1==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6   :local:
7   :depth: 4
8
9Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55    %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76   prefix. For example, ``%foo``, ``@DivisionByZero``,
77   ``%a.really.long.identifier``. The actual regular expression used is
78   '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
79   characters in their names can be surrounded with quotes. Special
80   characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81   code for the character in hexadecimal. In this way, any character can
82   be used in a name value, even quotes themselves. The ``"\01"`` prefix
83   can be used on global values to suppress mangling.
84#. Unnamed values are represented as an unsigned numeric value with
85   their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109    %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
115    %result = shl i32 %X, 3
116
117And the hard way:
118
119.. code-block:: llvm
120
121    %0 = add i32 %X, %X           ; yields i32:%0
122    %1 = add i32 %0, %0           ; yields i32:%1
123    %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130   not assigned to a named value.
131#. Unnamed temporaries are numbered sequentially (using a per-function
132   incrementing counter, starting with 0). Note that basic blocks and unnamed
133   function parameters are included in this numbering. For example, if the
134   entry basic block is not given a label name and all function parameters are
135   named, then it will get number 0.
136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
156    ; Declare the string constant as a global constant.
157    @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
158
159    ; External declaration of the puts function
160    declare i32 @puts(i8* nocapture) nounwind
161
162    ; Definition of main function
163    define i32 @main() {   ; i32()*
164      ; Convert [13 x i8]* to i8*...
165      %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
166
167      ; Call puts function to write out the string to stdout.
168      call i32 @puts(i8* %cast210)
169      ret i32 0
170    }
171
172    ; Named metadata
173    !0 = !{i32 42, null, !"string"}
174    !foo = !{!0}
175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196    Global values with "``private``" linkage are only directly
197    accessible by objects in the current module. In particular, linking
198    code into a module with a private global value may cause the
199    private to be renamed as necessary to avoid collisions. Because the
200    symbol is private to the module, all references can be updated. This
201    doesn't show up in any symbol table in the object file.
202``internal``
203    Similar to private, but the value shows as a local symbol
204    (``STB_LOCAL`` in the case of ELF) in the object file. This
205    corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207    Globals with "``available_externally``" linkage are never emitted into
208    the object file corresponding to the LLVM module. From the linker's
209    perspective, an ``available_externally`` global is equivalent to
210    an external declaration. They exist to allow inlining and other
211    optimizations to take place given knowledge of the definition of the
212    global, which is known to be somewhere outside the module. Globals
213    with ``available_externally`` linkage are allowed to be discarded at
214    will, and allow inlining and other optimizations. This linkage type is
215    only allowed on definitions, not declarations.
216``linkonce``
217    Globals with "``linkonce``" linkage are merged with other globals of
218    the same name when linkage occurs. This can be used to implement
219    some forms of inline functions, templates, or other code which must
220    be generated in each translation unit that uses it, but where the
221    body may be overridden with a more definitive definition later.
222    Unreferenced ``linkonce`` globals are allowed to be discarded. Note
223    that ``linkonce`` linkage does not actually allow the optimizer to
224    inline the body of this function into callers because it doesn't
225    know if this definition of the function is the definitive definition
226    within the program or whether it will be overridden by a stronger
227    definition. To enable inlining and other optimizations, use
228    "``linkonce_odr``" linkage.
229``weak``
230    "``weak``" linkage has the same merging semantics as ``linkonce``
231    linkage, except that unreferenced globals with ``weak`` linkage may
232    not be discarded. This is used for globals that are declared "weak"
233    in C source code.
234``common``
235    "``common``" linkage is most similar to "``weak``" linkage, but they
236    are used for tentative definitions in C, such as "``int X;``" at
237    global scope. Symbols with "``common``" linkage are merged in the
238    same way as ``weak symbols``, and they may not be deleted if
239    unreferenced. ``common`` symbols may not have an explicit section,
240    must have a zero initializer, and may not be marked
241    ':ref:`constant <globalvars>`'. Functions and aliases may not have
242    common linkage.
243
244.. _linkage_appending:
245
246``appending``
247    "``appending``" linkage may only be applied to global variables of
248    pointer to array type. When two global variables with appending
249    linkage are linked together, the two global arrays are appended
250    together. This is the LLVM, typesafe, equivalent of having the
251    system linker append together "sections" with identical names when
252    .o files are linked.
253
254    Unfortunately this doesn't correspond to any feature in .o files, so it
255    can only be used for variables like ``llvm.global_ctors`` which llvm
256    interprets specially.
257
258``extern_weak``
259    The semantics of this linkage follow the ELF object file model: the
260    symbol is weak until linked, if not linked, the symbol becomes null
261    instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263    Some languages allow differing globals to be merged, such as two
264    functions with different semantics. Other languages, such as
265    ``C++``, ensure that only equivalent globals are ever merged (the
266    "one definition rule" --- "ODR"). Such languages can use the
267    ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268    global will only be merged with equivalent globals. These linkage
269    types are otherwise the same as their non-``odr`` versions.
270``external``
271    If none of the above identifiers are used, the global is externally
272    visible, meaning that it participates in linkage and can be used to
273    resolve external symbol references.
274
275It is illegal for a global variable or function *declaration* to have any
276linkage type other than ``external`` or ``extern_weak``.
277
278.. _callingconv:
279
280Calling Conventions
281-------------------
282
283LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
284:ref:`invokes <i_invoke>` can all have an optional calling convention
285specified for the call. The calling convention of any pair of dynamic
286caller/callee must match, or the behavior of the program is undefined.
287The following calling conventions are supported by LLVM, and more may be
288added in the future:
289
290"``ccc``" - The C calling convention
291    This calling convention (the default if no other calling convention
292    is specified) matches the target C calling conventions. This calling
293    convention supports varargs function calls and tolerates some
294    mismatch in the declared prototype and implemented declaration of
295    the function (as does normal C).
296"``fastcc``" - The fast calling convention
297    This calling convention attempts to make calls as fast as possible
298    (e.g. by passing things in registers). This calling convention
299    allows the target to use whatever tricks it wants to produce fast
300    code for the target, without having to conform to an externally
301    specified ABI (Application Binary Interface). `Tail calls can only
302    be optimized when this, the tailcc, the GHC or the HiPE convention is
303    used. <CodeGenerator.html#id80>`_ This calling convention does not
304    support varargs and requires the prototype of all callees to exactly
305    match the prototype of the function definition.
306"``coldcc``" - The cold calling convention
307    This calling convention attempts to make code in the caller as
308    efficient as possible under the assumption that the call is not
309    commonly executed. As such, these calls often preserve all registers
310    so that the call does not break any live ranges in the caller side.
311    This calling convention does not support varargs and requires the
312    prototype of all callees to exactly match the prototype of the
313    function definition. Furthermore the inliner doesn't consider such function
314    calls for inlining.
315"``cc 10``" - GHC convention
316    This calling convention has been implemented specifically for use by
317    the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
318    It passes everything in registers, going to extremes to achieve this
319    by disabling callee save registers. This calling convention should
320    not be used lightly but only for specific situations such as an
321    alternative to the *register pinning* performance technique often
322    used when implementing functional programming languages. At the
323    moment only X86 supports this convention and it has the following
324    limitations:
325
326    -  On *X86-32* only supports up to 4 bit type parameters. No
327       floating-point types are supported.
328    -  On *X86-64* only supports up to 10 bit type parameters and 6
329       floating-point parameters.
330
331    This calling convention supports `tail call
332    optimization <CodeGenerator.html#id80>`_ but requires both the
333    caller and callee are using it.
334"``cc 11``" - The HiPE calling convention
335    This calling convention has been implemented specifically for use by
336    the `High-Performance Erlang
337    (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
338    native code compiler of the `Ericsson's Open Source Erlang/OTP
339    system <http://www.erlang.org/download.shtml>`_. It uses more
340    registers for argument passing than the ordinary C calling
341    convention and defines no callee-saved registers. The calling
342    convention properly supports `tail call
343    optimization <CodeGenerator.html#id80>`_ but requires that both the
344    caller and the callee use it. It uses a *register pinning*
345    mechanism, similar to GHC's convention, for keeping frequently
346    accessed runtime components pinned to specific hardware registers.
347    At the moment only X86 supports this convention (both 32 and 64
348    bit).
349"``webkit_jscc``" - WebKit's JavaScript calling convention
350    This calling convention has been implemented for `WebKit FTL JIT
351    <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
352    stack right to left (as cdecl does), and returns a value in the
353    platform's customary return register.
354"``anyregcc``" - Dynamic calling convention for code patching
355    This is a special convention that supports patching an arbitrary code
356    sequence in place of a call site. This convention forces the call
357    arguments into registers but allows them to be dynamically
358    allocated. This can currently only be used with calls to
359    llvm.experimental.patchpoint because only this intrinsic records
360    the location of its arguments in a side table. See :doc:`StackMaps`.
361"``preserve_mostcc``" - The `PreserveMost` calling convention
362    This calling convention attempts to make the code in the caller as
363    unintrusive as possible. This convention behaves identically to the `C`
364    calling convention on how arguments and return values are passed, but it
365    uses a different set of caller/callee-saved registers. This alleviates the
366    burden of saving and recovering a large register set before and after the
367    call in the caller. If the arguments are passed in callee-saved registers,
368    then they will be preserved by the callee across the call. This doesn't
369    apply for values returned in callee-saved registers.
370
371    - On X86-64 the callee preserves all general purpose registers, except for
372      R11. R11 can be used as a scratch register. Floating-point registers
373      (XMMs/YMMs) are not preserved and need to be saved by the caller.
374
375    The idea behind this convention is to support calls to runtime functions
376    that have a hot path and a cold path. The hot path is usually a small piece
377    of code that doesn't use many registers. The cold path might need to call out to
378    another function and therefore only needs to preserve the caller-saved
379    registers, which haven't already been saved by the caller. The
380    `PreserveMost` calling convention is very similar to the `cold` calling
381    convention in terms of caller/callee-saved registers, but they are used for
382    different types of function calls. `coldcc` is for function calls that are
383    rarely executed, whereas `preserve_mostcc` function calls are intended to be
384    on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
385    doesn't prevent the inliner from inlining the function call.
386
387    This calling convention will be used by a future version of the ObjectiveC
388    runtime and should therefore still be considered experimental at this time.
389    Although this convention was created to optimize certain runtime calls to
390    the ObjectiveC runtime, it is not limited to this runtime and might be used
391    by other runtimes in the future too. The current implementation only
392    supports X86-64, but the intention is to support more architectures in the
393    future.
394"``preserve_allcc``" - The `PreserveAll` calling convention
395    This calling convention attempts to make the code in the caller even less
396    intrusive than the `PreserveMost` calling convention. This calling
397    convention also behaves identical to the `C` calling convention on how
398    arguments and return values are passed, but it uses a different set of
399    caller/callee-saved registers. This removes the burden of saving and
400    recovering a large register set before and after the call in the caller. If
401    the arguments are passed in callee-saved registers, then they will be
402    preserved by the callee across the call. This doesn't apply for values
403    returned in callee-saved registers.
404
405    - On X86-64 the callee preserves all general purpose registers, except for
406      R11. R11 can be used as a scratch register. Furthermore it also preserves
407      all floating-point registers (XMMs/YMMs).
408
409    The idea behind this convention is to support calls to runtime functions
410    that don't need to call out to any other functions.
411
412    This calling convention, like the `PreserveMost` calling convention, will be
413    used by a future version of the ObjectiveC runtime and should be considered
414    experimental at this time.
415"``cxx_fast_tlscc``" - The `CXX_FAST_TLS` calling convention for access functions
416    Clang generates an access function to access C++-style TLS. The access
417    function generally has an entry block, an exit block and an initialization
418    block that is run at the first time. The entry and exit blocks can access
419    a few TLS IR variables, each access will be lowered to a platform-specific
420    sequence.
421
422    This calling convention aims to minimize overhead in the caller by
423    preserving as many registers as possible (all the registers that are
424    preserved on the fast path, composed of the entry and exit blocks).
425
426    This calling convention behaves identical to the `C` calling convention on
427    how arguments and return values are passed, but it uses a different set of
428    caller/callee-saved registers.
429
430    Given that each platform has its own lowering sequence, hence its own set
431    of preserved registers, we can't use the existing `PreserveMost`.
432
433    - On X86-64 the callee preserves all general purpose registers, except for
434      RDI and RAX.
435"``swiftcc``" - This calling convention is used for Swift language.
436    - On X86-64 RCX and R8 are available for additional integer returns, and
437      XMM2 and XMM3 are available for additional FP/vector returns.
438    - On iOS platforms, we use AAPCS-VFP calling convention.
439"``tailcc``" - Tail callable calling convention
440    This calling convention ensures that calls in tail position will always be
441    tail call optimized. This calling convention is equivalent to fastcc,
442    except for an additional guarantee that tail calls will be produced
443    whenever possible. `Tail calls can only be optimized when this, the fastcc,
444    the GHC or the HiPE convention is used. <CodeGenerator.html#id80>`_ This
445    calling convention does not support varargs and requires the prototype of
446    all callees to exactly match the prototype of the function definition.
447"``cfguard_checkcc``" - Windows Control Flow Guard (Check mechanism)
448    This calling convention is used for the Control Flow Guard check function,
449    calls to which can be inserted before indirect calls to check that the call
450    target is a valid function address. The check function has no return value,
451    but it will trigger an OS-level error if the address is not a valid target.
452    The set of registers preserved by the check function, and the register
453    containing the target address are architecture-specific.
454
455    - On X86 the target address is passed in ECX.
456    - On ARM the target address is passed in R0.
457    - On AArch64 the target address is passed in X15.
458"``cc <n>``" - Numbered convention
459    Any calling convention may be specified by number, allowing
460    target-specific calling conventions to be used. Target specific
461    calling conventions start at 64.
462
463More calling conventions can be added/defined on an as-needed basis, to
464support Pascal conventions or any other well-known target-independent
465convention.
466
467.. _visibilitystyles:
468
469Visibility Styles
470-----------------
471
472All Global Variables and Functions have one of the following visibility
473styles:
474
475"``default``" - Default style
476    On targets that use the ELF object file format, default visibility
477    means that the declaration is visible to other modules and, in
478    shared libraries, means that the declared entity may be overridden.
479    On Darwin, default visibility means that the declaration is visible
480    to other modules. Default visibility corresponds to "external
481    linkage" in the language.
482"``hidden``" - Hidden style
483    Two declarations of an object with hidden visibility refer to the
484    same object if they are in the same shared object. Usually, hidden
485    visibility indicates that the symbol will not be placed into the
486    dynamic symbol table, so no other module (executable or shared
487    library) can reference it directly.
488"``protected``" - Protected style
489    On ELF, protected visibility indicates that the symbol will be
490    placed in the dynamic symbol table, but that references within the
491    defining module will bind to the local symbol. That is, the symbol
492    cannot be overridden by another module.
493
494A symbol with ``internal`` or ``private`` linkage must have ``default``
495visibility.
496
497.. _dllstorageclass:
498
499DLL Storage Classes
500-------------------
501
502All Global Variables, Functions and Aliases can have one of the following
503DLL storage class:
504
505``dllimport``
506    "``dllimport``" causes the compiler to reference a function or variable via
507    a global pointer to a pointer that is set up by the DLL exporting the
508    symbol. On Microsoft Windows targets, the pointer name is formed by
509    combining ``__imp_`` and the function or variable name.
510``dllexport``
511    "``dllexport``" causes the compiler to provide a global pointer to a pointer
512    in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
513    Microsoft Windows targets, the pointer name is formed by combining
514    ``__imp_`` and the function or variable name. Since this storage class
515    exists for defining a dll interface, the compiler, assembler and linker know
516    it is externally referenced and must refrain from deleting the symbol.
517
518.. _tls_model:
519
520Thread Local Storage Models
521---------------------------
522
523A variable may be defined as ``thread_local``, which means that it will
524not be shared by threads (each thread will have a separated copy of the
525variable). Not all targets support thread-local variables. Optionally, a
526TLS model may be specified:
527
528``localdynamic``
529    For variables that are only used within the current shared library.
530``initialexec``
531    For variables in modules that will not be loaded dynamically.
532``localexec``
533    For variables defined in the executable and only used within it.
534
535If no explicit model is given, the "general dynamic" model is used.
536
537The models correspond to the ELF TLS models; see `ELF Handling For
538Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
539more information on under which circumstances the different models may
540be used. The target may choose a different TLS model if the specified
541model is not supported, or if a better choice of model can be made.
542
543A model can also be specified in an alias, but then it only governs how
544the alias is accessed. It will not have any effect in the aliasee.
545
546For platforms without linker support of ELF TLS model, the -femulated-tls
547flag can be used to generate GCC compatible emulated TLS code.
548
549.. _runtime_preemption_model:
550
551Runtime Preemption Specifiers
552-----------------------------
553
554Global variables, functions and aliases may have an optional runtime preemption
555specifier. If a preemption specifier isn't given explicitly, then a
556symbol is assumed to be ``dso_preemptable``.
557
558``dso_preemptable``
559    Indicates that the function or variable may be replaced by a symbol from
560    outside the linkage unit at runtime.
561
562``dso_local``
563    The compiler may assume that a function or variable marked as ``dso_local``
564    will resolve to a symbol within the same linkage unit. Direct access will
565    be generated even if the definition is not within this compilation unit.
566
567.. _namedtypes:
568
569Structure Types
570---------------
571
572LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
573types <t_struct>`. Literal types are uniqued structurally, but identified types
574are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
575to forward declare a type that is not yet available.
576
577An example of an identified structure specification is:
578
579.. code-block:: llvm
580
581    %mytype = type { %mytype*, i32 }
582
583Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
584literal types are uniqued in recent versions of LLVM.
585
586.. _nointptrtype:
587
588Non-Integral Pointer Type
589-------------------------
590
591Note: non-integral pointer types are a work in progress, and they should be
592considered experimental at this time.
593
594LLVM IR optionally allows the frontend to denote pointers in certain address
595spaces as "non-integral" via the :ref:`datalayout string<langref_datalayout>`.
596Non-integral pointer types represent pointers that have an *unspecified* bitwise
597representation; that is, the integral representation may be target dependent or
598unstable (not backed by a fixed integer).
599
600``inttoptr`` instructions converting integers to non-integral pointer types are
601ill-typed, and so are ``ptrtoint`` instructions converting values of
602non-integral pointer types to integers.  Vector versions of said instructions
603are ill-typed as well.
604
605.. _globalvars:
606
607Global Variables
608----------------
609
610Global variables define regions of memory allocated at compilation time
611instead of run-time.
612
613Global variable definitions must be initialized.
614
615Global variables in other translation units can also be declared, in which
616case they don't have an initializer.
617
618Global variables can optionally specify a :ref:`linkage type <linkage>`.
619
620Either global variable definitions or declarations may have an explicit section
621to be placed in and may have an optional explicit alignment specified. If there
622is a mismatch between the explicit or inferred section information for the
623variable declaration and its definition the resulting behavior is undefined.
624
625A variable may be defined as a global ``constant``, which indicates that
626the contents of the variable will **never** be modified (enabling better
627optimization, allowing the global data to be placed in the read-only
628section of an executable, etc). Note that variables that need runtime
629initialization cannot be marked ``constant`` as there is a store to the
630variable.
631
632LLVM explicitly allows *declarations* of global variables to be marked
633constant, even if the final definition of the global is not. This
634capability can be used to enable slightly better optimization of the
635program, but requires the language definition to guarantee that
636optimizations based on the 'constantness' are valid for the translation
637units that do not include the definition.
638
639As SSA values, global variables define pointer values that are in scope
640(i.e. they dominate) all basic blocks in the program. Global variables
641always define a pointer to their "content" type because they describe a
642region of memory, and all memory objects in LLVM are accessed through
643pointers.
644
645Global variables can be marked with ``unnamed_addr`` which indicates
646that the address is not significant, only the content. Constants marked
647like this can be merged with other constants if they have the same
648initializer. Note that a constant with significant address *can* be
649merged with a ``unnamed_addr`` constant, the result being a constant
650whose address is significant.
651
652If the ``local_unnamed_addr`` attribute is given, the address is known to
653not be significant within the module.
654
655A global variable may be declared to reside in a target-specific
656numbered address space. For targets that support them, address spaces
657may affect how optimizations are performed and/or what target
658instructions are used to access the variable. The default address space
659is zero. The address space qualifier must precede any other attributes.
660
661LLVM allows an explicit section to be specified for globals. If the
662target supports it, it will emit globals to the section specified.
663Additionally, the global can placed in a comdat if the target has the necessary
664support.
665
666External declarations may have an explicit section specified. Section
667information is retained in LLVM IR for targets that make use of this
668information. Attaching section information to an external declaration is an
669assertion that its definition is located in the specified section. If the
670definition is located in a different section, the behavior is undefined.
671
672By default, global initializers are optimized by assuming that global
673variables defined within the module are not modified from their
674initial values before the start of the global initializer. This is
675true even for variables potentially accessible from outside the
676module, including those with external linkage or appearing in
677``@llvm.used`` or dllexported variables. This assumption may be suppressed
678by marking the variable with ``externally_initialized``.
679
680An explicit alignment may be specified for a global, which must be a
681power of 2. If not present, or if the alignment is set to zero, the
682alignment of the global is set by the target to whatever it feels
683convenient. If an explicit alignment is specified, the global is forced
684to have exactly that alignment. Targets and optimizers are not allowed
685to over-align the global if the global has an assigned section. In this
686case, the extra alignment could be observable: for example, code could
687assume that the globals are densely packed in their section and try to
688iterate over them as an array, alignment padding would break this
689iteration. The maximum alignment is ``1 << 29``.
690
691For global variables declarations, as well as definitions that may be
692replaced at link time (``linkonce``, ``weak``, ``extern_weak`` and ``common``
693linkage types), LLVM makes no assumptions about the allocation size of the
694variables, except that they may not overlap. The alignment of a global variable
695declaration or replaceable definition must not be greater than the alignment of
696the definition it resolves to.
697
698Globals can also have a :ref:`DLL storage class <dllstorageclass>`,
699an optional :ref:`runtime preemption specifier <runtime_preemption_model>`,
700an optional :ref:`global attributes <glattrs>` and
701an optional list of attached :ref:`metadata <metadata>`.
702
703Variables and aliases can have a
704:ref:`Thread Local Storage Model <tls_model>`.
705
706:ref:`Scalable vectors <t_vector>` cannot be global variables or members of
707structs or arrays because their size is unknown at compile time.
708
709Syntax::
710
711      @<GlobalVarName> = [Linkage] [PreemptionSpecifier] [Visibility]
712                         [DLLStorageClass] [ThreadLocal]
713                         [(unnamed_addr|local_unnamed_addr)] [AddrSpace]
714                         [ExternallyInitialized]
715                         <global | constant> <Type> [<InitializerConstant>]
716                         [, section "name"] [, comdat [($name)]]
717                         [, align <Alignment>] (, !name !N)*
718
719For example, the following defines a global in a numbered address space
720with an initializer, section, and alignment:
721
722.. code-block:: llvm
723
724    @G = addrspace(5) constant float 1.0, section "foo", align 4
725
726The following example just declares a global variable
727
728.. code-block:: llvm
729
730   @G = external global i32
731
732The following example defines a thread-local global with the
733``initialexec`` TLS model:
734
735.. code-block:: llvm
736
737    @G = thread_local(initialexec) global i32 0, align 4
738
739.. _functionstructure:
740
741Functions
742---------
743
744LLVM function definitions consist of the "``define``" keyword, an
745optional :ref:`linkage type <linkage>`, an optional :ref:`runtime preemption
746specifier <runtime_preemption_model>`,  an optional :ref:`visibility
747style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
748an optional :ref:`calling convention <callingconv>`,
749an optional ``unnamed_addr`` attribute, a return type, an optional
750:ref:`parameter attribute <paramattrs>` for the return type, a function
751name, a (possibly empty) argument list (each with optional :ref:`parameter
752attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
753an optional address space, an optional section, an optional alignment,
754an optional :ref:`comdat <langref_comdats>`,
755an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
756an optional :ref:`prologue <prologuedata>`,
757an optional :ref:`personality <personalityfn>`,
758an optional list of attached :ref:`metadata <metadata>`,
759an opening curly brace, a list of basic blocks, and a closing curly brace.
760
761LLVM function declarations consist of the "``declare``" keyword, an
762optional :ref:`linkage type <linkage>`, an optional :ref:`visibility style
763<visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`, an
764optional :ref:`calling convention <callingconv>`, an optional ``unnamed_addr``
765or ``local_unnamed_addr`` attribute, an optional address space, a return type,
766an optional :ref:`parameter attribute <paramattrs>` for the return type, a function name, a possibly
767empty list of arguments, an optional alignment, an optional :ref:`garbage
768collector name <gc>`, an optional :ref:`prefix <prefixdata>`, and an optional
769:ref:`prologue <prologuedata>`.
770
771A function definition contains a list of basic blocks, forming the CFG (Control
772Flow Graph) for the function. Each basic block may optionally start with a label
773(giving the basic block a symbol table entry), contains a list of instructions,
774and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
775function return). If an explicit label name is not provided, a block is assigned
776an implicit numbered label, using the next value from the same counter as used
777for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
778function entry block does not have an explicit label, it will be assigned label
779"%0", then the first unnamed temporary in that block will be "%1", etc. If a
780numeric label is explicitly specified, it must match the numeric label that
781would be used implicitly.
782
783The first basic block in a function is special in two ways: it is
784immediately executed on entrance to the function, and it is not allowed
785to have predecessor basic blocks (i.e. there can not be any branches to
786the entry block of a function). Because the block can have no
787predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
788
789LLVM allows an explicit section to be specified for functions. If the
790target supports it, it will emit functions to the section specified.
791Additionally, the function can be placed in a COMDAT.
792
793An explicit alignment may be specified for a function. If not present,
794or if the alignment is set to zero, the alignment of the function is set
795by the target to whatever it feels convenient. If an explicit alignment
796is specified, the function is forced to have at least that much
797alignment. All alignments must be a power of 2.
798
799If the ``unnamed_addr`` attribute is given, the address is known to not
800be significant and two identical functions can be merged.
801
802If the ``local_unnamed_addr`` attribute is given, the address is known to
803not be significant within the module.
804
805If an explicit address space is not given, it will default to the program
806address space from the :ref:`datalayout string<langref_datalayout>`.
807
808Syntax::
809
810    define [linkage] [PreemptionSpecifier] [visibility] [DLLStorageClass]
811           [cconv] [ret attrs]
812           <ResultType> @<FunctionName> ([argument list])
813           [(unnamed_addr|local_unnamed_addr)] [AddrSpace] [fn Attrs]
814           [section "name"] [comdat [($name)]] [align N] [gc] [prefix Constant]
815           [prologue Constant] [personality Constant] (!name !N)* { ... }
816
817The argument list is a comma separated sequence of arguments where each
818argument is of the following form:
819
820Syntax::
821
822   <type> [parameter Attrs] [name]
823
824
825.. _langref_aliases:
826
827Aliases
828-------
829
830Aliases, unlike function or variables, don't create any new data. They
831are just a new symbol and metadata for an existing position.
832
833Aliases have a name and an aliasee that is either a global value or a
834constant expression.
835
836Aliases may have an optional :ref:`linkage type <linkage>`, an optional
837:ref:`runtime preemption specifier <runtime_preemption_model>`, an optional
838:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
839<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
840
841Syntax::
842
843    @<Name> = [Linkage] [PreemptionSpecifier] [Visibility] [DLLStorageClass] [ThreadLocal] [(unnamed_addr|local_unnamed_addr)] alias <AliaseeTy>, <AliaseeTy>* @<Aliasee>
844
845The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
846``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
847might not correctly handle dropping a weak symbol that is aliased.
848
849Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
850the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
851to the same content.
852
853If the ``local_unnamed_addr`` attribute is given, the address is known to
854not be significant within the module.
855
856Since aliases are only a second name, some restrictions apply, of which
857some can only be checked when producing an object file:
858
859* The expression defining the aliasee must be computable at assembly
860  time. Since it is just a name, no relocations can be used.
861
862* No alias in the expression can be weak as the possibility of the
863  intermediate alias being overridden cannot be represented in an
864  object file.
865
866* No global value in the expression can be a declaration, since that
867  would require a relocation, which is not possible.
868
869.. _langref_ifunc:
870
871IFuncs
872-------
873
874IFuncs, like as aliases, don't create any new data or func. They are just a new
875symbol that dynamic linker resolves at runtime by calling a resolver function.
876
877IFuncs have a name and a resolver that is a function called by dynamic linker
878that returns address of another function associated with the name.
879
880IFunc may have an optional :ref:`linkage type <linkage>` and an optional
881:ref:`visibility style <visibility>`.
882
883Syntax::
884
885    @<Name> = [Linkage] [Visibility] ifunc <IFuncTy>, <ResolverTy>* @<Resolver>
886
887
888.. _langref_comdats:
889
890Comdats
891-------
892
893Comdat IR provides access to COFF and ELF object file COMDAT functionality.
894
895Comdats have a name which represents the COMDAT key. All global objects that
896specify this key will only end up in the final object file if the linker chooses
897that key over some other key. Aliases are placed in the same COMDAT that their
898aliasee computes to, if any.
899
900Comdats have a selection kind to provide input on how the linker should
901choose between keys in two different object files.
902
903Syntax::
904
905    $<Name> = comdat SelectionKind
906
907The selection kind must be one of the following:
908
909``any``
910    The linker may choose any COMDAT key, the choice is arbitrary.
911``exactmatch``
912    The linker may choose any COMDAT key but the sections must contain the
913    same data.
914``largest``
915    The linker will choose the section containing the largest COMDAT key.
916``noduplicates``
917    The linker requires that only section with this COMDAT key exist.
918``samesize``
919    The linker may choose any COMDAT key but the sections must contain the
920    same amount of data.
921
922Note that XCOFF and the Mach-O platform don't support COMDATs, and ELF and
923WebAssembly only support ``any`` as a selection kind.
924
925Here is an example of a COMDAT group where a function will only be selected if
926the COMDAT key's section is the largest:
927
928.. code-block:: text
929
930   $foo = comdat largest
931   @foo = global i32 2, comdat($foo)
932
933   define void @bar() comdat($foo) {
934     ret void
935   }
936
937As a syntactic sugar the ``$name`` can be omitted if the name is the same as
938the global name:
939
940.. code-block:: text
941
942  $foo = comdat any
943  @foo = global i32 2, comdat
944
945
946In a COFF object file, this will create a COMDAT section with selection kind
947``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
948and another COMDAT section with selection kind
949``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
950section and contains the contents of the ``@bar`` symbol.
951
952There are some restrictions on the properties of the global object.
953It, or an alias to it, must have the same name as the COMDAT group when
954targeting COFF.
955The contents and size of this object may be used during link-time to determine
956which COMDAT groups get selected depending on the selection kind.
957Because the name of the object must match the name of the COMDAT group, the
958linkage of the global object must not be local; local symbols can get renamed
959if a collision occurs in the symbol table.
960
961The combined use of COMDATS and section attributes may yield surprising results.
962For example:
963
964.. code-block:: text
965
966   $foo = comdat any
967   $bar = comdat any
968   @g1 = global i32 42, section "sec", comdat($foo)
969   @g2 = global i32 42, section "sec", comdat($bar)
970
971From the object file perspective, this requires the creation of two sections
972with the same name. This is necessary because both globals belong to different
973COMDAT groups and COMDATs, at the object file level, are represented by
974sections.
975
976Note that certain IR constructs like global variables and functions may
977create COMDATs in the object file in addition to any which are specified using
978COMDAT IR. This arises when the code generator is configured to emit globals
979in individual sections (e.g. when `-data-sections` or `-function-sections`
980is supplied to `llc`).
981
982.. _namedmetadatastructure:
983
984Named Metadata
985--------------
986
987Named metadata is a collection of metadata. :ref:`Metadata
988nodes <metadata>` (but not metadata strings) are the only valid
989operands for a named metadata.
990
991#. Named metadata are represented as a string of characters with the
992   metadata prefix. The rules for metadata names are the same as for
993   identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
994   are still valid, which allows any character to be part of a name.
995
996Syntax::
997
998    ; Some unnamed metadata nodes, which are referenced by the named metadata.
999    !0 = !{!"zero"}
1000    !1 = !{!"one"}
1001    !2 = !{!"two"}
1002    ; A named metadata.
1003    !name = !{!0, !1, !2}
1004
1005.. _paramattrs:
1006
1007Parameter Attributes
1008--------------------
1009
1010The return type and each parameter of a function type may have a set of
1011*parameter attributes* associated with them. Parameter attributes are
1012used to communicate additional information about the result or
1013parameters of a function. Parameter attributes are considered to be part
1014of the function, not of the function type, so functions with different
1015parameter attributes can have the same function type.
1016
1017Parameter attributes are simple keywords that follow the type specified.
1018If multiple parameter attributes are needed, they are space separated.
1019For example:
1020
1021.. code-block:: llvm
1022
1023    declare i32 @printf(i8* noalias nocapture, ...)
1024    declare i32 @atoi(i8 zeroext)
1025    declare signext i8 @returns_signed_char()
1026
1027Note that any attributes for the function result (``nounwind``,
1028``readonly``) come immediately after the argument list.
1029
1030Currently, only the following parameter attributes are defined:
1031
1032``zeroext``
1033    This indicates to the code generator that the parameter or return
1034    value should be zero-extended to the extent required by the target's
1035    ABI by the caller (for a parameter) or the callee (for a return value).
1036``signext``
1037    This indicates to the code generator that the parameter or return
1038    value should be sign-extended to the extent required by the target's
1039    ABI (which is usually 32-bits) by the caller (for a parameter) or
1040    the callee (for a return value).
1041``inreg``
1042    This indicates that this parameter or return value should be treated
1043    in a special target-dependent fashion while emitting code for
1044    a function call or return (usually, by putting it in a register as
1045    opposed to memory, though some targets use it to distinguish between
1046    two different kinds of registers). Use of this attribute is
1047    target-specific.
1048``byval`` or ``byval(<ty>)``
1049    This indicates that the pointer parameter should really be passed by
1050    value to the function. The attribute implies that a hidden copy of
1051    the pointee is made between the caller and the callee, so the callee
1052    is unable to modify the value in the caller. This attribute is only
1053    valid on LLVM pointer arguments. It is generally used to pass
1054    structs and arrays by value, but is also valid on pointers to
1055    scalars. The copy is considered to belong to the caller not the
1056    callee (for example, ``readonly`` functions should not write to
1057    ``byval`` parameters). This is not a valid attribute for return
1058    values.
1059
1060    The byval attribute also supports an optional type argument, which
1061    must be the same as the pointee type of the argument.
1062
1063    The byval attribute also supports specifying an alignment with the
1064    align attribute. It indicates the alignment of the stack slot to
1065    form and the known alignment of the pointer specified to the call
1066    site. If the alignment is not specified, then the code generator
1067    makes a target-specific assumption.
1068
1069.. _attr_byref:
1070
1071``byref(<ty>)``
1072
1073    The ``byref`` argument attribute allows specifying the pointee
1074    memory type of an argument. This is similar to ``byval``, but does
1075    not imply a copy is made anywhere, or that the argument is passed
1076    on the stack. This implies the pointer is dereferenceable up to
1077    the storage size of the type.
1078
1079    It is not generally permissible to introduce a write to an
1080    ``byref`` pointer. The pointer may have any address space and may
1081    be read only.
1082
1083    This is not a valid attribute for return values.
1084
1085    The alignment for an ``byref`` parameter can be explicitly
1086    specified by combining it with the ``align`` attribute, similar to
1087    ``byval``. If the alignment is not specified, then the code generator
1088    makes a target-specific assumption.
1089
1090    This is intended for representing ABI constraints, and is not
1091    intended to be inferred for optimization use.
1092
1093.. _attr_preallocated:
1094
1095``preallocated(<ty>)``
1096    This indicates that the pointer parameter should really be passed by
1097    value to the function, and that the pointer parameter's pointee has
1098    already been initialized before the call instruction. This attribute
1099    is only valid on LLVM pointer arguments. The argument must be the value
1100    returned by the appropriate
1101    :ref:`llvm.call.preallocated.arg<int_call_preallocated_arg>` on non
1102    ``musttail`` calls, or the corresponding caller parameter in ``musttail``
1103    calls, although it is ignored during codegen.
1104
1105    A non ``musttail`` function call with a ``preallocated`` attribute in
1106    any parameter must have a ``"preallocated"`` operand bundle. A ``musttail``
1107    function call cannot have a ``"preallocated"`` operand bundle.
1108
1109    The preallocated attribute requires a type argument, which must be
1110    the same as the pointee type of the argument.
1111
1112    The preallocated attribute also supports specifying an alignment with the
1113    align attribute. It indicates the alignment of the stack slot to
1114    form and the known alignment of the pointer specified to the call
1115    site. If the alignment is not specified, then the code generator
1116    makes a target-specific assumption.
1117
1118.. _attr_inalloca:
1119
1120``inalloca``
1121
1122    The ``inalloca`` argument attribute allows the caller to take the
1123    address of outgoing stack arguments. An ``inalloca`` argument must
1124    be a pointer to stack memory produced by an ``alloca`` instruction.
1125    The alloca, or argument allocation, must also be tagged with the
1126    inalloca keyword. Only the last argument may have the ``inalloca``
1127    attribute, and that argument is guaranteed to be passed in memory.
1128
1129    An argument allocation may be used by a call at most once because
1130    the call may deallocate it. The ``inalloca`` attribute cannot be
1131    used in conjunction with other attributes that affect argument
1132    storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
1133    ``inalloca`` attribute also disables LLVM's implicit lowering of
1134    large aggregate return values, which means that frontend authors
1135    must lower them with ``sret`` pointers.
1136
1137    When the call site is reached, the argument allocation must have
1138    been the most recent stack allocation that is still live, or the
1139    behavior is undefined. It is possible to allocate additional stack
1140    space after an argument allocation and before its call site, but it
1141    must be cleared off with :ref:`llvm.stackrestore
1142    <int_stackrestore>`.
1143
1144    See :doc:`InAlloca` for more information on how to use this
1145    attribute.
1146
1147``sret`` or ``sret(<ty>)``
1148    This indicates that the pointer parameter specifies the address of a
1149    structure that is the return value of the function in the source
1150    program. This pointer must be guaranteed by the caller to be valid:
1151    loads and stores to the structure may be assumed by the callee not
1152    to trap and to be properly aligned. This is not a valid attribute
1153    for return values.
1154
1155    The sret attribute also supports an optional type argument, which
1156    must be the same as the pointee type of the argument. In the
1157    future this will be required.
1158
1159.. _attr_align:
1160
1161``align <n>`` or ``align(<n>)``
1162    This indicates that the pointer value may be assumed by the optimizer to
1163    have the specified alignment.  If the pointer value does not have the
1164    specified alignment, behavior is undefined. ``align 1`` has no effect on
1165    non-byval, non-preallocated arguments.
1166
1167    Note that this attribute has additional semantics when combined with the
1168    ``byval`` or ``preallocated`` attribute, which are documented there.
1169
1170.. _noalias:
1171
1172``noalias``
1173    This indicates that memory locations accessed via pointer values
1174    :ref:`based <pointeraliasing>` on the argument or return value are not also
1175    accessed, during the execution of the function, via pointer values not
1176    *based* on the argument or return value. This guarantee only holds for
1177    memory locations that are *modified*, by any means, during the execution of
1178    the function. The attribute on a return value also has additional semantics
1179    described below. The caller shares the responsibility with the callee for
1180    ensuring that these requirements are met.  For further details, please see
1181    the discussion of the NoAlias response in :ref:`alias analysis <Must, May,
1182    or No>`.
1183
1184    Note that this definition of ``noalias`` is intentionally similar
1185    to the definition of ``restrict`` in C99 for function arguments.
1186
1187    For function return values, C99's ``restrict`` is not meaningful,
1188    while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
1189    attribute on return values are stronger than the semantics of the attribute
1190    when used on function arguments. On function return values, the ``noalias``
1191    attribute indicates that the function acts like a system memory allocation
1192    function, returning a pointer to allocated storage disjoint from the
1193    storage for any other object accessible to the caller.
1194
1195``nocapture``
1196    This indicates that the callee does not make any copies of the
1197    pointer that outlive the callee itself. This is not a valid
1198    attribute for return values.  Addresses used in volatile operations
1199    are considered to be captured.
1200
1201``nofree``
1202    This indicates that callee does not free the pointer argument. This is not
1203    a valid attribute for return values.
1204
1205.. _nest:
1206
1207``nest``
1208    This indicates that the pointer parameter can be excised using the
1209    :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
1210    attribute for return values and can only be applied to one parameter.
1211
1212``returned``
1213    This indicates that the function always returns the argument as its return
1214    value. This is a hint to the optimizer and code generator used when
1215    generating the caller, allowing value propagation, tail call optimization,
1216    and omission of register saves and restores in some cases; it is not
1217    checked or enforced when generating the callee. The parameter and the
1218    function return type must be valid operands for the
1219    :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
1220    return values and can only be applied to one parameter.
1221
1222``nonnull``
1223    This indicates that the parameter or return pointer is not null. This
1224    attribute may only be applied to pointer typed parameters. This is not
1225    checked or enforced by LLVM; if the parameter or return pointer is null,
1226    the behavior is undefined.
1227
1228``dereferenceable(<n>)``
1229    This indicates that the parameter or return pointer is dereferenceable. This
1230    attribute may only be applied to pointer typed parameters. A pointer that
1231    is dereferenceable can be loaded from speculatively without a risk of
1232    trapping. The number of bytes known to be dereferenceable must be provided
1233    in parentheses. It is legal for the number of bytes to be less than the
1234    size of the pointee type. The ``nonnull`` attribute does not imply
1235    dereferenceability (consider a pointer to one element past the end of an
1236    array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1237    ``addrspace(0)`` (which is the default address space), except if the
1238    ``null_pointer_is_valid`` function attribute is present.
1239
1240``dereferenceable_or_null(<n>)``
1241    This indicates that the parameter or return value isn't both
1242    non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
1243    time. All non-null pointers tagged with
1244    ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1245    For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1246    a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1247    and in other address spaces ``dereferenceable_or_null(<n>)``
1248    implies that a pointer is at least one of ``dereferenceable(<n>)``
1249    or ``null`` (i.e. it may be both ``null`` and
1250    ``dereferenceable(<n>)``). This attribute may only be applied to
1251    pointer typed parameters.
1252
1253``swiftself``
1254    This indicates that the parameter is the self/context parameter. This is not
1255    a valid attribute for return values and can only be applied to one
1256    parameter.
1257
1258``swifterror``
1259    This attribute is motivated to model and optimize Swift error handling. It
1260    can be applied to a parameter with pointer to pointer type or a
1261    pointer-sized alloca. At the call site, the actual argument that corresponds
1262    to a ``swifterror`` parameter has to come from a ``swifterror`` alloca or
1263    the ``swifterror`` parameter of the caller. A ``swifterror`` value (either
1264    the parameter or the alloca) can only be loaded and stored from, or used as
1265    a ``swifterror`` argument. This is not a valid attribute for return values
1266    and can only be applied to one parameter.
1267
1268    These constraints allow the calling convention to optimize access to
1269    ``swifterror`` variables by associating them with a specific register at
1270    call boundaries rather than placing them in memory. Since this does change
1271    the calling convention, a function which uses the ``swifterror`` attribute
1272    on a parameter is not ABI-compatible with one which does not.
1273
1274    These constraints also allow LLVM to assume that a ``swifterror`` argument
1275    does not alias any other memory visible within a function and that a
1276    ``swifterror`` alloca passed as an argument does not escape.
1277
1278``immarg``
1279    This indicates the parameter is required to be an immediate
1280    value. This must be a trivial immediate integer or floating-point
1281    constant. Undef or constant expressions are not valid. This is
1282    only valid on intrinsic declarations and cannot be applied to a
1283    call site or arbitrary function.
1284
1285``noundef``
1286    This attribute applies to parameters and return values. If the value
1287    representation contains any undefined or poison bits, the behavior is
1288    undefined. Note that this does not refer to padding introduced by the
1289    type's storage representation.
1290
1291.. _gc:
1292
1293Garbage Collector Strategy Names
1294--------------------------------
1295
1296Each function may specify a garbage collector strategy name, which is simply a
1297string:
1298
1299.. code-block:: llvm
1300
1301    define void @f() gc "name" { ... }
1302
1303The supported values of *name* includes those :ref:`built in to LLVM
1304<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
1305strategy will cause the compiler to alter its output in order to support the
1306named garbage collection algorithm. Note that LLVM itself does not contain a
1307garbage collector, this functionality is restricted to generating machine code
1308which can interoperate with a collector provided externally.
1309
1310.. _prefixdata:
1311
1312Prefix Data
1313-----------
1314
1315Prefix data is data associated with a function which the code
1316generator will emit immediately before the function's entrypoint.
1317The purpose of this feature is to allow frontends to associate
1318language-specific runtime metadata with specific functions and make it
1319available through the function pointer while still allowing the
1320function pointer to be called.
1321
1322To access the data for a given function, a program may bitcast the
1323function pointer to a pointer to the constant's type and dereference
1324index -1. This implies that the IR symbol points just past the end of
1325the prefix data. For instance, take the example of a function annotated
1326with a single ``i32``,
1327
1328.. code-block:: llvm
1329
1330    define void @f() prefix i32 123 { ... }
1331
1332The prefix data can be referenced as,
1333
1334.. code-block:: llvm
1335
1336    %0 = bitcast void* () @f to i32*
1337    %a = getelementptr inbounds i32, i32* %0, i32 -1
1338    %b = load i32, i32* %a
1339
1340Prefix data is laid out as if it were an initializer for a global variable
1341of the prefix data's type. The function will be placed such that the
1342beginning of the prefix data is aligned. This means that if the size
1343of the prefix data is not a multiple of the alignment size, the
1344function's entrypoint will not be aligned. If alignment of the
1345function's entrypoint is desired, padding must be added to the prefix
1346data.
1347
1348A function may have prefix data but no body. This has similar semantics
1349to the ``available_externally`` linkage in that the data may be used by the
1350optimizers but will not be emitted in the object file.
1351
1352.. _prologuedata:
1353
1354Prologue Data
1355-------------
1356
1357The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1358be inserted prior to the function body. This can be used for enabling
1359function hot-patching and instrumentation.
1360
1361To maintain the semantics of ordinary function calls, the prologue data must
1362have a particular format. Specifically, it must begin with a sequence of
1363bytes which decode to a sequence of machine instructions, valid for the
1364module's target, which transfer control to the point immediately succeeding
1365the prologue data, without performing any other visible action. This allows
1366the inliner and other passes to reason about the semantics of the function
1367definition without needing to reason about the prologue data. Obviously this
1368makes the format of the prologue data highly target dependent.
1369
1370A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
1371which encodes the ``nop`` instruction:
1372
1373.. code-block:: text
1374
1375    define void @f() prologue i8 144 { ... }
1376
1377Generally prologue data can be formed by encoding a relative branch instruction
1378which skips the metadata, as in this example of valid prologue data for the
1379x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1380
1381.. code-block:: text
1382
1383    %0 = type <{ i8, i8, i8* }>
1384
1385    define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
1386
1387A function may have prologue data but no body. This has similar semantics
1388to the ``available_externally`` linkage in that the data may be used by the
1389optimizers but will not be emitted in the object file.
1390
1391.. _personalityfn:
1392
1393Personality Function
1394--------------------
1395
1396The ``personality`` attribute permits functions to specify what function
1397to use for exception handling.
1398
1399.. _attrgrp:
1400
1401Attribute Groups
1402----------------
1403
1404Attribute groups are groups of attributes that are referenced by objects within
1405the IR. They are important for keeping ``.ll`` files readable, because a lot of
1406functions will use the same set of attributes. In the degenerative case of a
1407``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1408group will capture the important command line flags used to build that file.
1409
1410An attribute group is a module-level object. To use an attribute group, an
1411object references the attribute group's ID (e.g. ``#37``). An object may refer
1412to more than one attribute group. In that situation, the attributes from the
1413different groups are merged.
1414
1415Here is an example of attribute groups for a function that should always be
1416inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1417
1418.. code-block:: llvm
1419
1420   ; Target-independent attributes:
1421   attributes #0 = { alwaysinline alignstack=4 }
1422
1423   ; Target-dependent attributes:
1424   attributes #1 = { "no-sse" }
1425
1426   ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1427   define void @f() #0 #1 { ... }
1428
1429.. _fnattrs:
1430
1431Function Attributes
1432-------------------
1433
1434Function attributes are set to communicate additional information about
1435a function. Function attributes are considered to be part of the
1436function, not of the function type, so functions with different function
1437attributes can have the same function type.
1438
1439Function attributes are simple keywords that follow the type specified.
1440If multiple attributes are needed, they are space separated. For
1441example:
1442
1443.. code-block:: llvm
1444
1445    define void @f() noinline { ... }
1446    define void @f() alwaysinline { ... }
1447    define void @f() alwaysinline optsize { ... }
1448    define void @f() optsize { ... }
1449
1450``alignstack(<n>)``
1451    This attribute indicates that, when emitting the prologue and
1452    epilogue, the backend should forcibly align the stack pointer.
1453    Specify the desired alignment, which must be a power of two, in
1454    parentheses.
1455``allocsize(<EltSizeParam>[, <NumEltsParam>])``
1456    This attribute indicates that the annotated function will always return at
1457    least a given number of bytes (or null). Its arguments are zero-indexed
1458    parameter numbers; if one argument is provided, then it's assumed that at
1459    least ``CallSite.Args[EltSizeParam]`` bytes will be available at the
1460    returned pointer. If two are provided, then it's assumed that
1461    ``CallSite.Args[EltSizeParam] * CallSite.Args[NumEltsParam]`` bytes are
1462    available. The referenced parameters must be integer types. No assumptions
1463    are made about the contents of the returned block of memory.
1464``alwaysinline``
1465    This attribute indicates that the inliner should attempt to inline
1466    this function into callers whenever possible, ignoring any active
1467    inlining size threshold for this caller.
1468``builtin``
1469    This indicates that the callee function at a call site should be
1470    recognized as a built-in function, even though the function's declaration
1471    uses the ``nobuiltin`` attribute. This is only valid at call sites for
1472    direct calls to functions that are declared with the ``nobuiltin``
1473    attribute.
1474``cold``
1475    This attribute indicates that this function is rarely called. When
1476    computing edge weights, basic blocks post-dominated by a cold
1477    function call are also considered to be cold; and, thus, given low
1478    weight.
1479``convergent``
1480    In some parallel execution models, there exist operations that cannot be
1481    made control-dependent on any additional values.  We call such operations
1482    ``convergent``, and mark them with this attribute.
1483
1484    The ``convergent`` attribute may appear on functions or call/invoke
1485    instructions.  When it appears on a function, it indicates that calls to
1486    this function should not be made control-dependent on additional values.
1487    For example, the intrinsic ``llvm.nvvm.barrier0`` is ``convergent``, so
1488    calls to this intrinsic cannot be made control-dependent on additional
1489    values.
1490
1491    When it appears on a call/invoke, the ``convergent`` attribute indicates
1492    that we should treat the call as though we're calling a convergent
1493    function.  This is particularly useful on indirect calls; without this we
1494    may treat such calls as though the target is non-convergent.
1495
1496    The optimizer may remove the ``convergent`` attribute on functions when it
1497    can prove that the function does not execute any convergent operations.
1498    Similarly, the optimizer may remove ``convergent`` on calls/invokes when it
1499    can prove that the call/invoke cannot call a convergent function.
1500``inaccessiblememonly``
1501    This attribute indicates that the function may only access memory that
1502    is not accessible by the module being compiled. This is a weaker form
1503    of ``readnone``. If the function reads or writes other memory, the
1504    behavior is undefined.
1505``inaccessiblemem_or_argmemonly``
1506    This attribute indicates that the function may only access memory that is
1507    either not accessible by the module being compiled, or is pointed to
1508    by its pointer arguments. This is a weaker form of  ``argmemonly``. If the
1509    function reads or writes other memory, the behavior is undefined.
1510``inlinehint``
1511    This attribute indicates that the source code contained a hint that
1512    inlining this function is desirable (such as the "inline" keyword in
1513    C/C++). It is just a hint; it imposes no requirements on the
1514    inliner.
1515``jumptable``
1516    This attribute indicates that the function should be added to a
1517    jump-instruction table at code-generation time, and that all address-taken
1518    references to this function should be replaced with a reference to the
1519    appropriate jump-instruction-table function pointer. Note that this creates
1520    a new pointer for the original function, which means that code that depends
1521    on function-pointer identity can break. So, any function annotated with
1522    ``jumptable`` must also be ``unnamed_addr``.
1523``minsize``
1524    This attribute suggests that optimization passes and code generator
1525    passes make choices that keep the code size of this function as small
1526    as possible and perform optimizations that may sacrifice runtime
1527    performance in order to minimize the size of the generated code.
1528``naked``
1529    This attribute disables prologue / epilogue emission for the
1530    function. This can have very system-specific consequences.
1531``"no-inline-line-tables"``
1532    When this attribute is set to true, the inliner discards source locations
1533    when inlining code and instead uses the source location of the call site.
1534    Breakpoints set on code that was inlined into the current function will
1535    not fire during the execution of the inlined call sites. If the debugger
1536    stops inside an inlined call site, it will appear to be stopped at the
1537    outermost inlined call site.
1538``no-jump-tables``
1539    When this attribute is set to true, the jump tables and lookup tables that
1540    can be generated from a switch case lowering are disabled.
1541``nobuiltin``
1542    This indicates that the callee function at a call site is not recognized as
1543    a built-in function. LLVM will retain the original call and not replace it
1544    with equivalent code based on the semantics of the built-in function, unless
1545    the call site uses the ``builtin`` attribute. This is valid at call sites
1546    and on function declarations and definitions.
1547``noduplicate``
1548    This attribute indicates that calls to the function cannot be
1549    duplicated. A call to a ``noduplicate`` function may be moved
1550    within its parent function, but may not be duplicated within
1551    its parent function.
1552
1553    A function containing a ``noduplicate`` call may still
1554    be an inlining candidate, provided that the call is not
1555    duplicated by inlining. That implies that the function has
1556    internal linkage and only has one call site, so the original
1557    call is dead after inlining.
1558``nofree``
1559    This function attribute indicates that the function does not, directly or
1560    indirectly, call a memory-deallocation function (free, for example). As a
1561    result, uncaptured pointers that are known to be dereferenceable prior to a
1562    call to a function with the ``nofree`` attribute are still known to be
1563    dereferenceable after the call (the capturing condition is necessary in
1564    environments where the function might communicate the pointer to another thread
1565    which then deallocates the memory).
1566``noimplicitfloat``
1567    This attributes disables implicit floating-point instructions.
1568``noinline``
1569    This attribute indicates that the inliner should never inline this
1570    function in any situation. This attribute may not be used together
1571    with the ``alwaysinline`` attribute.
1572``nomerge``
1573    This attribute indicates that calls to this function should never be merged
1574    during optimization. For example, it will prevent tail merging otherwise
1575    identical code sequences that raise an exception or terminate the program.
1576    Tail merging normally reduces the precision of source location information,
1577    making stack traces less useful for debugging. This attribute gives the
1578    user control over the tradeoff between code size and debug information
1579    precision.
1580``nonlazybind``
1581    This attribute suppresses lazy symbol binding for the function. This
1582    may make calls to the function faster, at the cost of extra program
1583    startup time if the function is not called during program startup.
1584``noredzone``
1585    This attribute indicates that the code generator should not use a
1586    red zone, even if the target-specific ABI normally permits it.
1587``indirect-tls-seg-refs``
1588    This attribute indicates that the code generator should not use
1589    direct TLS access through segment registers, even if the
1590    target-specific ABI normally permits it.
1591``noreturn``
1592    This function attribute indicates that the function never returns
1593    normally, hence through a return instruction. This produces undefined
1594    behavior at runtime if the function ever does dynamically return. Annotated
1595    functions may still raise an exception, i.a., ``nounwind`` is not implied.
1596``norecurse``
1597    This function attribute indicates that the function does not call itself
1598    either directly or indirectly down any possible call path. This produces
1599    undefined behavior at runtime if the function ever does recurse.
1600``willreturn``
1601    This function attribute indicates that a call of this function will
1602    either exhibit undefined behavior or comes back and continues execution
1603    at a point in the existing call stack that includes the current invocation.
1604    Annotated functions may still raise an exception, i.a., ``nounwind`` is not implied.
1605    If an invocation of an annotated function does not return control back
1606    to a point in the call stack, the behavior is undefined.
1607``nosync``
1608    This function attribute indicates that the function does not communicate
1609    (synchronize) with another thread through memory or other well-defined means.
1610    Synchronization is considered possible in the presence of `atomic` accesses
1611    that enforce an order, thus not "unordered" and "monotonic", `volatile` accesses,
1612    as well as `convergent` function calls. Note that through `convergent` function calls
1613    non-memory communication, e.g., cross-lane operations, are possible and are also
1614    considered synchronization. However `convergent` does not contradict `nosync`.
1615    If an annotated function does ever synchronize with another thread,
1616    the behavior is undefined.
1617``nounwind``
1618    This function attribute indicates that the function never raises an
1619    exception. If the function does raise an exception, its runtime
1620    behavior is undefined. However, functions marked nounwind may still
1621    trap or generate asynchronous exceptions. Exception handling schemes
1622    that are recognized by LLVM to handle asynchronous exceptions, such
1623    as SEH, will still provide their implementation defined semantics.
1624``null_pointer_is_valid``
1625   If ``null_pointer_is_valid`` is set, then the ``null`` address
1626   in address-space 0 is considered to be a valid address for memory loads and
1627   stores. Any analysis or optimization should not treat dereferencing a
1628   pointer to ``null`` as undefined behavior in this function.
1629   Note: Comparing address of a global variable to ``null`` may still
1630   evaluate to false because of a limitation in querying this attribute inside
1631   constant expressions.
1632``optforfuzzing``
1633    This attribute indicates that this function should be optimized
1634    for maximum fuzzing signal.
1635``optnone``
1636    This function attribute indicates that most optimization passes will skip
1637    this function, with the exception of interprocedural optimization passes.
1638    Code generation defaults to the "fast" instruction selector.
1639    This attribute cannot be used together with the ``alwaysinline``
1640    attribute; this attribute is also incompatible
1641    with the ``minsize`` attribute and the ``optsize`` attribute.
1642
1643    This attribute requires the ``noinline`` attribute to be specified on
1644    the function as well, so the function is never inlined into any caller.
1645    Only functions with the ``alwaysinline`` attribute are valid
1646    candidates for inlining into the body of this function.
1647``optsize``
1648    This attribute suggests that optimization passes and code generator
1649    passes make choices that keep the code size of this function low,
1650    and otherwise do optimizations specifically to reduce code size as
1651    long as they do not significantly impact runtime performance.
1652``"patchable-function"``
1653    This attribute tells the code generator that the code
1654    generated for this function needs to follow certain conventions that
1655    make it possible for a runtime function to patch over it later.
1656    The exact effect of this attribute depends on its string value,
1657    for which there currently is one legal possibility:
1658
1659     * ``"prologue-short-redirect"`` - This style of patchable
1660       function is intended to support patching a function prologue to
1661       redirect control away from the function in a thread safe
1662       manner.  It guarantees that the first instruction of the
1663       function will be large enough to accommodate a short jump
1664       instruction, and will be sufficiently aligned to allow being
1665       fully changed via an atomic compare-and-swap instruction.
1666       While the first requirement can be satisfied by inserting large
1667       enough NOP, LLVM can and will try to re-purpose an existing
1668       instruction (i.e. one that would have to be emitted anyway) as
1669       the patchable instruction larger than a short jump.
1670
1671       ``"prologue-short-redirect"`` is currently only supported on
1672       x86-64.
1673
1674    This attribute by itself does not imply restrictions on
1675    inter-procedural optimizations.  All of the semantic effects the
1676    patching may have to be separately conveyed via the linkage type.
1677``"probe-stack"``
1678    This attribute indicates that the function will trigger a guard region
1679    in the end of the stack. It ensures that accesses to the stack must be
1680    no further apart than the size of the guard region to a previous
1681    access of the stack. It takes one required string value, the name of
1682    the stack probing function that will be called.
1683
1684    If a function that has a ``"probe-stack"`` attribute is inlined into
1685    a function with another ``"probe-stack"`` attribute, the resulting
1686    function has the ``"probe-stack"`` attribute of the caller. If a
1687    function that has a ``"probe-stack"`` attribute is inlined into a
1688    function that has no ``"probe-stack"`` attribute at all, the resulting
1689    function has the ``"probe-stack"`` attribute of the callee.
1690``readnone``
1691    On a function, this attribute indicates that the function computes its
1692    result (or decides to unwind an exception) based strictly on its arguments,
1693    without dereferencing any pointer arguments or otherwise accessing
1694    any mutable state (e.g. memory, control registers, etc) visible to
1695    caller functions. It does not write through any pointer arguments
1696    (including ``byval`` arguments) and never changes any state visible
1697    to callers. This means while it cannot unwind exceptions by calling
1698    the ``C++`` exception throwing methods (since they write to memory), there may
1699    be non-``C++`` mechanisms that throw exceptions without writing to LLVM
1700    visible memory.
1701
1702    On an argument, this attribute indicates that the function does not
1703    dereference that pointer argument, even though it may read or write the
1704    memory that the pointer points to if accessed through other pointers.
1705
1706    If a readnone function reads or writes memory visible to the program, or
1707    has other side-effects, the behavior is undefined. If a function reads from
1708    or writes to a readnone pointer argument, the behavior is undefined.
1709``readonly``
1710    On a function, this attribute indicates that the function does not write
1711    through any pointer arguments (including ``byval`` arguments) or otherwise
1712    modify any state (e.g. memory, control registers, etc) visible to
1713    caller functions. It may dereference pointer arguments and read
1714    state that may be set in the caller. A readonly function always
1715    returns the same value (or unwinds an exception identically) when
1716    called with the same set of arguments and global state.  This means while it
1717    cannot unwind exceptions by calling the ``C++`` exception throwing methods
1718    (since they write to memory), there may be non-``C++`` mechanisms that throw
1719    exceptions without writing to LLVM visible memory.
1720
1721    On an argument, this attribute indicates that the function does not write
1722    through this pointer argument, even though it may write to the memory that
1723    the pointer points to.
1724
1725    If a readonly function writes memory visible to the program, or
1726    has other side-effects, the behavior is undefined. If a function writes to
1727    a readonly pointer argument, the behavior is undefined.
1728``"stack-probe-size"``
1729    This attribute controls the behavior of stack probes: either
1730    the ``"probe-stack"`` attribute, or ABI-required stack probes, if any.
1731    It defines the size of the guard region. It ensures that if the function
1732    may use more stack space than the size of the guard region, stack probing
1733    sequence will be emitted. It takes one required integer value, which
1734    is 4096 by default.
1735
1736    If a function that has a ``"stack-probe-size"`` attribute is inlined into
1737    a function with another ``"stack-probe-size"`` attribute, the resulting
1738    function has the ``"stack-probe-size"`` attribute that has the lower
1739    numeric value. If a function that has a ``"stack-probe-size"`` attribute is
1740    inlined into a function that has no ``"stack-probe-size"`` attribute
1741    at all, the resulting function has the ``"stack-probe-size"`` attribute
1742    of the callee.
1743``"no-stack-arg-probe"``
1744    This attribute disables ABI-required stack probes, if any.
1745``writeonly``
1746    On a function, this attribute indicates that the function may write to but
1747    does not read from memory.
1748
1749    On an argument, this attribute indicates that the function may write to but
1750    does not read through this pointer argument (even though it may read from
1751    the memory that the pointer points to).
1752
1753    If a writeonly function reads memory visible to the program, or
1754    has other side-effects, the behavior is undefined. If a function reads
1755    from a writeonly pointer argument, the behavior is undefined.
1756``argmemonly``
1757    This attribute indicates that the only memory accesses inside function are
1758    loads and stores from objects pointed to by its pointer-typed arguments,
1759    with arbitrary offsets. Or in other words, all memory operations in the
1760    function can refer to memory only using pointers based on its function
1761    arguments.
1762
1763    Note that ``argmemonly`` can be used together with ``readonly`` attribute
1764    in order to specify that function reads only from its arguments.
1765
1766    If an argmemonly function reads or writes memory other than the pointer
1767    arguments, or has other side-effects, the behavior is undefined.
1768``returns_twice``
1769    This attribute indicates that this function can return twice. The C
1770    ``setjmp`` is an example of such a function. The compiler disables
1771    some optimizations (like tail calls) in the caller of these
1772    functions.
1773``safestack``
1774    This attribute indicates that
1775    `SafeStack <https://clang.llvm.org/docs/SafeStack.html>`_
1776    protection is enabled for this function.
1777
1778    If a function that has a ``safestack`` attribute is inlined into a
1779    function that doesn't have a ``safestack`` attribute or which has an
1780    ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1781    function will have a ``safestack`` attribute.
1782``sanitize_address``
1783    This attribute indicates that AddressSanitizer checks
1784    (dynamic address safety analysis) are enabled for this function.
1785``sanitize_memory``
1786    This attribute indicates that MemorySanitizer checks (dynamic detection
1787    of accesses to uninitialized memory) are enabled for this function.
1788``sanitize_thread``
1789    This attribute indicates that ThreadSanitizer checks
1790    (dynamic thread safety analysis) are enabled for this function.
1791``sanitize_hwaddress``
1792    This attribute indicates that HWAddressSanitizer checks
1793    (dynamic address safety analysis based on tagged pointers) are enabled for
1794    this function.
1795``sanitize_memtag``
1796    This attribute indicates that MemTagSanitizer checks
1797    (dynamic address safety analysis based on Armv8 MTE) are enabled for
1798    this function.
1799``speculative_load_hardening``
1800    This attribute indicates that
1801    `Speculative Load Hardening <https://llvm.org/docs/SpeculativeLoadHardening.html>`_
1802    should be enabled for the function body.
1803
1804    Speculative Load Hardening is a best-effort mitigation against
1805    information leak attacks that make use of control flow
1806    miss-speculation - specifically miss-speculation of whether a branch
1807    is taken or not. Typically vulnerabilities enabling such attacks are
1808    classified as "Spectre variant #1". Notably, this does not attempt to
1809    mitigate against miss-speculation of branch target, classified as
1810    "Spectre variant #2" vulnerabilities.
1811
1812    When inlining, the attribute is sticky. Inlining a function that carries
1813    this attribute will cause the caller to gain the attribute. This is intended
1814    to provide a maximally conservative model where the code in a function
1815    annotated with this attribute will always (even after inlining) end up
1816    hardened.
1817``speculatable``
1818    This function attribute indicates that the function does not have any
1819    effects besides calculating its result and does not have undefined behavior.
1820    Note that ``speculatable`` is not enough to conclude that along any
1821    particular execution path the number of calls to this function will not be
1822    externally observable. This attribute is only valid on functions
1823    and declarations, not on individual call sites. If a function is
1824    incorrectly marked as speculatable and really does exhibit
1825    undefined behavior, the undefined behavior may be observed even
1826    if the call site is dead code.
1827
1828``nossp``
1829    This attribute indicates the function should not emit a stack smashing
1830    protector. This is useful for code that intentionally manipulates the stack
1831    canary, such as operating system kernel code that must save/restore such
1832    canary values on context switch.
1833
1834    If a function with the ``nossp`` attribute calls a callee function that has
1835    a stack protector function attribute, such as ``ssp``, ``sspreq``, or
1836    ``sspstrong`` (or vice-versa), then the callee will not be inline
1837    substituted into the caller. Even when the callee is ``alwaysinline``, the
1838    above holds.
1839
1840    Such inlining might break assumptions in the function that was built
1841    without stack protection. This permits the functions that would have stack
1842    protection to retain their stack protector.
1843
1844``ssp``
1845    This attribute indicates that the function should emit a stack
1846    smashing protector. It is in the form of a "canary" --- a random value
1847    placed on the stack before the local variables that's checked upon
1848    return from the function to see if it has been overwritten. A
1849    heuristic is used to determine if a function needs stack protectors
1850    or not. The heuristic used will enable protectors for functions with:
1851
1852    - Character arrays larger than ``ssp-buffer-size`` (default 8).
1853    - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1854    - Calls to alloca() with variable sizes or constant sizes greater than
1855      ``ssp-buffer-size``.
1856
1857    Variables that are identified as requiring a protector will be arranged
1858    on the stack such that they are adjacent to the stack protector guard.
1859
1860    If a function that has an ``ssp`` attribute is inlined into a
1861    function that doesn't have an ``ssp`` attribute, then the resulting
1862    function will have an ``ssp`` attribute.
1863``sspreq``
1864    This attribute indicates that the function should *always* emit a
1865    stack smashing protector. This overrides the ``ssp`` function
1866    attribute.
1867
1868    Variables that are identified as requiring a protector will be arranged
1869    on the stack such that they are adjacent to the stack protector guard.
1870    The specific layout rules are:
1871
1872    #. Large arrays and structures containing large arrays
1873       (``>= ssp-buffer-size``) are closest to the stack protector.
1874    #. Small arrays and structures containing small arrays
1875       (``< ssp-buffer-size``) are 2nd closest to the protector.
1876    #. Variables that have had their address taken are 3rd closest to the
1877       protector.
1878
1879    If a function that has an ``sspreq`` attribute is inlined into a
1880    function that doesn't have an ``sspreq`` attribute or which has an
1881    ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1882    an ``sspreq`` attribute.
1883``sspstrong``
1884    This attribute indicates that the function should emit a stack smashing
1885    protector. This attribute causes a strong heuristic to be used when
1886    determining if a function needs stack protectors. The strong heuristic
1887    will enable protectors for functions with:
1888
1889    - Arrays of any size and type
1890    - Aggregates containing an array of any size and type.
1891    - Calls to alloca().
1892    - Local variables that have had their address taken.
1893
1894    Variables that are identified as requiring a protector will be arranged
1895    on the stack such that they are adjacent to the stack protector guard.
1896    The specific layout rules are:
1897
1898    #. Large arrays and structures containing large arrays
1899       (``>= ssp-buffer-size``) are closest to the stack protector.
1900    #. Small arrays and structures containing small arrays
1901       (``< ssp-buffer-size``) are 2nd closest to the protector.
1902    #. Variables that have had their address taken are 3rd closest to the
1903       protector.
1904
1905    This overrides the ``ssp`` function attribute.
1906
1907    If a function that has an ``sspstrong`` attribute is inlined into a
1908    function that doesn't have an ``sspstrong`` attribute, then the
1909    resulting function will have an ``sspstrong`` attribute.
1910``strictfp``
1911    This attribute indicates that the function was called from a scope that
1912    requires strict floating-point semantics.  LLVM will not attempt any
1913    optimizations that require assumptions about the floating-point rounding
1914    mode or that might alter the state of floating-point status flags that
1915    might otherwise be set or cleared by calling this function. LLVM will
1916    not introduce any new floating-point instructions that may trap.
1917
1918``"denormal-fp-math"``
1919    This indicates the denormal (subnormal) handling that may be
1920    assumed for the default floating-point environment. This is a
1921    comma separated pair. The elements may be one of ``"ieee"``,
1922    ``"preserve-sign"``, or ``"positive-zero"``. The first entry
1923    indicates the flushing mode for the result of floating point
1924    operations. The second indicates the handling of denormal inputs
1925    to floating point instructions. For compatibility with older
1926    bitcode, if the second value is omitted, both input and output
1927    modes will assume the same mode.
1928
1929    If this is attribute is not specified, the default is
1930    ``"ieee,ieee"``.
1931
1932    If the output mode is ``"preserve-sign"``, or ``"positive-zero"``,
1933    denormal outputs may be flushed to zero by standard floating-point
1934    operations. It is not mandated that flushing to zero occurs, but if
1935    a denormal output is flushed to zero, it must respect the sign
1936    mode. Not all targets support all modes. While this indicates the
1937    expected floating point mode the function will be executed with,
1938    this does not make any attempt to ensure the mode is
1939    consistent. User or platform code is expected to set the floating
1940    point mode appropriately before function entry.
1941
1942   If the input mode is ``"preserve-sign"``, or ``"positive-zero"``, a
1943   floating-point operation must treat any input denormal value as
1944   zero. In some situations, if an instruction does not respect this
1945   mode, the input may need to be converted to 0 as if by
1946   ``@llvm.canonicalize`` during lowering for correctness.
1947
1948``"denormal-fp-math-f32"``
1949    Same as ``"denormal-fp-math"``, but only controls the behavior of
1950    the 32-bit float type (or vectors of 32-bit floats). If both are
1951    are present, this overrides ``"denormal-fp-math"``. Not all targets
1952    support separately setting the denormal mode per type, and no
1953    attempt is made to diagnose unsupported uses. Currently this
1954    attribute is respected by the AMDGPU and NVPTX backends.
1955
1956``"thunk"``
1957    This attribute indicates that the function will delegate to some other
1958    function with a tail call. The prototype of a thunk should not be used for
1959    optimization purposes. The caller is expected to cast the thunk prototype to
1960    match the thunk target prototype.
1961``uwtable``
1962    This attribute indicates that the ABI being targeted requires that
1963    an unwind table entry be produced for this function even if we can
1964    show that no exceptions passes by it. This is normally the case for
1965    the ELF x86-64 abi, but it can be disabled for some compilation
1966    units.
1967``nocf_check``
1968    This attribute indicates that no control-flow check will be performed on
1969    the attributed entity. It disables -fcf-protection=<> for a specific
1970    entity to fine grain the HW control flow protection mechanism. The flag
1971    is target independent and currently appertains to a function or function
1972    pointer.
1973``shadowcallstack``
1974    This attribute indicates that the ShadowCallStack checks are enabled for
1975    the function. The instrumentation checks that the return address for the
1976    function has not changed between the function prolog and epilog. It is
1977    currently x86_64-specific.
1978``mustprogress``
1979    This attribute indicates that the function is required to return, unwind,
1980    or interact with the environment in an observable way e.g. via a volatile
1981    memory access, I/O, or other synchronization.  The ``mustprogress``
1982    attribute is intended to model the requirements of the first section of
1983    [intro.progress] of the C++ Standard. As a consequence, a loop in a
1984    function with the `mustprogress` attribute can be assumed to terminate if
1985    it does not interact with the environment in an observable way, and
1986    terminating loops without side-effects can be removed. If a `mustprogress`
1987    function does not satisfy this contract, the behavior is undefined.  This
1988    attribute does not apply transitively to callees, but does apply to call
1989    sites within the function. Note that `willreturn` implies `mustprogress`.
1990
1991Call Site Attributes
1992----------------------
1993
1994In addition to function attributes the following call site only
1995attributes are supported:
1996
1997``vector-function-abi-variant``
1998    This attribute can be attached to a :ref:`call <i_call>` to list
1999    the vector functions associated to the function. Notice that the
2000    attribute cannot be attached to a :ref:`invoke <i_invoke>` or a
2001    :ref:`callbr <i_callbr>` instruction. The attribute consists of a
2002    comma separated list of mangled names. The order of the list does
2003    not imply preference (it is logically a set). The compiler is free
2004    to pick any listed vector function of its choosing.
2005
2006    The syntax for the mangled names is as follows:::
2007
2008        _ZGV<isa><mask><vlen><parameters>_<scalar_name>[(<vector_redirection>)]
2009
2010    When present, the attribute informs the compiler that the function
2011    ``<scalar_name>`` has a corresponding vector variant that can be
2012    used to perform the concurrent invocation of ``<scalar_name>`` on
2013    vectors. The shape of the vector function is described by the
2014    tokens between the prefix ``_ZGV`` and the ``<scalar_name>``
2015    token. The standard name of the vector function is
2016    ``_ZGV<isa><mask><vlen><parameters>_<scalar_name>``. When present,
2017    the optional token ``(<vector_redirection>)`` informs the compiler
2018    that a custom name is provided in addition to the standard one
2019    (custom names can be provided for example via the use of ``declare
2020    variant`` in OpenMP 5.0). The declaration of the variant must be
2021    present in the IR Module. The signature of the vector variant is
2022    determined by the rules of the Vector Function ABI (VFABI)
2023    specifications of the target. For Arm and X86, the VFABI can be
2024    found at https://github.com/ARM-software/abi-aa and
2025    https://software.intel.com/en-us/articles/vector-simd-function-abi,
2026    respectively.
2027
2028    For X86 and Arm targets, the values of the tokens in the standard
2029    name are those that are defined in the VFABI. LLVM has an internal
2030    ``<isa>`` token that can be used to create scalar-to-vector
2031    mappings for functions that are not directly associated to any of
2032    the target ISAs (for example, some of the mappings stored in the
2033    TargetLibraryInfo). Valid values for the ``<isa>`` token are:::
2034
2035        <isa>:= b | c | d | e  -> X86 SSE, AVX, AVX2, AVX512
2036              | n | s          -> Armv8 Advanced SIMD, SVE
2037              | __LLVM__       -> Internal LLVM Vector ISA
2038
2039    For all targets currently supported (x86, Arm and Internal LLVM),
2040    the remaining tokens can have the following values:::
2041
2042        <mask>:= M | N         -> mask | no mask
2043
2044        <vlen>:= number        -> number of lanes
2045               | x             -> VLA (Vector Length Agnostic)
2046
2047        <parameters>:= v              -> vector
2048                     | l | l <number> -> linear
2049                     | R | R <number> -> linear with ref modifier
2050                     | L | L <number> -> linear with val modifier
2051                     | U | U <number> -> linear with uval modifier
2052                     | ls <pos>       -> runtime linear
2053                     | Rs <pos>       -> runtime linear with ref modifier
2054                     | Ls <pos>       -> runtime linear with val modifier
2055                     | Us <pos>       -> runtime linear with uval modifier
2056                     | u              -> uniform
2057
2058        <scalar_name>:= name of the scalar function
2059
2060        <vector_redirection>:= optional, custom name of the vector function
2061
2062``preallocated(<ty>)``
2063    This attribute is required on calls to ``llvm.call.preallocated.arg``
2064    and cannot be used on any other call. See
2065    :ref:`llvm.call.preallocated.arg<int_call_preallocated_arg>` for more
2066    details.
2067
2068.. _glattrs:
2069
2070Global Attributes
2071-----------------
2072
2073Attributes may be set to communicate additional information about a global variable.
2074Unlike :ref:`function attributes <fnattrs>`, attributes on a global variable
2075are grouped into a single :ref:`attribute group <attrgrp>`.
2076
2077.. _opbundles:
2078
2079Operand Bundles
2080---------------
2081
2082Operand bundles are tagged sets of SSA values that can be associated
2083with certain LLVM instructions (currently only ``call`` s and
2084``invoke`` s).  In a way they are like metadata, but dropping them is
2085incorrect and will change program semantics.
2086
2087Syntax::
2088
2089    operand bundle set ::= '[' operand bundle (, operand bundle )* ']'
2090    operand bundle ::= tag '(' [ bundle operand ] (, bundle operand )* ')'
2091    bundle operand ::= SSA value
2092    tag ::= string constant
2093
2094Operand bundles are **not** part of a function's signature, and a
2095given function may be called from multiple places with different kinds
2096of operand bundles.  This reflects the fact that the operand bundles
2097are conceptually a part of the ``call`` (or ``invoke``), not the
2098callee being dispatched to.
2099
2100Operand bundles are a generic mechanism intended to support
2101runtime-introspection-like functionality for managed languages.  While
2102the exact semantics of an operand bundle depend on the bundle tag,
2103there are certain limitations to how much the presence of an operand
2104bundle can influence the semantics of a program.  These restrictions
2105are described as the semantics of an "unknown" operand bundle.  As
2106long as the behavior of an operand bundle is describable within these
2107restrictions, LLVM does not need to have special knowledge of the
2108operand bundle to not miscompile programs containing it.
2109
2110- The bundle operands for an unknown operand bundle escape in unknown
2111  ways before control is transferred to the callee or invokee.
2112- Calls and invokes with operand bundles have unknown read / write
2113  effect on the heap on entry and exit (even if the call target is
2114  ``readnone`` or ``readonly``), unless they're overridden with
2115  callsite specific attributes.
2116- An operand bundle at a call site cannot change the implementation
2117  of the called function.  Inter-procedural optimizations work as
2118  usual as long as they take into account the first two properties.
2119
2120More specific types of operand bundles are described below.
2121
2122.. _deopt_opbundles:
2123
2124Deoptimization Operand Bundles
2125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2126
2127Deoptimization operand bundles are characterized by the ``"deopt"``
2128operand bundle tag.  These operand bundles represent an alternate
2129"safe" continuation for the call site they're attached to, and can be
2130used by a suitable runtime to deoptimize the compiled frame at the
2131specified call site.  There can be at most one ``"deopt"`` operand
2132bundle attached to a call site.  Exact details of deoptimization is
2133out of scope for the language reference, but it usually involves
2134rewriting a compiled frame into a set of interpreted frames.
2135
2136From the compiler's perspective, deoptimization operand bundles make
2137the call sites they're attached to at least ``readonly``.  They read
2138through all of their pointer typed operands (even if they're not
2139otherwise escaped) and the entire visible heap.  Deoptimization
2140operand bundles do not capture their operands except during
2141deoptimization, in which case control will not be returned to the
2142compiled frame.
2143
2144The inliner knows how to inline through calls that have deoptimization
2145operand bundles.  Just like inlining through a normal call site
2146involves composing the normal and exceptional continuations, inlining
2147through a call site with a deoptimization operand bundle needs to
2148appropriately compose the "safe" deoptimization continuation.  The
2149inliner does this by prepending the parent's deoptimization
2150continuation to every deoptimization continuation in the inlined body.
2151E.g. inlining ``@f`` into ``@g`` in the following example
2152
2153.. code-block:: llvm
2154
2155    define void @f() {
2156      call void @x()  ;; no deopt state
2157      call void @y() [ "deopt"(i32 10) ]
2158      call void @y() [ "deopt"(i32 10), "unknown"(i8* null) ]
2159      ret void
2160    }
2161
2162    define void @g() {
2163      call void @f() [ "deopt"(i32 20) ]
2164      ret void
2165    }
2166
2167will result in
2168
2169.. code-block:: llvm
2170
2171    define void @g() {
2172      call void @x()  ;; still no deopt state
2173      call void @y() [ "deopt"(i32 20, i32 10) ]
2174      call void @y() [ "deopt"(i32 20, i32 10), "unknown"(i8* null) ]
2175      ret void
2176    }
2177
2178It is the frontend's responsibility to structure or encode the
2179deoptimization state in a way that syntactically prepending the
2180caller's deoptimization state to the callee's deoptimization state is
2181semantically equivalent to composing the caller's deoptimization
2182continuation after the callee's deoptimization continuation.
2183
2184.. _ob_funclet:
2185
2186Funclet Operand Bundles
2187^^^^^^^^^^^^^^^^^^^^^^^
2188
2189Funclet operand bundles are characterized by the ``"funclet"``
2190operand bundle tag.  These operand bundles indicate that a call site
2191is within a particular funclet.  There can be at most one
2192``"funclet"`` operand bundle attached to a call site and it must have
2193exactly one bundle operand.
2194
2195If any funclet EH pads have been "entered" but not "exited" (per the
2196`description in the EH doc\ <ExceptionHandling.html#wineh-constraints>`_),
2197it is undefined behavior to execute a ``call`` or ``invoke`` which:
2198
2199* does not have a ``"funclet"`` bundle and is not a ``call`` to a nounwind
2200  intrinsic, or
2201* has a ``"funclet"`` bundle whose operand is not the most-recently-entered
2202  not-yet-exited funclet EH pad.
2203
2204Similarly, if no funclet EH pads have been entered-but-not-yet-exited,
2205executing a ``call`` or ``invoke`` with a ``"funclet"`` bundle is undefined behavior.
2206
2207GC Transition Operand Bundles
2208^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2209
2210GC transition operand bundles are characterized by the
2211``"gc-transition"`` operand bundle tag. These operand bundles mark a
2212call as a transition between a function with one GC strategy to a
2213function with a different GC strategy. If coordinating the transition
2214between GC strategies requires additional code generation at the call
2215site, these bundles may contain any values that are needed by the
2216generated code.  For more details, see :ref:`GC Transitions
2217<gc_transition_args>`.
2218
2219The bundle contain an arbitrary list of Values which need to be passed
2220to GC transition code. They will be lowered and passed as operands to
2221the appropriate GC_TRANSITION nodes in the selection DAG. It is assumed
2222that these arguments must be available before and after (but not
2223necessarily during) the execution of the callee.
2224
2225.. _assume_opbundles:
2226
2227Assume Operand Bundles
2228^^^^^^^^^^^^^^^^^^^^^^
2229
2230Operand bundles on an :ref:`llvm.assume <int_assume>` allows representing
2231assumptions that a :ref:`parameter attribute <paramattrs>` or a
2232:ref:`function attribute <fnattrs>` holds for a certain value at a certain
2233location. Operand bundles enable assumptions that are either hard or impossible
2234to represent as a boolean argument of an :ref:`llvm.assume <int_assume>`.
2235
2236An assume operand bundle has the form:
2237
2238::
2239
2240      "<tag>"([ <holds for value> [, <attribute argument>] ])
2241
2242* The tag of the operand bundle is usually the name of attribute that can be
2243  assumed to hold. It can also be `ignore`, this tag doesn't contain any
2244  information and should be ignored.
2245* The first argument if present is the value for which the attribute hold.
2246* The second argument if present is an argument of the attribute.
2247
2248If there are no arguments the attribute is a property of the call location.
2249
2250If the represented attribute expects a constant argument, the argument provided
2251to the operand bundle should be a constant as well.
2252
2253For example:
2254
2255.. code-block:: llvm
2256
2257      call void @llvm.assume(i1 true) ["align"(i32* %val, i32 8)]
2258
2259allows the optimizer to assume that at location of call to
2260:ref:`llvm.assume <int_assume>` ``%val`` has an alignment of at least 8.
2261
2262.. code-block:: llvm
2263
2264      call void @llvm.assume(i1 %cond) ["cold"(), "nonnull"(i64* %val)]
2265
2266allows the optimizer to assume that the :ref:`llvm.assume <int_assume>`
2267call location is cold and that ``%val`` may not be null.
2268
2269Just like for the argument of :ref:`llvm.assume <int_assume>`, if any of the
2270provided guarantees are are violated at runtime the behavior is undefined.
2271
2272Even if the assumed property can be encoded as a boolean value, like
2273``nonnull``, using operand bundles to express the property can still have
2274benefits:
2275
2276* Attributes that can be expressed via operand bundles are directly the
2277  property that the optimizer uses and cares about. Encoding attributes as
2278  operand bundles removes the need for an instruction sequence that represents
2279  the property (e.g., `icmp ne i32* %p, null` for `nonnull`) and for the
2280  optimizer to deduce the property from that instruction sequence.
