();
11326       for (const Expr *E : Attr->aligneds()) {
11327         E = E->IgnoreParenImpCasts();
11328         unsigned Pos;
11329         QualType ParmTy;
11330         if (isa<CXXThisExpr>(E)) {
11331           Pos = ParamPositions[FD];
11332           ParmTy = E->getType();
11333         } else {
11334           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
11335                                 ->getCanonicalDecl();
11336           Pos = ParamPositions[PVD];
11337           ParmTy = PVD->getType();
11338         }
11339         ParamAttrs[Pos].Alignment =
11340             (*NI)
11341                 ? (*NI)->EvaluateKnownConstInt(C)
11342                 : llvm::APSInt::getUnsigned(
11343                       C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
11344                           .getQuantity());
11345         ++NI;
11346       }
11347       // Mark linear parameters.
11348       auto SI = Attr->steps_begin();
11349       auto MI = Attr->modifiers_begin();
11350       for (const Expr *E : Attr->linears()) {
11351         E = E->IgnoreParenImpCasts();
11352         unsigned Pos;
11353         // Rescaling factor needed to compute the linear parameter
11354         // value in the mangled name.
11355         unsigned PtrRescalingFactor = 1;
11356         if (isa<CXXThisExpr>(E)) {
11357           Pos = ParamPositions[FD];
11358         } else {
11359           const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
11360                                 ->getCanonicalDecl();
11361           Pos = ParamPositions[PVD];
11362           if (auto *P = dyn_cast<PointerType>(PVD->getType()))
11363             PtrRescalingFactor = CGM.getContext()
11364                                      .getTypeSizeInChars(P->getPointeeType())
11365                                      .getQuantity();
11366         }
11367         ParamAttrTy &ParamAttr = ParamAttrs[Pos];
11368         ParamAttr.Kind = Linear;
11369         // Assuming a stride of 1, for `linear` without modifiers.
11370         ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(1);
11371         if (*SI) {
11372           Expr::EvalResult Result;
11373           if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) {
11374             if (const auto *DRE =
11375                     cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
11376               if (const auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) {
11377                 ParamAttr.Kind = LinearWithVarStride;
11378                 ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(
11379                     ParamPositions[StridePVD->getCanonicalDecl()]);
11380               }
11381             }
11382           } else {
11383             ParamAttr.StrideOrArg = Result.Val.getInt();
11384           }
11385         }
11386         // If we are using a linear clause on a pointer, we need to
11387         // rescale the value of linear_step with the byte size of the
11388         // pointee type.
11389         if (Linear == ParamAttr.Kind)
11390           ParamAttr.StrideOrArg = ParamAttr.StrideOrArg * PtrRescalingFactor;
11391         ++SI;
11392         ++MI;
11393       }
11394       llvm::APSInt VLENVal;
11395       SourceLocation ExprLoc;
11396       const Expr *VLENExpr = Attr->getSimdlen();
11397       if (VLENExpr) {
11398         VLENVal = VLENExpr->EvaluateKnownConstInt(C);
11399         ExprLoc = VLENExpr->getExprLoc();
11400       }
11401       OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
11402       if (CGM.getTriple().isX86()) {
11403         emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
11404       } else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) {
11405         unsigned VLEN = VLENVal.getExtValue();
11406         StringRef MangledName = Fn->getName();
11407         if (CGM.getTarget().hasFeature("sve"))
11408           emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
11409                                          MangledName, 's', 128, Fn, ExprLoc);
11410         if (CGM.getTarget().hasFeature("neon"))
11411           emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
11412                                          MangledName, 'n', 128, Fn, ExprLoc);
11413       }
11414     }
11415     FD = FD->getPreviousDecl();
11416   }
11417 }
11418 
11419 namespace {
11420 /// Cleanup action for doacross support.
11421 class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
11422 public:
11423   static const int DoacrossFinArgs = 2;
11424 
11425 private:
11426   llvm::FunctionCallee RTLFn;
11427   llvm::Value *Args[DoacrossFinArgs];
11428 
11429 public:
DoacrossCleanupTy(llvm::FunctionCallee RTLFn,ArrayRef<llvm::Value * > CallArgs)11430   DoacrossCleanupTy(llvm::FunctionCallee RTLFn,
11431                     ArrayRef<llvm::Value *> CallArgs)
11432       : RTLFn(RTLFn) {
11433     assert(CallArgs.size() == DoacrossFinArgs);
11434     std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
11435   }
Emit(CodeGenFunction & CGF,Flags)11436   void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
11437     if (!CGF.HaveInsertPoint())
11438       return;
11439     CGF.EmitRuntimeCall(RTLFn, Args);
11440   }
11441 };
11442 } // namespace
11443 
emitDoacrossInit(CodeGenFunction & CGF,const OMPLoopDirective & D,ArrayRef<Expr * > NumIterations)11444 void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
11445                                        const OMPLoopDirective &D,
11446                                        ArrayRef<Expr *> NumIterations) {
11447   if (!CGF.HaveInsertPoint())
11448     return;
11449 
11450   ASTContext &C = CGM.getContext();
11451   QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
11452   RecordDecl *RD;
11453   if (KmpDimTy.isNull()) {
11454     // Build struct kmp_dim {  // loop bounds info casted to kmp_int64
11455     //  kmp_int64 lo; // lower
11456     //  kmp_int64 up; // upper
11457     //  kmp_int64 st; // stride
11458     // };
11459     RD = C.buildImplicitRecord("kmp_dim");
11460     RD->startDefinition();
11461     addFieldToRecordDecl(C, RD, Int64Ty);
11462     addFieldToRecordDecl(C, RD, Int64Ty);
11463     addFieldToRecordDecl(C, RD, Int64Ty);
11464     RD->completeDefinition();
11465     KmpDimTy = C.getRecordType(RD);
11466   } else {
11467     RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
11468   }
11469   llvm::APInt Size(/*numBits=*/32, NumIterations.size());
11470   QualType ArrayTy =
11471       C.getConstantArrayType(KmpDimTy, Size, nullptr, ArrayType::Normal, 0);
11472 
11473   Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
11474   CGF.EmitNullInitialization(DimsAddr, ArrayTy);
11475   enum { LowerFD = 0, UpperFD, StrideFD };
11476   // Fill dims with data.
