1/*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
21 */
22
23#include <clc/clc.h>
24
25#include "math.h"
26#include "tables.h"
27#include "sincos_helpers.h"
28
29#define bitalign(hi, lo, shift) \
30  ((hi) << (32 - (shift))) | ((lo) >> (shift));
31
32#define bytealign(src0, src1, src2) \
33  ((uint) (((((long)(src0)) << 32) | (long)(src1)) >> (((src2) & 3)*8)))
34
35_CLC_DEF float __clc_sinf_piby4(float x, float y) {
36    // Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ...
37    // = x * (1 - x^2/3! + x^4/5! - x^6/7! ...
38    // = x * f(w)
39    // where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ...
40    // We use a minimax approximation of (f(w) - 1) / w
41    // because this produces an expansion in even powers of x.
42
43    const float c1 = -0.1666666666e0f;
44    const float c2 = 0.8333331876e-2f;
45    const float c3 = -0.198400874e-3f;
46    const float c4 = 0.272500015e-5f;
47    const float c5 = -2.5050759689e-08f; // 0xb2d72f34
48    const float c6 = 1.5896910177e-10f;	 // 0x2f2ec9d3
49
50    float z = x * x;
51    float v = z * x;
52    float r = mad(z, mad(z, mad(z, mad(z, c6, c5), c4), c3), c2);
53    float ret = x - mad(v, -c1, mad(z, mad(y, 0.5f, -v*r), -y));
54
55    return ret;
56}
57
58_CLC_DEF float __clc_cosf_piby4(float x, float y) {
59    // Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ...
60    // = f(w)
61    // where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ...
62    // We use a minimax approximation of (f(w) - 1 + w/2) / (w*w)
63    // because this produces an expansion in even powers of x.
64
65    const float c1 = 0.416666666e-1f;
66    const float c2 = -0.138888876e-2f;
67    const float c3 = 0.248006008e-4f;
68    const float c4 = -0.2730101334e-6f;
69    const float c5 = 2.0875723372e-09f;	 // 0x310f74f6
70    const float c6 = -1.1359647598e-11f; // 0xad47d74e
71
72    float z = x * x;
73    float r = z * mad(z, mad(z, mad(z, mad(z, mad(z, c6,  c5), c4), c3), c2), c1);
74
75    // if |x| < 0.3
76    float qx = 0.0f;
77
78    int ix = as_int(x) & EXSIGNBIT_SP32;
79
80    //  0.78125 > |x| >= 0.3
81    float xby4 = as_float(ix - 0x01000000);
82    qx = (ix >= 0x3e99999a) & (ix <= 0x3f480000) ? xby4 : qx;
83
84    // x > 0.78125
85    qx = ix > 0x3f480000 ? 0.28125f : qx;
86
87    float hz = mad(z, 0.5f, -qx);
88    float a = 1.0f - qx;
89    float ret = a - (hz - mad(z, r, -x*y));
90    return ret;
91}
92
93_CLC_DEF float __clc_tanf_piby4(float x, int regn)
94{
95    // Core Remez [1,2] approximation to tan(x) on the interval [0,pi/4].