2281* Expressing the property using operand bundles makes it easy to identify the
2282  use of the value as a use in an :ref:`llvm.assume <int_assume>`. This then
2283  simplifies and improves heuristics, e.g., for use "use-sensitive"
2284  optimizations.
2285
2286.. _ob_preallocated:
2287
2288Preallocated Operand Bundles
2289^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2290
2291Preallocated operand bundles are characterized by the ``"preallocated"``
2292operand bundle tag.  These operand bundles allow separation of the allocation
2293of the call argument memory from the call site.  This is necessary to pass
2294non-trivially copyable objects by value in a way that is compatible with MSVC
2295on some targets.  There can be at most one ``"preallocated"`` operand bundle
2296attached to a call site and it must have exactly one bundle operand, which is
2297a token generated by ``@llvm.call.preallocated.setup``.  A call with this
2298operand bundle should not adjust the stack before entering the function, as
2299that will have been done by one of the ``@llvm.call.preallocated.*`` intrinsics.
2300
2301.. code-block:: llvm
2302
2303      %foo = type { i64, i32 }
2304
2305      ...
2306
2307      %t = call token @llvm.call.preallocated.setup(i32 1)
2308      %a = call i8* @llvm.call.preallocated.arg(token %t, i32 0) preallocated(%foo)
2309      %b = bitcast i8* %a to %foo*
2310      ; initialize %b
2311      call void @bar(i32 42, %foo* preallocated(%foo) %b) ["preallocated"(token %t)]
2312
2313.. _ob_gc_live:
2314
2315GC Live Operand Bundles
2316^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2317
2318A "gc-live" operand bundle is only valid on a :ref:`gc.statepoint <gc_statepoint>`
2319intrinsic. The operand bundle must contain every pointer to a garbage collected
2320object which potentially needs to be updated by the garbage collector.
2321
2322When lowered, any relocated value will be recorded in the corresponding
2323:ref:`stackmap entry <statepoint-stackmap-format>`.  See the intrinsic description
2324for further details.
2325
2326.. _moduleasm:
2327
2328Module-Level Inline Assembly
2329----------------------------
2330
2331Modules may contain "module-level inline asm" blocks, which corresponds
2332to the GCC "file scope inline asm" blocks. These blocks are internally
2333concatenated by LLVM and treated as a single unit, but may be separated
2334in the ``.ll`` file if desired. The syntax is very simple:
2335
2336.. code-block:: llvm
2337
2338    module asm "inline asm code goes here"
2339    module asm "more can go here"
2340
2341The strings can contain any character by escaping non-printable
2342characters. The escape sequence used is simply "\\xx" where "xx" is the
2343two digit hex code for the number.
2344
2345Note that the assembly string *must* be parseable by LLVM's integrated assembler
2346(unless it is disabled), even when emitting a ``.s`` file.
2347
2348.. _langref_datalayout:
2349
2350Data Layout
2351-----------
2352
2353A module may specify a target specific data layout string that specifies
2354how data is to be laid out in memory. The syntax for the data layout is
2355simply:
2356
2357.. code-block:: llvm
2358
2359    target datalayout = "layout specification"
2360
2361The *layout specification* consists of a list of specifications
2362separated by the minus sign character ('-'). Each specification starts
2363with a letter and may include other information after the letter to
2364define some aspect of the data layout. The specifications accepted are
2365as follows:
2366
2367``E``
2368    Specifies that the target lays out data in big-endian form. That is,
2369    the bits with the most significance have the lowest address
2370    location.
2371``e``
2372    Specifies that the target lays out data in little-endian form. That
2373    is, the bits with the least significance have the lowest address
2374    location.
2375``S<size>``
2376    Specifies the natural alignment of the stack in bits. Alignment
2377    promotion of stack variables is limited to the natural stack
2378    alignment to avoid dynamic stack realignment. The stack alignment
2379    must be a multiple of 8-bits. If omitted, the natural stack
2380    alignment defaults to "unspecified", which does not prevent any
2381    alignment promotions.
2382``P<address space>``
2383    Specifies the address space that corresponds to program memory.
2384    Harvard architectures can use this to specify what space LLVM
2385    should place things such as functions into. If omitted, the
2386    program memory space defaults to the default address space of 0,
2387    which corresponds to a Von Neumann architecture that has code
2388    and data in the same space.
2389``A<address space>``
2390    Specifies the address space of objects created by '``alloca``'.
2391    Defaults to the default address space of 0.
2392``p[n]:<size>:<abi>:<pref>:<idx>``
2393    This specifies the *size* of a pointer and its ``<abi>`` and
2394    ``<pref>``\erred alignments for address space ``n``. The fourth parameter
2395    ``<idx>`` is a size of index that used for address calculation. If not
2396    specified, the default index size is equal to the pointer size. All sizes
2397    are in bits. The address space, ``n``, is optional, and if not specified,
2398    denotes the default address space 0. The value of ``n`` must be
2399    in the range [1,2^23).
2400``i<size>:<abi>:<pref>``
2401    This specifies the alignment for an integer type of a given bit
2402    ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
2403``v<size>:<abi>:<pref>``
2404    This specifies the alignment for a vector type of a given bit
2405    ``<size>``.
2406``f<size>:<abi>:<pref>``
2407    This specifies the alignment for a floating-point type of a given bit
2408    ``<size>``. Only values of ``<size>`` that are supported by the target
2409    will work. 32 (float) and 64 (double) are supported on all targets; 80
2410    or 128 (different flavors of long double) are also supported on some
2411    targets.
2412``a:<abi>:<pref>``
2413    This specifies the alignment for an object of aggregate type.
2414``F<type><abi>``
2415    This specifies the alignment for function pointers.
2416    The options for ``<type>`` are:
2417
2418    * ``i``: The alignment of function pointers is independent of the alignment
2419      of functions, and is a multiple of ``<abi>``.
2420    * ``n``: The alignment of function pointers is a multiple of the explicit
2421      alignment specified on the function, and is a multiple of ``<abi>``.
2422``m:<mangling>``
2423    If present, specifies that llvm names are mangled in the output. Symbols
2424    prefixed with the mangling escape character ``\01`` are passed through
2425    directly to the assembler without the escape character. The mangling style
2426    options are
2427
2428    * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
2429    * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
2430    * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
2431      symbols get a ``_`` prefix.
2432    * ``x``: Windows x86 COFF mangling: Private symbols get the usual prefix.
2433      Regular C symbols get a ``_`` prefix. Functions with ``__stdcall``,
2434      ``__fastcall``, and ``__vectorcall`` have custom mangling that appends
2435      ``@N`` where N is the number of bytes used to pass parameters. C++ symbols
2436      starting with ``?`` are not mangled in any way.
2437    * ``w``: Windows COFF mangling: Similar to ``x``, except that normal C
2438      symbols do not receive a ``_`` prefix.
2439    * ``a``: XCOFF mangling: Private symbols get a ``L..`` prefix.
2440``n<size1>:<size2>:<size3>...``
2441    This specifies a set of native integer widths for the target CPU in
2442    bits. For example, it might contain ``n32`` for 32-bit PowerPC,
2443    ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
2444    this set are considered to support most general arithmetic operations
2445    efficiently.
2446``ni:<address space0>:<address space1>:<address space2>...``
2447    This specifies pointer types with the specified address spaces
2448    as :ref:`Non-Integral Pointer Type <nointptrtype>` s.  The ``0``
2449    address space cannot be specified as non-integral.
2450
2451On every specification that takes a ``<abi>:<pref>``, specifying the
2452``<pref>`` alignment is optional. If omitted, the preceding ``:``
2453should be omitted too and ``<pref>`` will be equal to ``<abi>``.
2454
2455When constructing the data layout for a given target, LLVM starts with a
2456default set of specifications which are then (possibly) overridden by
2457the specifications in the ``datalayout`` keyword. The default
2458specifications are given in this list:
2459
2460-  ``E`` - big endian
2461-  ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
2462-  ``p[n]:64:64:64`` - Other address spaces are assumed to be the
2463   same as the default address space.
2464-  ``S0`` - natural stack alignment is unspecified
2465-  ``i1:8:8`` - i1 is 8-bit (byte) aligned
2466-  ``i8:8:8`` - i8 is 8-bit (byte) aligned
2467-  ``i16:16:16`` - i16 is 16-bit aligned
2468-  ``i32:32:32`` - i32 is 32-bit aligned
2469-  ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
2470   alignment of 64-bits
2471-  ``f16:16:16`` - half is 16-bit aligned
2472-  ``f32:32:32`` - float is 32-bit aligned
2473-  ``f64:64:64`` - double is 64-bit aligned
2474-  ``f128:128:128`` - quad is 128-bit aligned
2475-  ``v64:64:64`` - 64-bit vector is 64-bit aligned
2476-  ``v128:128:128`` - 128-bit vector is 128-bit aligned
2477-  ``a:0:64`` - aggregates are 64-bit aligned
2478
2479When LLVM is determining the alignment for a given type, it uses the
2480following rules:
2481
2482#. If the type sought is an exact match for one of the specifications,
2483   that specification is used.
2484#. If no match is found, and the type sought is an integer type, then
2485   the smallest integer type that is larger than the bitwidth of the
2486   sought type is used. If none of the specifications are larger than
2487   the bitwidth then the largest integer type is used. For example,
2488   given the default specifications above, the i7 type will use the
2489   alignment of i8 (next largest) while both i65 and i256 will use the
2490   alignment of i64 (largest specified).
2491#. If no match is found, and the type sought is a vector type, then the
2492   largest vector type that is smaller than the sought vector type will
2493   be used as a fall back. This happens because <128 x double> can be
2494   implemented in terms of 64 <2 x double>, for example.
2495
2496The function of the data layout string may not be what you expect.
2497Notably, this is not a specification from the frontend of what alignment
2498the code generator should use.
2499
2500Instead, if specified, the target data layout is required to match what
2501the ultimate *code generator* expects. This string is used by the
2502mid-level optimizers to improve code, and this only works if it matches
2503what the ultimate code generator uses. There is no way to generate IR
2504that does not embed this target-specific detail into the IR. If you
2505don't specify the string, the default specifications will be used to
2506generate a Data Layout and the optimization phases will operate
2507accordingly and introduce target specificity into the IR with respect to
2508these default specifications.
2509
2510.. _langref_triple:
2511
2512Target Triple
2513-------------
2514
2515A module may specify a target triple string that describes the target
2516host. The syntax for the target triple is simply:
2517
2518.. code-block:: llvm
2519
2520    target triple = "x86_64-apple-macosx10.7.0"
2521
2522The *target triple* string consists of a series of identifiers delimited
2523by the minus sign character ('-'). The canonical forms are:
2524
2525::
2526
2527    ARCHITECTURE-VENDOR-OPERATING_SYSTEM
2528    ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
2529
2530This information is passed along to the backend so that it generates
2531code for the proper architecture. It's possible to override this on the
2532command line with the ``-mtriple`` command line option.
2533
2534.. _pointeraliasing:
2535
2536Pointer Aliasing Rules
2537----------------------
2538
2539Any memory access must be done through a pointer value associated with
2540an address range of the memory access, otherwise the behavior is
2541undefined. Pointer values are associated with address ranges according
2542to the following rules:
2543
2544-  A pointer value is associated with the addresses associated with any
2545   value it is *based* on.
2546-  An address of a global variable is associated with the address range
2547   of the variable's storage.
2548-  The result value of an allocation instruction is associated with the
2549   address range of the allocated storage.
2550-  A null pointer in the default address-space is associated with no
2551   address.
2552-  An :ref:`undef value <undefvalues>` in *any* address-space is
2553   associated with no address.
2554-  An integer constant other than zero or a pointer value returned from
2555   a function not defined within LLVM may be associated with address
2556   ranges allocated through mechanisms other than those provided by
2557   LLVM. Such ranges shall not overlap with any ranges of addresses
2558   allocated by mechanisms provided by LLVM.
2559
2560A pointer value is *based* on another pointer value according to the
2561following rules:
2562
2563-  A pointer value formed from a scalar ``getelementptr`` operation is *based* on
2564   the pointer-typed operand of the ``getelementptr``.
2565-  The pointer in lane *l* of the result of a vector ``getelementptr`` operation
2566   is *based* on the pointer in lane *l* of the vector-of-pointers-typed operand
2567   of the ``getelementptr``.
2568-  The result value of a ``bitcast`` is *based* on the operand of the
2569   ``bitcast``.
2570-  A pointer value formed by an ``inttoptr`` is *based* on all pointer
2571   values that contribute (directly or indirectly) to the computation of
2572   the pointer's value.
2573-  The "*based* on" relationship is transitive.
2574
2575Note that this definition of *"based"* is intentionally similar to the
2576definition of *"based"* in C99, though it is slightly weaker.
2577
2578LLVM IR does not associate types with memory. The result type of a
2579``load`` merely indicates the size and alignment of the memory from
2580which to load, as well as the interpretation of the value. The first
2581operand type of a ``store`` similarly only indicates the size and
2582alignment of the store.
2583
2584Consequently, type-based alias analysis, aka TBAA, aka
2585``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
2586:ref:`Metadata <metadata>` may be used to encode additional information
2587which specialized optimization passes may use to implement type-based
2588alias analysis.
2589
2590.. _volatile:
2591
2592Volatile Memory Accesses
2593------------------------
2594
2595Certain memory accesses, such as :ref:`load <i_load>`'s,
2596:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
2597marked ``volatile``. The optimizers must not change the number of
2598volatile operations or change their order of execution relative to other
2599volatile operations. The optimizers *may* change the order of volatile
2600operations relative to non-volatile operations. This is not Java's
2601"volatile" and has no cross-thread synchronization behavior.
2602
2603A volatile load or store may have additional target-specific semantics.
2604Any volatile operation can have side effects, and any volatile operation
2605can read and/or modify state which is not accessible via a regular load
2606or store in this module. Volatile operations may use addresses which do
2607not point to memory (like MMIO registers). This means the compiler may
2608not use a volatile operation to prove a non-volatile access to that
2609address has defined behavior.
2610
2611The allowed side-effects for volatile accesses are limited.  If a
2612non-volatile store to a given address would be legal, a volatile
2613operation may modify the memory at that address. A volatile operation
2614may not modify any other memory accessible by the module being compiled.
2615A volatile operation may not call any code in the current module.
2616
2617The compiler may assume execution will continue after a volatile operation,
2618so operations which modify memory or may have undefined behavior can be
2619hoisted past a volatile operation.
2620
2621IR-level volatile loads and stores cannot safely be optimized into llvm.memcpy
2622or llvm.memmove intrinsics even when those intrinsics are flagged volatile.
2623Likewise, the backend should never split or merge target-legal volatile
2624load/store instructions. Similarly, IR-level volatile loads and stores cannot
2625change from integer to floating-point or vice versa.
2626
2627.. admonition:: Rationale
2628
2629 Platforms may rely on volatile loads and stores of natively supported
2630 data width to be executed as single instruction. For example, in C
2631 this holds for an l-value of volatile primitive type with native
2632 hardware support, but not necessarily for aggregate types. The
2633 frontend upholds these expectations, which are intentionally
2634 unspecified in the IR. The rules above ensure that IR transformations
2635 do not violate the frontend's contract with the language.
2636
2637.. _memmodel:
2638
2639Memory Model for Concurrent Operations
2640--------------------------------------
2641
2642The LLVM IR does not define any way to start parallel threads of
2643execution or to register signal handlers. Nonetheless, there are
2644platform-specific ways to create them, and we define LLVM IR's behavior
2645in their presence. This model is inspired by the C++0x memory model.
2646
2647For a more informal introduction to this model, see the :doc:`Atomics`.
2648
2649We define a *happens-before* partial order as the least partial order
2650that
2651
2652-  Is a superset of single-thread program order, and
2653-  When a *synchronizes-with* ``b``, includes an edge from ``a`` to
2654   ``b``. *Synchronizes-with* pairs are introduced by platform-specific
2655   techniques, like pthread locks, thread creation, thread joining,
2656   etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
2657   Constraints <ordering>`).
2658
2659Note that program order does not introduce *happens-before* edges
2660between a thread and signals executing inside that thread.
2661
2662Every (defined) read operation (load instructions, memcpy, atomic
2663loads/read-modify-writes, etc.) R reads a series of bytes written by
2664(defined) write operations (store instructions, atomic
2665stores/read-modify-writes, memcpy, etc.). For the purposes of this
2666section, initialized globals are considered to have a write of the
2667initializer which is atomic and happens before any other read or write
2668of the memory in question. For each byte of a read R, R\ :sub:`byte`
2669may see any write to the same byte, except:
2670
2671-  If write\ :sub:`1`  happens before write\ :sub:`2`, and
2672   write\ :sub:`2` happens before R\ :sub:`byte`, then
2673   R\ :sub:`byte` does not see write\ :sub:`1`.
2674-  If R\ :sub:`byte` happens before write\ :sub:`3`, then
2675   R\ :sub:`byte` does not see write\ :sub:`3`.
2676
2677Given that definition, R\ :sub:`byte` is defined as follows:
2678
2679-  If R is volatile, the result is target-dependent. (Volatile is
2680   supposed to give guarantees which can support ``sig_atomic_t`` in
2681   C/C++, and may be used for accesses to addresses that do not behave
2682   like normal memory. It does not generally provide cross-thread
2683   synchronization.)
2684-  Otherwise, if there is no write to the same byte that happens before
2685   R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
2686-  Otherwise, if R\ :sub:`byte` may see exactly one write,
2687   R\ :sub:`byte` returns the value written by that write.
2688-  Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
2689   see are atomic, it chooses one of the values written. See the :ref:`Atomic
2690   Memory Ordering Constraints <ordering>` section for additional
2691   constraints on how the choice is made.
2692-  Otherwise R\ :sub:`byte` returns ``undef``.
2693
2694R returns the value composed of the series of bytes it read. This
2695implies that some bytes within the value may be ``undef`` **without**
2696the entire value being ``undef``. Note that this only defines the
2697semantics of the operation; it doesn't mean that targets will emit more
2698than one instruction to read the series of bytes.
2699
2700Note that in cases where none of the atomic intrinsics are used, this
2701model places only one restriction on IR transformations on top of what
2702is required for single-threaded execution: introducing a store to a byte
2703which might not otherwise be stored is not allowed in general.
2704(Specifically, in the case where another thread might write to and read
2705from an address, introducing a store can change a load that may see
2706exactly one write into a load that may see multiple writes.)
2707
2708.. _ordering:
2709
2710Atomic Memory Ordering Constraints
2711----------------------------------
2712
2713Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
2714:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
2715:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
2716ordering parameters that determine which other atomic instructions on
2717the same address they *synchronize with*. These semantics are borrowed
2718from Java and C++0x, but are somewhat more colloquial. If these
2719descriptions aren't precise enough, check those specs (see spec
2720references in the :doc:`atomics guide <Atomics>`).
2721:ref:`fence <i_fence>` instructions treat these orderings somewhat
2722differently since they don't take an address. See that instruction's
2723documentation for details.
2724
2725For a simpler introduction to the ordering constraints, see the
2726:doc:`Atomics`.
2727
2728``unordered``
2729    The set of values that can be read is governed by the happens-before
2730    partial order. A value cannot be read unless some operation wrote
2731    it. This is intended to provide a guarantee strong enough to model
2732    Java's non-volatile shared variables. This ordering cannot be
2733    specified for read-modify-write operations; it is not strong enough
2734    to make them atomic in any interesting way.
2735``monotonic``
2736    In addition to the guarantees of ``unordered``, there is a single
2737    total order for modifications by ``monotonic`` operations on each
2738    address. All modification orders must be compatible with the
2739    happens-before order. There is no guarantee that the modification
2740    orders can be combined to a global total order for the whole program
2741    (and this often will not be possible). The read in an atomic
2742    read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
2743    :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
2744    order immediately before the value it writes. If one atomic read
2745    happens before another atomic read of the same address, the later
2746    read must see the same value or a later value in the address's
2747    modification order. This disallows reordering of ``monotonic`` (or
2748    stronger) operations on the same address. If an address is written
2749    ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
2750    read that address repeatedly, the other threads must eventually see
2751    the write. This corresponds to the C++0x/C1x
2752    ``memory_order_relaxed``.
2753``acquire``
2754    In addition to the guarantees of ``monotonic``, a
2755    *synchronizes-with* edge may be formed with a ``release`` operation.
2756    This is intended to model C++'s ``memory_order_acquire``.
2757``release``
2758    In addition to the guarantees of ``monotonic``, if this operation
2759    writes a value which is subsequently read by an ``acquire``
2760    operation, it *synchronizes-with* that operation. (This isn't a
2761    complete description; see the C++0x definition of a release
2762    sequence.) This corresponds to the C++0x/C1x
2763    ``memory_order_release``.
2764``acq_rel`` (acquire+release)
2765    Acts as both an ``acquire`` and ``release`` operation on its
2766    address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
2767``seq_cst`` (sequentially consistent)
2768    In addition to the guarantees of ``acq_rel`` (``acquire`` for an
2769    operation that only reads, ``release`` for an operation that only
2770    writes), there is a global total order on all
2771    sequentially-consistent operations on all addresses, which is
2772    consistent with the *happens-before* partial order and with the
2773    modification orders of all the affected addresses. Each
2774    sequentially-consistent read sees the last preceding write to the
2775    same address in this global order. This corresponds to the C++0x/C1x
2776    ``memory_order_seq_cst`` and Java volatile.
2777
2778.. _syncscope:
2779
2780If an atomic operation is marked ``syncscope("singlethread")``, it only
2781*synchronizes with* and only participates in the seq\_cst total orderings of
2782other operations running in the same thread (for example, in signal handlers).
2783
2784If an atomic operation is marked ``syncscope("<target-scope>")``, where
2785``<target-scope>`` is a target specific synchronization scope, then it is target
2786dependent if it *synchronizes with* and participates in the seq\_cst total
2787orderings of other operations.
2788
2789Otherwise, an atomic operation that is not marked ``syncscope("singlethread")``
2790or ``syncscope("<target-scope>")`` *synchronizes with* and participates in the
2791seq\_cst total orderings of other operations that are not marked
2792``syncscope("singlethread")`` or ``syncscope("<target-scope>")``.
2793
2794.. _floatenv:
2795
2796Floating-Point Environment
2797--------------------------
2798
2799The default LLVM floating-point environment assumes that floating-point
2800instructions do not have side effects. Results assume the round-to-nearest
2801rounding mode. No floating-point exception state is maintained in this
2802environment. Therefore, there is no attempt to create or preserve invalid
2803operation (SNaN) or division-by-zero exceptions.
2804
2805The benefit of this exception-free assumption is that floating-point
2806operations may be speculated freely without any other fast-math relaxations
2807to the floating-point model.
2808
2809Code that requires different behavior than this should use the
2810:ref:`Constrained Floating-Point Intrinsics <constrainedfp>`.
2811
2812.. _fastmath:
2813
2814Fast-Math Flags
2815---------------
2816
2817LLVM IR floating-point operations (:ref:`fneg <i_fneg>`, :ref:`fadd <i_fadd>`,
2818:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
2819:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`), :ref:`phi <i_phi>`,
2820:ref:`select <i_select>` and :ref:`call <i_call>`
2821may use the following flags to enable otherwise unsafe
2822floating-point transformations.
2823
2824``nnan``
2825   No NaNs - Allow optimizations to assume the arguments and result are not
2826   NaN. If an argument is a nan, or the result would be a nan, it produces
2827   a :ref:`poison value <poisonvalues>` instead.
2828
2829``ninf``
2830   No Infs - Allow optimizations to assume the arguments and result are not
2831   +/-Inf. If an argument is +/-Inf, or the result would be +/-Inf, it
2832   produces a :ref:`poison value <poisonvalues>` instead.
2833
2834``nsz``
2835   No Signed Zeros - Allow optimizations to treat the sign of a zero
2836   argument or result as insignificant. This does not imply that -0.0
2837   is poison and/or guaranteed to not exist in the operation.
2838
2839``arcp``
2840   Allow Reciprocal - Allow optimizations to use the reciprocal of an
2841   argument rather than perform division.
2842
2843``contract``
2844   Allow floating-point contraction (e.g. fusing a multiply followed by an
2845   addition into a fused multiply-and-add). This does not enable reassociating
2846   to form arbitrary contractions. For example, ``(a*b) + (c*d) + e`` can not
2847   be transformed into ``(a*b) + ((c*d) + e)`` to create two fma operations.
2848
2849``afn``
2850   Approximate functions - Allow substitution of approximate calculations for
2851   functions (sin, log, sqrt, etc). See floating-point intrinsic definitions
2852   for places where this can apply to LLVM's intrinsic math functions.
2853
2854``reassoc``
2855   Allow reassociation transformations for floating-point instructions.
2856   This may dramatically change results in floating-point.
2857
2858``fast``
2859   This flag implies all of the others.
2860
2861.. _uselistorder:
2862
2863Use-list Order Directives
2864-------------------------
2865
2866Use-list directives encode the in-memory order of each use-list, allowing the
2867order to be recreated. ``<order-indexes>`` is a comma-separated list of
2868indexes that are assigned to the referenced value's uses. The referenced
2869value's use-list is immediately sorted by these indexes.
2870
2871Use-list directives may appear at function scope or global scope. They are not
2872instructions, and have no effect on the semantics of the IR. When they're at
2873function scope, they must appear after the terminator of the final basic block.
2874
2875If basic blocks have their address taken via ``blockaddress()`` expressions,
2876``uselistorder_bb`` can be used to reorder their use-lists from outside their
2877function's scope.
2878
2879:Syntax:
2880
2881::
2882
2883    uselistorder <ty> <value>, { <order-indexes> }
2884    uselistorder_bb @function, %block { <order-indexes> }
2885
2886:Examples:
2887
2888::
2889
2890    define void @foo(i32 %arg1, i32 %arg2) {
2891    entry:
2892      ; ... instructions ...
2893    bb:
2894      ; ... instructions ...
2895
2896      ; At function scope.
2897      uselistorder i32 %arg1, { 1, 0, 2 }
2898      uselistorder label %bb, { 1, 0 }
2899    }
2900
2901    ; At global scope.
2902    uselistorder i32* @global, { 1, 2, 0 }
2903    uselistorder i32 7, { 1, 0 }
2904    uselistorder i32 (i32) @bar, { 1, 0 }
2905    uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
2906
2907.. _source_filename:
2908
2909Source Filename
2910---------------
2911
2912The *source filename* string is set to the original module identifier,
2913which will be the name of the compiled source file when compiling from
2914source through the clang front end, for example. It is then preserved through
2915the IR and bitcode.
2916
2917This is currently necessary to generate a consistent unique global
2918identifier for local functions used in profile data, which prepends the
2919source file name to the local function name.
2920
2921The syntax for the source file name is simply:
2922
2923.. code-block:: text
2924
2925    source_filename = "/path/to/source.c"
2926
2927.. _typesystem:
2928
2929Type System
2930===========
2931
2932The LLVM type system is one of the most important features of the
2933intermediate representation. Being typed enables a number of
2934optimizations to be performed on the intermediate representation
2935directly, without having to do extra analyses on the side before the
2936transformation. A strong type system makes it easier to read the
2937generated code and enables novel analyses and transformations that are
2938not feasible to perform on normal three address code representations.
2939
2940.. _t_void:
2941
2942Void Type
2943---------
2944
2945:Overview:
2946
2947
2948The void type does not represent any value and has no size.
2949
2950:Syntax:
2951
2952
2953::
2954
2955      void
2956
2957
2958.. _t_function:
2959
2960Function Type
2961-------------
2962
2963:Overview:
2964
2965
2966The function type can be thought of as a function signature. It consists of a
2967return type and a list of formal parameter types. The return type of a function
2968type is a void type or first class type --- except for :ref:`label <t_label>`
2969and :ref:`metadata <t_metadata>` types.
2970
2971:Syntax:
2972
2973::
2974
2975      <returntype> (<parameter list>)
2976
2977...where '``<parameter list>``' is a comma-separated list of type
2978specifiers. Optionally, the parameter list may include a type ``...``, which
2979indicates that the function takes a variable number of arguments. Variable
2980argument functions can access their arguments with the :ref:`variable argument
2981handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
2982except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
2983
2984:Examples:
2985
2986+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2987| ``i32 (i32)``                   | function taking an ``i32``, returning an ``i32``                                                                                                                    |
2988+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2989| ``float (i16, i32 *) *``        | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``.                                    |
2990+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2991| ``i32 (i8*, ...)``              | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
2992+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2993| ``{i32, i32} (i32)``            | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values                                                                 |
2994+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2995
2996.. _t_firstclass:
2997
2998First Class Types
2999-----------------
3000
3001The :ref:`first class <t_firstclass>` types are perhaps the most important.
3002Values of these types are the only ones which can be produced by
3003instructions.
3004
3005.. _t_single_value:
3006
3007Single Value Types
3008^^^^^^^^^^^^^^^^^^
3009
3010These are the types that are valid in registers from CodeGen's perspective.
3011
3012.. _t_integer:
3013
3014Integer Type
3015""""""""""""
3016
3017:Overview:
3018
3019The integer type is a very simple type that simply specifies an
3020arbitrary bit width for the integer type desired. Any bit width from 1
3021bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
3022
3023:Syntax:
3024
3025::
3026
3027      iN
3028
3029The number of bits the integer will occupy is specified by the ``N``
3030value.
3031
3032Examples:
3033*********
3034
3035+----------------+------------------------------------------------+
3036| ``i1``         | a single-bit integer.                          |
3037+----------------+------------------------------------------------+
3038| ``i32``        | a 32-bit integer.                              |
3039+----------------+------------------------------------------------+
3040| ``i1942652``   | a really big integer of over 1 million bits.   |
3041+----------------+------------------------------------------------+
3042
3043.. _t_floating:
3044
3045Floating-Point Types
3046""""""""""""""""""""
3047
3048.. list-table::
3049   :header-rows: 1
3050
3051   * - Type
3052     - Description
3053
3054   * - ``half``
3055     - 16-bit floating-point value
3056
3057   * - ``bfloat``
3058     - 16-bit "brain" floating-point value (7-bit significand).  Provides the
3059       same number of exponent bits as ``float``, so that it matches its dynamic
3060       range, but with greatly reduced precision.  Used in Intel's AVX-512 BF16
3061       extensions and Arm's ARMv8.6-A extensions, among others.
3062
3063   * - ``float``
3064     - 32-bit floating-point value
3065
3066   * - ``double``
3067     - 64-bit floating-point value
3068
3069   * - ``fp128``
3070     - 128-bit floating-point value (112-bit significand)
3071
3072   * - ``x86_fp80``
3073     -  80-bit floating-point value (X87)
3074
3075   * - ``ppc_fp128``
3076     - 128-bit floating-point value (two 64-bits)
3077
3078The binary format of half, float, double, and fp128 correspond to the
3079IEEE-754-2008 specifications for binary16, binary32, binary64, and binary128
3080respectively.
3081
3082X86_mmx Type
3083""""""""""""
3084
3085:Overview:
3086
3087The x86_mmx type represents a value held in an MMX register on an x86
3088machine. The operations allowed on it are quite limited: parameters and
3089return values, load and store, and bitcast. User-specified MMX
3090instructions are represented as intrinsic or asm calls with arguments
3091and/or results of this type. There are no arrays, vectors or constants
3092of this type.
3093
3094:Syntax:
3095
3096::
3097
3098      x86_mmx
3099
3100
3101.. _t_pointer:
3102
3103Pointer Type
3104""""""""""""
3105
3106:Overview:
3107
3108The pointer type is used to specify memory locations. Pointers are
3109commonly used to reference objects in memory.
3110
3111Pointer types may have an optional address space attribute defining the
3112numbered address space where the pointed-to object resides. The default
3113address space is number zero. The semantics of non-zero address spaces
3114are target-specific.
3115
3116Note that LLVM does not permit pointers to void (``void*``) nor does it
3117permit pointers to labels (``label*``). Use ``i8*`` instead.
3118
3119:Syntax:
3120
3121::
3122
3123      <type> *
3124
3125:Examples:
3126
3127+-------------------------+--------------------------------------------------------------------------------------------------------------+
3128| ``[4 x i32]*``          | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values.                               |
3129+-------------------------+--------------------------------------------------------------------------------------------------------------+
3130| ``i32 (i32*) *``        | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
3131+-------------------------+--------------------------------------------------------------------------------------------------------------+
3132| ``i32 addrspace(5)*``   | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5.                           |
3133+-------------------------+--------------------------------------------------------------------------------------------------------------+
3134
3135.. _t_vector:
3136
3137Vector Type
3138"""""""""""
3139
3140:Overview:
3141
3142A vector type is a simple derived type that represents a vector of
3143elements. Vector types are used when multiple primitive data are
3144operated in parallel using a single instruction (SIMD). A vector type
3145requires a size (number of elements), an underlying primitive data type,
3146and a scalable property to represent vectors where the exact hardware
3147vector length is unknown at compile time. Vector types are considered
3148:ref:`first class <t_firstclass>`.
3149
3150:Syntax:
3151
3152::
3153
3154      < <# elements> x <elementtype> >          ; Fixed-length vector
3155      < vscale x <# elements> x <elementtype> > ; Scalable vector
3156
3157The number of elements is a constant integer value larger than 0;
3158elementtype may be any integer, floating-point or pointer type. Vectors
3159of size zero are not allowed. For scalable vectors, the total number of
3160elements is a constant multiple (called vscale) of the specified number
3161of elements; vscale is a positive integer that is unknown at compile time
3162and the same hardware-dependent constant for all scalable vectors at run
3163time. The size of a specific scalable vector type is thus constant within
3164IR, even if the exact size in bytes cannot be determined until run time.
3165
3166:Examples:
3167
3168+------------------------+----------------------------------------------------+
3169| ``<4 x i32>``          | Vector of 4 32-bit integer values.                 |
3170+------------------------+----------------------------------------------------+
3171| ``<8 x float>``        | Vector of 8 32-bit floating-point values.          |
3172+------------------------+----------------------------------------------------+
3173| ``<2 x i64>``          | Vector of 2 64-bit integer values.                 |
3174+------------------------+----------------------------------------------------+
3175| ``<4 x i64*>``         | Vector of 4 pointers to 64-bit integer values.     |
3176+------------------------+----------------------------------------------------+
3177| ``<vscale x 4 x i32>`` | Vector with a multiple of 4 32-bit integer values. |
3178+------------------------+----------------------------------------------------+
3179
3180.. _t_label:
3181
3182Label Type
3183^^^^^^^^^^
3184
3185:Overview:
3186
3187The label type represents code labels.
3188
3189:Syntax:
3190
3191::
3192
3193      label
3194
3195.. _t_token:
3196
3197Token Type
3198^^^^^^^^^^
3199
3200:Overview:
3201
3202The token type is used when a value is associated with an instruction
3203but all uses of the value must not attempt to introspect or obscure it.
3204As such, it is not appropriate to have a :ref:`phi <i_phi>` or
3205:ref:`select <i_select>` of type token.
3206
3207:Syntax:
3208
3209::
3210
3211      token
3212
3213
3214
3215.. _t_metadata:
3216
3217Metadata Type
3218^^^^^^^^^^^^^
3219
3220:Overview:
3221
3222The metadata type represents embedded metadata. No derived types may be
3223created from metadata except for :ref:`function <t_function>` arguments.
3224
3225:Syntax:
3226
3227::
3228
3229      metadata
3230
3231.. _t_aggregate:
3232
3233Aggregate Types
3234^^^^^^^^^^^^^^^
3235
3236Aggregate Types are a subset of derived types that can contain multiple
3237member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
3238aggregate types. :ref:`Vectors <t_vector>` are not considered to be
3239aggregate types.
3240
3241.. _t_array:
3242
3243Array Type
3244""""""""""
3245
3246:Overview:
3247
3248The array type is a very simple derived type that arranges elements
3249sequentially in memory. The array type requires a size (number of
3250elements) and an underlying data type.
3251
3252:Syntax:
3253
3254::
3255
3256      [<# elements> x <elementtype>]
3257
3258The number of elements is a constant integer value; ``elementtype`` may
3259be any type with a size.
3260
3261:Examples:
3262
3263+------------------+--------------------------------------+
3264| ``[40 x i32]``   | Array of 40 32-bit integer values.   |
3265+------------------+--------------------------------------+
3266| ``[41 x i32]``   | Array of 41 32-bit integer values.   |
3267+------------------+--------------------------------------+
3268| ``[4 x i8]``     | Array of 4 8-bit integer values.     |
3269+------------------+--------------------------------------+
3270
3271Here are some examples of multidimensional arrays:
3272
3273+-----------------------------+----------------------------------------------------------+
3274| ``[3 x [4 x i32]]``         | 3x4 array of 32-bit integer values.                      |
3275+-----------------------------+----------------------------------------------------------+
3276| ``[12 x [10 x float]]``     | 12x10 array of single precision floating-point values.   |
3277+-----------------------------+----------------------------------------------------------+
3278| ``[2 x [3 x [4 x i16]]]``   | 2x3x4 array of 16-bit integer values.                    |
3279+-----------------------------+----------------------------------------------------------+
3280
3281There is no restriction on indexing beyond the end of the array implied
3282by a static type (though there are restrictions on indexing beyond the
3283bounds of an allocated object in some cases). This means that
3284single-dimension 'variable sized array' addressing can be implemented in
3285LLVM with a zero length array type. An implementation of 'pascal style
3286arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
3287example.
3288
3289.. _t_struct:
3290
3291Structure Type
3292""""""""""""""
3293
3294:Overview:
3295
3296The structure type is used to represent a collection of data members
3297together in memory. The elements of a structure may be any type that has
3298a size.
3299
3300Structures in memory are accessed using '``load``' and '``store``' by
3301getting a pointer to a field with the '``getelementptr``' instruction.
3302Structures in registers are accessed using the '``extractvalue``' and
3303'``insertvalue``' instructions.
3304
3305Structures may optionally be "packed" structures, which indicate that
3306the alignment of the struct is one byte, and that there is no padding
3307between the elements. In non-packed structs, padding between field types
3308is inserted as defined by the DataLayout string in the module, which is
3309required to match what the underlying code generator expects.
3310
3311Structures can either be "literal" or "identified". A literal structure
3312is defined inline with other types (e.g. ``{i32, i32}*``) whereas
3313identified types are always defined at the top level with a name.
3314Literal types are uniqued by their contents and can never be recursive
3315or opaque since there is no way to write one. Identified types can be
3316recursive, can be opaqued, and are never uniqued.
3317
3318:Syntax:
3319
3320::
3321
3322      %T1 = type { <type list> }     ; Identified normal struct type
3323      %T2 = type <{ <type list> }>   ; Identified packed struct type
3324
3325:Examples:
3326
3327+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
3328| ``{ i32, i32, i32 }``        | A triple of three ``i32`` values                                                                                                                                                      |
3329+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
3330| ``{ float, i32 (i32) * }``   | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``.  |
3331+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
3332| ``<{ i8, i32 }>``            | A packed struct known to be 5 bytes in size.                                                                                                                                          |
3333+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
3334
3335.. _t_opaque:
3336
3337Opaque Structure Types
3338""""""""""""""""""""""
3339
3340:Overview:
3341
3342Opaque structure types are used to represent named structure types that
3343do not have a body specified. This corresponds (for example) to the C
3344notion of a forward declared structure.
3345
3346:Syntax:
3347
3348::
3349
3350      %X = type opaque
3351      %52 = type opaque
3352
3353:Examples:
3354
3355+--------------+-------------------+
3356| ``opaque``   | An opaque type.   |
3357+--------------+-------------------+
3358
3359.. _constants:
3360
3361Constants
3362=========
3363
3364LLVM has several different basic types of constants. This section
3365describes them all and their syntax.
3366
3367Simple Constants
3368----------------
3369
3370**Boolean constants**
3371    The two strings '``true``' and '``false``' are both valid constants
3372    of the ``i1`` type.
3373**Integer constants**
3374    Standard integers (such as '4') are constants of the
3375    :ref:`integer <t_integer>` type. Negative numbers may be used with
3376    integer types.
3377**Floating-point constants**
3378    Floating-point constants use standard decimal notation (e.g.
3379    123.421), exponential notation (e.g. 1.23421e+2), or a more precise
3380    hexadecimal notation (see below). The assembler requires the exact
3381    decimal value of a floating-point constant. For example, the
3382    assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
3383    decimal in binary. Floating-point constants must have a
3384    :ref:`floating-point <t_floating>` type.
3385**Null pointer constants**
3386    The identifier '``null``' is recognized as a null pointer constant
3387    and must be of :ref:`pointer type <t_pointer>`.
3388**Token constants**
3389    The identifier '``none``' is recognized as an empty token constant
3390    and must be of :ref:`token type <t_token>`.
3391
3392The one non-intuitive notation for constants is the hexadecimal form of
3393floating-point constants. For example, the form
3394'``double    0x432ff973cafa8000``' is equivalent to (but harder to read
3395than) '``double 4.5e+15``'. The only time hexadecimal floating-point
3396constants are required (and the only time that they are generated by the
3397disassembler) is when a floating-point constant must be emitted but it
3398cannot be represented as a decimal floating-point number in a reasonable
3399number of digits. For example, NaN's, infinities, and other special
3400values are represented in their IEEE hexadecimal format so that assembly
3401and disassembly do not cause any bits to change in the constants.
3402
3403When using the hexadecimal form, constants of types bfloat, half, float, and
3404double are represented using the 16-digit form shown above (which matches the
3405IEEE754 representation for double); bfloat, half and float values must, however,
3406be exactly representable as bfloat, IEEE 754 half, and IEEE 754 single
3407precision respectively. Hexadecimal format is always used for long double, and
3408there are three forms of long double. The 80-bit format used by x86 is
3409represented as ``0xK`` followed by 20 hexadecimal digits. The 128-bit format
3410used by PowerPC (two adjacent doubles) is represented by ``0xM`` followed by 32
3411hexadecimal digits. The IEEE 128-bit format is represented by ``0xL`` followed
3412by 32 hexadecimal digits. Long doubles will only work if they match the long
3413double format on your target.  The IEEE 16-bit format (half precision) is
3414represented by ``0xH`` followed by 4 hexadecimal digits. The bfloat 16-bit
3415format is represented by ``0xR`` followed by 4 hexadecimal digits. All
3416hexadecimal formats are big-endian (sign bit at the left).
3417
3418There are no constants of type x86_mmx.
3419
3420.. _complexconstants:
3421
3422Complex Constants
3423-----------------
3424
3425Complex constants are a (potentially recursive) combination of simple
3426constants and smaller complex constants.
3427
3428**Structure constants**
3429    Structure constants are represented with notation similar to
3430    structure type definitions (a comma separated list of elements,
3431    surrounded by braces (``{}``)). For example:
3432    "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
3433    "``@G = external global i32``". Structure constants must have
3434    :ref:`structure type <t_struct>`, and the number and types of elements
3435    must match those specified by the type.
3436**Array constants**
3437    Array constants are represented with notation similar to array type
3438    definitions (a comma separated list of elements, surrounded by
3439    square brackets (``[]``)). For example:
3440    "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
3441    :ref:`array type <t_array>`, and the number and types of elements must
3442    match those specified by the type. As a special case, character array
3443    constants may also be represented as a double-quoted string using the ``c``
3444    prefix. For example: "``c"Hello World\0A\00"``".
3445**Vector constants**
3446    Vector constants are represented with notation similar to vector
3447    type definitions (a comma separated list of elements, surrounded by
3448    less-than/greater-than's (``<>``)). For example:
3449    "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
3450    must have :ref:`vector type <t_vector>`, and the number and types of
3451    elements must match those specified by the type.
3452**Zero initialization**
3453    The string '``zeroinitializer``' can be used to zero initialize a
3454    value to zero of *any* type, including scalar and
3455    :ref:`aggregate <t_aggregate>` types. This is often used to avoid
3456    having to print large zero initializers (e.g. for large arrays) and
3457    is always exactly equivalent to using explicit zero initializers.
3458**Metadata node**
3459    A metadata node is a constant tuple without types. For example:
3460    "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
3461    for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
3462    Unlike other typed constants that are meant to be interpreted as part of
3463    the instruction stream, metadata is a place to attach additional
3464    information such as debug info.
3465
3466Global Variable and Function Addresses
3467--------------------------------------
3468
3469The addresses of :ref:`global variables <globalvars>` and
3470:ref:`functions <functionstructure>` are always implicitly valid
3471(link-time) constants. These constants are explicitly referenced when
3472the :ref:`identifier for the global <identifiers>` is used and always have
3473:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
3474file:
3475
3476.. code-block:: llvm
3477
3478    @X = global i32 17
3479    @Y = global i32 42
3480    @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
3481
3482.. _undefvalues:
3483
3484Undefined Values
3485----------------
3486
3487The string '``undef``' can be used anywhere a constant is expected, and
3488indicates that the user of the value may receive an unspecified
3489bit-pattern. Undefined values may be of any type (other than '``label``'
3490or '``void``') and be used anywhere a constant is permitted.
3491
3492Undefined values are useful because they indicate to the compiler that
3493the program is well defined no matter what value is used. This gives the
3494compiler more freedom to optimize. Here are some examples of
3495(potentially surprising) transformations that are valid (in pseudo IR):
3496
3497.. code-block:: llvm
3498
3499      %A = add %X, undef
3500      %B = sub %X, undef
3501      %C = xor %X, undef
3502    Safe:
3503      %A = undef
3504      %B = undef
3505      %C = undef
3506
3507This is safe because all of the output bits are affected by the undef
3508bits. Any output bit can have a zero or one depending on the input bits.
3509
3510.. code-block:: llvm
3511
3512      %A = or %X, undef
3513      %B = and %X, undef
3514    Safe:
3515      %A = -1
3516      %B = 0
3517    Safe:
3518      %A = %X  ;; By choosing undef as 0
3519      %B = %X  ;; By choosing undef as -1
3520    Unsafe:
3521      %A = undef
3522      %B = undef
3523
3524These logical operations have bits that are not always affected by the
3525input. For example, if ``%X`` has a zero bit, then the output of the
3526'``and``' operation will always be a zero for that bit, no matter what
3527the corresponding bit from the '``undef``' is. As such, it is unsafe to
3528optimize or assume that the result of the '``and``' is '``undef``'.
3529However, it is safe to assume that all bits of the '``undef``' could be
35300, and optimize the '``and``' to 0. Likewise, it is safe to assume that
3531all the bits of the '``undef``' operand to the '``or``' could be set,
3532allowing the '``or``' to be folded to -1.
3533
3534.. code-block:: llvm
3535
3536      %A = select undef, %X, %Y
3537      %B = select undef, 42, %Y
3538      %C = select %X, %Y, undef
3539    Safe:
3540      %A = %X     (or %Y)
3541      %B = 42     (or %Y)
3542      %C = %Y
3543    Unsafe:
3544      %A = undef
3545      %B = undef
3546      %C = undef
3547
3548This set of examples shows that undefined '``select``' (and conditional
3549branch) conditions can go *either way*, but they have to come from one
3550of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
3551both known to have a clear low bit, then ``%A`` would have to have a
3552cleared low bit. However, in the ``%C`` example, the optimizer is
3553allowed to assume that the '``undef``' operand could be the same as
3554``%Y``, allowing the whole '``select``' to be eliminated.
3555
3556.. code-block:: text
3557
3558      %A = xor undef, undef
3559
3560      %B = undef
3561      %C = xor %B, %B
3562
3563      %D = undef
3564      %E = icmp slt %D, 4
3565      %F = icmp gte %D, 4
3566
3567    Safe:
3568      %A = undef
3569      %B = undef
3570      %C = undef
3571      %D = undef
3572      %E = undef
3573      %F = undef
3574
3575This example points out that two '``undef``' operands are not
3576necessarily the same. This can be surprising to people (and also matches
3577C semantics) where they assume that "``X^X``" is always zero, even if
3578``X`` is undefined. This isn't true for a number of reasons, but the
3579short answer is that an '``undef``' "variable" can arbitrarily change
3580its value over its "live range". This is true because the variable
3581doesn't actually *have a live range*. Instead, the value is logically
3582read from arbitrary registers that happen to be around when needed, so
3583the value is not necessarily consistent over time. In fact, ``%A`` and
3584``%C`` need to have the same semantics or the core LLVM "replace all
3585uses with" concept would not hold.
3586
3587To ensure all uses of a given register observe the same value (even if
3588'``undef``'), the :ref:`freeze instruction <i_freeze>` can be used.
3589
3590.. code-block:: llvm
3591
3592      %A = sdiv undef, %X
3593      %B = sdiv %X, undef
3594    Safe:
3595      %A = 0
3596    b: unreachable
3597
3598These examples show the crucial difference between an *undefined value*
3599and *undefined behavior*. An undefined value (like '``undef``') is
3600allowed to have an arbitrary bit-pattern. This means that the ``%A``
3601operation can be constant folded to '``0``', because the '``undef``'
3602could be zero, and zero divided by any value is zero.
3603However, in the second example, we can make a more aggressive
3604assumption: because the ``undef`` is allowed to be an arbitrary value,
3605we are allowed to assume that it could be zero. Since a divide by zero
3606has *undefined behavior*, we are allowed to assume that the operation
3607does not execute at all. This allows us to delete the divide and all
3608code after it. Because the undefined operation "can't happen", the
3609optimizer can assume that it occurs in dead code.
3610
3611.. code-block:: text
3612
3613    a:  store undef -> %X
3614    b:  store %X -> undef
3615    Safe:
3616    a: <deleted>
3617    b: unreachable
3618
3619A store *of* an undefined value can be assumed to not have any effect;
3620we can assume that the value is overwritten with bits that happen to
3621match what was already there. However, a store *to* an undefined
3622location could clobber arbitrary memory, therefore, it has undefined
3623behavior.
3624
3625Branching on an undefined value is undefined behavior.
3626This explains optimizations that depend on branch conditions to construct
3627predicates, such as Correlated Value Propagation and Global Value Numbering.
3628In case of switch instruction, the branch condition should be frozen, otherwise
3629it is undefined behavior.
3630
3631.. code-block:: text
3632
3633    Unsafe:
3634      br undef, BB1, BB2 ; UB
3635
3636      %X = and i32 undef, 255
3637      switch %X, label %ret [ .. ] ; UB
3638
3639      store undef, i8* %ptr
3640      %X = load i8* %ptr ; %X is undef
3641      switch i8 %X, label %ret [ .. ] ; UB
3642
3643    Safe:
3644      %X = or i8 undef, 255 ; always 255
3645      switch i8 %X, label %ret [ .. ] ; Well-defined
3646
3647      %X = freeze i1 undef
3648      br %X, BB1, BB2 ; Well-defined (non-deterministic jump)
3649
3650
3651This is also consistent with the behavior of MemorySanitizer.
3652MemorySanitizer, detector of uses of uninitialized memory,
3653defines a branch with condition that depends on an undef value (or
3654certain other values, like e.g. a result of a load from heap-allocated
3655memory that has never been stored to) to have an externally visible
3656side effect. For this reason functions with *sanitize_memory*
3657attribute are not allowed to produce such branches "out of thin
3658air". More strictly, an optimization that inserts a conditional branch
3659is only valid if in all executions where the branch condition has at
3660least one undefined bit, the same branch condition is evaluated in the
3661input IR as well.
3662
3663.. _poisonvalues:
3664
3665Poison Values
3666-------------
3667
3668In order to facilitate speculative execution, many instructions do not
3669invoke immediate undefined behavior when provided with illegal operands,
3670and return a poison value instead.
3671
3672There is currently no way of representing a poison value in the IR; they
3673only exist when produced by operations such as :ref:`add <i_add>` with
3674the ``nsw`` flag.
3675
3676Poison value behavior is defined in terms of value *dependence*:
3677
3678-  Values other than :ref:`phi <i_phi>` nodes and :ref:`select <i_select>`
3679   instructions depend on their operands.
3680-  :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
3681   their dynamic predecessor basic block.
3682-  Select instructions depend on their condition operand and their
3683   selected operand.
3684-  Function arguments depend on the corresponding actual argument values
3685   in the dynamic callers of their functions.
3686-  :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
3687   instructions that dynamically transfer control back to them.
3688-  :ref:`Invoke <i_invoke>` instructions depend on the
3689   :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
3690   call instructions that dynamically transfer control back to them.
3691-  Non-volatile loads and stores depend on the most recent stores to all
3692   of the referenced memory addresses, following the order in the IR
3693   (including loads and stores implied by intrinsics such as
3694   :ref:`@llvm.memcpy <int_memcpy>`.)
3695-  An instruction with externally visible side effects depends on the
3696   most recent preceding instruction with externally visible side
3697   effects, following the order in the IR. (This includes :ref:`volatile
3698   operations <volatile>`.)
3699-  An instruction *control-depends* on a :ref:`terminator
3700   instruction <terminators>` if the terminator instruction has
3701   multiple successors and the instruction is always executed when
3702   control transfers to one of the successors, and may not be executed
3703   when control is transferred to another.
3704-  Additionally, an instruction also *control-depends* on a terminator
3705   instruction if the set of instructions it otherwise depends on would
3706   be different if the terminator had transferred control to a different
3707   successor.
3708-  Dependence is transitive.
3709-  Vector elements may be independently poisoned. Therefore, transforms
3710   on instructions such as shufflevector must be careful to propagate
3711   poison across values or elements only as allowed by the original code.
3712
3713An instruction that *depends* on a poison value, produces a poison value
3714itself. A poison value may be relaxed into an
3715:ref:`undef value <undefvalues>`, which takes an arbitrary bit-pattern.
3716Propagation of poison can be stopped with the
3717:ref:`freeze instruction <i_freeze>`.
3718
3719This means that immediate undefined behavior occurs if a poison value is
3720used as an instruction operand that has any values that trigger undefined
3721behavior. Notably this includes (but is not limited to):
3722
3723-  The pointer operand of a :ref:`load <i_load>`, :ref:`store <i_store>` or
3724   any other pointer dereferencing instruction (independent of address
3725   space).
3726-  The divisor operand of a ``udiv``, ``sdiv``, ``urem`` or ``srem``
3727   instruction.
3728-  The condition operand of a :ref:`br <i_br>` instruction.
3729-  The callee operand of a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
3730   instruction.
3731-  The parameter operand of a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
3732   instruction, when the function or invoking call site has a ``noundef``
3733   attribute in the corresponding position.
3734-  The operand of a :ref:`ret <i_ret>` instruction if the function or invoking
3735   call site has a `noundef` attribute in the return value position.
3736
3737Here are some examples:
3738
3739.. code-block:: llvm
3740
3741    entry:
3742      %poison = sub nuw i32 0, 1           ; Results in a poison value.
3743      %still_poison = and i32 %poison, 0   ; 0, but also poison.
3744      %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
3745      store i32 0, i32* %poison_yet_again  ; Undefined behavior due to
3746                                           ; store to poison.
3747
3748      store i32 %poison, i32* @g           ; Poison value stored to memory.
3749      %poison2 = load i32, i32* @g         ; Poison value loaded back from memory.
3750
3751      %narrowaddr = bitcast i32* @g to i16*
3752      %wideaddr = bitcast i32* @g to i64*
3753      %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
3754      %poison4 = load i64, i64* %wideaddr   ; Returns a poison value.
3755
3756      %cmp = icmp slt i32 %poison, 0       ; Returns a poison value.
3757      br i1 %cmp, label %end, label %end   ; undefined behavior
3758
3759    end:
3760
3761.. _welldefinedvalues:
3762
3763Well-Defined Values
3764-------------------
3765
3766Given a program execution, a value is *well defined* if the value does not
3767have an undef bit and is not poison in the execution.
3768An aggregate value or vector is well defined if its elements are well defined.
3769The padding of an aggregate isn't considered, since it isn't visible
3770without storing it into memory and loading it with a different type.
3771
3772A constant of a :ref:`single value <t_single_value>`, non-vector type is well
3773defined if it is a non-undef constant. Note that there is no poison constant
3774in LLVM.
3775The result of :ref:`freeze instruction <i_freeze>` is well defined regardless
3776of its operand.
3777
3778.. _blockaddress:
3779
3780Addresses of Basic Blocks
3781-------------------------
3782
3783``blockaddress(@function, %block)``
3784
3785The '``blockaddress``' constant computes the address of the specified
3786basic block in the specified function, and always has an ``i8*`` type.
3787Taking the address of the entry block is illegal.
3788
3789This value only has defined behavior when used as an operand to the
3790':ref:`indirectbr <i_indirectbr>`' or ':ref:`callbr <i_callbr>`'instruction, or
3791for comparisons against null. Pointer equality tests between labels addresses
3792results in undefined behavior --- though, again, comparison against null is ok,
3793and no label is equal to the null pointer. This may be passed around as an
3794opaque pointer sized value as long as the bits are not inspected. This
3795allows ``ptrtoint`` and arithmetic to be performed on these values so
3796long as the original value is reconstituted before the ``indirectbr`` or
3797``callbr`` instruction.
3798
3799Finally, some targets may provide defined semantics when using the value
3800as the operand to an inline assembly, but that is target specific.
3801
3802.. _constantexprs:
3803
3804Constant Expressions
3805--------------------
3806
3807Constant expressions are used to allow expressions involving other
3808constants to be used as constants. Constant expressions may be of any
3809:ref:`first class <t_firstclass>` type and may involve any LLVM operation
3810that does not have side effects (e.g. load and call are not supported).
3811The following is the syntax for constant expressions:
3812
3813``trunc (CST to TYPE)``
3814    Perform the :ref:`trunc operation <i_trunc>` on constants.
3815``zext (CST to TYPE)``
3816    Perform the :ref:`zext operation <i_zext>` on constants.
3817``sext (CST to TYPE)``
3818    Perform the :ref:`sext operation <i_sext>` on constants.
3819``fptrunc (CST to TYPE)``
3820    Truncate a floating-point constant to another floating-point type.
3821    The size of CST must be larger than the size of TYPE. Both types
3822    must be floating-point.
3823``fpext (CST to TYPE)``
3824    Floating-point extend a constant to another type. The size of CST
3825    must be smaller or equal to the size of TYPE. Both types must be
3826    floating-point.
3827``fptoui (CST to TYPE)``
3828    Convert a floating-point constant to the corresponding unsigned
3829    integer constant. TYPE must be a scalar or vector integer type. CST
3830    must be of scalar or vector floating-point type. Both CST and TYPE
3831    must be scalars, or vectors of the same number of elements. If the
3832    value won't fit in the integer type, the result is a
3833    :ref:`poison value <poisonvalues>`.
3834``fptosi (CST to TYPE)``
3835    Convert a floating-point constant to the corresponding signed
3836    integer constant. TYPE must be a scalar or vector integer type. CST
3837    must be of scalar or vector floating-point type. Both CST and TYPE
3838    must be scalars, or vectors of the same number of elements. If the
3839    value won't fit in the integer type, the result is a
3840    :ref:`poison value <poisonvalues>`.
3841``uitofp (CST to TYPE)``
3842    Convert an unsigned integer constant to the corresponding
3843    floating-point constant. TYPE must be a scalar or vector floating-point
3844    type.  CST must be of scalar or vector integer type. Both CST and TYPE must
3845    be scalars, or vectors of the same number of elements.
3846``sitofp (CST to TYPE)``
3847    Convert a signed integer constant to the corresponding floating-point
3848    constant. TYPE must be a scalar or vector floating-point type.
3849    CST must be of scalar or vector integer type. Both CST and TYPE must
3850    be scalars, or vectors of the same number of elements.
3851``ptrtoint (CST to TYPE)``
3852    Perform the :ref:`ptrtoint operation <i_ptrtoint>` on constants.
3853``inttoptr (CST to TYPE)``
3854    Perform the :ref:`inttoptr operation <i_inttoptr>` on constants.
3855    This one is *really* dangerous!
3856``bitcast (CST to TYPE)``
3857    Convert a constant, CST, to another TYPE.
3858    The constraints of the operands are the same as those for the
3859    :ref:`bitcast instruction <i_bitcast>`.
3860``addrspacecast (CST to TYPE)``
3861    Convert a constant pointer or constant vector of pointer, CST, to another
3862    TYPE in a different address space. The constraints of the operands are the
3863    same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
3864``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
3865    Perform the :ref:`getelementptr operation <i_getelementptr>` on
3866    constants. As with the :ref:`getelementptr <i_getelementptr>`
3867    instruction, the index list may have one or more indexes, which are
3868    required to make sense for the type of "pointer to TY".
3869``select (COND, VAL1, VAL2)``
3870    Perform the :ref:`select operation <i_select>` on constants.
3871``icmp COND (VAL1, VAL2)``
3872    Perform the :ref:`icmp operation <i_icmp>` on constants.
3873``fcmp COND (VAL1, VAL2)``
3874    Perform the :ref:`fcmp operation <i_fcmp>` on constants.
3875``extractelement (VAL, IDX)``
3876    Perform the :ref:`extractelement operation <i_extractelement>` on
3877    constants.
3878``insertelement (VAL, ELT, IDX)``
3879    Perform the :ref:`insertelement operation <i_insertelement>` on
3880    constants.
3881``shufflevector (VEC1, VEC2, IDXMASK)``
3882    Perform the :ref:`shufflevector operation <i_shufflevector>` on
3883    constants.
3884``extractvalue (VAL, IDX0, IDX1, ...)``
3885    Perform the :ref:`extractvalue operation <i_extractvalue>` on
3886    constants. The index list is interpreted in a similar manner as
3887    indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
3888    least one index value must be specified.
3889``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
3890    Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
3891    The index list is interpreted in a similar manner as indices in a
3892    ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
3893    value must be specified.
3894``OPCODE (LHS, RHS)``
3895    Perform the specified operation of the LHS and RHS constants. OPCODE
3896    may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
3897    binary <bitwiseops>` operations. The constraints on operands are
3898    the same as those for the corresponding instruction (e.g. no bitwise
3899    operations on floating-point values are allowed).
3900
3901Other Values
3902============
3903
3904.. _inlineasmexprs:
3905
3906Inline Assembler Expressions
3907----------------------------
3908
3909LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
3910Inline Assembly <moduleasm>`) through the use of a special value. This value
3911represents the inline assembler as a template string (containing the
3912instructions to emit), a list of operand constraints (stored as a string), a
3913flag that indicates whether or not the inline asm expression has side effects,
3914and a flag indicating whether the function containing the asm needs to align its
3915stack conservatively.
3916
3917The template string supports argument substitution of the operands using "``$``"
3918followed by a number, to indicate substitution of the given register/memory
3919location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
3920be used, where ``MODIFIER`` is a target-specific annotation for how to print the
3921operand (See :ref:`inline-asm-modifiers`).
3922
3923A literal "``$``" may be included by using "``$$``" in the template. To include
3924other special characters into the output, the usual "``\XX``" escapes may be
3925used, just as in other strings. Note that after template substitution, the
3926resulting assembly string is parsed by LLVM's integrated assembler unless it is
3927disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
3928syntax known to LLVM.
3929
3930LLVM also supports a few more substitutions useful for writing inline assembly:
3931
3932- ``${:uid}``: Expands to a decimal integer unique to this inline assembly blob.
3933  This substitution is useful when declaring a local label. Many standard
3934  compiler optimizations, such as inlining, may duplicate an inline asm blob.
3935  Adding a blob-unique identifier ensures that the two labels will not conflict
3936  during assembly. This is used to implement `GCC's %= special format
3937  string <https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html>`_.
3938- ``${:comment}``: Expands to the comment character of the current target's
3939  assembly dialect. This is usually ``#``, but many targets use other strings,
3940  such as ``;``, ``//``, or ``!``.
3941- ``${:private}``: Expands to the assembler private label prefix. Labels with
3942  this prefix will not appear in the symbol table of the assembled object.
3943  Typically the prefix is ``L``, but targets may use other strings. ``.L`` is
3944  relatively popular.
3945
3946LLVM's support for inline asm is modeled closely on the requirements of Clang's
3947GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
3948modifier codes listed here are similar or identical to those in GCC's inline asm
3949support. However, to be clear, the syntax of the template and constraint strings
3950described here is *not* the same as the syntax accepted by GCC and Clang, and,
3951while most constraint letters are passed through as-is by Clang, some get
3952translated to other codes when converting from the C source to the LLVM
3953assembly.
3954
3955An example inline assembler expression is:
3956
3957.. code-block:: llvm
3958
3959    i32 (i32) asm "bswap $0", "=r,r"
3960
3961Inline assembler expressions may **only** be used as the callee operand
3962of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
3963Thus, typically we have:
3964
3965.. code-block:: llvm
3966
3967    %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
3968
3969Inline asms with side effects not visible in the constraint list must be
3970marked as having side effects. This is done through the use of the
3971'``sideeffect``' keyword, like so:
3972
3973.. code-block:: llvm
3974
3975    call void asm sideeffect "eieio", ""()
3976
3977In some cases inline asms will contain code that will not work unless
3978the stack is aligned in some way, such as calls or SSE instructions on
3979x86, yet will not contain code that does that alignment within the asm.
3980The compiler should make conservative assumptions about what the asm
3981might contain and should generate its usual stack alignment code in the
3982prologue if the '``alignstack``' keyword is present:
3983
3984.. code-block:: llvm
3985
3986    call void asm alignstack "eieio", ""()
3987
3988Inline asms also support using non-standard assembly dialects. The
3989assumed dialect is ATT. When the '``inteldialect``' keyword is present,
3990the inline asm is using the Intel dialect. Currently, ATT and Intel are
3991the only supported dialects. An example is:
3992
3993.. code-block:: llvm
3994
3995    call void asm inteldialect "eieio", ""()
3996
3997If multiple keywords appear the '``sideeffect``' keyword must come
3998first, the '``alignstack``' keyword second and the '``inteldialect``'
3999keyword last.
4000
4001Inline Asm Constraint String
4002^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4003
4004The constraint list is a comma-separated string, each element containing one or
4005more constraint codes.
4006
4007For each element in the constraint list an appropriate register or memory
4008operand will be chosen, and it will be made available to assembly template
4009string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
4010second, etc.
4011
4012There are three different types of constraints, which are distinguished by a
4013prefix symbol in front of the constraint code: Output, Input, and Clobber. The
4014constraints must always be given in that order: outputs first, then inputs, then
4015clobbers. They cannot be intermingled.
4016
4017There are also three different categories of constraint codes:
4018
4019- Register constraint. This is either a register class, or a fixed physical
4020  register. This kind of constraint will allocate a register, and if necessary,
4021  bitcast the argument or result to the appropriate type.
4022- Memory constraint. This kind of constraint is for use with an instruction
4023  taking a memory operand. Different constraints allow for different addressing
4024  modes used by the target.
4025- Immediate value constraint. This kind of constraint is for an integer or other
4026  immediate value which can be rendered directly into an instruction. The
4027  various target-specific constraints allow the selection of a value in the
4028  proper range for the instruction you wish to use it with.
4029
4030Output constraints
4031""""""""""""""""""
4032
4033Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
4034indicates that the assembly will write to this operand, and the operand will
4035then be made available as a return value of the ``asm`` expression. Output
4036constraints do not consume an argument from the call instruction. (Except, see
4037below about indirect outputs).
4038
4039Normally, it is expected that no output locations are written to by the assembly
4040expression until *all* of the inputs have been read. As such, LLVM may assign
4041the same register to an output and an input. If this is not safe (e.g. if the
4042assembly contains two instructions, where the first writes to one output, and
4043the second reads an input and writes to a second output), then the "``&``"
4044modifier must be used (e.g. "``=&r``") to specify that the output is an
4045"early-clobber" output. Marking an output as "early-clobber" ensures that LLVM
4046will not use the same register for any inputs (other than an input tied to this
4047output).
4048
4049Input constraints
4050"""""""""""""""""
4051
4052Input constraints do not have a prefix -- just the constraint codes. Each input
4053constraint will consume one argument from the call instruction. It is not
4054permitted for the asm to write to any input register or memory location (unless
4055that input is tied to an output). Note also that multiple inputs may all be
4056assigned to the same register, if LLVM can determine that they necessarily all
4057contain the same value.
4058
4059Instead of providing a Constraint Code, input constraints may also "tie"
4060themselves to an output constraint, by providing an integer as the constraint
4061string. Tied inputs still consume an argument from the call instruction, and
4062take up a position in the asm template numbering as is usual -- they will simply
4063be constrained to always use the same register as the output they've been tied
4064to. For example, a constraint string of "``=r,0``" says to assign a register for
4065output, and use that register as an input as well (it being the 0'th
4066constraint).
4067
4068It is permitted to tie an input to an "early-clobber" output. In that case, no
4069*other* input may share the same register as the input tied to the early-clobber
4070(even when the other input has the same value).
4071
4072You may only tie an input to an output which has a register constraint, not a
4073memory constraint. Only a single input may be tied to an output.
4074
4075There is also an "interesting" feature which deserves a bit of explanation: if a
4076register class constraint allocates a register which is too small for the value
4077type operand provided as input, the input value will be split into multiple
4078registers, and all of them passed to the inline asm.
4079
4080However, this feature is often not as useful as you might think.
4081
4082Firstly, the registers are *not* guaranteed to be consecutive. So, on those
4083architectures that have instructions which operate on multiple consecutive
4084instructions, this is not an appropriate way to support them. (e.g. the 32-bit
4085SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
4086hardware then loads into both the named register, and the next register. This
4087feature of inline asm would not be useful to support that.)
4088
4089A few of the targets provide a template string modifier allowing explicit access
4090to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
4091``D``). On such an architecture, you can actually access the second allocated
4092register (yet, still, not any subsequent ones). But, in that case, you're still
4093probably better off simply splitting the value into two separate operands, for
4094clarity. (e.g. see the description of the ``A`` constraint on X86, which,
4095despite existing only for use with this feature, is not really a good idea to
4096use)
4097
4098Indirect inputs and outputs
4099"""""""""""""""""""""""""""
4100
4101Indirect output or input constraints can be specified by the "``*``" modifier
4102(which goes after the "``=``" in case of an output). This indicates that the asm
4103will write to or read from the contents of an *address* provided as an input
4104argument. (Note that in this way, indirect outputs act more like an *input* than
4105an output: just like an input, they consume an argument of the call expression,
4106rather than producing a return value. An indirect output constraint is an
4107"output" only in that the asm is expected to write to the contents of the input
4108memory location, instead of just read from it).
4109
4110This is most typically used for memory constraint, e.g. "``=*m``", to pass the
4111address of a variable as a value.
4112
4113It is also possible to use an indirect *register* constraint, but only on output
4114(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
4115value normally, and then, separately emit a store to the address provided as
4116input, after the provided inline asm. (It's not clear what value this
4117functionality provides, compared to writing the store explicitly after the asm
4118statement, and it can only produce worse code, since it bypasses many
4119optimization passes. I would recommend not using it.)
4120
4121
4122Clobber constraints
4123"""""""""""""""""""
4124
4125A clobber constraint is indicated by a "``~``" prefix. A clobber does not
4126consume an input operand, nor generate an output. Clobbers cannot use any of the
4127general constraint code letters -- they may use only explicit register
4128constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
4129"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
4130memory locations -- not only the memory pointed to by a declared indirect
4131output.
4132
4133Note that clobbering named registers that are also present in output
4134constraints is not legal.
4135
4136
4137Constraint Codes
4138""""""""""""""""
4139After a potential prefix comes constraint code, or codes.
4140
4141A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
4142followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
4143(e.g. "``{eax}``").
4144
4145The one and two letter constraint codes are typically chosen to be the same as
4146GCC's constraint codes.
4147
4148A single constraint may include one or more than constraint code in it, leaving
4149it up to LLVM to choose which one to use. This is included mainly for
4150compatibility with the translation of GCC inline asm coming from clang.
4151
4152There are two ways to specify alternatives, and either or both may be used in an
4153inline asm constraint list:
4154
41551) Append the codes to each other, making a constraint code set. E.g. "``im``"
4156   or "``{eax}m``". This means "choose any of the options in the set". The
4157   choice of constraint is made independently for each constraint in the
4158   constraint list.
4159
41602) Use "``|``" between constraint code sets, creating alternatives. Every
4161   constraint in the constraint list must have the same number of alternative
4162   sets. With this syntax, the same alternative in *all* of the items in the
4163   constraint list will be chosen together.
4164
4165Putting those together, you might have a two operand constraint string like
4166``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
4167operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
4168may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
4169
4170However, the use of either of the alternatives features is *NOT* recommended, as
4171LLVM is not able to make an intelligent choice about which one to use. (At the
4172point it currently needs to choose, not enough information is available to do so
4173in a smart way.) Thus, it simply tries to make a choice that's most likely to
4174compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
4175always choose to use memory, not registers). And, if given multiple registers,
4176or multiple register classes, it will simply choose the first one. (In fact, it
4177doesn't currently even ensure explicitly specified physical registers are
4178unique, so specifying multiple physical registers as alternatives, like
4179``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
4180intended.)
4181
4182Supported Constraint Code List
4183""""""""""""""""""""""""""""""
4184
4185The constraint codes are, in general, expected to behave the same way they do in
4186GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
4187inline asm code which was supported by GCC. A mismatch in behavior between LLVM
4188and GCC likely indicates a bug in LLVM.
4189
4190Some constraint codes are typically supported by all targets:
4191
4192- ``r``: A register in the target's general purpose register class.
4193- ``m``: A memory address operand. It is target-specific what addressing modes
4194  are supported, typical examples are register, or register + register offset,
4195  or register + immediate offset (of some target-specific size).
4196- ``i``: An integer constant (of target-specific width). Allows either a simple
4197  immediate, or a relocatable value.
4198- ``n``: An integer constant -- *not* including relocatable values.
4199- ``s``: An integer constant, but allowing *only* relocatable values.
4200- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
4201  useful to pass a label for an asm branch or call.
4202
4203  .. FIXME: but that surely isn't actually okay to jump out of an asm
4204     block without telling llvm about the control transfer???)
4205
4206- ``{register-name}``: Requires exactly the named physical register.
4207
4208Other constraints are target-specific:
4209
4210AArch64:
4211
4212- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
4213- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
4214  i.e. 0 to 4095 with optional shift by 12.
4215- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
4216  ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
4217- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
4218  logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
4219- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
4220  logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
4221- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
4222  32-bit register. This is a superset of ``K``: in addition to the bitmask
4223  immediate, also allows immediate integers which can be loaded with a single
4224  ``MOVZ`` or ``MOVL`` instruction.
4225- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
4226  64-bit register. This is a superset of ``L``.
4227- ``Q``: Memory address operand must be in a single register (no
4228  offsets). (However, LLVM currently does this for the ``m`` constraint as
4229  well.)
4230- ``r``: A 32 or 64-bit integer register (W* or X*).
4231- ``w``: A 32, 64, or 128-bit floating-point, SIMD or SVE vector register.
4232- ``x``: Like w, but restricted to registers 0 to 15 inclusive.
4233- ``y``: Like w, but restricted to SVE vector registers Z0 to Z7 inclusive.
4234- ``Upl``: One of the low eight SVE predicate registers (P0 to P7)
4235- ``Upa``: Any of the SVE predicate registers (P0 to P15)
4236
4237AMDGPU:
4238
4239- ``r``: A 32 or 64-bit integer register.
4240- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
4241- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
4242- ``[0-9]a``: The 32-bit AGPR register, number 0-9.
4243- ``I``: An integer inline constant in the range from -16 to 64.
4244- ``J``: A 16-bit signed integer constant.
4245- ``A``: An integer or a floating-point inline constant.
4246- ``B``: A 32-bit signed integer constant.
4247- ``C``: A 32-bit unsigned integer constant or an integer inline constant in the range from -16 to 64.
4248- ``DA``: A 64-bit constant that can be split into two "A" constants.
4249- ``DB``: A 64-bit constant that can be split into two "B" constants.
4250
4251All ARM modes:
4252
4253- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
4254  operand. Treated the same as operand ``m``, at the moment.
4255- ``Te``: An even general-purpose 32-bit integer register: ``r0,r2,...,r12,r14``
4256- ``To``: An odd general-purpose 32-bit integer register: ``r1,r3,...,r11``
4257
4258ARM and ARM's Thumb2 mode:
4259
4260- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
4261- ``I``: An immediate integer valid for a data-processing instruction.
4262- ``J``: An immediate integer between -4095 and 4095.
4263- ``K``: An immediate integer whose bitwise inverse is valid for a
4264  data-processing instruction. (Can be used with template modifier "``B``" to
4265  print the inverted value).
4266- ``L``: An immediate integer whose negation is valid for a data-processing
4267  instruction. (Can be used with template modifier "``n``" to print the negated
4268  value).
4269- ``M``: A power of two or a integer between 0 and 32.
4270- ``N``: Invalid immediate constraint.
4271- ``O``: Invalid immediate constraint.
4272- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
4273- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
4274  as ``r``.
4275- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
4276  invalid.
4277- ``w``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
4278  ``s0-s31``, ``d0-d31``, or ``q0-q15``, respectively.
4279- ``t``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
4280  ``s0-s31``, ``d0-d15``, or ``q0-q7``, respectively.
4281- ``x``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
4282  ``s0-s15``, ``d0-d7``, or ``q0-q3``, respectively.
4283
4284ARM's Thumb1 mode:
4285
4286- ``I``: An immediate integer between 0 and 255.
4287- ``J``: An immediate integer between -255 and -1.
4288- ``K``: An immediate integer between 0 and 255, with optional left-shift by
4289  some amount.
4290- ``L``: An immediate integer between -7 and 7.
4291- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
4292- ``N``: An immediate integer between 0 and 31.
4293- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
4294- ``r``: A low 32-bit GPR register (``r0-r7``).
4295- ``l``: A low 32-bit GPR register (``r0-r7``).
4296- ``h``: A high GPR register (``r0-r7``).
4297- ``w``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
4298  ``s0-s31``, ``d0-d31``, or ``q0-q15``, respectively.
4299- ``t``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
4300  ``s0-s31``, ``d0-d15``, or ``q0-q7``, respectively.
4301- ``x``: A 32, 64, or 128-bit floating-point/SIMD register in the ranges
4302  ``s0-s15``, ``d0-d7``, or ``q0-q3``, respectively.
4303
4304
4305Hexagon:
4306
4307- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
4308  at the moment.
4309- ``r``: A 32 or 64-bit register.
4310
4311MSP430:
4312
4313- ``r``: An 8 or 16-bit register.
4314
4315MIPS:
4316
4317- ``I``: An immediate signed 16-bit integer.
4318- ``J``: An immediate integer zero.
4319- ``K``: An immediate unsigned 16-bit integer.
4320- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
4321- ``N``: An immediate integer between -65535 and -1.
4322- ``O``: An immediate signed 15-bit integer.
4323- ``P``: An immediate integer between 1 and 65535.
4324- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
4325  register plus 16-bit immediate offset. In MIPS mode, just a base register.
4326- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
4327  register plus a 9-bit signed offset. In MIPS mode, the same as constraint
4328  ``m``.
4329- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
4330  ``sc`` instruction on the given subtarget (details vary).
4331- ``r``, ``d``,  ``y``: A 32 or 64-bit GPR register.
4332- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
4333  (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
4334  argument modifier for compatibility with GCC.
4335- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
4336  ``25``).
4337- ``l``: The ``lo`` register, 32 or 64-bit.
4338- ``x``: Invalid.
4339
4340NVPTX:
4341
4342- ``b``: A 1-bit integer register.
4343- ``c`` or ``h``: A 16-bit integer register.
4344- ``r``: A 32-bit integer register.
4345- ``l`` or ``N``: A 64-bit integer register.
4346- ``f``: A 32-bit float register.
4347- ``d``: A 64-bit float register.
4348
4349
4350PowerPC:
4351
4352- ``I``: An immediate signed 16-bit integer.
4353- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
4354- ``K``: An immediate unsigned 16-bit integer.
4355- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
4356- ``M``: An immediate integer greater than 31.
4357- ``N``: An immediate integer that is an exact power of 2.
4358- ``O``: The immediate integer constant 0.
4359- ``P``: An immediate integer constant whose negation is a signed 16-bit
4360  constant.
4361- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
4362  treated the same as ``m``.
4363- ``r``: A 32 or 64-bit integer register.
4364- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
4365  ``R1-R31``).
4366- ``f``: A 32 or 64-bit float register (``F0-F31``),
4367- ``v``: For ``4 x f32`` or ``4 x f64`` types, a 128-bit altivec vector
4368   register (``V0-V31``).
4369
4370- ``y``: Condition register (``CR0-CR7``).
4371- ``wc``: An individual CR bit in a CR register.
4372- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
4373  register set (overlapping both the floating-point and vector register files).
4374- ``ws``: A 32 or 64-bit floating-point register, from the full VSX register
4375  set.
4376
4377RISC-V:
4378
4379- ``A``: An address operand (using a general-purpose register, without an
4380  offset).
4381- ``I``: A 12-bit signed integer immediate operand.
4382- ``J``: A zero integer immediate operand.
4383- ``K``: A 5-bit unsigned integer immediate operand.
4384- ``f``: A 32- or 64-bit floating-point register (requires F or D extension).
4385- ``r``: A 32- or 64-bit general-purpose register (depending on the platform
4386  ``XLEN``).
4387
4388Sparc:
4389
4390- ``I``: An immediate 13-bit signed integer.
4391- ``r``: A 32-bit integer register.
4392- ``f``: Any floating-point register on SparcV8, or a floating-point
4393  register in the "low" half of the registers on SparcV9.
4394- ``e``: Any floating-point register. (Same as ``f`` on SparcV8.)
4395
4396SystemZ:
4397
4398- ``I``: An immediate unsigned 8-bit integer.
4399- ``J``: An immediate unsigned 12-bit integer.
4400- ``K``: An immediate signed 16-bit integer.
4401- ``L``: An immediate signed 20-bit integer.
4402- ``M``: An immediate integer 0x7fffffff.
4403- ``Q``: A memory address operand with a base address and a 12-bit immediate
4404  unsigned displacement.
4405- ``R``: A memory address operand with a base address, a 12-bit immediate
4406  unsigned displacement, and an index register.
4407- ``S``: A memory address operand with a base address and a 20-bit immediate
4408  signed displacement.
4409- ``T``: A memory address operand with a base address, a 20-bit immediate
4410  signed displacement, and an index register.
4411- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
4412- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
4413  address context evaluates as zero).
4414- ``h``: A 32-bit value in the high part of a 64bit data register
4415  (LLVM-specific)
4416- ``f``: A 32, 64, or 128-bit floating-point register.
4417
4418X86:
4419
4420- ``I``: An immediate integer between 0 and 31.
4421- ``J``: An immediate integer between 0 and 64.
4422- ``K``: An immediate signed 8-bit integer.
4423- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
4424  0xffffffff.
4425- ``M``: An immediate integer between 0 and 3.
4426- ``N``: An immediate unsigned 8-bit integer.
4427- ``O``: An immediate integer between 0 and 127.
4428- ``e``: An immediate 32-bit signed integer.
4429- ``Z``: An immediate 32-bit unsigned integer.
4430- ``o``, ``v``: Treated the same as ``m``, at the moment.
4431- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
4432  ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
4433  registers, and on X86-64, it is all of the integer registers.
4434- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
4435  ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
4436- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
4437- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
4438  existed since i386, and can be accessed without the REX prefix.
4439- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
4440- ``y``: A 64-bit MMX register, if MMX is enabled.
4441- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
4442  operand in a SSE register. If AVX is also enabled, can also be a 256-bit
4443  vector operand in an AVX register. If AVX-512 is also enabled, can also be a
4444  512-bit vector operand in an AVX512 register, Otherwise, an error.
4445- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
4446- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
4447  32-bit mode, a 64-bit integer operand will get split into two registers). It
4448  is not recommended to use this constraint, as in 64-bit mode, the 64-bit
4449  operand will get allocated only to RAX -- if two 32-bit operands are needed,
4450  you're better off splitting it yourself, before passing it to the asm
4451  statement.
4452
4453XCore:
4454
4455- ``r``: A 32-bit integer register.
4456
4457
4458.. _inline-asm-modifiers:
4459
4460Asm template argument modifiers
4461^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4462
4463In the asm template string, modifiers can be used on the operand reference, like
4464"``${0:n}``".
4465
4466The modifiers are, in general, expected to behave the same way they do in
4467GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
4468inline asm code which was supported by GCC. A mismatch in behavior between LLVM
4469and GCC likely indicates a bug in LLVM.
4470
4471Target-independent:
4472
4473- ``c``: Print an immediate integer constant unadorned, without
4474  the target-specific immediate punctuation (e.g. no ``$`` prefix).
4475- ``n``: Negate and print immediate integer constant unadorned, without the
4476  target-specific immediate punctuation (e.g. no ``$`` prefix).
4477- ``l``: Print as an unadorned label, without the target-specific label
4478  punctuation (e.g. no ``$`` prefix).
4479
4480AArch64:
4481
4482- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
4483  instead of ``x30``, print ``w30``.
4484- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
4485- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
4486  ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
4487  ``v*``.
4488
4489AMDGPU:
4490
4491- ``r``: No effect.
4492
4493ARM:
4494
4495- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
4496  register).
4497- ``P``: No effect.
4498- ``q``: No effect.
4499- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
4500  as ``d4[1]`` instead of ``s9``)
4501- ``B``: Bitwise invert and print an immediate integer constant without ``#``
4502  prefix.
4503- ``L``: Print the low 16-bits of an immediate integer constant.
4504- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
4505  register operands subsequent to the specified one (!), so use carefully.
4506- ``Q``: Print the low-order register of a register-pair, or the low-order
4507  register of a two-register operand.
4508- ``R``: Print the high-order register of a register-pair, or the high-order
4509  register of a two-register operand.
4510- ``H``: Print the second register of a register-pair. (On a big-endian system,
4511  ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
4512  to ``R``.)
4513
4514  .. FIXME: H doesn't currently support printing the second register
4515     of a two-register operand.
4516
4517- ``e``: Print the low doubleword register of a NEON quad register.
4518- ``f``: Print the high doubleword register of a NEON quad register.
4519- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
4520  adornment.
4521
4522Hexagon:
4523
4524- ``L``: Print the second register of a two-register operand. Requires that it
4525  has been allocated consecutively to the first.
4526
4527  .. FIXME: why is it restricted to consecutive ones? And there's
4528     nothing that ensures that happens, is there?
4529
4530- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4531  nothing. Used to print 'addi' vs 'add' instructions.
4532
4533MSP430:
4534
4535No additional modifiers.
4536
4537MIPS:
4538
4539- ``X``: Print an immediate integer as hexadecimal
4540- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
4541- ``d``: Print an immediate integer as decimal.