11477   for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) {
11478     LValue DimsLVal = CGF.MakeAddrLValue(
11479         CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy);
11480     // dims.upper = num_iterations;
11481     LValue UpperLVal = CGF.EmitLValueForField(
11482         DimsLVal, *std::next(RD->field_begin(), UpperFD));
11483     llvm::Value *NumIterVal = CGF.EmitScalarConversion(
11484         CGF.EmitScalarExpr(NumIterations[I]), NumIterations[I]->getType(),
11485         Int64Ty, NumIterations[I]->getExprLoc());
11486     CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
11487     // dims.stride = 1;
11488     LValue StrideLVal = CGF.EmitLValueForField(
11489         DimsLVal, *std::next(RD->field_begin(), StrideFD));
11490     CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
11491                           StrideLVal);
11492   }
11493 
11494   // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
11495   // kmp_int32 num_dims, struct kmp_dim * dims);
11496   llvm::Value *Args[] = {
11497       emitUpdateLocation(CGF, D.getBeginLoc()),
11498       getThreadID(CGF, D.getBeginLoc()),
11499       llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()),
11500       CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
11501           CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).getPointer(),
11502           CGM.VoidPtrTy)};
11503 
11504   llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction(
11505       CGM.getModule(), OMPRTL___kmpc_doacross_init);
11506   CGF.EmitRuntimeCall(RTLFn, Args);
11507   llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
11508       emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())};
11509   llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction(
11510       CGM.getModule(), OMPRTL___kmpc_doacross_fini);
11511   CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
11512                                              llvm::makeArrayRef(FiniArgs));
11513 }
11514 
emitDoacrossOrdered(CodeGenFunction & CGF,const OMPDependClause * C)11515 void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
11516                                           const OMPDependClause *C) {
11517   QualType Int64Ty =
11518       CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
11519   llvm::APInt Size(/*numBits=*/32, C->getNumLoops());
11520   QualType ArrayTy = CGM.getContext().getConstantArrayType(
11521       Int64Ty, Size, nullptr, ArrayType::Normal, 0);
11522   Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr");
11523   for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) {
11524     const Expr *CounterVal = C->getLoopData(I);
11525     assert(CounterVal);
11526     llvm::Value *CntVal = CGF.EmitScalarConversion(
11527         CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty,
11528         CounterVal->getExprLoc());
11529     CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I),
11530                           /*Volatile=*/false, Int64Ty);
11531   }
11532   llvm::Value *Args[] = {
11533       emitUpdateLocation(CGF, C->getBeginLoc()),
11534       getThreadID(CGF, C->getBeginLoc()),
11535       CGF.Builder.CreateConstArrayGEP(CntAddr, 0).getPointer()};
11536   llvm::FunctionCallee RTLFn;
11537   if (C->getDependencyKind() == OMPC_DEPEND_source) {
11538     RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
11539                                                   OMPRTL___kmpc_doacross_post);
11540   } else {
11541     assert(C->getDependencyKind() == OMPC_DEPEND_sink);
11542     RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
11543                                                   OMPRTL___kmpc_doacross_wait);
11544   }
11545   CGF.EmitRuntimeCall(RTLFn, Args);
11546 }
11547 
emitCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee Callee,ArrayRef<llvm::Value * > Args) const11548 void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc,
11549                                llvm::FunctionCallee Callee,
11550                                ArrayRef<llvm::Value *> Args) const {
11551   assert(Loc.isValid() && "Outlined function call location must be valid.");
11552   auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
11553 
11554   if (auto *Fn = dyn_cast<llvm::Function>(Callee.getCallee())) {
11555     if (Fn->doesNotThrow()) {
11556       CGF.EmitNounwindRuntimeCall(Fn, Args);
11557       return;
11558     }
11559   }
11560   CGF.EmitRuntimeCall(Callee, Args);
11561 }
11562 
emitOutlinedFunctionCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee OutlinedFn,ArrayRef<llvm::Value * > Args) const11563 void CGOpenMPRuntime::emitOutlinedFunctionCall(
11564     CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
11565     ArrayRef<llvm::Value *> Args) const {
11566   emitCall(CGF, Loc, OutlinedFn, Args);
11567 }
11568 
emitFunctionProlog(CodeGenFunction & CGF,const Decl * D)11569 void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) {
11570   if (const auto *FD = dyn_cast<FunctionDecl>(D))
11571     if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD))
11572       HasEmittedDeclareTargetRegion = true;
11573 }
11574 
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const11575 Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF,
11576                                              const VarDecl *NativeParam,
11577                                              const VarDecl *TargetParam) const {
11578   return CGF.GetAddrOfLocalVar(NativeParam);
11579 }
11580 
getAddressOfLocalVariable(CodeGenFunction & CGF,const VarDecl * VD)11581 Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF,
11582                                                    const VarDecl *VD) {
11583   if (!VD)
11584     return Address::invalid();
11585   Address UntiedAddr = Address::invalid();
11586   Address UntiedRealAddr = Address::invalid();
11587   auto It = FunctionToUntiedTaskStackMap.find(CGF.CurFn);
11588   if (It != FunctionToUntiedTaskStackMap.end()) {
11589     const UntiedLocalVarsAddressesMap &UntiedData =
11590         UntiedLocalVarsStack[It->second];
11591     auto I = UntiedData.find(VD);
11592     if (I != UntiedData.end()) {
11593       UntiedAddr = I->second.first;
11594       UntiedRealAddr = I->second.second;
11595     }
11596   }
11597   const VarDecl *CVD = VD->getCanonicalDecl();
11598   if (CVD->hasAttr<OMPAllocateDeclAttr>()) {
11599     // Use the default allocation.
11600     if (!isAllocatableDecl(VD))
11601       return UntiedAddr;
11602     llvm::Value *Size;
11603     CharUnits Align = CGM.getContext().getDeclAlign(CVD);
11604     if (CVD->getType()->isVariablyModifiedType()) {
11605       Size = CGF.getTypeSize(CVD->getType());
11606       // Align the size: ((size + align - 1) / align) * align
11607       Size = CGF.Builder.CreateNUWAdd(
11608           Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
11609       Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
11610       Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
11611     } else {
11612       CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
11613       Size = CGM.getSize(Sz.alignTo(Align));
11614     }
11615     llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc());
11616     const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
11617     assert(AA->getAllocator() &&
11618            "Expected allocator expression for non-default allocator.");
11619     llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator());
11620     // According to the standard, the original allocator type is a enum
11621     // (integer). Convert to pointer type, if required.
11622     Allocator = CGF.EmitScalarConversion(
11623         Allocator, AA->getAllocator()->getType(), CGF.getContext().VoidPtrTy,
11624         AA->getAllocator()->getExprLoc());
11625     llvm::Value *Args[] = {ThreadID, Size, Allocator};
11626 
11627     llvm::Value *Addr =
11628         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
11629                                 CGM.getModule(), OMPRTL___kmpc_alloc),
11630                             Args, getName({CVD->getName(), ".void.addr"}));
11631     llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction(
11632         CGM.getModule(), OMPRTL___kmpc_free);
11633     QualType Ty = CGM.getContext().getPointerType(CVD->getType());
11634     Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
11635         Addr, CGF.ConvertTypeForMem(Ty), getName({CVD->getName(), ".addr"}));
11636     if (UntiedAddr.isValid())
11637       CGF.EmitStoreOfScalar(Addr, UntiedAddr, /*Volatile=*/false, Ty);
11638 
11639     // Cleanup action for allocate support.
11640     class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
11641       llvm::FunctionCallee RTLFn;
11642       unsigned LocEncoding;
11643       Address Addr;
11644       const Expr *Allocator;
11645 
11646     public:
11647       OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn, unsigned LocEncoding,
11648                            Address Addr, const Expr *Allocator)
11649           : RTLFn(RTLFn), LocEncoding(LocEncoding), Addr(Addr),
11650             Allocator(Allocator) {}
11651       void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
11652         if (!CGF.HaveInsertPoint())
11653           return;
11654         llvm::Value *Args[3];
11655         Args[0] = CGF.CGM.getOpenMPRuntime().getThreadID(
11656             CGF, SourceLocation::getFromRawEncoding(LocEncoding));
11657         Args[1] = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
11658             Addr.getPointer(), CGF.VoidPtrTy);
11659         llvm::Value *AllocVal = CGF.EmitScalarExpr(Allocator);
11660         // According to the standard, the original allocator type is a enum
11661         // (integer). Convert to pointer type, if required.
