1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a basic region store model. In this model, we do have field
10 // sensitivity. But we assume nothing about the heap shape. So recursive data
11 // structures are largely ignored. Basically we do 1-limiting analysis.
12 // Parameter pointers are assumed with no aliasing. Pointee objects of
13 // parameters are created lazily.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/ASTMatchers/ASTMatchFinder.h"
20 #include "clang/Analysis/Analyses/LiveVariables.h"
21 #include "clang/Analysis/AnalysisDeclContext.h"
22 #include "clang/Basic/JsonSupport.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
31 #include "llvm/ADT/ImmutableMap.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <utility>
35 
36 using namespace clang;
37 using namespace ento;
38 
39 //===----------------------------------------------------------------------===//
40 // Representation of binding keys.
41 //===----------------------------------------------------------------------===//
42 
43 namespace {
44 class BindingKey {
45 public:
46   enum Kind { Default = 0x0, Direct = 0x1 };
47 private:
48   enum { Symbolic = 0x2 };
49 
50   llvm::PointerIntPair<const MemRegion *, 2> P;
51   uint64_t Data;
52 
53   /// Create a key for a binding to region \p r, which has a symbolic offset
54   /// from region \p Base.
BindingKey(const SubRegion * r,const SubRegion * Base,Kind k)55   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
56     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
57     assert(r && Base && "Must have known regions.");
58     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
59   }
60 
61   /// Create a key for a binding at \p offset from base region \p r.
BindingKey(const MemRegion * r,uint64_t offset,Kind k)62   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
63     : P(r, k), Data(offset) {
64     assert(r && "Must have known regions.");
65     assert(getOffset() == offset && "Failed to store offset");
66     assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r) ||
67             isa <CXXDerivedObjectRegion>(r)) &&
68            "Not a base");
69   }
70 public:
71 
isDirect() const72   bool isDirect() const { return P.getInt() & Direct; }
hasSymbolicOffset() const73   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
74 
getRegion() const75   const MemRegion *getRegion() const { return P.getPointer(); }
getOffset() const76   uint64_t getOffset() const {
77     assert(!hasSymbolicOffset());
78     return Data;
79   }
80 
getConcreteOffsetRegion() const81   const SubRegion *getConcreteOffsetRegion() const {
82     assert(hasSymbolicOffset());
83     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
84   }
85 
getBaseRegion() const86   const MemRegion *getBaseRegion() const {
87     if (hasSymbolicOffset())
88       return getConcreteOffsetRegion()->getBaseRegion();
89     return getRegion()->getBaseRegion();
90   }
91 
Profile(llvm::FoldingSetNodeID & ID) const92   void Profile(llvm::FoldingSetNodeID& ID) const {
93     ID.AddPointer(P.getOpaqueValue());
94     ID.AddInteger(Data);
95   }
96 
97   static BindingKey Make(const MemRegion *R, Kind k);
98 
operator <(const BindingKey & X) const99   bool operator<(const BindingKey &X) const {
100     if (P.getOpaqueValue() < X.P.getOpaqueValue())
101       return true;
102     if (P.getOpaqueValue() > X.P.getOpaqueValue())
103       return false;
104     return Data < X.Data;
105   }
106 
operator ==(const BindingKey & X) const107   bool operator==(const BindingKey &X) const {
108     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
109            Data == X.Data;
110   }
111 
112   LLVM_DUMP_METHOD void dump() const;
113 };
114 } // end anonymous namespace
115 
Make(const MemRegion * R,Kind k)116 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
117   const RegionOffset &RO = R->getAsOffset();
118   if (RO.hasSymbolicOffset())
119     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
120 
121   return BindingKey(RO.getRegion(), RO.getOffset(), k);
122 }
123 
124 namespace llvm {
operator <<(raw_ostream & Out,BindingKey K)125 static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) {
126   Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default")
127       << "\", \"offset\": ";
128 
129   if (!K.hasSymbolicOffset())
130     Out << K.getOffset();
131   else
132     Out << "null";
133 
134   return Out;
135 }
136 
137 } // namespace llvm
138 
139 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const140 void BindingKey::dump() const { llvm::errs() << *this; }
141 #endif
142 
143 //===----------------------------------------------------------------------===//
144 // Actual Store type.
145 //===----------------------------------------------------------------------===//
146 
147 typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
148 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
149 typedef std::pair<BindingKey, SVal> BindingPair;
150 
151 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
152         RegionBindings;
153 
154 namespace {
155 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
156                                  ClusterBindings> {
157   ClusterBindings::Factory *CBFactory;
158 
159   // This flag indicates whether the current bindings are within the analysis
160   // that has started from main(). It affects how we perform loads from
161   // global variables that have initializers: if we have observed the
162   // program execution from the start and we know that these variables
163   // have not been overwritten yet, we can be sure that their initializers
164   // are still relevant. This flag never gets changed when the bindings are
165   // updated, so it could potentially be moved into RegionStoreManager
166   // (as if it's the same bindings but a different loading procedure)
167   // however that would have made the manager needlessly stateful.
168   bool IsMainAnalysis;
169 
170 public:
171   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
172           ParentTy;
173 
RegionBindingsRef(ClusterBindings::Factory & CBFactory,const RegionBindings::TreeTy * T,RegionBindings::TreeTy::Factory * F,bool IsMainAnalysis)174   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
175                     const RegionBindings::TreeTy *T,
176                     RegionBindings::TreeTy::Factory *F,
177                     bool IsMainAnalysis)
178       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
179         CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
180 
RegionBindingsRef(const ParentTy & P,ClusterBindings::Factory & CBFactory,bool IsMainAnalysis)181   RegionBindingsRef(const ParentTy &P,
182                     ClusterBindings::Factory &CBFactory,
183                     bool IsMainAnalysis)
184       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
185         CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
186 
add(key_type_ref K,data_type_ref D) const187   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
188     return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
189                              *CBFactory, IsMainAnalysis);
190   }
191 
remove(key_type_ref K) const192   RegionBindingsRef remove(key_type_ref K) const {
193     return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
194                              *CBFactory, IsMainAnalysis);
195   }
196 
197   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
198 
199   RegionBindingsRef addBinding(const MemRegion *R,
200                                BindingKey::Kind k, SVal V) const;
201 
202   const SVal *lookup(BindingKey K) const;
203   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
204   using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
205 
206   RegionBindingsRef removeBinding(BindingKey K);
207 
208   RegionBindingsRef removeBinding(const MemRegion *R,
209                                   BindingKey::Kind k);
210 
removeBinding(const MemRegion * R)211   RegionBindingsRef removeBinding(const MemRegion *R) {
212     return removeBinding(R, BindingKey::Direct).
213            removeBinding(R, BindingKey::Default);
214   }
215 
216   Optional<SVal> getDirectBinding(const MemRegion *R) const;
217 
218   /// getDefaultBinding - Returns an SVal* representing an optional default
219   ///  binding associated with a region and its subregions.
220   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
221 
222   /// Return the internal tree as a Store.
asStore() const223   Store asStore() const {
224     llvm::PointerIntPair<Store, 1, bool> Ptr = {
225         asImmutableMap().getRootWithoutRetain(), IsMainAnalysis};
226     return reinterpret_cast<Store>(Ptr.getOpaqueValue());
227   }
228 
isMainAnalysis() const229   bool isMainAnalysis() const {
230     return IsMainAnalysis;
231   }
232 
printJson(raw_ostream & Out,const char * NL="\\n",unsigned int Space=0,bool IsDot=false) const233   void printJson(raw_ostream &Out, const char *NL = "\n",
234                  unsigned int Space = 0, bool IsDot = false) const {
235     for (iterator I = begin(); I != end(); ++I) {
236       // TODO: We might need a .printJson for I.getKey() as well.
237       Indent(Out, Space, IsDot)
238           << "{ \"cluster\": \"" << I.getKey() << "\", \"pointer\": \""
239           << (const void *)I.getKey() << "\", \"items\": [" << NL;
240 
241       ++Space;
242       const ClusterBindings &CB = I.getData();
243       for (ClusterBindings::iterator CI = CB.begin(); CI != CB.end(); ++CI) {
244         Indent(Out, Space, IsDot) << "{ " << CI.getKey() << ", \"value\": ";
245         CI.getData().printJson(Out, /*AddQuotes=*/true);
246         Out << " }";
247         if (std::next(CI) != CB.end())
248           Out << ',';
249         Out << NL;
250       }
251 
252       --Space;
253       Indent(Out, Space, IsDot) << "]}";
254       if (std::next(I) != end())
255         Out << ',';
256       Out << NL;
257     }
258   }
259 
dump() const260   LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); }
261 };
262 } // end anonymous namespace
263 
264 typedef const RegionBindingsRef& RegionBindingsConstRef;
265 
getDirectBinding(const MemRegion * R) const266 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
267   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
268 }
269 
getDefaultBinding(const MemRegion * R) const270 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
271   return Optional<SVal>::create(lookup(R, BindingKey::Default));
272 }
273 
addBinding(BindingKey K,SVal V) const274 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
275   const MemRegion *Base = K.getBaseRegion();
276 
277   const ClusterBindings *ExistingCluster = lookup(Base);
278   ClusterBindings Cluster =
279       (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
280 
281   ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
282   return add(Base, NewCluster);
283 }
284 
285 
addBinding(const MemRegion * R,BindingKey::Kind k,SVal V) const286 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
287                                                 BindingKey::Kind k,
288                                                 SVal V) const {
289   return addBinding(BindingKey::Make(R, k), V);
290 }
291 
lookup(BindingKey K) const292 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
293   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
294   if (!Cluster)
295     return nullptr;
296   return Cluster->lookup(K);
297 }
298 
lookup(const MemRegion * R,BindingKey::Kind k) const299 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
300                                       BindingKey::Kind k) const {
301   return lookup(BindingKey::Make(R, k));
302 }
303 
removeBinding(BindingKey K)304 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
305   const MemRegion *Base = K.getBaseRegion();
306   const ClusterBindings *Cluster = lookup(Base);
307   if (!Cluster)
308     return *this;
309 
310   ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
311   if (NewCluster.isEmpty())
312     return remove(Base);
313   return add(Base, NewCluster);
314 }
315 
removeBinding(const MemRegion * R,BindingKey::Kind k)316 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
317                                                 BindingKey::Kind k){
318   return removeBinding(BindingKey::Make(R, k));
319 }
320 
321 //===----------------------------------------------------------------------===//
322 // Fine-grained control of RegionStoreManager.
323 //===----------------------------------------------------------------------===//
324 
325 namespace {
326 struct minimal_features_tag {};
327 struct maximal_features_tag {};
328 
329 class RegionStoreFeatures {
330   bool SupportsFields;
331 public:
RegionStoreFeatures(minimal_features_tag)332   RegionStoreFeatures(minimal_features_tag) :
333     SupportsFields(false) {}
334 
RegionStoreFeatures(maximal_features_tag)335   RegionStoreFeatures(maximal_features_tag) :
336     SupportsFields(true) {}
337 
enableFields(bool t)338   void enableFields(bool t) { SupportsFields = t; }
339 
supportsFields() const340   bool supportsFields() const { return SupportsFields; }
341 };
342 }
343 
344 //===----------------------------------------------------------------------===//
345 // Main RegionStore logic.
346 //===----------------------------------------------------------------------===//
347 
348 namespace {
349 class InvalidateRegionsWorker;
350 
351 class RegionStoreManager : public StoreManager {
352 public:
353   const RegionStoreFeatures Features;
354 
355   RegionBindings::Factory RBFactory;
356   mutable ClusterBindings::Factory CBFactory;
357 
358   typedef std::vector<SVal> SValListTy;
359 private:
360   typedef llvm::DenseMap<const LazyCompoundValData *,
361                          SValListTy> LazyBindingsMapTy;
362   LazyBindingsMapTy LazyBindingsMap;
363 
364   /// The largest number of fields a struct can have and still be
365   /// considered "small".
