1 //===- ARM.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "InputFiles.h"
10 #include "Symbols.h"
11 #include "SyntheticSections.h"
12 #include "Target.h"
13 #include "Thunks.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "llvm/Object/ELF.h"
16 #include "llvm/Support/Endian.h"
17
18 using namespace llvm;
19 using namespace llvm::support::endian;
20 using namespace llvm::ELF;
21 using namespace lld;
22 using namespace lld::elf;
23
24 namespace {
25 class ARM final : public TargetInfo {
26 public:
27 ARM();
28 uint32_t calcEFlags() const override;
29 RelExpr getRelExpr(RelType type, const Symbol &s,
30 const uint8_t *loc) const override;
31 RelType getDynRel(RelType type) const override;
32 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
33 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
34 void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
35 void writePltHeader(uint8_t *buf) const override;
36 void writePlt(uint8_t *buf, const Symbol &sym,
37 uint64_t pltEntryAddr) const override;
38 void addPltSymbols(InputSection &isec, uint64_t off) const override;
39 void addPltHeaderSymbols(InputSection &isd) const override;
40 bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
41 uint64_t branchAddr, const Symbol &s,
42 int64_t a) const override;
43 uint32_t getThunkSectionSpacing() const override;
44 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
45 void relocate(uint8_t *loc, const Relocation &rel,
46 uint64_t val) const override;
47 };
48 } // namespace
49
ARM()50 ARM::ARM() {
51 copyRel = R_ARM_COPY;
52 relativeRel = R_ARM_RELATIVE;
53 iRelativeRel = R_ARM_IRELATIVE;
54 gotRel = R_ARM_GLOB_DAT;
55 noneRel = R_ARM_NONE;
56 pltRel = R_ARM_JUMP_SLOT;
57 symbolicRel = R_ARM_ABS32;
58 tlsGotRel = R_ARM_TLS_TPOFF32;
59 tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
60 tlsOffsetRel = R_ARM_TLS_DTPOFF32;
61 gotBaseSymInGotPlt = false;
62 pltHeaderSize = 32;
63 pltEntrySize = 16;
64 ipltEntrySize = 16;
65 trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
66 needsThunks = true;
67 defaultMaxPageSize = 65536;
68 }
69
calcEFlags() const70 uint32_t ARM::calcEFlags() const {
71 // The ABIFloatType is used by loaders to detect the floating point calling
72 // convention.
73 uint32_t abiFloatType = 0;
74 if (config->armVFPArgs == ARMVFPArgKind::Base ||
75 config->armVFPArgs == ARMVFPArgKind::Default)
76 abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
77 else if (config->armVFPArgs == ARMVFPArgKind::VFP)
78 abiFloatType = EF_ARM_ABI_FLOAT_HARD;
79
80 // We don't currently use any features incompatible with EF_ARM_EABI_VER5,
81 // but we don't have any firm guarantees of conformance. Linux AArch64
82 // kernels (as of 2016) require an EABI version to be set.
83 return EF_ARM_EABI_VER5 | abiFloatType;
84 }
85
getRelExpr(RelType type,const Symbol & s,const uint8_t * loc) const86 RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
87 const uint8_t *loc) const {
88 switch (type) {
89 case R_ARM_THM_JUMP11:
90 return R_PC;
91 case R_ARM_CALL:
92 case R_ARM_JUMP24:
93 case R_ARM_PC24:
94 case R_ARM_PLT32:
95 case R_ARM_PREL31:
96 case R_ARM_THM_JUMP19:
97 case R_ARM_THM_JUMP24:
98 case R_ARM_THM_CALL:
99 return R_PLT_PC;
100 case R_ARM_GOTOFF32:
101 // (S + A) - GOT_ORG
102 return R_GOTREL;
103 case R_ARM_GOT_BREL:
104 // GOT(S) + A - GOT_ORG
105 return R_GOT_OFF;
106 case R_ARM_GOT_PREL:
107 case R_ARM_TLS_IE32:
108 // GOT(S) + A - P
109 return R_GOT_PC;
110 case R_ARM_SBREL32:
111 return R_ARM_SBREL;
112 case R_ARM_TARGET1:
113 return config->target1Rel ? R_PC : R_ABS;
114 case R_ARM_TARGET2:
115 if (config->target2 == Target2Policy::Rel)
116 return R_PC;
117 if (config->target2 == Target2Policy::Abs)
118 return R_ABS;
119 return R_GOT_PC;
120 case R_ARM_TLS_GD32:
121 return R_TLSGD_PC;
122 case R_ARM_TLS_LDM32:
123 return R_TLSLD_PC;
124 case R_ARM_TLS_LDO32:
125 return R_DTPREL;
126 case R_ARM_BASE_PREL:
127 // B(S) + A - P
128 // FIXME: currently B(S) assumed to be .got, this may not hold for all
129 // platforms.