11662         AllocVal = CGF.EmitScalarConversion(AllocVal, Allocator->getType(),
11663                                             CGF.getContext().VoidPtrTy,
11664                                             Allocator->getExprLoc());
11665         Args[2] = AllocVal;
11666 
11667         CGF.EmitRuntimeCall(RTLFn, Args);
11668       }
11669     };
11670     Address VDAddr =
11671         UntiedRealAddr.isValid() ? UntiedRealAddr : Address(Addr, Align);
11672     CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(
11673         NormalAndEHCleanup, FiniRTLFn, CVD->getLocation().getRawEncoding(),
11674         VDAddr, AA->getAllocator());
11675     if (UntiedRealAddr.isValid())
11676       if (auto *Region =
11677               dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
11678         Region->emitUntiedSwitch(CGF);
11679     return VDAddr;
11680   }
11681   return UntiedAddr;
11682 }
11683 
isLocalVarInUntiedTask(CodeGenFunction & CGF,const VarDecl * VD) const11684 bool CGOpenMPRuntime::isLocalVarInUntiedTask(CodeGenFunction &CGF,
11685                                              const VarDecl *VD) const {
11686   auto It = FunctionToUntiedTaskStackMap.find(CGF.CurFn);
11687   if (It == FunctionToUntiedTaskStackMap.end())
11688     return false;
11689   return UntiedLocalVarsStack[It->second].count(VD) > 0;
11690 }
11691 
NontemporalDeclsRAII(CodeGenModule & CGM,const OMPLoopDirective & S)11692 CGOpenMPRuntime::NontemporalDeclsRAII::NontemporalDeclsRAII(
11693     CodeGenModule &CGM, const OMPLoopDirective &S)
11694     : CGM(CGM), NeedToPush(S.hasClausesOfKind<OMPNontemporalClause>()) {
11695   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
11696   if (!NeedToPush)
11697     return;
11698   NontemporalDeclsSet &DS =
11699       CGM.getOpenMPRuntime().NontemporalDeclsStack.emplace_back();
11700   for (const auto *C : S.getClausesOfKind<OMPNontemporalClause>()) {
11701     for (const Stmt *Ref : C->private_refs()) {
11702       const auto *SimpleRefExpr = cast<Expr>(Ref)->IgnoreParenImpCasts();
11703       const ValueDecl *VD;
11704       if (const auto *DRE = dyn_cast<DeclRefExpr>(SimpleRefExpr)) {
11705         VD = DRE->getDecl();
11706       } else {
11707         const auto *ME = cast<MemberExpr>(SimpleRefExpr);
11708         assert((ME->isImplicitCXXThis() ||
11709                 isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts())) &&
11710                "Expected member of current class.");
11711         VD = ME->getMemberDecl();
11712       }
11713       DS.insert(VD);
11714     }
11715   }
11716 }
11717 
~NontemporalDeclsRAII()11718 CGOpenMPRuntime::NontemporalDeclsRAII::~NontemporalDeclsRAII() {
11719   if (!NeedToPush)
11720     return;
11721   CGM.getOpenMPRuntime().NontemporalDeclsStack.pop_back();
11722 }
11723 
UntiedTaskLocalDeclsRAII(CodeGenFunction & CGF,const llvm::DenseMap<CanonicalDeclPtr<const VarDecl>,std::pair<Address,Address>> & LocalVars)11724 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII::UntiedTaskLocalDeclsRAII(
11725     CodeGenFunction &CGF,
11726     const llvm::DenseMap<CanonicalDeclPtr<const VarDecl>,
11727                          std::pair<Address, Address>> &LocalVars)
11728     : CGM(CGF.CGM), NeedToPush(!LocalVars.empty()) {
11729   if (!NeedToPush)
11730     return;
11731   CGM.getOpenMPRuntime().FunctionToUntiedTaskStackMap.try_emplace(
11732       CGF.CurFn, CGM.getOpenMPRuntime().UntiedLocalVarsStack.size());
11733   CGM.getOpenMPRuntime().UntiedLocalVarsStack.push_back(LocalVars);
11734 }
11735 
~UntiedTaskLocalDeclsRAII()11736 CGOpenMPRuntime::UntiedTaskLocalDeclsRAII::~UntiedTaskLocalDeclsRAII() {
11737   if (!NeedToPush)
11738     return;
11739   CGM.getOpenMPRuntime().UntiedLocalVarsStack.pop_back();
11740 }
11741 
isNontemporalDecl(const ValueDecl * VD) const11742 bool CGOpenMPRuntime::isNontemporalDecl(const ValueDecl *VD) const {
11743   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
11744 
11745   return llvm::any_of(
11746       CGM.getOpenMPRuntime().NontemporalDeclsStack,
11747       [VD](const NontemporalDeclsSet &Set) { return Set.count(VD) > 0; });
11748 }
11749 
tryToDisableInnerAnalysis(const OMPExecutableDirective & S,llvm::DenseSet<CanonicalDeclPtr<const Decl>> & NeedToAddForLPCsAsDisabled) const11750 void CGOpenMPRuntime::LastprivateConditionalRAII::tryToDisableInnerAnalysis(
11751     const OMPExecutableDirective &S,
11752     llvm::DenseSet<CanonicalDeclPtr<const Decl>> &NeedToAddForLPCsAsDisabled)
11753     const {
11754   llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToCheckForLPCs;
11755   // Vars in target/task regions must be excluded completely.
11756   if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()) ||
11757       isOpenMPTaskingDirective(S.getDirectiveKind())) {
11758     SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
11759     getOpenMPCaptureRegions(CaptureRegions, S.getDirectiveKind());
11760     const CapturedStmt *CS = S.getCapturedStmt(CaptureRegions.front());
11761     for (const CapturedStmt::Capture &Cap : CS->captures()) {
11762       if (Cap.capturesVariable() || Cap.capturesVariableByCopy())
11763         NeedToCheckForLPCs.insert(Cap.getCapturedVar());
11764     }
11765   }
11766   // Exclude vars in private clauses.