366   ///
367   /// This is currently used to decide whether or not it is worth "forcing" a
368   /// LazyCompoundVal on bind.
369   ///
370   /// This is controlled by 'region-store-small-struct-limit' option.
371   /// To disable all small-struct-dependent behavior, set the option to "0".
372   unsigned SmallStructLimit;
373 
374   /// A helper used to populate the work list with the given set of
375   /// regions.
376   void populateWorkList(InvalidateRegionsWorker &W,
377                         ArrayRef<SVal> Values,
378                         InvalidatedRegions *TopLevelRegions);
379 
380 public:
RegionStoreManager(ProgramStateManager & mgr,const RegionStoreFeatures & f)381   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
382     : StoreManager(mgr), Features(f),
383       RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
384       SmallStructLimit(0) {
385     ExprEngine &Eng = StateMgr.getOwningEngine();
386     AnalyzerOptions &Options = Eng.getAnalysisManager().options;
387     SmallStructLimit = Options.RegionStoreSmallStructLimit;
388   }
389 
390 
391   /// setImplicitDefaultValue - Set the default binding for the provided
392   ///  MemRegion to the value implicitly defined for compound literals when
393   ///  the value is not specified.
394   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
395                                             const MemRegion *R, QualType T);
396 
397   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
398   ///  type.  'Array' represents the lvalue of the array being decayed
399   ///  to a pointer, and the returned SVal represents the decayed
400   ///  version of that lvalue (i.e., a pointer to the first element of
401   ///  the array).  This is called by ExprEngine when evaluating
402   ///  casts from arrays to pointers.
403   SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
404 
405   /// Creates the Store that correctly represents memory contents before
406   /// the beginning of the analysis of the given top-level stack frame.
getInitialStore(const LocationContext * InitLoc)407   StoreRef getInitialStore(const LocationContext *InitLoc) override {
408     bool IsMainAnalysis = false;
409     if (const auto *FD = dyn_cast<FunctionDecl>(InitLoc->getDecl()))
410       IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus;
411     return StoreRef(RegionBindingsRef(
412         RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory),
413         CBFactory, IsMainAnalysis).asStore(), *this);
414   }
415 
416   //===-------------------------------------------------------------------===//
417   // Binding values to regions.
418   //===-------------------------------------------------------------------===//
419   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
420                                            const Expr *Ex,
421                                            unsigned Count,
422                                            const LocationContext *LCtx,
423                                            RegionBindingsRef B,
424                                            InvalidatedRegions *Invalidated);
425 
426   StoreRef invalidateRegions(Store store,
427                              ArrayRef<SVal> Values,
428                              const Expr *E, unsigned Count,
429                              const LocationContext *LCtx,
430                              const CallEvent *Call,
431                              InvalidatedSymbols &IS,
432                              RegionAndSymbolInvalidationTraits &ITraits,
433                              InvalidatedRegions *Invalidated,
434                              InvalidatedRegions *InvalidatedTopLevel) override;
435 
436   bool scanReachableSymbols(Store S, const MemRegion *R,
437                             ScanReachableSymbols &Callbacks) override;
438 
439   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
440                                             const SubRegion *R);
441 
442 public: // Part of public interface to class.
443 
Bind(Store store,Loc LV,SVal V)444   StoreRef Bind(Store store, Loc LV, SVal V) override {
445     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
446   }
447 
448   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
449 
450   // BindDefaultInitial is only used to initialize a region with
451   // a default value.
BindDefaultInitial(Store store,const MemRegion * R,SVal V)452   StoreRef BindDefaultInitial(Store store, const MemRegion *R,
453                               SVal V) override {
454     RegionBindingsRef B = getRegionBindings(store);
455     // Use other APIs when you have to wipe the region that was initialized
456     // earlier.
457     assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) &&
458            "Double initialization!");
459     B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
460     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
461   }
462 
463   // BindDefaultZero is used for zeroing constructors that may accidentally
464   // overwrite existing bindings.
BindDefaultZero(Store store,const MemRegion * R)465   StoreRef BindDefaultZero(Store store, const MemRegion *R) override {
466     // FIXME: The offsets of empty bases can be tricky because of
467     // of the so called "empty base class optimization".
468     // If a base class has been optimized out
469     // we should not try to create a binding, otherwise we should.
470     // Unfortunately, at the moment ASTRecordLayout doesn't expose
471     // the actual sizes of the empty bases
472     // and trying to infer them from offsets/alignments
473     // seems to be error-prone and non-trivial because of the trailing padding.
474     // As a temporary mitigation we don't create bindings for empty bases.
475     if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R))
476       if (BR->getDecl()->isEmpty())
477         return StoreRef(store, *this);
478 
479     RegionBindingsRef B = getRegionBindings(store);
480     SVal V = svalBuilder.makeZeroVal(Ctx.CharTy);
481     B = removeSubRegionBindings(B, cast<SubRegion>(R));
482     B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
483     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
484   }
485 
486   /// Attempt to extract the fields of \p LCV and bind them to the struct region
487   /// \p R.
488   ///
489   /// This path is used when it seems advantageous to "force" loading the values
490   /// within a LazyCompoundVal to bind memberwise to the struct region, rather
491   /// than using a Default binding at the base of the entire region. This is a
492   /// heuristic attempting to avoid building long chains of LazyCompoundVals.
493   ///
494   /// \returns The updated store bindings, or \c None if binding non-lazily
495   ///          would be too expensive.
496   Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
497                                                  const TypedValueRegion *R,
498                                                  const RecordDecl *RD,
499                                                  nonloc::LazyCompoundVal LCV);
500 
501   /// BindStruct - Bind a compound value to a structure.
502   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
503                                const TypedValueRegion* R, SVal V);
504 
505   /// BindVector - Bind a compound value to a vector.
506   RegionBindingsRef bindVector(RegionBindingsConstRef B,
507                                const TypedValueRegion* R, SVal V);
508 
509   RegionBindingsRef bindArray(RegionBindingsConstRef B,
510                               const TypedValueRegion* R,
511                               SVal V);
512 
513   /// Clears out all bindings in the given region and assigns a new value
514   /// as a Default binding.
515   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
516                                   const TypedRegion *R,
517                                   SVal DefaultVal);
518 
519   /// Create a new store with the specified binding removed.
520   /// \param ST the original store, that is the basis for the new store.
521   /// \param L the location whose binding should be removed.
522   StoreRef killBinding(Store ST, Loc L) override;
523 
incrementReferenceCount(Store store)524   void incrementReferenceCount(Store store) override {
525     getRegionBindings(store).manualRetain();
526   }
527 
528   /// If the StoreManager supports it, decrement the reference count of
529   /// the specified Store object.  If the reference count hits 0, the memory
530   /// associated with the object is recycled.
decrementReferenceCount(Store store)531   void decrementReferenceCount(Store store) override {
532     getRegionBindings(store).manualRelease();
533   }
534 
535   bool includedInBindings(Store store, const MemRegion *region) const override;
536 
537   /// Return the value bound to specified location in a given state.
538   ///
539   /// The high level logic for this method is this:
540   /// getBinding (L)
541   ///   if L has binding
542   ///     return L's binding
543   ///   else if L is in killset
544   ///     return unknown
545   ///   else
546   ///     if L is on stack or heap
547   ///       return undefined
548   ///     else
549   ///       return symbolic
getBinding(Store S,Loc L,QualType T)550   SVal getBinding(Store S, Loc L, QualType T) override {
551     return getBinding(getRegionBindings(S), L, T);
552   }
553 
getDefaultBinding(Store S,const MemRegion * R)554   Optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
555     RegionBindingsRef B = getRegionBindings(S);
556     // Default bindings are always applied over a base region so look up the
557     // base region's default binding, otherwise the lookup will fail when R
558     // is at an offset from R->getBaseRegion().
559     return B.getDefaultBinding(R->getBaseRegion());
560   }
561 
562   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
563 
564   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
565 
566   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
567 
568   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
569 
570   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
571 
572   SVal getBindingForLazySymbol(const TypedValueRegion *R);
573 
574   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
575                                          const TypedValueRegion *R,
576                                          QualType Ty);
577 
578   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
579                       RegionBindingsRef LazyBinding);
580 
581   /// Get bindings for the values in a struct and return a CompoundVal, used
582   /// when doing struct copy:
583   /// struct s x, y;
584   /// x = y;
585   /// y's value is retrieved by this method.
586   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
587   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
588   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
589 
590   /// Used to lazily generate derived symbols for bindings that are defined
591   /// implicitly by default bindings in a super region.
592   ///
593   /// Note that callers may need to specially handle LazyCompoundVals, which
594   /// are returned as is in case the caller needs to treat them differently.
595   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
596                                                   const MemRegion *superR,
597                                                   const TypedValueRegion *R,
598                                                   QualType Ty);
599 
600   /// Get the state and region whose binding this region \p R corresponds to.
601   ///
602   /// If there is no lazy binding for \p R, the returned value will have a null
603   /// \c second. Note that a null pointer can represents a valid Store.
604   std::pair<Store, const SubRegion *>
605   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
606                   const SubRegion *originalRegion);
607 
608   /// Returns the cached set of interesting SVals contained within a lazy
609   /// binding.
610   ///
611   /// The precise value of "interesting" is determined for the purposes of
612   /// RegionStore's internal analysis. It must always contain all regions and
613   /// symbols, but may omit constants and other kinds of SVal.
614   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
615 
616   //===------------------------------------------------------------------===//
617   // State pruning.
618   //===------------------------------------------------------------------===//
619 
620   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
621   ///  It returns a new Store with these values removed.
622   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
623                               SymbolReaper& SymReaper) override;
624 
625   //===------------------------------------------------------------------===//
626   // Utility methods.
627   //===------------------------------------------------------------------===//
628 
getRegionBindings(Store store) const629   RegionBindingsRef getRegionBindings(Store store) const {
630     llvm::PointerIntPair<Store, 1, bool> Ptr;
631     Ptr.setFromOpaqueValue(const_cast<void *>(store));
632     return RegionBindingsRef(
633         CBFactory,
634         static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()),
635         RBFactory.getTreeFactory(),
636         Ptr.getInt());
637   }
638 
639   void printJson(raw_ostream &Out, Store S, const char *NL = "\n",
640                  unsigned int Space = 0, bool IsDot = false) const override;
641 
iterBindings(Store store,BindingsHandler & f)642   void iterBindings(Store store, BindingsHandler& f) override {
643     RegionBindingsRef B = getRegionBindings(store);
644     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
645       const ClusterBindings &Cluster = I.getData();
646       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
647            CI != CE; ++CI) {
648         const BindingKey &K = CI.getKey();
649         if (!K.isDirect())
650           continue;
651         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
652           // FIXME: Possibly incorporate the offset?
653           if (!f.HandleBinding(*this, store, R, CI.getData()))
654             return;
655         }
656       }
657     }
658   }
659 };
660 
661 } // end anonymous namespace
662 
663 //===----------------------------------------------------------------------===//
664 // RegionStore creation.
665 //===----------------------------------------------------------------------===//
666 
667 std::unique_ptr<StoreManager>
CreateRegionStoreManager(ProgramStateManager & StMgr)668 ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
669   RegionStoreFeatures F = maximal_features_tag();
670   return std::make_unique<RegionStoreManager>(StMgr, F);
671 }
672 
673 std::unique_ptr<StoreManager>
CreateFieldsOnlyRegionStoreManager(ProgramStateManager & StMgr)674 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
675   RegionStoreFeatures F = minimal_features_tag();
676   F.enableFields(true);
677   return std::make_unique<RegionStoreManager>(StMgr, F);
678 }
679 
680 
681 //===----------------------------------------------------------------------===//
682 // Region Cluster analysis.