96    float r = x * x;
97
98    float a = mad(r, -0.0172032480471481694693109f, 0.385296071263995406715129f);
99
100    float b = mad(r,
101	          mad(r, 0.01844239256901656082986661f, -0.51396505478854532132342f),
102	          1.15588821434688393452299f);
103
104    float t = mad(x*r, native_divide(a, b), x);
105    float tr = -MATH_RECIP(t);
106
107    return regn & 1 ? tr : t;
108}
109
110_CLC_DEF void __clc_fullMulS(float *hi, float *lo, float a, float b, float bh, float bt)
111{
112    if (HAVE_HW_FMA32()) {
113        float ph = a * b;
114        *hi = ph;
115        *lo = fma(a, b, -ph);
116    } else {
117        float ah = as_float(as_uint(a) & 0xfffff000U);
118        float at = a - ah;
119        float ph = a * b;
120        float pt = mad(at, bt, mad(at, bh, mad(ah, bt, mad(ah, bh, -ph))));
121        *hi = ph;
122        *lo = pt;
123    }
124}
125
126_CLC_DEF float __clc_removePi2S(float *hi, float *lo, float x)
127{
128    // 72 bits of pi/2
129    const float fpiby2_1 = (float) 0xC90FDA / 0x1.0p+23f;
130    const float fpiby2_1_h = (float) 0xC90 / 0x1.0p+11f;
131    const float fpiby2_1_t = (float) 0xFDA / 0x1.0p+23f;
132
133    const float fpiby2_2 = (float) 0xA22168 / 0x1.0p+47f;
134    const float fpiby2_2_h = (float) 0xA22 / 0x1.0p+35f;
135    const float fpiby2_2_t = (float) 0x168 / 0x1.0p+47f;
136
137    const float fpiby2_3 = (float) 0xC234C4 / 0x1.0p+71f;
138    const float fpiby2_3_h = (float) 0xC23 / 0x1.0p+59f;
139    const float fpiby2_3_t = (float) 0x4C4 / 0x1.0p+71f;
140
141    const float twobypi = 0x1.45f306p-1f;
142
143    float fnpi2 = trunc(mad(x, twobypi, 0.5f));
144
145    // subtract n * pi/2 from x
146    float rhead, rtail;
147    __clc_fullMulS(&rhead, &rtail, fnpi2, fpiby2_1, fpiby2_1_h, fpiby2_1_t);
148    float v = x - rhead;
149    float rem = v + (((x - v) - rhead) - rtail);
150
151    float rhead2, rtail2;
152    __clc_fullMulS(&rhead2, &rtail2, fnpi2, fpiby2_2, fpiby2_2_h, fpiby2_2_t);
153    v = rem - rhead2;
154    rem = v + (((rem - v) - rhead2) - rtail2);
155
156    float rhead3, rtail3;
157    __clc_fullMulS(&rhead3, &rtail3, fnpi2, fpiby2_3, fpiby2_3_h, fpiby2_3_t);
158    v = rem - rhead3;
159
160    *hi = v + ((rem - v) - rhead3);
161    *lo = -rtail3;
162    return fnpi2;
163}
164
165_CLC_DEF int __clc_argReductionSmallS(float *r, float *rr, float x)
166{
167    float fnpi2 = __clc_removePi2S(r, rr, x);
168    return (int)fnpi2 & 0x3;
169}
170
171#define FULL_MUL(A, B, HI, LO) \
172    LO = A * B; \
173    HI = mul_hi(A, B)
174
175#define FULL_MAD(A, B, C, HI, LO) \
176    LO = ((A) * (B) + (C)); \
177    HI = mul_hi(A, B); \
178    HI += LO < C
179
180_CLC_DEF int __clc_argReductionLargeS(float *r, float *rr, float x)
181{
182    int xe = (int)(as_uint(x) >> 23) - 127;
183    uint xm = 0x00800000U | (as_uint(x) & 0x7fffffU);
184
185    // 224 bits of 2/PI: . A2F9836E 4E441529 FC2757D1 F534DDC0 DB629599 3C439041 FE5163AB