130 return R_GOTONLY_PC;
131 case R_ARM_MOVW_PREL_NC:
132 case R_ARM_MOVT_PREL:
133 case R_ARM_REL32:
134 case R_ARM_THM_MOVW_PREL_NC:
135 case R_ARM_THM_MOVT_PREL:
136 return R_PC;
137 case R_ARM_ALU_PC_G0:
138 case R_ARM_LDR_PC_G0:
139 case R_ARM_THM_ALU_PREL_11_0:
140 case R_ARM_THM_PC8:
141 case R_ARM_THM_PC12:
142 return R_ARM_PCA;
143 case R_ARM_MOVW_BREL_NC:
144 case R_ARM_MOVW_BREL:
145 case R_ARM_MOVT_BREL:
146 case R_ARM_THM_MOVW_BREL_NC:
147 case R_ARM_THM_MOVW_BREL:
148 case R_ARM_THM_MOVT_BREL:
149 return R_ARM_SBREL;
150 case R_ARM_NONE:
151 return R_NONE;
152 case R_ARM_TLS_LE32:
153 return R_TLS;
154 case R_ARM_V4BX:
155 // V4BX is just a marker to indicate there's a "bx rN" instruction at the
156 // given address. It can be used to implement a special linker mode which
157 // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
158 // not ARMv4 output, we can just ignore it.
159 return R_NONE;
160 default:
161 return R_ABS;
162 }
163 }
164
getDynRel(RelType type) const165 RelType ARM::getDynRel(RelType type) const {
166 if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
167 return R_ARM_ABS32;
168 return R_ARM_NONE;
169 }
170
writeGotPlt(uint8_t * buf,const Symbol &) const171 void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
172 write32le(buf, in.plt->getVA());
173 }
174
writeIgotPlt(uint8_t * buf,const Symbol & s) const175 void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
176 // An ARM entry is the address of the ifunc resolver function.
177 write32le(buf, s.getVA());
178 }
179
180 // Long form PLT Header that does not have any restrictions on the displacement
181 // of the .plt from the .plt.got.
writePltHeaderLong(uint8_t * buf)182 static void writePltHeaderLong(uint8_t *buf) {
183 const uint8_t pltData[] = {
184 0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]!
185 0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2
186 0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
187 0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8]
188 0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8
189 0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary
190 0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary
191 0xd4, 0xd4, 0xd4, 0xd4};
192 memcpy(buf, pltData, sizeof(pltData));
193 uint64_t gotPlt = in.gotPlt->getVA();
194 uint64_t l1 = in.plt->getVA() + 8;
195 write32le(buf + 16, gotPlt - l1 - 8);
196 }
197
198 // The default PLT header requires the .plt.got to be within 128 Mb of the
199 // .plt in the positive direction.
writePltHeader(uint8_t * buf) const200 void ARM::writePltHeader(uint8_t *buf) const {
201 // Use a similar sequence to that in writePlt(), the difference is the calling
202 // conventions mean we use lr instead of ip. The PLT entry is responsible for
203 // saving lr on the stack, the dynamic loader is responsible for reloading
204 // it.
205 const uint32_t pltData[] = {
206 0xe52de004, // L1: str lr, [sp,#-4]!
207 0xe28fe600, // add lr, pc, #0x0NN00000 &(.got.plt - L1 - 4)
208 0xe28eea00, // add lr, lr, #0x000NN000 &(.got.plt - L1 - 4)
209 0xe5bef000, // ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
210 };
211
212 uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
213 if (!llvm::isUInt<27>(offset)) {
214 // We cannot encode the Offset, use the long form.
215 writePltHeaderLong(buf);
216 return;
217 }
218 write32le(buf + 0, pltData[0]);
219 write32le(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
220 write32le(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
221 write32le(buf + 12, pltData[3] | (offset & 0xfff));
222 memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
223 memcpy(buf + 20, trapInstr.data(), 4);
224 memcpy(buf + 24, trapInstr.data(), 4);
225 memcpy(buf + 28, trapInstr.data(), 4);
226 }
227
addPltHeaderSymbols(InputSection & isec) const228 void ARM::addPltHeaderSymbols(InputSection &isec) const {
229 addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
230 addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
231 }
232
233 // Long form PLT entries that do not have any restrictions on the displacement
234 // of the .plt from the .plt.got.
writePltLong(uint8_t * buf,uint64_t gotPltEntryAddr,uint64_t pltEntryAddr)235 static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
236 uint64_t pltEntryAddr) {
237 const uint8_t pltData[] = {
238 0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2
239 0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
240 0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip]
241 0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8
242 };
243 memcpy(buf, pltData, sizeof(pltData));
244 uint64_t l1 = pltEntryAddr + 4;
245 write32le(buf + 12, gotPltEntryAddr - l1 - 8);
246 }
247
248 // The default PLT entries require the .plt.got to be within 128 Mb of the
249 // .plt in the positive direction.