683 //===----------------------------------------------------------------------===//
684 
685 namespace {
686 /// Used to determine which global regions are automatically included in the
687 /// initial worklist of a ClusterAnalysis.
688 enum GlobalsFilterKind {
689   /// Don't include any global regions.
690   GFK_None,
691   /// Only include system globals.
692   GFK_SystemOnly,
693   /// Include all global regions.
694   GFK_All
695 };
696 
697 template <typename DERIVED>
698 class ClusterAnalysis  {
699 protected:
700   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
701   typedef const MemRegion * WorkListElement;
702   typedef SmallVector<WorkListElement, 10> WorkList;
703 
704   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
705 
706   WorkList WL;
707 
708   RegionStoreManager &RM;
709   ASTContext &Ctx;
710   SValBuilder &svalBuilder;
711 
712   RegionBindingsRef B;
713 
714 
715 protected:
getCluster(const MemRegion * R)716   const ClusterBindings *getCluster(const MemRegion *R) {
717     return B.lookup(R);
718   }
719 
720   /// Returns true if all clusters in the given memspace should be initially
721   /// included in the cluster analysis. Subclasses may provide their
722   /// own implementation.
includeEntireMemorySpace(const MemRegion * Base)723   bool includeEntireMemorySpace(const MemRegion *Base) {
724     return false;
725   }
726 
727 public:
ClusterAnalysis(RegionStoreManager & rm,ProgramStateManager & StateMgr,RegionBindingsRef b)728   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
729                   RegionBindingsRef b)
730       : RM(rm), Ctx(StateMgr.getContext()),
731         svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
732 
getRegionBindings() const733   RegionBindingsRef getRegionBindings() const { return B; }
734 
isVisited(const MemRegion * R)735   bool isVisited(const MemRegion *R) {
736     return Visited.count(getCluster(R));
737   }
738 
GenerateClusters()739   void GenerateClusters() {
740     // Scan the entire set of bindings and record the region clusters.
741     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
742          RI != RE; ++RI){
743       const MemRegion *Base = RI.getKey();
744 
745       const ClusterBindings &Cluster = RI.getData();
746       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
747       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
748 
749       // If the base's memspace should be entirely invalidated, add the cluster
750       // to the workspace up front.
751       if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
752         AddToWorkList(WorkListElement(Base), &Cluster);
753     }
754   }
755 
AddToWorkList(WorkListElement E,const ClusterBindings * C)756   bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
757     if (C && !Visited.insert(C).second)
758       return false;
759     WL.push_back(E);
760     return true;
761   }
762 
AddToWorkList(const MemRegion * R)763   bool AddToWorkList(const MemRegion *R) {
764     return static_cast<DERIVED*>(this)->AddToWorkList(R);
765   }
766 
RunWorkList()767   void RunWorkList() {
768     while (!WL.empty()) {
769       WorkListElement E = WL.pop_back_val();
770       const MemRegion *BaseR = E;
771 
772       static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
773     }
774   }
775 
VisitAddedToCluster(const MemRegion * baseR,const ClusterBindings & C)776   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
VisitCluster(const MemRegion * baseR,const ClusterBindings * C)777   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
778 
VisitCluster(const MemRegion * BaseR,const ClusterBindings * C,bool Flag)779   void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
780                     bool Flag) {
781     static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
782   }
783 };
784 }
785 
786 //===----------------------------------------------------------------------===//
787 // Binding invalidation.
788 //===----------------------------------------------------------------------===//
789 
scanReachableSymbols(Store S,const MemRegion * R,ScanReachableSymbols & Callbacks)790 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
791                                               ScanReachableSymbols &Callbacks) {
792   assert(R == R->getBaseRegion() && "Should only be called for base regions");
793   RegionBindingsRef B = getRegionBindings(S);
794   const ClusterBindings *Cluster = B.lookup(R);
795 
796   if (!Cluster)
797     return true;
798 
799   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
800        RI != RE; ++RI) {
801     if (!Callbacks.scan(RI.getData()))
802       return false;
803   }
804 
805   return true;
806 }
807 
isUnionField(const FieldRegion * FR)808 static inline bool isUnionField(const FieldRegion *FR) {
809   return FR->getDecl()->getParent()->isUnion();
810 }
811 
812 typedef SmallVector<const FieldDecl *, 8> FieldVector;
813 
getSymbolicOffsetFields(BindingKey K,FieldVector & Fields)814 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
815   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
816 
817   const MemRegion *Base = K.getConcreteOffsetRegion();
818   const MemRegion *R = K.getRegion();
819 
820   while (R != Base) {
821     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
822       if (!isUnionField(FR))
823         Fields.push_back(FR->getDecl());
824 
825     R = cast<SubRegion>(R)->getSuperRegion();
826   }
827 }
828 
isCompatibleWithFields(BindingKey K,const FieldVector & Fields)829 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
830   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
831 
832   if (Fields.empty())
833     return true;
834 
835   FieldVector FieldsInBindingKey;
836   getSymbolicOffsetFields(K, FieldsInBindingKey);
837 
838   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
839   if (Delta >= 0)
840     return std::equal(FieldsInBindingKey.begin() + Delta,
841                       FieldsInBindingKey.end(),
842                       Fields.begin());
843   else
844     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
845                       Fields.begin() - Delta);
846 }
847 
848 /// Collects all bindings in \p Cluster that may refer to bindings within
849 /// \p Top.
850 ///
851 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
852 /// \c second is the value (an SVal).
853 ///
854 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
855 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
856 /// an aggregate within a larger aggregate with a default binding.
857 static void
collectSubRegionBindings(SmallVectorImpl<BindingPair> & Bindings,SValBuilder & SVB,const ClusterBindings & Cluster,const SubRegion * Top,BindingKey TopKey,bool IncludeAllDefaultBindings)858 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
859                          SValBuilder &SVB, const ClusterBindings &Cluster,
860                          const SubRegion *Top, BindingKey TopKey,
861                          bool IncludeAllDefaultBindings) {
862   FieldVector FieldsInSymbolicSubregions;
863   if (TopKey.hasSymbolicOffset()) {
864     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
865     Top = TopKey.getConcreteOffsetRegion();
866     TopKey = BindingKey::Make(Top, BindingKey::Default);
867   }
868 
869   // Find the length (in bits) of the region being invalidated.
870   uint64_t Length = UINT64_MAX;
871   SVal Extent = Top->getMemRegionManager().getStaticSize(Top, SVB);
872   if (Optional<nonloc::ConcreteInt> ExtentCI =
873           Extent.getAs<nonloc::ConcreteInt>()) {
874     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
875     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
876     // Extents are in bytes but region offsets are in bits. Be careful!
877     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
878   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
879     if (FR->getDecl()->isBitField())
880       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
881   }
882 
883   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
884        I != E; ++I) {
885     BindingKey NextKey = I.getKey();
886     if (NextKey.getRegion() == TopKey.getRegion()) {
887       // FIXME: This doesn't catch the case where we're really invalidating a
888       // region with a symbolic offset. Example:
889       //      R: points[i].y
890       //   Next: points[0].x
891 
892       if (NextKey.getOffset() > TopKey.getOffset() &&
893           NextKey.getOffset() - TopKey.getOffset() < Length) {
894         // Case 1: The next binding is inside the region we're invalidating.
895         // Include it.
896         Bindings.push_back(*I);
897 
898       } else if (NextKey.getOffset() == TopKey.getOffset()) {
899         // Case 2: The next binding is at the same offset as the region we're
900         // invalidating. In this case, we need to leave default bindings alone,
901         // since they may be providing a default value for a regions beyond what
902         // we're invalidating.
903         // FIXME: This is probably incorrect; consider invalidating an outer
904         // struct whose first field is bound to a LazyCompoundVal.
905         if (IncludeAllDefaultBindings || NextKey.isDirect())
906           Bindings.push_back(*I);
907       }
908 
909     } else if (NextKey.hasSymbolicOffset()) {
910       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
911       if (Top->isSubRegionOf(Base) && Top != Base) {
912         // Case 3: The next key is symbolic and we just changed something within
913         // its concrete region. We don't know if the binding is still valid, so
914         // we'll be conservative and include it.
915         if (IncludeAllDefaultBindings || NextKey.isDirect())
916           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
917             Bindings.push_back(*I);
918       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
919         // Case 4: The next key is symbolic, but we changed a known
920         // super-region. In this case the binding is certainly included.
921         if (BaseSR->isSubRegionOf(Top))
922           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
923             Bindings.push_back(*I);
924       }
925     }
926   }
927 }
928 
929 static void
collectSubRegionBindings(SmallVectorImpl<BindingPair> & Bindings,SValBuilder & SVB,const ClusterBindings & Cluster,const SubRegion * Top,bool IncludeAllDefaultBindings)930 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
931                          SValBuilder &SVB, const ClusterBindings &Cluster,
932                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
933   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
934                            BindingKey::Make(Top, BindingKey::Default),
935                            IncludeAllDefaultBindings);
936 }
937 
938 RegionBindingsRef
removeSubRegionBindings(RegionBindingsConstRef B,const SubRegion * Top)939 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
940                                             const SubRegion *Top) {
941   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
942   const MemRegion *ClusterHead = TopKey.getBaseRegion();
943 
944   if (Top == ClusterHead) {
945     // We can remove an entire cluster's bindings all in one go.
946     return B.remove(Top);
947   }
948 
949   const ClusterBindings *Cluster = B.lookup(ClusterHead);
950   if (!Cluster) {
951     // If we're invalidating a region with a symbolic offset, we need to make
952     // sure we don't treat the base region as uninitialized anymore.
953     if (TopKey.hasSymbolicOffset()) {
954       const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
955       return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
956     }
957     return B;
958   }
959 
960   SmallVector<BindingPair, 32> Bindings;
961   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
962                            /*IncludeAllDefaultBindings=*/false);
963 
964   ClusterBindingsRef Result(*Cluster, CBFactory);
965   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
966                                                     E = Bindings.end();
967        I != E; ++I)
968     Result = Result.remove(I->first);
969 
970   // If we're invalidating a region with a symbolic offset, we need to make sure
971   // we don't treat the base region as uninitialized anymore.
972   // FIXME: This isn't very precise; see the example in
973   // collectSubRegionBindings.
974   if (TopKey.hasSymbolicOffset()) {
975     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
976     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
977                         UnknownVal());
978   }
979 
980   if (Result.isEmpty())
981     return B.remove(ClusterHead);
982   return B.add(ClusterHead, Result.asImmutableMap());
983 }
984 
985 namespace {
986 class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
987 {
988   const Expr *Ex;
989   unsigned Count;
990   const LocationContext *LCtx;
991   InvalidatedSymbols &IS;
992   RegionAndSymbolInvalidationTraits &ITraits;
993   StoreManager::InvalidatedRegions *Regions;
994   GlobalsFilterKind GlobalsFilter;
995 public:
InvalidateRegionsWorker(RegionStoreManager & rm,ProgramStateManager & stateMgr,RegionBindingsRef b,const Expr * ex,unsigned count,const LocationContext * lctx,InvalidatedSymbols & is,RegionAndSymbolInvalidationTraits & ITraitsIn,StoreManager::InvalidatedRegions * r,GlobalsFilterKind GFK)996   InvalidateRegionsWorker(RegionStoreManager &rm,
997                           ProgramStateManager &stateMgr,
998                           RegionBindingsRef b,
999                           const Expr *ex, unsigned count,
1000                           const LocationContext *lctx,
1001                           InvalidatedSymbols &is,
1002                           RegionAndSymbolInvalidationTraits &ITraitsIn,
1003                           StoreManager::InvalidatedRegions *r,
1004                           GlobalsFilterKind GFK)
1005      : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b),
1006        Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
1007        GlobalsFilter(GFK) {}
1008 
1009   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
1010   void VisitBinding(SVal V);
1011 
1012   using ClusterAnalysis::AddToWorkList;
1013 
1014   bool AddToWorkList(const MemRegion *R);
1015 
1016   /// Returns true if all clusters in the memory space for \p Base should be
1017   /// be invalidated.