11767   for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
11768     for (const Expr *Ref : C->varlists()) {
11769       if (!Ref->getType()->isScalarType())
11770         continue;
11771       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11772       if (!DRE)
11773         continue;
11774       NeedToCheckForLPCs.insert(DRE->getDecl());
11775     }
11776   }
11777   for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
11778     for (const Expr *Ref : C->varlists()) {
11779       if (!Ref->getType()->isScalarType())
11780         continue;
11781       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11782       if (!DRE)
11783         continue;
11784       NeedToCheckForLPCs.insert(DRE->getDecl());
11785     }
11786   }
11787   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
11788     for (const Expr *Ref : C->varlists()) {
11789       if (!Ref->getType()->isScalarType())
11790         continue;
11791       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11792       if (!DRE)
11793         continue;
11794       NeedToCheckForLPCs.insert(DRE->getDecl());
11795     }
11796   }
11797   for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
11798     for (const Expr *Ref : C->varlists()) {
11799       if (!Ref->getType()->isScalarType())
11800         continue;
11801       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11802       if (!DRE)
11803         continue;
11804       NeedToCheckForLPCs.insert(DRE->getDecl());
11805     }
11806   }
11807   for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) {
11808     for (const Expr *Ref : C->varlists()) {
11809       if (!Ref->getType()->isScalarType())
11810         continue;
11811       const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
11812       if (!DRE)
11813         continue;
11814       NeedToCheckForLPCs.insert(DRE->getDecl());
11815     }
11816   }
11817   for (const Decl *VD : NeedToCheckForLPCs) {
11818     for (const LastprivateConditionalData &Data :
11819          llvm::reverse(CGM.getOpenMPRuntime().LastprivateConditionalStack)) {
11820       if (Data.DeclToUniqueName.count(VD) > 0) {
11821         if (!Data.Disabled)
11822           NeedToAddForLPCsAsDisabled.insert(VD);
11823         break;
11824       }
11825     }
11826   }
11827 }
11828 
LastprivateConditionalRAII(CodeGenFunction & CGF,const OMPExecutableDirective & S,LValue IVLVal)11829 CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII(
11830     CodeGenFunction &CGF, const OMPExecutableDirective &S, LValue IVLVal)
11831     : CGM(CGF.CGM),
11832       Action((CGM.getLangOpts().OpenMP >= 50 &&
11833               llvm::any_of(S.getClausesOfKind<OMPLastprivateClause>(),
11834                            [](const OMPLastprivateClause *C) {
11835                              return C->getKind() ==
11836                                     OMPC_LASTPRIVATE_conditional;
11837                            }))
11838                  ? ActionToDo::PushAsLastprivateConditional
11839                  : ActionToDo::DoNotPush) {
11840   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
11841   if (CGM.getLangOpts().OpenMP < 50 || Action == ActionToDo::DoNotPush)
11842     return;
11843   assert(Action == ActionToDo::PushAsLastprivateConditional &&
11844          "Expected a push action.");
11845   LastprivateConditionalData &Data =
11846       CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back();
11847   for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
11848     if (C->getKind() != OMPC_LASTPRIVATE_conditional)
11849       continue;
11850 
11851     for (const Expr *Ref : C->varlists()) {
11852       Data.DeclToUniqueName.insert(std::make_pair(
11853           cast<DeclRefExpr>(Ref->IgnoreParenImpCasts())->getDecl(),
11854           SmallString<16>(generateUniqueName(CGM, "pl_cond", Ref))));
11855     }
11856   }
11857   Data.IVLVal = IVLVal;
11858   Data.Fn = CGF.CurFn;
11859 }
11860 
LastprivateConditionalRAII(CodeGenFunction & CGF,const OMPExecutableDirective & S)11861 CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII(
11862     CodeGenFunction &CGF, const OMPExecutableDirective &S)
11863     : CGM(CGF.CGM), Action(ActionToDo::DoNotPush) {
11864   assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
11865   if (CGM.getLangOpts().OpenMP < 50)
11866     return;
11867   llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToAddForLPCsAsDisabled;
11868   tryToDisableInnerAnalysis(S, NeedToAddForLPCsAsDisabled);
11869   if (!NeedToAddForLPCsAsDisabled.empty()) {
11870     Action = ActionToDo::DisableLastprivateConditional;
11871     LastprivateConditionalData &Data =
11872         CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back();
11873     for (const Decl *VD : NeedToAddForLPCsAsDisabled)
11874       Data.DeclToUniqueName.insert(std::make_pair(VD, SmallString<16>()));
11875     Data.Fn = CGF.CurFn;
11876     Data.Disabled = true;
11877   }
11878 }
11879 
11880 CGOpenMPRuntime::LastprivateConditionalRAII
disable(CodeGenFunction & CGF,const OMPExecutableDirective & S)11881 CGOpenMPRuntime::LastprivateConditionalRAII::disable(
11882     CodeGenFunction &CGF, const OMPExecutableDirective &S) {
11883   return LastprivateConditionalRAII(CGF, S);
11884 }
11885 
~LastprivateConditionalRAII()11886 CGOpenMPRuntime::LastprivateConditionalRAII::~LastprivateConditionalRAII() {
11887   if (CGM.getLangOpts().OpenMP < 50)
11888     return;
11889   if (Action == ActionToDo::DisableLastprivateConditional) {
11890     assert(CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&
11891            "Expected list of disabled private vars.");
11892     CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back();
11893   }
11894   if (Action == ActionToDo::PushAsLastprivateConditional) {
11895     assert(
11896         !CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&
11897         "Expected list of lastprivate conditional vars.");
11898     CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back();
11899   }
11900 }
11901 
emitLastprivateConditionalInit(CodeGenFunction & CGF,const VarDecl * VD)11902 Address CGOpenMPRuntime::emitLastprivateConditionalInit(CodeGenFunction &CGF,
11903                                                         const VarDecl *VD) {
11904   ASTContext &C = CGM.getContext();
11905   auto I = LastprivateConditionalToTypes.find(CGF.CurFn);
11906   if (I == LastprivateConditionalToTypes.end())
11907     I = LastprivateConditionalToTypes.try_emplace(CGF.CurFn).first;
11908   QualType NewType;
11909   const FieldDecl *VDField;
11910   const FieldDecl *FiredField;
11911   LValue BaseLVal;
11912   auto VI = I->getSecond().find(VD);
11913   if (VI == I->getSecond().end()) {
11914     RecordDecl *RD = C.buildImplicitRecord("lasprivate.conditional");
11915     RD->startDefinition();
11916     VDField = addFieldToRecordDecl(C, RD, VD->getType().getNonReferenceType());
11917     FiredField = addFieldToRecordDecl(C, RD, C.CharTy);
11918     RD->completeDefinition();
11919     NewType = C.getRecordType(RD);
11920     Address Addr = CGF.CreateMemTemp(NewType, C.getDeclAlign(VD), VD->getName());
11921     BaseLVal = CGF.MakeAddrLValue(Addr, NewType, AlignmentSource::Decl);
11922     I->getSecond().try_emplace(VD, NewType, VDField, FiredField, BaseLVal);
11923   } else {
11924     NewType = std::get<0>(VI->getSecond());
11925     VDField = std::get<1>(VI->getSecond());
11926     FiredField = std::get<2>(VI->getSecond());
11927     BaseLVal = std::get<3>(VI->getSecond());
11928   }
11929   LValue FiredLVal =
11930       CGF.EmitLValueForField(BaseLVal, FiredField);
11931   CGF.EmitStoreOfScalar(
11932       llvm::ConstantInt::getNullValue(CGF.ConvertTypeForMem(C.CharTy)),
11933       FiredLVal);
11934   return CGF.EmitLValueForField(BaseLVal, VDField).getAddress(CGF);
11935 }
11936 
11937 namespace {
11938 /// Checks if the lastprivate conditional variable is referenced in LHS.