186    const uint b6 = 0xA2F9836EU;
187    const uint b5 = 0x4E441529U;
188    const uint b4 = 0xFC2757D1U;
189    const uint b3 = 0xF534DDC0U;
190    const uint b2 = 0xDB629599U;
191    const uint b1 = 0x3C439041U;
192    const uint b0 = 0xFE5163ABU;
193
194    uint p0, p1, p2, p3, p4, p5, p6, p7, c0, c1;
195
196    FULL_MUL(xm, b0, c0, p0);
197    FULL_MAD(xm, b1, c0, c1, p1);
198    FULL_MAD(xm, b2, c1, c0, p2);
199    FULL_MAD(xm, b3, c0, c1, p3);
200    FULL_MAD(xm, b4, c1, c0, p4);
201    FULL_MAD(xm, b5, c0, c1, p5);
202    FULL_MAD(xm, b6, c1, p7, p6);
203
204    uint fbits = 224 + 23 - xe;
205
206    // shift amount to get 2 lsb of integer part at top 2 bits
207    //   min: 25 (xe=18) max: 134 (xe=127)
208    uint shift = 256U - 2 - fbits;
209
210    // Shift by up to 134/32 = 4 words
211    int c = shift > 31;
212    p7 = c ? p6 : p7;
213    p6 = c ? p5 : p6;
214    p5 = c ? p4 : p5;
215    p4 = c ? p3 : p4;
216    p3 = c ? p2 : p3;
217    p2 = c ? p1 : p2;
218    p1 = c ? p0 : p1;
219    shift -= (-c) & 32;
220
221    c = shift > 31;
222    p7 = c ? p6 : p7;
223    p6 = c ? p5 : p6;
224    p5 = c ? p4 : p5;
225    p4 = c ? p3 : p4;
226    p3 = c ? p2 : p3;
227    p2 = c ? p1 : p2;
228    shift -= (-c) & 32;
229
230    c = shift > 31;
231    p7 = c ? p6 : p7;
232    p6 = c ? p5 : p6;
233    p5 = c ? p4 : p5;
234    p4 = c ? p3 : p4;
235    p3 = c ? p2 : p3;
236    shift -= (-c) & 32;
237
238    c = shift > 31;
239    p7 = c ? p6 : p7;
240    p6 = c ? p5 : p6;
241    p5 = c ? p4 : p5;
242    p4 = c ? p3 : p4;
243    shift -= (-c) & 32;
244
245    // bitalign cannot handle a shift of 32
246    c = shift > 0;
247    shift = 32 - shift;
248    uint t7 = bitalign(p7, p6, shift);
249    uint t6 = bitalign(p6, p5, shift);
250    uint t5 = bitalign(p5, p4, shift);
251    p7 = c ? t7 : p7;
252    p6 = c ? t6 : p6;
253    p5 = c ? t5 : p5;
254
255    // Get 2 lsb of int part and msb of fraction
256    int i = p7 >> 29;
257
258    // Scoot up 2 more bits so only fraction remains
259    p7 = bitalign(p7, p6, 30);
260    p6 = bitalign(p6, p5, 30);
261    p5 = bitalign(p5, p4, 30);
262
263    // Subtract 1 if msb of fraction is 1, i.e. fraction >= 0.5
264    uint flip = i & 1 ? 0xffffffffU : 0U;
265    uint sign = i & 1 ? 0x80000000U : 0U;
266    p7 = p7 ^ flip;
267    p6 = p6 ^ flip;
268    p5 = p5 ^ flip;
269
270    // Find exponent and shift away leading zeroes and hidden bit
271    xe = clz(p7) + 1;
272    shift = 32 - xe;
273    p7 = bitalign(p7, p6, shift);
274    p6 = bitalign(p6, p5, shift);
275
276    // Most significant part of fraction
277    float q1 = as_float(sign | ((127 - xe) << 23) | (p7 >> 9));
278
279    // Shift out bits we captured on q1
280    p7 = bitalign(p7, p6, 32-23);
281
282    // Get 24 more bits of fraction in another float, there are not long strings of zeroes here
283    int xxe = clz(p7) + 1;
284    p7 = bitalign(p7, p6, 32-xxe);