1018   bool includeEntireMemorySpace(const MemRegion *Base);
1019 
1020   /// Returns true if the memory space of the given region is one of the global
1021   /// regions specially included at the start of invalidation.
1022   bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
1023 };
1024 }
1025 
AddToWorkList(const MemRegion * R)1026 bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
1027   bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1028       R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1029   const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
1030   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
1031 }
1032 
VisitBinding(SVal V)1033 void InvalidateRegionsWorker::VisitBinding(SVal V) {
1034   // A symbol?  Mark it touched by the invalidation.
1035   if (SymbolRef Sym = V.getAsSymbol())
1036     IS.insert(Sym);
1037 
1038   if (const MemRegion *R = V.getAsRegion()) {
1039     AddToWorkList(R);
1040     return;
1041   }
1042 
1043   // Is it a LazyCompoundVal?  All references get invalidated as well.
1044   if (Optional<nonloc::LazyCompoundVal> LCS =
1045           V.getAs<nonloc::LazyCompoundVal>()) {
1046 
1047     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
1048 
1049     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
1050                                                         E = Vals.end();
1051          I != E; ++I)
1052       VisitBinding(*I);
1053 
1054     return;
1055   }
1056 }
1057 
VisitCluster(const MemRegion * baseR,const ClusterBindings * C)1058 void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1059                                            const ClusterBindings *C) {
1060 
1061   bool PreserveRegionsContents =
1062       ITraits.hasTrait(baseR,
1063                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1064 
1065   if (C) {
1066     for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1067       VisitBinding(I.getData());
1068 
1069     // Invalidate regions contents.
1070     if (!PreserveRegionsContents)
1071       B = B.remove(baseR);
1072   }
1073 
1074   if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) {
1075     if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) {
1076 
1077       // Lambdas can affect all static local variables without explicitly
1078       // capturing those.
1079       // We invalidate all static locals referenced inside the lambda body.
1080       if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) {
1081         using namespace ast_matchers;
1082 
1083         const char *DeclBind = "DeclBind";
1084         StatementMatcher RefToStatic = stmt(hasDescendant(declRefExpr(
1085               to(varDecl(hasStaticStorageDuration()).bind(DeclBind)))));
1086         auto Matches =
1087             match(RefToStatic, *RD->getLambdaCallOperator()->getBody(),
1088                   RD->getASTContext());
1089 
1090         for (BoundNodes &Match : Matches) {
1091           auto *VD = Match.getNodeAs<VarDecl>(DeclBind);
1092           const VarRegion *ToInvalidate =
1093               RM.getRegionManager().getVarRegion(VD, LCtx);
1094           AddToWorkList(ToInvalidate);
1095         }
1096       }
1097     }
1098   }
1099 
1100   // BlockDataRegion?  If so, invalidate captured variables that are passed
1101   // by reference.
1102   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1103     for (BlockDataRegion::referenced_vars_iterator
1104          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1105          BI != BE; ++BI) {
1106       const VarRegion *VR = BI.getCapturedRegion();
1107       const VarDecl *VD = VR->getDecl();
1108       if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1109         AddToWorkList(VR);
1110       }
1111       else if (Loc::isLocType(VR->getValueType())) {
1112         // Map the current bindings to a Store to retrieve the value
1113         // of the binding.  If that binding itself is a region, we should
1114         // invalidate that region.  This is because a block may capture
1115         // a pointer value, but the thing pointed by that pointer may
1116         // get invalidated.
1117         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1118         if (Optional<Loc> L = V.getAs<Loc>()) {
1119           if (const MemRegion *LR = L->getAsRegion())
1120             AddToWorkList(LR);
1121         }
1122       }
1123     }
1124     return;
1125   }
1126 
1127   // Symbolic region?
1128   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1129     IS.insert(SR->getSymbol());
1130 
1131   // Nothing else should be done in the case when we preserve regions context.
1132   if (PreserveRegionsContents)
1133     return;
1134 
1135   // Otherwise, we have a normal data region. Record that we touched the region.
1136   if (Regions)
1137     Regions->push_back(baseR);
1138 
1139   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
1140     // Invalidate the region by setting its default value to
1141     // conjured symbol. The type of the symbol is irrelevant.
1142     DefinedOrUnknownSVal V =
1143       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1144     B = B.addBinding(baseR, BindingKey::Default, V);
1145     return;
1146   }
1147 
1148   if (!baseR->isBoundable())
1149     return;
1150 
1151   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1152   QualType T = TR->getValueType();
1153 
1154   if (isInitiallyIncludedGlobalRegion(baseR)) {
1155     // If the region is a global and we are invalidating all globals,
1156     // erasing the entry is good enough.  This causes all globals to be lazily
1157     // symbolicated from the same base symbol.
1158     return;
1159   }
1160 
1161   if (T->isRecordType()) {
1162     // Invalidate the region by setting its default value to
1163     // conjured symbol. The type of the symbol is irrelevant.
1164     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1165                                                           Ctx.IntTy, Count);
1166     B = B.addBinding(baseR, BindingKey::Default, V);
1167     return;
1168   }
1169 
1170   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1171     bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1172         baseR,
1173         RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1174 
1175     if (doNotInvalidateSuperRegion) {
1176       // We are not doing blank invalidation of the whole array region so we
1177       // have to manually invalidate each elements.
1178       Optional<uint64_t> NumElements;
1179 
1180       // Compute lower and upper offsets for region within array.
1181       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1182         NumElements = CAT->getSize().getZExtValue();
1183       if (!NumElements) // We are not dealing with a constant size array
1184         goto conjure_default;
1185       QualType ElementTy = AT->getElementType();
1186       uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1187       const RegionOffset &RO = baseR->getAsOffset();
1188       const MemRegion *SuperR = baseR->getBaseRegion();
1189       if (RO.hasSymbolicOffset()) {
1190         // If base region has a symbolic offset,
1191         // we revert to invalidating the super region.
1192         if (SuperR)
1193           AddToWorkList(SuperR);
1194         goto conjure_default;
1195       }
1196 
1197       uint64_t LowerOffset = RO.getOffset();
1198       uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1199       bool UpperOverflow = UpperOffset < LowerOffset;
1200 
1201       // Invalidate regions which are within array boundaries,
1202       // or have a symbolic offset.
1203       if (!SuperR)
1204         goto conjure_default;
1205 
1206       const ClusterBindings *C = B.lookup(SuperR);
1207       if (!C)
1208         goto conjure_default;
1209 
1210       for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
1211            ++I) {
1212         const BindingKey &BK = I.getKey();
1213         Optional<uint64_t> ROffset =
1214             BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();
1215 
1216         // Check offset is not symbolic and within array's boundaries.
1217         // Handles arrays of 0 elements and of 0-sized elements as well.
1218         if (!ROffset ||
1219             ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1220              (UpperOverflow &&
1221               (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1222              (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1223           B = B.removeBinding(I.getKey());
1224           // Bound symbolic regions need to be invalidated for dead symbol
1225           // detection.
1226           SVal V = I.getData();
1227           const MemRegion *R = V.getAsRegion();
1228           if (R && isa<SymbolicRegion>(R))
1229             VisitBinding(V);
1230         }
1231       }
1232     }
1233   conjure_default:
1234       // Set the default value of the array to conjured symbol.
1235     DefinedOrUnknownSVal V =
1236     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1237                                      AT->getElementType(), Count);
1238     B = B.addBinding(baseR, BindingKey::Default, V);
1239     return;
1240   }
1241 
1242   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1243                                                         T,Count);
1244   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1245   B = B.addBinding(baseR, BindingKey::Direct, V);
1246 }
1247 
isInitiallyIncludedGlobalRegion(const MemRegion * R)1248 bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1249     const MemRegion *R) {
1250   switch (GlobalsFilter) {
1251   case GFK_None:
1252     return false;
1253   case GFK_SystemOnly:
1254     return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1255   case GFK_All:
1256     return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1257   }
1258 
1259   llvm_unreachable("unknown globals filter");
1260 }
1261 
includeEntireMemorySpace(const MemRegion * Base)1262 bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1263   if (isInitiallyIncludedGlobalRegion(Base))
1264     return true;
1265 
1266   const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1267   return ITraits.hasTrait(MemSpace,
1268                           RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
1269 }
1270 
1271 RegionBindingsRef
invalidateGlobalRegion(MemRegion::Kind K,const Expr * Ex,unsigned Count,const LocationContext * LCtx,RegionBindingsRef B,InvalidatedRegions * Invalidated)1272 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1273                                            const Expr *Ex,
1274                                            unsigned Count,
1275                                            const LocationContext *LCtx,
1276                                            RegionBindingsRef B,
1277                                            InvalidatedRegions *Invalidated) {
1278   // Bind the globals memory space to a new symbol that we will use to derive
1279   // the bindings for all globals.
1280   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1281   SVal V = svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void*) GS, Ex, LCtx,
1282                                         /* type does not matter */ Ctx.IntTy,
1283                                         Count);
1284 
1285   B = B.removeBinding(GS)
1286        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1287 
1288   // Even if there are no bindings in the global scope, we still need to
1289   // record that we touched it.
1290   if (Invalidated)
1291     Invalidated->push_back(GS);
1292 
1293   return B;
1294 }
1295 
populateWorkList(InvalidateRegionsWorker & W,ArrayRef<SVal> Values,InvalidatedRegions * TopLevelRegions)1296 void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W,
1297                                           ArrayRef<SVal> Values,
1298                                           InvalidatedRegions *TopLevelRegions) {
1299   for (ArrayRef<SVal>::iterator I = Values.begin(),
1300                                 E = Values.end(); I != E; ++I) {
1301     SVal V = *I;
1302     if (Optional<nonloc::LazyCompoundVal> LCS =
1303         V.getAs<nonloc::LazyCompoundVal>()) {
1304 
1305       const SValListTy &Vals = getInterestingValues(*LCS);
1306 
1307       for (SValListTy::const_iterator I = Vals.begin(),
1308                                       E = Vals.end(); I != E; ++I) {
1309         // Note: the last argument is false here because these are
1310         // non-top-level regions.
1311         if (const MemRegion *R = (*I).getAsRegion())
1312           W.AddToWorkList(R);
1313       }
1314       continue;
1315     }
1316 
1317     if (const MemRegion *R = V.getAsRegion()) {
1318       if (TopLevelRegions)
1319         TopLevelRegions->push_back(R);
1320       W.AddToWorkList(R);
1321       continue;
1322     }
1323   }
1324 }
1325 
1326 StoreRef
invalidateRegions(Store store,ArrayRef<SVal> Values,const Expr * Ex,unsigned Count,const LocationContext * LCtx,const CallEvent * Call,InvalidatedSymbols & IS,RegionAndSymbolInvalidationTraits & ITraits,InvalidatedRegions * TopLevelRegions,InvalidatedRegions * Invalidated)1327 RegionStoreManager::invalidateRegions(Store store,
1328                                      ArrayRef<SVal> Values,
1329                                      const Expr *Ex, unsigned Count,
1330                                      const LocationContext *LCtx,
1331                                      const CallEvent *Call,
1332                                      InvalidatedSymbols &IS,
1333                                      RegionAndSymbolInvalidationTraits &ITraits,
1334                                      InvalidatedRegions *TopLevelRegions,
1335                                      InvalidatedRegions *Invalidated) {
1336   GlobalsFilterKind GlobalsFilter;
1337   if (Call) {
1338     if (Call->isInSystemHeader())
1339       GlobalsFilter = GFK_SystemOnly;
1340     else
1341       GlobalsFilter = GFK_All;
1342   } else {
1343     GlobalsFilter = GFK_None;
1344   }
1345 
1346   RegionBindingsRef B = getRegionBindings(store);
1347   InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1348                             Invalidated, GlobalsFilter);
1349 
1350   // Scan the bindings and generate the clusters.