4542- ``m``: Subtract one and print an immediate integer as decimal.
4543- ``z``: Print $0 if an immediate zero, otherwise print normally.
4544- ``L``: Print the low-order register of a two-register operand, or prints the
4545  address of the low-order word of a double-word memory operand.
4546
4547  .. FIXME: L seems to be missing memory operand support.
4548
4549- ``M``: Print the high-order register of a two-register operand, or prints the
4550  address of the high-order word of a double-word memory operand.
4551
4552  .. FIXME: M seems to be missing memory operand support.
4553
4554- ``D``: Print the second register of a two-register operand, or prints the
4555  second word of a double-word memory operand. (On a big-endian system, ``D`` is
4556  equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
4557  ``M``.)
4558- ``w``: No effect. Provided for compatibility with GCC which requires this
4559  modifier in order to print MSA registers (``W0-W31``) with the ``f``
4560  constraint.
4561
4562NVPTX:
4563
4564- ``r``: No effect.
4565
4566PowerPC:
4567
4568- ``L``: Print the second register of a two-register operand. Requires that it
4569  has been allocated consecutively to the first.
4570
4571  .. FIXME: why is it restricted to consecutive ones? And there's
4572     nothing that ensures that happens, is there?
4573
4574- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
4575  nothing. Used to print 'addi' vs 'add' instructions.
4576- ``y``: For a memory operand, prints formatter for a two-register X-form
4577  instruction. (Currently always prints ``r0,OPERAND``).
4578- ``U``: Prints 'u' if the memory operand is an update form, and nothing
4579  otherwise. (NOTE: LLVM does not support update form, so this will currently
4580  always print nothing)
4581- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
4582  not support indexed form, so this will currently always print nothing)
4583
4584RISC-V:
4585
4586- ``i``: Print the letter 'i' if the operand is not a register, otherwise print
4587  nothing. Used to print 'addi' vs 'add' instructions, etc.
4588- ``z``: Print the register ``zero`` if an immediate zero, otherwise print
4589  normally.
4590
4591Sparc:
4592
4593- ``r``: No effect.
4594
4595SystemZ:
4596
4597SystemZ implements only ``n``, and does *not* support any of the other
4598target-independent modifiers.
4599
4600X86:
4601
4602- ``c``: Print an unadorned integer or symbol name. (The latter is
4603  target-specific behavior for this typically target-independent modifier).
4604- ``A``: Print a register name with a '``*``' before it.
4605- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
4606  operand.
4607- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
4608  memory operand.
4609- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
4610  operand.
4611- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
4612  operand.
4613- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
4614  available, otherwise the 32-bit register name; do nothing on a memory operand.
4615- ``n``: Negate and print an unadorned integer, or, for operands other than an
4616  immediate integer (e.g. a relocatable symbol expression), print a '-' before
4617  the operand. (The behavior for relocatable symbol expressions is a
4618  target-specific behavior for this typically target-independent modifier)
4619- ``H``: Print a memory reference with additional offset +8.
4620- ``P``: Print a memory reference or operand for use as the argument of a call
4621  instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
4622
4623XCore:
4624
4625No additional modifiers.
4626
4627
4628Inline Asm Metadata
4629^^^^^^^^^^^^^^^^^^^
4630
4631The call instructions that wrap inline asm nodes may have a
4632"``!srcloc``" MDNode attached to it that contains a list of constant
4633integers. If present, the code generator will use the integer as the
4634location cookie value when report errors through the ``LLVMContext``
4635error reporting mechanisms. This allows a front-end to correlate backend
4636errors that occur with inline asm back to the source code that produced
4637it. For example:
4638
4639.. code-block:: llvm
4640
4641    call void asm sideeffect "something bad", ""(), !srcloc !42
4642    ...
4643    !42 = !{ i32 1234567 }
4644
4645It is up to the front-end to make sense of the magic numbers it places
4646in the IR. If the MDNode contains multiple constants, the code generator
4647will use the one that corresponds to the line of the asm that the error
4648occurs on.
4649
4650.. _metadata:
4651
4652Metadata
4653========
4654
4655LLVM IR allows metadata to be attached to instructions in the program
4656that can convey extra information about the code to the optimizers and
4657code generator. One example application of metadata is source-level
4658debug information. There are two metadata primitives: strings and nodes.
4659
4660Metadata does not have a type, and is not a value. If referenced from a
4661``call`` instruction, it uses the ``metadata`` type.
4662
4663All metadata are identified in syntax by a exclamation point ('``!``').
4664
4665.. _metadata-string:
4666
4667Metadata Nodes and Metadata Strings
4668-----------------------------------
4669
4670A metadata string is a string surrounded by double quotes. It can
4671contain any character by escaping non-printable characters with
4672"``\xx``" where "``xx``" is the two digit hex code. For example:
4673"``!"test\00"``".
4674
4675Metadata nodes are represented with notation similar to structure
4676constants (a comma separated list of elements, surrounded by braces and
4677preceded by an exclamation point). Metadata nodes can have any values as
4678their operand. For example:
4679
4680.. code-block:: llvm
4681
4682    !{ !"test\00", i32 10}
4683
4684Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
4685
4686.. code-block:: text
4687
4688    !0 = distinct !{!"test\00", i32 10}
4689
4690``distinct`` nodes are useful when nodes shouldn't be merged based on their
4691content. They can also occur when transformations cause uniquing collisions
4692when metadata operands change.
4693
4694A :ref:`named metadata <namedmetadatastructure>` is a collection of
4695metadata nodes, which can be looked up in the module symbol table. For
4696example:
4697
4698.. code-block:: llvm
4699
4700    !foo = !{!4, !3}
4701
4702Metadata can be used as function arguments. Here the ``llvm.dbg.value``
4703intrinsic is using three metadata arguments:
4704
4705.. code-block:: llvm
4706
4707    call void @llvm.dbg.value(metadata !24, metadata !25, metadata !26)
4708
4709Metadata can be attached to an instruction. Here metadata ``!21`` is attached
4710to the ``add`` instruction using the ``!dbg`` identifier:
4711
4712.. code-block:: llvm
4713
4714    %indvar.next = add i64 %indvar, 1, !dbg !21
4715
4716Metadata can also be attached to a function or a global variable. Here metadata
4717``!22`` is attached to the ``f1`` and ``f2`` functions, and the globals ``g1``
4718and ``g2`` using the ``!dbg`` identifier:
4719
4720.. code-block:: llvm
4721
4722    declare !dbg !22 void @f1()
4723    define void @f2() !dbg !22 {
4724      ret void
4725    }
4726
4727    @g1 = global i32 0, !dbg !22
4728    @g2 = external global i32, !dbg !22
4729
4730A transformation is required to drop any metadata attachment that it does not
4731know or know it can't preserve. Currently there is an exception for metadata
4732attachment to globals for ``!type`` and ``!absolute_symbol`` which can't be
4733unconditionally dropped unless the global is itself deleted.
4734
4735Metadata attached to a module using named metadata may not be dropped, with
4736the exception of debug metadata (named metadata with the name ``!llvm.dbg.*``).
4737
4738More information about specific metadata nodes recognized by the
4739optimizers and code generator is found below.
4740
4741.. _specialized-metadata:
4742
4743Specialized Metadata Nodes
4744^^^^^^^^^^^^^^^^^^^^^^^^^^
4745
4746Specialized metadata nodes are custom data structures in metadata (as opposed
4747to generic tuples). Their fields are labelled, and can be specified in any
4748order.
4749
4750These aren't inherently debug info centric, but currently all the specialized
4751metadata nodes are related to debug info.
4752
4753.. _DICompileUnit:
4754
4755DICompileUnit
4756"""""""""""""
4757
4758``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
4759``retainedTypes:``, ``globals:``, ``imports:`` and ``macros:`` fields are tuples
4760containing the debug info to be emitted along with the compile unit, regardless
4761of code optimizations (some nodes are only emitted if there are references to
4762them from instructions). The ``debugInfoForProfiling:`` field is a boolean
4763indicating whether or not line-table discriminators are updated to provide
4764more-accurate debug info for profiling results.
4765
4766.. code-block:: text
4767
4768    !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
4769                        isOptimized: true, flags: "-O2", runtimeVersion: 2,
4770                        splitDebugFilename: "abc.debug", emissionKind: FullDebug,
4771                        enums: !2, retainedTypes: !3, globals: !4, imports: !5,
4772                        macros: !6, dwoId: 0x0abcd)
4773
4774Compile unit descriptors provide the root scope for objects declared in a
4775specific compilation unit. File descriptors are defined using this scope.  These
4776descriptors are collected by a named metadata node ``!llvm.dbg.cu``. They keep
4777track of global variables, type information, and imported entities (declarations
4778and namespaces).
4779
4780.. _DIFile:
4781
4782DIFile
4783""""""
4784
4785``DIFile`` nodes represent files. The ``filename:`` can include slashes.
4786
4787.. code-block:: none
4788
4789    !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir",
4790                 checksumkind: CSK_MD5,
4791                 checksum: "000102030405060708090a0b0c0d0e0f")
4792
4793Files are sometimes used in ``scope:`` fields, and are the only valid target
4794for ``file:`` fields.
4795Valid values for ``checksumkind:`` field are: {CSK_None, CSK_MD5, CSK_SHA1, CSK_SHA256}
4796
4797.. _DIBasicType:
4798
4799DIBasicType
4800"""""""""""
4801
4802``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
4803``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
4804
4805.. code-block:: text
4806
4807    !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
4808                      encoding: DW_ATE_unsigned_char)
4809    !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
4810
4811The ``encoding:`` describes the details of the type. Usually it's one of the
4812following:
4813
4814.. code-block:: text
4815
4816  DW_ATE_address       = 1
4817  DW_ATE_boolean       = 2
4818  DW_ATE_float         = 4
4819  DW_ATE_signed        = 5
4820  DW_ATE_signed_char   = 6
4821  DW_ATE_unsigned      = 7
4822  DW_ATE_unsigned_char = 8
4823
4824.. _DISubroutineType:
4825
4826DISubroutineType
4827""""""""""""""""
4828
4829``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
4830refers to a tuple; the first operand is the return type, while the rest are the
4831types of the formal arguments in order. If the first operand is ``null``, that
4832represents a function with no return value (such as ``void foo() {}`` in C++).
4833
4834.. code-block:: text
4835
4836    !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
4837    !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
4838    !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
4839
4840.. _DIDerivedType:
4841
4842DIDerivedType
4843"""""""""""""
4844
4845``DIDerivedType`` nodes represent types derived from other types, such as
4846qualified types.
4847
4848.. code-block:: text
4849
4850    !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
4851                      encoding: DW_ATE_unsigned_char)
4852    !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
4853                        align: 32)
4854
4855The following ``tag:`` values are valid:
4856
4857.. code-block:: text
4858
4859  DW_TAG_member             = 13
4860  DW_TAG_pointer_type       = 15
4861  DW_TAG_reference_type     = 16
4862  DW_TAG_typedef            = 22
4863  DW_TAG_inheritance        = 28
4864  DW_TAG_ptr_to_member_type = 31
4865  DW_TAG_const_type         = 38
4866  DW_TAG_friend             = 42
4867  DW_TAG_volatile_type      = 53
4868  DW_TAG_restrict_type      = 55
4869  DW_TAG_atomic_type        = 71
4870
4871.. _DIDerivedTypeMember:
4872
4873``DW_TAG_member`` is used to define a member of a :ref:`composite type
4874<DICompositeType>`. The type of the member is the ``baseType:``. The
4875``offset:`` is the member's bit offset.  If the composite type has an ODR
4876``identifier:`` and does not set ``flags: DIFwdDecl``, then the member is
4877uniqued based only on its ``name:`` and ``scope:``.
4878
4879``DW_TAG_inheritance`` and ``DW_TAG_friend`` are used in the ``elements:``
4880field of :ref:`composite types <DICompositeType>` to describe parents and
4881friends.
4882
4883``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
4884
4885``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
4886``DW_TAG_volatile_type``, ``DW_TAG_restrict_type`` and ``DW_TAG_atomic_type``
4887are used to qualify the ``baseType:``.
4888
4889Note that the ``void *`` type is expressed as a type derived from NULL.
4890
4891.. _DICompositeType:
4892
4893DICompositeType
4894"""""""""""""""
4895
4896``DICompositeType`` nodes represent types composed of other types, like
4897structures and unions. ``elements:`` points to a tuple of the composed types.
4898
4899If the source language supports ODR, the ``identifier:`` field gives the unique
4900identifier used for type merging between modules.  When specified,
4901:ref:`subprogram declarations <DISubprogramDeclaration>` and :ref:`member
4902derived types <DIDerivedTypeMember>` that reference the ODR-type in their
4903``scope:`` change uniquing rules.
4904
4905For a given ``identifier:``, there should only be a single composite type that
4906does not have  ``flags: DIFlagFwdDecl`` set.  LLVM tools that link modules
4907together will unique such definitions at parse time via the ``identifier:``
4908field, even if the nodes are ``distinct``.
4909
4910.. code-block:: text
4911
4912    !0 = !DIEnumerator(name: "SixKind", value: 7)
4913    !1 = !DIEnumerator(name: "SevenKind", value: 7)
4914    !2 = !DIEnumerator(name: "NegEightKind", value: -8)
4915    !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
4916                          line: 2, size: 32, align: 32, identifier: "_M4Enum",
4917                          elements: !{!0, !1, !2})
4918
4919The following ``tag:`` values are valid:
4920
4921.. code-block:: text
4922
4923  DW_TAG_array_type       = 1
4924  DW_TAG_class_type       = 2
4925  DW_TAG_enumeration_type = 4
4926  DW_TAG_structure_type   = 19
4927  DW_TAG_union_type       = 23
4928
4929For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
4930descriptors <DISubrange>`, each representing the range of subscripts at that
4931level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
4932array type is a native packed vector. The optional ``dataLocation`` is a
4933DIExpression that describes how to get from an object's address to the actual
4934raw data, if they aren't equivalent. This is only supported for array types,
4935particularly to describe Fortran arrays, which have an array descriptor in
4936addition to the array data. Alternatively it can also be DIVariable which
4937has the address of the actual raw data. The Fortran language supports pointer
4938arrays which can be attached to actual arrays, this attachment between pointer
4939and pointee is called association.  The optional ``associated`` is a
4940DIExpression that describes whether the pointer array is currently associated.
4941The optional ``allocated`` is a DIExpression that describes whether the
4942allocatable array is currently allocated.  The optional ``rank`` is a
4943DIExpression that describes the rank (number of dimensions) of fortran assumed
4944rank array (rank is known at runtime).
4945
4946For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
4947descriptors <DIEnumerator>`, each representing the definition of an enumeration
4948value for the set. All enumeration type descriptors are collected in the
4949``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
4950
4951For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
4952``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
4953<DIDerivedType>` with ``tag: DW_TAG_member``, ``tag: DW_TAG_inheritance``, or
4954``tag: DW_TAG_friend``; or :ref:`subprograms <DISubprogram>` with
4955``isDefinition: false``.
4956
4957.. _DISubrange:
4958
4959DISubrange
4960""""""""""
4961
4962``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
4963:ref:`DICompositeType`.
4964
4965- ``count: -1`` indicates an empty array.
4966- ``count: !9`` describes the count with a :ref:`DILocalVariable`.
4967- ``count: !11`` describes the count with a :ref:`DIGlobalVariable`.
4968
4969.. code-block:: text
4970
4971    !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
4972    !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
4973    !2 = !DISubrange(count: -1) ; empty array.
4974
4975    ; Scopes used in rest of example
4976    !6 = !DIFile(filename: "vla.c", directory: "/path/to/file")
4977    !7 = distinct !DICompileUnit(language: DW_LANG_C99, file: !6)
4978    !8 = distinct !DISubprogram(name: "foo", scope: !7, file: !6, line: 5)
4979
4980    ; Use of local variable as count value
4981    !9 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
4982    !10 = !DILocalVariable(name: "count", scope: !8, file: !6, line: 42, type: !9)
4983    !11 = !DISubrange(count: !10, lowerBound: 0)
4984
4985    ; Use of global variable as count value
4986    !12 = !DIGlobalVariable(name: "count", scope: !8, file: !6, line: 22, type: !9)
4987    !13 = !DISubrange(count: !12, lowerBound: 0)
4988
4989.. _DIEnumerator:
4990
4991DIEnumerator
4992""""""""""""
4993
4994``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
4995variants of :ref:`DICompositeType`.
4996
4997.. code-block:: text
4998
4999    !0 = !DIEnumerator(name: "SixKind", value: 7)
5000    !1 = !DIEnumerator(name: "SevenKind", value: 7)
5001    !2 = !DIEnumerator(name: "NegEightKind", value: -8)
5002
5003DITemplateTypeParameter
5004"""""""""""""""""""""""
5005
5006``DITemplateTypeParameter`` nodes represent type parameters to generic source
5007language constructs. They are used (optionally) in :ref:`DICompositeType` and
5008:ref:`DISubprogram` ``templateParams:`` fields.
5009
5010.. code-block:: text
5011
5012    !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
5013
5014DITemplateValueParameter
5015""""""""""""""""""""""""
5016
5017``DITemplateValueParameter`` nodes represent value parameters to generic source
5018language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
5019but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
5020``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
5021:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
5022
5023.. code-block:: text
5024
5025    !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
5026
5027DINamespace
5028"""""""""""
5029
5030``DINamespace`` nodes represent namespaces in the source language.
5031
5032.. code-block:: text
5033
5034    !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
5035
5036.. _DIGlobalVariable:
5037
5038DIGlobalVariable
5039""""""""""""""""
5040
5041``DIGlobalVariable`` nodes represent global variables in the source language.
5042
5043.. code-block:: text
5044
5045    @foo = global i32, !dbg !0
5046    !0 = !DIGlobalVariableExpression(var: !1, expr: !DIExpression())
5047    !1 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !2,
5048                           file: !3, line: 7, type: !4, isLocal: true,
5049                           isDefinition: false, declaration: !5)
5050
5051
5052DIGlobalVariableExpression
5053""""""""""""""""""""""""""
5054
5055``DIGlobalVariableExpression`` nodes tie a :ref:`DIGlobalVariable` together
5056with a :ref:`DIExpression`.
5057
5058.. code-block:: text
5059
5060    @lower = global i32, !dbg !0
5061    @upper = global i32, !dbg !1
5062    !0 = !DIGlobalVariableExpression(
5063             var: !2,
5064             expr: !DIExpression(DW_OP_LLVM_fragment, 0, 32)
5065             )
5066    !1 = !DIGlobalVariableExpression(
5067             var: !2,
5068             expr: !DIExpression(DW_OP_LLVM_fragment, 32, 32)
5069             )
5070    !2 = !DIGlobalVariable(name: "split64", linkageName: "split64", scope: !3,
5071                           file: !4, line: 8, type: !5, declaration: !6)
5072
5073All global variable expressions should be referenced by the `globals:` field of
5074a :ref:`compile unit <DICompileUnit>`.
5075
5076.. _DISubprogram:
5077
5078DISubprogram
5079""""""""""""
5080
5081``DISubprogram`` nodes represent functions from the source language. A distinct
5082``DISubprogram`` may be attached to a function definition using ``!dbg``
5083metadata. A unique ``DISubprogram`` may be attached to a function declaration
5084used for call site debug info. The ``retainedNodes:`` field is a list of
5085:ref:`variables <DILocalVariable>` and :ref:`labels <DILabel>` that must be
5086retained, even if their IR counterparts are optimized out of the IR. The
5087``type:`` field must point at an :ref:`DISubroutineType`.
5088
5089.. _DISubprogramDeclaration:
5090
5091When ``isDefinition: false``, subprograms describe a declaration in the type
5092tree as opposed to a definition of a function.  If the scope is a composite
5093type with an ODR ``identifier:`` and that does not set ``flags: DIFwdDecl``,
5094then the subprogram declaration is uniqued based only on its ``linkageName:``
5095and ``scope:``.
5096
5097.. code-block:: text
5098
5099    define void @_Z3foov() !dbg !0 {
5100      ...
5101    }
5102
5103    !0 = distinct !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
5104                                file: !2, line: 7, type: !3, isLocal: true,
5105                                isDefinition: true, scopeLine: 8,
5106                                containingType: !4,
5107                                virtuality: DW_VIRTUALITY_pure_virtual,
5108                                virtualIndex: 10, flags: DIFlagPrototyped,
5109                                isOptimized: true, unit: !5, templateParams: !6,
5110                                declaration: !7, retainedNodes: !8,
5111                                thrownTypes: !9)
5112
5113.. _DILexicalBlock:
5114
5115DILexicalBlock
5116""""""""""""""
5117
5118``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
5119<DISubprogram>`. The line number and column numbers are used to distinguish
5120two lexical blocks at same depth. They are valid targets for ``scope:``
5121fields.
5122
5123.. code-block:: text
5124
5125    !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
5126
5127Usually lexical blocks are ``distinct`` to prevent node merging based on
5128operands.
5129
5130.. _DILexicalBlockFile:
5131
5132DILexicalBlockFile
5133""""""""""""""""""
5134
5135``DILexicalBlockFile`` nodes are used to discriminate between sections of a
5136:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
5137indicate textual inclusion, or the ``discriminator:`` field can be used to
5138discriminate between control flow within a single block in the source language.
5139
5140.. code-block:: text
5141
5142    !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
5143    !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
5144    !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
5145
5146.. _DILocation:
5147
5148DILocation
5149""""""""""
5150
5151``DILocation`` nodes represent source debug locations. The ``scope:`` field is
5152mandatory, and points at an :ref:`DILexicalBlockFile`, an
5153:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
5154
5155.. code-block:: text
5156
5157    !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
5158
5159.. _DILocalVariable:
5160
5161DILocalVariable
5162"""""""""""""""
5163
5164``DILocalVariable`` nodes represent local variables in the source language. If
5165the ``arg:`` field is set to non-zero, then this variable is a subprogram
5166parameter, and it will be included in the ``variables:`` field of its
5167:ref:`DISubprogram`.
5168
5169.. code-block:: text
5170
5171    !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
5172                          type: !3, flags: DIFlagArtificial)
5173    !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
5174                          type: !3)
5175    !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
5176
5177.. _DIExpression:
5178
5179DIExpression
5180""""""""""""
5181
5182``DIExpression`` nodes represent expressions that are inspired by the DWARF
5183expression language. They are used in :ref:`debug intrinsics<dbg_intrinsics>`
5184(such as ``llvm.dbg.declare`` and ``llvm.dbg.value``) to describe how the
5185referenced LLVM variable relates to the source language variable. Debug
5186intrinsics are interpreted left-to-right: start by pushing the value/address
5187operand of the intrinsic onto a stack, then repeatedly push and evaluate
5188opcodes from the DIExpression until the final variable description is produced.
5189
5190The current supported opcode vocabulary is limited:
5191
5192- ``DW_OP_deref`` dereferences the top of the expression stack.
5193- ``DW_OP_plus`` pops the last two entries from the expression stack, adds
5194  them together and appends the result to the expression stack.
5195- ``DW_OP_minus`` pops the last two entries from the expression stack, subtracts
5196  the last entry from the second last entry and appends the result to the
5197  expression stack.
5198- ``DW_OP_plus_uconst, 93`` adds ``93`` to the working expression.
5199- ``DW_OP_LLVM_fragment, 16, 8`` specifies the offset and size (``16`` and ``8``
5200  here, respectively) of the variable fragment from the working expression. Note
5201  that contrary to DW_OP_bit_piece, the offset is describing the location
5202  within the described source variable.
5203- ``DW_OP_LLVM_convert, 16, DW_ATE_signed`` specifies a bit size and encoding
5204  (``16`` and ``DW_ATE_signed`` here, respectively) to which the top of the
5205  expression stack is to be converted. Maps into a ``DW_OP_convert`` operation
5206  that references a base type constructed from the supplied values.
5207- ``DW_OP_LLVM_tag_offset, tag_offset`` specifies that a memory tag should be
5208  optionally applied to the pointer. The memory tag is derived from the
5209  given tag offset in an implementation-defined manner.
5210- ``DW_OP_swap`` swaps top two stack entries.
5211- ``DW_OP_xderef`` provides extended dereference mechanism. The entry at the top
5212  of the stack is treated as an address. The second stack entry is treated as an
5213  address space identifier.
5214- ``DW_OP_stack_value`` marks a constant value.
5215- ``DW_OP_LLVM_entry_value, N`` can only appear at the beginning of a
5216  ``DIExpression``, and it specifies that all register and memory read
5217  operations for the debug value instruction's value/address operand and for
5218  the ``(N - 1)`` operations immediately following the
5219  ``DW_OP_LLVM_entry_value`` refer to their respective values at function
5220  entry. For example, ``!DIExpression(DW_OP_LLVM_entry_value, 1,
5221  DW_OP_plus_uconst, 123, DW_OP_stack_value)`` specifies an expression where
5222  the entry value of the debug value instruction's value/address operand is
5223  pushed to the stack, and is added with 123. Due to framework limitations
5224  ``N`` can currently only be 1.
5225
5226  ``DW_OP_LLVM_entry_value`` is only legal in MIR. The operation is introduced
5227  by the ``LiveDebugValues`` pass; currently only for function parameters that
5228  are unmodified throughout a function. Support is limited to function
5229  parameter that are described as simple register location descriptions, or as
5230  indirect locations (e.g. when a struct is passed-by-value to a callee via a
5231  pointer to a temporary copy made in the caller). The entry value op is also
5232  introduced by the ``AsmPrinter`` pass when a call site parameter value
5233  (``DW_AT_call_site_parameter_value``) is represented as entry value of the
5234  parameter.
5235- ``DW_OP_breg`` (or ``DW_OP_bregx``) represents a content on the provided
5236  signed offset of the specified register. The opcode is only generated by the
5237  ``AsmPrinter`` pass to describe call site parameter value which requires an
5238  expression over two registers.
5239- ``DW_OP_push_object_address`` pushes the address of the object which can then
5240  serve as a descriptor in subsequent calculation. This opcode can be used to
5241  calculate bounds of fortran allocatable array which has array descriptors.
5242- ``DW_OP_over`` duplicates the entry currently second in the stack at the top
5243  of the stack. This opcode can be used to calculate bounds of fortran assumed
5244  rank array which has rank known at run time and current dimension number is
5245  implicitly first element of the stack.
5246
5247DWARF specifies three kinds of simple location descriptions: Register, memory,
5248and implicit location descriptions.  Note that a location description is
5249defined over certain ranges of a program, i.e the location of a variable may
5250change over the course of the program. Register and memory location
5251descriptions describe the *concrete location* of a source variable (in the
5252sense that a debugger might modify its value), whereas *implicit locations*
5253describe merely the actual *value* of a source variable which might not exist
5254in registers or in memory (see ``DW_OP_stack_value``).
5255
5256A ``llvm.dbg.addr`` or ``llvm.dbg.declare`` intrinsic describes an indirect
5257value (the address) of a source variable. The first operand of the intrinsic
5258must be an address of some kind. A DIExpression attached to the intrinsic
5259refines this address to produce a concrete location for the source variable.
5260
5261A ``llvm.dbg.value`` intrinsic describes the direct value of a source variable.
5262The first operand of the intrinsic may be a direct or indirect value. A
5263DIExpression attached to the intrinsic refines the first operand to produce a
5264direct value. For example, if the first operand is an indirect value, it may be
5265necessary to insert ``DW_OP_deref`` into the DIExpression in order to produce a
5266valid debug intrinsic.
5267
5268.. note::
5269
5270   A DIExpression is interpreted in the same way regardless of which kind of
5271   debug intrinsic it's attached to.
5272
5273.. code-block:: text
5274
5275    !0 = !DIExpression(DW_OP_deref)
5276    !1 = !DIExpression(DW_OP_plus_uconst, 3)
5277    !1 = !DIExpression(DW_OP_constu, 3, DW_OP_plus)
5278    !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
5279    !3 = !DIExpression(DW_OP_deref, DW_OP_constu, 3, DW_OP_plus, DW_OP_LLVM_fragment, 3, 7)
5280    !4 = !DIExpression(DW_OP_constu, 2, DW_OP_swap, DW_OP_xderef)
5281    !5 = !DIExpression(DW_OP_constu, 42, DW_OP_stack_value)
5282
5283DIFlags
5284"""""""""""""""
5285
5286These flags encode various properties of DINodes.
5287
5288The `ExportSymbols` flag marks a class, struct or union whose members
5289may be referenced as if they were defined in the containing class or
5290union. This flag is used to decide whether the DW_AT_export_symbols can
5291be used for the structure type.
5292
5293DIObjCProperty
5294""""""""""""""
5295
5296``DIObjCProperty`` nodes represent Objective-C property nodes.
5297
5298.. code-block:: text
5299
5300    !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5301                         getter: "getFoo", attributes: 7, type: !2)
5302
5303DIImportedEntity
5304""""""""""""""""
5305
5306``DIImportedEntity`` nodes represent entities (such as modules) imported into a
5307compile unit.
5308
5309.. code-block:: text
5310
5311   !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
5312                          entity: !1, line: 7)
5313
5314DIMacro
5315"""""""
5316
5317``DIMacro`` nodes represent definition or undefinition of a macro identifiers.
5318The ``name:`` field is the macro identifier, followed by macro parameters when
5319defining a function-like macro, and the ``value`` field is the token-string
5320used to expand the macro identifier.
5321
5322.. code-block:: text
5323
5324   !2 = !DIMacro(macinfo: DW_MACINFO_define, line: 7, name: "foo(x)",
5325                 value: "((x) + 1)")
5326   !3 = !DIMacro(macinfo: DW_MACINFO_undef, line: 30, name: "foo")
5327
5328DIMacroFile
5329"""""""""""
5330
5331``DIMacroFile`` nodes represent inclusion of source files.
5332The ``nodes:`` field is a list of ``DIMacro`` and ``DIMacroFile`` nodes that
5333appear in the included source file.
5334
5335.. code-block:: text
5336
5337   !2 = !DIMacroFile(macinfo: DW_MACINFO_start_file, line: 7, file: !2,
5338                     nodes: !3)
5339
5340.. _DILabel:
5341
5342DILabel
5343"""""""
5344
5345``DILabel`` nodes represent labels within a :ref:`DISubprogram`. All fields of
5346a ``DILabel`` are mandatory. The ``scope:`` field must be one of either a
5347:ref:`DILexicalBlockFile`, a :ref:`DILexicalBlock`, or a :ref:`DISubprogram`.
5348The ``name:`` field is the label identifier. The ``file:`` field is the
5349:ref:`DIFile` the label is present in. The ``line:`` field is the source line
5350within the file where the label is declared.
5351
5352.. code-block:: text
5353
5354  !2 = !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5355
5356'``tbaa``' Metadata
5357^^^^^^^^^^^^^^^^^^^
5358
5359In LLVM IR, memory does not have types, so LLVM's own type system is not
5360suitable for doing type based alias analysis (TBAA). Instead, metadata is
5361added to the IR to describe a type system of a higher level language. This
5362can be used to implement C/C++ strict type aliasing rules, but it can also
5363be used to implement custom alias analysis behavior for other languages.
5364
5365This description of LLVM's TBAA system is broken into two parts:
5366:ref:`Semantics<tbaa_node_semantics>` talks about high level issues, and
5367:ref:`Representation<tbaa_node_representation>` talks about the metadata
5368encoding of various entities.
5369
5370It is always possible to trace any TBAA node to a "root" TBAA node (details
5371in the :ref:`Representation<tbaa_node_representation>` section).  TBAA
5372nodes with different roots have an unknown aliasing relationship, and LLVM
5373conservatively infers ``MayAlias`` between them.  The rules mentioned in
5374this section only pertain to TBAA nodes living under the same root.
5375
5376.. _tbaa_node_semantics:
5377
5378Semantics
5379"""""""""
5380
5381The TBAA metadata system, referred to as "struct path TBAA" (not to be
5382confused with ``tbaa.struct``), consists of the following high level
5383concepts: *Type Descriptors*, further subdivided into scalar type
5384descriptors and struct type descriptors; and *Access Tags*.
5385
5386**Type descriptors** describe the type system of the higher level language
5387being compiled.  **Scalar type descriptors** describe types that do not
5388contain other types.  Each scalar type has a parent type, which must also
5389be a scalar type or the TBAA root.  Via this parent relation, scalar types
5390within a TBAA root form a tree.  **Struct type descriptors** denote types
5391that contain a sequence of other type descriptors, at known offsets.  These
5392contained type descriptors can either be struct type descriptors themselves
5393or scalar type descriptors.
5394
5395**Access tags** are metadata nodes attached to load and store instructions.
5396Access tags use type descriptors to describe the *location* being accessed
5397in terms of the type system of the higher level language.  Access tags are
5398tuples consisting of a base type, an access type and an offset.  The base
5399type is a scalar type descriptor or a struct type descriptor, the access
5400type is a scalar type descriptor, and the offset is a constant integer.
5401
5402The access tag ``(BaseTy, AccessTy, Offset)`` can describe one of two
5403things:
5404
5405 * If ``BaseTy`` is a struct type, the tag describes a memory access (load
5406   or store) of a value of type ``AccessTy`` contained in the struct type
5407   ``BaseTy`` at offset ``Offset``.
5408
5409 * If ``BaseTy`` is a scalar type, ``Offset`` must be 0 and ``BaseTy`` and
5410   ``AccessTy`` must be the same; and the access tag describes a scalar
5411   access with scalar type ``AccessTy``.
5412
5413We first define an ``ImmediateParent`` relation on ``(BaseTy, Offset)``
5414tuples this way:
5415
5416 * If ``BaseTy`` is a scalar type then ``ImmediateParent(BaseTy, 0)`` is
5417   ``(ParentTy, 0)`` where ``ParentTy`` is the parent of the scalar type as
5418   described in the TBAA metadata.  ``ImmediateParent(BaseTy, Offset)`` is
5419   undefined if ``Offset`` is non-zero.
5420
5421 * If ``BaseTy`` is a struct type then ``ImmediateParent(BaseTy, Offset)``
5422   is ``(NewTy, NewOffset)`` where ``NewTy`` is the type contained in
5423   ``BaseTy`` at offset ``Offset`` and ``NewOffset`` is ``Offset`` adjusted
5424   to be relative within that inner type.
5425
5426A memory access with an access tag ``(BaseTy1, AccessTy1, Offset1)``
5427aliases a memory access with an access tag ``(BaseTy2, AccessTy2,
5428Offset2)`` if either ``(BaseTy1, Offset1)`` is reachable from ``(Base2,
5429Offset2)`` via the ``Parent`` relation or vice versa.
5430
5431As a concrete example, the type descriptor graph for the following program
5432
5433.. code-block:: c
5434
5435    struct Inner {
5436      int i;    // offset 0
5437      float f;  // offset 4
5438    };
5439
5440    struct Outer {
5441      float f;  // offset 0
5442      double d; // offset 4
5443      struct Inner inner_a;  // offset 12
5444    };
5445
5446    void f(struct Outer* outer, struct Inner* inner, float* f, int* i, char* c) {
5447      outer->f = 0;            // tag0: (OuterStructTy, FloatScalarTy, 0)
5448      outer->inner_a.i = 0;    // tag1: (OuterStructTy, IntScalarTy, 12)
5449      outer->inner_a.f = 0.0;  // tag2: (OuterStructTy, FloatScalarTy, 16)
5450      *f = 0.0;                // tag3: (FloatScalarTy, FloatScalarTy, 0)
5451    }
5452
5453is (note that in C and C++, ``char`` can be used to access any arbitrary
5454type):
5455
5456.. code-block:: text
5457
5458    Root = "TBAA Root"
5459    CharScalarTy = ("char", Root, 0)
5460    FloatScalarTy = ("float", CharScalarTy, 0)
5461    DoubleScalarTy = ("double", CharScalarTy, 0)
5462    IntScalarTy = ("int", CharScalarTy, 0)
5463    InnerStructTy = {"Inner" (IntScalarTy, 0), (FloatScalarTy, 4)}
5464    OuterStructTy = {"Outer", (FloatScalarTy, 0), (DoubleScalarTy, 4),
5465                     (InnerStructTy, 12)}
5466
5467
5468with (e.g.) ``ImmediateParent(OuterStructTy, 12)`` = ``(InnerStructTy,
54690)``, ``ImmediateParent(InnerStructTy, 0)`` = ``(IntScalarTy, 0)``, and
5470``ImmediateParent(IntScalarTy, 0)`` = ``(CharScalarTy, 0)``.
5471
5472.. _tbaa_node_representation:
5473
5474Representation
5475""""""""""""""
5476
5477The root node of a TBAA type hierarchy is an ``MDNode`` with 0 operands or
5478with exactly one ``MDString`` operand.
5479
5480Scalar type descriptors are represented as an ``MDNode`` s with two
5481operands.  The first operand is an ``MDString`` denoting the name of the
5482struct type.  LLVM does not assign meaning to the value of this operand, it
5483only cares about it being an ``MDString``.  The second operand is an
5484``MDNode`` which points to the parent for said scalar type descriptor,
5485which is either another scalar type descriptor or the TBAA root.  Scalar
5486type descriptors can have an optional third argument, but that must be the
5487constant integer zero.
5488
5489Struct type descriptors are represented as ``MDNode`` s with an odd number
5490of operands greater than 1.  The first operand is an ``MDString`` denoting
5491the name of the struct type.  Like in scalar type descriptors the actual
5492value of this name operand is irrelevant to LLVM.  After the name operand,
5493the struct type descriptors have a sequence of alternating ``MDNode`` and
5494``ConstantInt`` operands.  With N starting from 1, the 2N - 1 th operand,
5495an ``MDNode``, denotes a contained field, and the 2N th operand, a
5496``ConstantInt``, is the offset of the said contained field.  The offsets
5497must be in non-decreasing order.
5498
5499Access tags are represented as ``MDNode`` s with either 3 or 4 operands.
5500The first operand is an ``MDNode`` pointing to the node representing the
5501base type.  The second operand is an ``MDNode`` pointing to the node
5502representing the access type.  The third operand is a ``ConstantInt`` that
5503states the offset of the access.  If a fourth field is present, it must be
5504a ``ConstantInt`` valued at 0 or 1.  If it is 1 then the access tag states
5505that the location being accessed is "constant" (meaning
5506``pointsToConstantMemory`` should return true; see `other useful
5507AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).  The TBAA root of
5508the access type and the base type of an access tag must be the same, and
5509that is the TBAA root of the access tag.
5510
5511'``tbaa.struct``' Metadata
5512^^^^^^^^^^^^^^^^^^^^^^^^^^
5513
5514The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
5515aggregate assignment operations in C and similar languages, however it
5516is defined to copy a contiguous region of memory, which is more than
5517strictly necessary for aggregate types which contain holes due to
5518padding. Also, it doesn't contain any TBAA information about the fields
5519of the aggregate.
5520
5521``!tbaa.struct`` metadata can describe which memory subregions in a
5522memcpy are padding and what the TBAA tags of the struct are.
5523
5524The current metadata format is very simple. ``!tbaa.struct`` metadata
5525nodes are a list of operands which are in conceptual groups of three.
5526For each group of three, the first operand gives the byte offset of a
5527field in bytes, the second gives its size in bytes, and the third gives
5528its tbaa tag. e.g.:
5529
5530.. code-block:: llvm
5531
5532    !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
5533
5534This describes a struct with two fields. The first is at offset 0 bytes
5535with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
5536and has size 4 bytes and has tbaa tag !2.
5537
5538Note that the fields need not be contiguous. In this example, there is a
55394 byte gap between the two fields. This gap represents padding which
5540does not carry useful data and need not be preserved.
5541
5542'``noalias``' and '``alias.scope``' Metadata
5543^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5544
5545``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
5546noalias memory-access sets. This means that some collection of memory access
5547instructions (loads, stores, memory-accessing calls, etc.) that carry
5548``noalias`` metadata can specifically be specified not to alias with some other
5549collection of memory access instructions that carry ``alias.scope`` metadata.
5550Each type of metadata specifies a list of scopes where each scope has an id and
5551a domain.
5552
5553When evaluating an aliasing query, if for some domain, the set
5554of scopes with that domain in one instruction's ``alias.scope`` list is a
5555subset of (or equal to) the set of scopes for that domain in another
5556instruction's ``noalias`` list, then the two memory accesses are assumed not to
5557alias.
5558
5559Because scopes in one domain don't affect scopes in other domains, separate
5560domains can be used to compose multiple independent noalias sets.  This is
5561used for example during inlining.  As the noalias function parameters are
5562turned into noalias scope metadata, a new domain is used every time the
5563function is inlined.
5564
5565The metadata identifying each domain is itself a list containing one or two
5566entries. The first entry is the name of the domain. Note that if the name is a
5567string then it can be combined across functions and translation units. A
5568self-reference can be used to create globally unique domain names. A
5569descriptive string may optionally be provided as a second list entry.
5570
5571The metadata identifying each scope is also itself a list containing two or
5572three entries. The first entry is the name of the scope. Note that if the name
5573is a string then it can be combined across functions and translation units. A
5574self-reference can be used to create globally unique scope names. A metadata
5575reference to the scope's domain is the second entry. A descriptive string may
5576optionally be provided as a third list entry.
5577
5578For example,
5579
5580.. code-block:: llvm
5581
5582    ; Two scope domains:
5583    !0 = !{!0}
5584    !1 = !{!1}
5585
5586    ; Some scopes in these domains:
5587    !2 = !{!2, !0}
5588    !3 = !{!3, !0}
5589    !4 = !{!4, !1}
5590
5591    ; Some scope lists:
5592    !5 = !{!4} ; A list containing only scope !4
5593    !6 = !{!4, !3, !2}
5594    !7 = !{!3}
5595
5596    ; These two instructions don't alias:
5597    %0 = load float, float* %c, align 4, !alias.scope !5
5598    store float %0, float* %arrayidx.i, align 4, !noalias !5
5599
5600    ; These two instructions also don't alias (for domain !1, the set of scopes
5601    ; in the !alias.scope equals that in the !noalias list):
5602    %2 = load float, float* %c, align 4, !alias.scope !5
5603    store float %2, float* %arrayidx.i2, align 4, !noalias !6
5604
5605    ; These two instructions may alias (for domain !0, the set of scopes in
5606    ; the !noalias list is not a superset of, or equal to, the scopes in the
5607    ; !alias.scope list):
5608    %2 = load float, float* %c, align 4, !alias.scope !6
5609    store float %0, float* %arrayidx.i, align 4, !noalias !7
5610
5611'``fpmath``' Metadata
5612^^^^^^^^^^^^^^^^^^^^^
5613
5614``fpmath`` metadata may be attached to any instruction of floating-point
5615type. It can be used to express the maximum acceptable error in the
5616result of that instruction, in ULPs, thus potentially allowing the
5617compiler to use a more efficient but less accurate method of computing
5618it. ULP is defined as follows:
5619
5620    If ``x`` is a real number that lies between two finite consecutive
5621    floating-point numbers ``a`` and ``b``, without being equal to one
5622    of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
5623    distance between the two non-equal finite floating-point numbers
5624    nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
5625
5626The metadata node shall consist of a single positive float type number
5627representing the maximum relative error, for example:
5628
5629.. code-block:: llvm
5630
5631    !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
5632
5633.. _range-metadata:
5634
5635'``range``' Metadata
5636^^^^^^^^^^^^^^^^^^^^
5637
5638``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
5639integer types. It expresses the possible ranges the loaded value or the value
5640returned by the called function at this call site is in. If the loaded or
5641returned value is not in the specified range, the behavior is undefined. The
5642ranges are represented with a flattened list of integers. The loaded value or
5643the value returned is known to be in the union of the ranges defined by each
5644consecutive pair. Each pair has the following properties:
5645
5646-  The type must match the type loaded by the instruction.
5647-  The pair ``a,b`` represents the range ``[a,b)``.
5648-  Both ``a`` and ``b`` are constants.
5649-  The range is allowed to wrap.
5650-  The range should not represent the full or empty set. That is,
5651   ``a!=b``.
5652
5653In addition, the pairs must be in signed order of the lower bound and
5654they must be non-contiguous.
5655
5656Examples:
5657
5658.. code-block:: llvm
5659
5660      %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
5661      %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
5662      %c = call i8 @foo(),       !range !2 ; Can only be 0, 1, 3, 4 or 5
5663      %d = invoke i8 @bar() to label %cont
5664             unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
5665    ...
5666    !0 = !{ i8 0, i8 2 }
5667    !1 = !{ i8 255, i8 2 }
5668    !2 = !{ i8 0, i8 2, i8 3, i8 6 }
5669    !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
5670
5671'``absolute_symbol``' Metadata
5672^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5673
5674``absolute_symbol`` metadata may be attached to a global variable
5675declaration. It marks the declaration as a reference to an absolute symbol,
5676which causes the backend to use absolute relocations for the symbol even
5677in position independent code, and expresses the possible ranges that the
5678global variable's *address* (not its value) is in, in the same format as
5679``range`` metadata, with the extension that the pair ``all-ones,all-ones``
5680may be used to represent the full set.
5681
5682Example (assuming 64-bit pointers):
5683
5684.. code-block:: llvm
5685
5686      @a = external global i8, !absolute_symbol !0 ; Absolute symbol in range [0,256)
5687      @b = external global i8, !absolute_symbol !1 ; Absolute symbol in range [0,2^64)
5688
5689    ...
5690    !0 = !{ i64 0, i64 256 }
5691    !1 = !{ i64 -1, i64 -1 }
5692
5693'``callees``' Metadata
5694^^^^^^^^^^^^^^^^^^^^^^
5695
5696``callees`` metadata may be attached to indirect call sites. If ``callees``
5697metadata is attached to a call site, and any callee is not among the set of
5698functions provided by the metadata, the behavior is undefined. The intent of
5699this metadata is to facilitate optimizations such as indirect-call promotion.
5700For example, in the code below, the call instruction may only target the
5701``add`` or ``sub`` functions:
5702
5703.. code-block:: llvm
5704
5705    %result = call i64 %binop(i64 %x, i64 %y), !callees !0
5706
5707    ...
5708    !0 = !{i64 (i64, i64)* @add, i64 (i64, i64)* @sub}
5709
5710'``callback``' Metadata
5711^^^^^^^^^^^^^^^^^^^^^^^
5712
5713``callback`` metadata may be attached to a function declaration, or definition.
5714(Call sites are excluded only due to the lack of a use case.) For ease of
5715exposition, we'll refer to the function annotated w/ metadata as a broker
5716function. The metadata describes how the arguments of a call to the broker are
5717in turn passed to the callback function specified by the metadata. Thus, the
5718``callback`` metadata provides a partial description of a call site inside the
5719broker function with regards to the arguments of a call to the broker. The only
5720semantic restriction on the broker function itself is that it is not allowed to
5721inspect or modify arguments referenced in the ``callback`` metadata as
5722pass-through to the callback function.
5723
5724The broker is not required to actually invoke the callback function at runtime.
5725However, the assumptions about not inspecting or modifying arguments that would
5726be passed to the specified callback function still hold, even if the callback
5727function is not dynamically invoked. The broker is allowed to invoke the
5728callback function more than once per invocation of the broker. The broker is
5729also allowed to invoke (directly or indirectly) the function passed as a
5730callback through another use. Finally, the broker is also allowed to relay the
5731callback callee invocation to a different thread.
5732
5733The metadata is structured as follows: At the outer level, ``callback``
5734metadata is a list of ``callback`` encodings. Each encoding starts with a
5735constant ``i64`` which describes the argument position of the callback function
5736in the call to the broker. The following elements, except the last, describe
5737what arguments are passed to the callback function. Each element is again an
5738``i64`` constant identifying the argument of the broker that is passed through,
5739or ``i64 -1`` to indicate an unknown or inspected argument. The order in which
5740they are listed has to be the same in which they are passed to the callback
5741callee. The last element of the encoding is a boolean which specifies how
5742variadic arguments of the broker are handled. If it is true, all variadic
5743arguments of the broker are passed through to the callback function *after* the
5744arguments encoded explicitly before.
5745
5746In the code below, the ``pthread_create`` function is marked as a broker
5747through the ``!callback !1`` metadata. In the example, there is only one
5748callback encoding, namely ``!2``, associated with the broker. This encoding
5749identifies the callback function as the second argument of the broker (``i64
57502``) and the sole argument of the callback function as the third one of the
5751broker function (``i64 3``).
5752
5753.. FIXME why does the llvm-sphinx-docs builder give a highlighting
5754   error if the below is set to highlight as 'llvm', despite that we
5755   have misc.highlighting_failure set?
5756
5757.. code-block:: text
5758
5759    declare !callback !1 dso_local i32 @pthread_create(i64*, %union.pthread_attr_t*, i8* (i8*)*, i8*)
5760
5761    ...
5762    !2 = !{i64 2, i64 3, i1 false}
5763    !1 = !{!2}
5764
5765Another example is shown below. The callback callee is the second argument of
5766the ``__kmpc_fork_call`` function (``i64 2``). The callee is given two unknown
5767values (each identified by a ``i64 -1``) and afterwards all
5768variadic arguments that are passed to the ``__kmpc_fork_call`` call (due to the
5769final ``i1 true``).
5770
5771.. FIXME why does the llvm-sphinx-docs builder give a highlighting
5772   error if the below is set to highlight as 'llvm', despite that we
5773   have misc.highlighting_failure set?
5774
5775.. code-block:: text
5776
5777    declare !callback !0 dso_local void @__kmpc_fork_call(%struct.ident_t*, i32, void (i32*, i32*, ...)*, ...)
5778
5779    ...
5780    !1 = !{i64 2, i64 -1, i64 -1, i1 true}
5781    !0 = !{!1}
5782
5783
5784'``unpredictable``' Metadata
5785^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5786
5787``unpredictable`` metadata may be attached to any branch or switch
5788instruction. It can be used to express the unpredictability of control
5789flow. Similar to the llvm.expect intrinsic, it may be used to alter
5790optimizations related to compare and branch instructions. The metadata
5791is treated as a boolean value; if it exists, it signals that the branch
5792or switch that it is attached to is completely unpredictable.
5793
5794.. _md_dereferenceable:
5795
5796'``dereferenceable``' Metadata
5797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5798
5799The existence of the ``!dereferenceable`` metadata on the instruction
5800tells the optimizer that the value loaded is known to be dereferenceable.
5801The number of bytes known to be dereferenceable is specified by the integer
5802value in the metadata node. This is analogous to the ''dereferenceable''
5803attribute on parameters and return values.
5804
5805.. _md_dereferenceable_or_null:
5806
5807'``dereferenceable_or_null``' Metadata
5808^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5809
5810The existence of the ``!dereferenceable_or_null`` metadata on the
5811instruction tells the optimizer that the value loaded is known to be either
5812dereferenceable or null.
5813The number of bytes known to be dereferenceable is specified by the integer
5814value in the metadata node. This is analogous to the ''dereferenceable_or_null''
5815attribute on parameters and return values.
5816
5817.. _llvm.loop:
5818
5819'``llvm.loop``'
5820^^^^^^^^^^^^^^^
5821
5822It is sometimes useful to attach information to loop constructs. Currently,
5823loop metadata is implemented as metadata attached to the branch instruction
5824in the loop latch block. The loop metadata node is a list of
5825other metadata nodes, each representing a property of the loop. Usually,
5826the first item of the property node is a string. For example, the
5827``llvm.loop.unroll.count`` suggests an unroll factor to the loop
5828unroller:
5829
5830.. code-block:: llvm
5831
5832      br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
5833    ...
5834    !0 = !{!0, !1, !2}
5835    !1 = !{!"llvm.loop.unroll.enable"}
5836    !2 = !{!"llvm.loop.unroll.count", i32 4}
5837
5838For legacy reasons, the first item of a loop metadata node must be a
5839reference to itself. Before the advent of the 'distinct' keyword, this
5840forced the preservation of otherwise identical metadata nodes. Since
5841the loop-metadata node can be attached to multiple nodes, the 'distinct'
5842keyword has become unnecessary.
5843
5844Prior to the property nodes, one or two ``DILocation`` (debug location)
5845nodes can be present in the list. The first, if present, identifies the
5846source-code location where the loop begins. The second, if present,
5847identifies the source-code location where the loop ends.
5848
5849Loop metadata nodes cannot be used as unique identifiers. They are
5850neither persistent for the same loop through transformations nor
5851necessarily unique to just one loop.
5852
5853'``llvm.loop.disable_nonforced``'
5854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5855
5856This metadata disables all optional loop transformations unless
5857explicitly instructed using other transformation metadata such as
5858``llvm.loop.unroll.enable``. That is, no heuristic will try to determine
5859whether a transformation is profitable. The purpose is to avoid that the
5860loop is transformed to a different loop before an explicitly requested
5861(forced) transformation is applied. For instance, loop fusion can make
5862other transformations impossible. Mandatory loop canonicalizations such
5863as loop rotation are still applied.
5864
5865It is recommended to use this metadata in addition to any llvm.loop.*
5866transformation directive. Also, any loop should have at most one
5867directive applied to it (and a sequence of transformations built using
5868followup-attributes). Otherwise, which transformation will be applied
5869depends on implementation details such as the pass pipeline order.
5870
5871See :ref:`transformation-metadata` for details.
5872
5873'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
5874^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5875
5876Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
5877used to control per-loop vectorization and interleaving parameters such as
5878vectorization width and interleave count. These metadata should be used in
5879conjunction with ``llvm.loop`` loop identification metadata. The
5880``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
5881optimization hints and the optimizer will only interleave and vectorize loops if
5882it believes it is safe to do so. The ``llvm.loop.parallel_accesses`` metadata
5883which contains information about loop-carried memory dependencies can be helpful
5884in determining the safety of these transformations.
5885
5886'``llvm.loop.interleave.count``' Metadata
5887^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5888
5889This metadata suggests an interleave count to the loop interleaver.
5890The first operand is the string ``llvm.loop.interleave.count`` and the
5891second operand is an integer specifying the interleave count. For
5892example:
5893
5894.. code-block:: llvm
5895
5896   !0 = !{!"llvm.loop.interleave.count", i32 4}
5897
5898Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
5899multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
5900then the interleave count will be determined automatically.
5901
5902'``llvm.loop.vectorize.enable``' Metadata
5903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5904
5905This metadata selectively enables or disables vectorization for the loop. The
5906first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
5907is a bit. If the bit operand value is 1 vectorization is enabled. A value of
59080 disables vectorization:
5909
5910.. code-block:: llvm
5911
5912   !0 = !{!"llvm.loop.vectorize.enable", i1 0}
5913   !1 = !{!"llvm.loop.vectorize.enable", i1 1}
5914
5915'``llvm.loop.vectorize.predicate.enable``' Metadata
5916^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5917
5918This metadata selectively enables or disables creating predicated instructions
5919for the loop, which can enable folding of the scalar epilogue loop into the
5920main loop. The first operand is the string
5921``llvm.loop.vectorize.predicate.enable`` and the second operand is a bit. If
5922the bit operand value is 1 vectorization is enabled. A value of 0 disables
5923vectorization:
5924
5925.. code-block:: llvm
5926
5927   !0 = !{!"llvm.loop.vectorize.predicate.enable", i1 0}
5928   !1 = !{!"llvm.loop.vectorize.predicate.enable", i1 1}
5929
5930'``llvm.loop.vectorize.width``' Metadata
5931^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5932
5933This metadata sets the target width of the vectorizer. The first
5934operand is the string ``llvm.loop.vectorize.width`` and the second
5935operand is an integer specifying the width. For example:
5936
5937.. code-block:: llvm
5938
5939   !0 = !{!"llvm.loop.vectorize.width", i32 4}
5940
5941Note that setting ``llvm.loop.vectorize.width`` to 1 disables
5942vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
59430 or if the loop does not have this metadata the width will be
5944determined automatically.
5945
5946'``llvm.loop.vectorize.followup_vectorized``' Metadata
5947^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5948
5949This metadata defines which loop attributes the vectorized loop will
5950have. See :ref:`transformation-metadata` for details.
5951
5952'``llvm.loop.vectorize.followup_epilogue``' Metadata
5953^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5954
5955This metadata defines which loop attributes the epilogue will have. The
5956epilogue is not vectorized and is executed when either the vectorized
5957loop is not known to preserve semantics (because e.g., it processes two
5958arrays that are found to alias by a runtime check) or for the last
5959iterations that do not fill a complete set of vector lanes. See
5960:ref:`Transformation Metadata <transformation-metadata>` for details.
5961
5962'``llvm.loop.vectorize.followup_all``' Metadata
5963^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5964
5965Attributes in the metadata will be added to both the vectorized and
5966epilogue loop.
5967See :ref:`Transformation Metadata <transformation-metadata>` for details.
5968
5969'``llvm.loop.unroll``'
5970^^^^^^^^^^^^^^^^^^^^^^
5971
5972Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
5973optimization hints such as the unroll factor. ``llvm.loop.unroll``
5974metadata should be used in conjunction with ``llvm.loop`` loop
5975identification metadata. The ``llvm.loop.unroll`` metadata are only
5976optimization hints and the unrolling will only be performed if the
5977optimizer believes it is safe to do so.
5978
5979'``llvm.loop.unroll.count``' Metadata
5980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5981
5982This metadata suggests an unroll factor to the loop unroller. The
5983first operand is the string ``llvm.loop.unroll.count`` and the second
5984operand is a positive integer specifying the unroll factor. For
5985example:
5986
5987.. code-block:: llvm
5988
5989   !0 = !{!"llvm.loop.unroll.count", i32 4}
5990
5991If the trip count of the loop is less than the unroll count the loop
5992will be partially unrolled.
5993
5994'``llvm.loop.unroll.disable``' Metadata
5995^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5996
5997This metadata disables loop unrolling. The metadata has a single operand
5998which is the string ``llvm.loop.unroll.disable``. For example:
5999
6000.. code-block:: llvm
6001
6002   !0 = !{!"llvm.loop.unroll.disable"}
6003
6004'``llvm.loop.unroll.runtime.disable``' Metadata
6005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6006
6007This metadata disables runtime loop unrolling. The metadata has a single
6008operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
6009
6010.. code-block:: llvm
6011
6012   !0 = !{!"llvm.loop.unroll.runtime.disable"}
6013
6014'``llvm.loop.unroll.enable``' Metadata
6015^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6016
6017This metadata suggests that the loop should be fully unrolled if the trip count
6018is known at compile time and partially unrolled if the trip count is not known
6019at compile time. The metadata has a single operand which is the string
6020``llvm.loop.unroll.enable``.  For example:
6021
6022.. code-block:: llvm
6023
6024   !0 = !{!"llvm.loop.unroll.enable"}
6025
6026'``llvm.loop.unroll.full``' Metadata
6027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6028
6029This metadata suggests that the loop should be unrolled fully. The
6030metadata has a single operand which is the string ``llvm.loop.unroll.full``.
6031For example:
6032
6033.. code-block:: llvm
6034
6035   !0 = !{!"llvm.loop.unroll.full"}
6036
6037'``llvm.loop.unroll.followup``' Metadata
6038^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6039
6040This metadata defines which loop attributes the unrolled loop will have.
6041See :ref:`Transformation Metadata <transformation-metadata>` for details.
6042
6043'``llvm.loop.unroll.followup_remainder``' Metadata
6044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6045
6046This metadata defines which loop attributes the remainder loop after
6047partial/runtime unrolling will have. See
6048:ref:`Transformation Metadata <transformation-metadata>` for details.
6049
6050'``llvm.loop.unroll_and_jam``'
6051^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6052
6053This metadata is treated very similarly to the ``llvm.loop.unroll`` metadata
6054above, but affect the unroll and jam pass. In addition any loop with
6055``llvm.loop.unroll`` metadata but no ``llvm.loop.unroll_and_jam`` metadata will
6056disable unroll and jam (so ``llvm.loop.unroll`` metadata will be left to the
6057unroller, plus ``llvm.loop.unroll.disable`` metadata will disable unroll and jam
6058too.)
6059
6060The metadata for unroll and jam otherwise is the same as for ``unroll``.
6061``llvm.loop.unroll_and_jam.enable``, ``llvm.loop.unroll_and_jam.disable`` and
6062``llvm.loop.unroll_and_jam.count`` do the same as for unroll.
6063``llvm.loop.unroll_and_jam.full`` is not supported. Again these are only hints
6064and the normal safety checks will still be performed.
6065
6066'``llvm.loop.unroll_and_jam.count``' Metadata
6067^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6068
6069This metadata suggests an unroll and jam factor to use, similarly to
6070``llvm.loop.unroll.count``. The first operand is the string
6071``llvm.loop.unroll_and_jam.count`` and the second operand is a positive integer
6072specifying the unroll factor. For example:
6073
6074.. code-block:: llvm
6075
6076   !0 = !{!"llvm.loop.unroll_and_jam.count", i32 4}
6077
6078If the trip count of the loop is less than the unroll count the loop
6079will be partially unroll and jammed.
6080
6081'``llvm.loop.unroll_and_jam.disable``' Metadata
6082^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6083
6084This metadata disables loop unroll and jamming. The metadata has a single
6085operand which is the string ``llvm.loop.unroll_and_jam.disable``. For example:
6086
6087.. code-block:: llvm
6088
6089   !0 = !{!"llvm.loop.unroll_and_jam.disable"}
6090
6091'``llvm.loop.unroll_and_jam.enable``' Metadata
6092^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6093
6094This metadata suggests that the loop should be fully unroll and jammed if the
6095trip count is known at compile time and partially unrolled if the trip count is
6096not known at compile time. The metadata has a single operand which is the
6097string ``llvm.loop.unroll_and_jam.enable``.  For example:
6098
6099.. code-block:: llvm
6100
6101   !0 = !{!"llvm.loop.unroll_and_jam.enable"}
6102
6103'``llvm.loop.unroll_and_jam.followup_outer``' Metadata
6104^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6105
6106This metadata defines which loop attributes the outer unrolled loop will
6107have. See :ref:`Transformation Metadata <transformation-metadata>` for
6108details.
6109
6110'``llvm.loop.unroll_and_jam.followup_inner``' Metadata
6111^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6112
6113This metadata defines which loop attributes the inner jammed loop will
6114have. See :ref:`Transformation Metadata <transformation-metadata>` for
6115details.
6116
6117'``llvm.loop.unroll_and_jam.followup_remainder_outer``' Metadata
6118^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6119
6120This metadata defines which attributes the epilogue of the outer loop
6121will have. This loop is usually unrolled, meaning there is no such
6122loop. This attribute will be ignored in this case. See
6123:ref:`Transformation Metadata <transformation-metadata>` for details.
6124
6125'``llvm.loop.unroll_and_jam.followup_remainder_inner``' Metadata
6126^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6127
6128This metadata defines which attributes the inner loop of the epilogue
6129will have. The outer epilogue will usually be unrolled, meaning there
6130can be multiple inner remainder loops. See
6131:ref:`Transformation Metadata <transformation-metadata>` for details.
6132
6133'``llvm.loop.unroll_and_jam.followup_all``' Metadata
6134^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6135
6136Attributes specified in the metadata is added to all
6137``llvm.loop.unroll_and_jam.*`` loops. See
6138:ref:`Transformation Metadata <transformation-metadata>` for details.
6139
6140'``llvm.loop.licm_versioning.disable``' Metadata
6141^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6142
6143This metadata indicates that the loop should not be versioned for the purpose
6144of enabling loop-invariant code motion (LICM). The metadata has a single operand
6145which is the string ``llvm.loop.licm_versioning.disable``. For example:
6146
6147.. code-block:: llvm
6148
6149   !0 = !{!"llvm.loop.licm_versioning.disable"}
6150
6151'``llvm.loop.distribute.enable``' Metadata
6152^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6153
6154Loop distribution allows splitting a loop into multiple loops.  Currently,
6155this is only performed if the entire loop cannot be vectorized due to unsafe
6156memory dependencies.  The transformation will attempt to isolate the unsafe
6157dependencies into their own loop.
6158
6159This metadata can be used to selectively enable or disable distribution of the
6160loop.  The first operand is the string ``llvm.loop.distribute.enable`` and the
6161second operand is a bit. If the bit operand value is 1 distribution is
6162enabled. A value of 0 disables distribution:
6163
6164.. code-block:: llvm
6165
6166   !0 = !{!"llvm.loop.distribute.enable", i1 0}
6167   !1 = !{!"llvm.loop.distribute.enable", i1 1}
6168
6169This metadata should be used in conjunction with ``llvm.loop`` loop
6170identification metadata.
6171
6172'``llvm.loop.distribute.followup_coincident``' Metadata
6173^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6174
6175This metadata defines which attributes extracted loops with no cyclic
6176dependencies will have (i.e. can be vectorized). See
6177:ref:`Transformation Metadata <transformation-metadata>` for details.
6178
6179'``llvm.loop.distribute.followup_sequential``' Metadata
6180^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6181
6182This metadata defines which attributes the isolated loops with unsafe
6183memory dependencies will have. See
6184:ref:`Transformation Metadata <transformation-metadata>` for details.
6185
6186'``llvm.loop.distribute.followup_fallback``' Metadata
6187^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6188
6189If loop versioning is necessary, this metadata defined the attributes
6190the non-distributed fallback version will have. See
6191:ref:`Transformation Metadata <transformation-metadata>` for details.
6192
6193'``llvm.loop.distribute.followup_all``' Metadata
6194^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6195
6196The attributes in this metadata is added to all followup loops of the
6197loop distribution pass. See
6198:ref:`Transformation Metadata <transformation-metadata>` for details.
6199
6200'``llvm.licm.disable``' Metadata
6201^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6202
6203This metadata indicates that loop-invariant code motion (LICM) should not be
6204performed on this loop. The metadata has a single operand which is the string
6205``llvm.licm.disable``. For example:
6206
6207.. code-block:: llvm
6208
6209   !0 = !{!"llvm.licm.disable"}
6210
6211Note that although it operates per loop it isn't given the llvm.loop prefix
6212as it is not affected by the ``llvm.loop.disable_nonforced`` metadata.
6213
6214'``llvm.access.group``' Metadata
6215^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6216
6217``llvm.access.group`` metadata can be attached to any instruction that
6218potentially accesses memory. It can point to a single distinct metadata
6219node, which we call access group. This node represents all memory access
6220instructions referring to it via ``llvm.access.group``. When an
6221instruction belongs to multiple access groups, it can also point to a
6222list of accesses groups, illustrated by the following example.
6223
6224.. code-block:: llvm
6225
6226   %val = load i32, i32* %arrayidx, !llvm.access.group !0
6227   ...
6228   !0 = !{!1, !2}
6229   !1 = distinct !{}
6230   !2 = distinct !{}
6231
6232It is illegal for the list node to be empty since it might be confused
6233with an access group.
6234
6235The access group metadata node must be 'distinct' to avoid collapsing
6236multiple access groups by content. A access group metadata node must
6237always be empty which can be used to distinguish an access group
6238metadata node from a list of access groups. Being empty avoids the
6239situation that the content must be updated which, because metadata is
6240immutable by design, would required finding and updating all references
6241to the access group node.
6242
6243The access group can be used to refer to a memory access instruction
6244without pointing to it directly (which is not possible in global
6245metadata). Currently, the only metadata making use of it is
6246``llvm.loop.parallel_accesses``.
6247
6248'``llvm.loop.parallel_accesses``' Metadata
6249^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6250
6251The ``llvm.loop.parallel_accesses`` metadata refers to one or more
6252access group metadata nodes (see ``llvm.access.group``). It denotes that
6253no loop-carried memory dependence exist between it and other instructions
6254in the loop with this metadata.
6255
6256Let ``m1`` and ``m2`` be two instructions that both have the
6257``llvm.access.group`` metadata to the access group ``g1``, respectively
6258``g2`` (which might be identical). If a loop contains both access groups
6259in its ``llvm.loop.parallel_accesses`` metadata, then the compiler can
6260assume that there is no dependency between ``m1`` and ``m2`` carried by
6261this loop. Instructions that belong to multiple access groups are
6262considered having this property if at least one of the access groups
6263matches the ``llvm.loop.parallel_accesses`` list.
6264
6265If all memory-accessing instructions in a loop have
6266``llvm.access.group`` metadata that each refer to one of the access
6267groups of a loop's ``llvm.loop.parallel_accesses`` metadata, then the
6268loop has no loop carried memory dependences and is considered to be a
6269parallel loop.
6270
6271Note that if not all memory access instructions belong to an access
6272group referred to by ``llvm.loop.parallel_accesses``, then the loop must
6273not be considered trivially parallel. Additional
6274memory dependence analysis is required to make that determination. As a fail
6275safe mechanism, this causes loops that were originally parallel to be considered
6276sequential (if optimization passes that are unaware of the parallel semantics
6277insert new memory instructions into the loop body).
6278
6279Example of a loop that is considered parallel due to its correct use of
6280both ``llvm.access.group`` and ``llvm.loop.parallel_accesses``
6281metadata types.
6282
6283.. code-block:: llvm
6284
6285   for.body:
6286     ...
6287     %val0 = load i32, i32* %arrayidx, !llvm.access.group !1
6288     ...
6289     store i32 %val0, i32* %arrayidx1, !llvm.access.group !1
6290     ...
6291     br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
6292
6293   for.end:
6294   ...
6295   !0 = distinct !{!0, !{!"llvm.loop.parallel_accesses", !1}}
6296   !1 = distinct !{}
6297
6298It is also possible to have nested parallel loops:
6299
6300.. code-block:: llvm
6301
6302   outer.for.body:
6303     ...
6304     %val1 = load i32, i32* %arrayidx3, !llvm.access.group !4
6305     ...
6306     br label %inner.for.body
6307
6308   inner.for.body:
6309     ...
6310     %val0 = load i32, i32* %arrayidx1, !llvm.access.group !3
6311     ...
6312     store i32 %val0, i32* %arrayidx2, !llvm.access.group !3
6313     ...
6314     br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
6315
6316   inner.for.end:
6317     ...
6318     store i32 %val1, i32* %arrayidx4, !llvm.access.group !4
6319     ...
6320     br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
6321
6322   outer.for.end:                                          ; preds = %for.body
6323   ...
6324   !1 = distinct !{!1, !{!"llvm.loop.parallel_accesses", !3}}     ; metadata for the inner loop
6325   !2 = distinct !{!2, !{!"llvm.loop.parallel_accesses", !3, !4}} ; metadata for the outer loop
6326   !3 = distinct !{} ; access group for instructions in the inner loop (which are implicitly contained in outer loop as well)
6327   !4 = distinct !{} ; access group for instructions in the outer, but not the inner loop
6328
6329'``llvm.loop.mustprogress``' Metadata
6330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6331
6332The ``llvm.loop.mustprogress`` metadata indicates that this loop is required to
6333terminate, unwind, or interact with the environment in an observable way e.g.
6334via a volatile memory access, I/O, or other synchronization. If such a loop is
6335not found to interact with the environment in an observable way, the loop may
6336be removed. This corresponds to the ``mustprogress`` function attribute.
6337
6338'``irr_loop``' Metadata
6339^^^^^^^^^^^^^^^^^^^^^^^
6340
6341``irr_loop`` metadata may be attached to the terminator instruction of a basic
6342block that's an irreducible loop header (note that an irreducible loop has more
6343than once header basic blocks.) If ``irr_loop`` metadata is attached to the
6344terminator instruction of a basic block that is not really an irreducible loop
6345header, the behavior is undefined. The intent of this metadata is to improve the
6346accuracy of the block frequency propagation. For example, in the code below, the
6347block ``header0`` may have a loop header weight (relative to the other headers of
6348the irreducible loop) of 100:
6349
6350.. code-block:: llvm
6351
6352    header0:
6353    ...
6354    br i1 %cmp, label %t1, label %t2, !irr_loop !0
6355
6356    ...
6357    !0 = !{"loop_header_weight", i64 100}
6358
6359Irreducible loop header weights are typically based on profile data.
6360
6361.. _md_invariant.group:
6362
6363'``invariant.group``' Metadata
6364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6365
6366The experimental ``invariant.group`` metadata may be attached to
6367``load``/``store`` instructions referencing a single metadata with no entries.
6368The existence of the ``invariant.group`` metadata on the instruction tells
6369the optimizer that every ``load`` and ``store`` to the same pointer operand
6370can be assumed to load or store the same
6371value (but see the ``llvm.launder.invariant.group`` intrinsic which affects
6372when two pointers are considered the same). Pointers returned by bitcast or
6373getelementptr with only zero indices are considered the same.
6374
6375Examples:
6376
6377.. code-block:: llvm
6378
6379   @unknownPtr = external global i8
6380   ...
6381   %ptr = alloca i8
6382   store i8 42, i8* %ptr, !invariant.group !0
6383   call void @foo(i8* %ptr)
6384
6385   %a = load i8, i8* %ptr, !invariant.group !0 ; Can assume that value under %ptr didn't change
6386   call void @foo(i8* %ptr)
6387
6388   %newPtr = call i8* @getPointer(i8* %ptr)
6389   %c = load i8, i8* %newPtr, !invariant.group !0 ; Can't assume anything, because we only have information about %ptr
6390
6391   %unknownValue = load i8, i8* @unknownPtr
6392   store i8 %unknownValue, i8* %ptr, !invariant.group !0 ; Can assume that %unknownValue == 42
6393
6394   call void @foo(i8* %ptr)
6395   %newPtr2 = call i8* @llvm.launder.invariant.group(i8* %ptr)
6396   %d = load i8, i8* %newPtr2, !invariant.group !0  ; Can't step through launder.invariant.group to get value of %ptr
6397
6398   ...
6399   declare void @foo(i8*)
6400   declare i8* @getPointer(i8*)
6401   declare i8* @llvm.launder.invariant.group(i8*)
6402
6403   !0 = !{}
6404
6405The invariant.group metadata must be dropped when replacing one pointer by
6406another based on aliasing information. This is because invariant.group is tied
6407to the SSA value of the pointer operand.
6408
6409.. code-block:: llvm
6410
6411  %v = load i8, i8* %x, !invariant.group !0
6412  ; if %x mustalias %y then we can replace the above instruction with
6413  %v = load i8, i8* %y
6414
6415Note that this is an experimental feature, which means that its semantics might
6416change in the future.
6417
6418'``type``' Metadata
6419^^^^^^^^^^^^^^^^^^^
6420
6421See :doc:`TypeMetadata`.
6422
6423'``associated``' Metadata
6424^^^^^^^^^^^^^^^^^^^^^^^^^
6425
6426The ``associated`` metadata may be attached to a global object
6427declaration with a single argument that references another global object.
6428
6429This metadata prevents discarding of the global object in linker GC
6430unless the referenced object is also discarded. The linker support for
6431this feature is spotty. For best compatibility, globals carrying this
6432metadata may also:
6433
6434- Be in a comdat with the referenced global.
6435- Be in @llvm.compiler.used.
6436- Have an explicit section with a name which is a valid C identifier.
6437
6438It does not have any effect on non-ELF targets.
6439
6440Example:
6441
6442.. code-block:: text
6443
6444    $a = comdat any
6445    @a = global i32 1, comdat $a
6446    @b = internal global i32 2, comdat $a, section "abc", !associated !0
6447    !0 = !{i32* @a}
6448
6449
6450'``prof``' Metadata
6451^^^^^^^^^^^^^^^^^^^
6452
6453The ``prof`` metadata is used to record profile data in the IR.
6454The first operand of the metadata node indicates the profile metadata
6455type. There are currently 3 types:
6456:ref:`branch_weights<prof_node_branch_weights>`,
6457:ref:`function_entry_count<prof_node_function_entry_count>`, and
6458:ref:`VP<prof_node_VP>`.
6459
6460.. _prof_node_branch_weights:
6461
6462branch_weights
6463""""""""""""""
6464
6465Branch weight metadata attached to a branch, select, switch or call instruction
6466represents the likeliness of the associated branch being taken.
6467For more information, see :doc:`BranchWeightMetadata`.
6468
6469.. _prof_node_function_entry_count:
6470
6471function_entry_count
6472""""""""""""""""""""
6473
6474Function entry count metadata can be attached to function definitions
6475to record the number of times the function is called. Used with BFI
6476information, it is also used to derive the basic block profile count.
6477For more information, see :doc:`BranchWeightMetadata`.
6478
6479.. _prof_node_VP:
6480
6481VP
6482""
6483
6484VP (value profile) metadata can be attached to instructions that have
6485value profile information. Currently this is indirect calls (where it
6486records the hottest callees) and calls to memory intrinsics such as memcpy,
6487memmove, and memset (where it records the hottest byte lengths).
6488
6489Each VP metadata node contains "VP" string, then a uint32_t value for the value
6490profiling kind, a uint64_t value for the total number of times the instruction
6491is executed, followed by uint64_t value and execution count pairs.
6492The value profiling kind is 0 for indirect call targets and 1 for memory
6493operations. For indirect call targets, each profile value is a hash
6494of the callee function name, and for memory operations each value is the
6495byte length.
6496
6497Note that the value counts do not need to add up to the total count
6498listed in the third operand (in practice only the top hottest values
6499are tracked and reported).
6500
6501Indirect call example:
6502
6503.. code-block:: llvm
6504
6505    call void %f(), !prof !1
6506    !1 = !{!"VP", i32 0, i64 1600, i64 7651369219802541373, i64 1030, i64 -4377547752858689819, i64 410}
6507
6508Note that the VP type is 0 (the second operand), which indicates this is
6509an indirect call value profile data. The third operand indicates that the
6510indirect call executed 1600 times. The 4th and 6th operands give the
6511hashes of the 2 hottest target functions' names (this is the same hash used
6512to represent function names in the profile database), and the 5th and 7th
6513operands give the execution count that each of the respective prior target
6514functions was called.
6515
6516Module Flags Metadata
6517=====================
6518
6519Information about the module as a whole is difficult to convey to LLVM's
6520subsystems. The LLVM IR isn't sufficient to transmit this information.
6521The ``llvm.module.flags`` named metadata exists in order to facilitate
6522this. These flags are in the form of key / value pairs --- much like a
6523dictionary --- making it easy for any subsystem who cares about a flag to
6524look it up.
6525
6526The ``llvm.module.flags`` metadata contains a list of metadata triplets.
6527Each triplet has the following form:
6528
6529-  The first element is a *behavior* flag, which specifies the behavior
6530   when two (or more) modules are merged together, and it encounters two
6531   (or more) metadata with the same ID. The supported behaviors are
6532   described below.
6533-  The second element is a metadata string that is a unique ID for the
6534   metadata. Each module may only have one flag entry for each unique ID (not
6535   including entries with the **Require** behavior).
6536-  The third element is the value of the flag.
6537
6538When two (or more) modules are merged together, the resulting
6539``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
6540each unique metadata ID string, there will be exactly one entry in the merged
6541modules ``llvm.module.flags`` metadata table, and the value for that entry will
6542be determined by the merge behavior flag, as described below. The only exception
6543is that entries with the *Require* behavior are always preserved.
6544
6545The following behaviors are supported:
6546
6547.. list-table::
6548   :header-rows: 1
6549   :widths: 10 90
6550
6551   * - Value
6552     - Behavior
6553
6554   * - 1
6555     - **Error**
6556           Emits an error if two values disagree, otherwise the resulting value
6557           is that of the operands.
6558
6559   * - 2
6560     - **Warning**
6561           Emits a warning if two values disagree. The result value will be the
6562           operand for the flag from the first module being linked, or the max
6563           if the other module uses **Max** (in which case the resulting flag
6564           will be **Max**).
6565
6566   * - 3
6567     - **Require**
6568           Adds a requirement that another module flag be present and have a
6569           specified value after linking is performed. The value must be a
6570           metadata pair, where the first element of the pair is the ID of the
6571           module flag to be restricted, and the second element of the pair is
6572           the value the module flag should be restricted to. This behavior can
6573           be used to restrict the allowable results (via triggering of an
6574           error) of linking IDs with the **Override** behavior.
6575
6576   * - 4
6577     - **Override**
6578           Uses the specified value, regardless of the behavior or value of the
6579           other module. If both modules specify **Override**, but the values
6580           differ, an error will be emitted.
6581
6582   * - 5
6583     - **Append**
6584           Appends the two values, which are required to be metadata nodes.
6585
6586   * - 6
6587     - **AppendUnique**
6588           Appends the two values, which are required to be metadata
6589           nodes. However, duplicate entries in the second list are dropped
6590           during the append operation.
6591
6592   * - 7
6593     - **Max**
6594           Takes the max of the two values, which are required to be integers.
6595
6596It is an error for a particular unique flag ID to have multiple behaviors,
6597except in the case of **Require** (which adds restrictions on another metadata
6598value) or **Override**.
6599
6600An example of module flags:
6601
6602.. code-block:: llvm
6603
6604    !0 = !{ i32 1, !"foo", i32 1 }
6605    !1 = !{ i32 4, !"bar", i32 37 }
6606    !2 = !{ i32 2, !"qux", i32 42 }
6607    !3 = !{ i32 3, !"qux",
6608      !{
6609        !"foo", i32 1
6610      }
6611    }
6612    !llvm.module.flags = !{ !0, !1, !2, !3 }
6613
6614-  Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
6615   if two or more ``!"foo"`` flags are seen is to emit an error if their
6616   values are not equal.
6617
6618-  Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
6619   behavior if two or more ``!"bar"`` flags are seen is to use the value
6620   '37'.
6621
6622-  Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
6623   behavior if two or more ``!"qux"`` flags are seen is to emit a
6624   warning if their values are not equal.
6625
6626-  Metadata ``!3`` has the ID ``!"qux"`` and the value:
6627
6628   ::
6629
6630       !{ !"foo", i32 1 }
6631
6632   The behavior is to emit an error if the ``llvm.module.flags`` does not
6633   contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
6634   performed.
6635
6636Objective-C Garbage Collection Module Flags Metadata
6637----------------------------------------------------
6638
6639On the Mach-O platform, Objective-C stores metadata about garbage
6640collection in a special section called "image info". The metadata
6641consists of a version number and a bitmask specifying what types of
6642garbage collection are supported (if any) by the file. If two or more
6643modules are linked together their garbage collection metadata needs to
6644be merged rather than appended together.
6645
6646The Objective-C garbage collection module flags metadata consists of the
6647following key-value pairs:
6648
6649.. list-table::
6650   :header-rows: 1
6651   :widths: 30 70
6652
6653   * - Key
6654     - Value
6655
6656   * - ``Objective-C Version``
6657     - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
6658
6659   * - ``Objective-C Image Info Version``
6660     - **[Required]** --- The version of the image info section. Currently
6661       always 0.
6662
6663   * - ``Objective-C Image Info Section``
6664     - **[Required]** --- The section to place the metadata. Valid values are
6665       ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
6666       ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
6667       Objective-C ABI version 2.
6668
6669   * - ``Objective-C Garbage Collection``
6670     - **[Required]** --- Specifies whether garbage collection is supported or
6671       not. Valid values are 0, for no garbage collection, and 2, for garbage
6672       collection supported.
6673
6674   * - ``Objective-C GC Only``
6675     - **[Optional]** --- Specifies that only garbage collection is supported.
6676       If present, its value must be 6. This flag requires that the
6677       ``Objective-C Garbage Collection`` flag have the value 2.
6678
6679Some important flag interactions:
6680
6681-  If a module with ``Objective-C Garbage Collection`` set to 0 is
6682   merged with a module with ``Objective-C Garbage Collection`` set to
6683   2, then the resulting module has the
6684   ``Objective-C Garbage Collection`` flag set to 0.
6685-  A module with ``Objective-C Garbage Collection`` set to 0 cannot be
6686   merged with a module with ``Objective-C GC Only`` set to 6.
6687
6688C type width Module Flags Metadata
6689----------------------------------
6690
6691The ARM backend emits a section into each generated object file describing the
6692options that it was compiled with (in a compiler-independent way) to prevent
6693linking incompatible objects, and to allow automatic library selection. Some
6694of these options are not visible at the IR level, namely wchar_t width and enum
6695width.
6696
6697To pass this information to the backend, these options are encoded in module
6698flags metadata, using the following key-value pairs:
6699
6700.. list-table::
6701   :header-rows: 1
6702   :widths: 30 70
6703
6704   * - Key
6705     - Value
6706
6707   * - short_wchar
6708     - * 0 --- sizeof(wchar_t) == 4
6709       * 1 --- sizeof(wchar_t) == 2
6710
6711   * - short_enum
6712     - * 0 --- Enums are at least as large as an ``int``.
6713       * 1 --- Enums are stored in the smallest integer type which can
6714         represent all of its values.
6715
6716For example, the following metadata section specifies that the module was
6717compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
6718enum is the smallest type which can represent all of its values::
6719
6720    !llvm.module.flags = !{!0, !1}
6721    !0 = !{i32 1, !"short_wchar", i32 1}
6722    !1 = !{i32 1, !"short_enum", i32 0}
6723
6724LTO Post-Link Module Flags Metadata
6725-----------------------------------
6726
6727Some optimisations are only when the entire LTO unit is present in the current
6728module. This is represented by the ``LTOPostLink`` module flags metadata, which
6729will be created with a value of ``1`` when LTO linking occurs.
6730
6731Automatic Linker Flags Named Metadata
6732=====================================
6733
6734Some targets support embedding of flags to the linker inside individual object
6735files. Typically this is used in conjunction with language extensions which
6736allow source files to contain linker command line options, and have these
6737automatically be transmitted to the linker via object files.
6738
6739These flags are encoded in the IR using named metadata with the name
6740``!llvm.linker.options``. Each operand is expected to be a metadata node
6741which should be a list of other metadata nodes, each of which should be a
6742list of metadata strings defining linker options.
6743
6744For example, the following metadata section specifies two separate sets of
6745linker options, presumably to link against ``libz`` and the ``Cocoa``
6746framework::
6747
6748    !0 = !{ !"-lz" }
6749    !1 = !{ !"-framework", !"Cocoa" }
6750    !llvm.linker.options = !{ !0, !1 }
6751
6752The metadata encoding as lists of lists of options, as opposed to a collapsed
6753list of options, is chosen so that the IR encoding can use multiple option
6754strings to specify e.g., a single library, while still having that specifier be
6755preserved as an atomic element that can be recognized by a target specific
6756assembly writer or object file emitter.
6757
6758Each individual option is required to be either a valid option for the target's
6759linker, or an option that is reserved by the target specific assembly writer or
6760object file emitter. No other aspect of these options is defined by the IR.
6761
6762Dependent Libs Named Metadata
6763=============================
6764
6765Some targets support embedding of strings into object files to indicate
6766a set of libraries to add to the link. Typically this is used in conjunction
6767with language extensions which allow source files to explicitly declare the
6768libraries they depend on, and have these automatically be transmitted to the
6769linker via object files.
6770
6771The list is encoded in the IR using named metadata with the name
6772``!llvm.dependent-libraries``. Each operand is expected to be a metadata node
6773which should contain a single string operand.