11939 class LastprivateConditionalRefChecker final
11940     : public ConstStmtVisitor<LastprivateConditionalRefChecker, bool> {
11941   ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM;
11942   const Expr *FoundE = nullptr;
11943   const Decl *FoundD = nullptr;
11944   StringRef UniqueDeclName;
11945   LValue IVLVal;
11946   llvm::Function *FoundFn = nullptr;
11947   SourceLocation Loc;
11948 
11949 public:
VisitDeclRefExpr(const DeclRefExpr * E)11950   bool VisitDeclRefExpr(const DeclRefExpr *E) {
11951     for (const CGOpenMPRuntime::LastprivateConditionalData &D :
11952          llvm::reverse(LPM)) {
11953       auto It = D.DeclToUniqueName.find(E->getDecl());
11954       if (It == D.DeclToUniqueName.end())
11955         continue;
11956       if (D.Disabled)
11957         return false;
11958       FoundE = E;
11959       FoundD = E->getDecl()->getCanonicalDecl();
11960       UniqueDeclName = It->second;
11961       IVLVal = D.IVLVal;
11962       FoundFn = D.Fn;
11963       break;
11964     }
11965     return FoundE == E;
11966   }
VisitMemberExpr(const MemberExpr * E)11967   bool VisitMemberExpr(const MemberExpr *E) {
11968     if (!CodeGenFunction::IsWrappedCXXThis(E->getBase()))
11969       return false;
11970     for (const CGOpenMPRuntime::LastprivateConditionalData &D :
11971          llvm::reverse(LPM)) {
11972       auto It = D.DeclToUniqueName.find(E->getMemberDecl());
11973       if (It == D.DeclToUniqueName.end())
11974         continue;
11975       if (D.Disabled)
11976         return false;
11977       FoundE = E;
11978       FoundD = E->getMemberDecl()->getCanonicalDecl();
11979       UniqueDeclName = It->second;
11980       IVLVal = D.IVLVal;
11981       FoundFn = D.Fn;
11982       break;
11983     }
11984     return FoundE == E;
11985   }
VisitStmt(const Stmt * S)11986   bool VisitStmt(const Stmt *S) {
11987     for (const Stmt *Child : S->children()) {
11988       if (!Child)
11989         continue;
11990       if (const auto *E = dyn_cast<Expr>(Child))
11991         if (!E->isGLValue())
11992           continue;
11993       if (Visit(Child))
11994         return true;
11995     }
11996     return false;
11997   }
LastprivateConditionalRefChecker(ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM)11998   explicit LastprivateConditionalRefChecker(
11999       ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM)
12000       : LPM(LPM) {}
12001   std::tuple<const Expr *, const Decl *, StringRef, LValue, llvm::Function *>
getFoundData() const12002   getFoundData() const {
12003     return std::make_tuple(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn);
12004   }
12005 };
12006 } // namespace
12007 
emitLastprivateConditionalUpdate(CodeGenFunction & CGF,LValue IVLVal,StringRef UniqueDeclName,LValue LVal,SourceLocation Loc)12008 void CGOpenMPRuntime::emitLastprivateConditionalUpdate(CodeGenFunction &CGF,
12009                                                        LValue IVLVal,
12010                                                        StringRef UniqueDeclName,
12011                                                        LValue LVal,
12012                                                        SourceLocation Loc) {
12013   // Last updated loop counter for the lastprivate conditional var.
12014   // int<xx> last_iv = 0;
12015   llvm::Type *LLIVTy = CGF.ConvertTypeForMem(IVLVal.getType());
12016   llvm::Constant *LastIV =
12017       getOrCreateInternalVariable(LLIVTy, getName({UniqueDeclName, "iv"}));
12018   cast<llvm::GlobalVariable>(LastIV)->setAlignment(
12019       IVLVal.getAlignment().getAsAlign());
12020   LValue LastIVLVal = CGF.MakeNaturalAlignAddrLValue(LastIV, IVLVal.getType());
12021 
12022   // Last value of the lastprivate conditional.
12023   // decltype(priv_a) last_a;
12024   llvm::Constant *Last = getOrCreateInternalVariable(
12025       CGF.ConvertTypeForMem(LVal.getType()), UniqueDeclName);
12026   cast<llvm::GlobalVariable>(Last)->setAlignment(
12027       LVal.getAlignment().getAsAlign());
12028   LValue LastLVal =
12029       CGF.MakeAddrLValue(Last, LVal.getType(), LVal.getAlignment());
12030 
12031   // Global loop counter. Required to handle inner parallel-for regions.
12032   // iv
12033   llvm::Value *IVVal = CGF.EmitLoadOfScalar(IVLVal, Loc);
12034 
12035   // #pragma omp critical(a)
12036   // if (last_iv <= iv) {
12037   //   last_iv = iv;
12038   //   last_a = priv_a;
12039   // }
12040   auto &&CodeGen = [&LastIVLVal, &IVLVal, IVVal, &LVal, &LastLVal,
12041                     Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
12042     Action.Enter(CGF);
12043     llvm::Value *LastIVVal = CGF.EmitLoadOfScalar(LastIVLVal, Loc);
12044     // (last_iv <= iv) ? Check if the variable is updated and store new
12045     // value in global var.
12046     llvm::Value *CmpRes;
12047     if (IVLVal.getType()->isSignedIntegerType()) {
12048       CmpRes = CGF.Builder.CreateICmpSLE(LastIVVal, IVVal);
12049     } else {
12050       assert(IVLVal.getType()->isUnsignedIntegerType() &&
12051              "Loop iteration variable must be integer.");
12052       CmpRes = CGF.Builder.CreateICmpULE(LastIVVal, IVVal);
12053     }
12054     llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lp_cond_then");
12055     llvm::BasicBlock *ExitBB = CGF.createBasicBlock("lp_cond_exit");
12056     CGF.Builder.CreateCondBr(CmpRes, ThenBB, ExitBB);
12057     // {
12058     CGF.EmitBlock(ThenBB);
12059 
12060     //   last_iv = iv;
12061     CGF.EmitStoreOfScalar(IVVal, LastIVLVal);
12062 
12063     //   last_a = priv_a;
12064     switch (CGF.getEvaluationKind(LVal.getType())) {
12065     case TEK_Scalar: {
12066       llvm::Value *PrivVal = CGF.EmitLoadOfScalar(LVal, Loc);
12067       CGF.EmitStoreOfScalar(PrivVal, LastLVal);
12068       break;
12069     }
12070     case TEK_Complex: {
12071       CodeGenFunction::ComplexPairTy PrivVal = CGF.EmitLoadOfComplex(LVal, Loc);
12072       CGF.EmitStoreOfComplex(PrivVal, LastLVal, /*isInit=*/false);
12073       break;
12074     }
12075     case TEK_Aggregate:
12076       llvm_unreachable(
12077           "Aggregates are not supported in lastprivate conditional.");
12078     }
12079     // }
12080     CGF.EmitBranch(ExitBB);
12081     // There is no need to emit line number for unconditional branch.
12082     (void)ApplyDebugLocation::CreateEmpty(CGF);
12083     CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
12084   };
12085 
12086   if (CGM.getLangOpts().OpenMPSimd) {
12087     // Do not emit as a critical region as no parallel region could be emitted.