1351   W.GenerateClusters();
1352 
1353   // Add the regions to the worklist.
1354   populateWorkList(W, Values, TopLevelRegions);
1355 
1356   W.RunWorkList();
1357 
1358   // Return the new bindings.
1359   B = W.getRegionBindings();
1360 
1361   // For calls, determine which global regions should be invalidated and
1362   // invalidate them. (Note that function-static and immutable globals are never
1363   // invalidated by this.)
1364   // TODO: This could possibly be more precise with modules.
1365   switch (GlobalsFilter) {
1366   case GFK_All:
1367     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1368                                Ex, Count, LCtx, B, Invalidated);
1369     LLVM_FALLTHROUGH;
1370   case GFK_SystemOnly:
1371     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1372                                Ex, Count, LCtx, B, Invalidated);
1373     LLVM_FALLTHROUGH;
1374   case GFK_None:
1375     break;
1376   }
1377 
1378   return StoreRef(B.asStore(), *this);
1379 }
1380 
1381 //===----------------------------------------------------------------------===//
1382 // Location and region casting.
1383 //===----------------------------------------------------------------------===//
1384 
1385 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1386 ///  type.  'Array' represents the lvalue of the array being decayed
1387 ///  to a pointer, and the returned SVal represents the decayed
1388 ///  version of that lvalue (i.e., a pointer to the first element of
1389 ///  the array).  This is called by ExprEngine when evaluating casts
1390 ///  from arrays to pointers.
ArrayToPointer(Loc Array,QualType T)1391 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1392   if (Array.getAs<loc::ConcreteInt>())
1393     return Array;
1394 
1395   if (!Array.getAs<loc::MemRegionVal>())
1396     return UnknownVal();
1397 
1398   const SubRegion *R =
1399       cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
1400   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1401   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1402 }
1403 
1404 //===----------------------------------------------------------------------===//
1405 // Loading values from regions.
1406 //===----------------------------------------------------------------------===//
1407 
getBinding(RegionBindingsConstRef B,Loc L,QualType T)1408 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1409   assert(!L.getAs<UnknownVal>() && "location unknown");
1410   assert(!L.getAs<UndefinedVal>() && "location undefined");
1411 
1412   // For access to concrete addresses, return UnknownVal.  Checks
1413   // for null dereferences (and similar errors) are done by checkers, not
1414   // the Store.
1415   // FIXME: We can consider lazily symbolicating such memory, but we really
1416   // should defer this when we can reason easily about symbolicating arrays
1417   // of bytes.
1418   if (L.getAs<loc::ConcreteInt>()) {
1419     return UnknownVal();
1420   }
1421   if (!L.getAs<loc::MemRegionVal>()) {
1422     return UnknownVal();
1423   }
1424 
1425   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1426 
1427   if (isa<BlockDataRegion>(MR)) {
1428     return UnknownVal();
1429   }
1430 
1431   if (!isa<TypedValueRegion>(MR)) {
1432     if (T.isNull()) {
1433       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1434         T = TR->getLocationType()->getPointeeType();
1435       else if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
1436         T = SR->getSymbol()->getType()->getPointeeType();
1437     }
1438     assert(!T.isNull() && "Unable to auto-detect binding type!");
1439     assert(!T->isVoidType() && "Attempting to dereference a void pointer!");
1440     MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
1441   } else {
1442     T = cast<TypedValueRegion>(MR)->getValueType();
1443   }
1444 
1445   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1446   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
1447   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1448   QualType RTy = R->getValueType();
1449 
1450   // FIXME: we do not yet model the parts of a complex type, so treat the
1451   // whole thing as "unknown".
1452   if (RTy->isAnyComplexType())
1453     return UnknownVal();
1454 
1455   // FIXME: We should eventually handle funny addressing.  e.g.:
1456   //
1457   //   int x = ...;
1458   //   int *p = &x;
1459   //   char *q = (char*) p;
1460   //   char c = *q;  // returns the first byte of 'x'.
1461   //
1462   // Such funny addressing will occur due to layering of regions.
1463   if (RTy->isStructureOrClassType())
1464     return getBindingForStruct(B, R);
1465 
1466   // FIXME: Handle unions.
1467   if (RTy->isUnionType())
1468     return createLazyBinding(B, R);
1469 
1470   if (RTy->isArrayType()) {
1471     if (RTy->isConstantArrayType())
1472       return getBindingForArray(B, R);
1473     else
1474       return UnknownVal();
1475   }
1476 
1477   // FIXME: handle Vector types.
1478   if (RTy->isVectorType())
1479     return UnknownVal();
1480 
1481   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1482     return CastRetrievedVal(getBindingForField(B, FR), FR, T);
1483 
1484   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1485     // FIXME: Here we actually perform an implicit conversion from the loaded
1486     // value to the element type.  Eventually we want to compose these values
1487     // more intelligently.  For example, an 'element' can encompass multiple
1488     // bound regions (e.g., several bound bytes), or could be a subset of
1489     // a larger value.
1490     return CastRetrievedVal(getBindingForElement(B, ER), ER, T);
1491   }
1492 
1493   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1494     // FIXME: Here we actually perform an implicit conversion from the loaded
1495     // value to the ivar type.  What we should model is stores to ivars
1496     // that blow past the extent of the ivar.  If the address of the ivar is
1497     // reinterpretted, it is possible we stored a different value that could
1498     // fit within the ivar.  Either we need to cast these when storing them
1499     // or reinterpret them lazily (as we do here).
1500     return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T);
1501   }
1502 
1503   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1504     // FIXME: Here we actually perform an implicit conversion from the loaded
1505     // value to the variable type.  What we should model is stores to variables
1506     // that blow past the extent of the variable.  If the address of the
1507     // variable is reinterpretted, it is possible we stored a different value
1508     // that could fit within the variable.  Either we need to cast these when
1509     // storing them or reinterpret them lazily (as we do here).
1510     return CastRetrievedVal(getBindingForVar(B, VR), VR, T);
1511   }
1512 
1513   const SVal *V = B.lookup(R, BindingKey::Direct);
1514 
1515   // Check if the region has a binding.
1516   if (V)
1517     return *V;
1518 
1519   // The location does not have a bound value.  This means that it has
1520   // the value it had upon its creation and/or entry to the analyzed
1521   // function/method.  These are either symbolic values or 'undefined'.
1522   if (R->hasStackNonParametersStorage()) {
1523     // All stack variables are considered to have undefined values
1524     // upon creation.  All heap allocated blocks are considered to
1525     // have undefined values as well unless they are explicitly bound
1526     // to specific values.
1527     return UndefinedVal();
1528   }
1529 
1530   // All other values are symbolic.
1531   return svalBuilder.getRegionValueSymbolVal(R);
1532 }
1533 
getUnderlyingType(const SubRegion * R)1534 static QualType getUnderlyingType(const SubRegion *R) {
1535   QualType RegionTy;
1536   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1537     RegionTy = TVR->getValueType();
1538 
1539   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1540     RegionTy = SR->getSymbol()->getType();
1541 
1542   return RegionTy;
1543 }
1544 
1545 /// Checks to see if store \p B has a lazy binding for region \p R.
1546 ///
1547 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1548 /// if there are additional bindings within \p R.
1549 ///
1550 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1551 /// for lazy bindings for super-regions of \p R.
1552 static Optional<nonloc::LazyCompoundVal>
getExistingLazyBinding(SValBuilder & SVB,RegionBindingsConstRef B,const SubRegion * R,bool AllowSubregionBindings)1553 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1554                        const SubRegion *R, bool AllowSubregionBindings) {
1555   Optional<SVal> V = B.getDefaultBinding(R);
1556   if (!V)
1557     return None;
1558 
1559   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1560   if (!LCV)
1561     return None;
1562 
1563   // If the LCV is for a subregion, the types might not match, and we shouldn't
1564   // reuse the binding.
1565   QualType RegionTy = getUnderlyingType(R);
1566   if (!RegionTy.isNull() &&
1567       !RegionTy->isVoidPointerType()) {
1568     QualType SourceRegionTy = LCV->getRegion()->getValueType();
1569     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1570       return None;
1571   }
1572 
1573   if (!AllowSubregionBindings) {
1574     // If there are any other bindings within this region, we shouldn't reuse
1575     // the top-level binding.
1576     SmallVector<BindingPair, 16> Bindings;
1577     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1578                              /*IncludeAllDefaultBindings=*/true);
1579     if (Bindings.size() > 1)
1580       return None;
1581   }
1582 
1583   return *LCV;
1584 }
1585 
1586 
1587 std::pair<Store, const SubRegion *>
findLazyBinding(RegionBindingsConstRef B,const SubRegion * R,const SubRegion * originalRegion)1588 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1589                                    const SubRegion *R,
1590                                    const SubRegion *originalRegion) {
1591   if (originalRegion != R) {
1592     if (Optional<nonloc::LazyCompoundVal> V =
1593           getExistingLazyBinding(svalBuilder, B, R, true))
1594       return std::make_pair(V->getStore(), V->getRegion());
1595   }
1596 
1597   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1598   StoreRegionPair Result = StoreRegionPair();
1599 
1600   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1601     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1602                              originalRegion);
1603 
1604     if (Result.second)
1605       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1606 
1607   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1608     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1609                                        originalRegion);
1610 
1611     if (Result.second)
1612       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1613 
1614   } else if (const CXXBaseObjectRegion *BaseReg =
1615                dyn_cast<CXXBaseObjectRegion>(R)) {
1616     // C++ base object region is another kind of region that we should blast
1617     // through to look for lazy compound value. It is like a field region.
1618     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1619                              originalRegion);
1620 
1621     if (Result.second)
1622       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1623                                                             Result.second);
1624   }
1625 
1626   return Result;
1627 }
1628 
getBindingForElement(RegionBindingsConstRef B,const ElementRegion * R)1629 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1630                                               const ElementRegion* R) {
1631   // Check if the region has a binding.
1632   if (const Optional<SVal> &V = B.getDirectBinding(R))
1633     return *V;
1634 
1635   const MemRegion* superR = R->getSuperRegion();
1636 
1637   // Check if the region is an element region of a string literal.
1638   if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) {
1639     // FIXME: Handle loads from strings where the literal is treated as
1640     // an integer, e.g., *((unsigned int*)"hello")
1641     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1642     if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1643       return UnknownVal();
1644 
1645     const StringLiteral *Str = StrR->getStringLiteral();
1646     SVal Idx = R->getIndex();
1647     if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
1648       int64_t i = CI->getValue().getSExtValue();
1649       // Abort on string underrun.  This can be possible by arbitrary
1650       // clients of getBindingForElement().
1651       if (i < 0)
1652         return UndefinedVal();
1653       int64_t length = Str->getLength();
1654       // Technically, only i == length is guaranteed to be null.
1655       // However, such overflows should be caught before reaching this point;
1656       // the only time such an access would be made is if a string literal was
1657       // used to initialize a larger array.
1658       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1659       return svalBuilder.makeIntVal(c, T);
1660     }
1661   } else if (const VarRegion *VR = dyn_cast<VarRegion>(superR)) {
1662     // Check if the containing array has an initialized value that we can trust.