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const250 void ARM::writePlt(uint8_t *buf, const Symbol &sym,
251 uint64_t pltEntryAddr) const {
252 // The PLT entry is similar to the example given in Appendix A of ELF for
253 // the Arm Architecture. Instead of using the Group Relocations to find the
254 // optimal rotation for the 8-bit immediate used in the add instructions we
255 // hard code the most compact rotations for simplicity. This saves a load
256 // instruction over the long plt sequences.
257 const uint32_t pltData[] = {
258 0xe28fc600, // L1: add ip, pc, #0x0NN00000 Offset(&(.plt.got) - L1 - 8
259 0xe28cca00, // add ip, ip, #0x000NN000 Offset(&(.plt.got) - L1 - 8
260 0xe5bcf000, // ldr pc, [ip, #0x00000NNN] Offset(&(.plt.got) - L1 - 8
261 };
262
263 uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8;
264 if (!llvm::isUInt<27>(offset)) {
265 // We cannot encode the Offset, use the long form.
266 writePltLong(buf, sym.getGotPltVA(), pltEntryAddr);
267 return;
268 }
269 write32le(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
270 write32le(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
271 write32le(buf + 8, pltData[2] | (offset & 0xfff));
272 memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
273 }
274
addPltSymbols(InputSection & isec,uint64_t off) const275 void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
276 addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
277 addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
278 }
279
needsThunk(RelExpr expr,RelType type,const InputFile * file,uint64_t branchAddr,const Symbol & s,int64_t) const280 bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
281 uint64_t branchAddr, const Symbol &s,
282 int64_t /*a*/) const {
283 // If S is an undefined weak symbol and does not have a PLT entry then it
284 // will be resolved as a branch to the next instruction.
285 if (s.isUndefWeak() && !s.isInPlt())
286 return false;
287 // A state change from ARM to Thumb and vice versa must go through an
288 // interworking thunk if the relocation type is not R_ARM_CALL or
289 // R_ARM_THM_CALL.
290 switch (type) {
291 case R_ARM_PC24:
292 case R_ARM_PLT32:
293 case R_ARM_JUMP24:
294 // Source is ARM, all PLT entries are ARM so no interworking required.
295 // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb).
296 if (s.isFunc() && expr == R_PC && (s.getVA() & 1))
297 return true;
298 LLVM_FALLTHROUGH;
299 case R_ARM_CALL: {
300 uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
301 return !inBranchRange(type, branchAddr, dst);
302 }
303 case R_ARM_THM_JUMP19:
304 case R_ARM_THM_JUMP24:
305 // Source is Thumb, all PLT entries are ARM so interworking is required.
306 // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM).
307 if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0))
308 return true;
309 LLVM_FALLTHROUGH;
310 case R_ARM_THM_CALL: {
311 uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
312 return !inBranchRange(type, branchAddr, dst);
313 }
314 }
315 return false;
316 }
317
getThunkSectionSpacing() const318 uint32_t ARM::getThunkSectionSpacing() const {
319 // The placing of pre-created ThunkSections is controlled by the value
320 // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
321 // place the ThunkSection such that all branches from the InputSections
322 // prior to the ThunkSection can reach a Thunk placed at the end of the
323 // ThunkSection. Graphically:
324 // | up to thunkSectionSpacing .text input sections |
325 // | ThunkSection |
326 // | up to thunkSectionSpacing .text input sections |
327 // | ThunkSection |
328
329 // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
330 // is to match the most common expected case of a Thumb 2 encoded BL, BLX or
331 // B.W:
332 // ARM B, BL, BLX range +/- 32MiB
333 // Thumb B.W, BL, BLX range +/- 16MiB
334 // Thumb B<cc>.W range +/- 1MiB
335 // If a branch cannot reach a pre-created ThunkSection a new one will be
336 // created so we can handle the rare cases of a Thumb 2 conditional branch.
337 // We intentionally use a lower size for thunkSectionSpacing than the maximum
338 // branch range so the end of the ThunkSection is more likely to be within
339 // range of the branch instruction that is furthest away. The value we shorten
340 // thunkSectionSpacing by is set conservatively to allow us to create 16,384
341 // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
342 // one of the Thunks going out of range.