12088     RegionCodeGenTy ThenRCG(CodeGen);
12089     ThenRCG(CGF);
12090   } else {
12091     emitCriticalRegion(CGF, UniqueDeclName, CodeGen, Loc);
12092   }
12093 }
12094 
checkAndEmitLastprivateConditional(CodeGenFunction & CGF,const Expr * LHS)12095 void CGOpenMPRuntime::checkAndEmitLastprivateConditional(CodeGenFunction &CGF,
12096                                                          const Expr *LHS) {
12097   if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty())
12098     return;
12099   LastprivateConditionalRefChecker Checker(LastprivateConditionalStack);
12100   if (!Checker.Visit(LHS))
12101     return;
12102   const Expr *FoundE;
12103   const Decl *FoundD;
12104   StringRef UniqueDeclName;
12105   LValue IVLVal;
12106   llvm::Function *FoundFn;
12107   std::tie(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn) =
12108       Checker.getFoundData();
12109   if (FoundFn != CGF.CurFn) {
12110     // Special codegen for inner parallel regions.
12111     // ((struct.lastprivate.conditional*)&priv_a)->Fired = 1;
12112     auto It = LastprivateConditionalToTypes[FoundFn].find(FoundD);
12113     assert(It != LastprivateConditionalToTypes[FoundFn].end() &&
12114            "Lastprivate conditional is not found in outer region.");
12115     QualType StructTy = std::get<0>(It->getSecond());
12116     const FieldDecl* FiredDecl = std::get<2>(It->getSecond());
12117     LValue PrivLVal = CGF.EmitLValue(FoundE);
12118     Address StructAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
12119         PrivLVal.getAddress(CGF),
12120         CGF.ConvertTypeForMem(CGF.getContext().getPointerType(StructTy)));
12121     LValue BaseLVal =
12122         CGF.MakeAddrLValue(StructAddr, StructTy, AlignmentSource::Decl);
12123     LValue FiredLVal = CGF.EmitLValueForField(BaseLVal, FiredDecl);
12124     CGF.EmitAtomicStore(RValue::get(llvm::ConstantInt::get(
12125                             CGF.ConvertTypeForMem(FiredDecl->getType()), 1)),
12126                         FiredLVal, llvm::AtomicOrdering::Unordered,
12127                         /*IsVolatile=*/true, /*isInit=*/false);
12128     return;
12129   }
12130 
12131   // Private address of the lastprivate conditional in the current context.
12132   // priv_a
12133   LValue LVal = CGF.EmitLValue(FoundE);
12134   emitLastprivateConditionalUpdate(CGF, IVLVal, UniqueDeclName, LVal,
12135                                    FoundE->getExprLoc());
12136 }
12137 
checkAndEmitSharedLastprivateConditional(CodeGenFunction & CGF,const OMPExecutableDirective & D,const llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> & IgnoredDecls)12138 void CGOpenMPRuntime::checkAndEmitSharedLastprivateConditional(
12139     CodeGenFunction &CGF, const OMPExecutableDirective &D,
12140     const llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> &IgnoredDecls) {
12141   if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty())
12142     return;
12143   auto Range = llvm::reverse(LastprivateConditionalStack);
12144   auto It = llvm::find_if(
12145       Range, [](const LastprivateConditionalData &D) { return !D.Disabled; });
12146   if (It == Range.end() || It->Fn != CGF.CurFn)
12147     return;
12148   auto LPCI = LastprivateConditionalToTypes.find(It->Fn);
12149   assert(LPCI != LastprivateConditionalToTypes.end() &&
12150          "Lastprivates must be registered already.");
12151   SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
12152   getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
12153   const CapturedStmt *CS = D.getCapturedStmt(CaptureRegions.back());
12154   for (const auto &Pair : It->DeclToUniqueName) {
12155     const auto *VD = cast<VarDecl>(Pair.first->getCanonicalDecl());
12156     if (!CS->capturesVariable(VD) || IgnoredDecls.count(VD) > 0)
12157       continue;
12158     auto I = LPCI->getSecond().find(Pair.first);
12159     assert(I != LPCI->getSecond().end() &&
12160            "Lastprivate must be rehistered already.");
12161     // bool Cmp = priv_a.Fired != 0;
12162     LValue BaseLVal = std::get<3>(I->getSecond());
12163     LValue FiredLVal =
12164         CGF.EmitLValueForField(BaseLVal, std::get<2>(I->getSecond()));
12165     llvm::Value *Res = CGF.EmitLoadOfScalar(FiredLVal, D.getBeginLoc());
12166     llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Res);
12167     llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lpc.then");
12168     llvm::BasicBlock *DoneBB = CGF.createBasicBlock("lpc.done");
12169     // if (Cmp) {
12170     CGF.Builder.CreateCondBr(Cmp, ThenBB, DoneBB);
12171     CGF.EmitBlock(ThenBB);
12172     Address Addr = CGF.GetAddrOfLocalVar(VD);
12173     LValue LVal;
12174     if (VD->getType()->isReferenceType())
12175       LVal = CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
12176                                            AlignmentSource::Decl);
12177     else
12178       LVal = CGF.MakeAddrLValue(Addr, VD->getType().getNonReferenceType(),
12179                                 AlignmentSource::Decl);
12180     emitLastprivateConditionalUpdate(CGF, It->IVLVal, Pair.second, LVal,
12181                                      D.getBeginLoc());
12182     auto AL = ApplyDebugLocation::CreateArtificial(CGF);
12183     CGF.EmitBlock(DoneBB, /*IsFinal=*/true);
12184     // }
12185   }
12186 }
12187 
emitLastprivateConditionalFinalUpdate(CodeGenFunction & CGF,LValue PrivLVal,const VarDecl * VD,SourceLocation Loc)12188 void CGOpenMPRuntime::emitLastprivateConditionalFinalUpdate(
12189     CodeGenFunction &CGF, LValue PrivLVal, const VarDecl *VD,
12190     SourceLocation Loc) {
12191   if (CGF.getLangOpts().OpenMP < 50)
12192     return;
12193   auto It = LastprivateConditionalStack.back().DeclToUniqueName.find(VD);
12194   assert(It != LastprivateConditionalStack.back().DeclToUniqueName.end() &&
12195          "Unknown lastprivate conditional variable.");
12196   StringRef UniqueName = It->second;
12197   llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(UniqueName);
12198   // The variable was not updated in the region - exit.