1663     // We can trust a const value or a value of a global initializer in main().
1664     const VarDecl *VD = VR->getDecl();
1665     if (VD->getType().isConstQualified() ||
1666         R->getElementType().isConstQualified() ||
1667         (B.isMainAnalysis() && VD->hasGlobalStorage())) {
1668       if (const Expr *Init = VD->getAnyInitializer()) {
1669         if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1670           // The array index has to be known.
1671           if (auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) {
1672             int64_t i = CI->getValue().getSExtValue();
1673             // If it is known that the index is out of bounds, we can return
1674             // an undefined value.
1675             if (i < 0)
1676               return UndefinedVal();
1677 
1678             if (auto CAT = Ctx.getAsConstantArrayType(VD->getType()))
1679               if (CAT->getSize().sle(i))
1680                 return UndefinedVal();
1681 
1682             // If there is a list, but no init, it must be zero.
1683             if (i >= InitList->getNumInits())
1684               return svalBuilder.makeZeroVal(R->getElementType());
1685 
1686             if (const Expr *ElemInit = InitList->getInit(i))
1687               if (Optional<SVal> V = svalBuilder.getConstantVal(ElemInit))
1688                 return *V;
1689           }
1690         }
1691       }
1692     }
1693   }
1694 
1695   // Check for loads from a code text region.  For such loads, just give up.
1696   if (isa<CodeTextRegion>(superR))
1697     return UnknownVal();
1698 
1699   // Handle the case where we are indexing into a larger scalar object.
1700   // For example, this handles:
1701   //   int x = ...
1702   //   char *y = &x;
1703   //   return *y;
1704   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1705   const RegionRawOffset &O = R->getAsArrayOffset();
1706 
1707   // If we cannot reason about the offset, return an unknown value.
1708   if (!O.getRegion())
1709     return UnknownVal();
1710 
1711   if (const TypedValueRegion *baseR =
1712         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1713     QualType baseT = baseR->getValueType();
1714     if (baseT->isScalarType()) {
1715       QualType elemT = R->getElementType();
1716       if (elemT->isScalarType()) {
1717         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1718           if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1719             if (SymbolRef parentSym = V->getAsSymbol())
1720               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1721 
1722             if (V->isUnknownOrUndef())
1723               return *V;
1724             // Other cases: give up.  We are indexing into a larger object
1725             // that has some value, but we don't know how to handle that yet.
1726             return UnknownVal();
1727           }
1728         }
1729       }
1730     }
1731   }
1732   return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1733 }
1734 
getBindingForField(RegionBindingsConstRef B,const FieldRegion * R)1735 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1736                                             const FieldRegion* R) {
1737 
1738   // Check if the region has a binding.
1739   if (const Optional<SVal> &V = B.getDirectBinding(R))
1740     return *V;
1741 
1742   // Is the field declared constant and has an in-class initializer?
1743   const FieldDecl *FD = R->getDecl();
1744   QualType Ty = FD->getType();
1745   if (Ty.isConstQualified())
1746     if (const Expr *Init = FD->getInClassInitializer())
1747       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1748         return *V;
1749 
1750   // If the containing record was initialized, try to get its constant value.
1751   const MemRegion* superR = R->getSuperRegion();
1752   if (const auto *VR = dyn_cast<VarRegion>(superR)) {
1753     const VarDecl *VD = VR->getDecl();
1754     QualType RecordVarTy = VD->getType();
1755     unsigned Index = FD->getFieldIndex();
1756     // Either the record variable or the field has an initializer that we can
1757     // trust. We trust initializers of constants and, additionally, respect
1758     // initializers of globals when analyzing main().
1759     if (RecordVarTy.isConstQualified() || Ty.isConstQualified() ||
1760         (B.isMainAnalysis() && VD->hasGlobalStorage()))
1761       if (const Expr *Init = VD->getAnyInitializer())
1762         if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1763           if (Index < InitList->getNumInits()) {
1764             if (const Expr *FieldInit = InitList->getInit(Index))
1765               if (Optional<SVal> V = svalBuilder.getConstantVal(FieldInit))
1766                 return *V;
1767           } else {
1768             return svalBuilder.makeZeroVal(Ty);
1769           }
1770         }
1771   }
1772 
1773   return getBindingForFieldOrElementCommon(B, R, Ty);
1774 }
1775 
1776 Optional<SVal>
getBindingForDerivedDefaultValue(RegionBindingsConstRef B,const MemRegion * superR,const TypedValueRegion * R,QualType Ty)1777 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1778                                                      const MemRegion *superR,
1779                                                      const TypedValueRegion *R,
1780                                                      QualType Ty) {
1781 
1782   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1783     const SVal &val = D.getValue();
1784     if (SymbolRef parentSym = val.getAsSymbol())
1785       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1786 
1787     if (val.isZeroConstant())
1788       return svalBuilder.makeZeroVal(Ty);
1789 
1790     if (val.isUnknownOrUndef())
1791       return val;
1792 
1793     // Lazy bindings are usually handled through getExistingLazyBinding().
1794     // We should unify these two code paths at some point.
1795     if (val.getAs<nonloc::LazyCompoundVal>() ||
1796         val.getAs<nonloc::CompoundVal>())
1797       return val;
1798 
1799     llvm_unreachable("Unknown default value");
1800   }
1801 
1802   return None;
1803 }
1804 
getLazyBinding(const SubRegion * LazyBindingRegion,RegionBindingsRef LazyBinding)1805 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1806                                         RegionBindingsRef LazyBinding) {
1807   SVal Result;
1808   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1809     Result = getBindingForElement(LazyBinding, ER);
1810   else
1811     Result = getBindingForField(LazyBinding,
1812                                 cast<FieldRegion>(LazyBindingRegion));
1813 
1814   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1815   // default value for /part/ of an aggregate from a default value for the
1816   // /entire/ aggregate. The most common case of this is when struct Outer
1817   // has as its first member a struct Inner, which is copied in from a stack
1818   // variable. In this case, even if the Outer's default value is symbolic, 0,
1819   // or unknown, it gets overridden by the Inner's default value of undefined.
1820   //
1821   // This is a general problem -- if the Inner is zero-initialized, the Outer
1822   // will now look zero-initialized. The proper way to solve this is with a
1823   // new version of RegionStore that tracks the extent of a binding as well
1824   // as the offset.
1825   //
1826   // This hack only takes care of the undefined case because that can very
1827   // quickly result in a warning.
1828   if (Result.isUndef())
1829     Result = UnknownVal();
1830 
1831   return Result;
1832 }
1833 
1834 SVal
getBindingForFieldOrElementCommon(RegionBindingsConstRef B,const TypedValueRegion * R,QualType Ty)1835 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1836                                                       const TypedValueRegion *R,
1837                                                       QualType Ty) {
1838 
1839   // At this point we have already checked in either getBindingForElement or
1840   // getBindingForField if 'R' has a direct binding.
1841 
1842   // Lazy binding?
1843   Store lazyBindingStore = nullptr;
1844   const SubRegion *lazyBindingRegion = nullptr;
1845   std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1846   if (lazyBindingRegion)
1847     return getLazyBinding(lazyBindingRegion,
1848                           getRegionBindings(lazyBindingStore));
1849 
1850   // Record whether or not we see a symbolic index.  That can completely
1851   // be out of scope of our lookup.
1852   bool hasSymbolicIndex = false;
1853 
1854   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1855   // default value for /part/ of an aggregate from a default value for the
1856   // /entire/ aggregate. The most common case of this is when struct Outer
1857   // has as its first member a struct Inner, which is copied in from a stack
1858   // variable. In this case, even if the Outer's default value is symbolic, 0,
1859   // or unknown, it gets overridden by the Inner's default value of undefined.
1860   //
1861   // This is a general problem -- if the Inner is zero-initialized, the Outer
1862   // will now look zero-initialized. The proper way to solve this is with a
1863   // new version of RegionStore that tracks the extent of a binding as well
1864   // as the offset.
1865   //
1866   // This hack only takes care of the undefined case because that can very
1867   // quickly result in a warning.
1868   bool hasPartialLazyBinding = false;
1869 
1870   const SubRegion *SR = R;
1871   while (SR) {
1872     const MemRegion *Base = SR->getSuperRegion();
1873     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1874       if (D->getAs<nonloc::LazyCompoundVal>()) {
1875         hasPartialLazyBinding = true;
1876         break;
1877       }
1878 
1879       return *D;
1880     }
1881 
1882     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
1883       NonLoc index = ER->getIndex();
1884       if (!index.isConstant())
1885         hasSymbolicIndex = true;
1886     }
1887 
1888     // If our super region is a field or element itself, walk up the region
1889     // hierarchy to see if there is a default value installed in an ancestor.
1890     SR = dyn_cast<SubRegion>(Base);
1891   }
1892 
1893   if (R->hasStackNonParametersStorage()) {
1894     if (isa<ElementRegion>(R)) {
1895       // Currently we don't reason specially about Clang-style vectors.  Check
1896       // if superR is a vector and if so return Unknown.
1897       if (const TypedValueRegion *typedSuperR =
1898             dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
1899         if (typedSuperR->getValueType()->isVectorType())
1900           return UnknownVal();
1901       }
1902     }
1903 
1904     // FIXME: We also need to take ElementRegions with symbolic indexes into
1905     // account.  This case handles both directly accessing an ElementRegion
1906     // with a symbolic offset, but also fields within an element with
1907     // a symbolic offset.
1908     if (hasSymbolicIndex)
1909       return UnknownVal();
1910 
1911     // Additionally allow introspection of a block's internal layout.
1912     if (!hasPartialLazyBinding && !isa<BlockDataRegion>(R->getBaseRegion()))
1913       return UndefinedVal();
1914   }
1915 
1916   // All other values are symbolic.
1917   return svalBuilder.getRegionValueSymbolVal(R);
1918 }
1919 
getBindingForObjCIvar(RegionBindingsConstRef B,const ObjCIvarRegion * R)1920 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1921                                                const ObjCIvarRegion* R) {
1922   // Check if the region has a binding.
1923   if (const Optional<SVal> &V = B.getDirectBinding(R))
1924     return *V;
1925 
1926   const MemRegion *superR = R->getSuperRegion();
1927 
1928   // Check if the super region has a default binding.
1929   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1930     if (SymbolRef parentSym = V->getAsSymbol())
1931       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1932 
1933     // Other cases: give up.
1934     return UnknownVal();
1935   }
1936 
1937   return getBindingForLazySymbol(R);
1938 }
1939 
getBindingForVar(RegionBindingsConstRef B,const VarRegion * R)1940 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1941                                           const VarRegion *R) {
1942 
1943   // Check if the region has a binding.
1944   if (Optional<SVal> V = B.getDirectBinding(R))
1945     return *V;
1946 
1947   if (Optional<SVal> V = B.getDefaultBinding(R))
1948     return *V;
1949 
1950   // Lazily derive a value for the VarRegion.
1951   const VarDecl *VD = R->getDecl();
1952   const MemSpaceRegion *MS = R->getMemorySpace();
1953 
1954   // Arguments are always symbolic.
1955   if (isa<StackArgumentsSpaceRegion>(MS))
1956     return svalBuilder.getRegionValueSymbolVal(R);
1957 
1958   // Is 'VD' declared constant?  If so, retrieve the constant value.
1959   if (VD->getType().isConstQualified()) {
1960     if (const Expr *Init = VD->getAnyInitializer()) {
1961       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1962         return *V;
1963 
1964       // If the variable is const qualified and has an initializer but
1965       // we couldn't evaluate initializer to a value, treat the value as
1966       // unknown.