343
344 // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
345 // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
346 // ARMv6T2) the range is +/- 4MiB.
347
348 return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
349 : 0x400000 - 0x7500;
350 }
351
inBranchRange(RelType type,uint64_t src,uint64_t dst) const352 bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
353 uint64_t range;
354 uint64_t instrSize;
355
356 switch (type) {
357 case R_ARM_PC24:
358 case R_ARM_PLT32:
359 case R_ARM_JUMP24:
360 case R_ARM_CALL:
361 range = 0x2000000;
362 instrSize = 4;
363 break;
364 case R_ARM_THM_JUMP19:
365 range = 0x100000;
366 instrSize = 2;
367 break;
368 case R_ARM_THM_JUMP24:
369 case R_ARM_THM_CALL:
370 range = config->armJ1J2BranchEncoding ? 0x1000000 : 0x400000;
371 instrSize = 2;
372 break;
373 default:
374 return true;
375 }
376 // PC at Src is 2 instructions ahead, immediate of branch is signed
377 if (src > dst)
378 range -= 2 * instrSize;
379 else
380 range += instrSize;
381
382 if ((dst & 0x1) == 0)
383 // Destination is ARM, if ARM caller then Src is already 4-byte aligned.
384 // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
385 // destination will be 4 byte aligned.
386 src &= ~0x3;
387 else
388 // Bit 0 == 1 denotes Thumb state, it is not part of the range
389 dst &= ~0x1;
390
391 uint64_t distance = (src > dst) ? src - dst : dst - src;
392 return distance <= range;
393 }
394
395 // Helper to produce message text when LLD detects that a CALL relocation to
396 // a non STT_FUNC symbol that may result in incorrect interworking between ARM
397 // or Thumb.
stateChangeWarning(uint8_t * loc,RelType relt,const Symbol & s)398 static void stateChangeWarning(uint8_t *loc, RelType relt, const Symbol &s) {
399 assert(!s.isFunc());
400 if (s.isSection()) {
401 // Section symbols must be defined and in a section. Users cannot change
402 // the type. Use the section name as getName() returns an empty string.
403 warn(getErrorLocation(loc) + "branch and link relocation: " +
404 toString(relt) + " to STT_SECTION symbol " +
405 cast<Defined>(s).section->name + " ; interworking not performed");
406 } else {
407 // Warn with hint on how to alter the symbol type.
408 warn(getErrorLocation(loc) + "branch and link relocation: " +
409 toString(relt) + " to non STT_FUNC symbol: " + s.getName() +
410 " interworking not performed; consider using directive '.type " +
411 s.getName() +
412 ", %function' to give symbol type STT_FUNC if"
413 " interworking between ARM and Thumb is required");
414 }
415 }
416
417 // Utility functions taken from ARMAddressingModes.h, only changes are LLD
418 // coding style.
419
420 // Rotate a 32-bit unsigned value right by a specified amt of bits.
rotr32(uint32_t val,uint32_t amt)421 static uint32_t rotr32(uint32_t val, uint32_t amt) {
422 assert(amt < 32 && "Invalid rotate amount");
423 return (val >> amt) | (val << ((32 - amt) & 31));
424 }
425
426 // Rotate a 32-bit unsigned value left by a specified amt of bits.
rotl32(uint32_t val,uint32_t amt)427 static uint32_t rotl32(uint32_t val, uint32_t amt) {
428 assert(amt < 32 && "Invalid rotate amount");
429 return (val << amt) | (val >> ((32 - amt) & 31));
430 }
431
432 // Try to encode a 32-bit unsigned immediate imm with an immediate shifter
433 // operand, this form is an 8-bit immediate rotated right by an even number of
434 // bits. We compute the rotate amount to use. If this immediate value cannot be
435 // handled with a single shifter-op, determine a good rotate amount that will
436 // take a maximal chunk of bits out of the immediate.
getSOImmValRotate(uint32_t imm)437 static uint32_t getSOImmValRotate(uint32_t imm) {
438 // 8-bit (or less) immediates are trivially shifter_operands with a rotate
439 // of zero.
440 if ((imm & ~255U) == 0)
441 return 0;
442
443 // Use CTZ to compute the rotate amount.
444 unsigned tz = llvm::countTrailingZeros(imm);
445
446 // Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
447 // not 9.
448 unsigned rotAmt = tz & ~1;
449
450 // If we can handle this spread, return it.