12199   if (!GV)
12200     return;
12201   LValue LPLVal = CGF.MakeAddrLValue(
12202       GV, PrivLVal.getType().getNonReferenceType(), PrivLVal.getAlignment());
12203   llvm::Value *Res = CGF.EmitLoadOfScalar(LPLVal, Loc);
12204   CGF.EmitStoreOfScalar(Res, PrivLVal);
12205 }
12206 
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)12207 llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction(
12208     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
12209     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
12210   llvm_unreachable("Not supported in SIMD-only mode");
12211 }
12212 
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)12213 llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction(
12214     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
12215     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
12216   llvm_unreachable("Not supported in SIMD-only mode");
12217 }
12218 
emitTaskOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,const VarDecl * PartIDVar,const VarDecl * TaskTVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen,bool Tied,unsigned & NumberOfParts)12219 llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction(
12220     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
12221     const VarDecl *PartIDVar, const VarDecl *TaskTVar,
12222     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
12223     bool Tied, unsigned &NumberOfParts) {
12224   llvm_unreachable("Not supported in SIMD-only mode");
12225 }
12226 
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond)12227 void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF,
12228                                            SourceLocation Loc,
12229                                            llvm::Function *OutlinedFn,
12230                                            ArrayRef<llvm::Value *> CapturedVars,
12231                                            const Expr *IfCond) {
12232   llvm_unreachable("Not supported in SIMD-only mode");
12233 }
12234 
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)12235 void CGOpenMPSIMDRuntime::emitCriticalRegion(
12236     CodeGenFunction &CGF, StringRef CriticalName,
12237     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
12238     const Expr *Hint) {
12239   llvm_unreachable("Not supported in SIMD-only mode");
12240 }
12241 
emitMasterRegion(CodeGenFunction & CGF,const RegionCodeGenTy & MasterOpGen,SourceLocation Loc)12242 void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF,
12243                                            const RegionCodeGenTy &MasterOpGen,
12244                                            SourceLocation Loc) {
12245   llvm_unreachable("Not supported in SIMD-only mode");
12246 }
12247 
emitTaskyieldCall(CodeGenFunction & CGF,SourceLocation Loc)12248 void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
12249                                             SourceLocation Loc) {
12250   llvm_unreachable("Not supported in SIMD-only mode");
12251 }
12252 
emitTaskgroupRegion(CodeGenFunction & CGF,const RegionCodeGenTy & TaskgroupOpGen,SourceLocation Loc)12253 void CGOpenMPSIMDRuntime::emitTaskgroupRegion(
12254     CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen,
12255     SourceLocation Loc) {
12256   llvm_unreachable("Not supported in SIMD-only mode");
12257 }
12258 
emitSingleRegion(CodeGenFunction & CGF,const RegionCodeGenTy & SingleOpGen,SourceLocation Loc,ArrayRef<const Expr * > CopyprivateVars,ArrayRef<const Expr * > DestExprs,ArrayRef<const Expr * > SrcExprs,ArrayRef<const Expr * > AssignmentOps)12259 void CGOpenMPSIMDRuntime::emitSingleRegion(
12260     CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen,
12261     SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars,
12262     ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs,
12263     ArrayRef<const Expr *> AssignmentOps) {
12264   llvm_unreachable("Not supported in SIMD-only mode");
12265 }
12266 
emitOrderedRegion(CodeGenFunction & CGF,const RegionCodeGenTy & OrderedOpGen,SourceLocation Loc,bool IsThreads)12267 void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF,
12268                                             const RegionCodeGenTy &OrderedOpGen,
12269                                             SourceLocation Loc,
12270                                             bool IsThreads) {
12271   llvm_unreachable("Not supported in SIMD-only mode");
12272 }
12273 
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool EmitChecks,bool ForceSimpleCall)12274 void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF,
12275                                           SourceLocation Loc,
12276                                           OpenMPDirectiveKind Kind,
12277                                           bool EmitChecks,
12278                                           bool ForceSimpleCall) {
12279   llvm_unreachable("Not supported in SIMD-only mode");
12280 }
12281 
emitForDispatchInit(CodeGenFunction & CGF,SourceLocation Loc,const OpenMPScheduleTy & ScheduleKind,unsigned IVSize,bool IVSigned,bool Ordered,const DispatchRTInput & DispatchValues)12282 void CGOpenMPSIMDRuntime::emitForDispatchInit(
12283     CodeGenFunction &CGF, SourceLocation Loc,
12284     const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
12285     bool Ordered, const DispatchRTInput &DispatchValues) {
12286   llvm_unreachable("Not supported in SIMD-only mode");
12287 }
12288 
emitForStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind,const OpenMPScheduleTy & ScheduleKind,const StaticRTInput & Values)12289 void CGOpenMPSIMDRuntime::emitForStaticInit(
12290     CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind,
12291     const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) {
12292   llvm_unreachable("Not supported in SIMD-only mode");
12293 }
12294 
emitDistributeStaticInit(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDistScheduleClauseKind SchedKind,const StaticRTInput & Values)12295 void CGOpenMPSIMDRuntime::emitDistributeStaticInit(
12296     CodeGenFunction &CGF, SourceLocation Loc,
12297     OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) {
12298   llvm_unreachable("Not supported in SIMD-only mode");
12299 }
12300 
emitForOrderedIterationEnd(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned)12301 void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
12302                                                      SourceLocation Loc,
12303                                                      unsigned IVSize,
12304                                                      bool IVSigned) {
12305   llvm_unreachable("Not supported in SIMD-only mode");
12306 }
12307 
emitForStaticFinish(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind DKind)12308 void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF,
12309                                               SourceLocation Loc,
12310                                               OpenMPDirectiveKind DKind) {
12311   llvm_unreachable("Not supported in SIMD-only mode");
12312 }
12313 
emitForNext(CodeGenFunction & CGF,SourceLocation Loc,unsigned IVSize,bool IVSigned,Address IL,Address LB,Address UB,Address ST)12314 llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF,
12315                                               SourceLocation Loc,
12316                                               unsigned IVSize, bool IVSigned,
12317                                               Address IL, Address LB,
12318                                               Address UB, Address ST) {
12319   llvm_unreachable("Not supported in SIMD-only mode");
12320 }
12321 
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)12322 void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
12323                                                llvm::Value *NumThreads,
12324                                                SourceLocation Loc) {
12325   llvm_unreachable("Not supported in SIMD-only mode");
12326 }
12327 
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)12328 void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF,
12329                                              ProcBindKind ProcBind,
12330                                              SourceLocation Loc) {
12331   llvm_unreachable("Not supported in SIMD-only mode");
12332 }
12333 
getAddrOfThreadPrivate(CodeGenFunction & CGF,const VarDecl * VD,Address VDAddr,SourceLocation Loc)12334 Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
12335                                                     const VarDecl *VD,
12336                                                     Address VDAddr,
12337                                                     SourceLocation Loc) {
12338   llvm_unreachable("Not supported in SIMD-only mode");
12339 }
12340 
emitThreadPrivateVarDefinition(const VarDecl * VD,Address VDAddr,SourceLocation Loc,bool PerformInit,CodeGenFunction * CGF)12341 llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition(
12342     const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit,
12343     CodeGenFunction *CGF) {
12344   llvm_unreachable("Not supported in SIMD-only mode");
12345 }
12346 
getAddrOfArtificialThreadPrivate(CodeGenFunction & CGF,QualType VarType,StringRef Name)12347 Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate(
12348     CodeGenFunction &CGF, QualType VarType, StringRef Name) {
12349   llvm_unreachable("Not supported in SIMD-only mode");
12350 }
12351 