1967       return UnknownVal();
1968     }
1969   }
1970 
1971   // This must come after the check for constants because closure-captured
1972   // constant variables may appear in UnknownSpaceRegion.
1973   if (isa<UnknownSpaceRegion>(MS))
1974     return svalBuilder.getRegionValueSymbolVal(R);
1975 
1976   if (isa<GlobalsSpaceRegion>(MS)) {
1977     QualType T = VD->getType();
1978 
1979     // If we're in main(), then global initializers have not become stale yet.
1980     if (B.isMainAnalysis())
1981       if (const Expr *Init = VD->getAnyInitializer())
1982         if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1983           return *V;
1984 
1985     // Function-scoped static variables are default-initialized to 0; if they
1986     // have an initializer, it would have been processed by now.
1987     // FIXME: This is only true when we're starting analysis from main().
1988     // We're losing a lot of coverage here.
1989     if (isa<StaticGlobalSpaceRegion>(MS))
1990       return svalBuilder.makeZeroVal(T);
1991 
1992     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
1993       assert(!V->getAs<nonloc::LazyCompoundVal>());
1994       return V.getValue();
1995     }
1996 
1997     return svalBuilder.getRegionValueSymbolVal(R);
1998   }
1999 
2000   return UndefinedVal();
2001 }
2002 
getBindingForLazySymbol(const TypedValueRegion * R)2003 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
2004   // All other values are symbolic.
2005   return svalBuilder.getRegionValueSymbolVal(R);
2006 }
2007 
2008 const RegionStoreManager::SValListTy &
getInterestingValues(nonloc::LazyCompoundVal LCV)2009 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
2010   // First, check the cache.
2011   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
2012   if (I != LazyBindingsMap.end())
2013     return I->second;
2014 
2015   // If we don't have a list of values cached, start constructing it.
2016   SValListTy List;
2017 
2018   const SubRegion *LazyR = LCV.getRegion();
2019   RegionBindingsRef B = getRegionBindings(LCV.getStore());
2020 
2021   // If this region had /no/ bindings at the time, there are no interesting
2022   // values to return.
2023   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
2024   if (!Cluster)
2025     return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2026 
2027   SmallVector<BindingPair, 32> Bindings;
2028   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
2029                            /*IncludeAllDefaultBindings=*/true);
2030   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
2031                                                     E = Bindings.end();
2032        I != E; ++I) {
2033     SVal V = I->second;
2034     if (V.isUnknownOrUndef() || V.isConstant())
2035       continue;
2036 
2037     if (Optional<nonloc::LazyCompoundVal> InnerLCV =
2038             V.getAs<nonloc::LazyCompoundVal>()) {
2039       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
2040       List.insert(List.end(), InnerList.begin(), InnerList.end());
2041       continue;
2042     }
2043 
2044     List.push_back(V);
2045   }
2046 
2047   return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2048 }
2049 
createLazyBinding(RegionBindingsConstRef B,const TypedValueRegion * R)2050 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
2051                                              const TypedValueRegion *R) {
2052   if (Optional<nonloc::LazyCompoundVal> V =
2053         getExistingLazyBinding(svalBuilder, B, R, false))
2054     return *V;
2055 
2056   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
2057 }
2058 
isRecordEmpty(const RecordDecl * RD)2059 static bool isRecordEmpty(const RecordDecl *RD) {
2060   if (!RD->field_empty())
2061     return false;
2062   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
2063     return CRD->getNumBases() == 0;
2064   return true;
2065 }
2066 
getBindingForStruct(RegionBindingsConstRef B,const TypedValueRegion * R)2067 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
2068                                              const TypedValueRegion *R) {
2069   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
2070   if (!RD->getDefinition() || isRecordEmpty(RD))
2071     return UnknownVal();
2072 
2073   return createLazyBinding(B, R);
2074 }
2075 
getBindingForArray(RegionBindingsConstRef B,const TypedValueRegion * R)2076 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
2077                                             const TypedValueRegion *R) {
2078   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
2079          "Only constant array types can have compound bindings.");
2080 
2081   return createLazyBinding(B, R);
2082 }
2083 
includedInBindings(Store store,const MemRegion * region) const2084 bool RegionStoreManager::includedInBindings(Store store,
2085                                             const MemRegion *region) const {
2086   RegionBindingsRef B = getRegionBindings(store);
2087   region = region->getBaseRegion();
2088 
2089   // Quick path: if the base is the head of a cluster, the region is live.
2090   if (B.lookup(region))
2091     return true;
2092 
2093   // Slow path: if the region is the VALUE of any binding, it is live.
2094   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
2095     const ClusterBindings &Cluster = RI.getData();
2096     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2097          CI != CE; ++CI) {
2098       const SVal &D = CI.getData();
2099       if (const MemRegion *R = D.getAsRegion())
2100         if (R->getBaseRegion() == region)
2101           return true;
2102     }
2103   }
2104 
2105   return false;
2106 }
2107 
2108 //===----------------------------------------------------------------------===//
2109 // Binding values to regions.
2110 //===----------------------------------------------------------------------===//
2111 
killBinding(Store ST,Loc L)2112 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
2113   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
2114     if (const MemRegion* R = LV->getRegion())
2115       return StoreRef(getRegionBindings(ST).removeBinding(R)
2116                                            .asImmutableMap()
2117                                            .getRootWithoutRetain(),
2118                       *this);
2119 
2120   return StoreRef(ST, *this);
2121 }
2122 
2123 RegionBindingsRef
bind(RegionBindingsConstRef B,Loc L,SVal V)2124 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
2125   if (L.getAs<loc::ConcreteInt>())
2126     return B;
2127 
2128   // If we get here, the location should be a region.
2129   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
2130 
2131   // Check if the region is a struct region.
2132   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
2133     QualType Ty = TR->getValueType();
2134     if (Ty->isArrayType())
2135       return bindArray(B, TR, V);
2136     if (Ty->isStructureOrClassType())
2137       return bindStruct(B, TR, V);
2138     if (Ty->isVectorType())
2139       return bindVector(B, TR, V);
2140     if (Ty->isUnionType())
2141       return bindAggregate(B, TR, V);
2142   }
2143 
2144   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
2145     // Binding directly to a symbolic region should be treated as binding
2146     // to element 0.
2147     QualType T = SR->getSymbol()->getType();
2148     if (T->isAnyPointerType() || T->isReferenceType())
2149       T = T->getPointeeType();
2150 
2151     R = GetElementZeroRegion(SR, T);
2152   }
2153 
2154   assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) &&
2155          "'this' pointer is not an l-value and is not assignable");
2156 
2157   // Clear out bindings that may overlap with this binding.
2158   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2159   return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
2160 }
2161 
2162 RegionBindingsRef
setImplicitDefaultValue(RegionBindingsConstRef B,const MemRegion * R,QualType T)2163 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2164                                             const MemRegion *R,
2165                                             QualType T) {
2166   SVal V;
2167 
2168   if (Loc::isLocType(T))
2169     V = svalBuilder.makeNull();
2170   else if (T->isIntegralOrEnumerationType())
2171     V = svalBuilder.makeZeroVal(T);
2172   else if (T->isStructureOrClassType() || T->isArrayType()) {
2173     // Set the default value to a zero constant when it is a structure
2174     // or array.  The type doesn't really matter.
2175     V = svalBuilder.makeZeroVal(Ctx.IntTy);
2176   }
2177   else {
2178     // We can't represent values of this type, but we still need to set a value
2179     // to record that the region has been initialized.
2180     // If this assertion ever fires, a new case should be added above -- we
2181     // should know how to default-initialize any value we can symbolicate.
2182     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2183     V = UnknownVal();
2184   }
2185 
2186   return B.addBinding(R, BindingKey::Default, V);
2187 }
2188 
2189 RegionBindingsRef
bindArray(RegionBindingsConstRef B,const TypedValueRegion * R,SVal Init)2190 RegionStoreManager::bindArray(RegionBindingsConstRef B,
2191                               const TypedValueRegion* R,
2192                               SVal Init) {
2193 
2194   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2195   QualType ElementTy = AT->getElementType();
2196   Optional<uint64_t> Size;
2197 
2198   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2199     Size = CAT->getSize().getZExtValue();
2200 
2201   // Check if the init expr is a literal. If so, bind the rvalue instead.
2202   // FIXME: It's not responsibility of the Store to transform this lvalue
2203   // to rvalue. ExprEngine or maybe even CFG should do this before binding.
2204   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2205     SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
2206     return bindAggregate(B, R, V);
2207   }
2208 
2209   // Handle lazy compound values.
2210   if (Init.getAs<nonloc::LazyCompoundVal>())
2211     return bindAggregate(B, R, Init);
2212 
2213   if (Init.isUnknown())
2214     return bindAggregate(B, R, UnknownVal());
2215 
2216   // Remaining case: explicit compound values.
2217   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2218   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2219   uint64_t i = 0;
2220 
2221   RegionBindingsRef NewB(B);
2222 
2223   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
2224     // The init list might be shorter than the array length.
2225     if (VI == VE)
2226       break;
2227 
2228     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
2229     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2230 
2231     if (ElementTy->isStructureOrClassType())
2232       NewB = bindStruct(NewB, ER, *VI);
2233     else if (ElementTy->isArrayType())
2234       NewB = bindArray(NewB, ER, *VI);
2235     else
2236       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2237   }
2238 
2239   // If the init list is shorter than the array length (or the array has
2240   // variable length), set the array default value. Values that are already set
2241   // are not overwritten.
2242   if (!Size.hasValue() || i < Size.getValue())
2243     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2244 
2245   return NewB;
2246 }
2247 
bindVector(RegionBindingsConstRef B,const TypedValueRegion * R,SVal V)2248 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2249                                                  const TypedValueRegion* R,
2250                                                  SVal V) {
2251   QualType T = R->getValueType();
2252   const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs.
2253 
2254   // Handle lazy compound values and symbolic values.
2255   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2256     return bindAggregate(B, R, V);
2257 
2258   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2259   // that we are binding symbolic struct value. Kill the field values, and if
2260   // the value is symbolic go and bind it as a "default" binding.
2261   if (!V.getAs<nonloc::CompoundVal>()) {
2262     return bindAggregate(B, R, UnknownVal());
2263   }
2264 
2265   QualType ElemType = VT->getElementType();
2266   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2267   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2268   unsigned index = 0, numElements = VT->getNumElements();
2269   RegionBindingsRef NewB(B);
2270 
2271   for ( ; index != numElements ; ++index) {
2272     if (VI == VE)
2273       break;
2274 
2275     NonLoc Idx = svalBuilder.makeArrayIndex(index);
2276     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2277 
2278     if (ElemType->isArrayType())
2279       NewB = bindArray(NewB, ER, *VI);
2280     else if (ElemType->isStructureOrClassType())
2281       NewB = bindStruct(NewB, ER, *VI);
2282     else
2283       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2284   }
2285   return NewB;
2286 }
2287 
2288 Optional<RegionBindingsRef>
tryBindSmallStruct(RegionBindingsConstRef B,const TypedValueRegion * R,const RecordDecl * RD,nonloc::LazyCompoundVal LCV)2289 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2290                                        const TypedValueRegion *R,
2291                                        const RecordDecl *RD,
2292                                        nonloc::LazyCompoundVal LCV) {
2293   FieldVector Fields;
2294 
2295   if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2296     if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2297       return None;
2298 
2299   for (const auto *FD : RD->fields()) {
2300     if (FD->isUnnamedBitfield())
2301       continue;
2302 
2303     // If there are too many fields, or if any of the fields are aggregates,
2304     // just use the LCV as a default binding.