6774
6775For example, the following metadata section contains two library specifiers::
6776
6777    !0 = !{!"a library specifier"}
6778    !1 = !{!"another library specifier"}
6779    !llvm.dependent-libraries = !{ !0, !1 }
6780
6781Each library specifier will be handled independently by the consuming linker.
6782The effect of the library specifiers are defined by the consuming linker.
6783
6784.. _summary:
6785
6786ThinLTO Summary
6787===============
6788
6789Compiling with `ThinLTO <https://clang.llvm.org/docs/ThinLTO.html>`_
6790causes the building of a compact summary of the module that is emitted into
6791the bitcode. The summary is emitted into the LLVM assembly and identified
6792in syntax by a caret ('``^``').
6793
6794The summary is parsed into a bitcode output, along with the Module
6795IR, via the "``llvm-as``" tool. Tools that parse the Module IR for the purposes
6796of optimization (e.g. "``clang -x ir``" and "``opt``"), will ignore the
6797summary entries (just as they currently ignore summary entries in a bitcode
6798input file).
6799
6800Eventually, the summary will be parsed into a ModuleSummaryIndex object under
6801the same conditions where summary index is currently built from bitcode.
6802Specifically, tools that test the Thin Link portion of a ThinLTO compile
6803(i.e. llvm-lto and llvm-lto2), or when parsing a combined index
6804for a distributed ThinLTO backend via clang's "``-fthinlto-index=<>``" flag
6805(this part is not yet implemented, use llvm-as to create a bitcode object
6806before feeding into thin link tools for now).
6807
6808There are currently 3 types of summary entries in the LLVM assembly:
6809:ref:`module paths<module_path_summary>`,
6810:ref:`global values<gv_summary>`, and
6811:ref:`type identifiers<typeid_summary>`.
6812
6813.. _module_path_summary:
6814
6815Module Path Summary Entry
6816-------------------------
6817
6818Each module path summary entry lists a module containing global values included
6819in the summary. For a single IR module there will be one such entry, but
6820in a combined summary index produced during the thin link, there will be
6821one module path entry per linked module with summary.
6822
6823Example:
6824
6825.. code-block:: text
6826
6827    ^0 = module: (path: "/path/to/file.o", hash: (2468601609, 1329373163, 1565878005, 638838075, 3148790418))
6828
6829The ``path`` field is a string path to the bitcode file, and the ``hash``
6830field is the 160-bit SHA-1 hash of the IR bitcode contents, used for
6831incremental builds and caching.
6832
6833.. _gv_summary:
6834
6835Global Value Summary Entry
6836--------------------------
6837
6838Each global value summary entry corresponds to a global value defined or
6839referenced by a summarized module.
6840
6841Example:
6842
6843.. code-block:: text
6844
6845    ^4 = gv: (name: "f"[, summaries: (Summary)[, (Summary)]*]?) ; guid = 14740650423002898831
6846
6847For declarations, there will not be a summary list. For definitions, a
6848global value will contain a list of summaries, one per module containing
6849a definition. There can be multiple entries in a combined summary index
6850for symbols with weak linkage.
6851
6852Each ``Summary`` format will depend on whether the global value is a
6853:ref:`function<function_summary>`, :ref:`variable<variable_summary>`, or
6854:ref:`alias<alias_summary>`.
6855
6856.. _function_summary:
6857
6858Function Summary
6859^^^^^^^^^^^^^^^^
6860
6861If the global value is a function, the ``Summary`` entry will look like:
6862
6863.. code-block:: text
6864
6865    function: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), insts: 2[, FuncFlags]?[, Calls]?[, TypeIdInfo]?[, Params]?[, Refs]?
6866
6867The ``module`` field includes the summary entry id for the module containing
6868this definition, and the ``flags`` field contains information such as
6869the linkage type, a flag indicating whether it is legal to import the
6870definition, whether it is globally live and whether the linker resolved it
6871to a local definition (the latter two are populated during the thin link).
6872The ``insts`` field contains the number of IR instructions in the function.
6873Finally, there are several optional fields: :ref:`FuncFlags<funcflags_summary>`,
6874:ref:`Calls<calls_summary>`, :ref:`TypeIdInfo<typeidinfo_summary>`,
6875:ref:`Params<params_summary>`, :ref:`Refs<refs_summary>`.
6876
6877.. _variable_summary:
6878
6879Global Variable Summary
6880^^^^^^^^^^^^^^^^^^^^^^^
6881
6882If the global value is a variable, the ``Summary`` entry will look like:
6883
6884.. code-block:: text
6885
6886    variable: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0)[, Refs]?
6887
6888The variable entry contains a subset of the fields in a
6889:ref:`function summary <function_summary>`, see the descriptions there.
6890
6891.. _alias_summary:
6892
6893Alias Summary
6894^^^^^^^^^^^^^
6895
6896If the global value is an alias, the ``Summary`` entry will look like:
6897
6898.. code-block:: text
6899
6900    alias: (module: ^0, flags: (linkage: external, notEligibleToImport: 0, live: 0, dsoLocal: 0), aliasee: ^2)
6901
6902The ``module`` and ``flags`` fields are as described for a
6903:ref:`function summary <function_summary>`. The ``aliasee`` field
6904contains a reference to the global value summary entry of the aliasee.
6905
6906.. _funcflags_summary:
6907
6908Function Flags
6909^^^^^^^^^^^^^^
6910
6911The optional ``FuncFlags`` field looks like:
6912
6913.. code-block:: text
6914
6915    funcFlags: (readNone: 0, readOnly: 0, noRecurse: 0, returnDoesNotAlias: 0)
6916
6917If unspecified, flags are assumed to hold the conservative ``false`` value of
6918``0``.
6919
6920.. _calls_summary:
6921
6922Calls
6923^^^^^
6924
6925The optional ``Calls`` field looks like:
6926
6927.. code-block:: text
6928
6929    calls: ((Callee)[, (Callee)]*)
6930
6931where each ``Callee`` looks like:
6932
6933.. code-block:: text
6934
6935    callee: ^1[, hotness: None]?[, relbf: 0]?
6936
6937The ``callee`` refers to the summary entry id of the callee. At most one
6938of ``hotness`` (which can take the values ``Unknown``, ``Cold``, ``None``,
6939``Hot``, and ``Critical``), and ``relbf`` (which holds the integer
6940branch frequency relative to the entry frequency, scaled down by 2^8)
6941may be specified. The defaults are ``Unknown`` and ``0``, respectively.
6942
6943.. _params_summary:
6944
6945Params
6946^^^^^^
6947
6948The optional ``Params`` is used by ``StackSafety`` and looks like:
6949
6950.. code-block:: text
6951
6952    Params: ((Param)[, (Param)]*)
6953
6954where each ``Param`` describes pointer parameter access inside of the
6955function and looks like:
6956
6957.. code-block:: text
6958
6959    param: 4, offset: [0, 5][, calls: ((Callee)[, (Callee)]*)]?
6960
6961where the first ``param`` is the number of the parameter it describes,
6962``offset`` is the inclusive range of offsets from the pointer parameter to bytes
6963which can be accessed by the function. This range does not include accesses by
6964function calls from ``calls`` list.
6965
6966where each ``Callee`` describes how parameter is forwarded into other
6967functions and looks like:
6968
6969.. code-block:: text
6970
6971    callee: ^3, param: 5, offset: [-3, 3]
6972
6973The ``callee`` refers to the summary entry id of the callee,  ``param`` is
6974the number of the callee parameter which points into the callers parameter
6975with offset known to be inside of the ``offset`` range. ``calls`` will be
6976consumed and removed by thin link stage to update ``Param::offset`` so it
6977covers all accesses possible by ``calls``.
6978
6979Pointer parameter without corresponding ``Param`` is considered unsafe and we
6980assume that access with any offset is possible.
6981
6982Example:
6983
6984If we have the following function:
6985
6986.. code-block:: text
6987
6988    define i64 @foo(i64* %0, i32* %1, i8* %2, i8 %3) {
6989      store i32* %1, i32** @x
6990      %5 = getelementptr inbounds i8, i8* %2, i64 5
6991      %6 = load i8, i8* %5
6992      %7 = getelementptr inbounds i8, i8* %2, i8 %3
6993      tail call void @bar(i8 %3, i8* %7)
6994      %8 = load i64, i64* %0
6995      ret i64 %8
6996    }
6997
6998We can expect the record like this:
6999
7000.. code-block:: text
7001
7002    params: ((param: 0, offset: [0, 7]),(param: 2, offset: [5, 5], calls: ((callee: ^3, param: 1, offset: [-128, 127]))))
7003
7004The function may access just 8 bytes of the parameter %0 . ``calls`` is empty,
7005so the parameter is either not used for function calls or ``offset`` already
7006covers all accesses from nested function calls.
7007Parameter %1 escapes, so access is unknown.
7008The function itself can access just a single byte of the parameter %2. Additional
7009access is possible inside of the ``@bar`` or ``^3``. The function adds signed
7010offset to the pointer and passes the result as the argument %1 into ``^3``.
7011This record itself does not tell us how ``^3`` will access the parameter.
7012Parameter %3 is not a pointer.
7013
7014.. _refs_summary:
7015
7016Refs
7017^^^^
7018
7019The optional ``Refs`` field looks like:
7020
7021.. code-block:: text
7022
7023    refs: ((Ref)[, (Ref)]*)
7024
7025where each ``Ref`` contains a reference to the summary id of the referenced
7026value (e.g. ``^1``).
7027
7028.. _typeidinfo_summary:
7029
7030TypeIdInfo
7031^^^^^^^^^^
7032
7033The optional ``TypeIdInfo`` field, used for
7034`Control Flow Integrity <https://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
7035looks like:
7036
7037.. code-block:: text
7038
7039    typeIdInfo: [(TypeTests)]?[, (TypeTestAssumeVCalls)]?[, (TypeCheckedLoadVCalls)]?[, (TypeTestAssumeConstVCalls)]?[, (TypeCheckedLoadConstVCalls)]?
7040
7041These optional fields have the following forms:
7042
7043TypeTests
7044"""""""""
7045
7046.. code-block:: text
7047
7048    typeTests: (TypeIdRef[, TypeIdRef]*)
7049
7050Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
7051by summary id or ``GUID``.
7052
7053TypeTestAssumeVCalls
7054""""""""""""""""""""
7055
7056.. code-block:: text
7057
7058    typeTestAssumeVCalls: (VFuncId[, VFuncId]*)
7059
7060Where each VFuncId has the format:
7061
7062.. code-block:: text
7063
7064    vFuncId: (TypeIdRef, offset: 16)
7065
7066Where each ``TypeIdRef`` refers to a :ref:`type id<typeid_summary>`
7067by summary id or ``GUID`` preceded by a ``guid:`` tag.
7068
7069TypeCheckedLoadVCalls
7070"""""""""""""""""""""
7071
7072.. code-block:: text
7073
7074    typeCheckedLoadVCalls: (VFuncId[, VFuncId]*)
7075
7076Where each VFuncId has the format described for ``TypeTestAssumeVCalls``.
7077
7078TypeTestAssumeConstVCalls
7079"""""""""""""""""""""""""
7080
7081.. code-block:: text
7082
7083    typeTestAssumeConstVCalls: (ConstVCall[, ConstVCall]*)
7084
7085Where each ConstVCall has the format:
7086
7087.. code-block:: text
7088
7089    (VFuncId, args: (Arg[, Arg]*))
7090
7091and where each VFuncId has the format described for ``TypeTestAssumeVCalls``,
7092and each Arg is an integer argument number.
7093
7094TypeCheckedLoadConstVCalls
7095""""""""""""""""""""""""""
7096
7097.. code-block:: text
7098
7099    typeCheckedLoadConstVCalls: (ConstVCall[, ConstVCall]*)
7100
7101Where each ConstVCall has the format described for
7102``TypeTestAssumeConstVCalls``.
7103
7104.. _typeid_summary:
7105
7106Type ID Summary Entry
7107---------------------
7108
7109Each type id summary entry corresponds to a type identifier resolution
7110which is generated during the LTO link portion of the compile when building
7111with `Control Flow Integrity <https://clang.llvm.org/docs/ControlFlowIntegrity.html>`_,
7112so these are only present in a combined summary index.
7113
7114Example:
7115
7116.. code-block:: text
7117
7118    ^4 = typeid: (name: "_ZTS1A", summary: (typeTestRes: (kind: allOnes, sizeM1BitWidth: 7[, alignLog2: 0]?[, sizeM1: 0]?[, bitMask: 0]?[, inlineBits: 0]?)[, WpdResolutions]?)) ; guid = 7004155349499253778
7119
7120The ``typeTestRes`` gives the type test resolution ``kind`` (which may
7121be ``unsat``, ``byteArray``, ``inline``, ``single``, or ``allOnes``), and
7122the ``size-1`` bit width. It is followed by optional flags, which default to 0,
7123and an optional WpdResolutions (whole program devirtualization resolution)
7124field that looks like:
7125
7126.. code-block:: text
7127
7128    wpdResolutions: ((offset: 0, WpdRes)[, (offset: 1, WpdRes)]*
7129
7130where each entry is a mapping from the given byte offset to the whole-program
7131devirtualization resolution WpdRes, that has one of the following formats:
7132
7133.. code-block:: text
7134
7135    wpdRes: (kind: branchFunnel)
7136    wpdRes: (kind: singleImpl, singleImplName: "_ZN1A1nEi")
7137    wpdRes: (kind: indir)
7138
7139Additionally, each wpdRes has an optional ``resByArg`` field, which
7140describes the resolutions for calls with all constant integer arguments:
7141
7142.. code-block:: text
7143
7144    resByArg: (ResByArg[, ResByArg]*)
7145
7146where ResByArg is:
7147
7148.. code-block:: text
7149
7150    args: (Arg[, Arg]*), byArg: (kind: UniformRetVal[, info: 0][, byte: 0][, bit: 0])
7151
7152Where the ``kind`` can be ``Indir``, ``UniformRetVal``, ``UniqueRetVal``
7153or ``VirtualConstProp``. The ``info`` field is only used if the kind
7154is ``UniformRetVal`` (indicates the uniform return value), or
7155``UniqueRetVal`` (holds the return value associated with the unique vtable
7156(0 or 1)). The ``byte`` and ``bit`` fields are only used if the target does
7157not support the use of absolute symbols to store constants.
7158
7159.. _intrinsicglobalvariables:
7160
7161Intrinsic Global Variables
7162==========================
7163
7164LLVM has a number of "magic" global variables that contain data that
7165affect code generation or other IR semantics. These are documented here.
7166All globals of this sort should have a section specified as
7167"``llvm.metadata``". This section and all globals that start with
7168"``llvm.``" are reserved for use by LLVM.
7169
7170.. _gv_llvmused:
7171
7172The '``llvm.used``' Global Variable
7173-----------------------------------
7174
7175The ``@llvm.used`` global is an array which has
7176:ref:`appending linkage <linkage_appending>`. This array contains a list of
7177pointers to named global variables, functions and aliases which may optionally
7178have a pointer cast formed of bitcast or getelementptr. For example, a legal
7179use of it is:
7180
7181.. code-block:: llvm
7182
7183    @X = global i8 4
7184    @Y = global i32 123
7185
7186    @llvm.used = appending global [2 x i8*] [
7187       i8* @X,
7188       i8* bitcast (i32* @Y to i8*)
7189    ], section "llvm.metadata"
7190
7191If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
7192and linker are required to treat the symbol as if there is a reference to the
7193symbol that it cannot see (which is why they have to be named). For example, if
7194a variable has internal linkage and no references other than that from the
7195``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
7196references from inline asms and other things the compiler cannot "see", and
7197corresponds to "``attribute((used))``" in GNU C.
7198
7199On some targets, the code generator must emit a directive to the
7200assembler or object file to prevent the assembler and linker from
7201removing the symbol.
7202
7203.. _gv_llvmcompilerused:
7204
7205The '``llvm.compiler.used``' Global Variable
7206--------------------------------------------
7207
7208The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
7209directive, except that it only prevents the compiler from touching the
7210symbol. On targets that support it, this allows an intelligent linker to
7211optimize references to the symbol without being impeded as it would be
7212by ``@llvm.used``.
7213
7214This is a rare construct that should only be used in rare circumstances,
7215and should not be exposed to source languages.
7216
7217.. _gv_llvmglobalctors:
7218
7219The '``llvm.global_ctors``' Global Variable
7220-------------------------------------------
7221
7222.. code-block:: llvm
7223
7224    %0 = type { i32, void ()*, i8* }
7225    @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
7226
7227The ``@llvm.global_ctors`` array contains a list of constructor
7228functions, priorities, and an associated global or function.
7229The functions referenced by this array will be called in ascending order
7230of priority (i.e. lowest first) when the module is loaded. The order of
7231functions with the same priority is not defined.
7232
7233If the third field is non-null, and points to a global variable
7234or function, the initializer function will only run if the associated
7235data from the current module is not discarded.
7236
7237.. _llvmglobaldtors:
7238
7239The '``llvm.global_dtors``' Global Variable
7240-------------------------------------------
7241
7242.. code-block:: llvm
7243
7244    %0 = type { i32, void ()*, i8* }
7245    @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
7246
7247The ``@llvm.global_dtors`` array contains a list of destructor
7248functions, priorities, and an associated global or function.
7249The functions referenced by this array will be called in descending
7250order of priority (i.e. highest first) when the module is unloaded. The
7251order of functions with the same priority is not defined.
7252
7253If the third field is non-null, and points to a global variable
7254or function, the destructor function will only run if the associated
7255data from the current module is not discarded.
7256
7257Instruction Reference
7258=====================
7259
7260The LLVM instruction set consists of several different classifications
7261of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
7262instructions <binaryops>`, :ref:`bitwise binary
7263instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
7264:ref:`other instructions <otherops>`.
7265
7266.. _terminators:
7267
7268Terminator Instructions
7269-----------------------
7270
7271As mentioned :ref:`previously <functionstructure>`, every basic block in a
7272program ends with a "Terminator" instruction, which indicates which
7273block should be executed after the current block is finished. These
7274terminator instructions typically yield a '``void``' value: they produce
7275control flow, not values (the one exception being the
7276':ref:`invoke <i_invoke>`' instruction).
7277
7278The terminator instructions are: ':ref:`ret <i_ret>`',
7279':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
7280':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
7281':ref:`callbr <i_callbr>`'
7282':ref:`resume <i_resume>`', ':ref:`catchswitch <i_catchswitch>`',
7283':ref:`catchret <i_catchret>`',
7284':ref:`cleanupret <i_cleanupret>`',
7285and ':ref:`unreachable <i_unreachable>`'.
7286
7287.. _i_ret:
7288
7289'``ret``' Instruction
7290^^^^^^^^^^^^^^^^^^^^^
7291
7292Syntax:
7293"""""""
7294
7295::
7296
7297      ret <type> <value>       ; Return a value from a non-void function
7298      ret void                 ; Return from void function
7299
7300Overview:
7301"""""""""
7302
7303The '``ret``' instruction is used to return control flow (and optionally
7304a value) from a function back to the caller.
7305
7306There are two forms of the '``ret``' instruction: one that returns a
7307value and then causes control flow, and one that just causes control
7308flow to occur.
7309
7310Arguments:
7311""""""""""
7312
7313The '``ret``' instruction optionally accepts a single argument, the
7314return value. The type of the return value must be a ':ref:`first
7315class <t_firstclass>`' type.
7316
7317A function is not :ref:`well formed <wellformed>` if it has a non-void
7318return type and contains a '``ret``' instruction with no return value or
7319a return value with a type that does not match its type, or if it has a
7320void return type and contains a '``ret``' instruction with a return
7321value.
7322
7323Semantics:
7324""""""""""
7325
7326When the '``ret``' instruction is executed, control flow returns back to
7327the calling function's context. If the caller is a
7328":ref:`call <i_call>`" instruction, execution continues at the
7329instruction after the call. If the caller was an
7330":ref:`invoke <i_invoke>`" instruction, execution continues at the
7331beginning of the "normal" destination block. If the instruction returns
7332a value, that value shall set the call or invoke instruction's return
7333value.
7334
7335Example:
7336""""""""
7337
7338.. code-block:: llvm
7339
7340      ret i32 5                       ; Return an integer value of 5
7341      ret void                        ; Return from a void function
7342      ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
7343
7344.. _i_br:
7345
7346'``br``' Instruction
7347^^^^^^^^^^^^^^^^^^^^
7348
7349Syntax:
7350"""""""
7351
7352::
7353
7354      br i1 <cond>, label <iftrue>, label <iffalse>
7355      br label <dest>          ; Unconditional branch
7356
7357Overview:
7358"""""""""
7359
7360The '``br``' instruction is used to cause control flow to transfer to a
7361different basic block in the current function. There are two forms of
7362this instruction, corresponding to a conditional branch and an
7363unconditional branch.
7364
7365Arguments:
7366""""""""""
7367
7368The conditional branch form of the '``br``' instruction takes a single
7369'``i1``' value and two '``label``' values. The unconditional form of the
7370'``br``' instruction takes a single '``label``' value as a target.
7371
7372Semantics:
7373""""""""""
7374
7375Upon execution of a conditional '``br``' instruction, the '``i1``'
7376argument is evaluated. If the value is ``true``, control flows to the
7377'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
7378to the '``iffalse``' ``label`` argument.
7379If '``cond``' is ``poison`` or ``undef``, this instruction has undefined
7380behavior.
7381
7382Example:
7383""""""""
7384
7385.. code-block:: llvm
7386
7387    Test:
7388      %cond = icmp eq i32 %a, %b
7389      br i1 %cond, label %IfEqual, label %IfUnequal
7390    IfEqual:
7391      ret i32 1
7392    IfUnequal:
7393      ret i32 0
7394
7395.. _i_switch:
7396
7397'``switch``' Instruction
7398^^^^^^^^^^^^^^^^^^^^^^^^
7399
7400Syntax:
7401"""""""
7402
7403::
7404
7405      switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
7406
7407Overview:
7408"""""""""
7409
7410The '``switch``' instruction is used to transfer control flow to one of
7411several different places. It is a generalization of the '``br``'
7412instruction, allowing a branch to occur to one of many possible
7413destinations.
7414
7415Arguments:
7416""""""""""
7417
7418The '``switch``' instruction uses three parameters: an integer
7419comparison value '``value``', a default '``label``' destination, and an
7420array of pairs of comparison value constants and '``label``'s. The table
7421is not allowed to contain duplicate constant entries.
7422
7423Semantics:
7424""""""""""
7425
7426The ``switch`` instruction specifies a table of values and destinations.
7427When the '``switch``' instruction is executed, this table is searched
7428for the given value. If the value is found, control flow is transferred
7429to the corresponding destination; otherwise, control flow is transferred
7430to the default destination.
7431If '``value``' is ``poison`` or ``undef``, this instruction has undefined
7432behavior.
7433
7434Implementation:
7435"""""""""""""""
7436
7437Depending on properties of the target machine and the particular
7438``switch`` instruction, this instruction may be code generated in
7439different ways. For example, it could be generated as a series of
7440chained conditional branches or with a lookup table.
7441
7442Example:
7443""""""""
7444
7445.. code-block:: llvm
7446
7447     ; Emulate a conditional br instruction
7448     %Val = zext i1 %value to i32
7449     switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
7450
7451     ; Emulate an unconditional br instruction
7452     switch i32 0, label %dest [ ]
7453
7454     ; Implement a jump table:
7455     switch i32 %val, label %otherwise [ i32 0, label %onzero
7456                                         i32 1, label %onone
7457                                         i32 2, label %ontwo ]
7458
7459.. _i_indirectbr:
7460
7461'``indirectbr``' Instruction
7462^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7463
7464Syntax:
7465"""""""
7466
7467::
7468
7469      indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
7470
7471Overview:
7472"""""""""
7473
7474The '``indirectbr``' instruction implements an indirect branch to a
7475label within the current function, whose address is specified by
7476"``address``". Address must be derived from a
7477:ref:`blockaddress <blockaddress>` constant.
7478
7479Arguments:
7480""""""""""
7481
7482The '``address``' argument is the address of the label to jump to. The
7483rest of the arguments indicate the full set of possible destinations
7484that the address may point to. Blocks are allowed to occur multiple
7485times in the destination list, though this isn't particularly useful.
7486
7487This destination list is required so that dataflow analysis has an
7488accurate understanding of the CFG.
7489
7490Semantics:
7491""""""""""
7492
7493Control transfers to the block specified in the address argument. All
7494possible destination blocks must be listed in the label list, otherwise
7495this instruction has undefined behavior. This implies that jumps to
7496labels defined in other functions have undefined behavior as well.
7497If '``address``' is ``poison`` or ``undef``, this instruction has undefined
7498behavior.
7499
7500Implementation:
7501"""""""""""""""
7502
7503This is typically implemented with a jump through a register.
7504
7505Example:
7506""""""""
7507
7508.. code-block:: llvm
7509
7510     indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
7511
7512.. _i_invoke:
7513
7514'``invoke``' Instruction
7515^^^^^^^^^^^^^^^^^^^^^^^^
7516
7517Syntax:
7518"""""""
7519
7520::
7521
7522      <result> = invoke [cconv] [ret attrs] [addrspace(<num>)] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
7523                    [operand bundles] to label <normal label> unwind label <exception label>
7524
7525Overview:
7526"""""""""
7527
7528The '``invoke``' instruction causes control to transfer to a specified
7529function, with the possibility of control flow transfer to either the
7530'``normal``' label or the '``exception``' label. If the callee function
7531returns with the "``ret``" instruction, control flow will return to the
7532"normal" label. If the callee (or any indirect callees) returns via the
7533":ref:`resume <i_resume>`" instruction or other exception handling
7534mechanism, control is interrupted and continued at the dynamically
7535nearest "exception" label.
7536
7537The '``exception``' label is a `landing
7538pad <ExceptionHandling.html#overview>`_ for the exception. As such,
7539'``exception``' label is required to have the
7540":ref:`landingpad <i_landingpad>`" instruction, which contains the
7541information about the behavior of the program after unwinding happens,
7542as its first non-PHI instruction. The restrictions on the
7543"``landingpad``" instruction's tightly couples it to the "``invoke``"
7544instruction, so that the important information contained within the
7545"``landingpad``" instruction can't be lost through normal code motion.
7546
7547Arguments:
7548""""""""""
7549
7550This instruction requires several arguments:
7551
7552#. The optional "cconv" marker indicates which :ref:`calling
7553   convention <callingconv>` the call should use. If none is
7554   specified, the call defaults to using C calling conventions.
7555#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
7556   values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
7557   are valid here.
7558#. The optional addrspace attribute can be used to indicate the address space
7559   of the called function. If it is not specified, the program address space
7560   from the :ref:`datalayout string<langref_datalayout>` will be used.
7561#. '``ty``': the type of the call instruction itself which is also the
7562   type of the return value. Functions that return no value are marked
7563   ``void``.
7564#. '``fnty``': shall be the signature of the function being invoked. The
7565   argument types must match the types implied by this signature. This
7566   type can be omitted if the function is not varargs.
7567#. '``fnptrval``': An LLVM value containing a pointer to a function to
7568   be invoked. In most cases, this is a direct function invocation, but
7569   indirect ``invoke``'s are just as possible, calling an arbitrary pointer
7570   to function value.
7571#. '``function args``': argument list whose types match the function
7572   signature argument types and parameter attributes. All arguments must
7573   be of :ref:`first class <t_firstclass>` type. If the function signature
7574   indicates the function accepts a variable number of arguments, the
7575   extra arguments can be specified.
7576#. '``normal label``': the label reached when the called function
7577   executes a '``ret``' instruction.
7578#. '``exception label``': the label reached when a callee returns via
7579   the :ref:`resume <i_resume>` instruction or other exception handling
7580   mechanism.
7581#. The optional :ref:`function attributes <fnattrs>` list.
7582#. The optional :ref:`operand bundles <opbundles>` list.
7583
7584Semantics:
7585""""""""""
7586
7587This instruction is designed to operate as a standard '``call``'
7588instruction in most regards. The primary difference is that it
7589establishes an association with a label, which is used by the runtime
7590library to unwind the stack.
7591
7592This instruction is used in languages with destructors to ensure that
7593proper cleanup is performed in the case of either a ``longjmp`` or a
7594thrown exception. Additionally, this is important for implementation of
7595'``catch``' clauses in high-level languages that support them.
7596
7597For the purposes of the SSA form, the definition of the value returned
7598by the '``invoke``' instruction is deemed to occur on the edge from the
7599current block to the "normal" label. If the callee unwinds then no
7600return value is available.
7601
7602Example:
7603""""""""
7604
7605.. code-block:: llvm
7606
7607      %retval = invoke i32 @Test(i32 15) to label %Continue
7608                  unwind label %TestCleanup              ; i32:retval set
7609      %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
7610                  unwind label %TestCleanup              ; i32:retval set
7611
7612.. _i_callbr:
7613
7614'``callbr``' Instruction
7615^^^^^^^^^^^^^^^^^^^^^^^^
7616
7617Syntax:
7618"""""""
7619
7620::
7621
7622      <result> = callbr [cconv] [ret attrs] [addrspace(<num>)] <ty>|<fnty> <fnptrval>(<function args>) [fn attrs]
7623                    [operand bundles] to label <fallthrough label> [indirect labels]
7624
7625Overview:
7626"""""""""
7627
7628The '``callbr``' instruction causes control to transfer to a specified
7629function, with the possibility of control flow transfer to either the
7630'``fallthrough``' label or one of the '``indirect``' labels.
7631
7632This instruction should only be used to implement the "goto" feature of gcc
7633style inline assembly. Any other usage is an error in the IR verifier.
7634
7635Arguments:
7636""""""""""
7637
7638This instruction requires several arguments:
7639
7640#. The optional "cconv" marker indicates which :ref:`calling
7641   convention <callingconv>` the call should use. If none is
7642   specified, the call defaults to using C calling conventions.
7643#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
7644   values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
7645   are valid here.
7646#. The optional addrspace attribute can be used to indicate the address space
7647   of the called function. If it is not specified, the program address space
7648   from the :ref:`datalayout string<langref_datalayout>` will be used.
7649#. '``ty``': the type of the call instruction itself which is also the
7650   type of the return value. Functions that return no value are marked
7651   ``void``.
7652#. '``fnty``': shall be the signature of the function being called. The
7653   argument types must match the types implied by this signature. This
7654   type can be omitted if the function is not varargs.
7655#. '``fnptrval``': An LLVM value containing a pointer to a function to
7656   be called. In most cases, this is a direct function call, but
7657   other ``callbr``'s are just as possible, calling an arbitrary pointer
7658   to function value.
7659#. '``function args``': argument list whose types match the function
7660   signature argument types and parameter attributes. All arguments must
7661   be of :ref:`first class <t_firstclass>` type. If the function signature
7662   indicates the function accepts a variable number of arguments, the
7663   extra arguments can be specified.
7664#. '``fallthrough label``': the label reached when the inline assembly's
7665   execution exits the bottom.
7666#. '``indirect labels``': the labels reached when a callee transfers control
7667   to a location other than the '``fallthrough label``'. The blockaddress
7668   constant for these should also be in the list of '``function args``'.
7669#. The optional :ref:`function attributes <fnattrs>` list.
7670#. The optional :ref:`operand bundles <opbundles>` list.
7671
7672Semantics:
7673""""""""""
7674
7675This instruction is designed to operate as a standard '``call``'
7676instruction in most regards. The primary difference is that it
7677establishes an association with additional labels to define where control
7678flow goes after the call.
7679
7680The output values of a '``callbr``' instruction are available only to
7681the '``fallthrough``' block, not to any '``indirect``' blocks(s).
7682
7683The only use of this today is to implement the "goto" feature of gcc inline
7684assembly where additional labels can be provided as locations for the inline
7685assembly to jump to.
7686
7687Example:
7688""""""""
7689
7690.. code-block:: llvm
7691
7692      ; "asm goto" without output constraints.
7693      callbr void asm "", "r,X"(i32 %x, i8 *blockaddress(@foo, %indirect))
7694                  to label %fallthrough [label %indirect]
7695
7696      ; "asm goto" with output constraints.
7697      <result> = callbr i32 asm "", "=r,r,X"(i32 %x, i8 *blockaddress(@foo, %indirect))
7698                  to label %fallthrough [label %indirect]
7699
7700.. _i_resume:
7701
7702'``resume``' Instruction
7703^^^^^^^^^^^^^^^^^^^^^^^^
7704
7705Syntax:
7706"""""""
7707
7708::
7709
7710      resume <type> <value>
7711
7712Overview:
7713"""""""""
7714
7715The '``resume``' instruction is a terminator instruction that has no
7716successors.
7717
7718Arguments:
7719""""""""""
7720
7721The '``resume``' instruction requires one argument, which must have the
7722same type as the result of any '``landingpad``' instruction in the same
7723function.
7724
7725Semantics:
7726""""""""""
7727
7728The '``resume``' instruction resumes propagation of an existing
7729(in-flight) exception whose unwinding was interrupted with a
7730:ref:`landingpad <i_landingpad>` instruction.
7731
7732Example:
7733""""""""
7734
7735.. code-block:: llvm
7736
7737      resume { i8*, i32 } %exn
7738
7739.. _i_catchswitch:
7740
7741'``catchswitch``' Instruction
7742^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7743
7744Syntax:
7745"""""""
7746
7747::
7748
7749      <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind to caller
7750      <resultval> = catchswitch within <parent> [ label <handler1>, label <handler2>, ... ] unwind label <default>
7751
7752Overview:
7753"""""""""
7754
7755The '``catchswitch``' instruction is used by `LLVM's exception handling system
7756<ExceptionHandling.html#overview>`_ to describe the set of possible catch handlers
7757that may be executed by the :ref:`EH personality routine <personalityfn>`.
7758
7759Arguments:
7760""""""""""
7761
7762The ``parent`` argument is the token of the funclet that contains the
7763``catchswitch`` instruction. If the ``catchswitch`` is not inside a funclet,
7764this operand may be the token ``none``.
7765
7766The ``default`` argument is the label of another basic block beginning with
7767either a ``cleanuppad`` or ``catchswitch`` instruction.  This unwind destination
7768must be a legal target with respect to the ``parent`` links, as described in
7769the `exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
7770
7771The ``handlers`` are a nonempty list of successor blocks that each begin with a
7772:ref:`catchpad <i_catchpad>` instruction.
7773
7774Semantics:
7775""""""""""
7776
7777Executing this instruction transfers control to one of the successors in
7778``handlers``, if appropriate, or continues to unwind via the unwind label if
7779present.
7780
7781The ``catchswitch`` is both a terminator and a "pad" instruction, meaning that
7782it must be both the first non-phi instruction and last instruction in the basic
7783block. Therefore, it must be the only non-phi instruction in the block.
7784
7785Example:
7786""""""""
7787
7788.. code-block:: text
7789
7790    dispatch1:
7791      %cs1 = catchswitch within none [label %handler0, label %handler1] unwind to caller
7792    dispatch2:
7793      %cs2 = catchswitch within %parenthandler [label %handler0] unwind label %cleanup
7794
7795.. _i_catchret:
7796
7797'``catchret``' Instruction
7798^^^^^^^^^^^^^^^^^^^^^^^^^^
7799
7800Syntax:
7801"""""""
7802
7803::
7804
7805      catchret from <token> to label <normal>
7806
7807Overview:
7808"""""""""
7809
7810The '``catchret``' instruction is a terminator instruction that has a
7811single successor.
7812
7813
7814Arguments:
7815""""""""""
7816
7817The first argument to a '``catchret``' indicates which ``catchpad`` it
7818exits.  It must be a :ref:`catchpad <i_catchpad>`.
7819The second argument to a '``catchret``' specifies where control will
7820transfer to next.
7821
7822Semantics:
7823""""""""""
7824
7825The '``catchret``' instruction ends an existing (in-flight) exception whose
7826unwinding was interrupted with a :ref:`catchpad <i_catchpad>` instruction.  The
7827:ref:`personality function <personalityfn>` gets a chance to execute arbitrary
7828code to, for example, destroy the active exception.  Control then transfers to
7829``normal``.
7830
7831The ``token`` argument must be a token produced by a ``catchpad`` instruction.
7832If the specified ``catchpad`` is not the most-recently-entered not-yet-exited
7833funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
7834the ``catchret``'s behavior is undefined.
7835
7836Example:
7837""""""""
7838
7839.. code-block:: text
7840
7841      catchret from %catch label %continue
7842
7843.. _i_cleanupret:
7844
7845'``cleanupret``' Instruction
7846^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7847
7848Syntax:
7849"""""""
7850
7851::
7852
7853      cleanupret from <value> unwind label <continue>
7854      cleanupret from <value> unwind to caller
7855
7856Overview:
7857"""""""""
7858
7859The '``cleanupret``' instruction is a terminator instruction that has
7860an optional successor.
7861
7862
7863Arguments:
7864""""""""""
7865
7866The '``cleanupret``' instruction requires one argument, which indicates
7867which ``cleanuppad`` it exits, and must be a :ref:`cleanuppad <i_cleanuppad>`.
7868If the specified ``cleanuppad`` is not the most-recently-entered not-yet-exited
7869funclet pad (as described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
7870the ``cleanupret``'s behavior is undefined.
7871
7872The '``cleanupret``' instruction also has an optional successor, ``continue``,
7873which must be the label of another basic block beginning with either a
7874``cleanuppad`` or ``catchswitch`` instruction.  This unwind destination must
7875be a legal target with respect to the ``parent`` links, as described in the
7876`exception handling documentation\ <ExceptionHandling.html#wineh-constraints>`_.
7877
7878Semantics:
7879""""""""""
7880
7881The '``cleanupret``' instruction indicates to the
7882:ref:`personality function <personalityfn>` that one
7883:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
7884It transfers control to ``continue`` or unwinds out of the function.
7885
7886Example:
7887""""""""
7888
7889.. code-block:: text
7890
7891      cleanupret from %cleanup unwind to caller
7892      cleanupret from %cleanup unwind label %continue
7893
7894.. _i_unreachable:
7895
7896'``unreachable``' Instruction
7897^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7898
7899Syntax:
7900"""""""
7901
7902::
7903
7904      unreachable
7905
7906Overview:
7907"""""""""
7908
7909The '``unreachable``' instruction has no defined semantics. This
7910instruction is used to inform the optimizer that a particular portion of
7911the code is not reachable. This can be used to indicate that the code
7912after a no-return function cannot be reached, and other facts.
7913
7914Semantics:
7915""""""""""
7916
7917The '``unreachable``' instruction has no defined semantics.
7918
7919.. _unaryops:
7920
7921Unary Operations
7922-----------------
7923
7924Unary operators require a single operand, execute an operation on
7925it, and produce a single value. The operand might represent multiple
7926data, as is the case with the :ref:`vector <t_vector>` data type. The
7927result value has the same type as its operand.
7928
7929.. _i_fneg:
7930
7931'``fneg``' Instruction
7932^^^^^^^^^^^^^^^^^^^^^^
7933
7934Syntax:
7935"""""""
7936
7937::
7938
7939      <result> = fneg [fast-math flags]* <ty> <op1>   ; yields ty:result
7940
7941Overview:
7942"""""""""
7943
7944The '``fneg``' instruction returns the negation of its operand.
7945
7946Arguments:
7947""""""""""
7948
7949The argument to the '``fneg``' instruction must be a
7950:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
7951floating-point values.
7952
7953Semantics:
7954""""""""""
7955
7956The value produced is a copy of the operand with its sign bit flipped.
7957This instruction can also take any number of :ref:`fast-math
7958flags <fastmath>`, which are optimization hints to enable otherwise
7959unsafe floating-point optimizations:
7960
7961Example:
7962""""""""
7963
7964.. code-block:: text
7965
7966      <result> = fneg float %val          ; yields float:result = -%var
7967
7968.. _binaryops:
7969
7970Binary Operations
7971-----------------
7972
7973Binary operators are used to do most of the computation in a program.
7974They require two operands of the same type, execute an operation on
7975them, and produce a single value. The operands might represent multiple
7976data, as is the case with the :ref:`vector <t_vector>` data type. The
7977result value has the same type as its operands.
7978
7979There are several different binary operators:
7980
7981.. _i_add:
7982
7983'``add``' Instruction
7984^^^^^^^^^^^^^^^^^^^^^
7985
7986Syntax:
7987"""""""
7988
7989::
7990
7991      <result> = add <ty> <op1>, <op2>          ; yields ty:result
7992      <result> = add nuw <ty> <op1>, <op2>      ; yields ty:result
7993      <result> = add nsw <ty> <op1>, <op2>      ; yields ty:result
7994      <result> = add nuw nsw <ty> <op1>, <op2>  ; yields ty:result
7995
7996Overview:
7997"""""""""
7998
7999The '``add``' instruction returns the sum of its two operands.
8000
8001Arguments:
8002""""""""""
8003
8004The two arguments to the '``add``' instruction must be
8005:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
8006arguments must have identical types.
8007
8008Semantics:
8009""""""""""
8010
8011The value produced is the integer sum of the two operands.
8012
8013If the sum has unsigned overflow, the result returned is the
8014mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
8015the result.
8016
8017Because LLVM integers use a two's complement representation, this
8018instruction is appropriate for both signed and unsigned integers.
8019
8020``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
8021respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
8022result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
8023unsigned and/or signed overflow, respectively, occurs.
8024
8025Example:
8026""""""""
8027
8028.. code-block:: text
8029
8030      <result> = add i32 4, %var          ; yields i32:result = 4 + %var
8031
8032.. _i_fadd:
8033
8034'``fadd``' Instruction
8035^^^^^^^^^^^^^^^^^^^^^^
8036
8037Syntax:
8038"""""""
8039
8040::
8041
8042      <result> = fadd [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
8043
8044Overview:
8045"""""""""
8046
8047The '``fadd``' instruction returns the sum of its two operands.
8048
8049Arguments:
8050""""""""""
8051
8052The two arguments to the '``fadd``' instruction must be
8053:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
8054floating-point values. Both arguments must have identical types.
8055
8056Semantics:
8057""""""""""
8058
8059The value produced is the floating-point sum of the two operands.
8060This instruction is assumed to execute in the default :ref:`floating-point
8061environment <floatenv>`.
8062This instruction can also take any number of :ref:`fast-math
8063flags <fastmath>`, which are optimization hints to enable otherwise
8064unsafe floating-point optimizations:
8065
8066Example:
8067""""""""
8068
8069.. code-block:: text
8070
8071      <result> = fadd float 4.0, %var          ; yields float:result = 4.0 + %var
8072
8073.. _i_sub:
8074
8075'``sub``' Instruction
8076^^^^^^^^^^^^^^^^^^^^^
8077
8078Syntax:
8079"""""""
8080
8081::
8082
8083      <result> = sub <ty> <op1>, <op2>          ; yields ty:result
8084      <result> = sub nuw <ty> <op1>, <op2>      ; yields ty:result
8085      <result> = sub nsw <ty> <op1>, <op2>      ; yields ty:result
8086      <result> = sub nuw nsw <ty> <op1>, <op2>  ; yields ty:result
8087
8088Overview:
8089"""""""""
8090
8091The '``sub``' instruction returns the difference of its two operands.
8092
8093Note that the '``sub``' instruction is used to represent the '``neg``'
8094instruction present in most other intermediate representations.
8095
8096Arguments:
8097""""""""""
8098
8099The two arguments to the '``sub``' instruction must be
8100:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
8101arguments must have identical types.
8102
8103Semantics:
8104""""""""""
8105
8106The value produced is the integer difference of the two operands.
8107
8108If the difference has unsigned overflow, the result returned is the
8109mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
8110the result.
8111
8112Because LLVM integers use a two's complement representation, this
8113instruction is appropriate for both signed and unsigned integers.
8114
8115``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
8116respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
8117result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
8118unsigned and/or signed overflow, respectively, occurs.
8119
8120Example:
8121""""""""
8122
8123.. code-block:: text
8124
8125      <result> = sub i32 4, %var          ; yields i32:result = 4 - %var
8126      <result> = sub i32 0, %val          ; yields i32:result = -%var
8127
8128.. _i_fsub:
8129
8130'``fsub``' Instruction
8131^^^^^^^^^^^^^^^^^^^^^^
8132
8133Syntax:
8134"""""""
8135
8136::
8137
8138      <result> = fsub [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
8139
8140Overview:
8141"""""""""
8142
8143The '``fsub``' instruction returns the difference of its two operands.
8144
8145Arguments:
8146""""""""""
8147
8148The two arguments to the '``fsub``' instruction must be
8149:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
8150floating-point values. Both arguments must have identical types.
8151
8152Semantics:
8153""""""""""
8154
8155The value produced is the floating-point difference of the two operands.
8156This instruction is assumed to execute in the default :ref:`floating-point
8157environment <floatenv>`.
8158This instruction can also take any number of :ref:`fast-math
8159flags <fastmath>`, which are optimization hints to enable otherwise
8160unsafe floating-point optimizations:
8161
8162Example:
8163""""""""
8164
8165.. code-block:: text
8166
8167      <result> = fsub float 4.0, %var           ; yields float:result = 4.0 - %var
8168      <result> = fsub float -0.0, %val          ; yields float:result = -%var
8169
8170.. _i_mul:
8171
8172'``mul``' Instruction
8173^^^^^^^^^^^^^^^^^^^^^
8174
8175Syntax:
8176"""""""
8177
8178::
8179
8180      <result> = mul <ty> <op1>, <op2>          ; yields ty:result
8181      <result> = mul nuw <ty> <op1>, <op2>      ; yields ty:result
8182      <result> = mul nsw <ty> <op1>, <op2>      ; yields ty:result
8183      <result> = mul nuw nsw <ty> <op1>, <op2>  ; yields ty:result
8184
8185Overview:
8186"""""""""
8187
8188The '``mul``' instruction returns the product of its two operands.
8189
8190Arguments:
8191""""""""""
8192
8193The two arguments to the '``mul``' instruction must be
8194:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
8195arguments must have identical types.
8196
8197Semantics:
8198""""""""""
8199
8200The value produced is the integer product of the two operands.
8201
8202If the result of the multiplication has unsigned overflow, the result
8203returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
8204bit width of the result.
8205
8206Because LLVM integers use a two's complement representation, and the
8207result is the same width as the operands, this instruction returns the
8208correct result for both signed and unsigned integers. If a full product
8209(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
8210sign-extended or zero-extended as appropriate to the width of the full
8211product.
8212
8213``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
8214respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
8215result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
8216unsigned and/or signed overflow, respectively, occurs.
8217
8218Example:
8219""""""""
8220
8221.. code-block:: text
8222
8223      <result> = mul i32 4, %var          ; yields i32:result = 4 * %var
8224
8225.. _i_fmul:
8226
8227'``fmul``' Instruction
8228^^^^^^^^^^^^^^^^^^^^^^
8229
8230Syntax:
8231"""""""
8232
8233::
8234
8235      <result> = fmul [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
8236
8237Overview:
8238"""""""""
8239
8240The '``fmul``' instruction returns the product of its two operands.
8241
8242Arguments:
8243""""""""""
8244
8245The two arguments to the '``fmul``' instruction must be
8246:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
8247floating-point values. Both arguments must have identical types.
8248
8249Semantics:
8250""""""""""
8251
8252The value produced is the floating-point product of the two operands.
8253This instruction is assumed to execute in the default :ref:`floating-point
8254environment <floatenv>`.
8255This instruction can also take any number of :ref:`fast-math
8256flags <fastmath>`, which are optimization hints to enable otherwise
8257unsafe floating-point optimizations:
8258
8259Example:
8260""""""""
8261
8262.. code-block:: text
8263
8264      <result> = fmul float 4.0, %var          ; yields float:result = 4.0 * %var
8265
8266.. _i_udiv:
8267
8268'``udiv``' Instruction
8269^^^^^^^^^^^^^^^^^^^^^^
8270
8271Syntax:
8272"""""""
8273
8274::
8275
8276      <result> = udiv <ty> <op1>, <op2>         ; yields ty:result
8277      <result> = udiv exact <ty> <op1>, <op2>   ; yields ty:result
8278
8279Overview:
8280"""""""""
8281
8282The '``udiv``' instruction returns the quotient of its two operands.
8283
8284Arguments:
8285""""""""""
8286
8287The two arguments to the '``udiv``' instruction must be
8288:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
8289arguments must have identical types.
8290
8291Semantics:
8292""""""""""
8293
8294The value produced is the unsigned integer quotient of the two operands.
8295
8296Note that unsigned integer division and signed integer division are
8297distinct operations; for signed integer division, use '``sdiv``'.
8298
8299Division by zero is undefined behavior. For vectors, if any element
8300of the divisor is zero, the operation has undefined behavior.
8301
8302
8303If the ``exact`` keyword is present, the result value of the ``udiv`` is
8304a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
8305such, "((a udiv exact b) mul b) == a").
8306
8307Example:
8308""""""""
8309
8310.. code-block:: text
8311
8312      <result> = udiv i32 4, %var          ; yields i32:result = 4 / %var
8313
8314.. _i_sdiv:
8315
8316'``sdiv``' Instruction
8317^^^^^^^^^^^^^^^^^^^^^^
8318
8319Syntax:
8320"""""""
8321
8322::
8323
8324      <result> = sdiv <ty> <op1>, <op2>         ; yields ty:result
8325      <result> = sdiv exact <ty> <op1>, <op2>   ; yields ty:result
8326
8327Overview:
8328"""""""""
8329
8330The '``sdiv``' instruction returns the quotient of its two operands.
8331
8332Arguments:
8333""""""""""
8334
8335The two arguments to the '``sdiv``' instruction must be
8336:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
8337arguments must have identical types.
8338
8339Semantics:
8340""""""""""
8341
8342The value produced is the signed integer quotient of the two operands
8343rounded towards zero.
8344
8345Note that signed integer division and unsigned integer division are
8346distinct operations; for unsigned integer division, use '``udiv``'.
8347
8348Division by zero is undefined behavior. For vectors, if any element
8349of the divisor is zero, the operation has undefined behavior.
8350Overflow also leads to undefined behavior; this is a rare case, but can
8351occur, for example, by doing a 32-bit division of -2147483648 by -1.
8352
8353If the ``exact`` keyword is present, the result value of the ``sdiv`` is
8354a :ref:`poison value <poisonvalues>` if the result would be rounded.
8355
8356Example:
8357""""""""
8358
8359.. code-block:: text
8360
8361      <result> = sdiv i32 4, %var          ; yields i32:result = 4 / %var
8362
8363.. _i_fdiv:
8364
8365'``fdiv``' Instruction
8366^^^^^^^^^^^^^^^^^^^^^^
8367
8368Syntax:
8369"""""""
8370
8371::
8372
8373      <result> = fdiv [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
8374
8375Overview:
8376"""""""""
8377
8378The '``fdiv``' instruction returns the quotient of its two operands.
8379
8380Arguments:
8381""""""""""
8382
8383The two arguments to the '``fdiv``' instruction must be
8384:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
8385floating-point values. Both arguments must have identical types.
8386
8387Semantics:
8388""""""""""
8389
8390The value produced is the floating-point quotient of the two operands.
8391This instruction is assumed to execute in the default :ref:`floating-point
8392environment <floatenv>`.
8393This instruction can also take any number of :ref:`fast-math
8394flags <fastmath>`, which are optimization hints to enable otherwise
8395unsafe floating-point optimizations:
8396
8397Example:
8398""""""""
8399
8400.. code-block:: text
8401
8402      <result> = fdiv float 4.0, %var          ; yields float:result = 4.0 / %var
8403
8404.. _i_urem:
8405
8406'``urem``' Instruction
8407^^^^^^^^^^^^^^^^^^^^^^
8408
8409Syntax:
8410"""""""
8411
8412::
8413
8414      <result> = urem <ty> <op1>, <op2>   ; yields ty:result
8415
8416Overview:
8417"""""""""
8418
8419The '``urem``' instruction returns the remainder from the unsigned
8420division of its two arguments.
8421
8422Arguments:
8423""""""""""
8424
8425The two arguments to the '``urem``' instruction must be
8426:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
8427arguments must have identical types.
8428
8429Semantics:
8430""""""""""
8431
8432This instruction returns the unsigned integer *remainder* of a division.
8433This instruction always performs an unsigned division to get the
8434remainder.
8435
8436Note that unsigned integer remainder and signed integer remainder are
8437distinct operations; for signed integer remainder, use '``srem``'.
8438
8439Taking the remainder of a division by zero is undefined behavior.
8440For vectors, if any element of the divisor is zero, the operation has
8441undefined behavior.
8442
8443Example:
8444""""""""
8445
8446.. code-block:: text
8447
8448      <result> = urem i32 4, %var          ; yields i32:result = 4 % %var
8449
8450.. _i_srem:
8451
8452'``srem``' Instruction
8453^^^^^^^^^^^^^^^^^^^^^^
8454
8455Syntax:
8456"""""""
8457
8458::
8459
8460      <result> = srem <ty> <op1>, <op2>   ; yields ty:result
8461
8462Overview:
8463"""""""""
8464
8465The '``srem``' instruction returns the remainder from the signed
8466division of its two operands. This instruction can also take
8467:ref:`vector <t_vector>` versions of the values in which case the elements
8468must be integers.
8469
8470Arguments:
8471""""""""""
8472
8473The two arguments to the '``srem``' instruction must be
8474:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
8475arguments must have identical types.
8476
8477Semantics:
8478""""""""""
8479
8480This instruction returns the *remainder* of a division (where the result
8481is either zero or has the same sign as the dividend, ``op1``), not the
8482*modulo* operator (where the result is either zero or has the same sign
8483as the divisor, ``op2``) of a value. For more information about the
8484difference, see `The Math
8485Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
8486table of how this is implemented in various languages, please see
8487`Wikipedia: modulo
8488operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
8489
8490Note that signed integer remainder and unsigned integer remainder are
8491distinct operations; for unsigned integer remainder, use '``urem``'.
8492
8493Taking the remainder of a division by zero is undefined behavior.
8494For vectors, if any element of the divisor is zero, the operation has
8495undefined behavior.
8496Overflow also leads to undefined behavior; this is a rare case, but can
8497occur, for example, by taking the remainder of a 32-bit division of
8498-2147483648 by -1. (The remainder doesn't actually overflow, but this
8499rule lets srem be implemented using instructions that return both the
8500result of the division and the remainder.)
8501
8502Example:
8503""""""""
8504
8505.. code-block:: text
8506
8507      <result> = srem i32 4, %var          ; yields i32:result = 4 % %var
8508
8509.. _i_frem:
8510
8511'``frem``' Instruction
8512^^^^^^^^^^^^^^^^^^^^^^
8513
8514Syntax:
8515"""""""
8516
8517::
8518
8519      <result> = frem [fast-math flags]* <ty> <op1>, <op2>   ; yields ty:result
8520
8521Overview:
8522"""""""""
8523
8524The '``frem``' instruction returns the remainder from the division of
8525its two operands.
8526
8527Arguments:
8528""""""""""
8529
8530The two arguments to the '``frem``' instruction must be
8531:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>` of
8532floating-point values. Both arguments must have identical types.
8533
8534Semantics:
8535""""""""""
8536
8537The value produced is the floating-point remainder of the two operands.
8538This is the same output as a libm '``fmod``' function, but without any
8539possibility of setting ``errno``. The remainder has the same sign as the
8540dividend.
8541This instruction is assumed to execute in the default :ref:`floating-point
8542environment <floatenv>`.
8543This instruction can also take any number of :ref:`fast-math
8544flags <fastmath>`, which are optimization hints to enable otherwise
8545unsafe floating-point optimizations:
8546
8547Example:
8548""""""""
8549
8550.. code-block:: text
8551
8552      <result> = frem float 4.0, %var          ; yields float:result = 4.0 % %var
8553
8554.. _bitwiseops:
8555
8556Bitwise Binary Operations
8557-------------------------
8558
8559Bitwise binary operators are used to do various forms of bit-twiddling
8560in a program. They are generally very efficient instructions and can
8561commonly be strength reduced from other instructions. They require two
8562operands of the same type, execute an operation on them, and produce a
8563single value. The resulting value is the same type as its operands.
8564
8565.. _i_shl:
8566
8567'``shl``' Instruction
8568^^^^^^^^^^^^^^^^^^^^^
8569
8570Syntax:
8571"""""""
8572
8573::
8574
8575      <result> = shl <ty> <op1>, <op2>           ; yields ty:result
8576      <result> = shl nuw <ty> <op1>, <op2>       ; yields ty:result
8577      <result> = shl nsw <ty> <op1>, <op2>       ; yields ty:result
8578      <result> = shl nuw nsw <ty> <op1>, <op2>   ; yields ty:result
8579
8580Overview:
8581"""""""""
8582
8583The '``shl``' instruction returns the first operand shifted to the left
8584a specified number of bits.
8585
8586Arguments:
8587""""""""""
8588
8589Both arguments to the '``shl``' instruction must be the same
8590:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
8591'``op2``' is treated as an unsigned value.
8592
8593Semantics:
8594""""""""""
8595
8596The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
8597where ``n`` is the width of the result. If ``op2`` is (statically or
8598dynamically) equal to or larger than the number of bits in
8599``op1``, this instruction returns a :ref:`poison value <poisonvalues>`.
8600If the arguments are vectors, each vector element of ``op1`` is shifted
8601by the corresponding shift amount in ``op2``.
8602
8603If the ``nuw`` keyword is present, then the shift produces a poison
8604value if it shifts out any non-zero bits.
8605If the ``nsw`` keyword is present, then the shift produces a poison
8606value if it shifts out any bits that disagree with the resultant sign bit.
8607
8608Example:
8609""""""""
8610
8611.. code-block:: text
8612
8613      <result> = shl i32 4, %var   ; yields i32: 4 << %var
8614      <result> = shl i32 4, 2      ; yields i32: 16
8615      <result> = shl i32 1, 10     ; yields i32: 1024
8616      <result> = shl i32 1, 32     ; undefined
8617      <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 2, i32 4>
8618
8619.. _i_lshr:
8620
8621
8622'``lshr``' Instruction
8623^^^^^^^^^^^^^^^^^^^^^^
8624
8625Syntax:
8626"""""""
8627
8628::
8629
8630      <result> = lshr <ty> <op1>, <op2>         ; yields ty:result
8631      <result> = lshr exact <ty> <op1>, <op2>   ; yields ty:result
8632
8633Overview:
8634"""""""""
8635
8636The '``lshr``' instruction (logical shift right) returns the first
8637operand shifted to the right a specified number of bits with zero fill.
8638
8639Arguments:
8640""""""""""
8641
8642Both arguments to the '``lshr``' instruction must be the same
8643:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
8644'``op2``' is treated as an unsigned value.
8645
8646Semantics:
8647""""""""""
8648
8649This instruction always performs a logical shift right operation. The
8650most significant bits of the result will be filled with zero bits after
8651the shift. If ``op2`` is (statically or dynamically) equal to or larger
8652than the number of bits in ``op1``, this instruction returns a :ref:`poison
8653value <poisonvalues>`. If the arguments are vectors, each vector element
8654of ``op1`` is shifted by the corresponding shift amount in ``op2``.
8655
8656If the ``exact`` keyword is present, the result value of the ``lshr`` is
8657a poison value if any of the bits shifted out are non-zero.
8658
8659Example:
8660""""""""
8661
8662.. code-block:: text
8663
8664      <result> = lshr i32 4, 1   ; yields i32:result = 2
8665      <result> = lshr i32 4, 2   ; yields i32:result = 1
8666      <result> = lshr i8  4, 3   ; yields i8:result = 0
8667      <result> = lshr i8 -2, 1   ; yields i8:result = 0x7F
8668      <result> = lshr i32 1, 32  ; undefined
8669      <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2>   ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
8670
8671.. _i_ashr:
8672
8673'``ashr``' Instruction
8674^^^^^^^^^^^^^^^^^^^^^^
8675
8676Syntax:
8677"""""""
8678
8679::
8680
8681      <result> = ashr <ty> <op1>, <op2>         ; yields ty:result
8682      <result> = ashr exact <ty> <op1>, <op2>   ; yields ty:result
8683
8684Overview:
8685"""""""""
8686
8687The '``ashr``' instruction (arithmetic shift right) returns the first
8688operand shifted to the right a specified number of bits with sign
8689extension.
8690
8691Arguments:
8692""""""""""
8693
8694Both arguments to the '``ashr``' instruction must be the same
8695:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
8696'``op2``' is treated as an unsigned value.
8697
8698Semantics:
8699""""""""""
8700
8701This instruction always performs an arithmetic shift right operation,
8702The most significant bits of the result will be filled with the sign bit
8703of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
8704than the number of bits in ``op1``, this instruction returns a :ref:`poison
8705value <poisonvalues>`. If the arguments are vectors, each vector element
8706of ``op1`` is shifted by the corresponding shift amount in ``op2``.
8707
8708If the ``exact`` keyword is present, the result value of the ``ashr`` is
8709a poison value if any of the bits shifted out are non-zero.
8710
8711Example:
8712""""""""
8713
8714.. code-block:: text
8715
8716      <result> = ashr i32 4, 1   ; yields i32:result = 2
8717      <result> = ashr i32 4, 2   ; yields i32:result = 1
8718      <result> = ashr i8  4, 3   ; yields i8:result = 0
8719      <result> = ashr i8 -2, 1   ; yields i8:result = -1
8720      <result> = ashr i32 1, 32  ; undefined
8721      <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3>   ; yields: result=<2 x i32> < i32 -1, i32 0>
8722
8723.. _i_and:
8724
8725'``and``' Instruction
8726^^^^^^^^^^^^^^^^^^^^^
8727
8728Syntax:
8729"""""""
8730
8731::
8732
8733      <result> = and <ty> <op1>, <op2>   ; yields ty:result
8734
8735Overview:
8736"""""""""
8737
8738The '``and``' instruction returns the bitwise logical and of its two
8739operands.
8740
8741Arguments:
8742""""""""""
8743
8744The two arguments to the '``and``' instruction must be
8745:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
8746arguments must have identical types.
8747
8748Semantics:
8749""""""""""
8750
8751The truth table used for the '``and``' instruction is:
8752
8753+-----+-----+-----+
8754| In0 | In1 | Out |
8755+-----+-----+-----+
8756|   0 |   0 |   0 |
8757+-----+-----+-----+
8758|   0 |   1 |   0 |
8759+-----+-----+-----+
8760|   1 |   0 |   0 |
8761+-----+-----+-----+
8762|   1 |   1 |   1 |
8763+-----+-----+-----+
8764
8765Example:
8766""""""""
8767
8768.. code-block:: text
8769
8770      <result> = and i32 4, %var         ; yields i32:result = 4 & %var
8771      <result> = and i32 15, 40          ; yields i32:result = 8
8772      <result> = and i32 4, 8            ; yields i32:result = 0
8773
8774.. _i_or:
8775
8776'``or``' Instruction
8777^^^^^^^^^^^^^^^^^^^^
8778
8779Syntax:
8780"""""""
8781
8782::
8783
8784      <result> = or <ty> <op1>, <op2>   ; yields ty:result
8785
8786Overview:
8787"""""""""
8788
8789The '``or``' instruction returns the bitwise logical inclusive or of its
8790two operands.
8791
8792Arguments:
8793""""""""""
8794
8795The two arguments to the '``or``' instruction must be
8796:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
8797arguments must have identical types.
8798
8799Semantics:
8800""""""""""
8801
8802The truth table used for the '``or``' instruction is:
8803
8804+-----+-----+-----+
8805| In0 | In1 | Out |
8806+-----+-----+-----+
8807|   0 |   0 |   0 |
8808+-----+-----+-----+
8809|   0 |   1 |   1 |
8810+-----+-----+-----+
8811|   1 |   0 |   1 |
8812+-----+-----+-----+
8813|   1 |   1 |   1 |
8814+-----+-----+-----+
8815
8816Example:
8817""""""""
8818
8819::
8820
8821      <result> = or i32 4, %var         ; yields i32:result = 4 | %var
8822      <result> = or i32 15, 40          ; yields i32:result = 47
8823      <result> = or i32 4, 8            ; yields i32:result = 12
8824
8825.. _i_xor:
8826
8827'``xor``' Instruction
8828^^^^^^^^^^^^^^^^^^^^^
8829
8830Syntax:
8831"""""""
8832
8833::
8834
8835      <result> = xor <ty> <op1>, <op2>   ; yields ty:result
8836
8837Overview:
8838"""""""""
8839
8840The '``xor``' instruction returns the bitwise logical exclusive or of
8841its two operands. The ``xor`` is used to implement the "one's
8842complement" operation, which is the "~" operator in C.
8843
8844Arguments:
8845""""""""""
8846
8847The two arguments to the '``xor``' instruction must be
8848:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
8849arguments must have identical types.
8850
8851Semantics:
8852""""""""""
8853
8854The truth table used for the '``xor``' instruction is:
8855
8856+-----+-----+-----+
8857| In0 | In1 | Out |
8858+-----+-----+-----+
8859|   0 |   0 |   0 |
8860+-----+-----+-----+
8861|   0 |   1 |   1 |
8862+-----+-----+-----+
8863|   1 |   0 |   1 |
8864+-----+-----+-----+
8865|   1 |   1 |   0 |
8866+-----+-----+-----+
8867
8868Example:
8869""""""""
8870
8871.. code-block:: text
8872
8873      <result> = xor i32 4, %var         ; yields i32:result = 4 ^ %var
8874      <result> = xor i32 15, 40          ; yields i32:result = 39
8875      <result> = xor i32 4, 8            ; yields i32:result = 12
8876      <result> = xor i32 %V, -1          ; yields i32:result = ~%V
8877
8878Vector Operations
8879-----------------
8880
8881LLVM supports several instructions to represent vector operations in a
8882target-independent manner. These instructions cover the element-access
8883and vector-specific operations needed to process vectors effectively.
8884While LLVM does directly support these vector operations, many
8885sophisticated algorithms will want to use target-specific intrinsics to
8886take full advantage of a specific target.
8887
8888.. _i_extractelement:
8889
8890'``extractelement``' Instruction
8891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8892
8893Syntax:
8894"""""""
8895
8896::
8897
8898      <result> = extractelement <n x <ty>> <val>, <ty2> <idx>  ; yields <ty>
8899      <result> = extractelement <vscale x n x <ty>> <val>, <ty2> <idx> ; yields <ty>
8900
8901Overview:
8902"""""""""
8903
8904The '``extractelement``' instruction extracts a single scalar element
8905from a vector at a specified index.
8906
8907Arguments:
8908""""""""""
8909
8910The first operand of an '``extractelement``' instruction is a value of
8911:ref:`vector <t_vector>` type. The second operand is an index indicating
8912the position from which to extract the element. The index may be a
8913variable of any integer type.
8914
8915Semantics:
8916""""""""""
8917
8918The result is a scalar of the same type as the element type of ``val``.
8919Its value is the value at position ``idx`` of ``val``. If ``idx``
8920exceeds the length of ``val`` for a fixed-length vector, the result is a
8921:ref:`poison value <poisonvalues>`. For a scalable vector, if the value
8922of ``idx`` exceeds the runtime length of the vector, the result is a
8923:ref:`poison value <poisonvalues>`.
8924
8925Example:
8926""""""""
8927
8928.. code-block:: text
8929
8930      <result> = extractelement <4 x i32> %vec, i32 0    ; yields i32
8931
8932.. _i_insertelement:
8933
8934'``insertelement``' Instruction
8935^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8936
8937Syntax:
8938"""""""
8939
8940::
8941
8942      <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx>    ; yields <n x <ty>>
8943      <result> = insertelement <vscale x n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <vscale x n x <ty>>
8944
8945Overview:
8946"""""""""
8947
8948The '``insertelement``' instruction inserts a scalar element into a
8949vector at a specified index.
8950
8951Arguments:
8952""""""""""
8953
8954The first operand of an '``insertelement``' instruction is a value of
8955:ref:`vector <t_vector>` type. The second operand is a scalar value whose
8956type must equal the element type of the first operand. The third operand
8957is an index indicating the position at which to insert the value. The
8958index may be a variable of any integer type.
8959
8960Semantics:
8961""""""""""
8962
8963The result is a vector of the same type as ``val``. Its element values
8964are those of ``val`` except at position ``idx``, where it gets the value
8965``elt``. If ``idx`` exceeds the length of ``val`` for a fixed-length vector,
8966the result is a :ref:`poison value <poisonvalues>`. For a scalable vector,
8967if the value of ``idx`` exceeds the runtime length of the vector, the result
8968is a :ref:`poison value <poisonvalues>`.
8969
8970Example:
8971""""""""
8972
8973.. code-block:: text
8974
8975      <result> = insertelement <4 x i32> %vec, i32 1, i32 0    ; yields <4 x i32>
8976
8977.. _i_shufflevector:
8978
8979'``shufflevector``' Instruction
8980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8981
8982Syntax:
8983"""""""
8984
8985::
8986
8987      <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask>    ; yields <m x <ty>>
8988      <result> = shufflevector <vscale x n x <ty>> <v1>, <vscale x n x <ty>> v2, <vscale x m x i32> <mask>  ; yields <vscale x m x <ty>>
8989
8990Overview:
8991"""""""""
8992
8993The '``shufflevector``' instruction constructs a permutation of elements
8994from two input vectors, returning a vector with the same element type as
8995the input and length that is the same as the shuffle mask.
8996
8997Arguments:
8998""""""""""
8999
9000The first two operands of a '``shufflevector``' instruction are vectors
9001with the same type. The third argument is a shuffle mask vector constant
9002whose element type is ``i32``. The mask vector elements must be constant
9003integers or ``undef`` values. The result of the instruction is a vector
9004whose length is the same as the shuffle mask and whose element type is the
9005same as the element type of the first two operands.
9006
9007Semantics:
9008""""""""""
9009
9010The elements of the two input vectors are numbered from left to right
9011across both of the vectors. For each element of the result vector, the
9012shuffle mask selects an element from one of the input vectors to copy
9013to the result. Non-negative elements in the mask represent an index
9014into the concatenated pair of input vectors.
9015
9016If the shuffle mask is undefined, the result vector is undefined. If
9017the shuffle mask selects an undefined element from one of the input
9018vectors, the resulting element is undefined. An undefined element
9019in the mask vector specifies that the resulting element is undefined.
9020An undefined element in the mask vector prevents a poisoned vector
9021element from propagating.
9022
9023For scalable vectors, the only valid mask values at present are
9024``zeroinitializer`` and ``undef``, since we cannot write all indices as
9025literals for a vector with a length unknown at compile time.
9026
9027Example:
9028""""""""
9029
9030.. code-block:: text
9031
9032      <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
9033                              <4 x i32> <i32 0, i32 4, i32 1, i32 5>  ; yields <4 x i32>
9034      <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
9035                              <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32> - Identity shuffle.
9036      <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
9037                              <4 x i32> <i32 0, i32 1, i32 2, i32 3>  ; yields <4 x i32>
9038      <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
9039                              <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 >  ; yields <8 x i32>
9040
9041Aggregate Operations
9042--------------------
9043
9044LLVM supports several instructions for working with
9045:ref:`aggregate <t_aggregate>` values.
9046
9047.. _i_extractvalue:
9048
9049'``extractvalue``' Instruction
9050^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9051
9052Syntax:
9053"""""""
9054
9055::
9056
9057      <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
9058
9059Overview:
9060"""""""""
9061
9062The '``extractvalue``' instruction extracts the value of a member field
9063from an :ref:`aggregate <t_aggregate>` value.
9064
9065Arguments:
9066""""""""""
9067
9068The first operand of an '``extractvalue``' instruction is a value of
9069:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The other operands are
9070constant indices to specify which value to extract in a similar manner
9071as indices in a '``getelementptr``' instruction.
9072
9073The major differences to ``getelementptr`` indexing are:
9074
9075-  Since the value being indexed is not a pointer, the first index is
9076   omitted and assumed to be zero.
9077-  At least one index must be specified.
9078-  Not only struct indices but also array indices must be in bounds.
9079
9080Semantics:
9081""""""""""
9082
9083The result is the value at the position in the aggregate specified by
9084the index operands.
9085
9086Example:
9087""""""""
9088
9089.. code-block:: text
9090
9091      <result> = extractvalue {i32, float} %agg, 0    ; yields i32
9092
9093.. _i_insertvalue:
9094
9095'``insertvalue``' Instruction
9096^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9097
9098Syntax:
9099"""""""
9100
9101::
9102
9103      <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}*    ; yields <aggregate type>
9104
9105Overview:
9106"""""""""
9107
9108The '``insertvalue``' instruction inserts a value into a member field in
9109an :ref:`aggregate <t_aggregate>` value.
9110
9111Arguments:
9112""""""""""
9113
9114The first operand of an '``insertvalue``' instruction is a value of
9115:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
9116a first-class value to insert. The following operands are constant
9117indices indicating the position at which to insert the value in a
9118similar manner as indices in a '``extractvalue``' instruction. The value
9119to insert must have the same type as the value identified by the
9120indices.
9121
9122Semantics:
9123""""""""""
9124
9125The result is an aggregate of the same type as ``val``. Its value is
9126that of ``val`` except that the value at the position specified by the
9127indices is that of ``elt``.
9128
9129Example:
9130""""""""
9131
9132.. code-block:: llvm
9133
9134      %agg1 = insertvalue {i32, float} undef, i32 1, 0              ; yields {i32 1, float undef}
9135      %agg2 = insertvalue {i32, float} %agg1, float %val, 1         ; yields {i32 1, float %val}
9136      %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0    ; yields {i32 undef, {float %val}}
9137
9138.. _memoryops:
9139
9140Memory Access and Addressing Operations
9141---------------------------------------
9142
9143A key design point of an SSA-based representation is how it represents
9144memory. In LLVM, no memory locations are in SSA form, which makes things
9145very simple. This section describes how to read, write, and allocate
9146memory in LLVM.
9147
9148.. _i_alloca:
9149
9150'``alloca``' Instruction
9151^^^^^^^^^^^^^^^^^^^^^^^^
9152
9153Syntax:
9154"""""""
9155
9156::
9157
9158      <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] [, addrspace(<num>)]     ; yields type addrspace(num)*:result
9159
9160Overview:
9161"""""""""
9162
9163The '``alloca``' instruction allocates memory on the stack frame of the
9164currently executing function, to be automatically released when this
9165function returns to its caller. The object is always allocated in the
9166address space for allocas indicated in the datalayout.
9167
9168Arguments:
9169""""""""""
9170
9171The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
9172bytes of memory on the runtime stack, returning a pointer of the
9173appropriate type to the program. If "NumElements" is specified, it is
9174the number of elements allocated, otherwise "NumElements" is defaulted
9175to be one. If a constant alignment is specified, the value result of the
9176allocation is guaranteed to be aligned to at least that boundary. The
9177alignment may not be greater than ``1 << 29``. If not specified, or if
9178zero, the target can choose to align the allocation on any convenient
9179boundary compatible with the type.
9180
9181'``type``' may be any sized type.
9182
9183Semantics:
9184""""""""""
9185
9186Memory is allocated; a pointer is returned. The allocated memory is
9187uninitialized, and loading from uninitialized memory produces an undefined
9188value. The operation itself is undefined if there is insufficient stack
9189space for the allocation.'``alloca``'d memory is automatically released
9190when the function returns. The '``alloca``' instruction is commonly used
9191to represent automatic variables that must have an address available. When
9192the function returns (either with the ``ret`` or ``resume`` instructions),
9193the memory is reclaimed. Allocating zero bytes is legal, but the returned
9194pointer may not be unique. The order in which memory is allocated (ie.,
9195which way the stack grows) is not specified.
9196
9197Example:
9198""""""""
9199
9200.. code-block:: llvm
9201
9202      %ptr = alloca i32                             ; yields i32*:ptr
9203      %ptr = alloca i32, i32 4                      ; yields i32*:ptr
9204      %ptr = alloca i32, i32 4, align 1024          ; yields i32*:ptr
9205      %ptr = alloca i32, align 1024                 ; yields i32*:ptr
9206
9207.. _i_load:
9208
9209'``load``' Instruction
9210^^^^^^^^^^^^^^^^^^^^^^
9211
9212Syntax:
9213"""""""
9214
9215::
9216
9217      <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<nontemp_node>][, !invariant.load !<empty_node>][, !invariant.group !<empty_node>][, !nonnull !<empty_node>][, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>][, !align !<align_node>][, !noundef !<empty_node>]
9218      <result> = load atomic [volatile] <ty>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<empty_node>]
9219      !<nontemp_node> = !{ i32 1 }
9220      !<empty_node> = !{}
9221      !<deref_bytes_node> = !{ i64 <dereferenceable_bytes> }
9222      !<align_node> = !{ i64 <value_alignment> }
9223
9224Overview:
9225"""""""""
9226
9227The '``load``' instruction is used to read from memory.
9228
9229Arguments:
9230""""""""""
9231
9232The argument to the ``load`` instruction specifies the memory address from which
9233to load. The type specified must be a :ref:`first class <t_firstclass>` type of
9234known size (i.e. not containing an :ref:`opaque structural type <t_opaque>`). If
9235the ``load`` is marked as ``volatile``, then the optimizer is not allowed to
9236modify the number or order of execution of this ``load`` with other
9237:ref:`volatile operations <volatile>`.
9238
9239If the ``load`` is marked as ``atomic``, it takes an extra :ref:`ordering
9240<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
9241``release`` and ``acq_rel`` orderings are not valid on ``load`` instructions.
9242Atomic loads produce :ref:`defined <memmodel>` results when they may see
9243multiple atomic stores. The type of the pointee must be an integer, pointer, or
9244floating-point type whose bit width is a power of two greater than or equal to
9245eight and less than or equal to a target-specific size limit.  ``align`` must be
9246explicitly specified on atomic loads, and the load has undefined behavior if the
9247alignment is not set to a value which is at least the size in bytes of the
9248pointee. ``!nontemporal`` does not have any defined semantics for atomic loads.
9249
9250The optional constant ``align`` argument specifies the alignment of the
9251operation (that is, the alignment of the memory address). A value of 0
9252or an omitted ``align`` argument means that the operation has the ABI
9253alignment for the target. It is the responsibility of the code emitter
9254to ensure that the alignment information is correct. Overestimating the
9255alignment results in undefined behavior. Underestimating the alignment
9256may produce less efficient code. An alignment of 1 is always safe. The
9257maximum possible alignment is ``1 << 29``. An alignment value higher
9258than the size of the loaded type implies memory up to the alignment
9259value bytes can be safely loaded without trapping in the default
9260address space. Access of the high bytes can interfere with debugging
9261tools, so should not be accessed if the function has the
9262``sanitize_thread`` or ``sanitize_address`` attributes.
9263
9264The optional ``!nontemporal`` metadata must reference a single
9265metadata name ``<nontemp_node>`` corresponding to a metadata node with one
9266``i32`` entry of value 1. The existence of the ``!nontemporal``
9267metadata on the instruction tells the optimizer and code generator
9268that this load is not expected to be reused in the cache. The code
9269generator may select special instructions to save cache bandwidth, such
9270as the ``MOVNT`` instruction on x86.
9271
9272The optional ``!invariant.load`` metadata must reference a single
9273metadata name ``<empty_node>`` corresponding to a metadata node with no
9274entries. If a load instruction tagged with the ``!invariant.load``
9275metadata is executed, the optimizer may assume the memory location
9276referenced by the load contains the same value at all points in the
9277program where the memory location is known to be dereferenceable;
9278otherwise, the behavior is undefined.
9279
9280The optional ``!invariant.group`` metadata must reference a single metadata name
9281 ``<empty_node>`` corresponding to a metadata node with no entries.
9282 See ``invariant.group`` metadata :ref:`invariant.group <md_invariant.group>`.
9283
9284The optional ``!nonnull`` metadata must reference a single
9285metadata name ``<empty_node>`` corresponding to a metadata node with no
9286entries. The existence of the ``!nonnull`` metadata on the
9287instruction tells the optimizer that the value loaded is known to
9288never be null. If the value is null at runtime, the behavior is undefined.
9289This is analogous to the ``nonnull`` attribute on parameters and return
9290values. This metadata can only be applied to loads of a pointer type.
9291
9292The optional ``!dereferenceable`` metadata must reference a single metadata
9293name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
9294entry.
9295See ``dereferenceable`` metadata :ref:`dereferenceable <md_dereferenceable>`.
9296
9297The optional ``!dereferenceable_or_null`` metadata must reference a single
9298metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
9299``i64`` entry.
9300See ``dereferenceable_or_null`` metadata :ref:`dereferenceable_or_null
9301<md_dereferenceable_or_null>`.
9302
9303The optional ``!align`` metadata must reference a single metadata name
9304``<align_node>`` corresponding to a metadata node with one ``i64`` entry.
9305The existence of the ``!align`` metadata on the instruction tells the
9306optimizer that the value loaded is known to be aligned to a boundary specified
9307by the integer value in the metadata node. The alignment must be a power of 2.
9308This is analogous to the ''align'' attribute on parameters and return values.
9309This metadata can only be applied to loads of a pointer type. If the returned
9310value is not appropriately aligned at runtime, the behavior is undefined.
9311
9312The optional ``!noundef`` metadata must reference a single metadata name
9313``<empty_node>`` corresponding to a node with no entries. The existence of
9314``!noundef`` metadata on the instruction tells the optimizer that the value
9315loaded is known to be :ref:`well defined <welldefinedvalues>`.
9316If the value isn't well defined, the behavior is undefined.
9317
9318Semantics:
9319""""""""""
9320
9321The location of memory pointed to is loaded. If the value being loaded
9322is of scalar type then the number of bytes read does not exceed the
9323minimum number of bytes needed to hold all bits of the type. For
9324example, loading an ``i24`` reads at most three bytes. When loading a
9325value of a type like ``i20`` with a size that is not an integral number
9326of bytes, the result is undefined if the value was not originally
9327written using a store of the same type.
9328If the value being loaded is of aggregate type, the bytes that correspond to
9329padding may be accessed but are ignored, because it is impossible to observe
9330padding from the loaded aggregate value.
9331
9332If the pointer is not a well-defined value, all of its possible representations
9333should be dereferenceable. For example, loading a byte from a pointer to an
9334array of type ``[16 x i8]`` with offset ``undef & 31`` is undefined behavior.
9335Loading a byte at offset ``undef & 15`` nondeterministically reads one of the
9336bytes.
9337
9338Examples:
9339"""""""""
9340
9341.. code-block:: llvm
9342
9343      %ptr = alloca i32                               ; yields i32*:ptr
9344      store i32 3, i32* %ptr                          ; yields void
9345      %val = load i32, i32* %ptr                      ; yields i32:val = i32 3
9346
9347.. _i_store:
9348
9349'``store``' Instruction
9350^^^^^^^^^^^^^^^^^^^^^^^
9351
9352Syntax:
9353"""""""
9354
9355::
9356
9357      store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<nontemp_node>][, !invariant.group !<empty_node>]        ; yields void
9358      store atomic [volatile] <ty> <value>, <ty>* <pointer> [syncscope("<target-scope>")] <ordering>, align <alignment> [, !invariant.group !<empty_node>] ; yields void
9359      !<nontemp_node> = !{ i32 1 }
9360      !<empty_node> = !{}
9361
9362Overview:
9363"""""""""
9364
9365The '``store``' instruction is used to write to memory.
9366
9367Arguments:
9368""""""""""
9369
9370There are two arguments to the ``store`` instruction: a value to store and an
9371address at which to store it. The type of the ``<pointer>`` operand must be a
9372pointer to the :ref:`first class <t_firstclass>` type of the ``<value>``
9373operand. If the ``store`` is marked as ``volatile``, then the optimizer is not
9374allowed to modify the number or order of execution of this ``store`` with other
9375:ref:`volatile operations <volatile>`.  Only values of :ref:`first class
9376<t_firstclass>` types of known size (i.e. not containing an :ref:`opaque
9377structural type <t_opaque>`) can be stored.
9378
9379If the ``store`` is marked as ``atomic``, it takes an extra :ref:`ordering
9380<ordering>` and optional ``syncscope("<target-scope>")`` argument. The
9381``acquire`` and ``acq_rel`` orderings aren't valid on ``store`` instructions.
9382Atomic loads produce :ref:`defined <memmodel>` results when they may see
9383multiple atomic stores. The type of the pointee must be an integer, pointer, or
9384floating-point type whose bit width is a power of two greater than or equal to
9385eight and less than or equal to a target-specific size limit.  ``align`` must be
9386explicitly specified on atomic stores, and the store has undefined behavior if
9387the alignment is not set to a value which is at least the size in bytes of the
9388pointee. ``!nontemporal`` does not have any defined semantics for atomic stores.
9389
9390The optional constant ``align`` argument specifies the alignment of the
9391operation (that is, the alignment of the memory address). A value of 0
9392or an omitted ``align`` argument means that the operation has the ABI
9393alignment for the target. It is the responsibility of the code emitter
9394to ensure that the alignment information is correct. Overestimating the
9395alignment results in undefined behavior. Underestimating the
9396alignment may produce less efficient code. An alignment of 1 is always
9397safe. The maximum possible alignment is ``1 << 29``. An alignment
9398value higher than the size of the stored type implies memory up to the
9399alignment value bytes can be stored to without trapping in the default
9400address space. Storing to the higher bytes however may result in data
9401races if another thread can access the same address. Introducing a
9402data race is not allowed. Storing to the extra bytes is not allowed
9403even in situations where a data race is known to not exist if the
9404function has the ``sanitize_address`` attribute.
9405
9406The optional ``!nontemporal`` metadata must reference a single metadata
9407name ``<nontemp_node>`` corresponding to a metadata node with one ``i32`` entry
9408of value 1. The existence of the ``!nontemporal`` metadata on the instruction
9409tells the optimizer and code generator that this load is not expected to
9410be reused in the cache. The code generator may select special
9411instructions to save cache bandwidth, such as the ``MOVNT`` instruction on
9412x86.
9413
9414The optional ``!invariant.group`` metadata must reference a
9415single metadata name ``<empty_node>``. See ``invariant.group`` metadata.
9416
9417Semantics:
9418""""""""""
9419
9420The contents of memory are updated to contain ``<value>`` at the
9421location specified by the ``<pointer>`` operand. If ``<value>`` is
9422of scalar type then the number of bytes written does not exceed the
9423minimum number of bytes needed to hold all bits of the type. For
9424example, storing an ``i24`` writes at most three bytes. When writing a
9425value of a type like ``i20`` with a size that is not an integral number
9426of bytes, it is unspecified what happens to the extra bits that do not
9427belong to the type, but they will typically be overwritten.
9428If ``<value>`` is of aggregate type, padding is filled with
9429:ref:`undef <undefvalues>`.