emitFlush(CodeGenFunction & CGF,ArrayRef<const Expr * > Vars,SourceLocation Loc,llvm::AtomicOrdering AO)12352 void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF,
12353                                     ArrayRef<const Expr *> Vars,
12354                                     SourceLocation Loc,
12355                                     llvm::AtomicOrdering AO) {
12356   llvm_unreachable("Not supported in SIMD-only mode");
12357 }
12358 
emitTaskCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPExecutableDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)12359 void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
12360                                        const OMPExecutableDirective &D,
12361                                        llvm::Function *TaskFunction,
12362                                        QualType SharedsTy, Address Shareds,
12363                                        const Expr *IfCond,
12364                                        const OMPTaskDataTy &Data) {
12365   llvm_unreachable("Not supported in SIMD-only mode");
12366 }
12367 
emitTaskLoopCall(CodeGenFunction & CGF,SourceLocation Loc,const OMPLoopDirective & D,llvm::Function * TaskFunction,QualType SharedsTy,Address Shareds,const Expr * IfCond,const OMPTaskDataTy & Data)12368 void CGOpenMPSIMDRuntime::emitTaskLoopCall(
12369     CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D,
12370     llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds,
12371     const Expr *IfCond, const OMPTaskDataTy &Data) {
12372   llvm_unreachable("Not supported in SIMD-only mode");
12373 }
12374 
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)12375 void CGOpenMPSIMDRuntime::emitReduction(
12376     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
12377     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
12378     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
12379   assert(Options.SimpleReduction && "Only simple reduction is expected.");
12380   CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
12381                                  ReductionOps, Options);
12382 }
12383 
emitTaskReductionInit(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,const OMPTaskDataTy & Data)12384 llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit(
12385     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
12386     ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
12387   llvm_unreachable("Not supported in SIMD-only mode");
12388 }
12389 
emitTaskReductionFini(CodeGenFunction & CGF,SourceLocation Loc,bool IsWorksharingReduction)12390 void CGOpenMPSIMDRuntime::emitTaskReductionFini(CodeGenFunction &CGF,
12391                                                 SourceLocation Loc,
12392                                                 bool IsWorksharingReduction) {
12393   llvm_unreachable("Not supported in SIMD-only mode");
12394 }
12395 
emitTaskReductionFixups(CodeGenFunction & CGF,SourceLocation Loc,ReductionCodeGen & RCG,unsigned N)12396 void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
12397                                                   SourceLocation Loc,
12398                                                   ReductionCodeGen &RCG,
12399                                                   unsigned N) {
12400   llvm_unreachable("Not supported in SIMD-only mode");
12401 }
12402 
getTaskReductionItem(CodeGenFunction & CGF,SourceLocation Loc,llvm::Value * ReductionsPtr,LValue SharedLVal)12403 Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF,
12404                                                   SourceLocation Loc,
12405                                                   llvm::Value *ReductionsPtr,
12406                                                   LValue SharedLVal) {
12407   llvm_unreachable("Not supported in SIMD-only mode");
12408 }
12409 
emitTaskwaitCall(CodeGenFunction & CGF,SourceLocation Loc)12410 void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
12411                                            SourceLocation Loc) {
12412   llvm_unreachable("Not supported in SIMD-only mode");
12413 }
12414 
emitCancellationPointCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind CancelRegion)12415 void CGOpenMPSIMDRuntime::emitCancellationPointCall(
12416     CodeGenFunction &CGF, SourceLocation Loc,
12417     OpenMPDirectiveKind CancelRegion) {
12418   llvm_unreachable("Not supported in SIMD-only mode");
12419 }
12420 
emitCancelCall(CodeGenFunction & CGF,SourceLocation Loc,const Expr * IfCond,OpenMPDirectiveKind CancelRegion)12421 void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF,
12422                                          SourceLocation Loc, const Expr *IfCond,
12423                                          OpenMPDirectiveKind CancelRegion) {
12424   llvm_unreachable("Not supported in SIMD-only mode");
12425 }
12426 
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)12427 void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction(
12428     const OMPExecutableDirective &D, StringRef ParentName,
12429     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
12430     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
12431   llvm_unreachable("Not supported in SIMD-only mode");
12432 }
12433 
emitTargetCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,llvm::Function * OutlinedFn,llvm::Value * OutlinedFnID,const Expr * IfCond,llvm::PointerIntPair<const Expr *,2,OpenMPDeviceClauseModifier> Device,llvm::function_ref<llvm::Value * (CodeGenFunction & CGF,const OMPLoopDirective & D)> SizeEmitter)12434 void CGOpenMPSIMDRuntime::emitTargetCall(
12435     CodeGenFunction &CGF, const OMPExecutableDirective &D,
12436     llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
12437     llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device,
12438     llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
12439                                      const OMPLoopDirective &D)>
12440         SizeEmitter) {
12441   llvm_unreachable("Not supported in SIMD-only mode");
12442 }
12443 
emitTargetFunctions(GlobalDecl GD)12444 bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) {
12445   llvm_unreachable("Not supported in SIMD-only mode");
12446 }
12447 
emitTargetGlobalVariable(GlobalDecl GD)12448 bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
12449   llvm_unreachable("Not supported in SIMD-only mode");
12450 }
12451 
emitTargetGlobal(GlobalDecl GD)12452 bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) {
12453   return false;
12454 }
12455 
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)12456 void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF,
12457                                         const OMPExecutableDirective &D,
12458                                         SourceLocation Loc,
12459                                         llvm::Function *OutlinedFn,
12460                                         ArrayRef<llvm::Value *> CapturedVars) {
12461   llvm_unreachable("Not supported in SIMD-only mode");
12462 }
12463 
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)12464 void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
12465                                              const Expr *NumTeams,
12466                                              const Expr *ThreadLimit,
12467                                              SourceLocation Loc) {
12468   llvm_unreachable("Not supported in SIMD-only mode");
12469 }
12470 
emitTargetDataCalls(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device,const RegionCodeGenTy & CodeGen,TargetDataInfo & Info)12471 void CGOpenMPSIMDRuntime::emitTargetDataCalls(
12472     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
12473     const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
12474   llvm_unreachable("Not supported in SIMD-only mode");
12475 }
12476 
emitTargetDataStandAloneCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,const Expr * IfCond,const Expr * Device)12477 void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall(
12478     CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
12479     const Expr *Device) {
12480   llvm_unreachable("Not supported in SIMD-only mode");
12481 }
12482 
emitDoacrossInit(CodeGenFunction & CGF,const OMPLoopDirective & D,ArrayRef<Expr * > NumIterations)12483 void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF,
12484                                            const OMPLoopDirective &D,
12485                                            ArrayRef<Expr *> NumIterations) {
12486   llvm_unreachable("Not supported in SIMD-only mode");
12487 }
12488 
emitDoacrossOrdered(CodeGenFunction & CGF,const OMPDependClause * C)12489 void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
12490                                               const OMPDependClause *C) {
12491   llvm_unreachable("Not supported in SIMD-only mode");
12492 }
12493 
12494 const VarDecl *
translateParameter(const FieldDecl * FD,const VarDecl * NativeParam) const12495 CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD,
12496                                         const VarDecl *NativeParam) const {
12497   llvm_unreachable("Not supported in SIMD-only mode");
12498 }
12499 
12500 Address
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const12501 CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF,
12502                                          const VarDecl *NativeParam,
12503                                          const VarDecl *TargetParam) const {
12504   llvm_unreachable("Not supported in SIMD-only mode");
12505 }
12506