2305     if (Fields.size() == SmallStructLimit)
2306       return None;
2307 
2308     QualType Ty = FD->getType();
2309     if (!(Ty->isScalarType() || Ty->isReferenceType()))
2310       return None;
2311 
2312     Fields.push_back(FD);
2313   }
2314 
2315   RegionBindingsRef NewB = B;
2316 
2317   for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2318     const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2319     SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2320 
2321     const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2322     NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2323   }
2324 
2325   return NewB;
2326 }
2327 
bindStruct(RegionBindingsConstRef B,const TypedValueRegion * R,SVal V)2328 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2329                                                  const TypedValueRegion* R,
2330                                                  SVal V) {
2331   if (!Features.supportsFields())
2332     return B;
2333 
2334   QualType T = R->getValueType();
2335   assert(T->isStructureOrClassType());
2336 
2337   const RecordType* RT = T->castAs<RecordType>();
2338   const RecordDecl *RD = RT->getDecl();
2339 
2340   if (!RD->isCompleteDefinition())
2341     return B;
2342 
2343   // Handle lazy compound values and symbolic values.
2344   if (Optional<nonloc::LazyCompoundVal> LCV =
2345         V.getAs<nonloc::LazyCompoundVal>()) {
2346     if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2347       return *NewB;
2348     return bindAggregate(B, R, V);
2349   }
2350   if (V.getAs<nonloc::SymbolVal>())
2351     return bindAggregate(B, R, V);
2352 
2353   // We may get non-CompoundVal accidentally due to imprecise cast logic or
2354   // that we are binding symbolic struct value. Kill the field values, and if
2355   // the value is symbolic go and bind it as a "default" binding.
2356   if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2357     return bindAggregate(B, R, UnknownVal());
2358 
2359   // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable)
2360   // list of other values. It appears pretty much only when there's an actual
2361   // initializer list expression in the program, and the analyzer tries to
2362   // unwrap it as soon as possible.
2363   // This code is where such unwrap happens: when the compound value is put into
2364   // the object that it was supposed to initialize (it's an *initializer* list,
2365   // after all), instead of binding the whole value to the whole object, we bind
2366   // sub-values to sub-objects. Sub-values may themselves be compound values,
2367   // and in this case the procedure becomes recursive.
2368   // FIXME: The annoying part about compound values is that they don't carry
2369   // any sort of information about which value corresponds to which sub-object.
2370   // It's simply a list of values in the middle of nowhere; we expect to match
2371   // them to sub-objects, essentially, "by index": first value binds to
2372   // the first field, second value binds to the second field, etc.
2373   // It would have been much safer to organize non-lazy compound values as
2374   // a mapping from fields/bases to values.
2375   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2376   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2377 
2378   RegionBindingsRef NewB(B);
2379 
2380   // In C++17 aggregates may have base classes, handle those as well.
2381   // They appear before fields in the initializer list / compound value.
2382   if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
2383     // If the object was constructed with a constructor, its value is a
2384     // LazyCompoundVal. If it's a raw CompoundVal, it means that we're
2385     // performing aggregate initialization. The only exception from this
2386     // rule is sending an Objective-C++ message that returns a C++ object
2387     // to a nil receiver; in this case the semantics is to return a
2388     // zero-initialized object even if it's a C++ object that doesn't have
2389     // this sort of constructor; the CompoundVal is empty in this case.
2390     assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) &&
2391            "Non-aggregates are constructed with a constructor!");
2392 
2393     for (const auto &B : CRD->bases()) {
2394       // (Multiple inheritance is fine though.)
2395       assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!");
2396 
2397       if (VI == VE)
2398         break;
2399 
2400       QualType BTy = B.getType();
2401       assert(BTy->isStructureOrClassType() && "Base classes must be classes!");
2402 
2403       const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl();
2404       assert(BRD && "Base classes must be C++ classes!");
2405 
2406       const CXXBaseObjectRegion *BR =
2407           MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false);
2408 
2409       NewB = bindStruct(NewB, BR, *VI);
2410 
2411       ++VI;
2412     }
2413   }
2414 
2415   RecordDecl::field_iterator FI, FE;
2416 
2417   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2418 
2419     if (VI == VE)
2420       break;
2421 
2422     // Skip any unnamed bitfields to stay in sync with the initializers.
2423     if (FI->isUnnamedBitfield())
2424       continue;
2425 
2426     QualType FTy = FI->getType();
2427     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2428 
2429     if (FTy->isArrayType())
2430       NewB = bindArray(NewB, FR, *VI);
2431     else if (FTy->isStructureOrClassType())
2432       NewB = bindStruct(NewB, FR, *VI);
2433     else
2434       NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2435     ++VI;
2436   }
2437 
2438   // There may be fewer values in the initialize list than the fields of struct.
2439   if (FI != FE) {
2440     NewB = NewB.addBinding(R, BindingKey::Default,
2441                            svalBuilder.makeIntVal(0, false));
2442   }
2443 
2444   return NewB;
2445 }
2446 
2447 RegionBindingsRef
bindAggregate(RegionBindingsConstRef B,const TypedRegion * R,SVal Val)2448 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2449                                   const TypedRegion *R,
2450                                   SVal Val) {
2451   // Remove the old bindings, using 'R' as the root of all regions
2452   // we will invalidate. Then add the new binding.
2453   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2454 }
2455 
2456 //===----------------------------------------------------------------------===//
2457 // State pruning.
2458 //===----------------------------------------------------------------------===//
2459 
2460 namespace {
2461 class RemoveDeadBindingsWorker
2462     : public ClusterAnalysis<RemoveDeadBindingsWorker> {
2463   SmallVector<const SymbolicRegion *, 12> Postponed;
2464   SymbolReaper &SymReaper;
2465   const StackFrameContext *CurrentLCtx;
2466 
2467 public:
RemoveDeadBindingsWorker(RegionStoreManager & rm,ProgramStateManager & stateMgr,RegionBindingsRef b,SymbolReaper & symReaper,const StackFrameContext * LCtx)2468   RemoveDeadBindingsWorker(RegionStoreManager &rm,
2469                            ProgramStateManager &stateMgr,
2470                            RegionBindingsRef b, SymbolReaper &symReaper,
2471                            const StackFrameContext *LCtx)
2472     : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b),
2473       SymReaper(symReaper), CurrentLCtx(LCtx) {}
2474 
2475   // Called by ClusterAnalysis.
2476   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2477   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2478   using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster;
2479 
2480   using ClusterAnalysis::AddToWorkList;
2481 
2482   bool AddToWorkList(const MemRegion *R);
2483 
2484   bool UpdatePostponed();
2485   void VisitBinding(SVal V);
2486 };
2487 }
2488 
AddToWorkList(const MemRegion * R)2489 bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2490   const MemRegion *BaseR = R->getBaseRegion();
2491   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2492 }
2493 
VisitAddedToCluster(const MemRegion * baseR,const ClusterBindings & C)2494 void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2495                                                    const ClusterBindings &C) {
2496 
2497   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2498     if (SymReaper.isLive(VR))
2499       AddToWorkList(baseR, &C);
2500 
2501     return;
2502   }
2503 
2504   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2505     if (SymReaper.isLive(SR->getSymbol()))
2506       AddToWorkList(SR, &C);
2507     else
2508       Postponed.push_back(SR);
2509 
2510     return;
2511   }
2512 
2513   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2514     AddToWorkList(baseR, &C);
2515     return;
2516   }
2517 
2518   // CXXThisRegion in the current or parent location context is live.
2519   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2520     const auto *StackReg =
2521         cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2522     const StackFrameContext *RegCtx = StackReg->getStackFrame();
2523     if (CurrentLCtx &&
2524         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2525       AddToWorkList(TR, &C);
2526   }
2527 }
2528 
VisitCluster(const MemRegion * baseR,const ClusterBindings * C)2529 void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2530                                             const ClusterBindings *C) {
2531   if (!C)
2532     return;
2533 
2534   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2535   // This means we should continue to track that symbol.
2536   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2537     SymReaper.markLive(SymR->getSymbol());
2538 
2539   for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I) {
2540     // Element index of a binding key is live.
2541     SymReaper.markElementIndicesLive(I.getKey().getRegion());
2542 
2543     VisitBinding(I.getData());
2544   }
2545 }
2546 
VisitBinding(SVal V)2547 void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
2548   // Is it a LazyCompoundVal?  All referenced regions are live as well.
2549   if (Optional<nonloc::LazyCompoundVal> LCS =
2550           V.getAs<nonloc::LazyCompoundVal>()) {
2551 
2552     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2553 
2554     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2555                                                         E = Vals.end();
2556          I != E; ++I)
2557       VisitBinding(*I);
2558 
2559     return;
2560   }
2561 
2562   // If V is a region, then add it to the worklist.
2563   if (const MemRegion *R = V.getAsRegion()) {
2564     AddToWorkList(R);
2565     SymReaper.markLive(R);
2566 
2567     // All regions captured by a block are also live.
2568     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2569       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2570                                                 E = BR->referenced_vars_end();
2571       for ( ; I != E; ++I)
2572         AddToWorkList(I.getCapturedRegion());
2573     }
2574   }
2575 
2576 
2577   // Update the set of live symbols.
2578   for (auto SI = V.symbol_begin(), SE = V.symbol_end(); SI!=SE; ++SI)
2579     SymReaper.markLive(*SI);
2580 }
2581 
UpdatePostponed()2582 bool RemoveDeadBindingsWorker::UpdatePostponed() {
2583   // See if any postponed SymbolicRegions are actually live now, after
2584   // having done a scan.
2585   bool Changed = false;
2586 
2587   for (auto I = Postponed.begin(), E = Postponed.end(); I != E; ++I) {
2588     if (const SymbolicRegion *SR = *I) {
2589       if (SymReaper.isLive(SR->getSymbol())) {
2590         Changed |= AddToWorkList(SR);
2591         *I = nullptr;
2592       }
2593     }
2594   }
2595 
2596   return Changed;
2597 }
2598 
removeDeadBindings(Store store,const StackFrameContext * LCtx,SymbolReaper & SymReaper)2599 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2600                                                 const StackFrameContext *LCtx,
2601                                                 SymbolReaper& SymReaper) {
2602   RegionBindingsRef B = getRegionBindings(store);
2603   RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2604   W.GenerateClusters();
2605 
2606   // Enqueue the region roots onto the worklist.
2607   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2608        E = SymReaper.region_end(); I != E; ++I) {
2609     W.AddToWorkList(*I);
2610   }
2611 
2612   do W.RunWorkList(); while (W.UpdatePostponed());
2613 
2614   // We have now scanned the store, marking reachable regions and symbols
2615   // as live.  We now remove all the regions that are dead from the store
2616   // as well as update DSymbols with the set symbols that are now dead.
2617   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2618     const MemRegion *Base = I.getKey();
2619 
2620     // If the cluster has been visited, we know the region has been marked.
2621     // Otherwise, remove the dead entry.
2622     if (!W.isVisited(Base))
2623       B = B.remove(Base);
2624   }
2625 
2626   return StoreRef(B.asStore(), *this);
2627 }
2628 
2629 //===----------------------------------------------------------------------===//
2630 // Utility methods.
2631 //===----------------------------------------------------------------------===//
2632 
printJson(raw_ostream & Out,Store S,const char * NL,unsigned int Space,bool IsDot) const2633 void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL,
2634                                    unsigned int Space, bool IsDot) const {
2635   RegionBindingsRef Bindings = getRegionBindings(S);
2636 
2637   Indent(Out, Space, IsDot) << "\"store\": ";
2638 
2639   if (Bindings.isEmpty()) {
2640     Out << "null," << NL;
2641     return;
2642   }
2643 
2644   Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL;
2645   Bindings.printJson(Out, NL, Space + 1, IsDot);
2646   Indent(Out, Space, IsDot) << "]}," << NL;
2647 }
2648