451 if ((rotr32(imm, rotAmt) & ~255U) == 0)
452 return (32 - rotAmt) & 31; // HW rotates right, not left.
453
454 // For values like 0xF000000F, we should ignore the low 6 bits, then
455 // retry the hunt.
456 if (imm & 63U) {
457 unsigned tz2 = countTrailingZeros(imm & ~63U);
458 unsigned rotAmt2 = tz2 & ~1;
459 if ((rotr32(imm, rotAmt2) & ~255U) == 0)
460 return (32 - rotAmt2) & 31; // HW rotates right, not left.
461 }
462
463 // Otherwise, we have no way to cover this span of bits with a single
464 // shifter_op immediate. Return a chunk of bits that will be useful to
465 // handle.
466 return (32 - rotAmt) & 31; // HW rotates right, not left.
467 }
468
relocate(uint8_t * loc,const Relocation & rel,uint64_t val) const469 void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
470 switch (rel.type) {
471 case R_ARM_ABS32:
472 case R_ARM_BASE_PREL:
473 case R_ARM_GOTOFF32:
474 case R_ARM_GOT_BREL:
475 case R_ARM_GOT_PREL:
476 case R_ARM_REL32:
477 case R_ARM_RELATIVE:
478 case R_ARM_SBREL32:
479 case R_ARM_TARGET1:
480 case R_ARM_TARGET2:
481 case R_ARM_TLS_GD32:
482 case R_ARM_TLS_IE32:
483 case R_ARM_TLS_LDM32:
484 case R_ARM_TLS_LDO32:
485 case R_ARM_TLS_LE32:
486 case R_ARM_TLS_TPOFF32:
487 case R_ARM_TLS_DTPOFF32:
488 write32le(loc, val);
489 break;
490 case R_ARM_PREL31:
491 checkInt(loc, val, 31, rel);
492 write32le(loc, (read32le(loc) & 0x80000000) | (val & ~0x80000000));
493 break;
494 case R_ARM_CALL: {
495 // R_ARM_CALL is used for BL and BLX instructions, for symbols of type
496 // STT_FUNC we choose whether to write a BL or BLX depending on the
497 // value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is
498 // not of type STT_FUNC then we must preserve the original instruction.
499 // PLT entries are always ARM state so we know we don't need to interwork.
500 assert(rel.sym); // R_ARM_CALL is always reached via relocate().
501 bool bit0Thumb = val & 1;
502 bool isBlx = (read32le(loc) & 0xfe000000) == 0xfa000000;
503 // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
504 // even when type not STT_FUNC.
505 if (!rel.sym->isFunc() && isBlx != bit0Thumb)
506 stateChangeWarning(loc, rel.type, *rel.sym);
507 if (rel.sym->isFunc() ? bit0Thumb : isBlx) {
508 // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
509 checkInt(loc, val, 26, rel);
510 write32le(loc, 0xfa000000 | // opcode
511 ((val & 2) << 23) | // H
512 ((val >> 2) & 0x00ffffff)); // imm24
513 break;
514 }
515 // BLX (always unconditional) instruction to an ARM Target, select an
516 // unconditional BL.
517 write32le(loc, 0xeb000000 | (read32le(loc) & 0x00ffffff));
518 // fall through as BL encoding is shared with B
519 }
520 LLVM_FALLTHROUGH;
521 case R_ARM_JUMP24:
522 case R_ARM_PC24:
523 case R_ARM_PLT32:
524 checkInt(loc, val, 26, rel);
525 write32le(loc, (read32le(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
526 break;
527 case R_ARM_THM_JUMP11:
528 checkInt(loc, val, 12, rel);
529 write16le(loc, (read32le(loc) & 0xf800) | ((val >> 1) & 0x07ff));
530 break;
531 case R_ARM_THM_JUMP19:
532 // Encoding T3: Val = S:J2:J1:imm6:imm11:0
533 checkInt(loc, val, 21, rel);
534 write16le(loc,
535 (read16le(loc) & 0xfbc0) | // opcode cond
536 ((val >> 10) & 0x0400) | // S
537 ((val >> 12) & 0x003f)); // imm6
538 write16le(loc + 2,
539 0x8000 | // opcode
540 ((val >> 8) & 0x0800) | // J2
541 ((val >> 5) & 0x2000) | // J1
542 ((val >> 1) & 0x07ff)); // imm11
543 break;
544 case R_ARM_THM_CALL: {
545 // R_ARM_THM_CALL is used for BL and BLX instructions, for symbols of type
546 // STT_FUNC we choose whether to write a BL or BLX depending on the
547 // value of bit 0 of Val. With bit 0 == 0 denoting ARM, if the symbol is
548 // not of type STT_FUNC then we must preserve the original instruction.