285    float q0 = as_float(sign | ((127 - (xe + 23 + xxe)) << 23) | (p7 >> 9));
286
287    // At this point, the fraction q1 + q0 is correct to at least 48 bits
288    // Now we need to multiply the fraction by pi/2
289    // This loses us about 4 bits
290    // pi/2 = C90 FDA A22 168 C23 4C4
291
292    const float pio2h = (float)0xc90fda / 0x1.0p+23f;
293    const float pio2hh = (float)0xc90 / 0x1.0p+11f;
294    const float pio2ht = (float)0xfda / 0x1.0p+23f;
295    const float pio2t = (float)0xa22168 / 0x1.0p+47f;
296
297    float rh, rt;
298
299    if (HAVE_HW_FMA32()) {
300        rh = q1 * pio2h;
301        rt = fma(q0, pio2h, fma(q1, pio2t, fma(q1, pio2h, -rh)));
302    } else {
303        float q1h = as_float(as_uint(q1) & 0xfffff000);
304        float q1t = q1 - q1h;
305        rh = q1 * pio2h;
306        rt = mad(q1t, pio2ht, mad(q1t, pio2hh, mad(q1h, pio2ht, mad(q1h, pio2hh, -rh))));
307        rt = mad(q0, pio2h, mad(q1, pio2t, rt));
308    }
309
310    float t = rh + rt;
311    rt = rt - (t - rh);
312
313    *r = t;
314    *rr = rt;
315    return ((i >> 1) + (i & 1)) & 0x3;
316}
317
318_CLC_DEF int __clc_argReductionS(float *r, float *rr, float x)
319{
320    if (x < 0x1.0p+23f)
321        return __clc_argReductionSmallS(r, rr, x);
322    else
323        return __clc_argReductionLargeS(r, rr, x);
324}
325
326#ifdef cl_khr_fp64
327
328#pragma OPENCL EXTENSION cl_khr_fp64 : enable
329
330// Reduction for medium sized arguments
331_CLC_DEF void __clc_remainder_piby2_medium(double x, double *r, double *rr, int *regn) {
332    // How many pi/2 is x a multiple of?
333    const double two_by_pi = 0x1.45f306dc9c883p-1;
334    double dnpi2 = trunc(fma(x, two_by_pi, 0.5));
335
336    const double piby2_h = -7074237752028440.0 / 0x1.0p+52;
337    const double piby2_m = -2483878800010755.0 / 0x1.0p+105;
338    const double piby2_t = -3956492004828932.0 / 0x1.0p+158;
339
340    // Compute product of npi2 with 159 bits of 2/pi
341    double p_hh = piby2_h * dnpi2;
342    double p_ht = fma(piby2_h, dnpi2, -p_hh);
343    double p_mh = piby2_m * dnpi2;
344    double p_mt = fma(piby2_m, dnpi2, -p_mh);
345    double p_th = piby2_t * dnpi2;
346    double p_tt = fma(piby2_t, dnpi2, -p_th);
347
348    // Reduce to 159 bits
349    double ph = p_hh;
350    double pm = p_ht + p_mh;
351    double t = p_mh - (pm - p_ht);
352    double pt = p_th + t + p_mt + p_tt;
353    t = ph + pm; pm = pm - (t - ph); ph = t;
354    t = pm + pt; pt = pt - (t - pm); pm = t;
355
356    // Subtract from x
357    t = x + ph;
358    double qh = t + pm;
359    double qt = pm - (qh - t) + pt;
360
361    *r = qh;
362    *rr = qt;
363    *regn = (int)(long)dnpi2 & 0x3;
364}
365
366// Given positive argument x, reduce it to the range [-pi/4,pi/4] using
367// extra precision, and return the result in r, rr.
368// Return value "regn" tells how many lots of pi/2 were subtracted
369// from x to put it in the range [-pi/4,pi/4], mod 4.