9430
9431If ``<pointer>`` is not a well-defined value, all of its possible
9432representations should be dereferenceable. For example, storing a byte to a
9433pointer to an array of type ``[16 x i8]`` with offset ``undef & 31`` is
9434undefined behavior. Storing a byte to an offset ``undef & 15``
9435nondeterministically stores to one of offsets from 0 to 15.
9436
9437Example:
9438""""""""
9439
9440.. code-block:: llvm
9441
9442      %ptr = alloca i32                               ; yields i32*:ptr
9443      store i32 3, i32* %ptr                          ; yields void
9444      %val = load i32, i32* %ptr                      ; yields i32:val = i32 3
9445
9446.. _i_fence:
9447
9448'``fence``' Instruction
9449^^^^^^^^^^^^^^^^^^^^^^^
9450
9451Syntax:
9452"""""""
9453
9454::
9455
9456      fence [syncscope("<target-scope>")] <ordering>  ; yields void
9457
9458Overview:
9459"""""""""
9460
9461The '``fence``' instruction is used to introduce happens-before edges
9462between operations.
9463
9464Arguments:
9465""""""""""
9466
9467'``fence``' instructions take an :ref:`ordering <ordering>` argument which
9468defines what *synchronizes-with* edges they add. They can only be given
9469``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
9470
9471Semantics:
9472""""""""""
9473
9474A fence A which has (at least) ``release`` ordering semantics
9475*synchronizes with* a fence B with (at least) ``acquire`` ordering
9476semantics if and only if there exist atomic operations X and Y, both
9477operating on some atomic object M, such that A is sequenced before X, X
9478modifies M (either directly or through some side effect of a sequence
9479headed by X), Y is sequenced before B, and Y observes M. This provides a
9480*happens-before* dependency between A and B. Rather than an explicit
9481``fence``, one (but not both) of the atomic operations X or Y might
9482provide a ``release`` or ``acquire`` (resp.) ordering constraint and
9483still *synchronize-with* the explicit ``fence`` and establish the
9484*happens-before* edge.
9485
9486A ``fence`` which has ``seq_cst`` ordering, in addition to having both
9487``acquire`` and ``release`` semantics specified above, participates in
9488the global program order of other ``seq_cst`` operations and/or fences.
9489
9490A ``fence`` instruction can also take an optional
9491":ref:`syncscope <syncscope>`" argument.
9492
9493Example:
9494""""""""
9495
9496.. code-block:: text
9497
9498      fence acquire                                        ; yields void
9499      fence syncscope("singlethread") seq_cst              ; yields void
9500      fence syncscope("agent") seq_cst                     ; yields void
9501
9502.. _i_cmpxchg:
9503
9504'``cmpxchg``' Instruction
9505^^^^^^^^^^^^^^^^^^^^^^^^^
9506
9507Syntax:
9508"""""""
9509
9510::
9511
9512      cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [syncscope("<target-scope>")] <success ordering> <failure ordering> ; yields  { ty, i1 }
9513
9514Overview:
9515"""""""""
9516
9517The '``cmpxchg``' instruction is used to atomically modify memory. It
9518loads a value in memory and compares it to a given value. If they are
9519equal, it tries to store a new value into the memory.
9520
9521Arguments:
9522""""""""""
9523
9524There are three arguments to the '``cmpxchg``' instruction: an address
9525to operate on, a value to compare to the value currently be at that
9526address, and a new value to place at that address if the compared values
9527are equal. The type of '<cmp>' must be an integer or pointer type whose
9528bit width is a power of two greater than or equal to eight and less
9529than or equal to a target-specific size limit. '<cmp>' and '<new>' must
9530have the same type, and the type of '<pointer>' must be a pointer to
9531that type. If the ``cmpxchg`` is marked as ``volatile``, then the
9532optimizer is not allowed to modify the number or order of execution of
9533this ``cmpxchg`` with other :ref:`volatile operations <volatile>`.
9534
9535The success and failure :ref:`ordering <ordering>` arguments specify how this
9536``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
9537must be at least ``monotonic``, the ordering constraint on failure must be no
9538stronger than that on success, and the failure ordering cannot be either
9539``release`` or ``acq_rel``.
9540
9541A ``cmpxchg`` instruction can also take an optional
9542":ref:`syncscope <syncscope>`" argument.
9543
9544The pointer passed into cmpxchg must have alignment greater than or
9545equal to the size in memory of the operand.
9546
9547Semantics:
9548""""""""""
9549
9550The contents of memory at the location specified by the '``<pointer>``' operand
9551is read and compared to '``<cmp>``'; if the values are equal, '``<new>``' is
9552written to the location. The original value at the location is returned,
9553together with a flag indicating success (true) or failure (false).
9554
9555If the cmpxchg operation is marked as ``weak`` then a spurious failure is
9556permitted: the operation may not write ``<new>`` even if the comparison
9557matched.
9558
9559If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
9560if the value loaded equals ``cmp``.
9561
9562A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
9563identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
9564load with an ordering parameter determined the second ordering parameter.
9565
9566Example:
9567""""""""
9568
9569.. code-block:: llvm
9570
9571    entry:
9572      %orig = load atomic i32, i32* %ptr unordered, align 4                      ; yields i32
9573      br label %loop
9574
9575    loop:
9576      %cmp = phi i32 [ %orig, %entry ], [%value_loaded, %loop]
9577      %squared = mul i32 %cmp, %cmp
9578      %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields  { i32, i1 }
9579      %value_loaded = extractvalue { i32, i1 } %val_success, 0
9580      %success = extractvalue { i32, i1 } %val_success, 1
9581      br i1 %success, label %done, label %loop
9582
9583    done:
9584      ...
9585
9586.. _i_atomicrmw:
9587
9588'``atomicrmw``' Instruction
9589^^^^^^^^^^^^^^^^^^^^^^^^^^^
9590
9591Syntax:
9592"""""""
9593
9594::
9595
9596      atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [syncscope("<target-scope>")] <ordering>                   ; yields ty
9597
9598Overview:
9599"""""""""
9600
9601The '``atomicrmw``' instruction is used to atomically modify memory.
9602
9603Arguments:
9604""""""""""
9605
9606There are three arguments to the '``atomicrmw``' instruction: an
9607operation to apply, an address whose value to modify, an argument to the
9608operation. The operation must be one of the following keywords:
9609
9610-  xchg
9611-  add
9612-  sub
9613-  and
9614-  nand
9615-  or
9616-  xor
9617-  max
9618-  min
9619-  umax
9620-  umin
9621-  fadd
9622-  fsub
9623
9624For most of these operations, the type of '<value>' must be an integer
9625type whose bit width is a power of two greater than or equal to eight
9626and less than or equal to a target-specific size limit. For xchg, this
9627may also be a floating point type with the same size constraints as
9628integers.  For fadd/fsub, this must be a floating point type.  The
9629type of the '``<pointer>``' operand must be a pointer to that type. If
9630the ``atomicrmw`` is marked as ``volatile``, then the optimizer is not
9631allowed to modify the number or order of execution of this
9632``atomicrmw`` with other :ref:`volatile operations <volatile>`.
9633
9634A ``atomicrmw`` instruction can also take an optional
9635":ref:`syncscope <syncscope>`" argument.
9636
9637Semantics:
9638""""""""""
9639
9640The contents of memory at the location specified by the '``<pointer>``'
9641operand are atomically read, modified, and written back. The original
9642value at the location is returned. The modification is specified by the
9643operation argument:
9644
9645-  xchg: ``*ptr = val``
9646-  add: ``*ptr = *ptr + val``
9647-  sub: ``*ptr = *ptr - val``
9648-  and: ``*ptr = *ptr & val``
9649-  nand: ``*ptr = ~(*ptr & val)``
9650-  or: ``*ptr = *ptr | val``
9651-  xor: ``*ptr = *ptr ^ val``
9652-  max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
9653-  min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
9654-  umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
9655   comparison)
9656-  umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
9657   comparison)
9658- fadd: ``*ptr = *ptr + val`` (using floating point arithmetic)
9659- fsub: ``*ptr = *ptr - val`` (using floating point arithmetic)
9660
9661Example:
9662""""""""
9663
9664.. code-block:: llvm
9665
9666      %old = atomicrmw add i32* %ptr, i32 1 acquire                        ; yields i32
9667
9668.. _i_getelementptr:
9669
9670'``getelementptr``' Instruction
9671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9672
9673Syntax:
9674"""""""
9675
9676::
9677
9678      <result> = getelementptr <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
9679      <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, [inrange] <ty> <idx>}*
9680      <result> = getelementptr <ty>, <ptr vector> <ptrval>, [inrange] <vector index type> <idx>
9681
9682Overview:
9683"""""""""
9684
9685The '``getelementptr``' instruction is used to get the address of a
9686subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
9687address calculation only and does not access memory. The instruction can also
9688be used to calculate a vector of such addresses.
9689
9690Arguments:
9691""""""""""
9692
9693The first argument is always a type used as the basis for the calculations.
9694The second argument is always a pointer or a vector of pointers, and is the
9695base address to start from. The remaining arguments are indices
9696that indicate which of the elements of the aggregate object are indexed.
9697The interpretation of each index is dependent on the type being indexed
9698into. The first index always indexes the pointer value given as the
9699second argument, the second index indexes a value of the type pointed to
9700(not necessarily the value directly pointed to, since the first index
9701can be non-zero), etc. The first type indexed into must be a pointer
9702value, subsequent types can be arrays, vectors, and structs. Note that
9703subsequent types being indexed into can never be pointers, since that
9704would require loading the pointer before continuing calculation.
9705
9706The type of each index argument depends on the type it is indexing into.
9707When indexing into a (optionally packed) structure, only ``i32`` integer
9708**constants** are allowed (when using a vector of indices they must all
9709be the **same** ``i32`` integer constant). When indexing into an array,
9710pointer or vector, integers of any width are allowed, and they are not
9711required to be constant. These integers are treated as signed values
9712where relevant.
9713
9714For example, let's consider a C code fragment and how it gets compiled
9715to LLVM:
9716
9717.. code-block:: c
9718
9719    struct RT {
9720      char A;
9721      int B[10][20];
9722      char C;
9723    };
9724    struct ST {
9725      int X;
9726      double Y;
9727      struct RT Z;
9728    };
9729
9730    int *foo(struct ST *s) {
9731      return &s[1].Z.B[5][13];
9732    }
9733
9734The LLVM code generated by Clang is:
9735
9736.. code-block:: llvm
9737
9738    %struct.RT = type { i8, [10 x [20 x i32]], i8 }
9739    %struct.ST = type { i32, double, %struct.RT }
9740
9741    define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
9742    entry:
9743      %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
9744      ret i32* %arrayidx
9745    }
9746
9747Semantics:
9748""""""""""
9749
9750In the example above, the first index is indexing into the
9751'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
9752= '``{ i32, double, %struct.RT }``' type, a structure. The second index
9753indexes into the third element of the structure, yielding a
9754'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
9755structure. The third index indexes into the second element of the
9756structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
9757dimensions of the array are subscripted into, yielding an '``i32``'
9758type. The '``getelementptr``' instruction returns a pointer to this
9759element, thus computing a value of '``i32*``' type.
9760
9761Note that it is perfectly legal to index partially through a structure,
9762returning a pointer to an inner element. Because of this, the LLVM code
9763for the given testcase is equivalent to:
9764
9765.. code-block:: llvm
9766
9767    define i32* @foo(%struct.ST* %s) {
9768      %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1                        ; yields %struct.ST*:%t1
9769      %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2                ; yields %struct.RT*:%t2
9770      %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1                ; yields [10 x [20 x i32]]*:%t3
9771      %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5  ; yields [20 x i32]*:%t4
9772      %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13               ; yields i32*:%t5
9773      ret i32* %t5
9774    }
9775
9776If the ``inbounds`` keyword is present, the result value of the
9777``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
9778pointer is not an *in bounds* address of an allocated object, or if any
9779of the addresses that would be formed by successive addition of the
9780offsets implied by the indices to the base address with infinitely
9781precise signed arithmetic are not an *in bounds* address of that
9782allocated object. The *in bounds* addresses for an allocated object are
9783all the addresses that point into the object, plus the address one byte
9784past the end. The only *in bounds* address for a null pointer in the
9785default address-space is the null pointer itself. In cases where the
9786base is a vector of pointers the ``inbounds`` keyword applies to each
9787of the computations element-wise.
9788
9789If the ``inbounds`` keyword is not present, the offsets are added to the
9790base address with silently-wrapping two's complement arithmetic. If the
9791offsets have a different width from the pointer, they are sign-extended
9792or truncated to the width of the pointer. The result value of the
9793``getelementptr`` may be outside the object pointed to by the base
9794pointer. The result value may not necessarily be used to access memory
9795though, even if it happens to point into allocated storage. See the
9796:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
9797information.
9798
9799If the ``inrange`` keyword is present before any index, loading from or
9800storing to any pointer derived from the ``getelementptr`` has undefined
9801behavior if the load or store would access memory outside of the bounds of
9802the element selected by the index marked as ``inrange``. The result of a
9803pointer comparison or ``ptrtoint`` (including ``ptrtoint``-like operations
9804involving memory) involving a pointer derived from a ``getelementptr`` with
9805the ``inrange`` keyword is undefined, with the exception of comparisons
9806in the case where both operands are in the range of the element selected
9807by the ``inrange`` keyword, inclusive of the address one past the end of
9808that element. Note that the ``inrange`` keyword is currently only allowed
9809in constant ``getelementptr`` expressions.
9810
9811The getelementptr instruction is often confusing. For some more insight
9812into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
9813
9814Example:
9815""""""""
9816
9817.. code-block:: llvm
9818
9819        ; yields [12 x i8]*:aptr
9820        %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
9821        ; yields i8*:vptr
9822        %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
9823        ; yields i8*:eptr
9824        %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
9825        ; yields i32*:iptr
9826        %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
9827
9828Vector of pointers:
9829"""""""""""""""""""
9830
9831The ``getelementptr`` returns a vector of pointers, instead of a single address,
9832when one or more of its arguments is a vector. In such cases, all vector
9833arguments should have the same number of elements, and every scalar argument
9834will be effectively broadcast into a vector during address calculation.
9835
9836.. code-block:: llvm
9837
9838     ; All arguments are vectors:
9839     ;   A[i] = ptrs[i] + offsets[i]*sizeof(i8)
9840     %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
9841
9842     ; Add the same scalar offset to each pointer of a vector:
9843     ;   A[i] = ptrs[i] + offset*sizeof(i8)
9844     %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
9845
9846     ; Add distinct offsets to the same pointer:
9847     ;   A[i] = ptr + offsets[i]*sizeof(i8)
9848     %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
9849
9850     ; In all cases described above the type of the result is <4 x i8*>
9851
9852The two following instructions are equivalent:
9853
9854.. code-block:: llvm
9855
9856     getelementptr  %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
9857       <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
9858       <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
9859       <4 x i32> %ind4,
9860       <4 x i64> <i64 13, i64 13, i64 13, i64 13>
9861
9862     getelementptr  %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
9863       i32 2, i32 1, <4 x i32> %ind4, i64 13
9864
9865Let's look at the C code, where the vector version of ``getelementptr``
9866makes sense:
9867
9868.. code-block:: c
9869
9870    // Let's assume that we vectorize the following loop:
9871    double *A, *B; int *C;
9872    for (int i = 0; i < size; ++i) {
9873      A[i] = B[C[i]];
9874    }
9875
9876.. code-block:: llvm
9877
9878    ; get pointers for 8 elements from array B
9879    %ptrs = getelementptr double, double* %B, <8 x i32> %C
9880    ; load 8 elements from array B into A
9881    %A = call <8 x double> @llvm.masked.gather.v8f64.v8p0f64(<8 x double*> %ptrs,
9882         i32 8, <8 x i1> %mask, <8 x double> %passthru)
9883
9884Conversion Operations
9885---------------------
9886
9887The instructions in this category are the conversion instructions
9888(casting) which all take a single operand and a type. They perform
9889various bit conversions on the operand.
9890
9891.. _i_trunc:
9892
9893'``trunc .. to``' Instruction
9894^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9895
9896Syntax:
9897"""""""
9898
9899::
9900
9901      <result> = trunc <ty> <value> to <ty2>             ; yields ty2
9902
9903Overview:
9904"""""""""
9905
9906The '``trunc``' instruction truncates its operand to the type ``ty2``.
9907
9908Arguments:
9909""""""""""
9910
9911The '``trunc``' instruction takes a value to trunc, and a type to trunc
9912it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
9913of the same number of integers. The bit size of the ``value`` must be
9914larger than the bit size of the destination type, ``ty2``. Equal sized
9915types are not allowed.
9916
9917Semantics:
9918""""""""""
9919
9920The '``trunc``' instruction truncates the high order bits in ``value``
9921and converts the remaining bits to ``ty2``. Since the source size must
9922be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
9923It will always truncate bits.
9924
9925Example:
9926""""""""
9927
9928.. code-block:: llvm
9929
9930      %X = trunc i32 257 to i8                        ; yields i8:1
9931      %Y = trunc i32 123 to i1                        ; yields i1:true
9932      %Z = trunc i32 122 to i1                        ; yields i1:false
9933      %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
9934
9935.. _i_zext:
9936
9937'``zext .. to``' Instruction
9938^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9939
9940Syntax:
9941"""""""
9942
9943::
9944
9945      <result> = zext <ty> <value> to <ty2>             ; yields ty2
9946
9947Overview:
9948"""""""""
9949
9950The '``zext``' instruction zero extends its operand to type ``ty2``.
9951
9952Arguments:
9953""""""""""
9954
9955The '``zext``' instruction takes a value to cast, and a type to cast it
9956to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
9957the same number of integers. The bit size of the ``value`` must be
9958smaller than the bit size of the destination type, ``ty2``.
9959
9960Semantics:
9961""""""""""
9962
9963The ``zext`` fills the high order bits of the ``value`` with zero bits
9964until it reaches the size of the destination type, ``ty2``.
9965
9966When zero extending from i1, the result will always be either 0 or 1.
9967
9968Example:
9969""""""""
9970
9971.. code-block:: llvm
9972
9973      %X = zext i32 257 to i64              ; yields i64:257
9974      %Y = zext i1 true to i32              ; yields i32:1
9975      %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
9976
9977.. _i_sext:
9978
9979'``sext .. to``' Instruction
9980^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9981
9982Syntax:
9983"""""""
9984
9985::
9986
9987      <result> = sext <ty> <value> to <ty2>             ; yields ty2
9988
9989Overview:
9990"""""""""
9991
9992The '``sext``' sign extends ``value`` to the type ``ty2``.
9993
9994Arguments:
9995""""""""""
9996
9997The '``sext``' instruction takes a value to cast, and a type to cast it
9998to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
9999the same number of integers. The bit size of the ``value`` must be
10000smaller than the bit size of the destination type, ``ty2``.
10001
10002Semantics:
10003""""""""""
10004
10005The '``sext``' instruction performs a sign extension by copying the sign
10006bit (highest order bit) of the ``value`` until it reaches the bit size
10007of the type ``ty2``.
10008
10009When sign extending from i1, the extension always results in -1 or 0.
10010
10011Example:
10012""""""""
10013
10014.. code-block:: llvm
10015
10016      %X = sext i8  -1 to i16              ; yields i16   :65535
10017      %Y = sext i1 true to i32             ; yields i32:-1
10018      %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
10019
10020'``fptrunc .. to``' Instruction
10021^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10022
10023Syntax:
10024"""""""
10025
10026::
10027
10028      <result> = fptrunc <ty> <value> to <ty2>             ; yields ty2
10029
10030Overview:
10031"""""""""
10032
10033The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
10034
10035Arguments:
10036""""""""""
10037
10038The '``fptrunc``' instruction takes a :ref:`floating-point <t_floating>`
10039value to cast and a :ref:`floating-point <t_floating>` type to cast it to.
10040The size of ``value`` must be larger than the size of ``ty2``. This
10041implies that ``fptrunc`` cannot be used to make a *no-op cast*.
10042
10043Semantics:
10044""""""""""
10045
10046The '``fptrunc``' instruction casts a ``value`` from a larger
10047:ref:`floating-point <t_floating>` type to a smaller :ref:`floating-point
10048<t_floating>` type.
10049This instruction is assumed to execute in the default :ref:`floating-point
10050environment <floatenv>`.
10051
10052Example:
10053""""""""
10054
10055.. code-block:: llvm
10056
10057      %X = fptrunc double 16777217.0 to float    ; yields float:16777216.0
10058      %Y = fptrunc double 1.0E+300 to half       ; yields half:+infinity
10059
10060'``fpext .. to``' Instruction
10061^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10062
10063Syntax:
10064"""""""
10065
10066::
10067
10068      <result> = fpext <ty> <value> to <ty2>             ; yields ty2
10069
10070Overview:
10071"""""""""
10072
10073The '``fpext``' extends a floating-point ``value`` to a larger floating-point
10074value.
10075
10076Arguments:
10077""""""""""
10078
10079The '``fpext``' instruction takes a :ref:`floating-point <t_floating>`
10080``value`` to cast, and a :ref:`floating-point <t_floating>` type to cast it
10081to. The source type must be smaller than the destination type.
10082
10083Semantics:
10084""""""""""
10085
10086The '``fpext``' instruction extends the ``value`` from a smaller
10087:ref:`floating-point <t_floating>` type to a larger :ref:`floating-point
10088<t_floating>` type. The ``fpext`` cannot be used to make a
10089*no-op cast* because it always changes bits. Use ``bitcast`` to make a
10090*no-op cast* for a floating-point cast.
10091
10092Example:
10093""""""""
10094
10095.. code-block:: llvm
10096
10097      %X = fpext float 3.125 to double         ; yields double:3.125000e+00
10098      %Y = fpext double %X to fp128            ; yields fp128:0xL00000000000000004000900000000000
10099
10100'``fptoui .. to``' Instruction
10101^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10102
10103Syntax:
10104"""""""
10105
10106::
10107
10108      <result> = fptoui <ty> <value> to <ty2>             ; yields ty2
10109
10110Overview:
10111"""""""""
10112
10113The '``fptoui``' converts a floating-point ``value`` to its unsigned
10114integer equivalent of type ``ty2``.
10115
10116Arguments:
10117""""""""""
10118
10119The '``fptoui``' instruction takes a value to cast, which must be a
10120scalar or vector :ref:`floating-point <t_floating>` value, and a type to
10121cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
10122``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
10123type with the same number of elements as ``ty``
10124
10125Semantics:
10126""""""""""
10127
10128The '``fptoui``' instruction converts its :ref:`floating-point
10129<t_floating>` operand into the nearest (rounding towards zero)
10130unsigned integer value. If the value cannot fit in ``ty2``, the result
10131is a :ref:`poison value <poisonvalues>`.
10132
10133Example:
10134""""""""
10135
10136.. code-block:: llvm
10137
10138      %X = fptoui double 123.0 to i32      ; yields i32:123
10139      %Y = fptoui float 1.0E+300 to i1     ; yields undefined:1
10140      %Z = fptoui float 1.04E+17 to i8     ; yields undefined:1
10141
10142'``fptosi .. to``' Instruction
10143^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10144
10145Syntax:
10146"""""""
10147
10148::
10149
10150      <result> = fptosi <ty> <value> to <ty2>             ; yields ty2
10151
10152Overview:
10153"""""""""
10154
10155The '``fptosi``' instruction converts :ref:`floating-point <t_floating>`
10156``value`` to type ``ty2``.
10157
10158Arguments:
10159""""""""""
10160
10161The '``fptosi``' instruction takes a value to cast, which must be a
10162scalar or vector :ref:`floating-point <t_floating>` value, and a type to
10163cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
10164``ty`` is a vector floating-point type, ``ty2`` must be a vector integer
10165type with the same number of elements as ``ty``
10166
10167Semantics:
10168""""""""""
10169
10170The '``fptosi``' instruction converts its :ref:`floating-point
10171<t_floating>` operand into the nearest (rounding towards zero)
10172signed integer value. If the value cannot fit in ``ty2``, the result
10173is a :ref:`poison value <poisonvalues>`.
10174
10175Example:
10176""""""""
10177
10178.. code-block:: llvm
10179
10180      %X = fptosi double -123.0 to i32      ; yields i32:-123
10181      %Y = fptosi float 1.0E-247 to i1      ; yields undefined:1
10182      %Z = fptosi float 1.04E+17 to i8      ; yields undefined:1
10183
10184'``uitofp .. to``' Instruction
10185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10186
10187Syntax:
10188"""""""
10189
10190::
10191
10192      <result> = uitofp <ty> <value> to <ty2>             ; yields ty2
10193
10194Overview:
10195"""""""""
10196
10197The '``uitofp``' instruction regards ``value`` as an unsigned integer
10198and converts that value to the ``ty2`` type.
10199
10200Arguments:
10201""""""""""
10202
10203The '``uitofp``' instruction takes a value to cast, which must be a
10204scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
10205``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
10206``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
10207type with the same number of elements as ``ty``
10208
10209Semantics:
10210""""""""""
10211
10212The '``uitofp``' instruction interprets its operand as an unsigned
10213integer quantity and converts it to the corresponding floating-point
10214value. If the value cannot be exactly represented, it is rounded using
10215the default rounding mode.
10216
10217
10218Example:
10219""""""""
10220
10221.. code-block:: llvm
10222
10223      %X = uitofp i32 257 to float         ; yields float:257.0
10224      %Y = uitofp i8 -1 to double          ; yields double:255.0
10225
10226'``sitofp .. to``' Instruction
10227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10228
10229Syntax:
10230"""""""
10231
10232::
10233
10234      <result> = sitofp <ty> <value> to <ty2>             ; yields ty2
10235
10236Overview:
10237"""""""""
10238
10239The '``sitofp``' instruction regards ``value`` as a signed integer and
10240converts that value to the ``ty2`` type.
10241
10242Arguments:
10243""""""""""
10244
10245The '``sitofp``' instruction takes a value to cast, which must be a
10246scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
10247``ty2``, which must be an :ref:`floating-point <t_floating>` type. If
10248``ty`` is a vector integer type, ``ty2`` must be a vector floating-point
10249type with the same number of elements as ``ty``
10250
10251Semantics:
10252""""""""""
10253
10254The '``sitofp``' instruction interprets its operand as a signed integer
10255quantity and converts it to the corresponding floating-point value. If the
10256value cannot be exactly represented, it is rounded using the default rounding
10257mode.
10258
10259Example:
10260""""""""
10261
10262.. code-block:: llvm
10263
10264      %X = sitofp i32 257 to float         ; yields float:257.0
10265      %Y = sitofp i8 -1 to double          ; yields double:-1.0
10266
10267.. _i_ptrtoint:
10268
10269'``ptrtoint .. to``' Instruction
10270^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10271
10272Syntax:
10273"""""""
10274
10275::
10276
10277      <result> = ptrtoint <ty> <value> to <ty2>             ; yields ty2
10278
10279Overview:
10280"""""""""
10281
10282The '``ptrtoint``' instruction converts the pointer or a vector of
10283pointers ``value`` to the integer (or vector of integers) type ``ty2``.
10284
10285Arguments:
10286""""""""""
10287
10288The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
10289a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
10290type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
10291a vector of integers type.
10292
10293Semantics:
10294""""""""""
10295
10296The '``ptrtoint``' instruction converts ``value`` to integer type
10297``ty2`` by interpreting the pointer value as an integer and either
10298truncating or zero extending that value to the size of the integer type.
10299If ``value`` is smaller than ``ty2`` then a zero extension is done. If
10300``value`` is larger than ``ty2`` then a truncation is done. If they are
10301the same size, then nothing is done (*no-op cast*) other than a type
10302change.
10303
10304Example:
10305""""""""
10306
10307.. code-block:: llvm
10308
10309      %X = ptrtoint i32* %P to i8                         ; yields truncation on 32-bit architecture
10310      %Y = ptrtoint i32* %P to i64                        ; yields zero extension on 32-bit architecture
10311      %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
10312
10313.. _i_inttoptr:
10314
10315'``inttoptr .. to``' Instruction
10316^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10317
10318Syntax:
10319"""""""
10320
10321::
10322
10323      <result> = inttoptr <ty> <value> to <ty2>[, !dereferenceable !<deref_bytes_node>][, !dereferenceable_or_null !<deref_bytes_node>]             ; yields ty2
10324
10325Overview:
10326"""""""""
10327
10328The '``inttoptr``' instruction converts an integer ``value`` to a
10329pointer type, ``ty2``.
10330
10331Arguments:
10332""""""""""
10333
10334The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
10335cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
10336type.
10337
10338The optional ``!dereferenceable`` metadata must reference a single metadata
10339name ``<deref_bytes_node>`` corresponding to a metadata node with one ``i64``
10340entry.
10341See ``dereferenceable`` metadata.
10342
10343The optional ``!dereferenceable_or_null`` metadata must reference a single
10344metadata name ``<deref_bytes_node>`` corresponding to a metadata node with one
10345``i64`` entry.
10346See ``dereferenceable_or_null`` metadata.
10347
10348Semantics:
10349""""""""""
10350
10351The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
10352applying either a zero extension or a truncation depending on the size
10353of the integer ``value``. If ``value`` is larger than the size of a
10354pointer then a truncation is done. If ``value`` is smaller than the size
10355of a pointer then a zero extension is done. If they are the same size,
10356nothing is done (*no-op cast*).
10357
10358Example:
10359""""""""
10360
10361.. code-block:: llvm
10362
10363      %X = inttoptr i32 255 to i32*          ; yields zero extension on 64-bit architecture
10364      %Y = inttoptr i32 255 to i32*          ; yields no-op on 32-bit architecture
10365      %Z = inttoptr i64 0 to i32*            ; yields truncation on 32-bit architecture
10366      %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
10367
10368.. _i_bitcast:
10369
10370'``bitcast .. to``' Instruction
10371^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10372
10373Syntax:
10374"""""""
10375
10376::
10377
10378      <result> = bitcast <ty> <value> to <ty2>             ; yields ty2
10379
10380Overview:
10381"""""""""
10382
10383The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
10384changing any bits.
10385
10386Arguments:
10387""""""""""
10388
10389The '``bitcast``' instruction takes a value to cast, which must be a
10390non-aggregate first class value, and a type to cast it to, which must
10391also be a non-aggregate :ref:`first class <t_firstclass>` type. The
10392bit sizes of ``value`` and the destination type, ``ty2``, must be
10393identical. If the source type is a pointer, the destination type must
10394also be a pointer of the same size. This instruction supports bitwise
10395conversion of vectors to integers and to vectors of other types (as
10396long as they have the same size).
10397
10398Semantics:
10399""""""""""
10400
10401The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
10402is always a *no-op cast* because no bits change with this
10403conversion. The conversion is done as if the ``value`` had been stored
10404to memory and read back as type ``ty2``. Pointer (or vector of
10405pointers) types may only be converted to other pointer (or vector of
10406pointers) types with the same address space through this instruction.
10407To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
10408or :ref:`ptrtoint <i_ptrtoint>` instructions first.
10409
10410Example:
10411""""""""
10412
10413.. code-block:: text
10414
10415      %X = bitcast i8 255 to i8              ; yields i8 :-1
10416      %Y = bitcast i32* %x to sint*          ; yields sint*:%x
10417      %Z = bitcast <2 x int> %V to i64;        ; yields i64: %V
10418      %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
10419
10420.. _i_addrspacecast:
10421
10422'``addrspacecast .. to``' Instruction
10423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10424
10425Syntax:
10426"""""""
10427
10428::
10429
10430      <result> = addrspacecast <pty> <ptrval> to <pty2>       ; yields pty2
10431
10432Overview:
10433"""""""""
10434
10435The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
10436address space ``n`` to type ``pty2`` in address space ``m``.
10437
10438Arguments:
10439""""""""""
10440
10441The '``addrspacecast``' instruction takes a pointer or vector of pointer value
10442to cast and a pointer type to cast it to, which must have a different
10443address space.
10444
10445Semantics:
10446""""""""""
10447
10448The '``addrspacecast``' instruction converts the pointer value
10449``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
10450value modification, depending on the target and the address space
10451pair. Pointer conversions within the same address space must be
10452performed with the ``bitcast`` instruction. Note that if the address space
10453conversion is legal then both result and operand refer to the same memory
10454location.
10455
10456Example:
10457""""""""
10458
10459.. code-block:: llvm
10460
10461      %X = addrspacecast i32* %x to i32 addrspace(1)*    ; yields i32 addrspace(1)*:%x
10462      %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)*    ; yields i64 addrspace(2)*:%y
10463      %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*>   ; yields <4 x float addrspace(3)*>:%z
10464
10465.. _otherops:
10466
10467Other Operations
10468----------------
10469
10470The instructions in this category are the "miscellaneous" instructions,
10471which defy better classification.
10472
10473.. _i_icmp:
10474
10475'``icmp``' Instruction
10476^^^^^^^^^^^^^^^^^^^^^^
10477
10478Syntax:
10479"""""""
10480
10481::
10482
10483      <result> = icmp <cond> <ty> <op1>, <op2>   ; yields i1 or <N x i1>:result
10484
10485Overview:
10486"""""""""
10487
10488The '``icmp``' instruction returns a boolean value or a vector of
10489boolean values based on comparison of its two integer, integer vector,
10490pointer, or pointer vector operands.
10491
10492Arguments:
10493""""""""""
10494
10495The '``icmp``' instruction takes three operands. The first operand is
10496the condition code indicating the kind of comparison to perform. It is
10497not a value, just a keyword. The possible condition codes are:
10498
10499#. ``eq``: equal
10500#. ``ne``: not equal
10501#. ``ugt``: unsigned greater than
10502#. ``uge``: unsigned greater or equal
10503#. ``ult``: unsigned less than
10504#. ``ule``: unsigned less or equal
10505#. ``sgt``: signed greater than
10506#. ``sge``: signed greater or equal
10507#. ``slt``: signed less than
10508#. ``sle``: signed less or equal
10509
10510The remaining two arguments must be :ref:`integer <t_integer>` or
10511:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
10512must also be identical types.
10513
10514Semantics:
10515""""""""""
10516
10517The '``icmp``' compares ``op1`` and ``op2`` according to the condition
10518code given as ``cond``. The comparison performed always yields either an
10519:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
10520
10521#. ``eq``: yields ``true`` if the operands are equal, ``false``
10522   otherwise. No sign interpretation is necessary or performed.
10523#. ``ne``: yields ``true`` if the operands are unequal, ``false``
10524   otherwise. No sign interpretation is necessary or performed.
10525#. ``ugt``: interprets the operands as unsigned values and yields
10526   ``true`` if ``op1`` is greater than ``op2``.
10527#. ``uge``: interprets the operands as unsigned values and yields
10528   ``true`` if ``op1`` is greater than or equal to ``op2``.
10529#. ``ult``: interprets the operands as unsigned values and yields
10530   ``true`` if ``op1`` is less than ``op2``.
10531#. ``ule``: interprets the operands as unsigned values and yields
10532   ``true`` if ``op1`` is less than or equal to ``op2``.
10533#. ``sgt``: interprets the operands as signed values and yields ``true``
10534   if ``op1`` is greater than ``op2``.
10535#. ``sge``: interprets the operands as signed values and yields ``true``
10536   if ``op1`` is greater than or equal to ``op2``.
10537#. ``slt``: interprets the operands as signed values and yields ``true``
10538   if ``op1`` is less than ``op2``.
10539#. ``sle``: interprets the operands as signed values and yields ``true``
10540   if ``op1`` is less than or equal to ``op2``.
10541
10542If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
10543are compared as if they were integers.
10544
10545If the operands are integer vectors, then they are compared element by
10546element. The result is an ``i1`` vector with the same number of elements
10547as the values being compared. Otherwise, the result is an ``i1``.
10548
10549Example:
10550""""""""
10551
10552.. code-block:: text
10553
10554      <result> = icmp eq i32 4, 5          ; yields: result=false
10555      <result> = icmp ne float* %X, %X     ; yields: result=false
10556      <result> = icmp ult i16  4, 5        ; yields: result=true
10557      <result> = icmp sgt i16  4, 5        ; yields: result=false
10558      <result> = icmp ule i16 -4, 5        ; yields: result=false
10559      <result> = icmp sge i16  4, 5        ; yields: result=false
10560
10561.. _i_fcmp:
10562
10563'``fcmp``' Instruction
10564^^^^^^^^^^^^^^^^^^^^^^
10565
10566Syntax:
10567"""""""
10568
10569::
10570
10571      <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2>     ; yields i1 or <N x i1>:result
10572
10573Overview:
10574"""""""""
10575
10576The '``fcmp``' instruction returns a boolean value or vector of boolean
10577values based on comparison of its operands.
10578
10579If the operands are floating-point scalars, then the result type is a
10580boolean (:ref:`i1 <t_integer>`).
10581
10582If the operands are floating-point vectors, then the result type is a
10583vector of boolean with the same number of elements as the operands being
10584compared.
10585
10586Arguments:
10587""""""""""
10588
10589The '``fcmp``' instruction takes three operands. The first operand is
10590the condition code indicating the kind of comparison to perform. It is
10591not a value, just a keyword. The possible condition codes are:
10592
10593#. ``false``: no comparison, always returns false
10594#. ``oeq``: ordered and equal
10595#. ``ogt``: ordered and greater than
10596#. ``oge``: ordered and greater than or equal
10597#. ``olt``: ordered and less than
10598#. ``ole``: ordered and less than or equal
10599#. ``one``: ordered and not equal
10600#. ``ord``: ordered (no nans)
10601#. ``ueq``: unordered or equal
10602#. ``ugt``: unordered or greater than
10603#. ``uge``: unordered or greater than or equal
10604#. ``ult``: unordered or less than
10605#. ``ule``: unordered or less than or equal
10606#. ``une``: unordered or not equal
10607#. ``uno``: unordered (either nans)
10608#. ``true``: no comparison, always returns true
10609
10610*Ordered* means that neither operand is a QNAN while *unordered* means
10611that either operand may be a QNAN.
10612
10613Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating-point
10614<t_floating>` type or a :ref:`vector <t_vector>` of floating-point type.
10615They must have identical types.
10616
10617Semantics:
10618""""""""""
10619
10620The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
10621condition code given as ``cond``. If the operands are vectors, then the
10622vectors are compared element by element. Each comparison performed
10623always yields an :ref:`i1 <t_integer>` result, as follows:
10624
10625#. ``false``: always yields ``false``, regardless of operands.
10626#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
10627   is equal to ``op2``.
10628#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
10629   is greater than ``op2``.
10630#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
10631   is greater than or equal to ``op2``.
10632#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
10633   is less than ``op2``.
10634#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
10635   is less than or equal to ``op2``.
10636#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
10637   is not equal to ``op2``.
10638#. ``ord``: yields ``true`` if both operands are not a QNAN.
10639#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
10640   equal to ``op2``.
10641#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
10642   greater than ``op2``.
10643#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
10644   greater than or equal to ``op2``.
10645#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
10646   less than ``op2``.
10647#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
10648   less than or equal to ``op2``.
10649#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
10650   not equal to ``op2``.
10651#. ``uno``: yields ``true`` if either operand is a QNAN.
10652#. ``true``: always yields ``true``, regardless of operands.
10653
10654The ``fcmp`` instruction can also optionally take any number of
10655:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
10656otherwise unsafe floating-point optimizations.
10657
10658Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
10659only flags that have any effect on its semantics are those that allow
10660assumptions to be made about the values of input arguments; namely
10661``nnan``, ``ninf``, and ``reassoc``. See :ref:`fastmath` for more information.
10662
10663Example:
10664""""""""
10665
10666.. code-block:: text
10667
10668      <result> = fcmp oeq float 4.0, 5.0    ; yields: result=false
10669      <result> = fcmp one float 4.0, 5.0    ; yields: result=true
10670      <result> = fcmp olt float 4.0, 5.0    ; yields: result=true
10671      <result> = fcmp ueq double 1.0, 2.0   ; yields: result=false
10672
10673.. _i_phi:
10674
10675'``phi``' Instruction
10676^^^^^^^^^^^^^^^^^^^^^
10677
10678Syntax:
10679"""""""
10680
10681::
10682
10683      <result> = phi [fast-math-flags] <ty> [ <val0>, <label0>], ...
10684
10685Overview:
10686"""""""""
10687
10688The '``phi``' instruction is used to implement the φ node in the SSA
10689graph representing the function.
10690
10691Arguments:
10692""""""""""
10693
10694The type of the incoming values is specified with the first type field.
10695After this, the '``phi``' instruction takes a list of pairs as
10696arguments, with one pair for each predecessor basic block of the current
10697block. Only values of :ref:`first class <t_firstclass>` type may be used as
10698the value arguments to the PHI node. Only labels may be used as the
10699label arguments.
10700
10701There must be no non-phi instructions between the start of a basic block
10702and the PHI instructions: i.e. PHI instructions must be first in a basic
10703block.
10704
10705For the purposes of the SSA form, the use of each incoming value is
10706deemed to occur on the edge from the corresponding predecessor block to
10707the current block (but after any definition of an '``invoke``'
10708instruction's return value on the same edge).
10709
10710The optional ``fast-math-flags`` marker indicates that the phi has one
10711or more :ref:`fast-math-flags <fastmath>`. These are optimization hints
10712to enable otherwise unsafe floating-point optimizations. Fast-math-flags
10713are only valid for phis that return a floating-point scalar or vector
10714type, or an array (nested to any depth) of floating-point scalar or vector
10715types.
10716
10717Semantics:
10718""""""""""
10719
10720At runtime, the '``phi``' instruction logically takes on the value
10721specified by the pair corresponding to the predecessor basic block that
10722executed just prior to the current block.
10723
10724Example:
10725""""""""
10726
10727.. code-block:: llvm
10728
10729    Loop:       ; Infinite loop that counts from 0 on up...
10730      %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
10731      %nextindvar = add i32 %indvar, 1
10732      br label %Loop
10733
10734.. _i_select:
10735
10736'``select``' Instruction
10737^^^^^^^^^^^^^^^^^^^^^^^^
10738
10739Syntax:
10740"""""""
10741
10742::
10743
10744      <result> = select [fast-math flags] selty <cond>, <ty> <val1>, <ty> <val2>             ; yields ty
10745
10746      selty is either i1 or {<N x i1>}
10747
10748Overview:
10749"""""""""
10750
10751The '``select``' instruction is used to choose one value based on a
10752condition, without IR-level branching.
10753
10754Arguments:
10755""""""""""
10756
10757The '``select``' instruction requires an 'i1' value or a vector of 'i1'
10758values indicating the condition, and two values of the same :ref:`first
10759class <t_firstclass>` type.
10760
10761#. The optional ``fast-math flags`` marker indicates that the select has one or more
10762   :ref:`fast-math flags <fastmath>`. These are optimization hints to enable
10763   otherwise unsafe floating-point optimizations. Fast-math flags are only valid
10764   for selects that return a floating-point scalar or vector type, or an array
10765   (nested to any depth) of floating-point scalar or vector types.
10766
10767Semantics:
10768""""""""""
10769
10770If the condition is an i1 and it evaluates to 1, the instruction returns
10771the first value argument; otherwise, it returns the second value
10772argument.
10773
10774If the condition is a vector of i1, then the value arguments must be
10775vectors of the same size, and the selection is done element by element.
10776
10777If the condition is an i1 and the value arguments are vectors of the
10778same size, then an entire vector is selected.
10779
10780Example:
10781""""""""
10782
10783.. code-block:: llvm
10784
10785      %X = select i1 true, i8 17, i8 42          ; yields i8:17
10786
10787
10788.. _i_freeze:
10789
10790'``freeze``' Instruction
10791^^^^^^^^^^^^^^^^^^^^^^^^
10792
10793Syntax:
10794"""""""
10795
10796::
10797
10798      <result> = freeze ty <val>    ; yields ty:result
10799
10800Overview:
10801"""""""""
10802
10803The '``freeze``' instruction is used to stop propagation of
10804:ref:`undef <undefvalues>` and :ref:`poison <poisonvalues>` values.
10805
10806Arguments:
10807""""""""""
10808
10809The '``freeze``' instruction takes a single argument.
10810
10811Semantics:
10812""""""""""
10813
10814If the argument is ``undef`` or ``poison``, '``freeze``' returns an
10815arbitrary, but fixed, value of type '``ty``'.
10816Otherwise, this instruction is a no-op and returns the input argument.
10817All uses of a value returned by the same '``freeze``' instruction are
10818guaranteed to always observe the same value, while different '``freeze``'
10819instructions may yield different values.
10820
10821While ``undef`` and ``poison`` pointers can be frozen, the result is a
10822non-dereferenceable pointer. See the
10823:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more information.
10824If an aggregate value or vector is frozen, the operand is frozen element-wise.
10825The padding of an aggregate isn't considered, since it isn't visible
10826without storing it into memory and loading it with a different type.
10827
10828
10829Example:
10830""""""""
10831
10832.. code-block:: text
10833
10834      %w = i32 undef
10835      %x = freeze i32 %w
10836      %y = add i32 %w, %w         ; undef
10837      %z = add i32 %x, %x         ; even number because all uses of %x observe
10838                                  ; the same value
10839      %x2 = freeze i32 %w
10840      %cmp = icmp eq i32 %x, %x2  ; can be true or false
10841
10842      ; example with vectors
10843      %v = <2 x i32> <i32 undef, i32 poison>
10844      %a = extractelement <2 x i32> %v, i32 0    ; undef
10845      %b = extractelement <2 x i32> %v, i32 1    ; poison
10846      %add = add i32 %a, %a                      ; undef
10847
10848      %v.fr = freeze <2 x i32> %v                ; element-wise freeze
10849      %d = extractelement <2 x i32> %v.fr, i32 0 ; not undef
10850      %add.f = add i32 %d, %d                    ; even number
10851
10852      ; branching on frozen value
10853      %poison = add nsw i1 %k, undef   ; poison
10854      %c = freeze i1 %poison
10855      br i1 %c, label %foo, label %bar ; non-deterministic branch to %foo or %bar
10856
10857
10858.. _i_call:
10859
10860'``call``' Instruction
10861^^^^^^^^^^^^^^^^^^^^^^
10862
10863Syntax:
10864"""""""
10865
10866::
10867
10868      <result> = [tail | musttail | notail ] call [fast-math flags] [cconv] [ret attrs] [addrspace(<num>)]
10869                 <ty>|<fnty> <fnptrval>(<function args>) [fn attrs] [ operand bundles ]
10870
10871Overview:
10872"""""""""
10873
10874The '``call``' instruction represents a simple function call.
10875
10876Arguments:
10877""""""""""
10878
10879This instruction requires several arguments:
10880
10881#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
10882   should perform tail call optimization. The ``tail`` marker is a hint that
10883   `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
10884   means that the call must be tail call optimized in order for the program to
10885   be correct. The ``musttail`` marker provides these guarantees:
10886
10887   #. The call will not cause unbounded stack growth if it is part of a
10888      recursive cycle in the call graph.
10889   #. Arguments with the :ref:`inalloca <attr_inalloca>` or
10890      :ref:`preallocated <attr_preallocated>` attribute are forwarded in place.
10891   #. If the musttail call appears in a function with the ``"thunk"`` attribute
10892      and the caller and callee both have varargs, than any unprototyped
10893      arguments in register or memory are forwarded to the callee. Similarly,
10894      the return value of the callee is returned to the caller's caller, even
10895      if a void return type is in use.
10896
10897   Both markers imply that the callee does not access allocas from the caller.
10898   The ``tail`` marker additionally implies that the callee does not access
10899   varargs from the caller. Calls marked ``musttail`` must obey the following
10900   additional  rules:
10901
10902   - The call must immediately precede a :ref:`ret <i_ret>` instruction,
10903     or a pointer bitcast followed by a ret instruction.
10904   - The ret instruction must return the (possibly bitcasted) value
10905     produced by the call or void.
10906   - The caller and callee prototypes must match. Pointer types of
10907     parameters or return types may differ in pointee type, but not
10908     in address space.
10909   - The calling conventions of the caller and callee must match.
10910   - All ABI-impacting function attributes, such as sret, byval, inreg,
10911     returned, and inalloca, must match.
10912   - The callee must be varargs iff the caller is varargs. Bitcasting a
10913     non-varargs function to the appropriate varargs type is legal so
10914     long as the non-varargs prefixes obey the other rules.
10915
10916   Tail call optimization for calls marked ``tail`` is guaranteed to occur if
10917   the following conditions are met:
10918
10919   -  Caller and callee both have the calling convention ``fastcc`` or ``tailcc``.
10920   -  The call is in tail position (ret immediately follows call and ret
10921      uses value of call or is void).
10922   -  Option ``-tailcallopt`` is enabled,
10923      ``llvm::GuaranteedTailCallOpt`` is ``true``, or the calling convention
10924      is ``tailcc``
10925   -  `Platform-specific constraints are
10926      met. <CodeGenerator.html#tailcallopt>`_
10927
10928#. The optional ``notail`` marker indicates that the optimizers should not add
10929   ``tail`` or ``musttail`` markers to the call. It is used to prevent tail
10930   call optimization from being performed on the call.
10931
10932#. The optional ``fast-math flags`` marker indicates that the call has one or more
10933   :ref:`fast-math flags <fastmath>`, which are optimization hints to enable
10934   otherwise unsafe floating-point optimizations. Fast-math flags are only valid
10935   for calls that return a floating-point scalar or vector type, or an array
10936   (nested to any depth) of floating-point scalar or vector types.
10937
10938#. The optional "cconv" marker indicates which :ref:`calling
10939   convention <callingconv>` the call should use. If none is
10940   specified, the call defaults to using C calling conventions. The
10941   calling convention of the call must match the calling convention of
10942   the target function, or else the behavior is undefined.
10943#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
10944   values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
10945   are valid here.
10946#. The optional addrspace attribute can be used to indicate the address space
10947   of the called function. If it is not specified, the program address space
10948   from the :ref:`datalayout string<langref_datalayout>` will be used.
10949#. '``ty``': the type of the call instruction itself which is also the
10950   type of the return value. Functions that return no value are marked
10951   ``void``.
10952#. '``fnty``': shall be the signature of the function being called. The
10953   argument types must match the types implied by this signature. This
10954   type can be omitted if the function is not varargs.
10955#. '``fnptrval``': An LLVM value containing a pointer to a function to
10956   be called. In most cases, this is a direct function call, but
10957   indirect ``call``'s are just as possible, calling an arbitrary pointer
10958   to function value.
10959#. '``function args``': argument list whose types match the function
10960   signature argument types and parameter attributes. All arguments must
10961   be of :ref:`first class <t_firstclass>` type. If the function signature
10962   indicates the function accepts a variable number of arguments, the
10963   extra arguments can be specified.
10964#. The optional :ref:`function attributes <fnattrs>` list.
10965#. The optional :ref:`operand bundles <opbundles>` list.
10966
10967Semantics:
10968""""""""""
10969
10970The '``call``' instruction is used to cause control flow to transfer to
10971a specified function, with its incoming arguments bound to the specified
10972values. Upon a '``ret``' instruction in the called function, control
10973flow continues with the instruction after the function call, and the
10974return value of the function is bound to the result argument.
10975
10976Example:
10977""""""""
10978
10979.. code-block:: llvm
10980
10981      %retval = call i32 @test(i32 %argc)
10982      call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        ; yields i32
10983      %X = tail call i32 @foo()                                    ; yields i32
10984      %Y = tail call fastcc i32 @foo()  ; yields i32
10985      call void %foo(i8 97 signext)
10986
10987      %struct.A = type { i32, i8 }
10988      %r = call %struct.A @foo()                        ; yields { i32, i8 }
10989      %gr = extractvalue %struct.A %r, 0                ; yields i32
10990      %gr1 = extractvalue %struct.A %r, 1               ; yields i8
10991      %Z = call void @foo() noreturn                    ; indicates that %foo never returns normally
10992      %ZZ = call zeroext i32 @bar()                     ; Return value is %zero extended
10993
10994llvm treats calls to some functions with names and arguments that match
10995the standard C99 library as being the C99 library functions, and may
10996perform optimizations or generate code for them under that assumption.
10997This is something we'd like to change in the future to provide better
10998support for freestanding environments and non-C-based languages.
10999
11000.. _i_va_arg:
11001
11002'``va_arg``' Instruction
11003^^^^^^^^^^^^^^^^^^^^^^^^
11004
11005Syntax:
11006"""""""
11007
11008::
11009
11010      <resultval> = va_arg <va_list*> <arglist>, <argty>
11011
11012Overview:
11013"""""""""
11014
11015The '``va_arg``' instruction is used to access arguments passed through
11016the "variable argument" area of a function call. It is used to implement
11017the ``va_arg`` macro in C.
11018
11019Arguments:
11020""""""""""
11021
11022This instruction takes a ``va_list*`` value and the type of the
11023argument. It returns a value of the specified argument type and
11024increments the ``va_list`` to point to the next argument. The actual
11025type of ``va_list`` is target specific.
11026
11027Semantics:
11028""""""""""
11029
11030The '``va_arg``' instruction loads an argument of the specified type
11031from the specified ``va_list`` and causes the ``va_list`` to point to
11032the next argument. For more information, see the variable argument
11033handling :ref:`Intrinsic Functions <int_varargs>`.
11034
11035It is legal for this instruction to be called in a function which does
11036not take a variable number of arguments, for example, the ``vfprintf``
11037function.
11038
11039``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
11040function <intrinsics>` because it takes a type as an argument.
11041
11042Example:
11043""""""""
11044
11045See the :ref:`variable argument processing <int_varargs>` section.
11046
11047Note that the code generator does not yet fully support va\_arg on many
11048targets. Also, it does not currently support va\_arg with aggregate
11049types on any target.
11050
11051.. _i_landingpad:
11052
11053'``landingpad``' Instruction
11054^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11055
11056Syntax:
11057"""""""
11058
11059::
11060
11061      <resultval> = landingpad <resultty> <clause>+
11062      <resultval> = landingpad <resultty> cleanup <clause>*
11063
11064      <clause> := catch <type> <value>
11065      <clause> := filter <array constant type> <array constant>
11066
11067Overview:
11068"""""""""
11069
11070The '``landingpad``' instruction is used by `LLVM's exception handling
11071system <ExceptionHandling.html#overview>`_ to specify that a basic block
11072is a landing pad --- one where the exception lands, and corresponds to the
11073code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
11074defines values supplied by the :ref:`personality function <personalityfn>` upon
11075re-entry to the function. The ``resultval`` has the type ``resultty``.
11076
11077Arguments:
11078""""""""""
11079
11080The optional
11081``cleanup`` flag indicates that the landing pad block is a cleanup.
11082
11083A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
11084contains the global variable representing the "type" that may be caught
11085or filtered respectively. Unlike the ``catch`` clause, the ``filter``
11086clause takes an array constant as its argument. Use
11087"``[0 x i8**] undef``" for a filter which cannot throw. The
11088'``landingpad``' instruction must contain *at least* one ``clause`` or
11089the ``cleanup`` flag.
11090
11091Semantics:
11092""""""""""
11093
11094The '``landingpad``' instruction defines the values which are set by the
11095:ref:`personality function <personalityfn>` upon re-entry to the function, and
11096therefore the "result type" of the ``landingpad`` instruction. As with
11097calling conventions, how the personality function results are
11098represented in LLVM IR is target specific.
11099
11100The clauses are applied in order from top to bottom. If two
11101``landingpad`` instructions are merged together through inlining, the
11102clauses from the calling function are appended to the list of clauses.
11103When the call stack is being unwound due to an exception being thrown,
11104the exception is compared against each ``clause`` in turn. If it doesn't
11105match any of the clauses, and the ``cleanup`` flag is not set, then
11106unwinding continues further up the call stack.
11107
11108The ``landingpad`` instruction has several restrictions:
11109
11110-  A landing pad block is a basic block which is the unwind destination
11111   of an '``invoke``' instruction.
11112-  A landing pad block must have a '``landingpad``' instruction as its
11113   first non-PHI instruction.
11114-  There can be only one '``landingpad``' instruction within the landing
11115   pad block.
11116-  A basic block that is not a landing pad block may not include a
11117   '``landingpad``' instruction.
11118
11119Example:
11120""""""""
11121
11122.. code-block:: llvm
11123
11124      ;; A landing pad which can catch an integer.
11125      %res = landingpad { i8*, i32 }
11126               catch i8** @_ZTIi
11127      ;; A landing pad that is a cleanup.
11128      %res = landingpad { i8*, i32 }
11129               cleanup
11130      ;; A landing pad which can catch an integer and can only throw a double.
11131      %res = landingpad { i8*, i32 }
11132               catch i8** @_ZTIi
11133               filter [1 x i8**] [@_ZTId]
11134
11135.. _i_catchpad:
11136
11137'``catchpad``' Instruction
11138^^^^^^^^^^^^^^^^^^^^^^^^^^
11139
11140Syntax:
11141"""""""
11142
11143::
11144
11145      <resultval> = catchpad within <catchswitch> [<args>*]
11146
11147Overview:
11148"""""""""
11149
11150The '``catchpad``' instruction is used by `LLVM's exception handling
11151system <ExceptionHandling.html#overview>`_ to specify that a basic block
11152begins a catch handler --- one where a personality routine attempts to transfer
11153control to catch an exception.
11154
11155Arguments:
11156""""""""""
11157
11158The ``catchswitch`` operand must always be a token produced by a
11159:ref:`catchswitch <i_catchswitch>` instruction in a predecessor block. This
11160ensures that each ``catchpad`` has exactly one predecessor block, and it always
11161terminates in a ``catchswitch``.
11162
11163The ``args`` correspond to whatever information the personality routine
11164requires to know if this is an appropriate handler for the exception. Control
11165will transfer to the ``catchpad`` if this is the first appropriate handler for
11166the exception.
11167
11168The ``resultval`` has the type :ref:`token <t_token>` and is used to match the
11169``catchpad`` to corresponding :ref:`catchrets <i_catchret>` and other nested EH
11170pads.
11171
11172Semantics:
11173""""""""""
11174
11175When the call stack is being unwound due to an exception being thrown, the
11176exception is compared against the ``args``. If it doesn't match, control will
11177not reach the ``catchpad`` instruction.  The representation of ``args`` is
11178entirely target and personality function-specific.
11179
11180Like the :ref:`landingpad <i_landingpad>` instruction, the ``catchpad``
11181instruction must be the first non-phi of its parent basic block.
11182
11183The meaning of the tokens produced and consumed by ``catchpad`` and other "pad"
11184instructions is described in the
11185`Windows exception handling documentation\ <ExceptionHandling.html#wineh>`_.
11186
11187When a ``catchpad`` has been "entered" but not yet "exited" (as
11188described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
11189it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
11190that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
11191
11192Example:
11193""""""""
11194
11195.. code-block:: text
11196
11197    dispatch:
11198      %cs = catchswitch within none [label %handler0] unwind to caller
11199      ;; A catch block which can catch an integer.
11200    handler0:
11201      %tok = catchpad within %cs [i8** @_ZTIi]
11202
11203.. _i_cleanuppad:
11204
11205'``cleanuppad``' Instruction
11206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11207
11208Syntax:
11209"""""""
11210
11211::
11212
11213      <resultval> = cleanuppad within <parent> [<args>*]
11214
11215Overview:
11216"""""""""
11217
11218The '``cleanuppad``' instruction is used by `LLVM's exception handling
11219system <ExceptionHandling.html#overview>`_ to specify that a basic block
11220is a cleanup block --- one where a personality routine attempts to
11221transfer control to run cleanup actions.
11222The ``args`` correspond to whatever additional
11223information the :ref:`personality function <personalityfn>` requires to
11224execute the cleanup.
11225The ``resultval`` has the type :ref:`token <t_token>` and is used to
11226match the ``cleanuppad`` to corresponding :ref:`cleanuprets <i_cleanupret>`.
11227The ``parent`` argument is the token of the funclet that contains the
11228``cleanuppad`` instruction. If the ``cleanuppad`` is not inside a funclet,
11229this operand may be the token ``none``.
11230
11231Arguments:
11232""""""""""
11233
11234The instruction takes a list of arbitrary values which are interpreted
11235by the :ref:`personality function <personalityfn>`.
11236
11237Semantics:
11238""""""""""
11239
11240When the call stack is being unwound due to an exception being thrown,
11241the :ref:`personality function <personalityfn>` transfers control to the
11242``cleanuppad`` with the aid of the personality-specific arguments.
11243As with calling conventions, how the personality function results are
11244represented in LLVM IR is target specific.
11245
11246The ``cleanuppad`` instruction has several restrictions:
11247
11248-  A cleanup block is a basic block which is the unwind destination of
11249   an exceptional instruction.
11250-  A cleanup block must have a '``cleanuppad``' instruction as its
11251   first non-PHI instruction.
11252-  There can be only one '``cleanuppad``' instruction within the
11253   cleanup block.
11254-  A basic block that is not a cleanup block may not include a
11255   '``cleanuppad``' instruction.
11256
11257When a ``cleanuppad`` has been "entered" but not yet "exited" (as
11258described in the `EH documentation\ <ExceptionHandling.html#wineh-constraints>`_),
11259it is undefined behavior to execute a :ref:`call <i_call>` or :ref:`invoke <i_invoke>`
11260that does not carry an appropriate :ref:`"funclet" bundle <ob_funclet>`.
11261
11262Example:
11263""""""""
11264
11265.. code-block:: text
11266
11267      %tok = cleanuppad within %cs []
11268
11269.. _intrinsics:
11270
11271Intrinsic Functions
11272===================
11273
11274LLVM supports the notion of an "intrinsic function". These functions
11275have well known names and semantics and are required to follow certain
11276restrictions. Overall, these intrinsics represent an extension mechanism
11277for the LLVM language that does not require changing all of the
11278transformations in LLVM when adding to the language (or the bitcode
11279reader/writer, the parser, etc...).
11280
11281Intrinsic function names must all start with an "``llvm.``" prefix. This
11282prefix is reserved in LLVM for intrinsic names; thus, function names may
11283not begin with this prefix. Intrinsic functions must always be external
11284functions: you cannot define the body of intrinsic functions. Intrinsic
11285functions may only be used in call or invoke instructions: it is illegal
11286to take the address of an intrinsic function. Additionally, because
11287intrinsic functions are part of the LLVM language, it is required if any
11288are added that they be documented here.
11289
11290Some intrinsic functions can be overloaded, i.e., the intrinsic
11291represents a family of functions that perform the same operation but on
11292different data types. Because LLVM can represent over 8 million
11293different integer types, overloading is used commonly to allow an
11294intrinsic function to operate on any integer type. One or more of the
11295argument types or the result type can be overloaded to accept any
11296integer type. Argument types may also be defined as exactly matching a
11297previous argument's type or the result type. This allows an intrinsic
11298function which accepts multiple arguments, but needs all of them to be
11299of the same type, to only be overloaded with respect to a single
11300argument or the result.
11301
11302Overloaded intrinsics will have the names of its overloaded argument
11303types encoded into its function name, each preceded by a period. Only
11304those types which are overloaded result in a name suffix. Arguments
11305whose type is matched against another type do not. For example, the
11306``llvm.ctpop`` function can take an integer of any width and returns an
11307integer of exactly the same integer width. This leads to a family of
11308functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
11309``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
11310overloaded, and only one type suffix is required. Because the argument's
11311type is matched against the return type, it does not require its own
11312name suffix.
11313
11314For target developers who are defining intrinsics for back-end code
11315generation, any intrinsic overloads based solely the distinction between
11316integer or floating point types should not be relied upon for correct
11317code generation. In such cases, the recommended approach for target
11318maintainers when defining intrinsics is to create separate integer and
11319FP intrinsics rather than rely on overloading. For example, if different
11320codegen is required for ``llvm.target.foo(<4 x i32>)`` and
11321``llvm.target.foo(<4 x float>)`` then these should be split into
11322different intrinsics.
11323
11324To learn how to add an intrinsic function, please see the `Extending
11325LLVM Guide <ExtendingLLVM.html>`_.
11326
11327.. _int_varargs:
11328
11329Variable Argument Handling Intrinsics
11330-------------------------------------
11331
11332Variable argument support is defined in LLVM with the
11333:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
11334functions. These functions are related to the similarly named macros
11335defined in the ``<stdarg.h>`` header file.
11336
11337All of these functions operate on arguments that use a target-specific
11338value type "``va_list``". The LLVM assembly language reference manual
11339does not define what this type is, so all transformations should be
11340prepared to handle these functions regardless of the type used.
11341
11342This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
11343variable argument handling intrinsic functions are used.
11344
11345.. code-block:: llvm
11346
11347    ; This struct is different for every platform. For most platforms,
11348    ; it is merely an i8*.
11349    %struct.va_list = type { i8* }
11350
11351    ; For Unix x86_64 platforms, va_list is the following struct:
11352    ; %struct.va_list = type { i32, i32, i8*, i8* }
11353
11354    define i32 @test(i32 %X, ...) {
11355      ; Initialize variable argument processing
11356      %ap = alloca %struct.va_list
11357      %ap2 = bitcast %struct.va_list* %ap to i8*
11358      call void @llvm.va_start(i8* %ap2)
11359
11360      ; Read a single integer argument
11361      %tmp = va_arg i8* %ap2, i32
11362
11363      ; Demonstrate usage of llvm.va_copy and llvm.va_end
11364      %aq = alloca i8*
11365      %aq2 = bitcast i8** %aq to i8*
11366      call void @llvm.va_copy(i8* %aq2, i8* %ap2)
11367      call void @llvm.va_end(i8* %aq2)
11368
11369      ; Stop processing of arguments.
11370      call void @llvm.va_end(i8* %ap2)
11371      ret i32 %tmp
11372    }
11373
11374    declare void @llvm.va_start(i8*)
11375    declare void @llvm.va_copy(i8*, i8*)
11376    declare void @llvm.va_end(i8*)
11377
11378.. _int_va_start:
11379
11380'``llvm.va_start``' Intrinsic
11381^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11382
11383Syntax:
11384"""""""
11385
11386::
11387
11388      declare void @llvm.va_start(i8* <arglist>)
11389
11390Overview:
11391"""""""""
11392
11393The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
11394subsequent use by ``va_arg``.
11395
11396Arguments:
11397""""""""""
11398
11399The argument is a pointer to a ``va_list`` element to initialize.
11400
11401Semantics:
11402""""""""""
11403
11404The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
11405available in C. In a target-dependent way, it initializes the
11406``va_list`` element to which the argument points, so that the next call
11407to ``va_arg`` will produce the first variable argument passed to the
11408function. Unlike the C ``va_start`` macro, this intrinsic does not need
11409to know the last argument of the function as the compiler can figure
11410that out.
11411
11412'``llvm.va_end``' Intrinsic
11413^^^^^^^^^^^^^^^^^^^^^^^^^^^
11414
11415Syntax:
11416"""""""
11417
11418::
11419
11420      declare void @llvm.va_end(i8* <arglist>)
11421
11422Overview:
11423"""""""""
11424
11425The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
11426initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
11427
11428Arguments:
11429""""""""""
11430
11431The argument is a pointer to a ``va_list`` to destroy.
11432
11433Semantics:
11434""""""""""
11435
11436The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
11437available in C. In a target-dependent way, it destroys the ``va_list``
11438element to which the argument points. Calls to
11439:ref:`llvm.va_start <int_va_start>` and
11440:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
11441``llvm.va_end``.
11442
11443.. _int_va_copy:
11444
11445'``llvm.va_copy``' Intrinsic
11446^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11447
11448Syntax:
11449"""""""
11450
11451::
11452
11453      declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
11454
11455Overview:
11456"""""""""
11457
11458The '``llvm.va_copy``' intrinsic copies the current argument position
11459from the source argument list to the destination argument list.
11460
11461Arguments:
11462""""""""""
11463
11464The first argument is a pointer to a ``va_list`` element to initialize.
11465The second argument is a pointer to a ``va_list`` element to copy from.
11466
11467Semantics:
11468""""""""""
11469
11470The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
11471available in C. In a target-dependent way, it copies the source
11472``va_list`` element into the destination ``va_list`` element. This
11473intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
11474arbitrarily complex and require, for example, memory allocation.
11475
11476Accurate Garbage Collection Intrinsics
11477--------------------------------------
11478
11479LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
11480(GC) requires the frontend to generate code containing appropriate intrinsic
11481calls and select an appropriate GC strategy which knows how to lower these
11482intrinsics in a manner which is appropriate for the target collector.
11483
11484These intrinsics allow identification of :ref:`GC roots on the
11485stack <int_gcroot>`, as well as garbage collector implementations that
11486require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
11487Frontends for type-safe garbage collected languages should generate
11488these intrinsics to make use of the LLVM garbage collectors. For more
11489details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
11490
11491Experimental Statepoint Intrinsics
11492^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11493
11494LLVM provides an second experimental set of intrinsics for describing garbage
11495collection safepoints in compiled code. These intrinsics are an alternative
11496to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
11497:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
11498differences in approach are covered in the `Garbage Collection with LLVM
11499<GarbageCollection.html>`_ documentation. The intrinsics themselves are
11500described in :doc:`Statepoints`.
11501
11502.. _int_gcroot:
11503
11504'``llvm.gcroot``' Intrinsic
11505^^^^^^^^^^^^^^^^^^^^^^^^^^^
11506
11507Syntax:
11508"""""""
11509
11510::
11511
11512      declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
11513
11514Overview:
11515"""""""""
11516
11517The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
11518the code generator, and allows some metadata to be associated with it.
11519
11520Arguments:
11521""""""""""
11522
11523The first argument specifies the address of a stack object that contains
11524the root pointer. The second pointer (which must be either a constant or
11525a global value address) contains the meta-data to be associated with the
11526root.
11527
11528Semantics:
11529""""""""""
11530
11531At runtime, a call to this intrinsic stores a null pointer into the
11532"ptrloc" location. At compile-time, the code generator generates
11533information to allow the runtime to find the pointer at GC safe points.
11534The '``llvm.gcroot``' intrinsic may only be used in a function which
11535:ref:`specifies a GC algorithm <gc>`.
11536
11537.. _int_gcread:
11538
11539'``llvm.gcread``' Intrinsic
11540^^^^^^^^^^^^^^^^^^^^^^^^^^^
11541
11542Syntax:
11543"""""""
11544
11545::
11546
11547      declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
11548
11549Overview:
11550"""""""""
11551
11552The '``llvm.gcread``' intrinsic identifies reads of references from heap
11553locations, allowing garbage collector implementations that require read
11554barriers.
11555
11556Arguments:
11557""""""""""
11558
11559The second argument is the address to read from, which should be an
11560address allocated from the garbage collector. The first object is a
11561pointer to the start of the referenced object, if needed by the language
11562runtime (otherwise null).
11563
11564Semantics:
11565""""""""""
11566
11567The '``llvm.gcread``' intrinsic has the same semantics as a load
11568instruction, but may be replaced with substantially more complex code by
11569the garbage collector runtime, as needed. The '``llvm.gcread``'
11570intrinsic may only be used in a function which :ref:`specifies a GC
11571algorithm <gc>`.
11572
11573.. _int_gcwrite:
11574
11575'``llvm.gcwrite``' Intrinsic
11576^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11577
11578Syntax:
11579"""""""
11580
11581::
11582
11583      declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
11584
11585Overview:
11586"""""""""
11587
11588The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
11589locations, allowing garbage collector implementations that require write
11590barriers (such as generational or reference counting collectors).
11591
11592Arguments:
11593""""""""""
11594
11595The first argument is the reference to store, the second is the start of
11596the object to store it to, and the third is the address of the field of
11597Obj to store to. If the runtime does not require a pointer to the
11598object, Obj may be null.
11599
11600Semantics:
11601""""""""""
11602
11603The '``llvm.gcwrite``' intrinsic has the same semantics as a store
11604instruction, but may be replaced with substantially more complex code by
11605the garbage collector runtime, as needed. The '``llvm.gcwrite``'
11606intrinsic may only be used in a function which :ref:`specifies a GC
11607algorithm <gc>`.
11608
11609Code Generator Intrinsics
11610-------------------------
11611
11612These intrinsics are provided by LLVM to expose special features that
11613may only be implemented with code generator support.
11614
11615'``llvm.returnaddress``' Intrinsic
11616^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11617
11618Syntax:
11619"""""""
11620
11621::
11622
11623      declare i8* @llvm.returnaddress(i32 <level>)
11624
11625Overview:
11626"""""""""
11627
11628The '``llvm.returnaddress``' intrinsic attempts to compute a
11629target-specific value indicating the return address of the current
11630function or one of its callers.
11631
11632Arguments:
11633""""""""""
11634
11635The argument to this intrinsic indicates which function to return the
11636address for. Zero indicates the calling function, one indicates its
11637caller, etc. The argument is **required** to be a constant integer
11638value.
11639
11640Semantics:
11641""""""""""
11642
11643The '``llvm.returnaddress``' intrinsic either returns a pointer
11644indicating the return address of the specified call frame, or zero if it
11645cannot be identified. The value returned by this intrinsic is likely to
11646be incorrect or 0 for arguments other than zero, so it should only be
11647used for debugging purposes.
11648
11649Note that calling this intrinsic does not prevent function inlining or
11650other aggressive transformations, so the value returned may not be that
11651of the obvious source-language caller.
11652
11653'``llvm.addressofreturnaddress``' Intrinsic
11654^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11655
11656Syntax:
11657"""""""
11658
11659::
11660
11661      declare i8* @llvm.addressofreturnaddress()
11662
11663Overview:
11664"""""""""
11665
11666The '``llvm.addressofreturnaddress``' intrinsic returns a target-specific
11667pointer to the place in the stack frame where the return address of the
11668current function is stored.
11669
11670Semantics:
11671""""""""""
11672
11673Note that calling this intrinsic does not prevent function inlining or
11674other aggressive transformations, so the value returned may not be that
11675of the obvious source-language caller.
11676
11677This intrinsic is only implemented for x86 and aarch64.
11678
11679'``llvm.sponentry``' Intrinsic
11680^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11681
11682Syntax:
11683"""""""
11684
11685::
11686
11687      declare i8* @llvm.sponentry()
11688
11689Overview:
11690"""""""""
11691
11692The '``llvm.sponentry``' intrinsic returns the stack pointer value at
11693the entry of the current function calling this intrinsic.
11694
11695Semantics:
11696""""""""""
11697
11698Note this intrinsic is only verified on AArch64.
11699
11700'``llvm.frameaddress``' Intrinsic
11701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11702
11703Syntax:
11704"""""""
11705
11706::
11707
11708      declare i8* @llvm.frameaddress(i32 <level>)
11709
11710Overview:
11711"""""""""
11712
11713The '``llvm.frameaddress``' intrinsic attempts to return the
11714target-specific frame pointer value for the specified stack frame.
11715
11716Arguments:
11717""""""""""
11718
11719The argument to this intrinsic indicates which function to return the
11720frame pointer for. Zero indicates the calling function, one indicates
11721its caller, etc. The argument is **required** to be a constant integer
11722value.
11723
11724Semantics:
11725""""""""""
11726
11727The '``llvm.frameaddress``' intrinsic either returns a pointer
11728indicating the frame address of the specified call frame, or zero if it
11729cannot be identified. The value returned by this intrinsic is likely to
11730be incorrect or 0 for arguments other than zero, so it should only be
11731used for debugging purposes.
11732
11733Note that calling this intrinsic does not prevent function inlining or
11734other aggressive transformations, so the value returned may not be that
11735of the obvious source-language caller.
11736
11737'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
11738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11739
11740Syntax:
11741"""""""
11742
11743::
11744
11745      declare void @llvm.localescape(...)
11746      declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
11747
11748Overview:
11749"""""""""
11750
11751The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
11752allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
11753live frame pointer to recover the address of the allocation. The offset is
11754computed during frame layout of the caller of ``llvm.localescape``.
11755
11756Arguments:
11757""""""""""
11758
11759All arguments to '``llvm.localescape``' must be pointers to static allocas or
11760casts of static allocas. Each function can only call '``llvm.localescape``'
11761once, and it can only do so from the entry block.
11762
11763The ``func`` argument to '``llvm.localrecover``' must be a constant
11764bitcasted pointer to a function defined in the current module. The code
11765generator cannot determine the frame allocation offset of functions defined in
11766other modules.
11767
11768The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
11769call frame that is currently live. The return value of '``llvm.localaddress``'
11770is one way to produce such a value, but various runtimes also expose a suitable
11771pointer in platform-specific ways.
11772
11773The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
11774'``llvm.localescape``' to recover. It is zero-indexed.
11775
11776Semantics:
11777""""""""""
11778
11779These intrinsics allow a group of functions to share access to a set of local
11780stack allocations of a one parent function. The parent function may call the
11781'``llvm.localescape``' intrinsic once from the function entry block, and the
11782child functions can use '``llvm.localrecover``' to access the escaped allocas.
11783The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
11784the escaped allocas are allocated, which would break attempts to use
11785'``llvm.localrecover``'.
11786
11787.. _int_read_register:
11788.. _int_read_volatile_register:
11789.. _int_write_register:
11790
11791'``llvm.read_register``', '``llvm.read_volatile_register``', and
11792'``llvm.write_register``' Intrinsics
11793^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11794
11795Syntax:
11796"""""""
11797
11798::
11799
11800      declare i32 @llvm.read_register.i32(metadata)
11801      declare i64 @llvm.read_register.i64(metadata)
11802      declare i32 @llvm.read_volatile_register.i32(metadata)
11803      declare i64 @llvm.read_volatile_register.i64(metadata)
11804      declare void @llvm.write_register.i32(metadata, i32 @value)
11805      declare void @llvm.write_register.i64(metadata, i64 @value)
11806      !0 = !{!"sp\00"}
11807
11808Overview:
11809"""""""""
11810
11811The '``llvm.read_register``', '``llvm.read_volatile_register``', and
11812'``llvm.write_register``' intrinsics provide access to the named register.
11813The register must be valid on the architecture being compiled to. The type
11814needs to be compatible with the register being read.
11815
11816Semantics:
11817""""""""""
11818
11819The '``llvm.read_register``' and '``llvm.read_volatile_register``' intrinsics
11820return the current value of the register, where possible. The
11821'``llvm.write_register``' intrinsic sets the current value of the register,
11822where possible.
11823
11824A call to '``llvm.read_volatile_register``' is assumed to have side-effects
11825and possibly return a different value each time (e.g. for a timer register).
11826
11827This is useful to implement named register global variables that need
11828to always be mapped to a specific register, as is common practice on
11829bare-metal programs including OS kernels.
11830
11831The compiler doesn't check for register availability or use of the used
11832register in surrounding code, including inline assembly. Because of that,
11833allocatable registers are not supported.
11834
11835Warning: So far it only works with the stack pointer on selected
11836architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
11837work is needed to support other registers and even more so, allocatable
11838registers.
11839
11840.. _int_stacksave:
11841
11842'``llvm.stacksave``' Intrinsic
11843^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11844
11845Syntax:
11846"""""""
11847
11848::
11849
11850      declare i8* @llvm.stacksave()
11851
11852Overview:
11853"""""""""
11854
11855The '``llvm.stacksave``' intrinsic is used to remember the current state
11856of the function stack, for use with
11857:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
11858implementing language features like scoped automatic variable sized
11859arrays in C99.
11860
11861Semantics:
11862""""""""""
11863
11864This intrinsic returns a opaque pointer value that can be passed to
11865:ref:`llvm.stackrestore <int_stackrestore>`. When an
11866``llvm.stackrestore`` intrinsic is executed with a value saved from
11867``llvm.stacksave``, it effectively restores the state of the stack to
11868the state it was in when the ``llvm.stacksave`` intrinsic executed. In
11869practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
11870were allocated after the ``llvm.stacksave`` was executed.
11871
11872.. _int_stackrestore:
11873
11874'``llvm.stackrestore``' Intrinsic
11875^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11876
11877Syntax:
11878"""""""
11879
11880::
11881
11882      declare void @llvm.stackrestore(i8* %ptr)
11883
11884Overview:
11885"""""""""
11886
11887The '``llvm.stackrestore``' intrinsic is used to restore the state of
11888the function stack to the state it was in when the corresponding
11889:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
11890useful for implementing language features like scoped automatic variable
11891sized arrays in C99.
11892
11893Semantics:
11894""""""""""
11895
11896See the description for :ref:`llvm.stacksave <int_stacksave>`.
11897
11898.. _int_get_dynamic_area_offset:
11899
11900'``llvm.get.dynamic.area.offset``' Intrinsic
11901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11902
11903Syntax:
11904"""""""
11905
11906::
11907
11908      declare i32 @llvm.get.dynamic.area.offset.i32()
11909      declare i64 @llvm.get.dynamic.area.offset.i64()
11910
11911Overview:
11912"""""""""
11913
11914      The '``llvm.get.dynamic.area.offset.*``' intrinsic family is used to
11915      get the offset from native stack pointer to the address of the most
11916      recent dynamic alloca on the caller's stack. These intrinsics are
11917      intendend for use in combination with
11918      :ref:`llvm.stacksave <int_stacksave>` to get a
11919      pointer to the most recent dynamic alloca. This is useful, for example,
11920      for AddressSanitizer's stack unpoisoning routines.
11921
11922Semantics:
11923""""""""""
11924
11925      These intrinsics return a non-negative integer value that can be used to
11926      get the address of the most recent dynamic alloca, allocated by :ref:`alloca <i_alloca>`
11927      on the caller's stack. In particular, for targets where stack grows downwards,
11928      adding this offset to the native stack pointer would get the address of the most
11929      recent dynamic alloca. For targets where stack grows upwards, the situation is a bit more
11930      complicated, because subtracting this value from stack pointer would get the address
11931      one past the end of the most recent dynamic alloca.
11932
11933      Although for most targets `llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
11934      returns just a zero, for others, such as PowerPC and PowerPC64, it returns a
11935      compile-time-known constant value.
11936
11937      The return value type of :ref:`llvm.get.dynamic.area.offset <int_get_dynamic_area_offset>`
11938      must match the target's default address space's (address space 0) pointer type.
11939
11940'``llvm.prefetch``' Intrinsic
11941^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11942
11943Syntax:
11944"""""""
11945
11946::
11947
11948      declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
11949
11950Overview:
11951"""""""""
11952
11953The '``llvm.prefetch``' intrinsic is a hint to the code generator to
11954insert a prefetch instruction if supported; otherwise, it is a noop.
11955Prefetches have no effect on the behavior of the program but can change
11956its performance characteristics.
11957
11958Arguments:
11959""""""""""
11960
11961``address`` is the address to be prefetched, ``rw`` is the specifier
11962determining if the fetch should be for a read (0) or write (1), and
11963``locality`` is a temporal locality specifier ranging from (0) - no
11964locality, to (3) - extremely local keep in cache. The ``cache type``
11965specifies whether the prefetch is performed on the data (1) or
11966instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
11967arguments must be constant integers.
11968
11969Semantics:
11970""""""""""
11971
11972This intrinsic does not modify the behavior of the program. In
11973particular, prefetches cannot trap and do not produce a value. On
11974targets that support this intrinsic, the prefetch can provide hints to
11975the processor cache for better performance.
11976
11977'``llvm.pcmarker``' Intrinsic
11978^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11979
11980Syntax:
11981"""""""
11982
11983::
11984
11985      declare void @llvm.pcmarker(i32 <id>)
11986
11987Overview:
11988"""""""""
11989
11990The '``llvm.pcmarker``' intrinsic is a method to export a Program
11991Counter (PC) in a region of code to simulators and other tools. The
11992method is target specific, but it is expected that the marker will use
11993exported symbols to transmit the PC of the marker. The marker makes no
11994guarantees that it will remain with any specific instruction after
11995optimizations. It is possible that the presence of a marker will inhibit
11996optimizations. The intended use is to be inserted after optimizations to
11997allow correlations of simulation runs.
11998
11999Arguments:
12000""""""""""
12001
12002``id`` is a numerical id identifying the marker.
12003
12004Semantics:
12005""""""""""
12006
12007This intrinsic does not modify the behavior of the program. Backends
12008that do not support this intrinsic may ignore it.
12009
12010'``llvm.readcyclecounter``' Intrinsic
12011^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12012
12013Syntax:
12014"""""""
12015
12016::
12017
12018      declare i64 @llvm.readcyclecounter()
12019
12020Overview:
12021"""""""""
12022
12023The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
12024counter register (or similar low latency, high accuracy clocks) on those
12025targets that support it. On X86, it should map to RDTSC. On Alpha, it
12026should map to RPCC. As the backing counters overflow quickly (on the
12027order of 9 seconds on alpha), this should only be used for small
12028timings.
12029
12030Semantics:
12031""""""""""
12032
12033When directly supported, reading the cycle counter should not modify any
12034memory. Implementations are allowed to either return a application
12035specific value or a system wide value. On backends without support, this
12036is lowered to a constant 0.
12037
12038Note that runtime support may be conditional on the privilege-level code is
12039running at and the host platform.
12040
12041'``llvm.clear_cache``' Intrinsic
12042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12043
12044Syntax:
12045"""""""
12046
12047::
12048
12049      declare void @llvm.clear_cache(i8*, i8*)
12050
12051Overview:
12052"""""""""
12053
12054The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
12055in the specified range to the execution unit of the processor. On
12056targets with non-unified instruction and data cache, the implementation
12057flushes the instruction cache.
12058
12059Semantics:
12060""""""""""
12061
12062On platforms with coherent instruction and data caches (e.g. x86), this
12063intrinsic is a nop. On platforms with non-coherent instruction and data
12064cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
12065instructions or a system call, if cache flushing requires special
12066privileges.
12067
12068The default behavior is to emit a call to ``__clear_cache`` from the run
12069time library.
12070
12071This intrinsic does *not* empty the instruction pipeline. Modifications
12072of the current function are outside the scope of the intrinsic.
12073
12074'``llvm.instrprof.increment``' Intrinsic
12075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12076
12077Syntax:
12078"""""""
12079
12080::
12081
12082      declare void @llvm.instrprof.increment(i8* <name>, i64 <hash>,
12083                                             i32 <num-counters>, i32 <index>)
12084
12085Overview:
12086"""""""""
12087
12088The '``llvm.instrprof.increment``' intrinsic can be emitted by a
12089frontend for use with instrumentation based profiling. These will be
12090lowered by the ``-instrprof`` pass to generate execution counts of a
12091program at runtime.
12092
12093Arguments:
12094""""""""""
12095
12096The first argument is a pointer to a global variable containing the
12097name of the entity being instrumented. This should generally be the
12098(mangled) function name for a set of counters.
12099
12100The second argument is a hash value that can be used by the consumer
12101of the profile data to detect changes to the instrumented source, and
12102the third is the number of counters associated with ``name``. It is an
12103error if ``hash`` or ``num-counters`` differ between two instances of
12104``instrprof.increment`` that refer to the same name.