549 // PLT entries are always ARM state so we know we need to interwork.
550 assert(rel.sym); // R_ARM_THM_CALL is always reached via relocate().
551 bool bit0Thumb = val & 1;
552 bool isBlx = (read16le(loc + 2) & 0x1000) == 0;
553 // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
554 // even when type not STT_FUNC. PLT entries generated by LLD are always ARM.
555 if (!rel.sym->isFunc() && !rel.sym->isInPlt() && isBlx == bit0Thumb)
556 stateChangeWarning(loc, rel.type, *rel.sym);
557 if (rel.sym->isFunc() || rel.sym->isInPlt() ? !bit0Thumb : isBlx) {
558 // We are writing a BLX. Ensure BLX destination is 4-byte aligned. As
559 // the BLX instruction may only be two byte aligned. This must be done
560 // before overflow check.
561 val = alignTo(val, 4);
562 write16le(loc + 2, read16le(loc + 2) & ~0x1000);
563 } else {
564 write16le(loc + 2, (read16le(loc + 2) & ~0x1000) | 1 << 12);
565 }
566 if (!config->armJ1J2BranchEncoding) {
567 // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
568 // different encoding rules and range due to J1 and J2 always being 1.
569 checkInt(loc, val, 23, rel);
570 write16le(loc,
571 0xf000 | // opcode
572 ((val >> 12) & 0x07ff)); // imm11
573 write16le(loc + 2,
574 (read16le(loc + 2) & 0xd000) | // opcode
575 0x2800 | // J1 == J2 == 1
576 ((val >> 1) & 0x07ff)); // imm11
577 break;
578 }
579 }
580 // Fall through as rest of encoding is the same as B.W
581 LLVM_FALLTHROUGH;
582 case R_ARM_THM_JUMP24:
583 // Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
584 checkInt(loc, val, 25, rel);
585 write16le(loc,
586 0xf000 | // opcode
587 ((val >> 14) & 0x0400) | // S
588 ((val >> 12) & 0x03ff)); // imm10
589 write16le(loc + 2,
590 (read16le(loc + 2) & 0xd000) | // opcode
591 (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
592 (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
593 ((val >> 1) & 0x07ff)); // imm11
594 break;
595 case R_ARM_MOVW_ABS_NC:
596 case R_ARM_MOVW_PREL_NC:
597 case R_ARM_MOVW_BREL_NC:
598 write32le(loc, (read32le(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
599 (val & 0x0fff));
600 break;
601 case R_ARM_MOVT_ABS:
602 case R_ARM_MOVT_PREL:
603 case R_ARM_MOVT_BREL:
604 write32le(loc, (read32le(loc) & ~0x000f0fff) |
605 (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
606 break;
607 case R_ARM_THM_MOVT_ABS:
608 case R_ARM_THM_MOVT_PREL:
609 case R_ARM_THM_MOVT_BREL:
610 // Encoding T1: A = imm4:i:imm3:imm8
611 write16le(loc,
612 0xf2c0 | // opcode
613 ((val >> 17) & 0x0400) | // i
614 ((val >> 28) & 0x000f)); // imm4
615 write16le(loc + 2,
616 (read16le(loc + 2) & 0x8f00) | // opcode
617 ((val >> 12) & 0x7000) | // imm3
618 ((val >> 16) & 0x00ff)); // imm8
619 break;
620 case R_ARM_THM_MOVW_ABS_NC:
621 case R_ARM_THM_MOVW_PREL_NC:
622 case R_ARM_THM_MOVW_BREL_NC:
623 // Encoding T3: A = imm4:i:imm3:imm8
624 write16le(loc,
625 0xf240 | // opcode
626 ((val >> 1) & 0x0400) | // i
627 ((val >> 12) & 0x000f)); // imm4
628 write16le(loc + 2,
629 (read16le(loc + 2) & 0x8f00) | // opcode
630 ((val << 4) & 0x7000) | // imm3
631 (val & 0x00ff)); // imm8
632 break;
633 case R_ARM_ALU_PC_G0: {
634 // ADR (literal) add = bit23, sub = bit22
635 // literal is a 12-bit modified immediate, made up of a 4-bit even rotate
636 // right and an 8-bit immediate. The code-sequence here is derived from
637 // ARMAddressingModes.h in llvm/Target/ARM/MCTargetDesc. In our case we
638 // want to give an error if we cannot encode the constant.