370
371_CLC_DEF void __clc_remainder_piby2_large(double x, double *r, double *rr, int *regn) {
372
373    long ux = as_long(x);
374    int e = (int)(ux >> 52) -  1023;
375    int i = max(23, (e >> 3) + 17);
376    int j = 150 - i;
377    int j16 = j & ~0xf;
378    double fract_temp;
379
380    // The following extracts 192 consecutive bits of 2/pi aligned on an arbitrary byte boundary
381    uint4 q0 = USE_TABLE(pibits_tbl, j16);
382    uint4 q1 = USE_TABLE(pibits_tbl, (j16 + 16));
383    uint4 q2 = USE_TABLE(pibits_tbl, (j16 + 32));
384
385    int k = (j >> 2) & 0x3;
386    int4 c = (int4)k == (int4)(0, 1, 2, 3);
387
388    uint u0, u1, u2, u3, u4, u5, u6;
389
390    u0 = c.s1 ? q0.s1 : q0.s0;
391    u0 = c.s2 ? q0.s2 : u0;
392    u0 = c.s3 ? q0.s3 : u0;
393
394    u1 = c.s1 ? q0.s2 : q0.s1;
395    u1 = c.s2 ? q0.s3 : u1;
396    u1 = c.s3 ? q1.s0 : u1;
397
398    u2 = c.s1 ? q0.s3 : q0.s2;
399    u2 = c.s2 ? q1.s0 : u2;
400    u2 = c.s3 ? q1.s1 : u2;
401
402    u3 = c.s1 ? q1.s0 : q0.s3;
403    u3 = c.s2 ? q1.s1 : u3;
404    u3 = c.s3 ? q1.s2 : u3;
405
406    u4 = c.s1 ? q1.s1 : q1.s0;
407    u4 = c.s2 ? q1.s2 : u4;
408    u4 = c.s3 ? q1.s3 : u4;
409
410    u5 = c.s1 ? q1.s2 : q1.s1;
411    u5 = c.s2 ? q1.s3 : u5;
412    u5 = c.s3 ? q2.s0 : u5;
413
414    u6 = c.s1 ? q1.s3 : q1.s2;
415    u6 = c.s2 ? q2.s0 : u6;
416    u6 = c.s3 ? q2.s1 : u6;
417
418    uint v0 = bytealign(u1, u0, j);
419    uint v1 = bytealign(u2, u1, j);
420    uint v2 = bytealign(u3, u2, j);
421    uint v3 = bytealign(u4, u3, j);
422    uint v4 = bytealign(u5, u4, j);
423    uint v5 = bytealign(u6, u5, j);
424
425    // Place those 192 bits in 4 48-bit doubles along with correct exponent
426    // If i > 1018 we would get subnormals so we scale p up and x down to get the same product
427    i = 2 + 8*i;
428    x *= i > 1018 ? 0x1.0p-136 : 1.0;
429    i -= i > 1018 ? 136 : 0;
430
431    uint ua = (uint)(1023 + 52 - i) << 20;
432    double a = as_double((uint2)(0, ua));
433    double p0 = as_double((uint2)(v0, ua | (v1 & 0xffffU))) - a;
434    ua += 0x03000000U;
435    a = as_double((uint2)(0, ua));
436    double p1 = as_double((uint2)((v2 << 16) | (v1 >> 16), ua | (v2 >> 16))) - a;
437    ua += 0x03000000U;
438    a = as_double((uint2)(0, ua));
439    double p2 = as_double((uint2)(v3, ua | (v4 & 0xffffU))) - a;
440    ua += 0x03000000U;
441    a = as_double((uint2)(0, ua));
442    double p3 = as_double((uint2)((v5 << 16) | (v4 >> 16), ua | (v5 >> 16))) - a;
443
444    // Exact multiply
445    double f0h = p0 * x;
446    double f0l = fma(p0, x, -f0h);
447    double f1h = p1 * x;
448    double f1l = fma(p1, x, -f1h);
449    double f2h = p2 * x;
450    double f2l = fma(p2, x, -f2h);
451    double f3h = p3 * x;
452    double f3l = fma(p3, x, -f3h);
453
454    // Accumulate product into 4 doubles
455    double s, t;
456
457    double f3 = f3h + f2h;
458    t = f2h - (f3 - f3h);
459    s = f3l + t;
460    t = t - (s - f3l);
461
462    double f2 = s + f1h;
463    t = f1h - (f2 - s) + t;
464    s = f2l + t;
465    t = t - (s - f2l);
466
467    double f1 = s + f0h;
468    t = f0h - (f1 - s) + t;
469    s = f1l + t;
470
471    double f0 = s + f0l;
472
473    // Strip off unwanted large integer bits
474    f3 = 0x1.0p+10 * fract(f3 * 0x1.0p-10, &fract_temp);
475    f3 += f3 + f2 < 0.0 ? 0x1.0p+10 : 0.0;
476