12105
12106The last argument refers to which of the counters for ``name`` should
12107be incremented. It should be a value between 0 and ``num-counters``.
12108
12109Semantics:
12110""""""""""
12111
12112This intrinsic represents an increment of a profiling counter. It will
12113cause the ``-instrprof`` pass to generate the appropriate data
12114structures and the code to increment the appropriate value, in a
12115format that can be written out by a compiler runtime and consumed via
12116the ``llvm-profdata`` tool.
12117
12118'``llvm.instrprof.increment.step``' Intrinsic
12119^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12120
12121Syntax:
12122"""""""
12123
12124::
12125
12126      declare void @llvm.instrprof.increment.step(i8* <name>, i64 <hash>,
12127                                                  i32 <num-counters>,
12128                                                  i32 <index>, i64 <step>)
12129
12130Overview:
12131"""""""""
12132
12133The '``llvm.instrprof.increment.step``' intrinsic is an extension to
12134the '``llvm.instrprof.increment``' intrinsic with an additional fifth
12135argument to specify the step of the increment.
12136
12137Arguments:
12138""""""""""
12139The first four arguments are the same as '``llvm.instrprof.increment``'
12140intrinsic.
12141
12142The last argument specifies the value of the increment of the counter variable.
12143
12144Semantics:
12145""""""""""
12146See description of '``llvm.instrprof.increment``' intrinsic.
12147
12148
12149'``llvm.instrprof.value.profile``' Intrinsic
12150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12151
12152Syntax:
12153"""""""
12154
12155::
12156
12157      declare void @llvm.instrprof.value.profile(i8* <name>, i64 <hash>,
12158                                                 i64 <value>, i32 <value_kind>,
12159                                                 i32 <index>)
12160
12161Overview:
12162"""""""""
12163
12164The '``llvm.instrprof.value.profile``' intrinsic can be emitted by a
12165frontend for use with instrumentation based profiling. This will be
12166lowered by the ``-instrprof`` pass to find out the target values,
12167instrumented expressions take in a program at runtime.
12168
12169Arguments:
12170""""""""""
12171
12172The first argument is a pointer to a global variable containing the
12173name of the entity being instrumented. ``name`` should generally be the
12174(mangled) function name for a set of counters.
12175
12176The second argument is a hash value that can be used by the consumer
12177of the profile data to detect changes to the instrumented source. It
12178is an error if ``hash`` differs between two instances of
12179``llvm.instrprof.*`` that refer to the same name.
12180
12181The third argument is the value of the expression being profiled. The profiled
12182expression's value should be representable as an unsigned 64-bit value. The
12183fourth argument represents the kind of value profiling that is being done. The
12184supported value profiling kinds are enumerated through the
12185``InstrProfValueKind`` type declared in the
12186``<include/llvm/ProfileData/InstrProf.h>`` header file. The last argument is the
12187index of the instrumented expression within ``name``. It should be >= 0.
12188
12189Semantics:
12190""""""""""
12191
12192This intrinsic represents the point where a call to a runtime routine
12193should be inserted for value profiling of target expressions. ``-instrprof``
12194pass will generate the appropriate data structures and replace the
12195``llvm.instrprof.value.profile`` intrinsic with the call to the profile
12196runtime library with proper arguments.
12197
12198'``llvm.thread.pointer``' Intrinsic
12199^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12200
12201Syntax:
12202"""""""
12203
12204::
12205
12206      declare i8* @llvm.thread.pointer()
12207
12208Overview:
12209"""""""""
12210
12211The '``llvm.thread.pointer``' intrinsic returns the value of the thread
12212pointer.
12213
12214Semantics:
12215""""""""""
12216
12217The '``llvm.thread.pointer``' intrinsic returns a pointer to the TLS area
12218for the current thread.  The exact semantics of this value are target
12219specific: it may point to the start of TLS area, to the end, or somewhere
12220in the middle.  Depending on the target, this intrinsic may read a register,
12221call a helper function, read from an alternate memory space, or perform
12222other operations necessary to locate the TLS area.  Not all targets support
12223this intrinsic.
12224
12225'``llvm.call.preallocated.setup``' Intrinsic
12226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12227
12228Syntax:
12229"""""""
12230
12231::
12232
12233      declare token @llvm.call.preallocated.setup(i32 %num_args)
12234
12235Overview:
12236"""""""""
12237
12238The '``llvm.call.preallocated.setup``' intrinsic returns a token which can
12239be used with a call's ``"preallocated"`` operand bundle to indicate that
12240certain arguments are allocated and initialized before the call.
12241
12242Semantics:
12243""""""""""
12244
12245The '``llvm.call.preallocated.setup``' intrinsic returns a token which is
12246associated with at most one call. The token can be passed to
12247'``@llvm.call.preallocated.arg``' to get a pointer to get that
12248corresponding argument. The token must be the parameter to a
12249``"preallocated"`` operand bundle for the corresponding call.
12250
12251Nested calls to '``llvm.call.preallocated.setup``' are allowed, but must
12252be properly nested. e.g.
12253
12254:: code-block:: llvm
12255
12256      %t1 = call token @llvm.call.preallocated.setup(i32 0)
12257      %t2 = call token @llvm.call.preallocated.setup(i32 0)
12258      call void foo() ["preallocated"(token %t2)]
12259      call void foo() ["preallocated"(token %t1)]
12260
12261is allowed, but not
12262
12263:: code-block:: llvm
12264
12265      %t1 = call token @llvm.call.preallocated.setup(i32 0)
12266      %t2 = call token @llvm.call.preallocated.setup(i32 0)
12267      call void foo() ["preallocated"(token %t1)]
12268      call void foo() ["preallocated"(token %t2)]
12269
12270.. _int_call_preallocated_arg:
12271
12272'``llvm.call.preallocated.arg``' Intrinsic
12273^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12274
12275Syntax:
12276"""""""
12277
12278::
12279
12280      declare i8* @llvm.call.preallocated.arg(token %setup_token, i32 %arg_index)
12281
12282Overview:
12283"""""""""
12284
12285The '``llvm.call.preallocated.arg``' intrinsic returns a pointer to the
12286corresponding preallocated argument for the preallocated call.
12287
12288Semantics:
12289""""""""""
12290
12291The '``llvm.call.preallocated.arg``' intrinsic returns a pointer to the
12292``%arg_index``th argument with the ``preallocated`` attribute for
12293the call associated with the ``%setup_token``, which must be from
12294'``llvm.call.preallocated.setup``'.
12295
12296A call to '``llvm.call.preallocated.arg``' must have a call site
12297``preallocated`` attribute. The type of the ``preallocated`` attribute must
12298match the type used by the ``preallocated`` attribute of the corresponding
12299argument at the preallocated call. The type is used in the case that an
12300``llvm.call.preallocated.setup`` does not have a corresponding call (e.g. due
12301to DCE), where otherwise we cannot know how large the arguments are.
12302
12303It is undefined behavior if this is called with a token from an
12304'``llvm.call.preallocated.setup``' if another
12305'``llvm.call.preallocated.setup``' has already been called or if the
12306preallocated call corresponding to the '``llvm.call.preallocated.setup``'
12307has already been called.
12308
12309.. _int_call_preallocated_teardown:
12310
12311'``llvm.call.preallocated.teardown``' Intrinsic
12312^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12313
12314Syntax:
12315"""""""
12316
12317::
12318
12319      declare i8* @llvm.call.preallocated.teardown(token %setup_token)
12320
12321Overview:
12322"""""""""
12323
12324The '``llvm.call.preallocated.teardown``' intrinsic cleans up the stack
12325created by a '``llvm.call.preallocated.setup``'.
12326
12327Semantics:
12328""""""""""
12329
12330The token argument must be a '``llvm.call.preallocated.setup``'.
12331
12332The '``llvm.call.preallocated.teardown``' intrinsic cleans up the stack
12333allocated by the corresponding '``llvm.call.preallocated.setup``'. Exactly
12334one of this or the preallocated call must be called to prevent stack leaks.
12335It is undefined behavior to call both a '``llvm.call.preallocated.teardown``'
12336and the preallocated call for a given '``llvm.call.preallocated.setup``'.
12337
12338For example, if the stack is allocated for a preallocated call by a
12339'``llvm.call.preallocated.setup``', then an initializer function called on an
12340allocated argument throws an exception, there should be a
12341'``llvm.call.preallocated.teardown``' in the exception handler to prevent
12342stack leaks.
12343
12344Following the nesting rules in '``llvm.call.preallocated.setup``', nested
12345calls to '``llvm.call.preallocated.setup``' and
12346'``llvm.call.preallocated.teardown``' are allowed but must be properly
12347nested.
12348
12349Example:
12350""""""""
12351
12352.. code-block:: llvm
12353
12354        %cs = call token @llvm.call.preallocated.setup(i32 1)
12355        %x = call i8* @llvm.call.preallocated.arg(token %cs, i32 0) preallocated(i32)
12356        %y = bitcast i8* %x to i32*
12357        invoke void @constructor(i32* %y) to label %conta unwind label %contb
12358    conta:
12359        call void @foo1(i32* preallocated(i32) %y) ["preallocated"(token %cs)]
12360        ret void
12361    contb:
12362        %s = catchswitch within none [label %catch] unwind to caller
12363    catch:
12364        %p = catchpad within %s []
12365        call void @llvm.call.preallocated.teardown(token %cs)
12366        ret void
12367
12368Standard C/C++ Library Intrinsics
12369---------------------------------
12370
12371LLVM provides intrinsics for a few important standard C/C++ library
12372functions. These intrinsics allow source-language front-ends to pass
12373information about the alignment of the pointer arguments to the code
12374generator, providing opportunity for more efficient code generation.
12375
12376
12377'``llvm.abs.*``' Intrinsic
12378^^^^^^^^^^^^^^^^^^^^^^^^^^
12379
12380Syntax:
12381"""""""
12382
12383This is an overloaded intrinsic. You can use ``llvm.abs`` on any
12384integer bit width or any vector of integer elements.
12385
12386::
12387
12388      declare i32 @llvm.abs.i32(i32 <src>, i1 <is_int_min_poison>)
12389      declare <4 x i32> @llvm.abs.v4i32(<4 x i32> <src>, i1 <is_int_min_poison>)
12390
12391Overview:
12392"""""""""
12393
12394The '``llvm.abs``' family of intrinsic functions returns the absolute value
12395of an argument.
12396
12397Arguments:
12398""""""""""
12399
12400The first argument is the value for which the absolute value is to be returned.
12401This argument may be of any integer type or a vector with integer element type.
12402The return type must match the first argument type.
12403
12404The second argument must be a constant and is a flag to indicate whether the
12405result value of the '``llvm.abs``' intrinsic is a
12406:ref:`poison value <poisonvalues>` if the argument is statically or dynamically
12407an ``INT_MIN`` value.
12408
12409Semantics:
12410""""""""""
12411
12412The '``llvm.abs``' intrinsic returns the magnitude (always positive) of the
12413argument or each element of a vector argument.". If the argument is ``INT_MIN``,
12414then the result is also ``INT_MIN`` if ``is_int_min_poison == 0`` and
12415``poison`` otherwise.
12416
12417
12418'``llvm.smax.*``' Intrinsic
12419^^^^^^^^^^^^^^^^^^^^^^^^^^^
12420
12421Syntax:
12422"""""""
12423
12424This is an overloaded intrinsic. You can use ``@llvm.smax`` on any
12425integer bit width or any vector of integer elements.
12426
12427::
12428
12429      declare i32 @llvm.smax.i32(i32 %a, i32 %b)
12430      declare <4 x i32> @llvm.smax.v4i32(<4 x i32> %a, <4 x i32> %b)
12431
12432Overview:
12433"""""""""
12434
12435Return the larger of ``%a`` and ``%b`` comparing the values as signed integers.
12436Vector intrinsics operate on a per-element basis. The larger element of ``%a``
12437and ``%b`` at a given index is returned for that index.
12438
12439Arguments:
12440""""""""""
12441
12442The arguments (``%a`` and ``%b``) may be of any integer type or a vector with
12443integer element type. The argument types must match each other, and the return
12444type must match the argument type.
12445
12446
12447'``llvm.smin.*``' Intrinsic
12448^^^^^^^^^^^^^^^^^^^^^^^^^^^
12449
12450Syntax:
12451"""""""
12452
12453This is an overloaded intrinsic. You can use ``@llvm.smin`` on any
12454integer bit width or any vector of integer elements.
12455
12456::
12457
12458      declare i32 @llvm.smin.i32(i32 %a, i32 %b)
12459      declare <4 x i32> @llvm.smin.v4i32(<4 x i32> %a, <4 x i32> %b)
12460
12461Overview:
12462"""""""""
12463
12464Return the smaller of ``%a`` and ``%b`` comparing the values as signed integers.
12465Vector intrinsics operate on a per-element basis. The smaller element of ``%a``
12466and ``%b`` at a given index is returned for that index.
12467
12468Arguments:
12469""""""""""
12470
12471The arguments (``%a`` and ``%b``) may be of any integer type or a vector with
12472integer element type. The argument types must match each other, and the return
12473type must match the argument type.
12474
12475
12476'``llvm.umax.*``' Intrinsic
12477^^^^^^^^^^^^^^^^^^^^^^^^^^^
12478
12479Syntax:
12480"""""""
12481
12482This is an overloaded intrinsic. You can use ``@llvm.umax`` on any
12483integer bit width or any vector of integer elements.
12484
12485::
12486
12487      declare i32 @llvm.umax.i32(i32 %a, i32 %b)
12488      declare <4 x i32> @llvm.umax.v4i32(<4 x i32> %a, <4 x i32> %b)
12489
12490Overview:
12491"""""""""
12492
12493Return the larger of ``%a`` and ``%b`` comparing the values as unsigned
12494integers. Vector intrinsics operate on a per-element basis. The larger element
12495of ``%a`` and ``%b`` at a given index is returned for that index.
12496
12497Arguments:
12498""""""""""
12499
12500The arguments (``%a`` and ``%b``) may be of any integer type or a vector with
12501integer element type. The argument types must match each other, and the return
12502type must match the argument type.
12503
12504
12505'``llvm.umin.*``' Intrinsic
12506^^^^^^^^^^^^^^^^^^^^^^^^^^^
12507
12508Syntax:
12509"""""""
12510
12511This is an overloaded intrinsic. You can use ``@llvm.umin`` on any
12512integer bit width or any vector of integer elements.
12513
12514::
12515
12516      declare i32 @llvm.umin.i32(i32 %a, i32 %b)
12517      declare <4 x i32> @llvm.umin.v4i32(<4 x i32> %a, <4 x i32> %b)
12518
12519Overview:
12520"""""""""
12521
12522Return the smaller of ``%a`` and ``%b`` comparing the values as unsigned
12523integers. Vector intrinsics operate on a per-element basis. The smaller element
12524of ``%a`` and ``%b`` at a given index is returned for that index.
12525
12526Arguments:
12527""""""""""
12528
12529The arguments (``%a`` and ``%b``) may be of any integer type or a vector with
12530integer element type. The argument types must match each other, and the return
12531type must match the argument type.
12532
12533
12534.. _int_memcpy:
12535
12536'``llvm.memcpy``' Intrinsic
12537^^^^^^^^^^^^^^^^^^^^^^^^^^^
12538
12539Syntax:
12540"""""""
12541
12542This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
12543integer bit width and for different address spaces. Not all targets
12544support all bit widths however.
12545
12546::
12547
12548      declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
12549                                              i32 <len>, i1 <isvolatile>)
12550      declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
12551                                              i64 <len>, i1 <isvolatile>)
12552
12553Overview:
12554"""""""""
12555
12556The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
12557source location to the destination location.
12558
12559Note that, unlike the standard libc function, the ``llvm.memcpy.*``
12560intrinsics do not return a value, takes extra isvolatile
12561arguments and the pointers can be in specified address spaces.
12562
12563Arguments:
12564""""""""""
12565
12566The first argument is a pointer to the destination, the second is a
12567pointer to the source. The third argument is an integer argument
12568specifying the number of bytes to copy, and the fourth is a
12569boolean indicating a volatile access.
12570
12571The :ref:`align <attr_align>` parameter attribute can be provided
12572for the first and second arguments.
12573
12574If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
12575a :ref:`volatile operation <volatile>`. The detailed access behavior is not
12576very cleanly specified and it is unwise to depend on it.
12577
12578Semantics:
12579""""""""""
12580
12581The '``llvm.memcpy.*``' intrinsics copy a block of memory from the source
12582location to the destination location, which must either be equal or
12583non-overlapping. It copies "len" bytes of memory over. If the argument is known
12584to be aligned to some boundary, this can be specified as an attribute on the
12585argument.
12586
12587If "len" is 0, the pointers may be NULL, dangling, ``undef``, or ``poison``
12588pointers. However, they must still be appropriately aligned.
12589If "len" isn't a well-defined value, all of its possible representations should
12590make the behavior of this ``llvm.memcpy`` defined, otherwise the behavior is
12591undefined.
12592
12593.. _int_memcpy_inline:
12594
12595'``llvm.memcpy.inline``' Intrinsic
12596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12597
12598Syntax:
12599"""""""
12600
12601This is an overloaded intrinsic. You can use ``llvm.memcpy.inline`` on any
12602integer bit width and for different address spaces. Not all targets
12603support all bit widths however.
12604
12605::
12606
12607      declare void @llvm.memcpy.inline.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
12608                                                     i32 <len>, i1 <isvolatile>)
12609      declare void @llvm.memcpy.inline.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
12610                                                     i64 <len>, i1 <isvolatile>)
12611
12612Overview:
12613"""""""""
12614
12615The '``llvm.memcpy.inline.*``' intrinsics copy a block of memory from the
12616source location to the destination location and guarantees that no external
12617functions are called.
12618
12619Note that, unlike the standard libc function, the ``llvm.memcpy.inline.*``
12620intrinsics do not return a value, takes extra isvolatile
12621arguments and the pointers can be in specified address spaces.
12622
12623Arguments:
12624""""""""""
12625
12626The first argument is a pointer to the destination, the second is a
12627pointer to the source. The third argument is a constant integer argument
12628specifying the number of bytes to copy, and the fourth is a
12629boolean indicating a volatile access.
12630
12631The :ref:`align <attr_align>` parameter attribute can be provided
12632for the first and second arguments.
12633
12634If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy.inline`` call is
12635a :ref:`volatile operation <volatile>`. The detailed access behavior is not
12636very cleanly specified and it is unwise to depend on it.
12637
12638Semantics:
12639""""""""""
12640
12641The '``llvm.memcpy.inline.*``' intrinsics copy a block of memory from the
12642source location to the destination location, which are not allowed to
12643overlap. It copies "len" bytes of memory over. If the argument is known
12644to be aligned to some boundary, this can be specified as an attribute on
12645the argument.
12646
12647If "len" is 0, the pointers may be NULL, dangling, ``undef``, or ``poison``
12648pointers. However, they must still be appropriately aligned.
12649
12650The generated code is guaranteed not to call any external functions.
12651
12652.. _int_memmove:
12653
12654'``llvm.memmove``' Intrinsic
12655^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12656
12657Syntax:
12658"""""""
12659
12660This is an overloaded intrinsic. You can use llvm.memmove on any integer
12661bit width and for different address space. Not all targets support all
12662bit widths however.
12663
12664::
12665
12666      declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
12667                                               i32 <len>, i1 <isvolatile>)
12668      declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
12669                                               i64 <len>, i1 <isvolatile>)
12670
12671Overview:
12672"""""""""
12673
12674The '``llvm.memmove.*``' intrinsics move a block of memory from the
12675source location to the destination location. It is similar to the
12676'``llvm.memcpy``' intrinsic but allows the two memory locations to
12677overlap.
12678
12679Note that, unlike the standard libc function, the ``llvm.memmove.*``
12680intrinsics do not return a value, takes an extra isvolatile
12681argument and the pointers can be in specified address spaces.
12682
12683Arguments:
12684""""""""""
12685
12686The first argument is a pointer to the destination, the second is a
12687pointer to the source. The third argument is an integer argument
12688specifying the number of bytes to copy, and the fourth is a
12689boolean indicating a volatile access.
12690
12691The :ref:`align <attr_align>` parameter attribute can be provided
12692for the first and second arguments.
12693
12694If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
12695is a :ref:`volatile operation <volatile>`. The detailed access behavior is
12696not very cleanly specified and it is unwise to depend on it.
12697
12698Semantics:
12699""""""""""
12700
12701The '``llvm.memmove.*``' intrinsics copy a block of memory from the
12702source location to the destination location, which may overlap. It
12703copies "len" bytes of memory over. If the argument is known to be
12704aligned to some boundary, this can be specified as an attribute on
12705the argument.
12706
12707If "len" is 0, the pointers may be NULL, dangling, ``undef``, or ``poison``
12708pointers. However, they must still be appropriately aligned.
12709If "len" isn't a well-defined value, all of its possible representations should
12710make the behavior of this ``llvm.memmove`` defined, otherwise the behavior is
12711undefined.
12712
12713.. _int_memset:
12714
12715'``llvm.memset.*``' Intrinsics
12716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
12717
12718Syntax:
12719"""""""
12720
12721This is an overloaded intrinsic. You can use llvm.memset on any integer
12722bit width and for different address spaces. However, not all targets
12723support all bit widths.
12724
12725::
12726
12727      declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
12728                                         i32 <len>, i1 <isvolatile>)
12729      declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
12730                                         i64 <len>, i1 <isvolatile>)
12731
12732Overview:
12733"""""""""
12734
12735The '``llvm.memset.*``' intrinsics fill a block of memory with a
12736particular byte value.
12737
12738Note that, unlike the standard libc function, the ``llvm.memset``
12739intrinsic does not return a value and takes an extra volatile
12740argument. Also, the destination can be in an arbitrary address space.
12741
12742Arguments:
12743""""""""""
12744
12745The first argument is a pointer to the destination to fill, the second
12746is the byte value with which to fill it, the third argument is an
12747integer argument specifying the number of bytes to fill, and the fourth
12748is a boolean indicating a volatile access.
12749
12750The :ref:`align <attr_align>` parameter attribute can be provided
12751for the first arguments.
12752
12753If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
12754a :ref:`volatile operation <volatile>`. The detailed access behavior is not
12755very cleanly specified and it is unwise to depend on it.
12756
12757Semantics:
12758""""""""""
12759
12760The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
12761at the destination location. If the argument is known to be
12762aligned to some boundary, this can be specified as an attribute on
12763the argument.
12764
12765If "len" is 0, the pointer may be NULL, dangling, ``undef``, or ``poison``
12766pointer. However, it must still be appropriately aligned.
12767If "len" isn't a well-defined value, all of its possible representations should
12768make the behavior of this ``llvm.memset`` defined, otherwise the behavior is
12769undefined.
12770
12771'``llvm.sqrt.*``' Intrinsic
12772^^^^^^^^^^^^^^^^^^^^^^^^^^^
12773
12774Syntax:
12775"""""""
12776
12777This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
12778floating-point or vector of floating-point type. Not all targets support
12779all types however.
12780
12781::
12782
12783      declare float     @llvm.sqrt.f32(float %Val)
12784      declare double    @llvm.sqrt.f64(double %Val)
12785      declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
12786      declare fp128     @llvm.sqrt.f128(fp128 %Val)
12787      declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
12788
12789Overview:
12790"""""""""
12791
12792The '``llvm.sqrt``' intrinsics return the square root of the specified value.
12793
12794Arguments:
12795""""""""""
12796
12797The argument and return value are floating-point numbers of the same type.
12798
12799Semantics:
12800""""""""""
12801
12802Return the same value as a corresponding libm '``sqrt``' function but without
12803trapping or setting ``errno``. For types specified by IEEE-754, the result
12804matches a conforming libm implementation.
12805
12806When specified with the fast-math-flag 'afn', the result may be approximated
12807using a less accurate calculation.
12808
12809'``llvm.powi.*``' Intrinsic
12810^^^^^^^^^^^^^^^^^^^^^^^^^^^
12811
12812Syntax:
12813"""""""
12814
12815This is an overloaded intrinsic. You can use ``llvm.powi`` on any
12816floating-point or vector of floating-point type. Not all targets support
12817all types however.
12818
12819::
12820
12821      declare float     @llvm.powi.f32(float  %Val, i32 %power)
12822      declare double    @llvm.powi.f64(double %Val, i32 %power)
12823      declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
12824      declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
12825      declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
12826
12827Overview:
12828"""""""""
12829
12830The '``llvm.powi.*``' intrinsics return the first operand raised to the
12831specified (positive or negative) power. The order of evaluation of
12832multiplications is not defined. When a vector of floating-point type is
12833used, the second argument remains a scalar integer value.
12834
12835Arguments:
12836""""""""""
12837
12838The second argument is an integer power, and the first is a value to
12839raise to that power.
12840
12841Semantics:
12842""""""""""
12843
12844This function returns the first value raised to the second power with an
12845unspecified sequence of rounding operations.
12846
12847'``llvm.sin.*``' Intrinsic
12848^^^^^^^^^^^^^^^^^^^^^^^^^^
12849
12850Syntax:
12851"""""""
12852
12853This is an overloaded intrinsic. You can use ``llvm.sin`` on any
12854floating-point or vector of floating-point type. Not all targets support
12855all types however.
12856
12857::
12858
12859      declare float     @llvm.sin.f32(float  %Val)
12860      declare double    @llvm.sin.f64(double %Val)
12861      declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
12862      declare fp128     @llvm.sin.f128(fp128 %Val)
12863      declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
12864
12865Overview:
12866"""""""""
12867
12868The '``llvm.sin.*``' intrinsics return the sine of the operand.
12869
12870Arguments:
12871""""""""""
12872
12873The argument and return value are floating-point numbers of the same type.
12874
12875Semantics:
12876""""""""""
12877
12878Return the same value as a corresponding libm '``sin``' function but without
12879trapping or setting ``errno``.
12880
12881When specified with the fast-math-flag 'afn', the result may be approximated
12882using a less accurate calculation.
12883
12884'``llvm.cos.*``' Intrinsic
12885^^^^^^^^^^^^^^^^^^^^^^^^^^
12886
12887Syntax:
12888"""""""
12889
12890This is an overloaded intrinsic. You can use ``llvm.cos`` on any
12891floating-point or vector of floating-point type. Not all targets support
12892all types however.
12893
12894::
12895
12896      declare float     @llvm.cos.f32(float  %Val)
12897      declare double    @llvm.cos.f64(double %Val)
12898      declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
12899      declare fp128     @llvm.cos.f128(fp128 %Val)
12900      declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
12901
12902Overview:
12903"""""""""
12904
12905The '``llvm.cos.*``' intrinsics return the cosine of the operand.
12906
12907Arguments:
12908""""""""""
12909
12910The argument and return value are floating-point numbers of the same type.
12911
12912Semantics:
12913""""""""""
12914
12915Return the same value as a corresponding libm '``cos``' function but without
12916trapping or setting ``errno``.
12917
12918When specified with the fast-math-flag 'afn', the result may be approximated
12919using a less accurate calculation.
12920
12921'``llvm.pow.*``' Intrinsic
12922^^^^^^^^^^^^^^^^^^^^^^^^^^
12923
12924Syntax:
12925"""""""
12926
12927This is an overloaded intrinsic. You can use ``llvm.pow`` on any
12928floating-point or vector of floating-point type. Not all targets support
12929all types however.
12930
12931::
12932
12933      declare float     @llvm.pow.f32(float  %Val, float %Power)
12934      declare double    @llvm.pow.f64(double %Val, double %Power)
12935      declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
12936      declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
12937      declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
12938
12939Overview:
12940"""""""""
12941
12942The '``llvm.pow.*``' intrinsics return the first operand raised to the
12943specified (positive or negative) power.
12944
12945Arguments:
12946""""""""""
12947
12948The arguments and return value are floating-point numbers of the same type.
12949
12950Semantics:
12951""""""""""
12952
12953Return the same value as a corresponding libm '``pow``' function but without
12954trapping or setting ``errno``.
12955
12956When specified with the fast-math-flag 'afn', the result may be approximated
12957using a less accurate calculation.
12958
12959'``llvm.exp.*``' Intrinsic
12960^^^^^^^^^^^^^^^^^^^^^^^^^^
12961
12962Syntax:
12963"""""""
12964
12965This is an overloaded intrinsic. You can use ``llvm.exp`` on any
12966floating-point or vector of floating-point type. Not all targets support
12967all types however.
12968
12969::
12970
12971      declare float     @llvm.exp.f32(float  %Val)
12972      declare double    @llvm.exp.f64(double %Val)
12973      declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
12974      declare fp128     @llvm.exp.f128(fp128 %Val)
12975      declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)
12976
12977Overview:
12978"""""""""
12979
12980The '``llvm.exp.*``' intrinsics compute the base-e exponential of the specified
12981value.
12982
12983Arguments:
12984""""""""""
12985
12986The argument and return value are floating-point numbers of the same type.
12987
12988Semantics:
12989""""""""""
12990
12991Return the same value as a corresponding libm '``exp``' function but without
12992trapping or setting ``errno``.
12993
12994When specified with the fast-math-flag 'afn', the result may be approximated
12995using a less accurate calculation.
12996
12997'``llvm.exp2.*``' Intrinsic
12998^^^^^^^^^^^^^^^^^^^^^^^^^^^
12999
13000Syntax:
13001"""""""
13002
13003This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
13004floating-point or vector of floating-point type. Not all targets support
13005all types however.
13006
13007::
13008
13009      declare float     @llvm.exp2.f32(float  %Val)
13010      declare double    @llvm.exp2.f64(double %Val)
13011      declare x86_fp80  @llvm.exp2.f80(x86_fp80  %Val)
13012      declare fp128     @llvm.exp2.f128(fp128 %Val)
13013      declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128  %Val)
13014
13015Overview:
13016"""""""""
13017
13018The '``llvm.exp2.*``' intrinsics compute the base-2 exponential of the
13019specified value.
13020
13021Arguments:
13022""""""""""
13023
13024The argument and return value are floating-point numbers of the same type.
13025
13026Semantics:
13027""""""""""
13028
13029Return the same value as a corresponding libm '``exp2``' function but without
13030trapping or setting ``errno``.
13031
13032When specified with the fast-math-flag 'afn', the result may be approximated
13033using a less accurate calculation.
13034
13035'``llvm.log.*``' Intrinsic
13036^^^^^^^^^^^^^^^^^^^^^^^^^^
13037
13038Syntax:
13039"""""""
13040
13041This is an overloaded intrinsic. You can use ``llvm.log`` on any
13042floating-point or vector of floating-point type. Not all targets support
13043all types however.
13044
13045::
13046
13047      declare float     @llvm.log.f32(float  %Val)
13048      declare double    @llvm.log.f64(double %Val)
13049      declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
13050      declare fp128     @llvm.log.f128(fp128 %Val)
13051      declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)
13052
13053Overview:
13054"""""""""
13055
13056The '``llvm.log.*``' intrinsics compute the base-e logarithm of the specified
13057value.
13058
13059Arguments:
13060""""""""""
13061
13062The argument and return value are floating-point numbers of the same type.
13063
13064Semantics:
13065""""""""""
13066
13067Return the same value as a corresponding libm '``log``' function but without
13068trapping or setting ``errno``.
13069
13070When specified with the fast-math-flag 'afn', the result may be approximated
13071using a less accurate calculation.
13072
13073'``llvm.log10.*``' Intrinsic
13074^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13075
13076Syntax:
13077"""""""
13078
13079This is an overloaded intrinsic. You can use ``llvm.log10`` on any
13080floating-point or vector of floating-point type. Not all targets support
13081all types however.
13082
13083::
13084
13085      declare float     @llvm.log10.f32(float  %Val)
13086      declare double    @llvm.log10.f64(double %Val)
13087      declare x86_fp80  @llvm.log10.f80(x86_fp80  %Val)
13088      declare fp128     @llvm.log10.f128(fp128 %Val)
13089      declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128  %Val)
13090
13091Overview:
13092"""""""""
13093
13094The '``llvm.log10.*``' intrinsics compute the base-10 logarithm of the
13095specified value.
13096
13097Arguments:
13098""""""""""
13099
13100The argument and return value are floating-point numbers of the same type.
13101
13102Semantics:
13103""""""""""
13104
13105Return the same value as a corresponding libm '``log10``' function but without
13106trapping or setting ``errno``.
13107
13108When specified with the fast-math-flag 'afn', the result may be approximated
13109using a less accurate calculation.
13110
13111'``llvm.log2.*``' Intrinsic
13112^^^^^^^^^^^^^^^^^^^^^^^^^^^
13113
13114Syntax:
13115"""""""
13116
13117This is an overloaded intrinsic. You can use ``llvm.log2`` on any
13118floating-point or vector of floating-point type. Not all targets support
13119all types however.
13120
13121::
13122
13123      declare float     @llvm.log2.f32(float  %Val)
13124      declare double    @llvm.log2.f64(double %Val)
13125      declare x86_fp80  @llvm.log2.f80(x86_fp80  %Val)
13126      declare fp128     @llvm.log2.f128(fp128 %Val)
13127      declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128  %Val)
13128
13129Overview:
13130"""""""""
13131
13132The '``llvm.log2.*``' intrinsics compute the base-2 logarithm of the specified
13133value.
13134
13135Arguments:
13136""""""""""
13137
13138The argument and return value are floating-point numbers of the same type.
13139
13140Semantics:
13141""""""""""
13142
13143Return the same value as a corresponding libm '``log2``' function but without
13144trapping or setting ``errno``.
13145
13146When specified with the fast-math-flag 'afn', the result may be approximated
13147using a less accurate calculation.
13148
13149.. _int_fma:
13150
13151'``llvm.fma.*``' Intrinsic
13152^^^^^^^^^^^^^^^^^^^^^^^^^^
13153
13154Syntax:
13155"""""""
13156
13157This is an overloaded intrinsic. You can use ``llvm.fma`` on any
13158floating-point or vector of floating-point type. Not all targets support
13159all types however.
13160
13161::
13162
13163      declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
13164      declare double    @llvm.fma.f64(double %a, double %b, double %c)
13165      declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
13166      declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
13167      declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
13168
13169Overview:
13170"""""""""
13171
13172The '``llvm.fma.*``' intrinsics perform the fused multiply-add operation.
13173
13174Arguments:
13175""""""""""
13176
13177The arguments and return value are floating-point numbers of the same type.
13178
13179Semantics:
13180""""""""""
13181
13182Return the same value as a corresponding libm '``fma``' function but without
13183trapping or setting ``errno``.
13184
13185When specified with the fast-math-flag 'afn', the result may be approximated
13186using a less accurate calculation.
13187
13188'``llvm.fabs.*``' Intrinsic
13189^^^^^^^^^^^^^^^^^^^^^^^^^^^
13190
13191Syntax:
13192"""""""
13193
13194This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
13195floating-point or vector of floating-point type. Not all targets support
13196all types however.
13197
13198::
13199
13200      declare float     @llvm.fabs.f32(float  %Val)
13201      declare double    @llvm.fabs.f64(double %Val)
13202      declare x86_fp80  @llvm.fabs.f80(x86_fp80 %Val)
13203      declare fp128     @llvm.fabs.f128(fp128 %Val)
13204      declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
13205
13206Overview:
13207"""""""""
13208
13209The '``llvm.fabs.*``' intrinsics return the absolute value of the
13210operand.
13211
13212Arguments:
13213""""""""""
13214
13215The argument and return value are floating-point numbers of the same
13216type.
13217
13218Semantics:
13219""""""""""
13220
13221This function returns the same values as the libm ``fabs`` functions
13222would, and handles error conditions in the same way.
13223
13224'``llvm.minnum.*``' Intrinsic
13225^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13226
13227Syntax:
13228"""""""
13229
13230This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
13231floating-point or vector of floating-point type. Not all targets support
13232all types however.
13233
13234::
13235
13236      declare float     @llvm.minnum.f32(float %Val0, float %Val1)
13237      declare double    @llvm.minnum.f64(double %Val0, double %Val1)
13238      declare x86_fp80  @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
13239      declare fp128     @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
13240      declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
13241
13242Overview:
13243"""""""""
13244
13245The '``llvm.minnum.*``' intrinsics return the minimum of the two
13246arguments.
13247
13248
13249Arguments:
13250""""""""""
13251
13252The arguments and return value are floating-point numbers of the same
13253type.
13254
13255Semantics:
13256""""""""""
13257
13258Follows the IEEE-754 semantics for minNum, except for handling of
13259signaling NaNs. This match's the behavior of libm's fmin.
13260
13261If either operand is a NaN, returns the other non-NaN operand. Returns
13262NaN only if both operands are NaN. The returned NaN is always
13263quiet. If the operands compare equal, returns a value that compares
13264equal to both operands. This means that fmin(+/-0.0, +/-0.0) could
13265return either -0.0 or 0.0.
13266
13267Unlike the IEEE-754 2008 behavior, this does not distinguish between
13268signaling and quiet NaN inputs. If a target's implementation follows
13269the standard and returns a quiet NaN if either input is a signaling
13270NaN, the intrinsic lowering is responsible for quieting the inputs to
13271correctly return the non-NaN input (e.g. by using the equivalent of
13272``llvm.canonicalize``).
13273
13274
13275'``llvm.maxnum.*``' Intrinsic
13276^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13277
13278Syntax:
13279"""""""
13280
13281This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
13282floating-point or vector of floating-point type. Not all targets support
13283all types however.
13284
13285::
13286
13287      declare float     @llvm.maxnum.f32(float  %Val0, float  %Val1l)
13288      declare double    @llvm.maxnum.f64(double %Val0, double %Val1)
13289      declare x86_fp80  @llvm.maxnum.f80(x86_fp80  %Val0, x86_fp80  %Val1)
13290      declare fp128     @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
13291      declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128  %Val0, ppc_fp128  %Val1)
13292
13293Overview:
13294"""""""""
13295
13296The '``llvm.maxnum.*``' intrinsics return the maximum of the two
13297arguments.
13298
13299
13300Arguments:
13301""""""""""
13302
13303The arguments and return value are floating-point numbers of the same
13304type.
13305
13306Semantics:
13307""""""""""
13308Follows the IEEE-754 semantics for maxNum except for the handling of
13309signaling NaNs. This matches the behavior of libm's fmax.
13310
13311If either operand is a NaN, returns the other non-NaN operand. Returns
13312NaN only if both operands are NaN. The returned NaN is always
13313quiet. If the operands compare equal, returns a value that compares
13314equal to both operands. This means that fmax(+/-0.0, +/-0.0) could
13315return either -0.0 or 0.0.
13316
13317Unlike the IEEE-754 2008 behavior, this does not distinguish between
13318signaling and quiet NaN inputs. If a target's implementation follows
13319the standard and returns a quiet NaN if either input is a signaling
13320NaN, the intrinsic lowering is responsible for quieting the inputs to
13321correctly return the non-NaN input (e.g. by using the equivalent of
13322``llvm.canonicalize``).
13323
13324'``llvm.minimum.*``' Intrinsic
13325^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13326
13327Syntax:
13328"""""""
13329
13330This is an overloaded intrinsic. You can use ``llvm.minimum`` on any
13331floating-point or vector of floating-point type. Not all targets support
13332all types however.
13333
13334::
13335
13336      declare float     @llvm.minimum.f32(float %Val0, float %Val1)
13337      declare double    @llvm.minimum.f64(double %Val0, double %Val1)
13338      declare x86_fp80  @llvm.minimum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
13339      declare fp128     @llvm.minimum.f128(fp128 %Val0, fp128 %Val1)
13340      declare ppc_fp128 @llvm.minimum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
13341
13342Overview:
13343"""""""""
13344
13345The '``llvm.minimum.*``' intrinsics return the minimum of the two
13346arguments, propagating NaNs and treating -0.0 as less than +0.0.
13347
13348
13349Arguments:
13350""""""""""
13351
13352The arguments and return value are floating-point numbers of the same
13353type.
13354
13355Semantics:
13356""""""""""
13357If either operand is a NaN, returns NaN. Otherwise returns the lesser
13358of the two arguments. -0.0 is considered to be less than +0.0 for this
13359intrinsic. Note that these are the semantics specified in the draft of
13360IEEE 754-2018.
13361
13362'``llvm.maximum.*``' Intrinsic
13363^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13364
13365Syntax:
13366"""""""
13367
13368This is an overloaded intrinsic. You can use ``llvm.maximum`` on any
13369floating-point or vector of floating-point type. Not all targets support
13370all types however.
13371
13372::
13373
13374      declare float     @llvm.maximum.f32(float %Val0, float %Val1)
13375      declare double    @llvm.maximum.f64(double %Val0, double %Val1)
13376      declare x86_fp80  @llvm.maximum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
13377      declare fp128     @llvm.maximum.f128(fp128 %Val0, fp128 %Val1)
13378      declare ppc_fp128 @llvm.maximum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
13379
13380Overview:
13381"""""""""
13382
13383The '``llvm.maximum.*``' intrinsics return the maximum of the two
13384arguments, propagating NaNs and treating -0.0 as less than +0.0.
13385
13386
13387Arguments:
13388""""""""""
13389
13390The arguments and return value are floating-point numbers of the same
13391type.
13392
13393Semantics:
13394""""""""""
13395If either operand is a NaN, returns NaN. Otherwise returns the greater
13396of the two arguments. -0.0 is considered to be less than +0.0 for this
13397intrinsic. Note that these are the semantics specified in the draft of
13398IEEE 754-2018.
13399
13400'``llvm.copysign.*``' Intrinsic
13401^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13402
13403Syntax:
13404"""""""
13405
13406This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
13407floating-point or vector of floating-point type. Not all targets support
13408all types however.
13409
13410::
13411
13412      declare float     @llvm.copysign.f32(float  %Mag, float  %Sgn)
13413      declare double    @llvm.copysign.f64(double %Mag, double %Sgn)
13414      declare x86_fp80  @llvm.copysign.f80(x86_fp80  %Mag, x86_fp80  %Sgn)
13415      declare fp128     @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
13416      declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128  %Mag, ppc_fp128  %Sgn)
13417
13418Overview:
13419"""""""""
13420
13421The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
13422first operand and the sign of the second operand.
13423
13424Arguments:
13425""""""""""
13426
13427The arguments and return value are floating-point numbers of the same
13428type.
13429
13430Semantics:
13431""""""""""
13432
13433This function returns the same values as the libm ``copysign``
13434functions would, and handles error conditions in the same way.
13435
13436'``llvm.floor.*``' Intrinsic
13437^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13438
13439Syntax:
13440"""""""
13441
13442This is an overloaded intrinsic. You can use ``llvm.floor`` on any
13443floating-point or vector of floating-point type. Not all targets support
13444all types however.
13445
13446::
13447
13448      declare float     @llvm.floor.f32(float  %Val)
13449      declare double    @llvm.floor.f64(double %Val)
13450      declare x86_fp80  @llvm.floor.f80(x86_fp80  %Val)
13451      declare fp128     @llvm.floor.f128(fp128 %Val)
13452      declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128  %Val)
13453
13454Overview:
13455"""""""""
13456
13457The '``llvm.floor.*``' intrinsics return the floor of the operand.
13458
13459Arguments:
13460""""""""""
13461
13462The argument and return value are floating-point numbers of the same
13463type.
13464
13465Semantics:
13466""""""""""
13467
13468This function returns the same values as the libm ``floor`` functions
13469would, and handles error conditions in the same way.
13470
13471'``llvm.ceil.*``' Intrinsic
13472^^^^^^^^^^^^^^^^^^^^^^^^^^^
13473
13474Syntax:
13475"""""""
13476
13477This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
13478floating-point or vector of floating-point type. Not all targets support
13479all types however.
13480
13481::
13482
13483      declare float     @llvm.ceil.f32(float  %Val)
13484      declare double    @llvm.ceil.f64(double %Val)
13485      declare x86_fp80  @llvm.ceil.f80(x86_fp80  %Val)
13486      declare fp128     @llvm.ceil.f128(fp128 %Val)
13487      declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128  %Val)
13488
13489Overview:
13490"""""""""
13491
13492The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
13493
13494Arguments:
13495""""""""""
13496
13497The argument and return value are floating-point numbers of the same
13498type.
13499
13500Semantics:
13501""""""""""
13502
13503This function returns the same values as the libm ``ceil`` functions
13504would, and handles error conditions in the same way.
13505
13506'``llvm.trunc.*``' Intrinsic
13507^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13508
13509Syntax:
13510"""""""
13511
13512This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
13513floating-point or vector of floating-point type. Not all targets support
13514all types however.
13515
13516::
13517
13518      declare float     @llvm.trunc.f32(float  %Val)
13519      declare double    @llvm.trunc.f64(double %Val)
13520      declare x86_fp80  @llvm.trunc.f80(x86_fp80  %Val)
13521      declare fp128     @llvm.trunc.f128(fp128 %Val)
13522      declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128  %Val)
13523
13524Overview:
13525"""""""""
13526
13527The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
13528nearest integer not larger in magnitude than the operand.
13529
13530Arguments:
13531""""""""""
13532
13533The argument and return value are floating-point numbers of the same
13534type.
13535
13536Semantics:
13537""""""""""
13538
13539This function returns the same values as the libm ``trunc`` functions
13540would, and handles error conditions in the same way.
13541
13542'``llvm.rint.*``' Intrinsic
13543^^^^^^^^^^^^^^^^^^^^^^^^^^^
13544
13545Syntax:
13546"""""""
13547
13548This is an overloaded intrinsic. You can use ``llvm.rint`` on any
13549floating-point or vector of floating-point type. Not all targets support
13550all types however.
13551
13552::
13553
13554      declare float     @llvm.rint.f32(float  %Val)
13555      declare double    @llvm.rint.f64(double %Val)
13556      declare x86_fp80  @llvm.rint.f80(x86_fp80  %Val)
13557      declare fp128     @llvm.rint.f128(fp128 %Val)
13558      declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128  %Val)
13559
13560Overview:
13561"""""""""
13562
13563The '``llvm.rint.*``' intrinsics returns the operand rounded to the
13564nearest integer. It may raise an inexact floating-point exception if the
13565operand isn't an integer.
13566
13567Arguments:
13568""""""""""
13569
13570The argument and return value are floating-point numbers of the same
13571type.
13572
13573Semantics:
13574""""""""""
13575
13576This function returns the same values as the libm ``rint`` functions
13577would, and handles error conditions in the same way.
13578
13579'``llvm.nearbyint.*``' Intrinsic
13580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13581
13582Syntax:
13583"""""""
13584
13585This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
13586floating-point or vector of floating-point type. Not all targets support
13587all types however.
13588
13589::
13590
13591      declare float     @llvm.nearbyint.f32(float  %Val)
13592      declare double    @llvm.nearbyint.f64(double %Val)
13593      declare x86_fp80  @llvm.nearbyint.f80(x86_fp80  %Val)
13594      declare fp128     @llvm.nearbyint.f128(fp128 %Val)
13595      declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128  %Val)
13596
13597Overview:
13598"""""""""
13599
13600The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
13601nearest integer.
13602
13603Arguments:
13604""""""""""
13605
13606The argument and return value are floating-point numbers of the same
13607type.
13608
13609Semantics:
13610""""""""""
13611
13612This function returns the same values as the libm ``nearbyint``
13613functions would, and handles error conditions in the same way.
13614
13615'``llvm.round.*``' Intrinsic
13616^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13617
13618Syntax:
13619"""""""
13620
13621This is an overloaded intrinsic. You can use ``llvm.round`` on any
13622floating-point or vector of floating-point type. Not all targets support
13623all types however.
13624
13625::
13626
13627      declare float     @llvm.round.f32(float  %Val)
13628      declare double    @llvm.round.f64(double %Val)
13629      declare x86_fp80  @llvm.round.f80(x86_fp80  %Val)
13630      declare fp128     @llvm.round.f128(fp128 %Val)
13631      declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128  %Val)
13632
13633Overview:
13634"""""""""
13635
13636The '``llvm.round.*``' intrinsics returns the operand rounded to the
13637nearest integer.
13638
13639Arguments:
13640""""""""""
13641
13642The argument and return value are floating-point numbers of the same
13643type.
13644
13645Semantics:
13646""""""""""
13647
13648This function returns the same values as the libm ``round``
13649functions would, and handles error conditions in the same way.
13650
13651'``llvm.roundeven.*``' Intrinsic
13652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13653
13654Syntax:
13655"""""""
13656
13657This is an overloaded intrinsic. You can use ``llvm.roundeven`` on any
13658floating-point or vector of floating-point type. Not all targets support
13659all types however.
13660
13661::
13662
13663      declare float     @llvm.roundeven.f32(float  %Val)
13664      declare double    @llvm.roundeven.f64(double %Val)
13665      declare x86_fp80  @llvm.roundeven.f80(x86_fp80  %Val)
13666      declare fp128     @llvm.roundeven.f128(fp128 %Val)
13667      declare ppc_fp128 @llvm.roundeven.ppcf128(ppc_fp128  %Val)
13668
13669Overview:
13670"""""""""
13671
13672The '``llvm.roundeven.*``' intrinsics returns the operand rounded to the nearest
13673integer in floating-point format rounding halfway cases to even (that is, to the
13674nearest value that is an even integer).
13675
13676Arguments:
13677""""""""""
13678
13679The argument and return value are floating-point numbers of the same type.
13680
13681Semantics:
13682""""""""""
13683
13684This function implements IEEE-754 operation ``roundToIntegralTiesToEven``. It
13685also behaves in the same way as C standard function ``roundeven``, except that
13686it does not raise floating point exceptions.
13687
13688
13689'``llvm.lround.*``' Intrinsic
13690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13691
13692Syntax:
13693"""""""
13694
13695This is an overloaded intrinsic. You can use ``llvm.lround`` on any
13696floating-point type. Not all targets support all types however.
13697
13698::
13699
13700      declare i32 @llvm.lround.i32.f32(float %Val)
13701      declare i32 @llvm.lround.i32.f64(double %Val)
13702      declare i32 @llvm.lround.i32.f80(float %Val)
13703      declare i32 @llvm.lround.i32.f128(double %Val)
13704      declare i32 @llvm.lround.i32.ppcf128(double %Val)
13705
13706      declare i64 @llvm.lround.i64.f32(float %Val)
13707      declare i64 @llvm.lround.i64.f64(double %Val)
13708      declare i64 @llvm.lround.i64.f80(float %Val)
13709      declare i64 @llvm.lround.i64.f128(double %Val)
13710      declare i64 @llvm.lround.i64.ppcf128(double %Val)
13711
13712Overview:
13713"""""""""
13714
13715The '``llvm.lround.*``' intrinsics return the operand rounded to the nearest
13716integer with ties away from zero.
13717
13718
13719Arguments:
13720""""""""""
13721
13722The argument is a floating-point number and the return value is an integer
13723type.
13724
13725Semantics:
13726""""""""""
13727
13728This function returns the same values as the libm ``lround``
13729functions would, but without setting errno.
13730
13731'``llvm.llround.*``' Intrinsic
13732^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13733
13734Syntax:
13735"""""""
13736
13737This is an overloaded intrinsic. You can use ``llvm.llround`` on any
13738floating-point type. Not all targets support all types however.
13739
13740::
13741
13742      declare i64 @llvm.lround.i64.f32(float %Val)
13743      declare i64 @llvm.lround.i64.f64(double %Val)
13744      declare i64 @llvm.lround.i64.f80(float %Val)
13745      declare i64 @llvm.lround.i64.f128(double %Val)
13746      declare i64 @llvm.lround.i64.ppcf128(double %Val)
13747
13748Overview:
13749"""""""""
13750
13751The '``llvm.llround.*``' intrinsics return the operand rounded to the nearest
13752integer with ties away from zero.
13753
13754Arguments:
13755""""""""""
13756
13757The argument is a floating-point number and the return value is an integer
13758type.
13759
13760Semantics:
13761""""""""""
13762
13763This function returns the same values as the libm ``llround``
13764functions would, but without setting errno.
13765
13766'``llvm.lrint.*``' Intrinsic
13767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13768
13769Syntax:
13770"""""""
13771
13772This is an overloaded intrinsic. You can use ``llvm.lrint`` on any
13773floating-point type. Not all targets support all types however.
13774
13775::
13776
13777      declare i32 @llvm.lrint.i32.f32(float %Val)
13778      declare i32 @llvm.lrint.i32.f64(double %Val)
13779      declare i32 @llvm.lrint.i32.f80(float %Val)
13780      declare i32 @llvm.lrint.i32.f128(double %Val)
13781      declare i32 @llvm.lrint.i32.ppcf128(double %Val)
13782
13783      declare i64 @llvm.lrint.i64.f32(float %Val)
13784      declare i64 @llvm.lrint.i64.f64(double %Val)
13785      declare i64 @llvm.lrint.i64.f80(float %Val)
13786      declare i64 @llvm.lrint.i64.f128(double %Val)
13787      declare i64 @llvm.lrint.i64.ppcf128(double %Val)
13788
13789Overview:
13790"""""""""
13791
13792The '``llvm.lrint.*``' intrinsics return the operand rounded to the nearest
13793integer.
13794
13795
13796Arguments:
13797""""""""""
13798
13799The argument is a floating-point number and the return value is an integer
13800type.
13801
13802Semantics:
13803""""""""""
13804
13805This function returns the same values as the libm ``lrint``
13806functions would, but without setting errno.
13807
13808'``llvm.llrint.*``' Intrinsic
13809^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13810
13811Syntax:
13812"""""""
13813
13814This is an overloaded intrinsic. You can use ``llvm.llrint`` on any
13815floating-point type. Not all targets support all types however.
13816
13817::
13818
13819      declare i64 @llvm.llrint.i64.f32(float %Val)
13820      declare i64 @llvm.llrint.i64.f64(double %Val)
13821      declare i64 @llvm.llrint.i64.f80(float %Val)
13822      declare i64 @llvm.llrint.i64.f128(double %Val)
13823      declare i64 @llvm.llrint.i64.ppcf128(double %Val)
13824
13825Overview:
13826"""""""""
13827
13828The '``llvm.llrint.*``' intrinsics return the operand rounded to the nearest
13829integer.
13830
13831Arguments:
13832""""""""""
13833
13834The argument is a floating-point number and the return value is an integer
13835type.
13836
13837Semantics:
13838""""""""""
13839
13840This function returns the same values as the libm ``llrint``
13841functions would, but without setting errno.
13842
13843Bit Manipulation Intrinsics
13844---------------------------
13845
13846LLVM provides intrinsics for a few important bit manipulation
13847operations. These allow efficient code generation for some algorithms.
13848
13849'``llvm.bitreverse.*``' Intrinsics
13850^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13851
13852Syntax:
13853"""""""
13854
13855This is an overloaded intrinsic function. You can use bitreverse on any
13856integer type.
13857
13858::
13859
13860      declare i16 @llvm.bitreverse.i16(i16 <id>)
13861      declare i32 @llvm.bitreverse.i32(i32 <id>)
13862      declare i64 @llvm.bitreverse.i64(i64 <id>)
13863      declare <4 x i32> @llvm.bitreverse.v4i32(<4 x i32> <id>)
13864
13865Overview:
13866"""""""""
13867
13868The '``llvm.bitreverse``' family of intrinsics is used to reverse the
13869bitpattern of an integer value or vector of integer values; for example
13870``0b10110110`` becomes ``0b01101101``.
13871
13872Semantics:
13873""""""""""
13874
13875The ``llvm.bitreverse.iN`` intrinsic returns an iN value that has bit
13876``M`` in the input moved to bit ``N-M`` in the output. The vector
13877intrinsics, such as ``llvm.bitreverse.v4i32``, operate on a per-element
13878basis and the element order is not affected.
13879
13880'``llvm.bswap.*``' Intrinsics
13881^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13882
13883Syntax:
13884"""""""
13885
13886This is an overloaded intrinsic function. You can use bswap on any
13887integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
13888
13889::
13890
13891      declare i16 @llvm.bswap.i16(i16 <id>)
13892      declare i32 @llvm.bswap.i32(i32 <id>)
13893      declare i64 @llvm.bswap.i64(i64 <id>)
13894      declare <4 x i32> @llvm.bswap.v4i32(<4 x i32> <id>)
13895
13896Overview:
13897"""""""""
13898
13899The '``llvm.bswap``' family of intrinsics is used to byte swap an integer
13900value or vector of integer values with an even number of bytes (positive
13901multiple of 16 bits).
13902
13903Semantics:
13904""""""""""
13905
13906The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
13907and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
13908intrinsic returns an i32 value that has the four bytes of the input i32
13909swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
13910returned i32 will have its bytes in 3, 2, 1, 0 order. The
13911``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
13912concept to additional even-byte lengths (6 bytes, 8 bytes and more,
13913respectively). The vector intrinsics, such as ``llvm.bswap.v4i32``,
13914operate on a per-element basis and the element order is not affected.
13915
13916'``llvm.ctpop.*``' Intrinsic
13917^^^^^^^^^^^^^^^^^^^^^^^^^^^^
13918
13919Syntax:
13920"""""""
13921
13922This is an overloaded intrinsic. You can use llvm.ctpop on any integer
13923bit width, or on any vector with integer elements. Not all targets
13924support all bit widths or vector types, however.
13925
13926::
13927
13928      declare i8 @llvm.ctpop.i8(i8  <src>)
13929      declare i16 @llvm.ctpop.i16(i16 <src>)
13930      declare i32 @llvm.ctpop.i32(i32 <src>)
13931      declare i64 @llvm.ctpop.i64(i64 <src>)
13932      declare i256 @llvm.ctpop.i256(i256 <src>)
13933      declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
13934
13935Overview:
13936"""""""""
13937
13938The '``llvm.ctpop``' family of intrinsics counts the number of bits set
13939in a value.
13940
13941Arguments:
13942""""""""""
13943
13944The only argument is the value to be counted. The argument may be of any
13945integer type, or a vector with integer elements. The return type must
13946match the argument type.
13947
13948Semantics:
13949""""""""""
13950
13951The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
13952each element of a vector.
13953
13954'``llvm.ctlz.*``' Intrinsic
13955^^^^^^^^^^^^^^^^^^^^^^^^^^^
13956
13957Syntax:
13958"""""""
13959
13960This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
13961integer bit width, or any vector whose elements are integers. Not all
13962targets support all bit widths or vector types, however.
13963
13964::
13965
13966      declare i8   @llvm.ctlz.i8  (i8   <src>, i1 <is_zero_undef>)
13967      declare i16  @llvm.ctlz.i16 (i16  <src>, i1 <is_zero_undef>)
13968      declare i32  @llvm.ctlz.i32 (i32  <src>, i1 <is_zero_undef>)
13969      declare i64  @llvm.ctlz.i64 (i64  <src>, i1 <is_zero_undef>)
13970      declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
13971      declare <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
13972
13973Overview:
13974"""""""""
13975
13976The '``llvm.ctlz``' family of intrinsic functions counts the number of
13977leading zeros in a variable.
13978
13979Arguments:
13980""""""""""
13981
13982The first argument is the value to be counted. This argument may be of
13983any integer type, or a vector with integer element type. The return
13984type must match the first argument type.
13985
13986The second argument must be a constant and is a flag to indicate whether
13987the intrinsic should ensure that a zero as the first argument produces a
13988defined result. Historically some architectures did not provide a
13989defined result for zero values as efficiently, and many algorithms are
13990now predicated on avoiding zero-value inputs.
13991
13992Semantics:
13993""""""""""
13994
13995The '``llvm.ctlz``' intrinsic counts the leading (most significant)
13996zeros in a variable, or within each element of the vector. If
13997``src == 0`` then the result is the size in bits of the type of ``src``
13998if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
13999``llvm.ctlz(i32 2) = 30``.
14000
14001'``llvm.cttz.*``' Intrinsic
14002^^^^^^^^^^^^^^^^^^^^^^^^^^^
14003
14004Syntax:
14005"""""""
14006
14007This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
14008integer bit width, or any vector of integer elements. Not all targets
14009support all bit widths or vector types, however.
14010
14011::
14012
14013      declare i8   @llvm.cttz.i8  (i8   <src>, i1 <is_zero_undef>)
14014      declare i16  @llvm.cttz.i16 (i16  <src>, i1 <is_zero_undef>)
14015      declare i32  @llvm.cttz.i32 (i32  <src>, i1 <is_zero_undef>)
14016      declare i64  @llvm.cttz.i64 (i64  <src>, i1 <is_zero_undef>)
14017      declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
14018      declare <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
14019
14020Overview:
14021"""""""""
14022
14023The '``llvm.cttz``' family of intrinsic functions counts the number of
14024trailing zeros.
14025
14026Arguments:
14027""""""""""
14028
14029The first argument is the value to be counted. This argument may be of
14030any integer type, or a vector with integer element type. The return
14031type must match the first argument type.
14032
14033The second argument must be a constant and is a flag to indicate whether
14034the intrinsic should ensure that a zero as the first argument produces a
14035defined result. Historically some architectures did not provide a
14036defined result for zero values as efficiently, and many algorithms are
14037now predicated on avoiding zero-value inputs.
14038
14039Semantics:
14040""""""""""
14041
14042The '``llvm.cttz``' intrinsic counts the trailing (least significant)
14043zeros in a variable, or within each element of a vector. If ``src == 0``
14044then the result is the size in bits of the type of ``src`` if
14045``is_zero_undef == 0`` and ``undef`` otherwise. For example,
14046``llvm.cttz(2) = 1``.
14047
14048.. _int_overflow:
14049
14050'``llvm.fshl.*``' Intrinsic
14051^^^^^^^^^^^^^^^^^^^^^^^^^^^
14052
14053Syntax:
14054"""""""
14055
14056This is an overloaded intrinsic. You can use ``llvm.fshl`` on any
14057integer bit width or any vector of integer elements. Not all targets
14058support all bit widths or vector types, however.
14059
14060::
14061
14062      declare i8  @llvm.fshl.i8 (i8 %a, i8 %b, i8 %c)
14063      declare i67 @llvm.fshl.i67(i67 %a, i67 %b, i67 %c)
14064      declare <2 x i32> @llvm.fshl.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
14065
14066Overview:
14067"""""""""
14068
14069The '``llvm.fshl``' family of intrinsic functions performs a funnel shift left:
14070the first two values are concatenated as { %a : %b } (%a is the most significant
14071bits of the wide value), the combined value is shifted left, and the most
14072significant bits are extracted to produce a result that is the same size as the
14073original arguments. If the first 2 arguments are identical, this is equivalent
14074to a rotate left operation. For vector types, the operation occurs for each
14075element of the vector. The shift argument is treated as an unsigned amount
14076modulo the element size of the arguments.
14077
14078Arguments:
14079""""""""""
14080
14081The first two arguments are the values to be concatenated. The third
14082argument is the shift amount. The arguments may be any integer type or a
14083vector with integer element type. All arguments and the return value must
14084have the same type.
14085
14086Example:
14087""""""""
14088
14089.. code-block:: text
14090
14091      %r = call i8 @llvm.fshl.i8(i8 %x, i8 %y, i8 %z)  ; %r = i8: msb_extract((concat(x, y) << (z % 8)), 8)
14092      %r = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 15)  ; %r = i8: 128 (0b10000000)
14093      %r = call i8 @llvm.fshl.i8(i8 15, i8 15, i8 11)  ; %r = i8: 120 (0b01111000)
14094      %r = call i8 @llvm.fshl.i8(i8 0, i8 255, i8 8)   ; %r = i8: 0   (0b00000000)
14095
14096'``llvm.fshr.*``' Intrinsic
14097^^^^^^^^^^^^^^^^^^^^^^^^^^^
14098
14099Syntax:
14100"""""""
14101
14102This is an overloaded intrinsic. You can use ``llvm.fshr`` on any
14103integer bit width or any vector of integer elements. Not all targets
14104support all bit widths or vector types, however.
14105
14106::
14107
14108      declare i8  @llvm.fshr.i8 (i8 %a, i8 %b, i8 %c)
14109      declare i67 @llvm.fshr.i67(i67 %a, i67 %b, i67 %c)
14110      declare <2 x i32> @llvm.fshr.v2i32(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c)
14111
14112Overview:
14113"""""""""
14114
14115The '``llvm.fshr``' family of intrinsic functions performs a funnel shift right:
14116the first two values are concatenated as { %a : %b } (%a is the most significant
14117bits of the wide value), the combined value is shifted right, and the least
14118significant bits are extracted to produce a result that is the same size as the
14119original arguments. If the first 2 arguments are identical, this is equivalent
14120to a rotate right operation. For vector types, the operation occurs for each
14121element of the vector. The shift argument is treated as an unsigned amount
14122modulo the element size of the arguments.
14123
14124Arguments:
14125""""""""""
14126
14127The first two arguments are the values to be concatenated. The third
14128argument is the shift amount. The arguments may be any integer type or a
14129vector with integer element type. All arguments and the return value must
14130have the same type.
14131
14132Example:
14133""""""""
14134
14135.. code-block:: text
14136
14137      %r = call i8 @llvm.fshr.i8(i8 %x, i8 %y, i8 %z)  ; %r = i8: lsb_extract((concat(x, y) >> (z % 8)), 8)
14138      %r = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 15)  ; %r = i8: 254 (0b11111110)
14139      %r = call i8 @llvm.fshr.i8(i8 15, i8 15, i8 11)  ; %r = i8: 225 (0b11100001)
14140      %r = call i8 @llvm.fshr.i8(i8 0, i8 255, i8 8)   ; %r = i8: 255 (0b11111111)
14141
14142Arithmetic with Overflow Intrinsics
14143-----------------------------------
14144
14145LLVM provides intrinsics for fast arithmetic overflow checking.
14146
14147Each of these intrinsics returns a two-element struct. The first
14148element of this struct contains the result of the corresponding
14149arithmetic operation modulo 2\ :sup:`n`\ , where n is the bit width of
14150the result. Therefore, for example, the first element of the struct
14151returned by ``llvm.sadd.with.overflow.i32`` is always the same as the
14152result of a 32-bit ``add`` instruction with the same operands, where
14153the ``add`` is *not* modified by an ``nsw`` or ``nuw`` flag.
14154
14155The second element of the result is an ``i1`` that is 1 if the
14156arithmetic operation overflowed and 0 otherwise. An operation
14157overflows if, for any values of its operands ``A`` and ``B`` and for
14158any ``N`` larger than the operands' width, ``ext(A op B) to iN`` is
14159not equal to ``(ext(A) to iN) op (ext(B) to iN)`` where ``ext`` is
14160``sext`` for signed overflow and ``zext`` for unsigned overflow, and
14161``op`` is the underlying arithmetic operation.
14162
14163The behavior of these intrinsics is well-defined for all argument
14164values.
14165
14166'``llvm.sadd.with.overflow.*``' Intrinsics
14167^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14168
14169Syntax:
14170"""""""
14171
14172This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
14173on any integer bit width or vectors of integers.
14174
14175::
14176
14177      declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
14178      declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
14179      declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
14180      declare {<4 x i32>, <4 x i1>} @llvm.sadd.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
14181
14182Overview:
14183"""""""""
14184
14185The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
14186a signed addition of the two arguments, and indicate whether an overflow
14187occurred during the signed summation.
14188
14189Arguments:
14190""""""""""
14191
14192The arguments (%a and %b) and the first element of the result structure
14193may be of integer types of any bit width, but they must have the same
14194bit width. The second element of the result structure must be of type
14195``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
14196addition.
14197
14198Semantics:
14199""""""""""
14200
14201The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
14202a signed addition of the two variables. They return a structure --- the
14203first element of which is the signed summation, and the second element
14204of which is a bit specifying if the signed summation resulted in an
14205overflow.
14206
14207Examples:
14208"""""""""
14209
14210.. code-block:: llvm
14211
14212      %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
14213      %sum = extractvalue {i32, i1} %res, 0
14214      %obit = extractvalue {i32, i1} %res, 1
14215      br i1 %obit, label %overflow, label %normal
14216
14217'``llvm.uadd.with.overflow.*``' Intrinsics
14218^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14219
14220Syntax:
14221"""""""
14222
14223This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
14224on any integer bit width or vectors of integers.
14225
14226::
14227
14228      declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
14229      declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
14230      declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
14231      declare {<4 x i32>, <4 x i1>} @llvm.uadd.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
14232
14233Overview:
14234"""""""""
14235
14236The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
14237an unsigned addition of the two arguments, and indicate whether a carry
14238occurred during the unsigned summation.
14239
14240Arguments:
14241""""""""""
14242
14243The arguments (%a and %b) and the first element of the result structure
14244may be of integer types of any bit width, but they must have the same
14245bit width. The second element of the result structure must be of type
14246``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
14247addition.
14248
14249Semantics:
14250""""""""""
14251
14252The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
14253an unsigned addition of the two arguments. They return a structure --- the
14254first element of which is the sum, and the second element of which is a
14255bit specifying if the unsigned summation resulted in a carry.
14256
14257Examples:
14258"""""""""
14259
14260.. code-block:: llvm
14261
14262      %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
14263      %sum = extractvalue {i32, i1} %res, 0
14264      %obit = extractvalue {i32, i1} %res, 1
14265      br i1 %obit, label %carry, label %normal
14266
14267'``llvm.ssub.with.overflow.*``' Intrinsics
14268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14269
14270Syntax:
14271"""""""
14272
14273This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
14274on any integer bit width or vectors of integers.
14275
14276::
14277
14278      declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
14279      declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
14280      declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
14281      declare {<4 x i32>, <4 x i1>} @llvm.ssub.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
14282
14283Overview:
14284"""""""""
14285
14286The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
14287a signed subtraction of the two arguments, and indicate whether an
14288overflow occurred during the signed subtraction.
14289
14290Arguments:
14291""""""""""
14292
14293The arguments (%a and %b) and the first element of the result structure
14294may be of integer types of any bit width, but they must have the same
14295bit width. The second element of the result structure must be of type
14296``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
14297subtraction.
14298
14299Semantics:
14300""""""""""
14301
14302The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
14303a signed subtraction of the two arguments. They return a structure --- the
14304first element of which is the subtraction, and the second element of
14305which is a bit specifying if the signed subtraction resulted in an
14306overflow.
14307
14308Examples:
14309"""""""""
14310
14311.. code-block:: llvm
14312
14313      %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
14314      %sum = extractvalue {i32, i1} %res, 0
14315      %obit = extractvalue {i32, i1} %res, 1
14316      br i1 %obit, label %overflow, label %normal
14317
14318'``llvm.usub.with.overflow.*``' Intrinsics
14319^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14320
14321Syntax:
14322"""""""
14323
14324This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
14325on any integer bit width or vectors of integers.
14326
14327::
14328
14329      declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
14330      declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
14331      declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
14332      declare {<4 x i32>, <4 x i1>} @llvm.usub.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
14333
14334Overview:
14335"""""""""
14336
14337The '``llvm.usub.with.overflow``' family of intrinsic functions perform
14338an unsigned subtraction of the two arguments, and indicate whether an
14339overflow occurred during the unsigned subtraction.
14340
14341Arguments:
14342""""""""""
14343
14344The arguments (%a and %b) and the first element of the result structure
14345may be of integer types of any bit width, but they must have the same
14346bit width. The second element of the result structure must be of type
14347``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
14348subtraction.
14349
14350Semantics:
14351""""""""""
14352
14353The '``llvm.usub.with.overflow``' family of intrinsic functions perform
14354an unsigned subtraction of the two arguments. They return a structure ---
14355the first element of which is the subtraction, and the second element of
14356which is a bit specifying if the unsigned subtraction resulted in an
14357overflow.
14358
14359Examples:
14360"""""""""
14361
14362.. code-block:: llvm
14363
14364      %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
14365      %sum = extractvalue {i32, i1} %res, 0
14366      %obit = extractvalue {i32, i1} %res, 1
14367      br i1 %obit, label %overflow, label %normal
14368
14369'``llvm.smul.with.overflow.*``' Intrinsics
14370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14371
14372Syntax:
14373"""""""
14374
14375This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
14376on any integer bit width or vectors of integers.
14377
14378::
14379
14380      declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
14381      declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
14382      declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
14383      declare {<4 x i32>, <4 x i1>} @llvm.smul.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
14384
14385Overview:
14386"""""""""
14387
14388The '``llvm.smul.with.overflow``' family of intrinsic functions perform
14389a signed multiplication of the two arguments, and indicate whether an
14390overflow occurred during the signed multiplication.
14391
14392Arguments:
14393""""""""""
14394
14395The arguments (%a and %b) and the first element of the result structure
14396may be of integer types of any bit width, but they must have the same
14397bit width. The second element of the result structure must be of type
14398``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
14399multiplication.
14400
14401Semantics:
14402""""""""""
14403
14404The '``llvm.smul.with.overflow``' family of intrinsic functions perform
14405a signed multiplication of the two arguments. They return a structure ---
14406the first element of which is the multiplication, and the second element
14407of which is a bit specifying if the signed multiplication resulted in an
14408overflow.
14409
14410Examples:
14411"""""""""
14412
14413.. code-block:: llvm
14414
14415      %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
14416      %sum = extractvalue {i32, i1} %res, 0
14417      %obit = extractvalue {i32, i1} %res, 1
14418      br i1 %obit, label %overflow, label %normal
14419
14420'``llvm.umul.with.overflow.*``' Intrinsics
14421^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14422
14423Syntax:
14424"""""""
14425
14426This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
14427on any integer bit width or vectors of integers.
14428
14429::
14430
14431      declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
14432      declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
14433      declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
14434      declare {<4 x i32>, <4 x i1>} @llvm.umul.with.overflow.v4i32(<4 x i32> %a, <4 x i32> %b)
14435
14436Overview:
14437"""""""""
14438
14439The '``llvm.umul.with.overflow``' family of intrinsic functions perform
14440a unsigned multiplication of the two arguments, and indicate whether an
14441overflow occurred during the unsigned multiplication.
14442
14443Arguments:
14444""""""""""
14445
14446The arguments (%a and %b) and the first element of the result structure
14447may be of integer types of any bit width, but they must have the same
14448bit width. The second element of the result structure must be of type
14449``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
14450multiplication.
14451
14452Semantics:
14453""""""""""
14454
14455The '``llvm.umul.with.overflow``' family of intrinsic functions perform
14456an unsigned multiplication of the two arguments. They return a structure ---
14457the first element of which is the multiplication, and the second
14458element of which is a bit specifying if the unsigned multiplication
14459resulted in an overflow.
14460
14461Examples:
14462"""""""""
14463
14464.. code-block:: llvm
14465
14466      %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
14467      %sum = extractvalue {i32, i1} %res, 0
14468      %obit = extractvalue {i32, i1} %res, 1
14469      br i1 %obit, label %overflow, label %normal
14470
14471Saturation Arithmetic Intrinsics
14472---------------------------------
14473
14474Saturation arithmetic is a version of arithmetic in which operations are
14475limited to a fixed range between a minimum and maximum value. If the result of
14476an operation is greater than the maximum value, the result is set (or
14477"clamped") to this maximum. If it is below the minimum, it is clamped to this
14478minimum.
14479
14480
14481'``llvm.sadd.sat.*``' Intrinsics
14482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14483
14484Syntax
14485"""""""
14486
14487This is an overloaded intrinsic. You can use ``llvm.sadd.sat``
14488on any integer bit width or vectors of integers.
14489
14490::
14491
14492      declare i16 @llvm.sadd.sat.i16(i16 %a, i16 %b)
14493      declare i32 @llvm.sadd.sat.i32(i32 %a, i32 %b)
14494      declare i64 @llvm.sadd.sat.i64(i64 %a, i64 %b)
14495      declare <4 x i32> @llvm.sadd.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
14496
14497Overview
14498"""""""""
14499
14500The '``llvm.sadd.sat``' family of intrinsic functions perform signed
14501saturating addition on the 2 arguments.
14502
14503Arguments
14504""""""""""
14505
14506The arguments (%a and %b) and the result may be of integer types of any bit
14507width, but they must have the same bit width. ``%a`` and ``%b`` are the two
14508values that will undergo signed addition.
14509
14510Semantics:
14511""""""""""
14512
14513The maximum value this operation can clamp to is the largest signed value
14514representable by the bit width of the arguments. The minimum value is the
14515smallest signed value representable by this bit width.
14516
14517
14518Examples
14519"""""""""
14520
14521.. code-block:: llvm
14522
14523      %res = call i4 @llvm.sadd.sat.i4(i4 1, i4 2)  ; %res = 3
14524      %res = call i4 @llvm.sadd.sat.i4(i4 5, i4 6)  ; %res = 7
14525      %res = call i4 @llvm.sadd.sat.i4(i4 -4, i4 2)  ; %res = -2
14526      %res = call i4 @llvm.sadd.sat.i4(i4 -4, i4 -5)  ; %res = -8
14527
14528
14529'``llvm.uadd.sat.*``' Intrinsics
14530^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14531
14532Syntax
14533"""""""
14534
14535This is an overloaded intrinsic. You can use ``llvm.uadd.sat``
14536on any integer bit width or vectors of integers.
14537
14538::
14539
14540      declare i16 @llvm.uadd.sat.i16(i16 %a, i16 %b)
14541      declare i32 @llvm.uadd.sat.i32(i32 %a, i32 %b)
14542      declare i64 @llvm.uadd.sat.i64(i64 %a, i64 %b)
14543      declare <4 x i32> @llvm.uadd.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
14544
14545Overview
14546"""""""""
14547
14548The '``llvm.uadd.sat``' family of intrinsic functions perform unsigned
14549saturating addition on the 2 arguments.
14550
14551Arguments
14552""""""""""
14553
14554The arguments (%a and %b) and the result may be of integer types of any bit
14555width, but they must have the same bit width. ``%a`` and ``%b`` are the two
14556values that will undergo unsigned addition.
14557
14558Semantics:
14559""""""""""
14560
14561The maximum value this operation can clamp to is the largest unsigned value
14562representable by the bit width of the arguments. Because this is an unsigned
14563operation, the result will never saturate towards zero.
14564
14565
14566Examples
14567"""""""""
14568
14569.. code-block:: llvm
14570
14571      %res = call i4 @llvm.uadd.sat.i4(i4 1, i4 2)  ; %res = 3
14572      %res = call i4 @llvm.uadd.sat.i4(i4 5, i4 6)  ; %res = 11
14573      %res = call i4 @llvm.uadd.sat.i4(i4 8, i4 8)  ; %res = 15
14574
14575
14576'``llvm.ssub.sat.*``' Intrinsics
14577^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14578
14579Syntax
14580"""""""
14581
14582This is an overloaded intrinsic. You can use ``llvm.ssub.sat``
14583on any integer bit width or vectors of integers.
14584
14585::
14586
14587      declare i16 @llvm.ssub.sat.i16(i16 %a, i16 %b)
14588      declare i32 @llvm.ssub.sat.i32(i32 %a, i32 %b)
14589      declare i64 @llvm.ssub.sat.i64(i64 %a, i64 %b)
14590      declare <4 x i32> @llvm.ssub.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
14591
14592Overview
14593"""""""""
14594
14595The '``llvm.ssub.sat``' family of intrinsic functions perform signed
14596saturating subtraction on the 2 arguments.
14597
14598Arguments
14599""""""""""
14600
14601The arguments (%a and %b) and the result may be of integer types of any bit
14602width, but they must have the same bit width. ``%a`` and ``%b`` are the two
14603values that will undergo signed subtraction.
14604
14605Semantics:
14606""""""""""
14607
14608The maximum value this operation can clamp to is the largest signed value
14609representable by the bit width of the arguments. The minimum value is the
14610smallest signed value representable by this bit width.
14611
14612
14613Examples
14614"""""""""
14615
14616.. code-block:: llvm
14617
14618      %res = call i4 @llvm.ssub.sat.i4(i4 2, i4 1)  ; %res = 1
14619      %res = call i4 @llvm.ssub.sat.i4(i4 2, i4 6)  ; %res = -4
14620      %res = call i4 @llvm.ssub.sat.i4(i4 -4, i4 5)  ; %res = -8
14621      %res = call i4 @llvm.ssub.sat.i4(i4 4, i4 -5)  ; %res = 7
14622
14623
14624'``llvm.usub.sat.*``' Intrinsics
14625^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14626
14627Syntax
14628"""""""
14629
14630This is an overloaded intrinsic. You can use ``llvm.usub.sat``
14631on any integer bit width or vectors of integers.
14632
14633::
14634
14635      declare i16 @llvm.usub.sat.i16(i16 %a, i16 %b)
14636      declare i32 @llvm.usub.sat.i32(i32 %a, i32 %b)
14637      declare i64 @llvm.usub.sat.i64(i64 %a, i64 %b)
14638      declare <4 x i32> @llvm.usub.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
14639
14640Overview
14641"""""""""
14642
14643The '``llvm.usub.sat``' family of intrinsic functions perform unsigned
14644saturating subtraction on the 2 arguments.
14645
14646Arguments
14647""""""""""
14648
14649The arguments (%a and %b) and the result may be of integer types of any bit
14650width, but they must have the same bit width. ``%a`` and ``%b`` are the two
14651values that will undergo unsigned subtraction.
14652
14653Semantics:
14654""""""""""
14655
14656The minimum value this operation can clamp to is 0, which is the smallest
14657unsigned value representable by the bit width of the unsigned arguments.
14658Because this is an unsigned operation, the result will never saturate towards
14659the largest possible value representable by this bit width.
14660
14661
14662Examples
14663"""""""""
14664
14665.. code-block:: llvm
14666
14667      %res = call i4 @llvm.usub.sat.i4(i4 2, i4 1)  ; %res = 1
14668      %res = call i4 @llvm.usub.sat.i4(i4 2, i4 6)  ; %res = 0
14669
14670
14671'``llvm.sshl.sat.*``' Intrinsics
14672^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14673
14674Syntax
14675"""""""
14676
14677This is an overloaded intrinsic. You can use ``llvm.sshl.sat``
14678on integers or vectors of integers of any bit width.
14679
14680::
14681
14682      declare i16 @llvm.sshl.sat.i16(i16 %a, i16 %b)
14683      declare i32 @llvm.sshl.sat.i32(i32 %a, i32 %b)
14684      declare i64 @llvm.sshl.sat.i64(i64 %a, i64 %b)
14685      declare <4 x i32> @llvm.sshl.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
14686
14687Overview
14688"""""""""
14689
14690The '``llvm.sshl.sat``' family of intrinsic functions perform signed
14691saturating left shift on the first argument.
14692
14693Arguments
14694""""""""""
14695
14696The arguments (``%a`` and ``%b``) and the result may be of integer types of any
14697bit width, but they must have the same bit width. ``%a`` is the value to be
14698shifted, and ``%b`` is the amount to shift by. If ``b`` is (statically or
14699dynamically) equal to or larger than the integer bit width of the arguments,
14700the result is a :ref:`poison value <poisonvalues>`. If the arguments are
14701vectors, each vector element of ``a`` is shifted by the corresponding shift
14702amount in ``b``.
14703
14704
14705Semantics:
14706""""""""""
14707
14708The maximum value this operation can clamp to is the largest signed value
14709representable by the bit width of the arguments. The minimum value is the
14710smallest signed value representable by this bit width.
14711
14712
14713Examples
14714"""""""""
14715
14716.. code-block:: llvm
14717
14718      %res = call i4 @llvm.sshl.sat.i4(i4 2, i4 1)  ; %res = 4
14719      %res = call i4 @llvm.sshl.sat.i4(i4 2, i4 2)  ; %res = 7
14720      %res = call i4 @llvm.sshl.sat.i4(i4 -5, i4 1)  ; %res = -8
14721      %res = call i4 @llvm.sshl.sat.i4(i4 -1, i4 1)  ; %res = -2
14722
14723
14724'``llvm.ushl.sat.*``' Intrinsics
14725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14726
14727Syntax
14728"""""""
14729
14730This is an overloaded intrinsic. You can use ``llvm.ushl.sat``
14731on integers or vectors of integers of any bit width.
14732
14733::
14734
14735      declare i16 @llvm.ushl.sat.i16(i16 %a, i16 %b)
14736      declare i32 @llvm.ushl.sat.i32(i32 %a, i32 %b)
14737      declare i64 @llvm.ushl.sat.i64(i64 %a, i64 %b)
14738      declare <4 x i32> @llvm.ushl.sat.v4i32(<4 x i32> %a, <4 x i32> %b)
14739
14740Overview
14741"""""""""
14742
14743The '``llvm.ushl.sat``' family of intrinsic functions perform unsigned
14744saturating left shift on the first argument.
14745
14746Arguments
14747""""""""""
14748
14749The arguments (``%a`` and ``%b``) and the result may be of integer types of any
14750bit width, but they must have the same bit width. ``%a`` is the value to be
14751shifted, and ``%b`` is the amount to shift by. If ``b`` is (statically or
14752dynamically) equal to or larger than the integer bit width of the arguments,
14753the result is a :ref:`poison value <poisonvalues>`. If the arguments are
14754vectors, each vector element of ``a`` is shifted by the corresponding shift
14755amount in ``b``.
14756
14757Semantics:
14758""""""""""
14759
14760The maximum value this operation can clamp to is the largest unsigned value
14761representable by the bit width of the arguments.
14762
14763
14764Examples
14765"""""""""
14766
14767.. code-block:: llvm
14768
14769      %res = call i4 @llvm.ushl.sat.i4(i4 2, i4 1)  ; %res = 4
14770      %res = call i4 @llvm.ushl.sat.i4(i4 3, i4 3)  ; %res = 15
14771
14772
14773Fixed Point Arithmetic Intrinsics
14774---------------------------------
14775
14776A fixed point number represents a real data type for a number that has a fixed
14777number of digits after a radix point (equivalent to the decimal point '.').
14778The number of digits after the radix point is referred as the `scale`. These
14779are useful for representing fractional values to a specific precision. The
14780following intrinsics perform fixed point arithmetic operations on 2 operands
14781of the same scale, specified as the third argument.