639 uint32_t opcode = 0x00800000;
640 if (val >> 63) {
641 opcode = 0x00400000;
642 val = ~val + 1;
643 }
644 if ((val & ~255U) != 0) {
645 uint32_t rotAmt = getSOImmValRotate(val);
646 // Error if we cannot encode this with a single shift
647 if (rotr32(~255U, rotAmt) & val)
648 error(getErrorLocation(loc) + "unencodeable immediate " +
649 Twine(val).str() + " for relocation " + toString(rel.type));
650 val = rotl32(val, rotAmt) | ((rotAmt >> 1) << 8);
651 }
652 write32le(loc, (read32le(loc) & 0xff0ff000) | opcode | val);
653 break;
654 }
655 case R_ARM_LDR_PC_G0: {
656 // R_ARM_LDR_PC_G0 is S + A - P, we have ((S + A) | T) - P, if S is a
657 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
658 // bottom bit to recover S + A - P.
659 if (rel.sym->isFunc())
660 val &= ~0x1;
661 // LDR (literal) u = bit23
662 int64_t imm = val;
663 uint32_t u = 0x00800000;
664 if (imm < 0) {
665 imm = -imm;
666 u = 0;
667 }
668 checkUInt(loc, imm, 12, rel);
669 write32le(loc, (read32le(loc) & 0xff7ff000) | u | imm);
670 break;
671 }
672 case R_ARM_THM_ALU_PREL_11_0: {
673 // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
674 int64_t imm = val;
675 uint16_t sub = 0;
676 if (imm < 0) {
677 imm = -imm;
678 sub = 0x00a0;
679 }
680 checkUInt(loc, imm, 12, rel);
681 write16le(loc, (read16le(loc) & 0xfb0f) | sub | (imm & 0x800) >> 1);
682 write16le(loc + 2,
683 (read16le(loc + 2) & 0x8f00) | (imm & 0x700) << 4 | (imm & 0xff));
684 break;
685 }
686 case R_ARM_THM_PC8:
687 // ADR and LDR literal encoding T1 positive offset only imm8:00
688 // R_ARM_THM_PC8 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
689 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
690 // bottom bit to recover S + A - Pa.
691 if (rel.sym->isFunc())
692 val &= ~0x1;
693 checkUInt(loc, val, 10, rel);
694 checkAlignment(loc, val, 4, rel);
695 write16le(loc, (read16le(loc) & 0xff00) | (val & 0x3fc) >> 2);
696 break;
697 case R_ARM_THM_PC12: {
698 // LDR (literal) encoding T2, add = (U == '1') imm12
699 // imm12 is unsigned
700 // R_ARM_THM_PC12 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
701 // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
702 // bottom bit to recover S + A - Pa.
703 if (rel.sym->isFunc())
704 val &= ~0x1;
705 int64_t imm12 = val;
706 uint16_t u = 0x0080;
707 if (imm12 < 0) {
708 imm12 = -imm12;
709 u = 0;
710 }
711 checkUInt(loc, imm12, 12, rel);
712 write16le(loc, read16le(loc) | u);
713 write16le(loc + 2, (read16le(loc + 2) & 0xf000) | imm12);
714 break;
715 }
716 default:
717 error(getErrorLocation(loc) + "unrecognized relocation " +
718 toString(rel.type));
719 }
720 }
721
getImplicitAddend(const uint8_t * buf,RelType type) const722 int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
723 switch (type) {
724 default:
725 return 0;
726 case R_ARM_ABS32:
727 case R_ARM_BASE_PREL:
728 case R_ARM_GOTOFF32:
729 case R_ARM_GOT_BREL:
730 case R_ARM_GOT_PREL:
731 case R_ARM_REL32:
732 case R_ARM_TARGET1:
733 case R_ARM_TARGET2:
734 case R_ARM_TLS_GD32:
735 case R_ARM_TLS_LDM32:
736 case R_ARM_TLS_LDO32:
737 case R_ARM_TLS_IE32:
738 case R_ARM_TLS_LE32:
739 return SignExtend64<32>(read32le(buf));
740 case R_ARM_PREL31:
741 return SignExtend64<31>(read32le(buf));
742 case R_ARM_CALL:
743 case R_ARM_JUMP24:
744 case R_ARM_PC24:
745 case R_ARM_PLT32:
746 return SignExtend64<26>(read32le(buf) << 2);
747 case R_ARM_THM_JUMP11:
748 return SignExtend64<12>(read16le(buf) << 1);
749 case R_ARM_THM_JUMP19: {
750 // Encoding T3: A = S:J2:J1:imm10:imm6:0
751 uint16_t hi = read16le(buf);
752 uint16_t lo = read16le(buf + 2);
753 return SignExtend64<20>(((hi & 0x0400) << 10) | // S
754 ((lo & 0x0800) << 8) | // J2
755 ((lo & 0x2000) << 5) | // J1
756 ((hi & 0x003f) << 12) | // imm6
757 ((lo & 0x07ff) << 1)); // imm11:0
758 }
759 case R_ARM_THM_CALL:
760 if (!config->armJ1J2BranchEncoding) {
761 // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
762 // different encoding rules and range due to J1 and J2 always being 1.