477    // Compute least significant integer bits
478    t = f3 + f2;
479    double di = t - fract(t, &fract_temp);
480    i = (float)di;
481
482    // Shift out remaining integer part
483    f3 -= di;
484    s = f3 + f2; t = f2 - (s - f3); f3 = s; f2 = t;
485    s = f2 + f1; t = f1 - (s - f2); f2 = s; f1 = t;
486    f1 += f0;
487
488    // Subtract 1 if fraction is >= 0.5, and update regn
489    int g = f3 >= 0.5;
490    i += g;
491    f3 -= (float)g;
492
493    // Shift up bits
494    s = f3 + f2; t = f2 -(s - f3); f3 = s; f2 = t + f1;
495
496    // Multiply precise fraction by pi/2 to get radians
497    const double p2h = 7074237752028440.0 / 0x1.0p+52;
498    const double p2t = 4967757600021510.0 / 0x1.0p+106;
499
500    double rhi = f3 * p2h;
501    double rlo = fma(f2, p2h, fma(f3, p2t, fma(f3, p2h, -rhi)));
502
503    *r = rhi + rlo;
504    *rr = rlo - (*r - rhi);
505    *regn = i & 0x3;
506}
507
508
509_CLC_DEF double2 __clc_sincos_piby4(double x, double xx) {
510    // Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ...
511    //                      = x * (1 - x^2/3! + x^4/5! - x^6/7! ...
512    //                      = x * f(w)
513    // where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ...
514    // We use a minimax approximation of (f(w) - 1) / w
515    // because this produces an expansion in even powers of x.
516    // If xx (the tail of x) is non-zero, we add a correction
517    // term g(x,xx) = (1-x*x/2)*xx to the result, where g(x,xx)
518    // is an approximation to cos(x)*sin(xx) valid because
519    // xx is tiny relative to x.
520
521    // Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ...
522    //                      = f(w)
523    // where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ...
524    // We use a minimax approximation of (f(w) - 1 + w/2) / (w*w)
525    // because this produces an expansion in even powers of x.
526    // If xx (the tail of x) is non-zero, we subtract a correction
527    // term g(x,xx) = x*xx to the result, where g(x,xx)
528    // is an approximation to sin(x)*sin(xx) valid because
529    // xx is tiny relative to x.
530
531    const double sc1 = -0.166666666666666646259241729;
532    const double sc2 =  0.833333333333095043065222816e-2;
533    const double sc3 = -0.19841269836761125688538679e-3;
534    const double sc4 =  0.275573161037288022676895908448e-5;
535    const double sc5 = -0.25051132068021699772257377197e-7;
536    const double sc6 =  0.159181443044859136852668200e-9;
537
538    const double cc1 =  0.41666666666666665390037e-1;
539    const double cc2 = -0.13888888888887398280412e-2;
540    const double cc3 =  0.248015872987670414957399e-4;
541    const double cc4 = -0.275573172723441909470836e-6;
542    const double cc5 =  0.208761463822329611076335e-8;
543    const double cc6 = -0.113826398067944859590880e-10;
544
545    double x2 = x * x;
546    double x3 = x2 * x;
547    double r = 0.5 * x2;
548    double t = 1.0 - r;
549
550    double sp = fma(fma(fma(fma(sc6, x2, sc5), x2, sc4), x2, sc3), x2, sc2);
551
552    double cp = t + fma(fma(fma(fma(fma(fma(cc6, x2, cc5), x2, cc4), x2, cc3), x2, cc2), x2, cc1),
553                        x2*x2, fma(x, xx, (1.0 - t) - r));
554
555    double2 ret;
556    ret.lo = x - fma(-x3, sc1, fma(fma(-x3, sp, 0.5*xx), x2, -xx));
557    ret.hi = cp;
558
559    return ret;
560}
561
562#endif
563