14782
14783The ``llvm.*mul.fix`` family of intrinsic functions represents a multiplication
14784of fixed point numbers through scaled integers. Therefore, fixed point
14785multiplication can be represented as
14786
14787.. code-block:: llvm
14788
14789        %result = call i4 @llvm.smul.fix.i4(i4 %a, i4 %b, i32 %scale)
14790
14791        ; Expands to
14792        %a2 = sext i4 %a to i8
14793        %b2 = sext i4 %b to i8
14794        %mul = mul nsw nuw i8 %a, %b
14795        %scale2 = trunc i32 %scale to i8
14796        %r = ashr i8 %mul, i8 %scale2  ; this is for a target rounding down towards negative infinity
14797        %result = trunc i8 %r to i4
14798
14799The ``llvm.*div.fix`` family of intrinsic functions represents a division of
14800fixed point numbers through scaled integers. Fixed point division can be
14801represented as:
14802
14803.. code-block:: llvm
14804
14805        %result call i4 @llvm.sdiv.fix.i4(i4 %a, i4 %b, i32 %scale)
14806
14807        ; Expands to
14808        %a2 = sext i4 %a to i8
14809        %b2 = sext i4 %b to i8
14810        %scale2 = trunc i32 %scale to i8
14811        %a3 = shl i8 %a2, %scale2
14812        %r = sdiv i8 %a3, %b2 ; this is for a target rounding towards zero
14813        %result = trunc i8 %r to i4
14814
14815For each of these functions, if the result cannot be represented exactly with
14816the provided scale, the result is rounded. Rounding is unspecified since
14817preferred rounding may vary for different targets. Rounding is specified
14818through a target hook. Different pipelines should legalize or optimize this
14819using the rounding specified by this hook if it is provided. Operations like
14820constant folding, instruction combining, KnownBits, and ValueTracking should
14821also use this hook, if provided, and not assume the direction of rounding. A
14822rounded result must always be within one unit of precision from the true
14823result. That is, the error between the returned result and the true result must
14824be less than 1/2^(scale).
14825
14826
14827'``llvm.smul.fix.*``' Intrinsics
14828^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14829
14830Syntax
14831"""""""
14832
14833This is an overloaded intrinsic. You can use ``llvm.smul.fix``
14834on any integer bit width or vectors of integers.
14835
14836::
14837
14838      declare i16 @llvm.smul.fix.i16(i16 %a, i16 %b, i32 %scale)
14839      declare i32 @llvm.smul.fix.i32(i32 %a, i32 %b, i32 %scale)
14840      declare i64 @llvm.smul.fix.i64(i64 %a, i64 %b, i32 %scale)
14841      declare <4 x i32> @llvm.smul.fix.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
14842
14843Overview
14844"""""""""
14845
14846The '``llvm.smul.fix``' family of intrinsic functions perform signed
14847fixed point multiplication on 2 arguments of the same scale.
14848
14849Arguments
14850""""""""""
14851
14852The arguments (%a and %b) and the result may be of integer types of any bit
14853width, but they must have the same bit width. The arguments may also work with
14854int vectors of the same length and int size. ``%a`` and ``%b`` are the two
14855values that will undergo signed fixed point multiplication. The argument
14856``%scale`` represents the scale of both operands, and must be a constant
14857integer.
14858
14859Semantics:
14860""""""""""
14861
14862This operation performs fixed point multiplication on the 2 arguments of a
14863specified scale. The result will also be returned in the same scale specified
14864in the third argument.
14865
14866If the result value cannot be precisely represented in the given scale, the
14867value is rounded up or down to the closest representable value. The rounding
14868direction is unspecified.
14869
14870It is undefined behavior if the result value does not fit within the range of
14871the fixed point type.
14872
14873
14874Examples
14875"""""""""
14876
14877.. code-block:: llvm
14878
14879      %res = call i4 @llvm.smul.fix.i4(i4 3, i4 2, i32 0)  ; %res = 6 (2 x 3 = 6)
14880      %res = call i4 @llvm.smul.fix.i4(i4 3, i4 2, i32 1)  ; %res = 3 (1.5 x 1 = 1.5)
14881      %res = call i4 @llvm.smul.fix.i4(i4 3, i4 -2, i32 1)  ; %res = -3 (1.5 x -1 = -1.5)
14882
14883      ; The result in the following could be rounded up to -2 or down to -2.5
14884      %res = call i4 @llvm.smul.fix.i4(i4 3, i4 -3, i32 1)  ; %res = -5 (or -4) (1.5 x -1.5 = -2.25)
14885
14886
14887'``llvm.umul.fix.*``' Intrinsics
14888^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14889
14890Syntax
14891"""""""
14892
14893This is an overloaded intrinsic. You can use ``llvm.umul.fix``
14894on any integer bit width or vectors of integers.
14895
14896::
14897
14898      declare i16 @llvm.umul.fix.i16(i16 %a, i16 %b, i32 %scale)
14899      declare i32 @llvm.umul.fix.i32(i32 %a, i32 %b, i32 %scale)
14900      declare i64 @llvm.umul.fix.i64(i64 %a, i64 %b, i32 %scale)
14901      declare <4 x i32> @llvm.umul.fix.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
14902
14903Overview
14904"""""""""
14905
14906The '``llvm.umul.fix``' family of intrinsic functions perform unsigned
14907fixed point multiplication on 2 arguments of the same scale.
14908
14909Arguments
14910""""""""""
14911
14912The arguments (%a and %b) and the result may be of integer types of any bit
14913width, but they must have the same bit width. The arguments may also work with
14914int vectors of the same length and int size. ``%a`` and ``%b`` are the two
14915values that will undergo unsigned fixed point multiplication. The argument
14916``%scale`` represents the scale of both operands, and must be a constant
14917integer.
14918
14919Semantics:
14920""""""""""
14921
14922This operation performs unsigned fixed point multiplication on the 2 arguments of a
14923specified scale. The result will also be returned in the same scale specified
14924in the third argument.
14925
14926If the result value cannot be precisely represented in the given scale, the
14927value is rounded up or down to the closest representable value. The rounding
14928direction is unspecified.
14929
14930It is undefined behavior if the result value does not fit within the range of
14931the fixed point type.
14932
14933
14934Examples
14935"""""""""
14936
14937.. code-block:: llvm
14938
14939      %res = call i4 @llvm.umul.fix.i4(i4 3, i4 2, i32 0)  ; %res = 6 (2 x 3 = 6)
14940      %res = call i4 @llvm.umul.fix.i4(i4 3, i4 2, i32 1)  ; %res = 3 (1.5 x 1 = 1.5)
14941
14942      ; The result in the following could be rounded down to 3.5 or up to 4
14943      %res = call i4 @llvm.umul.fix.i4(i4 15, i4 1, i32 1)  ; %res = 7 (or 8) (7.5 x 0.5 = 3.75)
14944
14945
14946'``llvm.smul.fix.sat.*``' Intrinsics
14947^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
14948
14949Syntax
14950"""""""
14951
14952This is an overloaded intrinsic. You can use ``llvm.smul.fix.sat``
14953on any integer bit width or vectors of integers.
14954
14955::
14956
14957      declare i16 @llvm.smul.fix.sat.i16(i16 %a, i16 %b, i32 %scale)
14958      declare i32 @llvm.smul.fix.sat.i32(i32 %a, i32 %b, i32 %scale)
14959      declare i64 @llvm.smul.fix.sat.i64(i64 %a, i64 %b, i32 %scale)
14960      declare <4 x i32> @llvm.smul.fix.sat.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
14961
14962Overview
14963"""""""""
14964
14965The '``llvm.smul.fix.sat``' family of intrinsic functions perform signed
14966fixed point saturating multiplication on 2 arguments of the same scale.
14967
14968Arguments
14969""""""""""
14970
14971The arguments (%a and %b) and the result may be of integer types of any bit
14972width, but they must have the same bit width. ``%a`` and ``%b`` are the two
14973values that will undergo signed fixed point multiplication. The argument
14974``%scale`` represents the scale of both operands, and must be a constant
14975integer.
14976
14977Semantics:
14978""""""""""
14979
14980This operation performs fixed point multiplication on the 2 arguments of a
14981specified scale. The result will also be returned in the same scale specified
14982in the third argument.
14983
14984If the result value cannot be precisely represented in the given scale, the
14985value is rounded up or down to the closest representable value. The rounding
14986direction is unspecified.
14987
14988The maximum value this operation can clamp to is the largest signed value
14989representable by the bit width of the first 2 arguments. The minimum value is the
14990smallest signed value representable by this bit width.
14991
14992
14993Examples
14994"""""""""
14995
14996.. code-block:: llvm
14997
14998      %res = call i4 @llvm.smul.fix.sat.i4(i4 3, i4 2, i32 0)  ; %res = 6 (2 x 3 = 6)
14999      %res = call i4 @llvm.smul.fix.sat.i4(i4 3, i4 2, i32 1)  ; %res = 3 (1.5 x 1 = 1.5)
15000      %res = call i4 @llvm.smul.fix.sat.i4(i4 3, i4 -2, i32 1)  ; %res = -3 (1.5 x -1 = -1.5)
15001
15002      ; The result in the following could be rounded up to -2 or down to -2.5
15003      %res = call i4 @llvm.smul.fix.sat.i4(i4 3, i4 -3, i32 1)  ; %res = -5 (or -4) (1.5 x -1.5 = -2.25)
15004
15005      ; Saturation
15006      %res = call i4 @llvm.smul.fix.sat.i4(i4 7, i4 2, i32 0)  ; %res = 7
15007      %res = call i4 @llvm.smul.fix.sat.i4(i4 7, i4 4, i32 2)  ; %res = 7
15008      %res = call i4 @llvm.smul.fix.sat.i4(i4 -8, i4 5, i32 2)  ; %res = -8
15009      %res = call i4 @llvm.smul.fix.sat.i4(i4 -8, i4 -2, i32 1)  ; %res = 7
15010
15011      ; Scale can affect the saturation result
15012      %res = call i4 @llvm.smul.fix.sat.i4(i4 2, i4 4, i32 0)  ; %res = 7 (2 x 4 -> clamped to 7)
15013      %res = call i4 @llvm.smul.fix.sat.i4(i4 2, i4 4, i32 1)  ; %res = 4 (1 x 2 = 2)
15014
15015
15016'``llvm.umul.fix.sat.*``' Intrinsics
15017^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15018
15019Syntax
15020"""""""
15021
15022This is an overloaded intrinsic. You can use ``llvm.umul.fix.sat``
15023on any integer bit width or vectors of integers.
15024
15025::
15026
15027      declare i16 @llvm.umul.fix.sat.i16(i16 %a, i16 %b, i32 %scale)
15028      declare i32 @llvm.umul.fix.sat.i32(i32 %a, i32 %b, i32 %scale)
15029      declare i64 @llvm.umul.fix.sat.i64(i64 %a, i64 %b, i32 %scale)
15030      declare <4 x i32> @llvm.umul.fix.sat.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
15031
15032Overview
15033"""""""""
15034
15035The '``llvm.umul.fix.sat``' family of intrinsic functions perform unsigned
15036fixed point saturating multiplication on 2 arguments of the same scale.
15037
15038Arguments
15039""""""""""
15040
15041The arguments (%a and %b) and the result may be of integer types of any bit
15042width, but they must have the same bit width. ``%a`` and ``%b`` are the two
15043values that will undergo unsigned fixed point multiplication. The argument
15044``%scale`` represents the scale of both operands, and must be a constant
15045integer.
15046
15047Semantics:
15048""""""""""
15049
15050This operation performs fixed point multiplication on the 2 arguments of a
15051specified scale. The result will also be returned in the same scale specified
15052in the third argument.
15053
15054If the result value cannot be precisely represented in the given scale, the
15055value is rounded up or down to the closest representable value. The rounding
15056direction is unspecified.
15057
15058The maximum value this operation can clamp to is the largest unsigned value
15059representable by the bit width of the first 2 arguments. The minimum value is the
15060smallest unsigned value representable by this bit width (zero).
15061
15062
15063Examples
15064"""""""""
15065
15066.. code-block:: llvm
15067
15068      %res = call i4 @llvm.umul.fix.sat.i4(i4 3, i4 2, i32 0)  ; %res = 6 (2 x 3 = 6)
15069      %res = call i4 @llvm.umul.fix.sat.i4(i4 3, i4 2, i32 1)  ; %res = 3 (1.5 x 1 = 1.5)
15070
15071      ; The result in the following could be rounded down to 2 or up to 2.5
15072      %res = call i4 @llvm.umul.fix.sat.i4(i4 3, i4 3, i32 1)  ; %res = 4 (or 5) (1.5 x 1.5 = 2.25)
15073
15074      ; Saturation
15075      %res = call i4 @llvm.umul.fix.sat.i4(i4 8, i4 2, i32 0)  ; %res = 15 (8 x 2 -> clamped to 15)
15076      %res = call i4 @llvm.umul.fix.sat.i4(i4 8, i4 8, i32 2)  ; %res = 15 (2 x 2 -> clamped to 3.75)
15077
15078      ; Scale can affect the saturation result
15079      %res = call i4 @llvm.umul.fix.sat.i4(i4 2, i4 4, i32 0)  ; %res = 7 (2 x 4 -> clamped to 7)
15080      %res = call i4 @llvm.umul.fix.sat.i4(i4 2, i4 4, i32 1)  ; %res = 4 (1 x 2 = 2)
15081
15082
15083'``llvm.sdiv.fix.*``' Intrinsics
15084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15085
15086Syntax
15087"""""""
15088
15089This is an overloaded intrinsic. You can use ``llvm.sdiv.fix``
15090on any integer bit width or vectors of integers.
15091
15092::
15093
15094      declare i16 @llvm.sdiv.fix.i16(i16 %a, i16 %b, i32 %scale)
15095      declare i32 @llvm.sdiv.fix.i32(i32 %a, i32 %b, i32 %scale)
15096      declare i64 @llvm.sdiv.fix.i64(i64 %a, i64 %b, i32 %scale)
15097      declare <4 x i32> @llvm.sdiv.fix.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
15098
15099Overview
15100"""""""""
15101
15102The '``llvm.sdiv.fix``' family of intrinsic functions perform signed
15103fixed point division on 2 arguments of the same scale.
15104
15105Arguments
15106""""""""""
15107
15108The arguments (%a and %b) and the result may be of integer types of any bit
15109width, but they must have the same bit width. The arguments may also work with
15110int vectors of the same length and int size. ``%a`` and ``%b`` are the two
15111values that will undergo signed fixed point division. The argument
15112``%scale`` represents the scale of both operands, and must be a constant
15113integer.
15114
15115Semantics:
15116""""""""""
15117
15118This operation performs fixed point division on the 2 arguments of a
15119specified scale. The result will also be returned in the same scale specified
15120in the third argument.
15121
15122If the result value cannot be precisely represented in the given scale, the
15123value is rounded up or down to the closest representable value. The rounding
15124direction is unspecified.
15125
15126It is undefined behavior if the result value does not fit within the range of
15127the fixed point type, or if the second argument is zero.
15128
15129
15130Examples
15131"""""""""
15132
15133.. code-block:: llvm
15134
15135      %res = call i4 @llvm.sdiv.fix.i4(i4 6, i4 2, i32 0)  ; %res = 3 (6 / 2 = 3)
15136      %res = call i4 @llvm.sdiv.fix.i4(i4 6, i4 4, i32 1)  ; %res = 3 (3 / 2 = 1.5)
15137      %res = call i4 @llvm.sdiv.fix.i4(i4 3, i4 -2, i32 1) ; %res = -3 (1.5 / -1 = -1.5)
15138
15139      ; The result in the following could be rounded up to 1 or down to 0.5
15140      %res = call i4 @llvm.sdiv.fix.i4(i4 3, i4 4, i32 1)  ; %res = 2 (or 1) (1.5 / 2 = 0.75)
15141
15142
15143'``llvm.udiv.fix.*``' Intrinsics
15144^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15145
15146Syntax
15147"""""""
15148
15149This is an overloaded intrinsic. You can use ``llvm.udiv.fix``
15150on any integer bit width or vectors of integers.
15151
15152::
15153
15154      declare i16 @llvm.udiv.fix.i16(i16 %a, i16 %b, i32 %scale)
15155      declare i32 @llvm.udiv.fix.i32(i32 %a, i32 %b, i32 %scale)
15156      declare i64 @llvm.udiv.fix.i64(i64 %a, i64 %b, i32 %scale)
15157      declare <4 x i32> @llvm.udiv.fix.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
15158
15159Overview
15160"""""""""
15161
15162The '``llvm.udiv.fix``' family of intrinsic functions perform unsigned
15163fixed point division on 2 arguments of the same scale.
15164
15165Arguments
15166""""""""""
15167
15168The arguments (%a and %b) and the result may be of integer types of any bit
15169width, but they must have the same bit width. The arguments may also work with
15170int vectors of the same length and int size. ``%a`` and ``%b`` are the two
15171values that will undergo unsigned fixed point division. The argument
15172``%scale`` represents the scale of both operands, and must be a constant
15173integer.
15174
15175Semantics:
15176""""""""""
15177
15178This operation performs fixed point division on the 2 arguments of a
15179specified scale. The result will also be returned in the same scale specified
15180in the third argument.
15181
15182If the result value cannot be precisely represented in the given scale, the
15183value is rounded up or down to the closest representable value. The rounding
15184direction is unspecified.
15185
15186It is undefined behavior if the result value does not fit within the range of
15187the fixed point type, or if the second argument is zero.
15188
15189
15190Examples
15191"""""""""
15192
15193.. code-block:: llvm
15194
15195      %res = call i4 @llvm.udiv.fix.i4(i4 6, i4 2, i32 0)  ; %res = 3 (6 / 2 = 3)
15196      %res = call i4 @llvm.udiv.fix.i4(i4 6, i4 4, i32 1)  ; %res = 3 (3 / 2 = 1.5)
15197      %res = call i4 @llvm.udiv.fix.i4(i4 1, i4 -8, i32 4) ; %res = 2 (0.0625 / 0.5 = 0.125)
15198
15199      ; The result in the following could be rounded up to 1 or down to 0.5
15200      %res = call i4 @llvm.udiv.fix.i4(i4 3, i4 4, i32 1)  ; %res = 2 (or 1) (1.5 / 2 = 0.75)
15201
15202
15203'``llvm.sdiv.fix.sat.*``' Intrinsics
15204^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15205
15206Syntax
15207"""""""
15208
15209This is an overloaded intrinsic. You can use ``llvm.sdiv.fix.sat``
15210on any integer bit width or vectors of integers.
15211
15212::
15213
15214      declare i16 @llvm.sdiv.fix.sat.i16(i16 %a, i16 %b, i32 %scale)
15215      declare i32 @llvm.sdiv.fix.sat.i32(i32 %a, i32 %b, i32 %scale)
15216      declare i64 @llvm.sdiv.fix.sat.i64(i64 %a, i64 %b, i32 %scale)
15217      declare <4 x i32> @llvm.sdiv.fix.sat.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
15218
15219Overview
15220"""""""""
15221
15222The '``llvm.sdiv.fix.sat``' family of intrinsic functions perform signed
15223fixed point saturating division on 2 arguments of the same scale.
15224
15225Arguments
15226""""""""""
15227
15228The arguments (%a and %b) and the result may be of integer types of any bit
15229width, but they must have the same bit width. ``%a`` and ``%b`` are the two
15230values that will undergo signed fixed point division. The argument
15231``%scale`` represents the scale of both operands, and must be a constant
15232integer.
15233
15234Semantics:
15235""""""""""
15236
15237This operation performs fixed point division on the 2 arguments of a
15238specified scale. The result will also be returned in the same scale specified
15239in the third argument.
15240
15241If the result value cannot be precisely represented in the given scale, the
15242value is rounded up or down to the closest representable value. The rounding
15243direction is unspecified.
15244
15245The maximum value this operation can clamp to is the largest signed value
15246representable by the bit width of the first 2 arguments. The minimum value is the
15247smallest signed value representable by this bit width.
15248
15249It is undefined behavior if the second argument is zero.
15250
15251
15252Examples
15253"""""""""
15254
15255.. code-block:: llvm
15256
15257      %res = call i4 @llvm.sdiv.fix.sat.i4(i4 6, i4 2, i32 0)  ; %res = 3 (6 / 2 = 3)
15258      %res = call i4 @llvm.sdiv.fix.sat.i4(i4 6, i4 4, i32 1)  ; %res = 3 (3 / 2 = 1.5)
15259      %res = call i4 @llvm.sdiv.fix.sat.i4(i4 3, i4 -2, i32 1) ; %res = -3 (1.5 / -1 = -1.5)
15260
15261      ; The result in the following could be rounded up to 1 or down to 0.5
15262      %res = call i4 @llvm.sdiv.fix.sat.i4(i4 3, i4 4, i32 1)  ; %res = 2 (or 1) (1.5 / 2 = 0.75)
15263
15264      ; Saturation
15265      %res = call i4 @llvm.sdiv.fix.sat.i4(i4 -8, i4 -1, i32 0)  ; %res = 7 (-8 / -1 = 8 => 7)
15266      %res = call i4 @llvm.sdiv.fix.sat.i4(i4 4, i4 2, i32 2)  ; %res = 7 (1 / 0.5 = 2 => 1.75)
15267      %res = call i4 @llvm.sdiv.fix.sat.i4(i4 -4, i4 1, i32 2)  ; %res = -8 (-1 / 0.25 = -4 => -2)
15268
15269
15270'``llvm.udiv.fix.sat.*``' Intrinsics
15271^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15272
15273Syntax
15274"""""""
15275
15276This is an overloaded intrinsic. You can use ``llvm.udiv.fix.sat``
15277on any integer bit width or vectors of integers.
15278
15279::
15280
15281      declare i16 @llvm.udiv.fix.sat.i16(i16 %a, i16 %b, i32 %scale)
15282      declare i32 @llvm.udiv.fix.sat.i32(i32 %a, i32 %b, i32 %scale)
15283      declare i64 @llvm.udiv.fix.sat.i64(i64 %a, i64 %b, i32 %scale)
15284      declare <4 x i32> @llvm.udiv.fix.sat.v4i32(<4 x i32> %a, <4 x i32> %b, i32 %scale)
15285
15286Overview
15287"""""""""
15288
15289The '``llvm.udiv.fix.sat``' family of intrinsic functions perform unsigned
15290fixed point saturating division on 2 arguments of the same scale.
15291
15292Arguments
15293""""""""""
15294
15295The arguments (%a and %b) and the result may be of integer types of any bit
15296width, but they must have the same bit width. ``%a`` and ``%b`` are the two
15297values that will undergo unsigned fixed point division. The argument
15298``%scale`` represents the scale of both operands, and must be a constant
15299integer.
15300
15301Semantics:
15302""""""""""
15303
15304This operation performs fixed point division on the 2 arguments of a
15305specified scale. The result will also be returned in the same scale specified
15306in the third argument.
15307
15308If the result value cannot be precisely represented in the given scale, the
15309value is rounded up or down to the closest representable value. The rounding
15310direction is unspecified.
15311
15312The maximum value this operation can clamp to is the largest unsigned value
15313representable by the bit width of the first 2 arguments. The minimum value is the
15314smallest unsigned value representable by this bit width (zero).
15315
15316It is undefined behavior if the second argument is zero.
15317
15318Examples
15319"""""""""
15320
15321.. code-block:: llvm
15322
15323      %res = call i4 @llvm.udiv.fix.sat.i4(i4 6, i4 2, i32 0)  ; %res = 3 (6 / 2 = 3)
15324      %res = call i4 @llvm.udiv.fix.sat.i4(i4 6, i4 4, i32 1)  ; %res = 3 (3 / 2 = 1.5)
15325
15326      ; The result in the following could be rounded down to 0.5 or up to 1
15327      %res = call i4 @llvm.udiv.fix.sat.i4(i4 3, i4 4, i32 1)  ; %res = 1 (or 2) (1.5 / 2 = 0.75)
15328
15329      ; Saturation
15330      %res = call i4 @llvm.udiv.fix.sat.i4(i4 8, i4 2, i32 2)  ; %res = 15 (2 / 0.5 = 4 => 3.75)
15331
15332
15333Specialised Arithmetic Intrinsics
15334---------------------------------
15335
15336.. _i_intr_llvm_canonicalize:
15337
15338'``llvm.canonicalize.*``' Intrinsic
15339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15340
15341Syntax:
15342"""""""
15343
15344::
15345
15346      declare float @llvm.canonicalize.f32(float %a)
15347      declare double @llvm.canonicalize.f64(double %b)
15348
15349Overview:
15350"""""""""
15351
15352The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
15353encoding of a floating-point number. This canonicalization is useful for
15354implementing certain numeric primitives such as frexp. The canonical encoding is
15355defined by IEEE-754-2008 to be:
15356
15357::
15358
15359      2.1.8 canonical encoding: The preferred encoding of a floating-point
15360      representation in a format. Applied to declets, significands of finite
15361      numbers, infinities, and NaNs, especially in decimal formats.
15362
15363This operation can also be considered equivalent to the IEEE-754-2008
15364conversion of a floating-point value to the same format. NaNs are handled
15365according to section 6.2.
15366
15367Examples of non-canonical encodings:
15368
15369- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
15370  converted to a canonical representation per hardware-specific protocol.
15371- Many normal decimal floating-point numbers have non-canonical alternative
15372  encodings.
15373- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
15374  These are treated as non-canonical encodings of zero and will be flushed to
15375  a zero of the same sign by this operation.
15376
15377Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
15378default exception handling must signal an invalid exception, and produce a
15379quiet NaN result.
15380
15381This function should always be implementable as multiplication by 1.0, provided
15382that the compiler does not constant fold the operation. Likewise, division by
153831.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
15384-0.0 is also sufficient provided that the rounding mode is not -Infinity.
15385
15386``@llvm.canonicalize`` must preserve the equality relation. That is:
15387
15388- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
15389- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
15390  to ``(x == y)``
15391
15392Additionally, the sign of zero must be conserved:
15393``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
15394
15395The payload bits of a NaN must be conserved, with two exceptions.
15396First, environments which use only a single canonical representation of NaN
15397must perform said canonicalization. Second, SNaNs must be quieted per the
15398usual methods.
15399
15400The canonicalization operation may be optimized away if:
15401
15402- The input is known to be canonical. For example, it was produced by a
15403  floating-point operation that is required by the standard to be canonical.
15404- The result is consumed only by (or fused with) other floating-point
15405  operations. That is, the bits of the floating-point value are not examined.
15406
15407'``llvm.fmuladd.*``' Intrinsic
15408^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15409
15410Syntax:
15411"""""""
15412
15413::
15414
15415      declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
15416      declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
15417
15418Overview:
15419"""""""""
15420
15421The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
15422expressions that can be fused if the code generator determines that (a) the
15423target instruction set has support for a fused operation, and (b) that the
15424fused operation is more efficient than the equivalent, separate pair of mul
15425and add instructions.
15426
15427Arguments:
15428""""""""""
15429
15430The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
15431multiplicands, a and b, and an addend c.
15432
15433Semantics:
15434""""""""""
15435
15436The expression:
15437
15438::
15439
15440      %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
15441
15442is equivalent to the expression a \* b + c, except that it is unspecified
15443whether rounding will be performed between the multiplication and addition
15444steps. Fusion is not guaranteed, even if the target platform supports it.
15445If a fused multiply-add is required, the corresponding
15446:ref:`llvm.fma <int_fma>` intrinsic function should be used instead.
15447This never sets errno, just as '``llvm.fma.*``'.
15448
15449Examples:
15450"""""""""
15451
15452.. code-block:: llvm
15453
15454      %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
15455
15456
15457Hardware-Loop Intrinsics
15458------------------------
15459
15460LLVM support several intrinsics to mark a loop as a hardware-loop. They are
15461hints to the backend which are required to lower these intrinsics further to target
15462specific instructions, or revert the hardware-loop to a normal loop if target
15463specific restriction are not met and a hardware-loop can't be generated.
15464
15465These intrinsics may be modified in the future and are not intended to be used
15466outside the backend. Thus, front-end and mid-level optimizations should not be
15467generating these intrinsics.
15468
15469
15470'``llvm.set.loop.iterations.*``' Intrinsic
15471^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15472
15473Syntax:
15474"""""""
15475
15476This is an overloaded intrinsic.
15477
15478::
15479
15480      declare void @llvm.set.loop.iterations.i32(i32)
15481      declare void @llvm.set.loop.iterations.i64(i64)
15482
15483Overview:
15484"""""""""
15485
15486The '``llvm.set.loop.iterations.*``' intrinsics are used to specify the
15487hardware-loop trip count. They are placed in the loop preheader basic block and
15488are marked as ``IntrNoDuplicate`` to avoid optimizers duplicating these
15489instructions.
15490
15491Arguments:
15492""""""""""
15493
15494The integer operand is the loop trip count of the hardware-loop, and thus
15495not e.g. the loop back-edge taken count.
15496
15497Semantics:
15498""""""""""
15499
15500The '``llvm.set.loop.iterations.*``' intrinsics do not perform any arithmetic
15501on their operand. It's a hint to the backend that can use this to set up the
15502hardware-loop count with a target specific instruction, usually a move of this
15503value to a special register or a hardware-loop instruction.
15504
15505
15506'``llvm.start.loop.iterations.*``' Intrinsic
15507^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15508
15509Syntax:
15510"""""""
15511
15512This is an overloaded intrinsic.
15513
15514::
15515
15516      declare i32 @llvm.start.loop.iterations.i32(i32)
15517      declare i64 @llvm.start.loop.iterations.i64(i64)
15518
15519Overview:
15520"""""""""
15521
15522The '``llvm.start.loop.iterations.*``' intrinsics are similar to the
15523'``llvm.set.loop.iterations.*``' intrinsics, used to specify the
15524hardware-loop trip count but also produce a value identical to the input
15525that can be used as the input to the loop. They are placed in the loop
15526preheader basic block and the output is expected to be the input to the
15527phi for the induction variable of the loop, decremented by the
15528'``llvm.loop.decrement.reg.*``'.
15529
15530Arguments:
15531""""""""""
15532
15533The integer operand is the loop trip count of the hardware-loop, and thus
15534not e.g. the loop back-edge taken count.
15535
15536Semantics:
15537""""""""""
15538
15539The '``llvm.start.loop.iterations.*``' intrinsics do not perform any arithmetic
15540on their operand. It's a hint to the backend that can use this to set up the
15541hardware-loop count with a target specific instruction, usually a move of this
15542value to a special register or a hardware-loop instruction.
15543
15544'``llvm.test.set.loop.iterations.*``' Intrinsic
15545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15546
15547Syntax:
15548"""""""
15549
15550This is an overloaded intrinsic.
15551
15552::
15553
15554      declare i1 @llvm.test.set.loop.iterations.i32(i32)
15555      declare i1 @llvm.test.set.loop.iterations.i64(i64)
15556
15557Overview:
15558"""""""""
15559
15560The '``llvm.test.set.loop.iterations.*``' intrinsics are used to specify the
15561the loop trip count, and also test that the given count is not zero, allowing
15562it to control entry to a while-loop.  They are placed in the loop preheader's
15563predecessor basic block, and are marked as ``IntrNoDuplicate`` to avoid
15564optimizers duplicating these instructions.
15565
15566Arguments:
15567""""""""""
15568
15569The integer operand is the loop trip count of the hardware-loop, and thus
15570not e.g. the loop back-edge taken count.
15571
15572Semantics:
15573""""""""""
15574
15575The '``llvm.test.set.loop.iterations.*``' intrinsics do not perform any
15576arithmetic on their operand. It's a hint to the backend that can use this to
15577set up the hardware-loop count with a target specific instruction, usually a
15578move of this value to a special register or a hardware-loop instruction.
15579The result is the conditional value of whether the given count is not zero.
15580
15581'``llvm.loop.decrement.reg.*``' Intrinsic
15582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15583
15584Syntax:
15585"""""""
15586
15587This is an overloaded intrinsic.
15588
15589::
15590
15591      declare i32 @llvm.loop.decrement.reg.i32(i32, i32)
15592      declare i64 @llvm.loop.decrement.reg.i64(i64, i64)
15593
15594Overview:
15595"""""""""
15596
15597The '``llvm.loop.decrement.reg.*``' intrinsics are used to lower the loop
15598iteration counter and return an updated value that will be used in the next
15599loop test check.
15600
15601Arguments:
15602""""""""""
15603
15604Both arguments must have identical integer types. The first operand is the
15605loop iteration counter. The second operand is the maximum number of elements
15606processed in an iteration.
15607
15608Semantics:
15609""""""""""
15610
15611The '``llvm.loop.decrement.reg.*``' intrinsics do an integer ``SUB`` of its
15612two operands, which is not allowed to wrap. They return the remaining number of
15613iterations still to be executed, and can be used together with a ``PHI``,
15614``ICMP`` and ``BR`` to control the number of loop iterations executed. Any
15615optimisations are allowed to treat it is a ``SUB``, and it is supported by
15616SCEV, so it's the backends responsibility to handle cases where it may be
15617optimised. These intrinsics are marked as ``IntrNoDuplicate`` to avoid
15618optimizers duplicating these instructions.
15619
15620
15621'``llvm.loop.decrement.*``' Intrinsic
15622^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15623
15624Syntax:
15625"""""""
15626
15627This is an overloaded intrinsic.
15628
15629::
15630
15631      declare i1 @llvm.loop.decrement.i32(i32)
15632      declare i1 @llvm.loop.decrement.i64(i64)
15633
15634Overview:
15635"""""""""
15636
15637The HardwareLoops pass allows the loop decrement value to be specified with an
15638option. It defaults to a loop decrement value of 1, but it can be an unsigned
15639integer value provided by this option.  The '``llvm.loop.decrement.*``'
15640intrinsics decrement the loop iteration counter with this value, and return a
15641false predicate if the loop should exit, and true otherwise.
15642This is emitted if the loop counter is not updated via a ``PHI`` node, which
15643can also be controlled with an option.
15644
15645Arguments:
15646""""""""""
15647
15648The integer argument is the loop decrement value used to decrement the loop
15649iteration counter.
15650
15651Semantics:
15652""""""""""
15653
15654The '``llvm.loop.decrement.*``' intrinsics do a ``SUB`` of the loop iteration
15655counter with the given loop decrement value, and return false if the loop
15656should exit, this ``SUB`` is not allowed to wrap. The result is a condition
15657that is used by the conditional branch controlling the loop.
15658
15659
15660Vector Reduction Intrinsics
15661---------------------------
15662
15663Horizontal reductions of vectors can be expressed using the following
15664intrinsics. Each one takes a vector operand as an input and applies its
15665respective operation across all elements of the vector, returning a single
15666scalar result of the same element type.
15667
15668
15669'``llvm.vector.reduce.add.*``' Intrinsic
15670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15671
15672Syntax:
15673"""""""
15674
15675::
15676
15677      declare i32 @llvm.vector.reduce.add.v4i32(<4 x i32> %a)
15678      declare i64 @llvm.vector.reduce.add.v2i64(<2 x i64> %a)
15679
15680Overview:
15681"""""""""
15682
15683The '``llvm.vector.reduce.add.*``' intrinsics do an integer ``ADD``
15684reduction of a vector, returning the result as a scalar. The return type matches
15685the element-type of the vector input.
15686
15687Arguments:
15688""""""""""
15689The argument to this intrinsic must be a vector of integer values.
15690
15691'``llvm.vector.reduce.fadd.*``' Intrinsic
15692^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15693
15694Syntax:
15695"""""""
15696
15697::
15698
15699      declare float @llvm.vector.reduce.fadd.v4f32(float %start_value, <4 x float> %a)
15700      declare double @llvm.vector.reduce.fadd.v2f64(double %start_value, <2 x double> %a)
15701
15702Overview:
15703"""""""""
15704
15705The '``llvm.vector.reduce.fadd.*``' intrinsics do a floating-point
15706``ADD`` reduction of a vector, returning the result as a scalar. The return type
15707matches the element-type of the vector input.
15708
15709If the intrinsic call has the 'reassoc' flag set, then the reduction will not
15710preserve the associativity of an equivalent scalarized counterpart. Otherwise
15711the reduction will be *sequential*, thus implying that the operation respects
15712the associativity of a scalarized reduction. That is, the reduction begins with
15713the start value and performs an fadd operation with consecutively increasing
15714vector element indices. See the following pseudocode:
15715
15716::
15717
15718    float sequential_fadd(start_value, input_vector)
15719      result = start_value
15720      for i = 0 to length(input_vector)
15721        result = result + input_vector[i]
15722      return result
15723
15724
15725Arguments:
15726""""""""""
15727The first argument to this intrinsic is a scalar start value for the reduction.
15728The type of the start value matches the element-type of the vector input.
15729The second argument must be a vector of floating-point values.
15730
15731To ignore the start value, negative zero (``-0.0``) can be used, as it is
15732the neutral value of floating point addition.
15733
15734Examples:
15735"""""""""
15736
15737::
15738
15739      %unord = call reassoc float @llvm.vector.reduce.fadd.v4f32(float -0.0, <4 x float> %input) ; relaxed reduction
15740      %ord = call float @llvm.vector.reduce.fadd.v4f32(float %start_value, <4 x float> %input) ; sequential reduction
15741
15742
15743'``llvm.vector.reduce.mul.*``' Intrinsic
15744^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15745
15746Syntax:
15747"""""""
15748
15749::
15750
15751      declare i32 @llvm.vector.reduce.mul.v4i32(<4 x i32> %a)
15752      declare i64 @llvm.vector.reduce.mul.v2i64(<2 x i64> %a)
15753
15754Overview:
15755"""""""""
15756
15757The '``llvm.vector.reduce.mul.*``' intrinsics do an integer ``MUL``
15758reduction of a vector, returning the result as a scalar. The return type matches
15759the element-type of the vector input.
15760
15761Arguments:
15762""""""""""
15763The argument to this intrinsic must be a vector of integer values.
15764
15765'``llvm.vector.reduce.fmul.*``' Intrinsic
15766^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15767
15768Syntax:
15769"""""""
15770
15771::
15772
15773      declare float @llvm.vector.reduce.fmul.v4f32(float %start_value, <4 x float> %a)
15774      declare double @llvm.vector.reduce.fmul.v2f64(double %start_value, <2 x double> %a)
15775
15776Overview:
15777"""""""""
15778
15779The '``llvm.vector.reduce.fmul.*``' intrinsics do a floating-point
15780``MUL`` reduction of a vector, returning the result as a scalar. The return type
15781matches the element-type of the vector input.
15782
15783If the intrinsic call has the 'reassoc' flag set, then the reduction will not
15784preserve the associativity of an equivalent scalarized counterpart. Otherwise
15785the reduction will be *sequential*, thus implying that the operation respects
15786the associativity of a scalarized reduction. That is, the reduction begins with
15787the start value and performs an fmul operation with consecutively increasing
15788vector element indices. See the following pseudocode:
15789
15790::
15791
15792    float sequential_fmul(start_value, input_vector)
15793      result = start_value
15794      for i = 0 to length(input_vector)
15795        result = result * input_vector[i]
15796      return result
15797
15798
15799Arguments:
15800""""""""""
15801The first argument to this intrinsic is a scalar start value for the reduction.
15802The type of the start value matches the element-type of the vector input.
15803The second argument must be a vector of floating-point values.
15804
15805To ignore the start value, one (``1.0``) can be used, as it is the neutral
15806value of floating point multiplication.
15807
15808Examples:
15809"""""""""
15810
15811::
15812
15813      %unord = call reassoc float @llvm.vector.reduce.fmul.v4f32(float 1.0, <4 x float> %input) ; relaxed reduction
15814      %ord = call float @llvm.vector.reduce.fmul.v4f32(float %start_value, <4 x float> %input) ; sequential reduction
15815
15816'``llvm.vector.reduce.and.*``' Intrinsic
15817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15818
15819Syntax:
15820"""""""
15821
15822::
15823
15824      declare i32 @llvm.vector.reduce.and.v4i32(<4 x i32> %a)
15825
15826Overview:
15827"""""""""
15828
15829The '``llvm.vector.reduce.and.*``' intrinsics do a bitwise ``AND``
15830reduction of a vector, returning the result as a scalar. The return type matches
15831the element-type of the vector input.
15832
15833Arguments:
15834""""""""""
15835The argument to this intrinsic must be a vector of integer values.
15836
15837'``llvm.vector.reduce.or.*``' Intrinsic
15838^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15839
15840Syntax:
15841"""""""
15842
15843::
15844
15845      declare i32 @llvm.vector.reduce.or.v4i32(<4 x i32> %a)
15846
15847Overview:
15848"""""""""
15849
15850The '``llvm.vector.reduce.or.*``' intrinsics do a bitwise ``OR`` reduction
15851of a vector, returning the result as a scalar. The return type matches the
15852element-type of the vector input.
15853
15854Arguments:
15855""""""""""
15856The argument to this intrinsic must be a vector of integer values.
15857
15858'``llvm.vector.reduce.xor.*``' Intrinsic
15859^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15860
15861Syntax:
15862"""""""
15863
15864::
15865
15866      declare i32 @llvm.vector.reduce.xor.v4i32(<4 x i32> %a)
15867
15868Overview:
15869"""""""""
15870
15871The '``llvm.vector.reduce.xor.*``' intrinsics do a bitwise ``XOR``
15872reduction of a vector, returning the result as a scalar. The return type matches
15873the element-type of the vector input.
15874
15875Arguments:
15876""""""""""
15877The argument to this intrinsic must be a vector of integer values.
15878
15879'``llvm.vector.reduce.smax.*``' Intrinsic
15880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15881
15882Syntax:
15883"""""""
15884
15885::
15886
15887      declare i32 @llvm.vector.reduce.smax.v4i32(<4 x i32> %a)
15888
15889Overview:
15890"""""""""
15891
15892The '``llvm.vector.reduce.smax.*``' intrinsics do a signed integer
15893``MAX`` reduction of a vector, returning the result as a scalar. The return type
15894matches the element-type of the vector input.
15895
15896Arguments:
15897""""""""""
15898The argument to this intrinsic must be a vector of integer values.
15899
15900'``llvm.vector.reduce.smin.*``' Intrinsic
15901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15902
15903Syntax:
15904"""""""
15905
15906::
15907
15908      declare i32 @llvm.vector.reduce.smin.v4i32(<4 x i32> %a)
15909
15910Overview:
15911"""""""""
15912
15913The '``llvm.vector.reduce.smin.*``' intrinsics do a signed integer
15914``MIN`` reduction of a vector, returning the result as a scalar. The return type
15915matches the element-type of the vector input.
15916
15917Arguments:
15918""""""""""
15919The argument to this intrinsic must be a vector of integer values.
15920
15921'``llvm.vector.reduce.umax.*``' Intrinsic
15922^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15923
15924Syntax:
15925"""""""
15926
15927::
15928
15929      declare i32 @llvm.vector.reduce.umax.v4i32(<4 x i32> %a)
15930
15931Overview:
15932"""""""""
15933
15934The '``llvm.vector.reduce.umax.*``' intrinsics do an unsigned
15935integer ``MAX`` reduction of a vector, returning the result as a scalar. The
15936return type matches the element-type of the vector input.
15937
15938Arguments:
15939""""""""""
15940The argument to this intrinsic must be a vector of integer values.
15941
15942'``llvm.vector.reduce.umin.*``' Intrinsic
15943^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15944
15945Syntax:
15946"""""""
15947
15948::
15949
15950      declare i32 @llvm.vector.reduce.umin.v4i32(<4 x i32> %a)
15951
15952Overview:
15953"""""""""
15954
15955The '``llvm.vector.reduce.umin.*``' intrinsics do an unsigned
15956integer ``MIN`` reduction of a vector, returning the result as a scalar. The
15957return type matches the element-type of the vector input.
15958
15959Arguments:
15960""""""""""
15961The argument to this intrinsic must be a vector of integer values.
15962
15963'``llvm.vector.reduce.fmax.*``' Intrinsic
15964^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15965
15966Syntax:
15967"""""""
15968
15969::
15970
15971      declare float @llvm.vector.reduce.fmax.v4f32(<4 x float> %a)
15972      declare double @llvm.vector.reduce.fmax.v2f64(<2 x double> %a)
15973
15974Overview:
15975"""""""""
15976
15977The '``llvm.vector.reduce.fmax.*``' intrinsics do a floating-point
15978``MAX`` reduction of a vector, returning the result as a scalar. The return type
15979matches the element-type of the vector input.
15980
15981This instruction has the same comparison semantics as the '``llvm.maxnum.*``'
15982intrinsic. That is, the result will always be a number unless all elements of
15983the vector are NaN. For a vector with maximum element magnitude 0.0 and
15984containing both +0.0 and -0.0 elements, the sign of the result is unspecified.
15985
15986If the intrinsic call has the ``nnan`` fast-math flag, then the operation can
15987assume that NaNs are not present in the input vector.
15988
15989Arguments:
15990""""""""""
15991The argument to this intrinsic must be a vector of floating-point values.
15992
15993'``llvm.vector.reduce.fmin.*``' Intrinsic
15994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
15995
15996Syntax:
15997"""""""
15998This is an overloaded intrinsic.
15999
16000::
16001
16002      declare float @llvm.vector.reduce.fmin.v4f32(<4 x float> %a)
16003      declare double @llvm.vector.reduce.fmin.v2f64(<2 x double> %a)
16004
16005Overview:
16006"""""""""
16007
16008The '``llvm.vector.reduce.fmin.*``' intrinsics do a floating-point
16009``MIN`` reduction of a vector, returning the result as a scalar. The return type
16010matches the element-type of the vector input.
16011
16012This instruction has the same comparison semantics as the '``llvm.minnum.*``'
16013intrinsic. That is, the result will always be a number unless all elements of
16014the vector are NaN. For a vector with minimum element magnitude 0.0 and
16015containing both +0.0 and -0.0 elements, the sign of the result is unspecified.
16016
16017If the intrinsic call has the ``nnan`` fast-math flag, then the operation can
16018assume that NaNs are not present in the input vector.
16019
16020Arguments:
16021""""""""""
16022The argument to this intrinsic must be a vector of floating-point values.
16023
16024Matrix Intrinsics
16025-----------------
16026
16027Operations on matrixes requiring shape information (like number of rows/columns
16028or the memory layout) can be expressed using the matrix intrinsics. These
16029intrinsics require matrix dimensions to be passed as immediate arguments, and
16030matrixes are passed and returned as vectors. This means that for a ``R`` x
16031``C`` matrix, element ``i`` of column ``j`` is at index ``j * R + i`` in the
16032corresponding vector, with indices starting at 0. Currently column-major layout
16033is assumed.  The intrinsics support both integer and floating point matrixes.
16034
16035
16036'``llvm.matrix.transpose.*``' Intrinsic
16037^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16038
16039Syntax:
16040"""""""
16041This is an overloaded intrinsic.
16042
16043::
16044
16045      declare vectorty @llvm.matrix.transpose.*(vectorty %In, i32 <Rows>, i32 <Cols>)
16046
16047Overview:
16048"""""""""
16049
16050The '``llvm.matrix.transpose.*``' intrinsics treat ``%In`` as a ``<Rows> x
16051<Cols>`` matrix and return the transposed matrix in the result vector.
16052
16053Arguments:
16054""""""""""
16055
16056The first argument ``%In`` is a vector that corresponds to a ``<Rows> x
16057<Cols>`` matrix. Thus, arguments ``<Rows>`` and ``<Cols>`` correspond to the
16058number of rows and columns, respectively, and must be positive, constant
16059integers. The returned vector must have ``<Rows> * <Cols>`` elements, and have
16060the same float or integer element type as ``%In``.
16061
16062'``llvm.matrix.multiply.*``' Intrinsic
16063^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16064
16065Syntax:
16066"""""""
16067This is an overloaded intrinsic.
16068
16069::
16070
16071      declare vectorty @llvm.matrix.multiply.*(vectorty %A, vectorty %B, i32 <OuterRows>, i32 <Inner>, i32 <OuterColumns>)
16072
16073Overview:
16074"""""""""
16075
16076The '``llvm.matrix.multiply.*``' intrinsics treat ``%A`` as a ``<OuterRows> x
16077<Inner>`` matrix, ``%B`` as a ``<Inner> x <OuterColumns>`` matrix, and
16078multiplies them. The result matrix is returned in the result vector.
16079
16080Arguments:
16081""""""""""
16082
16083The first vector argument ``%A`` corresponds to a matrix with ``<OuterRows> *
16084<Inner>`` elements, and the second argument ``%B`` to a matrix with
16085``<Inner> * <OuterColumns>`` elements. Arguments ``<OuterRows>``,
16086``<Inner>`` and ``<OuterColumns>`` must be positive, constant integers. The
16087returned vector must have ``<OuterRows> * <OuterColumns>`` elements.
16088Vectors ``%A``, ``%B``, and the returned vector all have the same float or
16089integer element type.
16090
16091
16092'``llvm.matrix.column.major.load.*``' Intrinsic
16093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16094
16095Syntax:
16096"""""""
16097This is an overloaded intrinsic.
16098
16099::
16100
16101      declare vectorty @llvm.matrix.column.major.load.*(
16102          ptrty %Ptr, i64 %Stride, i1 <IsVolatile>, i32 <Rows>, i32 <Cols>)
16103
16104Overview:
16105"""""""""
16106
16107The '``llvm.matrix.column.major.load.*``' intrinsics load a ``<Rows> x <Cols>``
16108matrix using a stride of ``%Stride`` to compute the start address of the
16109different columns.  This allows for convenient loading of sub matrixes. If
16110``<IsVolatile>`` is true, the intrinsic is considered a :ref:`volatile memory
16111access <volatile>`. The result matrix is returned in the result vector. If the
16112``%Ptr`` argument is known to be aligned to some boundary, this can be
16113specified as an attribute on the argument.
16114
16115Arguments:
16116""""""""""
16117
16118The first argument ``%Ptr`` is a pointer type to the returned vector type, and
16119corresponds to the start address to load from. The second argument ``%Stride``
16120is a positive, constant integer with ``%Stride >= <Rows>``. ``%Stride`` is used
16121to compute the column memory addresses. I.e., for a column ``C``, its start
16122memory addresses is calculated with ``%Ptr + C * %Stride``. The third Argument
16123``<IsVolatile>`` is a boolean value.  The fourth and fifth arguments,
16124``<Rows>`` and ``<Cols>``, correspond to the number of rows and columns,
16125respectively, and must be positive, constant integers. The returned vector must
16126have ``<Rows> * <Cols>`` elements.
16127
16128The :ref:`align <attr_align>` parameter attribute can be provided for the
16129``%Ptr`` arguments.
16130
16131
16132'``llvm.matrix.column.major.store.*``' Intrinsic
16133^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16134
16135Syntax:
16136"""""""
16137
16138::
16139
16140      declare void @llvm.matrix.column.major.store.*(
16141          vectorty %In, ptrty %Ptr, i64 %Stride, i1 <IsVolatile>, i32 <Rows>, i32 <Cols>)
16142
16143Overview:
16144"""""""""
16145
16146The '``llvm.matrix.column.major.store.*``' intrinsics store the ``<Rows> x
16147<Cols>`` matrix in ``%In`` to memory using a stride of ``%Stride`` between
16148columns.  If ``<IsVolatile>`` is true, the intrinsic is considered a
16149:ref:`volatile memory access <volatile>`.
16150
16151If the ``%Ptr`` argument is known to be aligned to some boundary, this can be
16152specified as an attribute on the argument.
16153
16154Arguments:
16155""""""""""
16156
16157The first argument ``%In`` is a vector that corresponds to a ``<Rows> x
16158<Cols>`` matrix to be stored to memory. The second argument ``%Ptr`` is a
16159pointer to the vector type of ``%In``, and is the start address of the matrix
16160in memory. The third argument ``%Stride`` is a positive, constant integer with
16161``%Stride >= <Rows>``.  ``%Stride`` is used to compute the column memory
16162addresses. I.e., for a column ``C``, its start memory addresses is calculated
16163with ``%Ptr + C * %Stride``.  The fourth argument ``<IsVolatile>`` is a boolean
16164value. The arguments ``<Rows>`` and ``<Cols>`` correspond to the number of rows
16165and columns, respectively, and must be positive, constant integers.
16166
16167The :ref:`align <attr_align>` parameter attribute can be provided
16168for the ``%Ptr`` arguments.
16169
16170
16171Half Precision Floating-Point Intrinsics
16172----------------------------------------
16173
16174For most target platforms, half precision floating-point is a
16175storage-only format. This means that it is a dense encoding (in memory)
16176but does not support computation in the format.
16177
16178This means that code must first load the half-precision floating-point
16179value as an i16, then convert it to float with
16180:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
16181then be performed on the float value (including extending to double
16182etc). To store the value back to memory, it is first converted to float
16183if needed, then converted to i16 with
16184:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
16185i16 value.
16186
16187.. _int_convert_to_fp16:
16188
16189'``llvm.convert.to.fp16``' Intrinsic
16190^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16191
16192Syntax:
16193"""""""
16194
16195::
16196
16197      declare i16 @llvm.convert.to.fp16.f32(float %a)
16198      declare i16 @llvm.convert.to.fp16.f64(double %a)
16199
16200Overview:
16201"""""""""
16202
16203The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
16204conventional floating-point type to half precision floating-point format.
16205
16206Arguments:
16207""""""""""
16208
16209The intrinsic function contains single argument - the value to be
16210converted.
16211
16212Semantics:
16213""""""""""
16214
16215The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
16216conventional floating-point format to half precision floating-point format. The
16217return value is an ``i16`` which contains the converted number.
16218
16219Examples:
16220"""""""""
16221
16222.. code-block:: llvm
16223
16224      %res = call i16 @llvm.convert.to.fp16.f32(float %a)
16225      store i16 %res, i16* @x, align 2
16226
16227.. _int_convert_from_fp16:
16228
16229'``llvm.convert.from.fp16``' Intrinsic
16230^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16231
16232Syntax:
16233"""""""
16234
16235::
16236
16237      declare float @llvm.convert.from.fp16.f32(i16 %a)
16238      declare double @llvm.convert.from.fp16.f64(i16 %a)
16239
16240Overview:
16241"""""""""
16242
16243The '``llvm.convert.from.fp16``' intrinsic function performs a
16244conversion from half precision floating-point format to single precision
16245floating-point format.
16246
16247Arguments:
16248""""""""""
16249
16250The intrinsic function contains single argument - the value to be
16251converted.
16252
16253Semantics:
16254""""""""""
16255
16256The '``llvm.convert.from.fp16``' intrinsic function performs a
16257conversion from half single precision floating-point format to single
16258precision floating-point format. The input half-float value is
16259represented by an ``i16`` value.
16260
16261Examples:
16262"""""""""
16263
16264.. code-block:: llvm
16265
16266      %a = load i16, i16* @x, align 2
16267      %res = call float @llvm.convert.from.fp16(i16 %a)
16268
16269.. _dbg_intrinsics:
16270
16271Debugger Intrinsics
16272-------------------
16273
16274The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
16275prefix), are described in the `LLVM Source Level
16276Debugging <SourceLevelDebugging.html#format-common-intrinsics>`_
16277document.
16278
16279Exception Handling Intrinsics
16280-----------------------------
16281
16282The LLVM exception handling intrinsics (which all start with
16283``llvm.eh.`` prefix), are described in the `LLVM Exception
16284Handling <ExceptionHandling.html#format-common-intrinsics>`_ document.
16285
16286.. _int_trampoline:
16287
16288Trampoline Intrinsics
16289---------------------
16290
16291These intrinsics make it possible to excise one parameter, marked with
16292the :ref:`nest <nest>` attribute, from a function. The result is a
16293callable function pointer lacking the nest parameter - the caller does
16294not need to provide a value for it. Instead, the value to use is stored
16295in advance in a "trampoline", a block of memory usually allocated on the
16296stack, which also contains code to splice the nest value into the
16297argument list. This is used to implement the GCC nested function address
16298extension.
16299
16300For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
16301then the resulting function pointer has signature ``i32 (i32, i32)*``.
16302It can be created as follows:
16303
16304.. code-block:: llvm
16305
16306      %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
16307      %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
16308      call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
16309      %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
16310      %fp = bitcast i8* %p to i32 (i32, i32)*
16311
16312The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
16313``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
16314
16315.. _int_it:
16316
16317'``llvm.init.trampoline``' Intrinsic
16318^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16319
16320Syntax:
16321"""""""
16322
16323::
16324
16325      declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
16326
16327Overview:
16328"""""""""
16329
16330This fills the memory pointed to by ``tramp`` with executable code,
16331turning it into a trampoline.
16332
16333Arguments:
16334""""""""""
16335
16336The ``llvm.init.trampoline`` intrinsic takes three arguments, all
16337pointers. The ``tramp`` argument must point to a sufficiently large and
16338sufficiently aligned block of memory; this memory is written to by the
16339intrinsic. Note that the size and the alignment are target-specific -
16340LLVM currently provides no portable way of determining them, so a
16341front-end that generates this intrinsic needs to have some
16342target-specific knowledge. The ``func`` argument must hold a function
16343bitcast to an ``i8*``.
16344
16345Semantics:
16346""""""""""
16347
16348The block of memory pointed to by ``tramp`` is filled with target
16349dependent code, turning it into a function. Then ``tramp`` needs to be
16350passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
16351be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
16352function's signature is the same as that of ``func`` with any arguments
16353marked with the ``nest`` attribute removed. At most one such ``nest``
16354argument is allowed, and it must be of pointer type. Calling the new
16355function is equivalent to calling ``func`` with the same argument list,
16356but with ``nval`` used for the missing ``nest`` argument. If, after
16357calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
16358modified, then the effect of any later call to the returned function
16359pointer is undefined.
16360
16361.. _int_at:
16362
16363'``llvm.adjust.trampoline``' Intrinsic
16364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16365
16366Syntax:
16367"""""""
16368
16369::
16370
16371      declare i8* @llvm.adjust.trampoline(i8* <tramp>)
16372
16373Overview:
16374"""""""""
16375
16376This performs any required machine-specific adjustment to the address of
16377a trampoline (passed as ``tramp``).
16378
16379Arguments:
16380""""""""""
16381
16382``tramp`` must point to a block of memory which already has trampoline
16383code filled in by a previous call to
16384:ref:`llvm.init.trampoline <int_it>`.
16385
16386Semantics:
16387""""""""""
16388
16389On some architectures the address of the code to be executed needs to be
16390different than the address where the trampoline is actually stored. This
16391intrinsic returns the executable address corresponding to ``tramp``
16392after performing the required machine specific adjustments. The pointer
16393returned can then be :ref:`bitcast and executed <int_trampoline>`.
16394
16395
16396.. _int_vp:
16397
16398Vector Predication Intrinsics
16399-----------------------------
16400VP intrinsics are intended for predicated SIMD/vector code.  A typical VP
16401operation takes a vector mask and an explicit vector length parameter as in:
16402
16403::
16404
16405      <W x T> llvm.vp.<opcode>.*(<W x T> %x, <W x T> %y, <W x i1> %mask, i32 %evl)
16406
16407The vector mask parameter (%mask) always has a vector of `i1` type, for example
16408`<32 x i1>`.  The explicit vector length parameter always has the type `i32` and
16409is an unsigned integer value.  The explicit vector length parameter (%evl) is in
16410the range:
16411
16412::
16413
16414      0 <= %evl <= W,  where W is the number of vector elements
16415
16416Note that for :ref:`scalable vector types <t_vector>` ``W`` is the runtime
16417length of the vector.
16418
16419The VP intrinsic has undefined behavior if ``%evl > W``.  The explicit vector
16420length (%evl) creates a mask, %EVLmask, with all elements ``0 <= i < %evl`` set
16421to True, and all other lanes ``%evl <= i < W`` to False.  A new mask %M is
16422calculated with an element-wise AND from %mask and %EVLmask:
16423
16424::
16425
16426      M = %mask AND %EVLmask
16427
16428A vector operation ``<opcode>`` on vectors ``A`` and ``B`` calculates:
16429
16430::
16431
16432       A <opcode> B =  {  A[i] <opcode> B[i]   M[i] = True, and
16433                       {  undef otherwise
16434
16435Optimization Hint
16436^^^^^^^^^^^^^^^^^
16437
16438Some targets, such as AVX512, do not support the %evl parameter in hardware.
16439The use of an effective %evl is discouraged for those targets.  The function
16440``TargetTransformInfo::hasActiveVectorLength()`` returns true when the target
16441has native support for %evl.
16442
16443
16444.. _int_vp_add:
16445
16446'``llvm.vp.add.*``' Intrinsics
16447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16448
16449Syntax:
16450"""""""
16451This is an overloaded intrinsic.
16452
16453::
16454
16455      declare <16 x i32>  @llvm.vp.add.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
16456      declare <vscale x 4 x i32>  @llvm.vp.add.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
16457      declare <256 x i64>  @llvm.vp.add.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
16458
16459Overview:
16460"""""""""
16461
16462Predicated integer addition of two vectors of integers.
16463
16464
16465Arguments:
16466""""""""""
16467
16468The first two operands and the result have the same vector of integer type. The
16469third operand is the vector mask and has the same number of elements as the
16470result vector type. The fourth operand is the explicit vector length of the
16471operation.
16472
16473Semantics:
16474""""""""""
16475
16476The '``llvm.vp.add``' intrinsic performs integer addition (:ref:`add <i_add>`)
16477of the first and second vector operand on each enabled lane.  The result on
16478disabled lanes is undefined.
16479
16480Examples:
16481"""""""""
16482
16483.. code-block:: llvm
16484
16485      %r = call <4 x i32> @llvm.vp.add.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
16486      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
16487
16488      %t = add <4 x i32> %a, %b
16489      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> undef
16490
16491.. _int_vp_sub:
16492
16493'``llvm.vp.sub.*``' Intrinsics
16494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16495
16496Syntax:
16497"""""""
16498This is an overloaded intrinsic.
16499
16500::
16501
16502      declare <16 x i32>  @llvm.vp.sub.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
16503      declare <vscale x 4 x i32>  @llvm.vp.sub.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
16504      declare <256 x i64>  @llvm.vp.sub.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
16505
16506Overview:
16507"""""""""
16508
16509Predicated integer subtraction of two vectors of integers.
16510
16511
16512Arguments:
16513""""""""""
16514
16515The first two operands and the result have the same vector of integer type. The
16516third operand is the vector mask and has the same number of elements as the
16517result vector type. The fourth operand is the explicit vector length of the
16518operation.
16519
16520Semantics:
16521""""""""""
16522
16523The '``llvm.vp.sub``' intrinsic performs integer subtraction
16524(:ref:`sub <i_sub>`)  of the first and second vector operand on each enabled
16525lane. The result on disabled lanes is undefined.
16526
16527Examples:
16528"""""""""
16529
16530.. code-block:: llvm
16531
16532      %r = call <4 x i32> @llvm.vp.sub.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
16533      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
16534
16535      %t = sub <4 x i32> %a, %b
16536      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> undef
16537
16538
16539
16540.. _int_vp_mul:
16541
16542'``llvm.vp.mul.*``' Intrinsics
16543^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16544
16545Syntax:
16546"""""""
16547This is an overloaded intrinsic.
16548
16549::
16550
16551      declare <16 x i32>  @llvm.vp.mul.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
16552      declare <vscale x 4 x i32>  @llvm.vp.mul.nxv46i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
16553      declare <256 x i64>  @llvm.vp.mul.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
16554
16555Overview:
16556"""""""""
16557
16558Predicated integer multiplication of two vectors of integers.
16559
16560
16561Arguments:
16562""""""""""
16563
16564The first two operands and the result have the same vector of integer type. The
16565third operand is the vector mask and has the same number of elements as the
16566result vector type. The fourth operand is the explicit vector length of the
16567operation.
16568
16569Semantics:
16570""""""""""
16571The '``llvm.vp.mul``' intrinsic performs integer multiplication
16572(:ref:`mul <i_mul>`) of the first and second vector operand on each enabled
16573lane. The result on disabled lanes is undefined.
16574
16575Examples:
16576"""""""""
16577
16578.. code-block:: llvm
16579
16580      %r = call <4 x i32> @llvm.vp.mul.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
16581      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
16582
16583      %t = mul <4 x i32> %a, %b
16584      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> undef
16585
16586
16587.. _int_vp_sdiv:
16588
16589'``llvm.vp.sdiv.*``' Intrinsics
16590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16591
16592Syntax:
16593"""""""
16594This is an overloaded intrinsic.
16595
16596::
16597
16598      declare <16 x i32>  @llvm.vp.sdiv.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
16599      declare <vscale x 4 x i32>  @llvm.vp.sdiv.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
16600      declare <256 x i64>  @llvm.vp.sdiv.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
16601
16602Overview:
16603"""""""""
16604
16605Predicated, signed division of two vectors of integers.
16606
16607
16608Arguments:
16609""""""""""
16610
16611The first two operands and the result have the same vector of integer type. The
16612third operand is the vector mask and has the same number of elements as the
16613result vector type. The fourth operand is the explicit vector length of the
16614operation.
16615
16616Semantics:
16617""""""""""
16618
16619The '``llvm.vp.sdiv``' intrinsic performs signed division (:ref:`sdiv <i_sdiv>`)
16620of the first and second vector operand on each enabled lane.  The result on
16621disabled lanes is undefined.
16622
16623Examples:
16624"""""""""
16625
16626.. code-block:: llvm
16627
16628      %r = call <4 x i32> @llvm.vp.sdiv.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
16629      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
16630
16631      %t = sdiv <4 x i32> %a, %b
16632      %also.r = select <4 x ii> %mask, <4 x i32> %t, <4 x i32> undef
16633
16634
16635.. _int_vp_udiv:
16636
16637'``llvm.vp.udiv.*``' Intrinsics
16638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16639
16640Syntax:
16641"""""""
16642This is an overloaded intrinsic.
16643
16644::
16645
16646      declare <16 x i32>  @llvm.vp.udiv.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
16647      declare <vscale x 4 x i32>  @llvm.vp.udiv.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
16648      declare <256 x i64>  @llvm.vp.udiv.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
16649
16650Overview:
16651"""""""""
16652
16653Predicated, unsigned division of two vectors of integers.
16654
16655
16656Arguments:
16657""""""""""
16658
16659The first two operands and the result have the same vector of integer type. The third operand is the vector mask and has the same number of elements as the result vector type. The fourth operand is the explicit vector length of the operation.
16660
16661Semantics:
16662""""""""""
16663
16664The '``llvm.vp.udiv``' intrinsic performs unsigned division
16665(:ref:`udiv <i_udiv>`) of the first and second vector operand on each enabled
16666lane. The result on disabled lanes is undefined.
16667
16668Examples:
16669"""""""""
16670
16671.. code-block:: llvm
16672
16673      %r = call <4 x i32> @llvm.vp.udiv.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
16674      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
16675
16676      %t = udiv <4 x i32> %a, %b
16677      %also.r = select <4 x ii> %mask, <4 x i32> %t, <4 x i32> undef
16678
16679
16680
16681.. _int_vp_srem:
16682
16683'``llvm.vp.srem.*``' Intrinsics
16684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16685
16686Syntax:
16687"""""""
16688This is an overloaded intrinsic.
16689
16690::
16691
16692      declare <16 x i32>  @llvm.vp.srem.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
16693      declare <vscale x 4 x i32>  @llvm.vp.srem.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
16694      declare <256 x i64>  @llvm.vp.srem.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
16695
16696Overview:
16697"""""""""
16698
16699Predicated computations of the signed remainder of two integer vectors.
16700
16701
16702Arguments:
16703""""""""""
16704
16705The first two operands and the result have the same vector of integer type. The
16706third operand is the vector mask and has the same number of elements as the
16707result vector type. The fourth operand is the explicit vector length of the
16708operation.
16709
16710Semantics:
16711""""""""""
16712
16713The '``llvm.vp.srem``' intrinsic computes the remainder of the signed division
16714(:ref:`srem <i_srem>`) of the first and second vector operand on each enabled
16715lane.  The result on disabled lanes is undefined.
16716
16717Examples:
16718"""""""""
16719
16720.. code-block:: llvm
16721
16722      %r = call <4 x i32> @llvm.vp.srem.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
16723      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
16724
16725      %t = srem <4 x i32> %a, %b
16726      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> undef
16727
16728
16729
16730.. _int_vp_urem:
16731
16732'``llvm.vp.urem.*``' Intrinsics
16733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16734
16735Syntax:
16736"""""""
16737This is an overloaded intrinsic.
16738
16739::
16740
16741      declare <16 x i32>  @llvm.vp.urem.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
16742      declare <vscale x 4 x i32>  @llvm.vp.urem.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
16743      declare <256 x i64>  @llvm.vp.urem.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
16744
16745Overview:
16746"""""""""
16747
16748Predicated computation of the unsigned remainder of two integer vectors.
16749
16750
16751Arguments:
16752""""""""""
16753
16754The first two operands and the result have the same vector of integer type. The
16755third operand is the vector mask and has the same number of elements as the
16756result vector type. The fourth operand is the explicit vector length of the
16757operation.
16758
16759Semantics:
16760""""""""""
16761
16762The '``llvm.vp.urem``' intrinsic computes the remainder of the unsigned division
16763(:ref:`urem <i_urem>`) of the first and second vector operand on each enabled
16764lane.  The result on disabled lanes is undefined.
16765
16766Examples:
16767"""""""""
16768
16769.. code-block:: llvm
16770
16771      %r = call <4 x i32> @llvm.vp.urem.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
16772      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
16773
16774      %t = urem <4 x i32> %a, %b
16775      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> undef
16776
16777
16778.. _int_vp_ashr:
16779
16780'``llvm.vp.ashr.*``' Intrinsics
16781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16782
16783Syntax:
16784"""""""
16785This is an overloaded intrinsic.
16786
16787::
16788
16789      declare <16 x i32>  @llvm.vp.ashr.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
16790      declare <vscale x 4 x i32>  @llvm.vp.ashr.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
16791      declare <256 x i64>  @llvm.vp.ashr.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
16792
16793Overview:
16794"""""""""
16795
16796Vector-predicated arithmetic right-shift.
16797
16798
16799Arguments:
16800""""""""""
16801
16802The first two operands and the result have the same vector of integer type. The
16803third operand is the vector mask and has the same number of elements as the
16804result vector type. The fourth operand is the explicit vector length of the
16805operation.
16806
16807Semantics:
16808""""""""""
16809
16810The '``llvm.vp.ashr``' intrinsic computes the arithmetic right shift
16811(:ref:`ashr <i_ashr>`) of the first operand by the second operand on each
16812enabled lane. The result on disabled lanes is undefined.
16813
16814Examples:
16815"""""""""
16816
16817.. code-block:: llvm
16818
16819      %r = call <4 x i32> @llvm.vp.ashr.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
16820      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
16821
16822      %t = ashr <4 x i32> %a, %b
16823      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> undef
16824
16825
16826.. _int_vp_lshr:
16827
16828
16829'``llvm.vp.lshr.*``' Intrinsics
16830^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16831
16832Syntax:
16833"""""""
16834This is an overloaded intrinsic.
16835
16836::
16837
16838      declare <16 x i32>  @llvm.vp.lshr.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
16839      declare <vscale x 4 x i32>  @llvm.vp.lshr.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
16840      declare <256 x i64>  @llvm.vp.lshr.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
16841
16842Overview:
16843"""""""""
16844
16845Vector-predicated logical right-shift.
16846
16847
16848Arguments:
16849""""""""""
16850
16851The first two operands and the result have the same vector of integer type. The
16852third operand is the vector mask and has the same number of elements as the
16853result vector type. The fourth operand is the explicit vector length of the
16854operation.
16855
16856Semantics:
16857""""""""""
16858
16859The '``llvm.vp.lshr``' intrinsic computes the logical right shift
16860(:ref:`lshr <i_lshr>`) of the first operand by the second operand on each
16861enabled lane. The result on disabled lanes is undefined.
16862
16863Examples:
16864"""""""""
16865
16866.. code-block:: llvm
16867
16868      %r = call <4 x i32> @llvm.vp.lshr.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
16869      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
16870
16871      %t = lshr <4 x i32> %a, %b
16872      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> undef
16873
16874
16875.. _int_vp_shl:
16876
16877'``llvm.vp.shl.*``' Intrinsics
16878^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16879
16880Syntax:
16881"""""""
16882This is an overloaded intrinsic.
16883
16884::
16885
16886      declare <16 x i32>  @llvm.vp.shl.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
16887      declare <vscale x 4 x i32>  @llvm.vp.shl.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
16888      declare <256 x i64>  @llvm.vp.shl.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
16889
16890Overview:
16891"""""""""
16892
16893Vector-predicated left shift.
16894
16895
16896Arguments:
16897""""""""""
16898
16899The first two operands and the result have the same vector of integer type. The
16900third operand is the vector mask and has the same number of elements as the
16901result vector type. The fourth operand is the explicit vector length of the
16902operation.
16903
16904Semantics:
16905""""""""""
16906
16907The '``llvm.vp.shl``' intrinsic computes the left shift (:ref:`shl <i_shl>`) of
16908the first operand by the second operand on each enabled lane.  The result on
16909disabled lanes is undefined.
16910
16911Examples:
16912"""""""""
16913
16914.. code-block:: llvm
16915
16916      %r = call <4 x i32> @llvm.vp.shl.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
16917      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
16918
16919      %t = shl <4 x i32> %a, %b
16920      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> undef
16921
16922
16923.. _int_vp_or:
16924
16925'``llvm.vp.or.*``' Intrinsics
16926^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16927
16928Syntax:
16929"""""""
16930This is an overloaded intrinsic.
16931
16932::
16933
16934      declare <16 x i32>  @llvm.vp.or.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
16935      declare <vscale x 4 x i32>  @llvm.vp.or.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
16936      declare <256 x i64>  @llvm.vp.or.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
16937
16938Overview:
16939"""""""""
16940
16941Vector-predicated or.
16942
16943
16944Arguments:
16945""""""""""
16946
16947The first two operands and the result have the same vector of integer type. The
16948third operand is the vector mask and has the same number of elements as the
16949result vector type. The fourth operand is the explicit vector length of the
16950operation.
16951
16952Semantics:
16953""""""""""
16954
16955The '``llvm.vp.or``' intrinsic performs a bitwise or (:ref:`or <i_or>`) of the
16956first two operands on each enabled lane.  The result on disabled lanes is
16957undefined.
16958
16959Examples:
16960"""""""""
16961
16962.. code-block:: llvm
16963
16964      %r = call <4 x i32> @llvm.vp.or.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
16965      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
16966
16967      %t = or <4 x i32> %a, %b
16968      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> undef
16969
16970
16971.. _int_vp_and:
16972
16973'``llvm.vp.and.*``' Intrinsics
16974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
16975
16976Syntax:
16977"""""""
16978This is an overloaded intrinsic.
16979
16980::
16981
16982      declare <16 x i32>  @llvm.vp.and.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
16983      declare <vscale x 4 x i32>  @llvm.vp.and.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
16984      declare <256 x i64>  @llvm.vp.and.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
16985
16986Overview:
16987"""""""""
16988
16989Vector-predicated and.
16990
16991
16992Arguments:
16993""""""""""
16994
16995The first two operands and the result have the same vector of integer type. The
16996third operand is the vector mask and has the same number of elements as the
16997result vector type. The fourth operand is the explicit vector length of the
16998operation.
16999
17000Semantics:
17001""""""""""
17002
17003The '``llvm.vp.and``' intrinsic performs a bitwise and (:ref:`and <i_or>`) of
17004the first two operands on each enabled lane.  The result on disabled lanes is
17005undefined.
17006
17007Examples:
17008"""""""""
17009
17010.. code-block:: llvm
17011
17012      %r = call <4 x i32> @llvm.vp.and.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
17013      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
17014
17015      %t = and <4 x i32> %a, %b
17016      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> undef
17017
17018
17019.. _int_vp_xor:
17020
17021'``llvm.vp.xor.*``' Intrinsics
17022^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17023
17024Syntax:
17025"""""""
17026This is an overloaded intrinsic.
17027
17028::
17029
17030      declare <16 x i32>  @llvm.vp.xor.v16i32 (<16 x i32> <left_op>, <16 x i32> <right_op>, <16 x i1> <mask>, i32 <vector_length>)
17031      declare <vscale x 4 x i32>  @llvm.vp.xor.nxv4i32 (<vscale x 4 x i32> <left_op>, <vscale x 4 x i32> <right_op>, <vscale x 4 x i1> <mask>, i32 <vector_length>)
17032      declare <256 x i64>  @llvm.vp.xor.v256i64 (<256 x i64> <left_op>, <256 x i64> <right_op>, <256 x i1> <mask>, i32 <vector_length>)
17033
17034Overview:
17035"""""""""
17036
17037Vector-predicated, bitwise xor.
17038
17039
17040Arguments:
17041""""""""""
17042
17043The first two operands and the result have the same vector of integer type. The
17044third operand is the vector mask and has the same number of elements as the
17045result vector type. The fourth operand is the explicit vector length of the
17046operation.
17047
17048Semantics:
17049""""""""""
17050
17051The '``llvm.vp.xor``' intrinsic performs a bitwise xor (:ref:`xor <i_xor>`) of
17052the first two operands on each enabled lane.
17053The result on disabled lanes is undefined.
17054
17055Examples:
17056"""""""""
17057
17058.. code-block:: llvm
17059
17060      %r = call <4 x i32> @llvm.vp.xor.v4i32(<4 x i32> %a, <4 x i32> %b, <4 x i1> %mask, i32 %evl)
17061      ;; For all lanes below %evl, %r is lane-wise equivalent to %also.r
17062
17063      %t = xor <4 x i32> %a, %b
17064      %also.r = select <4 x i1> %mask, <4 x i32> %t, <4 x i32> undef
17065
17066
17067.. _int_get_active_lane_mask:
17068
17069'``llvm.get.active.lane.mask.*``' Intrinsics
17070^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17071
17072Syntax:
17073"""""""
17074This is an overloaded intrinsic.
17075
17076::
17077
17078      declare <4 x i1> @llvm.get.active.lane.mask.v4i1.i32(i32 %base, i32 %n)
17079      declare <8 x i1> @llvm.get.active.lane.mask.v8i1.i64(i64 %base, i64 %n)
17080      declare <16 x i1> @llvm.get.active.lane.mask.v16i1.i64(i64 %base, i64 %n)
17081      declare <vscale x 16 x i1> @llvm.get.active.lane.mask.nxv16i1.i64(i64 %base, i64 %n)
17082
17083
17084Overview:
17085"""""""""
17086
17087Create a mask representing active and inactive vector lanes.
17088
17089
17090Arguments:
17091""""""""""
17092
17093Both operands have the same scalar integer type. The result is a vector with
17094the i1 element type.
17095
17096Semantics:
17097""""""""""
17098
17099The '``llvm.get.active.lane.mask.*``' intrinsics are semantically equivalent
17100to:
17101
17102::
17103
17104      %m[i] = icmp ult (%base + i), %n
17105
17106where ``%m`` is a vector (mask) of active/inactive lanes with its elements
17107indexed by ``i``,  and ``%base``, ``%n`` are the two arguments to
17108``llvm.get.active.lane.mask.*``, ``%icmp`` is an integer compare and ``ult``
17109the unsigned less-than comparison operator.  Overflow cannot occur in
17110``(%base + i)`` and its comparison against ``%n`` as it is performed in integer
17111numbers and not in machine numbers.  If ``%n`` is ``0``, then the result is a
17112poison value. The above is equivalent to:
17113
17114::
17115
17116      %m = @llvm.get.active.lane.mask(%base, %n)
17117
17118This can, for example, be emitted by the loop vectorizer in which case
17119``%base`` is the first element of the vector induction variable (VIV) and
17120``%n`` is the loop tripcount. Thus, these intrinsics perform an element-wise
17121less than comparison of VIV with the loop tripcount, producing a mask of
17122true/false values representing active/inactive vector lanes, except if the VIV
17123overflows in which case they return false in the lanes where the VIV overflows.
17124The arguments are scalar types to accommodate scalable vector types, for which
17125it is unknown what the type of the step vector needs to be that enumerate its
17126lanes without overflow.
17127
17128This mask ``%m`` can e.g. be used in masked load/store instructions. These
17129intrinsics provide a hint to the backend. I.e., for a vector loop, the
17130back-edge taken count of the original scalar loop is explicit as the second
17131argument.
17132
17133
17134Examples:
17135"""""""""
17136
17137.. code-block:: llvm
17138
17139      %active.lane.mask = call <4 x i1> @llvm.get.active.lane.mask.v4i1.i64(i64 %elem0, i64 429)
17140      %wide.masked.load = call <4 x i32> @llvm.masked.load.v4i32.p0v4i32(<4 x i32>* %3, i32 4, <4 x i1> %active.lane.mask, <4 x i32> undef)
17141
17142
17143.. _int_mload_mstore:
17144
17145Masked Vector Load and Store Intrinsics
17146---------------------------------------
17147
17148LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
17149
17150.. _int_mload:
17151
17152'``llvm.masked.load.*``' Intrinsics
17153^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17154
17155Syntax:
17156"""""""
17157This is an overloaded intrinsic. The loaded data is a vector of any integer, floating-point or pointer data type.
17158
17159::
17160
17161      declare <16 x float>  @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
17162      declare <2 x double>  @llvm.masked.load.v2f64.p0v2f64  (<2 x double>* <ptr>, i32 <alignment>, <2 x i1>  <mask>, <2 x double> <passthru>)
17163      ;; The data is a vector of pointers to double
17164      declare <8 x double*> @llvm.masked.load.v8p0f64.p0v8p0f64    (<8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x double*> <passthru>)
17165      ;; The data is a vector of function pointers
17166      declare <8 x i32 ()*> @llvm.masked.load.v8p0f_i32f.p0v8p0f_i32f (<8 x i32 ()*>* <ptr>, i32 <alignment>, <8 x i1> <mask>, <8 x i32 ()*> <passthru>)
17167
17168Overview:
17169"""""""""
17170
17171Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
17172
17173
17174Arguments:
17175""""""""""
17176
17177The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a power of two constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
17178
17179Semantics:
17180""""""""""
17181
17182The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
17183The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
17184
17185
17186::
17187
17188       %res = call <16 x float> @llvm.masked.load.v16f32.p0v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
17189
17190       ;; The result of the two following instructions is identical aside from potential memory access exception
17191       %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
17192       %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
17193
17194.. _int_mstore:
17195
17196'``llvm.masked.store.*``' Intrinsics
17197^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17198
17199Syntax:
17200"""""""
17201This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type.
17202
17203::
17204
17205       declare void @llvm.masked.store.v8i32.p0v8i32  (<8  x i32>   <value>, <8  x i32>*   <ptr>, i32 <alignment>,  <8  x i1> <mask>)
17206       declare void @llvm.masked.store.v16f32.p0v16f32 (<16 x float> <value>, <16 x float>* <ptr>, i32 <alignment>,  <16 x i1> <mask>)
17207       ;; The data is a vector of pointers to double
17208       declare void @llvm.masked.store.v8p0f64.p0v8p0f64    (<8 x double*> <value>, <8 x double*>* <ptr>, i32 <alignment>, <8 x i1> <mask>)
17209       ;; The data is a vector of function pointers
17210       declare void @llvm.masked.store.v4p0f_i32f.p0v4p0f_i32f (<4 x i32 ()*> <value>, <4 x i32 ()*>* <ptr>, i32 <alignment>, <4 x i1> <mask>)
17211
17212Overview:
17213"""""""""
17214
17215Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
17216
17217Arguments:
17218""""""""""
17219
17220The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. It must be a power of two constant integer value. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
17221
17222
17223Semantics:
17224""""""""""
17225
17226The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
17227The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
17228
17229::
17230
17231       call void @llvm.masked.store.v16f32.p0v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4,  <16 x i1> %mask)
17232
17233       ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
17234       %oldval = load <16 x float>, <16 x float>* %ptr, align 4
17235       %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
17236       store <16 x float> %res, <16 x float>* %ptr, align 4
17237
17238
17239Masked Vector Gather and Scatter Intrinsics
17240-------------------------------------------
17241
17242LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
17243
17244.. _int_mgather:
17245
17246'``llvm.masked.gather.*``' Intrinsics
17247^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17248
17249Syntax:
17250"""""""
17251This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer, floating-point or pointer data type gathered together into one vector.
17252
17253::
17254
17255      declare <16 x float> @llvm.masked.gather.v16f32.v16p0f32   (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
17256      declare <2 x double> @llvm.masked.gather.v2f64.v2p1f64     (<2 x double addrspace(1)*> <ptrs>, i32 <alignment>, <2 x i1>  <mask>, <2 x double> <passthru>)
17257      declare <8 x float*> @llvm.masked.gather.v8p0f32.v8p0p0f32 (<8 x float**> <ptrs>, i32 <alignment>, <8 x i1>  <mask>, <8 x float*> <passthru>)
17258
17259Overview:
17260"""""""""
17261
17262Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
17263
17264
17265Arguments:
17266""""""""""
17267
17268The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be 0 or a power of two constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
17269
17270Semantics:
17271""""""""""
17272
17273The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
17274The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
17275
17276
17277::
17278
17279       %res = call <4 x double> @llvm.masked.gather.v4f64.v4p0f64 (<4 x double*> %ptrs, i32 8, <4 x i1> <i1 true, i1 true, i1 true, i1 true>, <4 x double> undef)
17280
17281       ;; The gather with all-true mask is equivalent to the following instruction sequence
17282       %ptr0 = extractelement <4 x double*> %ptrs, i32 0
17283       %ptr1 = extractelement <4 x double*> %ptrs, i32 1
17284       %ptr2 = extractelement <4 x double*> %ptrs, i32 2
17285       %ptr3 = extractelement <4 x double*> %ptrs, i32 3
17286
17287       %val0 = load double, double* %ptr0, align 8
17288       %val1 = load double, double* %ptr1, align 8
17289       %val2 = load double, double* %ptr2, align 8
17290       %val3 = load double, double* %ptr3, align 8
17291
17292       %vec0    = insertelement <4 x double>undef, %val0, 0
17293       %vec01   = insertelement <4 x double>%vec0, %val1, 1
17294       %vec012  = insertelement <4 x double>%vec01, %val2, 2
17295       %vec0123 = insertelement <4 x double>%vec012, %val3, 3
17296
17297.. _int_mscatter:
17298
17299'``llvm.masked.scatter.*``' Intrinsics
17300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17301
17302Syntax:
17303"""""""
17304This is an overloaded intrinsic. The data stored in memory is a vector of any integer, floating-point or pointer data type. Each vector element is stored in an arbitrary memory address. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
17305
17306::
17307
17308       declare void @llvm.masked.scatter.v8i32.v8p0i32     (<8 x i32>     <value>, <8 x i32*>     <ptrs>, i32 <alignment>, <8 x i1>  <mask>)
17309       declare void @llvm.masked.scatter.v16f32.v16p1f32   (<16 x float>  <value>, <16 x float addrspace(1)*>  <ptrs>, i32 <alignment>, <16 x i1> <mask>)
17310       declare void @llvm.masked.scatter.v4p0f64.v4p0p0f64 (<4 x double*> <value>, <4 x double**> <ptrs>, i32 <alignment>, <4 x i1>  <mask>)
17311
17312Overview:
17313"""""""""
17314
17315Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
17316
17317Arguments:
17318""""""""""
17319
17320The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. It must be 0 or a power of two constant integer value. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
17321
17322Semantics:
17323""""""""""
17324
17325The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
17326
17327::
17328
17329       ;; This instruction unconditionally stores data vector in multiple addresses
17330       call @llvm.masked.scatter.v8i32.v8p0i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4,  <8 x i1>  <true, true, .. true>)
17331
17332       ;; It is equivalent to a list of scalar stores
17333       %val0 = extractelement <8 x i32> %value, i32 0
17334       %val1 = extractelement <8 x i32> %value, i32 1
17335       ..