763 uint16_t hi = read16le(buf);
764 uint16_t lo = read16le(buf + 2);
765 return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
766 ((lo & 0x7ff) << 1)); // imm11:0
767 break;
768 }
769 LLVM_FALLTHROUGH;
770 case R_ARM_THM_JUMP24: {
771 // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
772 // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
773 uint16_t hi = read16le(buf);
774 uint16_t lo = read16le(buf + 2);
775 return SignExtend64<24>(((hi & 0x0400) << 14) | // S
776 (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
777 (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
778 ((hi & 0x003ff) << 12) | // imm0
779 ((lo & 0x007ff) << 1)); // imm11:0
780 }
781 // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
782 // MOVT is in the range -32768 <= A < 32768
783 case R_ARM_MOVW_ABS_NC:
784 case R_ARM_MOVT_ABS:
785 case R_ARM_MOVW_PREL_NC:
786 case R_ARM_MOVT_PREL:
787 case R_ARM_MOVW_BREL_NC:
788 case R_ARM_MOVT_BREL: {
789 uint64_t val = read32le(buf) & 0x000f0fff;
790 return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
791 }
792 case R_ARM_THM_MOVW_ABS_NC:
793 case R_ARM_THM_MOVT_ABS:
794 case R_ARM_THM_MOVW_PREL_NC:
795 case R_ARM_THM_MOVT_PREL:
796 case R_ARM_THM_MOVW_BREL_NC:
797 case R_ARM_THM_MOVT_BREL: {
798 // Encoding T3: A = imm4:i:imm3:imm8
799 uint16_t hi = read16le(buf);
800 uint16_t lo = read16le(buf + 2);
801 return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
802 ((hi & 0x0400) << 1) | // i
803 ((lo & 0x7000) >> 4) | // imm3
804 (lo & 0x00ff)); // imm8
805 }
806 case R_ARM_ALU_PC_G0: {
807 // 12-bit immediate is a modified immediate made up of a 4-bit even
808 // right rotation and 8-bit constant. After the rotation the value
809 // is zero-extended. When bit 23 is set the instruction is an add, when
810 // bit 22 is set it is a sub.
811 uint32_t instr = read32le(buf);
812 uint32_t val = rotr32(instr & 0xff, ((instr & 0xf00) >> 8) * 2);
813 return (instr & 0x00400000) ? -val : val;
814 }
815 case R_ARM_LDR_PC_G0: {
816 // ADR (literal) add = bit23, sub = bit22
817 // LDR (literal) u = bit23 unsigned imm12
818 bool u = read32le(buf) & 0x00800000;
819 uint32_t imm12 = read32le(buf) & 0xfff;
820 return u ? imm12 : -imm12;
821 }
822 case R_ARM_THM_ALU_PREL_11_0: {
823 // Thumb2 ADR, which is an alias for a sub or add instruction with an
824 // unsigned immediate.
825 // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
826 uint16_t hi = read16le(buf);
827 uint16_t lo = read16le(buf + 2);
828 uint64_t imm = (hi & 0x0400) << 1 | // i
829 (lo & 0x7000) >> 4 | // imm3
830 (lo & 0x00ff); // imm8
831 // For sub, addend is negative, add is positive.
832 return (hi & 0x00f0) ? -imm : imm;
833 }
834 case R_ARM_THM_PC8:
835 // ADR and LDR (literal) encoding T1
836 // From ELF for the ARM Architecture the initial signed addend is formed
837 // from an unsigned field using expression (((imm8:00 + 4) & 0x3ff) – 4)
838 // this trick permits the PC bias of -4 to be encoded using imm8 = 0xff
839 return ((((read16le(buf) & 0xff) << 2) + 4) & 0x3ff) - 4;
840 case R_ARM_THM_PC12: {
841 // LDR (literal) encoding T2, add = (U == '1') imm12
842 bool u = read16le(buf) & 0x0080;
843 uint64_t imm12 = read16le(buf + 2) & 0x0fff;
844 return u ? imm12 : -imm12;
845 }
846 }
847 }
848
getARMTargetInfo()849 TargetInfo *elf::getARMTargetInfo() {
850 static ARM target;
851 return ⌖
852 }
853