17336       %val7 = extractelement <8 x i32> %value, i32 7
17337       %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
17338       %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
17339       ..
17340       %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
17341       ;; Note: the order of the following stores is important when they overlap:
17342       store i32 %val0, i32* %ptr0, align 4
17343       store i32 %val1, i32* %ptr1, align 4
17344       ..
17345       store i32 %val7, i32* %ptr7, align 4
17346
17347
17348Masked Vector Expanding Load and Compressing Store Intrinsics
17349-------------------------------------------------------------
17350
17351LLVM provides intrinsics for expanding load and compressing store operations. Data selected from a vector according to a mask is stored in consecutive memory addresses (compressed store), and vice-versa (expanding load). These operations effective map to "if (cond.i) a[j++] = v.i" and "if (cond.i) v.i = a[j++]" patterns, respectively. Note that when the mask starts with '1' bits followed by '0' bits, these operations are identical to :ref:`llvm.masked.store <int_mstore>` and :ref:`llvm.masked.load <int_mload>`.
17352
17353.. _int_expandload:
17354
17355'``llvm.masked.expandload.*``' Intrinsics
17356^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17357
17358Syntax:
17359"""""""
17360This is an overloaded intrinsic. Several values of integer, floating point or pointer data type are loaded from consecutive memory addresses and stored into the elements of a vector according to the mask.
17361
17362::
17363
17364      declare <16 x float>  @llvm.masked.expandload.v16f32 (float* <ptr>, <16 x i1> <mask>, <16 x float> <passthru>)
17365      declare <2 x i64>     @llvm.masked.expandload.v2i64 (i64* <ptr>, <2 x i1>  <mask>, <2 x i64> <passthru>)
17366
17367Overview:
17368"""""""""
17369
17370Reads a number of scalar values sequentially from memory location provided in '``ptr``' and spreads them in a vector. The '``mask``' holds a bit for each vector lane. The number of elements read from memory is equal to the number of '1' bits in the mask. The loaded elements are positioned in the destination vector according to the sequence of '1' and '0' bits in the mask. E.g., if the mask vector is '10010001', "expandload" reads 3 values from memory addresses ptr, ptr+1, ptr+2 and places them in lanes 0, 3 and 7 accordingly. The masked-off lanes are filled by elements from the corresponding lanes of the '``passthru``' operand.
17371
17372
17373Arguments:
17374""""""""""
17375
17376The first operand is the base pointer for the load. It has the same underlying type as the element of the returned vector. The second operand, mask, is a vector of boolean values with the same number of elements as the return type. The third is a pass-through value that is used to fill the masked-off lanes of the result. The return type and the type of the '``passthru``' operand have the same vector type.
17377
17378Semantics:
17379""""""""""
17380
17381The '``llvm.masked.expandload``' intrinsic is designed for reading multiple scalar values from adjacent memory addresses into possibly non-adjacent vector lanes. It is useful for targets that support vector expanding loads and allows vectorizing loop with cross-iteration dependency like in the following example:
17382
17383.. code-block:: c
17384
17385    // In this loop we load from B and spread the elements into array A.
17386    double *A, B; int *C;
17387    for (int i = 0; i < size; ++i) {
17388      if (C[i] != 0)
17389        A[i] = B[j++];
17390    }
17391
17392
17393.. code-block:: llvm
17394
17395    ; Load several elements from array B and expand them in a vector.
17396    ; The number of loaded elements is equal to the number of '1' elements in the Mask.
17397    %Tmp = call <8 x double> @llvm.masked.expandload.v8f64(double* %Bptr, <8 x i1> %Mask, <8 x double> undef)
17398    ; Store the result in A
17399    call void @llvm.masked.store.v8f64.p0v8f64(<8 x double> %Tmp, <8 x double>* %Aptr, i32 8, <8 x i1> %Mask)
17400
17401    ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
17402    %MaskI = bitcast <8 x i1> %Mask to i8
17403    %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
17404    %MaskI64 = zext i8 %MaskIPopcnt to i64
17405    %BNextInd = add i64 %BInd, %MaskI64
17406
17407
17408Other targets may support this intrinsic differently, for example, by lowering it into a sequence of conditional scalar load operations and shuffles.
17409If all mask elements are '1', the intrinsic behavior is equivalent to the regular unmasked vector load.
17410
17411.. _int_compressstore:
17412
17413'``llvm.masked.compressstore.*``' Intrinsics
17414^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17415
17416Syntax:
17417"""""""
17418This is an overloaded intrinsic. A number of scalar values of integer, floating point or pointer data type are collected from an input vector and stored into adjacent memory addresses. A mask defines which elements to collect from the vector.
17419
17420::
17421
17422      declare void @llvm.masked.compressstore.v8i32  (<8  x i32>   <value>, i32*   <ptr>, <8  x i1> <mask>)
17423      declare void @llvm.masked.compressstore.v16f32 (<16 x float> <value>, float* <ptr>, <16 x i1> <mask>)
17424
17425Overview:
17426"""""""""
17427
17428Selects elements from input vector '``value``' according to the '``mask``'. All selected elements are written into adjacent memory addresses starting at address '`ptr`', from lower to higher. The mask holds a bit for each vector lane, and is used to select elements to be stored. The number of elements to be stored is equal to the number of active bits in the mask.
17429
17430Arguments:
17431""""""""""
17432
17433The first operand is the input vector, from which elements are collected and written to memory. The second operand is the base pointer for the store, it has the same underlying type as the element of the input vector operand. The third operand is the mask, a vector of boolean values. The mask and the input vector must have the same number of vector elements.
17434
17435
17436Semantics:
17437""""""""""
17438
17439The '``llvm.masked.compressstore``' intrinsic is designed for compressing data in memory. It allows to collect elements from possibly non-adjacent lanes of a vector and store them contiguously in memory in one IR operation. It is useful for targets that support compressing store operations and allows vectorizing loops with cross-iteration dependences like in the following example:
17440
17441.. code-block:: c
17442
17443    // In this loop we load elements from A and store them consecutively in B
17444    double *A, B; int *C;
17445    for (int i = 0; i < size; ++i) {
17446      if (C[i] != 0)
17447        B[j++] = A[i]
17448    }
17449
17450
17451.. code-block:: llvm
17452
17453    ; Load elements from A.
17454    %Tmp = call <8 x double> @llvm.masked.load.v8f64.p0v8f64(<8 x double>* %Aptr, i32 8, <8 x i1> %Mask, <8 x double> undef)
17455    ; Store all selected elements consecutively in array B
17456    call <void> @llvm.masked.compressstore.v8f64(<8 x double> %Tmp, double* %Bptr, <8 x i1> %Mask)
17457
17458    ; %Bptr should be increased on each iteration according to the number of '1' elements in the Mask.
17459    %MaskI = bitcast <8 x i1> %Mask to i8
17460    %MaskIPopcnt = call i8 @llvm.ctpop.i8(i8 %MaskI)
17461    %MaskI64 = zext i8 %MaskIPopcnt to i64
17462    %BNextInd = add i64 %BInd, %MaskI64
17463
17464
17465Other targets may support this intrinsic differently, for example, by lowering it into a sequence of branches that guard scalar store operations.
17466
17467
17468Memory Use Markers
17469------------------
17470
17471This class of intrinsics provides information about the lifetime of
17472memory objects and ranges where variables are immutable.
17473
17474.. _int_lifestart:
17475
17476'``llvm.lifetime.start``' Intrinsic
17477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17478
17479Syntax:
17480"""""""
17481
17482::
17483
17484      declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
17485
17486Overview:
17487"""""""""
17488
17489The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
17490object's lifetime.
17491
17492Arguments:
17493""""""""""
17494
17495The first argument is a constant integer representing the size of the
17496object, or -1 if it is variable sized. The second argument is a pointer
17497to the object.
17498
17499Semantics:
17500""""""""""
17501
17502This intrinsic indicates that before this point in the code, the value
17503of the memory pointed to by ``ptr`` is dead. This means that it is known
17504to never be used and has an undefined value. A load from the pointer
17505that precedes this intrinsic can be replaced with ``'undef'``.
17506
17507.. _int_lifeend:
17508
17509'``llvm.lifetime.end``' Intrinsic
17510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17511
17512Syntax:
17513"""""""
17514
17515::
17516
17517      declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
17518
17519Overview:
17520"""""""""
17521
17522The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
17523object's lifetime.
17524
17525Arguments:
17526""""""""""
17527
17528The first argument is a constant integer representing the size of the
17529object, or -1 if it is variable sized. The second argument is a pointer
17530to the object.
17531
17532Semantics:
17533""""""""""
17534
17535This intrinsic indicates that after this point in the code, the value of
17536the memory pointed to by ``ptr`` is dead. This means that it is known to
17537never be used and has an undefined value. Any stores into the memory
17538object following this intrinsic may be removed as dead.
17539
17540'``llvm.invariant.start``' Intrinsic
17541^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17542
17543Syntax:
17544"""""""
17545This is an overloaded intrinsic. The memory object can belong to any address space.
17546
17547::
17548
17549      declare {}* @llvm.invariant.start.p0i8(i64 <size>, i8* nocapture <ptr>)
17550
17551Overview:
17552"""""""""
17553
17554The '``llvm.invariant.start``' intrinsic specifies that the contents of
17555a memory object will not change.
17556
17557Arguments:
17558""""""""""
17559
17560The first argument is a constant integer representing the size of the
17561object, or -1 if it is variable sized. The second argument is a pointer
17562to the object.
17563
17564Semantics:
17565""""""""""
17566
17567This intrinsic indicates that until an ``llvm.invariant.end`` that uses
17568the return value, the referenced memory location is constant and
17569unchanging.
17570
17571'``llvm.invariant.end``' Intrinsic
17572^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17573
17574Syntax:
17575"""""""
17576This is an overloaded intrinsic. The memory object can belong to any address space.
17577
17578::
17579
17580      declare void @llvm.invariant.end.p0i8({}* <start>, i64 <size>, i8* nocapture <ptr>)
17581
17582Overview:
17583"""""""""
17584
17585The '``llvm.invariant.end``' intrinsic specifies that the contents of a
17586memory object are mutable.
17587
17588Arguments:
17589""""""""""
17590
17591The first argument is the matching ``llvm.invariant.start`` intrinsic.
17592The second argument is a constant integer representing the size of the
17593object, or -1 if it is variable sized and the third argument is a
17594pointer to the object.
17595
17596Semantics:
17597""""""""""
17598
17599This intrinsic indicates that the memory is mutable again.
17600
17601'``llvm.launder.invariant.group``' Intrinsic
17602^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17603
17604Syntax:
17605"""""""
17606This is an overloaded intrinsic. The memory object can belong to any address
17607space. The returned pointer must belong to the same address space as the
17608argument.
17609
17610::
17611
17612      declare i8* @llvm.launder.invariant.group.p0i8(i8* <ptr>)
17613
17614Overview:
17615"""""""""
17616
17617The '``llvm.launder.invariant.group``' intrinsic can be used when an invariant
17618established by ``invariant.group`` metadata no longer holds, to obtain a new
17619pointer value that carries fresh invariant group information. It is an
17620experimental intrinsic, which means that its semantics might change in the
17621future.
17622
17623
17624Arguments:
17625""""""""""
17626
17627The ``llvm.launder.invariant.group`` takes only one argument, which is a pointer
17628to the memory.
17629
17630Semantics:
17631""""""""""
17632
17633Returns another pointer that aliases its argument but which is considered different
17634for the purposes of ``load``/``store`` ``invariant.group`` metadata.
17635It does not read any accessible memory and the execution can be speculated.
17636
17637'``llvm.strip.invariant.group``' Intrinsic
17638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17639
17640Syntax:
17641"""""""
17642This is an overloaded intrinsic. The memory object can belong to any address
17643space. The returned pointer must belong to the same address space as the
17644argument.
17645
17646::
17647
17648      declare i8* @llvm.strip.invariant.group.p0i8(i8* <ptr>)
17649
17650Overview:
17651"""""""""
17652
17653The '``llvm.strip.invariant.group``' intrinsic can be used when an invariant
17654established by ``invariant.group`` metadata no longer holds, to obtain a new pointer
17655value that does not carry the invariant information. It is an experimental
17656intrinsic, which means that its semantics might change in the future.
17657
17658
17659Arguments:
17660""""""""""
17661
17662The ``llvm.strip.invariant.group`` takes only one argument, which is a pointer
17663to the memory.
17664
17665Semantics:
17666""""""""""
17667
17668Returns another pointer that aliases its argument but which has no associated
17669``invariant.group`` metadata.
17670It does not read any memory and can be speculated.
17671
17672
17673
17674.. _constrainedfp:
17675
17676Constrained Floating-Point Intrinsics
17677-------------------------------------
17678
17679These intrinsics are used to provide special handling of floating-point
17680operations when specific rounding mode or floating-point exception behavior is
17681required.  By default, LLVM optimization passes assume that the rounding mode is
17682round-to-nearest and that floating-point exceptions will not be monitored.
17683Constrained FP intrinsics are used to support non-default rounding modes and
17684accurately preserve exception behavior without compromising LLVM's ability to
17685optimize FP code when the default behavior is used.
17686
17687If any FP operation in a function is constrained then they all must be
17688constrained. This is required for correct LLVM IR. Optimizations that
17689move code around can create miscompiles if mixing of constrained and normal
17690operations is done. The correct way to mix constrained and less constrained
17691operations is to use the rounding mode and exception handling metadata to
17692mark constrained intrinsics as having LLVM's default behavior.
17693
17694Each of these intrinsics corresponds to a normal floating-point operation. The
17695data arguments and the return value are the same as the corresponding FP
17696operation.
17697
17698The rounding mode argument is a metadata string specifying what
17699assumptions, if any, the optimizer can make when transforming constant
17700values. Some constrained FP intrinsics omit this argument. If required
17701by the intrinsic, this argument must be one of the following strings:
17702
17703::
17704
17705      "round.dynamic"
17706      "round.tonearest"
17707      "round.downward"
17708      "round.upward"
17709      "round.towardzero"
17710      "round.tonearestaway"
17711
17712If this argument is "round.dynamic" optimization passes must assume that the
17713rounding mode is unknown and may change at runtime.  No transformations that
17714depend on rounding mode may be performed in this case.
17715
17716The other possible values for the rounding mode argument correspond to the
17717similarly named IEEE rounding modes.  If the argument is any of these values
17718optimization passes may perform transformations as long as they are consistent
17719with the specified rounding mode.
17720
17721For example, 'x-0'->'x' is not a valid transformation if the rounding mode is
17722"round.downward" or "round.dynamic" because if the value of 'x' is +0 then
17723'x-0' should evaluate to '-0' when rounding downward.  However, this
17724transformation is legal for all other rounding modes.
17725
17726For values other than "round.dynamic" optimization passes may assume that the
17727actual runtime rounding mode (as defined in a target-specific manner) matches
17728the specified rounding mode, but this is not guaranteed.  Using a specific
17729non-dynamic rounding mode which does not match the actual rounding mode at
17730runtime results in undefined behavior.
17731
17732The exception behavior argument is a metadata string describing the floating
17733point exception semantics that required for the intrinsic. This argument
17734must be one of the following strings:
17735
17736::
17737
17738      "fpexcept.ignore"
17739      "fpexcept.maytrap"
17740      "fpexcept.strict"
17741
17742If this argument is "fpexcept.ignore" optimization passes may assume that the
17743exception status flags will not be read and that floating-point exceptions will
17744be masked.  This allows transformations to be performed that may change the
17745exception semantics of the original code.  For example, FP operations may be
17746speculatively executed in this case whereas they must not be for either of the
17747other possible values of this argument.
17748
17749If the exception behavior argument is "fpexcept.maytrap" optimization passes
17750must avoid transformations that may raise exceptions that would not have been
17751raised by the original code (such as speculatively executing FP operations), but
17752passes are not required to preserve all exceptions that are implied by the
17753original code.  For example, exceptions may be potentially hidden by constant
17754folding.
17755
17756If the exception behavior argument is "fpexcept.strict" all transformations must
17757strictly preserve the floating-point exception semantics of the original code.
17758Any FP exception that would have been raised by the original code must be raised
17759by the transformed code, and the transformed code must not raise any FP
17760exceptions that would not have been raised by the original code.  This is the
17761exception behavior argument that will be used if the code being compiled reads
17762the FP exception status flags, but this mode can also be used with code that
17763unmasks FP exceptions.
17764
17765The number and order of floating-point exceptions is NOT guaranteed.  For
17766example, a series of FP operations that each may raise exceptions may be
17767vectorized into a single instruction that raises each unique exception a single
17768time.
17769
17770Proper :ref:`function attributes <fnattrs>` usage is required for the
17771constrained intrinsics to function correctly.
17772
17773All function *calls* done in a function that uses constrained floating
17774point intrinsics must have the ``strictfp`` attribute.
17775
17776All function *definitions* that use constrained floating point intrinsics
17777must have the ``strictfp`` attribute.
17778
17779'``llvm.experimental.constrained.fadd``' Intrinsic
17780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17781
17782Syntax:
17783"""""""
17784
17785::
17786
17787      declare <type>
17788      @llvm.experimental.constrained.fadd(<type> <op1>, <type> <op2>,
17789                                          metadata <rounding mode>,
17790                                          metadata <exception behavior>)
17791
17792Overview:
17793"""""""""
17794
17795The '``llvm.experimental.constrained.fadd``' intrinsic returns the sum of its
17796two operands.
17797
17798
17799Arguments:
17800""""""""""
17801
17802The first two arguments to the '``llvm.experimental.constrained.fadd``'
17803intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
17804of floating-point values. Both arguments must have identical types.
17805
17806The third and fourth arguments specify the rounding mode and exception
17807behavior as described above.
17808
17809Semantics:
17810""""""""""
17811
17812The value produced is the floating-point sum of the two value operands and has
17813the same type as the operands.
17814
17815
17816'``llvm.experimental.constrained.fsub``' Intrinsic
17817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17818
17819Syntax:
17820"""""""
17821
17822::
17823
17824      declare <type>
17825      @llvm.experimental.constrained.fsub(<type> <op1>, <type> <op2>,
17826                                          metadata <rounding mode>,
17827                                          metadata <exception behavior>)
17828
17829Overview:
17830"""""""""
17831
17832The '``llvm.experimental.constrained.fsub``' intrinsic returns the difference
17833of its two operands.
17834
17835
17836Arguments:
17837""""""""""
17838
17839The first two arguments to the '``llvm.experimental.constrained.fsub``'
17840intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
17841of floating-point values. Both arguments must have identical types.
17842
17843The third and fourth arguments specify the rounding mode and exception
17844behavior as described above.
17845
17846Semantics:
17847""""""""""
17848
17849The value produced is the floating-point difference of the two value operands
17850and has the same type as the operands.
17851
17852
17853'``llvm.experimental.constrained.fmul``' Intrinsic
17854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17855
17856Syntax:
17857"""""""
17858
17859::
17860
17861      declare <type>
17862      @llvm.experimental.constrained.fmul(<type> <op1>, <type> <op2>,
17863                                          metadata <rounding mode>,
17864                                          metadata <exception behavior>)
17865
17866Overview:
17867"""""""""
17868
17869The '``llvm.experimental.constrained.fmul``' intrinsic returns the product of
17870its two operands.
17871
17872
17873Arguments:
17874""""""""""
17875
17876The first two arguments to the '``llvm.experimental.constrained.fmul``'
17877intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
17878of floating-point values. Both arguments must have identical types.
17879
17880The third and fourth arguments specify the rounding mode and exception
17881behavior as described above.
17882
17883Semantics:
17884""""""""""
17885
17886The value produced is the floating-point product of the two value operands and
17887has the same type as the operands.
17888
17889
17890'``llvm.experimental.constrained.fdiv``' Intrinsic
17891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17892
17893Syntax:
17894"""""""
17895
17896::
17897
17898      declare <type>
17899      @llvm.experimental.constrained.fdiv(<type> <op1>, <type> <op2>,
17900                                          metadata <rounding mode>,
17901                                          metadata <exception behavior>)
17902
17903Overview:
17904"""""""""
17905
17906The '``llvm.experimental.constrained.fdiv``' intrinsic returns the quotient of
17907its two operands.
17908
17909
17910Arguments:
17911""""""""""
17912
17913The first two arguments to the '``llvm.experimental.constrained.fdiv``'
17914intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
17915of floating-point values. Both arguments must have identical types.
17916
17917The third and fourth arguments specify the rounding mode and exception
17918behavior as described above.
17919
17920Semantics:
17921""""""""""
17922
17923The value produced is the floating-point quotient of the two value operands and
17924has the same type as the operands.
17925
17926
17927'``llvm.experimental.constrained.frem``' Intrinsic
17928^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17929
17930Syntax:
17931"""""""
17932
17933::
17934
17935      declare <type>
17936      @llvm.experimental.constrained.frem(<type> <op1>, <type> <op2>,
17937                                          metadata <rounding mode>,
17938                                          metadata <exception behavior>)
17939
17940Overview:
17941"""""""""
17942
17943The '``llvm.experimental.constrained.frem``' intrinsic returns the remainder
17944from the division of its two operands.
17945
17946
17947Arguments:
17948""""""""""
17949
17950The first two arguments to the '``llvm.experimental.constrained.frem``'
17951intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
17952of floating-point values. Both arguments must have identical types.
17953
17954The third and fourth arguments specify the rounding mode and exception
17955behavior as described above.  The rounding mode argument has no effect, since
17956the result of frem is never rounded, but the argument is included for
17957consistency with the other constrained floating-point intrinsics.
17958
17959Semantics:
17960""""""""""
17961
17962The value produced is the floating-point remainder from the division of the two
17963value operands and has the same type as the operands.  The remainder has the
17964same sign as the dividend.
17965
17966'``llvm.experimental.constrained.fma``' Intrinsic
17967^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
17968
17969Syntax:
17970"""""""
17971
17972::
17973
17974      declare <type>
17975      @llvm.experimental.constrained.fma(<type> <op1>, <type> <op2>, <type> <op3>,
17976                                          metadata <rounding mode>,
17977                                          metadata <exception behavior>)
17978
17979Overview:
17980"""""""""
17981
17982The '``llvm.experimental.constrained.fma``' intrinsic returns the result of a
17983fused-multiply-add operation on its operands.
17984
17985Arguments:
17986""""""""""
17987
17988The first three arguments to the '``llvm.experimental.constrained.fma``'
17989intrinsic must be :ref:`floating-point <t_floating>` or :ref:`vector
17990<t_vector>` of floating-point values. All arguments must have identical types.
17991
17992The fourth and fifth arguments specify the rounding mode and exception behavior
17993as described above.
17994
17995Semantics:
17996""""""""""
17997
17998The result produced is the product of the first two operands added to the third
17999operand computed with infinite precision, and then rounded to the target
18000precision.
18001
18002'``llvm.experimental.constrained.fptoui``' Intrinsic
18003^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18004
18005Syntax:
18006"""""""
18007
18008::
18009
18010      declare <ty2>
18011      @llvm.experimental.constrained.fptoui(<type> <value>,
18012                                          metadata <exception behavior>)
18013
18014Overview:
18015"""""""""
18016
18017The '``llvm.experimental.constrained.fptoui``' intrinsic converts a
18018floating-point ``value`` to its unsigned integer equivalent of type ``ty2``.
18019
18020Arguments:
18021""""""""""
18022
18023The first argument to the '``llvm.experimental.constrained.fptoui``'
18024intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
18025<t_vector>` of floating point values.
18026
18027The second argument specifies the exception behavior as described above.
18028
18029Semantics:
18030""""""""""
18031
18032The result produced is an unsigned integer converted from the floating
18033point operand. The value is truncated, so it is rounded towards zero.
18034
18035'``llvm.experimental.constrained.fptosi``' Intrinsic
18036^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18037
18038Syntax:
18039"""""""
18040
18041::
18042
18043      declare <ty2>
18044      @llvm.experimental.constrained.fptosi(<type> <value>,
18045                                          metadata <exception behavior>)
18046
18047Overview:
18048"""""""""
18049
18050The '``llvm.experimental.constrained.fptosi``' intrinsic converts
18051:ref:`floating-point <t_floating>` ``value`` to type ``ty2``.
18052
18053Arguments:
18054""""""""""
18055
18056The first argument to the '``llvm.experimental.constrained.fptosi``'
18057intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
18058<t_vector>` of floating point values.
18059
18060The second argument specifies the exception behavior as described above.
18061
18062Semantics:
18063""""""""""
18064
18065The result produced is a signed integer converted from the floating
18066point operand. The value is truncated, so it is rounded towards zero.
18067
18068'``llvm.experimental.constrained.uitofp``' Intrinsic
18069^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18070
18071Syntax:
18072"""""""
18073
18074::
18075
18076      declare <ty2>
18077      @llvm.experimental.constrained.uitofp(<type> <value>,
18078                                          metadata <rounding mode>,
18079                                          metadata <exception behavior>)
18080
18081Overview:
18082"""""""""
18083
18084The '``llvm.experimental.constrained.uitofp``' intrinsic converts an
18085unsigned integer ``value`` to a floating-point of type ``ty2``.
18086
18087Arguments:
18088""""""""""
18089
18090The first argument to the '``llvm.experimental.constrained.uitofp``'
18091intrinsic must be an :ref:`integer <t_integer>` or :ref:`vector
18092<t_vector>` of integer values.
18093
18094The second and third arguments specify the rounding mode and exception
18095behavior as described above.
18096
18097Semantics:
18098""""""""""
18099
18100An inexact floating-point exception will be raised if rounding is required.
18101Any result produced is a floating point value converted from the input
18102integer operand.
18103
18104'``llvm.experimental.constrained.sitofp``' Intrinsic
18105^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18106
18107Syntax:
18108"""""""
18109
18110::
18111
18112      declare <ty2>
18113      @llvm.experimental.constrained.sitofp(<type> <value>,
18114                                          metadata <rounding mode>,
18115                                          metadata <exception behavior>)
18116
18117Overview:
18118"""""""""
18119
18120The '``llvm.experimental.constrained.sitofp``' intrinsic converts a
18121signed integer ``value`` to a floating-point of type ``ty2``.
18122
18123Arguments:
18124""""""""""
18125
18126The first argument to the '``llvm.experimental.constrained.sitofp``'
18127intrinsic must be an :ref:`integer <t_integer>` or :ref:`vector
18128<t_vector>` of integer values.
18129
18130The second and third arguments specify the rounding mode and exception
18131behavior as described above.
18132
18133Semantics:
18134""""""""""
18135
18136An inexact floating-point exception will be raised if rounding is required.
18137Any result produced is a floating point value converted from the input
18138integer operand.
18139
18140'``llvm.experimental.constrained.fptrunc``' Intrinsic
18141^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18142
18143Syntax:
18144"""""""
18145
18146::
18147
18148      declare <ty2>
18149      @llvm.experimental.constrained.fptrunc(<type> <value>,
18150                                          metadata <rounding mode>,
18151                                          metadata <exception behavior>)
18152
18153Overview:
18154"""""""""
18155
18156The '``llvm.experimental.constrained.fptrunc``' intrinsic truncates ``value``
18157to type ``ty2``.
18158
18159Arguments:
18160""""""""""
18161
18162The first argument to the '``llvm.experimental.constrained.fptrunc``'
18163intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
18164<t_vector>` of floating point values. This argument must be larger in size
18165than the result.
18166
18167The second and third arguments specify the rounding mode and exception
18168behavior as described above.
18169
18170Semantics:
18171""""""""""
18172
18173The result produced is a floating point value truncated to be smaller in size
18174than the operand.
18175
18176'``llvm.experimental.constrained.fpext``' Intrinsic
18177^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18178
18179Syntax:
18180"""""""
18181
18182::
18183
18184      declare <ty2>
18185      @llvm.experimental.constrained.fpext(<type> <value>,
18186                                          metadata <exception behavior>)
18187
18188Overview:
18189"""""""""
18190
18191The '``llvm.experimental.constrained.fpext``' intrinsic extends a
18192floating-point ``value`` to a larger floating-point value.
18193
18194Arguments:
18195""""""""""
18196
18197The first argument to the '``llvm.experimental.constrained.fpext``'
18198intrinsic must be :ref:`floating point <t_floating>` or :ref:`vector
18199<t_vector>` of floating point values. This argument must be smaller in size
18200than the result.
18201
18202The second argument specifies the exception behavior as described above.
18203
18204Semantics:
18205""""""""""
18206
18207The result produced is a floating point value extended to be larger in size
18208than the operand. All restrictions that apply to the fpext instruction also
18209apply to this intrinsic.
18210
18211'``llvm.experimental.constrained.fcmp``' and '``llvm.experimental.constrained.fcmps``' Intrinsics
18212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18213
18214Syntax:
18215"""""""
18216
18217::
18218
18219      declare <ty2>
18220      @llvm.experimental.constrained.fcmp(<type> <op1>, <type> <op2>,
18221                                          metadata <condition code>,
18222                                          metadata <exception behavior>)
18223      declare <ty2>
18224      @llvm.experimental.constrained.fcmps(<type> <op1>, <type> <op2>,
18225                                           metadata <condition code>,
18226                                           metadata <exception behavior>)
18227
18228Overview:
18229"""""""""
18230
18231The '``llvm.experimental.constrained.fcmp``' and
18232'``llvm.experimental.constrained.fcmps``' intrinsics return a boolean
18233value or vector of boolean values based on comparison of its operands.
18234
18235If the operands are floating-point scalars, then the result type is a
18236boolean (:ref:`i1 <t_integer>`).
18237
18238If the operands are floating-point vectors, then the result type is a
18239vector of boolean with the same number of elements as the operands being
18240compared.
18241
18242The '``llvm.experimental.constrained.fcmp``' intrinsic performs a quiet
18243comparison operation while the '``llvm.experimental.constrained.fcmps``'
18244intrinsic performs a signaling comparison operation.
18245
18246Arguments:
18247""""""""""
18248
18249The first two arguments to the '``llvm.experimental.constrained.fcmp``'
18250and '``llvm.experimental.constrained.fcmps``' intrinsics must be
18251:ref:`floating-point <t_floating>` or :ref:`vector <t_vector>`
18252of floating-point values. Both arguments must have identical types.
18253
18254The third argument is the condition code indicating the kind of comparison
18255to perform. It must be a metadata string with one of the following values:
18256
18257- "``oeq``": ordered and equal
18258- "``ogt``": ordered and greater than
18259- "``oge``": ordered and greater than or equal
18260- "``olt``": ordered and less than
18261- "``ole``": ordered and less than or equal
18262- "``one``": ordered and not equal
18263- "``ord``": ordered (no nans)
18264- "``ueq``": unordered or equal
18265- "``ugt``": unordered or greater than
18266- "``uge``": unordered or greater than or equal
18267- "``ult``": unordered or less than
18268- "``ule``": unordered or less than or equal
18269- "``une``": unordered or not equal
18270- "``uno``": unordered (either nans)
18271
18272*Ordered* means that neither operand is a NAN while *unordered* means
18273that either operand may be a NAN.
18274
18275The fourth argument specifies the exception behavior as described above.
18276
18277Semantics:
18278""""""""""
18279
18280``op1`` and ``op2`` are compared according to the condition code given
18281as the third argument. If the operands are vectors, then the
18282vectors are compared element by element. Each comparison performed
18283always yields an :ref:`i1 <t_integer>` result, as follows:
18284
18285- "``oeq``": yields ``true`` if both operands are not a NAN and ``op1``
18286  is equal to ``op2``.
18287- "``ogt``": yields ``true`` if both operands are not a NAN and ``op1``
18288  is greater than ``op2``.
18289- "``oge``": yields ``true`` if both operands are not a NAN and ``op1``
18290  is greater than or equal to ``op2``.
18291- "``olt``": yields ``true`` if both operands are not a NAN and ``op1``
18292  is less than ``op2``.
18293- "``ole``": yields ``true`` if both operands are not a NAN and ``op1``
18294  is less than or equal to ``op2``.
18295- "``one``": yields ``true`` if both operands are not a NAN and ``op1``
18296  is not equal to ``op2``.
18297- "``ord``": yields ``true`` if both operands are not a NAN.
18298- "``ueq``": yields ``true`` if either operand is a NAN or ``op1`` is
18299  equal to ``op2``.
18300- "``ugt``": yields ``true`` if either operand is a NAN or ``op1`` is
18301  greater than ``op2``.
18302- "``uge``": yields ``true`` if either operand is a NAN or ``op1`` is
18303  greater than or equal to ``op2``.
18304- "``ult``": yields ``true`` if either operand is a NAN or ``op1`` is
18305  less than ``op2``.
18306- "``ule``": yields ``true`` if either operand is a NAN or ``op1`` is
18307  less than or equal to ``op2``.
18308- "``une``": yields ``true`` if either operand is a NAN or ``op1`` is
18309  not equal to ``op2``.
18310- "``uno``": yields ``true`` if either operand is a NAN.
18311
18312The quiet comparison operation performed by
18313'``llvm.experimental.constrained.fcmp``' will only raise an exception
18314if either operand is a SNAN.  The signaling comparison operation
18315performed by '``llvm.experimental.constrained.fcmps``' will raise an
18316exception if either operand is a NAN (QNAN or SNAN).
18317
18318'``llvm.experimental.constrained.fmuladd``' Intrinsic
18319^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18320
18321Syntax:
18322"""""""
18323
18324::
18325
18326      declare <type>
18327      @llvm.experimental.constrained.fmuladd(<type> <op1>, <type> <op2>,
18328                                             <type> <op3>,
18329                                             metadata <rounding mode>,
18330                                             metadata <exception behavior>)
18331
18332Overview:
18333"""""""""
18334
18335The '``llvm.experimental.constrained.fmuladd``' intrinsic represents
18336multiply-add expressions that can be fused if the code generator determines
18337that (a) the target instruction set has support for a fused operation,
18338and (b) that the fused operation is more efficient than the equivalent,
18339separate pair of mul and add instructions.
18340
18341Arguments:
18342""""""""""
18343
18344The first three arguments to the '``llvm.experimental.constrained.fmuladd``'
18345intrinsic must be floating-point or vector of floating-point values.
18346All three arguments must have identical types.
18347
18348The fourth and fifth arguments specify the rounding mode and exception behavior
18349as described above.
18350
18351Semantics:
18352""""""""""
18353
18354The expression:
18355
18356::
18357
18358      %0 = call float @llvm.experimental.constrained.fmuladd.f32(%a, %b, %c,
18359                                                                 metadata <rounding mode>,
18360                                                                 metadata <exception behavior>)
18361
18362is equivalent to the expression:
18363
18364::
18365
18366      %0 = call float @llvm.experimental.constrained.fmul.f32(%a, %b,
18367                                                              metadata <rounding mode>,
18368                                                              metadata <exception behavior>)
18369      %1 = call float @llvm.experimental.constrained.fadd.f32(%0, %c,
18370                                                              metadata <rounding mode>,
18371                                                              metadata <exception behavior>)
18372
18373except that it is unspecified whether rounding will be performed between the
18374multiplication and addition steps. Fusion is not guaranteed, even if the target
18375platform supports it.
18376If a fused multiply-add is required, the corresponding
18377:ref:`llvm.experimental.constrained.fma <int_fma>` intrinsic function should be
18378used instead.
18379This never sets errno, just as '``llvm.experimental.constrained.fma.*``'.
18380
18381Constrained libm-equivalent Intrinsics
18382--------------------------------------
18383
18384In addition to the basic floating-point operations for which constrained
18385intrinsics are described above, there are constrained versions of various
18386operations which provide equivalent behavior to a corresponding libm function.
18387These intrinsics allow the precise behavior of these operations with respect to
18388rounding mode and exception behavior to be controlled.
18389
18390As with the basic constrained floating-point intrinsics, the rounding mode
18391and exception behavior arguments only control the behavior of the optimizer.
18392They do not change the runtime floating-point environment.
18393
18394
18395'``llvm.experimental.constrained.sqrt``' Intrinsic
18396^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18397
18398Syntax:
18399"""""""
18400
18401::
18402
18403      declare <type>
18404      @llvm.experimental.constrained.sqrt(<type> <op1>,
18405                                          metadata <rounding mode>,
18406                                          metadata <exception behavior>)
18407
18408Overview:
18409"""""""""
18410
18411The '``llvm.experimental.constrained.sqrt``' intrinsic returns the square root
18412of the specified value, returning the same value as the libm '``sqrt``'
18413functions would, but without setting ``errno``.
18414
18415Arguments:
18416""""""""""
18417
18418The first argument and the return type are floating-point numbers of the same
18419type.
18420
18421The second and third arguments specify the rounding mode and exception
18422behavior as described above.
18423
18424Semantics:
18425""""""""""
18426
18427This function returns the nonnegative square root of the specified value.
18428If the value is less than negative zero, a floating-point exception occurs
18429and the return value is architecture specific.
18430
18431
18432'``llvm.experimental.constrained.pow``' Intrinsic
18433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18434
18435Syntax:
18436"""""""
18437
18438::
18439
18440      declare <type>
18441      @llvm.experimental.constrained.pow(<type> <op1>, <type> <op2>,
18442                                         metadata <rounding mode>,
18443                                         metadata <exception behavior>)
18444
18445Overview:
18446"""""""""
18447
18448The '``llvm.experimental.constrained.pow``' intrinsic returns the first operand
18449raised to the (positive or negative) power specified by the second operand.
18450
18451Arguments:
18452""""""""""
18453
18454The first two arguments and the return value are floating-point numbers of the
18455same type.  The second argument specifies the power to which the first argument
18456should be raised.
18457
18458The third and fourth arguments specify the rounding mode and exception
18459behavior as described above.
18460
18461Semantics:
18462""""""""""
18463
18464This function returns the first value raised to the second power,
18465returning the same values as the libm ``pow`` functions would, and
18466handles error conditions in the same way.
18467
18468
18469'``llvm.experimental.constrained.powi``' Intrinsic
18470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18471
18472Syntax:
18473"""""""
18474
18475::
18476
18477      declare <type>
18478      @llvm.experimental.constrained.powi(<type> <op1>, i32 <op2>,
18479                                          metadata <rounding mode>,
18480                                          metadata <exception behavior>)
18481
18482Overview:
18483"""""""""
18484
18485The '``llvm.experimental.constrained.powi``' intrinsic returns the first operand
18486raised to the (positive or negative) power specified by the second operand. The
18487order of evaluation of multiplications is not defined. When a vector of
18488floating-point type is used, the second argument remains a scalar integer value.
18489
18490
18491Arguments:
18492""""""""""
18493
18494The first argument and the return value are floating-point numbers of the same
18495type.  The second argument is a 32-bit signed integer specifying the power to
18496which the first argument should be raised.
18497
18498The third and fourth arguments specify the rounding mode and exception
18499behavior as described above.
18500
18501Semantics:
18502""""""""""
18503
18504This function returns the first value raised to the second power with an
18505unspecified sequence of rounding operations.
18506
18507
18508'``llvm.experimental.constrained.sin``' Intrinsic
18509^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18510
18511Syntax:
18512"""""""
18513
18514::
18515
18516      declare <type>
18517      @llvm.experimental.constrained.sin(<type> <op1>,
18518                                         metadata <rounding mode>,
18519                                         metadata <exception behavior>)
18520
18521Overview:
18522"""""""""
18523
18524The '``llvm.experimental.constrained.sin``' intrinsic returns the sine of the
18525first operand.
18526
18527Arguments:
18528""""""""""
18529
18530The first argument and the return type are floating-point numbers of the same
18531type.
18532
18533The second and third arguments specify the rounding mode and exception
18534behavior as described above.
18535
18536Semantics:
18537""""""""""
18538
18539This function returns the sine of the specified operand, returning the
18540same values as the libm ``sin`` functions would, and handles error
18541conditions in the same way.
18542
18543
18544'``llvm.experimental.constrained.cos``' Intrinsic
18545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18546
18547Syntax:
18548"""""""
18549
18550::
18551
18552      declare <type>
18553      @llvm.experimental.constrained.cos(<type> <op1>,
18554                                         metadata <rounding mode>,
18555                                         metadata <exception behavior>)
18556
18557Overview:
18558"""""""""
18559
18560The '``llvm.experimental.constrained.cos``' intrinsic returns the cosine of the
18561first operand.
18562
18563Arguments:
18564""""""""""
18565
18566The first argument and the return type are floating-point numbers of the same
18567type.
18568
18569The second and third arguments specify the rounding mode and exception
18570behavior as described above.
18571
18572Semantics:
18573""""""""""
18574
18575This function returns the cosine of the specified operand, returning the
18576same values as the libm ``cos`` functions would, and handles error
18577conditions in the same way.
18578
18579
18580'``llvm.experimental.constrained.exp``' Intrinsic
18581^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18582
18583Syntax:
18584"""""""
18585
18586::
18587
18588      declare <type>
18589      @llvm.experimental.constrained.exp(<type> <op1>,
18590                                         metadata <rounding mode>,
18591                                         metadata <exception behavior>)
18592
18593Overview:
18594"""""""""
18595
18596The '``llvm.experimental.constrained.exp``' intrinsic computes the base-e
18597exponential of the specified value.
18598
18599Arguments:
18600""""""""""
18601
18602The first argument and the return value are floating-point numbers of the same
18603type.
18604
18605The second and third arguments specify the rounding mode and exception
18606behavior as described above.
18607
18608Semantics:
18609""""""""""
18610
18611This function returns the same values as the libm ``exp`` functions
18612would, and handles error conditions in the same way.
18613
18614
18615'``llvm.experimental.constrained.exp2``' Intrinsic
18616^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18617
18618Syntax:
18619"""""""
18620
18621::
18622
18623      declare <type>
18624      @llvm.experimental.constrained.exp2(<type> <op1>,
18625                                          metadata <rounding mode>,
18626                                          metadata <exception behavior>)
18627
18628Overview:
18629"""""""""
18630
18631The '``llvm.experimental.constrained.exp2``' intrinsic computes the base-2
18632exponential of the specified value.
18633
18634
18635Arguments:
18636""""""""""
18637
18638The first argument and the return value are floating-point numbers of the same
18639type.
18640
18641The second and third arguments specify the rounding mode and exception
18642behavior as described above.
18643
18644Semantics:
18645""""""""""
18646
18647This function returns the same values as the libm ``exp2`` functions
18648would, and handles error conditions in the same way.
18649
18650
18651'``llvm.experimental.constrained.log``' Intrinsic
18652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18653
18654Syntax:
18655"""""""
18656
18657::
18658
18659      declare <type>
18660      @llvm.experimental.constrained.log(<type> <op1>,
18661                                         metadata <rounding mode>,
18662                                         metadata <exception behavior>)
18663
18664Overview:
18665"""""""""
18666
18667The '``llvm.experimental.constrained.log``' intrinsic computes the base-e
18668logarithm of the specified value.
18669
18670Arguments:
18671""""""""""
18672
18673The first argument and the return value are floating-point numbers of the same
18674type.
18675
18676The second and third arguments specify the rounding mode and exception
18677behavior as described above.
18678
18679
18680Semantics:
18681""""""""""
18682
18683This function returns the same values as the libm ``log`` functions
18684would, and handles error conditions in the same way.
18685
18686
18687'``llvm.experimental.constrained.log10``' Intrinsic
18688^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18689
18690Syntax:
18691"""""""
18692
18693::
18694
18695      declare <type>
18696      @llvm.experimental.constrained.log10(<type> <op1>,
18697                                           metadata <rounding mode>,
18698                                           metadata <exception behavior>)
18699
18700Overview:
18701"""""""""
18702
18703The '``llvm.experimental.constrained.log10``' intrinsic computes the base-10
18704logarithm of the specified value.
18705
18706Arguments:
18707""""""""""
18708
18709The first argument and the return value are floating-point numbers of the same
18710type.
18711
18712The second and third arguments specify the rounding mode and exception
18713behavior as described above.
18714
18715Semantics:
18716""""""""""
18717
18718This function returns the same values as the libm ``log10`` functions
18719would, and handles error conditions in the same way.
18720
18721
18722'``llvm.experimental.constrained.log2``' Intrinsic
18723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18724
18725Syntax:
18726"""""""
18727
18728::
18729
18730      declare <type>
18731      @llvm.experimental.constrained.log2(<type> <op1>,
18732                                          metadata <rounding mode>,
18733                                          metadata <exception behavior>)
18734
18735Overview:
18736"""""""""
18737
18738The '``llvm.experimental.constrained.log2``' intrinsic computes the base-2
18739logarithm of the specified value.
18740
18741Arguments:
18742""""""""""
18743
18744The first argument and the return value are floating-point numbers of the same
18745type.
18746
18747The second and third arguments specify the rounding mode and exception
18748behavior as described above.
18749
18750Semantics:
18751""""""""""
18752
18753This function returns the same values as the libm ``log2`` functions
18754would, and handles error conditions in the same way.
18755
18756
18757'``llvm.experimental.constrained.rint``' Intrinsic
18758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18759
18760Syntax:
18761"""""""
18762
18763::
18764
18765      declare <type>
18766      @llvm.experimental.constrained.rint(<type> <op1>,
18767                                          metadata <rounding mode>,
18768                                          metadata <exception behavior>)
18769
18770Overview:
18771"""""""""
18772
18773The '``llvm.experimental.constrained.rint``' intrinsic returns the first
18774operand rounded to the nearest integer. It may raise an inexact floating-point
18775exception if the operand is not an integer.
18776
18777Arguments:
18778""""""""""
18779
18780The first argument and the return value are floating-point numbers of the same
18781type.
18782
18783The second and third arguments specify the rounding mode and exception
18784behavior as described above.
18785
18786Semantics:
18787""""""""""
18788
18789This function returns the same values as the libm ``rint`` functions
18790would, and handles error conditions in the same way.  The rounding mode is
18791described, not determined, by the rounding mode argument.  The actual rounding
18792mode is determined by the runtime floating-point environment.  The rounding
18793mode argument is only intended as information to the compiler.
18794
18795
18796'``llvm.experimental.constrained.lrint``' Intrinsic
18797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18798
18799Syntax:
18800"""""""
18801
18802::
18803
18804      declare <inttype>
18805      @llvm.experimental.constrained.lrint(<fptype> <op1>,
18806                                           metadata <rounding mode>,
18807                                           metadata <exception behavior>)
18808
18809Overview:
18810"""""""""
18811
18812The '``llvm.experimental.constrained.lrint``' intrinsic returns the first
18813operand rounded to the nearest integer. An inexact floating-point exception
18814will be raised if the operand is not an integer. An invalid exception is
18815raised if the result is too large to fit into a supported integer type,
18816and in this case the result is undefined.
18817
18818Arguments:
18819""""""""""
18820
18821The first argument is a floating-point number. The return value is an
18822integer type. Not all types are supported on all targets. The supported
18823types are the same as the ``llvm.lrint`` intrinsic and the ``lrint``
18824libm functions.
18825
18826The second and third arguments specify the rounding mode and exception
18827behavior as described above.
18828
18829Semantics:
18830""""""""""
18831
18832This function returns the same values as the libm ``lrint`` functions
18833would, and handles error conditions in the same way.
18834
18835The rounding mode is described, not determined, by the rounding mode
18836argument.  The actual rounding mode is determined by the runtime floating-point
18837environment.  The rounding mode argument is only intended as information
18838to the compiler.
18839
18840If the runtime floating-point environment is using the default rounding mode
18841then the results will be the same as the llvm.lrint intrinsic.
18842
18843
18844'``llvm.experimental.constrained.llrint``' Intrinsic
18845^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18846
18847Syntax:
18848"""""""
18849
18850::
18851
18852      declare <inttype>
18853      @llvm.experimental.constrained.llrint(<fptype> <op1>,
18854                                            metadata <rounding mode>,
18855                                            metadata <exception behavior>)
18856
18857Overview:
18858"""""""""
18859
18860The '``llvm.experimental.constrained.llrint``' intrinsic returns the first
18861operand rounded to the nearest integer. An inexact floating-point exception
18862will be raised if the operand is not an integer. An invalid exception is
18863raised if the result is too large to fit into a supported integer type,
18864and in this case the result is undefined.
18865
18866Arguments:
18867""""""""""
18868
18869The first argument is a floating-point number. The return value is an
18870integer type. Not all types are supported on all targets. The supported
18871types are the same as the ``llvm.llrint`` intrinsic and the ``llrint``
18872libm functions.
18873
18874The second and third arguments specify the rounding mode and exception
18875behavior as described above.
18876
18877Semantics:
18878""""""""""
18879
18880This function returns the same values as the libm ``llrint`` functions
18881would, and handles error conditions in the same way.
18882
18883The rounding mode is described, not determined, by the rounding mode
18884argument.  The actual rounding mode is determined by the runtime floating-point
18885environment.  The rounding mode argument is only intended as information
18886to the compiler.
18887
18888If the runtime floating-point environment is using the default rounding mode
18889then the results will be the same as the llvm.llrint intrinsic.
18890
18891
18892'``llvm.experimental.constrained.nearbyint``' Intrinsic
18893^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18894
18895Syntax:
18896"""""""
18897
18898::
18899
18900      declare <type>
18901      @llvm.experimental.constrained.nearbyint(<type> <op1>,
18902                                               metadata <rounding mode>,
18903                                               metadata <exception behavior>)
18904
18905Overview:
18906"""""""""
18907
18908The '``llvm.experimental.constrained.nearbyint``' intrinsic returns the first
18909operand rounded to the nearest integer. It will not raise an inexact
18910floating-point exception if the operand is not an integer.
18911
18912
18913Arguments:
18914""""""""""
18915
18916The first argument and the return value are floating-point numbers of the same
18917type.
18918
18919The second and third arguments specify the rounding mode and exception
18920behavior as described above.
18921
18922Semantics:
18923""""""""""
18924
18925This function returns the same values as the libm ``nearbyint`` functions
18926would, and handles error conditions in the same way.  The rounding mode is
18927described, not determined, by the rounding mode argument.  The actual rounding
18928mode is determined by the runtime floating-point environment.  The rounding
18929mode argument is only intended as information to the compiler.
18930
18931
18932'``llvm.experimental.constrained.maxnum``' Intrinsic
18933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18934
18935Syntax:
18936"""""""
18937
18938::
18939
18940      declare <type>
18941      @llvm.experimental.constrained.maxnum(<type> <op1>, <type> <op2>
18942                                            metadata <exception behavior>)
18943
18944Overview:
18945"""""""""
18946
18947The '``llvm.experimental.constrained.maxnum``' intrinsic returns the maximum
18948of the two arguments.
18949
18950Arguments:
18951""""""""""
18952
18953The first two arguments and the return value are floating-point numbers
18954of the same type.
18955
18956The third argument specifies the exception behavior as described above.
18957
18958Semantics:
18959""""""""""
18960
18961This function follows the IEEE-754 semantics for maxNum.
18962
18963
18964'``llvm.experimental.constrained.minnum``' Intrinsic
18965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18966
18967Syntax:
18968"""""""
18969
18970::
18971
18972      declare <type>
18973      @llvm.experimental.constrained.minnum(<type> <op1>, <type> <op2>
18974                                            metadata <exception behavior>)
18975
18976Overview:
18977"""""""""
18978
18979The '``llvm.experimental.constrained.minnum``' intrinsic returns the minimum
18980of the two arguments.
18981
18982Arguments:
18983""""""""""
18984
18985The first two arguments and the return value are floating-point numbers
18986of the same type.
18987
18988The third argument specifies the exception behavior as described above.
18989
18990Semantics:
18991""""""""""
18992
18993This function follows the IEEE-754 semantics for minNum.
18994
18995
18996'``llvm.experimental.constrained.maximum``' Intrinsic
18997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
18998
18999Syntax:
19000"""""""
19001
19002::
19003
19004      declare <type>
19005      @llvm.experimental.constrained.maximum(<type> <op1>, <type> <op2>
19006                                             metadata <exception behavior>)
19007
19008Overview:
19009"""""""""
19010
19011The '``llvm.experimental.constrained.maximum``' intrinsic returns the maximum
19012of the two arguments, propagating NaNs and treating -0.0 as less than +0.0.
19013
19014Arguments:
19015""""""""""
19016
19017The first two arguments and the return value are floating-point numbers
19018of the same type.
19019
19020The third argument specifies the exception behavior as described above.
19021
19022Semantics:
19023""""""""""
19024
19025This function follows semantics specified in the draft of IEEE 754-2018.
19026
19027
19028'``llvm.experimental.constrained.minimum``' Intrinsic
19029^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19030
19031Syntax:
19032"""""""
19033
19034::
19035
19036      declare <type>
19037      @llvm.experimental.constrained.minimum(<type> <op1>, <type> <op2>
19038                                             metadata <exception behavior>)
19039
19040Overview:
19041"""""""""
19042
19043The '``llvm.experimental.constrained.minimum``' intrinsic returns the minimum
19044of the two arguments, propagating NaNs and treating -0.0 as less than +0.0.
19045
19046Arguments:
19047""""""""""
19048
19049The first two arguments and the return value are floating-point numbers
19050of the same type.
19051
19052The third argument specifies the exception behavior as described above.
19053
19054Semantics:
19055""""""""""
19056
19057This function follows semantics specified in the draft of IEEE 754-2018.
19058
19059
19060'``llvm.experimental.constrained.ceil``' Intrinsic
19061^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19062
19063Syntax:
19064"""""""
19065
19066::
19067
19068      declare <type>
19069      @llvm.experimental.constrained.ceil(<type> <op1>,
19070                                          metadata <exception behavior>)
19071
19072Overview:
19073"""""""""
19074
19075The '``llvm.experimental.constrained.ceil``' intrinsic returns the ceiling of the
19076first operand.
19077
19078Arguments:
19079""""""""""
19080
19081The first argument and the return value are floating-point numbers of the same
19082type.
19083
19084The second argument specifies the exception behavior as described above.
19085
19086Semantics:
19087""""""""""
19088
19089This function returns the same values as the libm ``ceil`` functions
19090would and handles error conditions in the same way.
19091
19092
19093'``llvm.experimental.constrained.floor``' Intrinsic
19094^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19095
19096Syntax:
19097"""""""
19098
19099::
19100
19101      declare <type>
19102      @llvm.experimental.constrained.floor(<type> <op1>,
19103                                           metadata <exception behavior>)
19104
19105Overview:
19106"""""""""
19107
19108The '``llvm.experimental.constrained.floor``' intrinsic returns the floor of the
19109first operand.
19110
19111Arguments:
19112""""""""""
19113
19114The first argument and the return value are floating-point numbers of the same
19115type.
19116
19117The second argument specifies the exception behavior as described above.
19118
19119Semantics:
19120""""""""""
19121
19122This function returns the same values as the libm ``floor`` functions
19123would and handles error conditions in the same way.
19124
19125
19126'``llvm.experimental.constrained.round``' Intrinsic
19127^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19128
19129Syntax:
19130"""""""
19131
19132::
19133
19134      declare <type>
19135      @llvm.experimental.constrained.round(<type> <op1>,
19136                                           metadata <exception behavior>)
19137
19138Overview:
19139"""""""""
19140
19141The '``llvm.experimental.constrained.round``' intrinsic returns the first
19142operand rounded to the nearest integer.
19143
19144Arguments:
19145""""""""""
19146
19147The first argument and the return value are floating-point numbers of the same
19148type.
19149
19150The second argument specifies the exception behavior as described above.
19151
19152Semantics:
19153""""""""""
19154
19155This function returns the same values as the libm ``round`` functions
19156would and handles error conditions in the same way.
19157
19158
19159'``llvm.experimental.constrained.roundeven``' Intrinsic
19160^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19161
19162Syntax:
19163"""""""
19164
19165::
19166
19167      declare <type>
19168      @llvm.experimental.constrained.roundeven(<type> <op1>,
19169                                               metadata <exception behavior>)
19170
19171Overview:
19172"""""""""
19173
19174The '``llvm.experimental.constrained.roundeven``' intrinsic returns the first
19175operand rounded to the nearest integer in floating-point format, rounding
19176halfway cases to even (that is, to the nearest value that is an even integer),
19177regardless of the current rounding direction.
19178
19179Arguments:
19180""""""""""
19181
19182The first argument and the return value are floating-point numbers of the same
19183type.
19184
19185The second argument specifies the exception behavior as described above.
19186
19187Semantics:
19188""""""""""
19189
19190This function implements IEEE-754 operation ``roundToIntegralTiesToEven``. It
19191also behaves in the same way as C standard function ``roundeven`` and can signal
19192the invalid operation exception for a SNAN operand.
19193
19194
19195'``llvm.experimental.constrained.lround``' Intrinsic
19196^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19197
19198Syntax:
19199"""""""
19200
19201::
19202
19203      declare <inttype>
19204      @llvm.experimental.constrained.lround(<fptype> <op1>,
19205                                            metadata <exception behavior>)
19206
19207Overview:
19208"""""""""
19209
19210The '``llvm.experimental.constrained.lround``' intrinsic returns the first
19211operand rounded to the nearest integer with ties away from zero.  It will
19212raise an inexact floating-point exception if the operand is not an integer.
19213An invalid exception is raised if the result is too large to fit into a
19214supported integer type, and in this case the result is undefined.
19215
19216Arguments:
19217""""""""""
19218
19219The first argument is a floating-point number. The return value is an
19220integer type. Not all types are supported on all targets. The supported
19221types are the same as the ``llvm.lround`` intrinsic and the ``lround``
19222libm functions.
19223
19224The second argument specifies the exception behavior as described above.
19225
19226Semantics:
19227""""""""""
19228
19229This function returns the same values as the libm ``lround`` functions
19230would and handles error conditions in the same way.
19231
19232
19233'``llvm.experimental.constrained.llround``' Intrinsic
19234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19235
19236Syntax:
19237"""""""
19238
19239::
19240
19241      declare <inttype>
19242      @llvm.experimental.constrained.llround(<fptype> <op1>,
19243                                             metadata <exception behavior>)
19244
19245Overview:
19246"""""""""
19247
19248The '``llvm.experimental.constrained.llround``' intrinsic returns the first
19249operand rounded to the nearest integer with ties away from zero. It will
19250raise an inexact floating-point exception if the operand is not an integer.
19251An invalid exception is raised if the result is too large to fit into a
19252supported integer type, and in this case the result is undefined.
19253
19254Arguments:
19255""""""""""
19256
19257The first argument is a floating-point number. The return value is an
19258integer type. Not all types are supported on all targets. The supported
19259types are the same as the ``llvm.llround`` intrinsic and the ``llround``
19260libm functions.
19261
19262The second argument specifies the exception behavior as described above.
19263
19264Semantics:
19265""""""""""
19266
19267This function returns the same values as the libm ``llround`` functions
19268would and handles error conditions in the same way.
19269
19270
19271'``llvm.experimental.constrained.trunc``' Intrinsic
19272^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19273
19274Syntax:
19275"""""""
19276
19277::
19278
19279      declare <type>
19280      @llvm.experimental.constrained.trunc(<type> <op1>,
19281                                           metadata <exception behavior>)
19282
19283Overview:
19284"""""""""
19285
19286The '``llvm.experimental.constrained.trunc``' intrinsic returns the first
19287operand rounded to the nearest integer not larger in magnitude than the
19288operand.
19289
19290Arguments:
19291""""""""""
19292
19293The first argument and the return value are floating-point numbers of the same
19294type.
19295
19296The second argument specifies the exception behavior as described above.
19297
19298Semantics:
19299""""""""""
19300
19301This function returns the same values as the libm ``trunc`` functions
19302would and handles error conditions in the same way.
19303
19304
19305Floating Point Environment Manipulation intrinsics
19306--------------------------------------------------
19307
19308These functions read or write floating point environment, such as rounding
19309mode or state of floating point exceptions. Altering the floating point
19310environment requires special care. See :ref:`Floating Point Environment <floatenv>`.
19311
19312'``llvm.flt.rounds``' Intrinsic
19313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19314
19315Syntax:
19316"""""""
19317
19318::
19319
19320      declare i32 @llvm.flt.rounds()
19321
19322Overview:
19323"""""""""
19324
19325The '``llvm.flt.rounds``' intrinsic reads the current rounding mode.
19326
19327Semantics:
19328""""""""""
19329
19330The '``llvm.flt.rounds``' intrinsic returns the current rounding mode.
19331Encoding of the returned values is same as the result of ``FLT_ROUNDS``,
19332specified by C standard:
19333
19334::
19335
19336    0  - toward zero
19337    1  - to nearest, ties to even
19338    2  - toward positive infinity
19339    3  - toward negative infinity
19340    4  - to nearest, ties away from zero
19341
19342Other values may be used to represent additional rounding modes, supported by a
19343target. These values are target-specific.
19344
19345General Intrinsics
19346------------------
19347
19348This class of intrinsics is designed to be generic and has no specific
19349purpose.
19350
19351'``llvm.var.annotation``' Intrinsic
19352^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19353
19354Syntax:
19355"""""""
19356
19357::
19358
19359      declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32  <int>)
19360
19361Overview:
19362"""""""""
19363
19364The '``llvm.var.annotation``' intrinsic.
19365
19366Arguments:
19367""""""""""
19368
19369The first argument is a pointer to a value, the second is a pointer to a
19370global string, the third is a pointer to a global string which is the
19371source file name, and the last argument is the line number.
19372
19373Semantics:
19374""""""""""
19375
19376This intrinsic allows annotation of local variables with arbitrary
19377strings. This can be useful for special purpose optimizations that want
19378to look for these annotations. These have no other defined use; they are
19379ignored by code generation and optimization.
19380
19381'``llvm.ptr.annotation.*``' Intrinsic
19382^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19383
19384Syntax:
19385"""""""
19386
19387This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
19388pointer to an integer of any width. *NOTE* you must specify an address space for
19389the pointer. The identifier for the default address space is the integer
19390'``0``'.
19391
19392::
19393
19394      declare i8*   @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32  <int>)
19395      declare i16*  @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32  <int>)
19396      declare i32*  @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32  <int>)
19397      declare i64*  @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32  <int>)
19398      declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32  <int>)
19399
19400Overview:
19401"""""""""
19402
19403The '``llvm.ptr.annotation``' intrinsic.
19404
19405Arguments:
19406""""""""""
19407
19408The first argument is a pointer to an integer value of arbitrary bitwidth
19409(result of some expression), the second is a pointer to a global string, the
19410third is a pointer to a global string which is the source file name, and the
19411last argument is the line number. It returns the value of the first argument.
19412
19413Semantics:
19414""""""""""
19415
19416This intrinsic allows annotation of a pointer to an integer with arbitrary
19417strings. This can be useful for special purpose optimizations that want to look
19418for these annotations. These have no other defined use; they are ignored by code
19419generation and optimization.
19420
19421'``llvm.annotation.*``' Intrinsic
19422^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19423
19424Syntax:
19425"""""""
19426
19427This is an overloaded intrinsic. You can use '``llvm.annotation``' on
19428any integer bit width.
19429
19430::
19431
19432      declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32  <int>)
19433      declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32  <int>)
19434      declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32  <int>)
19435      declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32  <int>)
19436      declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32  <int>)
19437
19438Overview:
19439"""""""""
19440
19441The '``llvm.annotation``' intrinsic.
19442
19443Arguments:
19444""""""""""
19445
19446The first argument is an integer value (result of some expression), the
19447second is a pointer to a global string, the third is a pointer to a
19448global string which is the source file name, and the last argument is
19449the line number. It returns the value of the first argument.
19450
19451Semantics:
19452""""""""""
19453
19454This intrinsic allows annotations to be put on arbitrary expressions
19455with arbitrary strings. This can be useful for special purpose
19456optimizations that want to look for these annotations. These have no
19457other defined use; they are ignored by code generation and optimization.
19458
19459'``llvm.codeview.annotation``' Intrinsic
19460^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19461
19462Syntax:
19463"""""""
19464
19465This annotation emits a label at its program point and an associated
19466``S_ANNOTATION`` codeview record with some additional string metadata. This is
19467used to implement MSVC's ``__annotation`` intrinsic. It is marked
19468``noduplicate``, so calls to this intrinsic prevent inlining and should be
19469considered expensive.
19470
19471::
19472
19473      declare void @llvm.codeview.annotation(metadata)
19474
19475Arguments:
19476""""""""""
19477
19478The argument should be an MDTuple containing any number of MDStrings.
19479
19480'``llvm.trap``' Intrinsic
19481^^^^^^^^^^^^^^^^^^^^^^^^^
19482
19483Syntax:
19484"""""""
19485
19486::
19487
19488      declare void @llvm.trap() cold noreturn nounwind
19489
19490Overview:
19491"""""""""
19492
19493The '``llvm.trap``' intrinsic.
19494
19495Arguments:
19496""""""""""
19497
19498None.
19499
19500Semantics:
19501""""""""""
19502
19503This intrinsic is lowered to the target dependent trap instruction. If
19504the target does not have a trap instruction, this intrinsic will be
19505lowered to a call of the ``abort()`` function.
19506
19507'``llvm.debugtrap``' Intrinsic
19508^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19509
19510Syntax:
19511"""""""
19512
19513::
19514
19515      declare void @llvm.debugtrap() nounwind
19516
19517Overview:
19518"""""""""
19519
19520The '``llvm.debugtrap``' intrinsic.
19521
19522Arguments:
19523""""""""""
19524
19525None.
19526
19527Semantics:
19528""""""""""
19529
19530This intrinsic is lowered to code which is intended to cause an
19531execution trap with the intention of requesting the attention of a
19532debugger.
19533
19534'``llvm.stackprotector``' Intrinsic
19535^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19536
19537Syntax:
19538"""""""
19539
19540::
19541
19542      declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
19543
19544Overview:
19545"""""""""
19546
19547The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
19548onto the stack at ``slot``. The stack slot is adjusted to ensure that it
19549is placed on the stack before local variables.
19550
19551Arguments:
19552""""""""""
19553
19554The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
19555The first argument is the value loaded from the stack guard
19556``@__stack_chk_guard``. The second variable is an ``alloca`` that has
19557enough space to hold the value of the guard.
19558
19559Semantics:
19560""""""""""
19561
19562This intrinsic causes the prologue/epilogue inserter to force the position of
19563the ``AllocaInst`` stack slot to be before local variables on the stack. This is
19564to ensure that if a local variable on the stack is overwritten, it will destroy
19565the value of the guard. When the function exits, the guard on the stack is
19566checked against the original guard by ``llvm.stackprotectorcheck``. If they are
19567different, then ``llvm.stackprotectorcheck`` causes the program to abort by
19568calling the ``__stack_chk_fail()`` function.
19569
19570'``llvm.stackguard``' Intrinsic
19571^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19572
19573Syntax:
19574"""""""
19575
19576::
19577
19578      declare i8* @llvm.stackguard()
19579
19580Overview:
19581"""""""""
19582
19583The ``llvm.stackguard`` intrinsic returns the system stack guard value.
19584
19585It should not be generated by frontends, since it is only for internal usage.
19586The reason why we create this intrinsic is that we still support IR form Stack
19587Protector in FastISel.
19588
19589Arguments:
19590""""""""""
19591
19592None.
19593
19594Semantics:
19595""""""""""
19596
19597On some platforms, the value returned by this intrinsic remains unchanged
19598between loads in the same thread. On other platforms, it returns the same
19599global variable value, if any, e.g. ``@__stack_chk_guard``.
19600
19601Currently some platforms have IR-level customized stack guard loading (e.g.
19602X86 Linux) that is not handled by ``llvm.stackguard()``, while they should be
19603in the future.
19604
19605'``llvm.objectsize``' Intrinsic
19606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19607
19608Syntax:
19609"""""""
19610
19611::
19612
19613      declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>, i1 <nullunknown>, i1 <dynamic>)
19614      declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>, i1 <nullunknown>, i1 <dynamic>)
19615
19616Overview:
19617"""""""""
19618
19619The ``llvm.objectsize`` intrinsic is designed to provide information to the
19620optimizer to determine whether a) an operation (like memcpy) will overflow a
19621buffer that corresponds to an object, or b) that a runtime check for overflow
19622isn't necessary. An object in this context means an allocation of a specific
19623class, structure, array, or other object.
19624
19625Arguments:
19626""""""""""
19627
19628The ``llvm.objectsize`` intrinsic takes four arguments. The first argument is a
19629pointer to or into the ``object``. The second argument determines whether
19630``llvm.objectsize`` returns 0 (if true) or -1 (if false) when the object size is
19631unknown. The third argument controls how ``llvm.objectsize`` acts when ``null``
19632in address space 0 is used as its pointer argument. If it's ``false``,
19633``llvm.objectsize`` reports 0 bytes available when given ``null``. Otherwise, if
19634the ``null`` is in a non-zero address space or if ``true`` is given for the
19635third argument of ``llvm.objectsize``, we assume its size is unknown. The fourth
19636argument to ``llvm.objectsize`` determines if the value should be evaluated at
19637runtime.
19638
19639The second, third, and fourth arguments only accept constants.
19640
19641Semantics:
19642""""""""""
19643
19644The ``llvm.objectsize`` intrinsic is lowered to a value representing the size of
19645the object concerned. If the size cannot be determined, ``llvm.objectsize``
19646returns ``i32/i64 -1 or 0`` (depending on the ``min`` argument).
19647
19648'``llvm.expect``' Intrinsic
19649^^^^^^^^^^^^^^^^^^^^^^^^^^^
19650
19651Syntax:
19652"""""""
19653
19654This is an overloaded intrinsic. You can use ``llvm.expect`` on any
19655integer bit width.
19656
19657::
19658
19659      declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
19660      declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
19661      declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
19662
19663Overview:
19664"""""""""
19665
19666The ``llvm.expect`` intrinsic provides information about expected (the
19667most probable) value of ``val``, which can be used by optimizers.
19668
19669Arguments:
19670""""""""""
19671
19672The ``llvm.expect`` intrinsic takes two arguments. The first argument is
19673a value. The second argument is an expected value.
19674
19675Semantics:
19676""""""""""
19677
19678This intrinsic is lowered to the ``val``.
19679
19680'``llvm.expect.with.probability``' Intrinsic
19681^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19682
19683Syntax:
19684"""""""
19685
19686This intrinsic is similar to ``llvm.expect``. This is an overloaded intrinsic.
19687You can use ``llvm.expect.with.probability`` on any integer bit width.
19688
19689::
19690
19691      declare i1 @llvm.expect.with.probability.i1(i1 <val>, i1 <expected_val>, double <prob>)
19692      declare i32 @llvm.expect.with.probability.i32(i32 <val>, i32 <expected_val>, double <prob>)
19693      declare i64 @llvm.expect.with.probability.i64(i64 <val>, i64 <expected_val>, double <prob>)
19694
19695Overview:
19696"""""""""
19697
19698The ``llvm.expect.with.probability`` intrinsic provides information about
19699expected value of ``val`` with probability(or confidence) ``prob``, which can
19700be used by optimizers.
19701
19702Arguments:
19703""""""""""
19704
19705The ``llvm.expect.with.probability`` intrinsic takes three arguments. The first
19706argument is a value. The second argument is an expected value. The third
19707argument is a probability.
19708
19709Semantics:
19710""""""""""
19711
19712This intrinsic is lowered to the ``val``.
19713
19714.. _int_assume:
19715
19716'``llvm.assume``' Intrinsic
19717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19718
19719Syntax:
19720"""""""
19721
19722::
19723
19724      declare void @llvm.assume(i1 %cond)
19725
19726Overview:
19727"""""""""
19728
19729The ``llvm.assume`` allows the optimizer to assume that the provided
19730condition is true. This information can then be used in simplifying other parts
19731of the code.
19732
19733More complex assumptions can be encoded as
19734:ref:`assume operand bundles <assume_opbundles>`.
19735
19736Arguments:
19737""""""""""
19738
19739The argument of the call is the condition which the optimizer may assume is
19740always true.
19741
19742Semantics:
19743""""""""""
19744
19745The intrinsic allows the optimizer to assume that the provided condition is
19746always true whenever the control flow reaches the intrinsic call. No code is
19747generated for this intrinsic, and instructions that contribute only to the
19748provided condition are not used for code generation. If the condition is
19749violated during execution, the behavior is undefined.
19750
19751Note that the optimizer might limit the transformations performed on values
19752used by the ``llvm.assume`` intrinsic in order to preserve the instructions
19753only used to form the intrinsic's input argument. This might prove undesirable
19754if the extra information provided by the ``llvm.assume`` intrinsic does not cause
19755sufficient overall improvement in code quality. For this reason,
19756``llvm.assume`` should not be used to document basic mathematical invariants
19757that the optimizer can otherwise deduce or facts that are of little use to the
19758optimizer.
19759
19760.. _int_ssa_copy:
19761
19762'``llvm.ssa_copy``' Intrinsic
19763^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19764
19765Syntax:
19766"""""""
19767
19768::
19769
19770      declare type @llvm.ssa_copy(type %operand) returned(1) readnone
19771
19772Arguments:
19773""""""""""
19774
19775The first argument is an operand which is used as the returned value.
19776
19777Overview:
19778""""""""""
19779
19780The ``llvm.ssa_copy`` intrinsic can be used to attach information to
19781operations by copying them and giving them new names.  For example,
19782the PredicateInfo utility uses it to build Extended SSA form, and
19783attach various forms of information to operands that dominate specific
19784uses.  It is not meant for general use, only for building temporary
19785renaming forms that require value splits at certain points.
19786
19787.. _type.test:
19788
19789'``llvm.type.test``' Intrinsic
19790^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19791
19792Syntax:
19793"""""""
19794
19795::
19796
19797      declare i1 @llvm.type.test(i8* %ptr, metadata %type) nounwind readnone
19798
19799
19800Arguments:
19801""""""""""
19802
19803The first argument is a pointer to be tested. The second argument is a
19804metadata object representing a :doc:`type identifier <TypeMetadata>`.
19805
19806Overview:
19807"""""""""
19808
19809The ``llvm.type.test`` intrinsic tests whether the given pointer is associated
19810with the given type identifier.
19811
19812.. _type.checked.load:
19813
19814'``llvm.type.checked.load``' Intrinsic
19815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19816
19817Syntax:
19818"""""""
19819
19820::
19821
19822      declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type) argmemonly nounwind readonly
19823
19824
19825Arguments:
19826""""""""""
19827
19828The first argument is a pointer from which to load a function pointer. The
19829second argument is the byte offset from which to load the function pointer. The
19830third argument is a metadata object representing a :doc:`type identifier
19831<TypeMetadata>`.
19832
19833Overview:
19834"""""""""
19835
19836The ``llvm.type.checked.load`` intrinsic safely loads a function pointer from a
19837virtual table pointer using type metadata. This intrinsic is used to implement
19838control flow integrity in conjunction with virtual call optimization. The
19839virtual call optimization pass will optimize away ``llvm.type.checked.load``
19840intrinsics associated with devirtualized calls, thereby removing the type
19841check in cases where it is not needed to enforce the control flow integrity
19842constraint.
19843
19844If the given pointer is associated with a type metadata identifier, this
19845function returns true as the second element of its return value. (Note that
19846the function may also return true if the given pointer is not associated
19847with a type metadata identifier.) If the function's return value's second
19848element is true, the following rules apply to the first element:
19849
19850- If the given pointer is associated with the given type metadata identifier,
19851  it is the function pointer loaded from the given byte offset from the given
19852  pointer.
19853
19854- If the given pointer is not associated with the given type metadata
19855  identifier, it is one of the following (the choice of which is unspecified):
19856
19857  1. The function pointer that would have been loaded from an arbitrarily chosen
19858     (through an unspecified mechanism) pointer associated with the type
19859     metadata.
19860
19861  2. If the function has a non-void return type, a pointer to a function that
19862     returns an unspecified value without causing side effects.
19863
19864If the function's return value's second element is false, the value of the
19865first element is undefined.
19866
19867
19868'``llvm.donothing``' Intrinsic
19869^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19870
19871Syntax:
19872"""""""
19873
19874::
19875
19876      declare void @llvm.donothing() nounwind readnone
19877
19878Overview:
19879"""""""""
19880
19881The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
19882three intrinsics (besides ``llvm.experimental.patchpoint`` and
19883``llvm.experimental.gc.statepoint``) that can be called with an invoke
19884instruction.
19885
19886Arguments:
19887""""""""""
19888
19889None.
19890
19891Semantics:
19892""""""""""
19893
19894This intrinsic does nothing, and it's removed by optimizers and ignored
19895by codegen.
19896
19897'``llvm.experimental.deoptimize``' Intrinsic
19898^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19899
19900Syntax:
19901"""""""
19902
19903::
19904
19905      declare type @llvm.experimental.deoptimize(...) [ "deopt"(...) ]
19906
19907Overview:
19908"""""""""
19909
19910This intrinsic, together with :ref:`deoptimization operand bundles
19911<deopt_opbundles>`, allow frontends to express transfer of control and
19912frame-local state from the currently executing (typically more specialized,
19913hence faster) version of a function into another (typically more generic, hence
19914slower) version.
19915
19916In languages with a fully integrated managed runtime like Java and JavaScript
19917this intrinsic can be used to implement "uncommon trap" or "side exit" like
19918functionality.  In unmanaged languages like C and C++, this intrinsic can be
19919used to represent the slow paths of specialized functions.
19920
19921
19922Arguments:
19923""""""""""
19924
19925The intrinsic takes an arbitrary number of arguments, whose meaning is
19926decided by the :ref:`lowering strategy<deoptimize_lowering>`.
19927
19928Semantics:
19929""""""""""
19930
19931The ``@llvm.experimental.deoptimize`` intrinsic executes an attached
19932deoptimization continuation (denoted using a :ref:`deoptimization
19933operand bundle <deopt_opbundles>`) and returns the value returned by
19934the deoptimization continuation.  Defining the semantic properties of
19935the continuation itself is out of scope of the language reference --
19936as far as LLVM is concerned, the deoptimization continuation can
19937invoke arbitrary side effects, including reading from and writing to
19938the entire heap.
19939
19940Deoptimization continuations expressed using ``"deopt"`` operand bundles always
19941continue execution to the end of the physical frame containing them, so all
19942calls to ``@llvm.experimental.deoptimize`` must be in "tail position":
19943
19944   - ``@llvm.experimental.deoptimize`` cannot be invoked.
19945   - The call must immediately precede a :ref:`ret <i_ret>` instruction.
19946   - The ``ret`` instruction must return the value produced by the
19947     ``@llvm.experimental.deoptimize`` call if there is one, or void.
19948
19949Note that the above restrictions imply that the return type for a call to
19950``@llvm.experimental.deoptimize`` will match the return type of its immediate
19951caller.
19952
19953The inliner composes the ``"deopt"`` continuations of the caller into the
19954``"deopt"`` continuations present in the inlinee, and also updates calls to this
19955intrinsic to return directly from the frame of the function it inlined into.
19956
19957All declarations of ``@llvm.experimental.deoptimize`` must share the
19958same calling convention.
19959
19960.. _deoptimize_lowering:
19961
19962Lowering:
19963"""""""""
19964
19965Calls to ``@llvm.experimental.deoptimize`` are lowered to calls to the
19966symbol ``__llvm_deoptimize`` (it is the frontend's responsibility to
19967ensure that this symbol is defined).  The call arguments to
19968``@llvm.experimental.deoptimize`` are lowered as if they were formal
19969arguments of the specified types, and not as varargs.
19970
19971
19972'``llvm.experimental.guard``' Intrinsic
19973^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
19974
19975Syntax:
19976"""""""
19977
19978::
19979
19980      declare void @llvm.experimental.guard(i1, ...) [ "deopt"(...) ]
19981
19982Overview:
19983"""""""""
19984
19985This intrinsic, together with :ref:`deoptimization operand bundles
19986<deopt_opbundles>`, allows frontends to express guards or checks on
19987optimistic assumptions made during compilation.  The semantics of
19988``@llvm.experimental.guard`` is defined in terms of
19989``@llvm.experimental.deoptimize`` -- its body is defined to be
19990equivalent to:
19991
19992.. code-block:: text
19993
19994  define void @llvm.experimental.guard(i1 %pred, <args...>) {
19995    %realPred = and i1 %pred, undef
19996    br i1 %realPred, label %continue, label %leave [, !make.implicit !{}]
19997
19998  leave:
19999    call void @llvm.experimental.deoptimize(<args...>) [ "deopt"() ]
20000    ret void
20001
20002  continue:
20003    ret void
20004  }
20005
20006
20007with the optional ``[, !make.implicit !{}]`` present if and only if it
20008is present on the call site.  For more details on ``!make.implicit``,
20009see :doc:`FaultMaps`.
20010
20011In words, ``@llvm.experimental.guard`` executes the attached
20012``"deopt"`` continuation if (but **not** only if) its first argument
20013is ``false``.  Since the optimizer is allowed to replace the ``undef``
20014with an arbitrary value, it can optimize guard to fail "spuriously",
20015i.e. without the original condition being false (hence the "not only
20016if"); and this allows for "check widening" type optimizations.
20017
20018``@llvm.experimental.guard`` cannot be invoked.
20019
20020After ``@llvm.experimental.guard`` was first added, a more general
20021formulation was found in ``@llvm.experimental.widenable.condition``.
20022Support for ``@llvm.experimental.guard`` is slowly being rephrased in
20023terms of this alternate.
20024
20025'``llvm.experimental.widenable.condition``' Intrinsic
20026^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20027
20028Syntax:
20029"""""""
20030
20031::
20032
20033      declare i1 @llvm.experimental.widenable.condition()
20034
20035Overview:
20036"""""""""
20037
20038This intrinsic represents a "widenable condition" which is
20039boolean expressions with the following property: whether this
20040expression is `true` or `false`, the program is correct and
20041well-defined.
20042
20043Together with :ref:`deoptimization operand bundles <deopt_opbundles>`,
20044``@llvm.experimental.widenable.condition`` allows frontends to
20045express guards or checks on optimistic assumptions made during
20046compilation and represent them as branch instructions on special
20047conditions.
20048
20049While this may appear similar in semantics to `undef`, it is very
20050different in that an invocation produces a particular, singular
20051value. It is also intended to be lowered late, and remain available
20052for specific optimizations and transforms that can benefit from its
20053special properties.
20054
20055Arguments:
20056""""""""""
20057
20058None.
20059
20060Semantics:
20061""""""""""
20062
20063The intrinsic ``@llvm.experimental.widenable.condition()``
20064returns either `true` or `false`. For each evaluation of a call
20065to this intrinsic, the program must be valid and correct both if
20066it returns `true` and if it returns `false`. This allows
20067transformation passes to replace evaluations of this intrinsic
20068with either value whenever one is beneficial.
20069
20070When used in a branch condition, it allows us to choose between
20071two alternative correct solutions for the same problem, like
20072in example below:
20073
20074.. code-block:: text
20075
20076    %cond = call i1 @llvm.experimental.widenable.condition()
20077    br i1 %cond, label %solution_1, label %solution_2
20078
20079  label %fast_path:
20080    ; Apply memory-consuming but fast solution for a task.
20081
20082  label %slow_path:
20083    ; Cheap in memory but slow solution.
20084
20085Whether the result of intrinsic's call is `true` or `false`,
20086it should be correct to pick either solution. We can switch
20087between them by replacing the result of
20088``@llvm.experimental.widenable.condition`` with different
20089`i1` expressions.
20090
20091This is how it can be used to represent guards as widenable branches:
20092
20093.. code-block:: text
20094
20095  block:
20096    ; Unguarded instructions
20097    call void @llvm.experimental.guard(i1 %cond, <args...>) ["deopt"(<deopt_args...>)]
20098    ; Guarded instructions
20099
20100Can be expressed in an alternative equivalent form of explicit branch using
20101``@llvm.experimental.widenable.condition``:
20102
20103.. code-block:: text
20104
20105  block:
20106    ; Unguarded instructions
20107    %widenable_condition = call i1 @llvm.experimental.widenable.condition()
20108    %guard_condition = and i1 %cond, %widenable_condition
20109    br i1 %guard_condition, label %guarded, label %deopt
20110
20111  guarded:
20112    ; Guarded instructions
20113
20114  deopt:
20115    call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]
20116
20117So the block `guarded` is only reachable when `%cond` is `true`,
20118and it should be valid to go to the block `deopt` whenever `%cond`
20119is `true` or `false`.
20120
20121``@llvm.experimental.widenable.condition`` will never throw, thus
20122it cannot be invoked.
20123
20124Guard widening:
20125"""""""""""""""
20126
20127When ``@llvm.experimental.widenable.condition()`` is used in
20128condition of a guard represented as explicit branch, it is
20129legal to widen the guard's condition with any additional
20130conditions.
20131
20132Guard widening looks like replacement of
20133
20134.. code-block:: text
20135
20136  %widenable_cond = call i1 @llvm.experimental.widenable.condition()
20137  %guard_cond = and i1 %cond, %widenable_cond
20138  br i1 %guard_cond, label %guarded, label %deopt
20139
20140with
20141
20142.. code-block:: text
20143
20144  %widenable_cond = call i1 @llvm.experimental.widenable.condition()
20145  %new_cond = and i1 %any_other_cond, %widenable_cond
20146  %new_guard_cond = and i1 %cond, %new_cond
20147  br i1 %new_guard_cond, label %guarded, label %deopt
20148
20149for this branch. Here `%any_other_cond` is an arbitrarily chosen
20150well-defined `i1` value. By making guard widening, we may
20151impose stricter conditions on `guarded` block and bail to the
20152deopt when the new condition is not met.
20153
20154Lowering:
20155"""""""""
20156
20157Default lowering strategy is replacing the result of
20158call of ``@llvm.experimental.widenable.condition``  with
20159constant `true`. However it is always correct to replace
20160it with any other `i1` value. Any pass can
20161freely do it if it can benefit from non-default lowering.
20162
20163
20164'``llvm.load.relative``' Intrinsic
20165^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20166
20167Syntax:
20168"""""""
20169
20170::
20171
20172      declare i8* @llvm.load.relative.iN(i8* %ptr, iN %offset) argmemonly nounwind readonly
20173
20174Overview:
20175"""""""""
20176
20177This intrinsic loads a 32-bit value from the address ``%ptr + %offset``,
20178adds ``%ptr`` to that value and returns it. The constant folder specifically
20179recognizes the form of this intrinsic and the constant initializers it may
20180load from; if a loaded constant initializer is known to have the form
20181``i32 trunc(x - %ptr)``, the intrinsic call is folded to ``x``.
20182
20183LLVM provides that the calculation of such a constant initializer will
20184not overflow at link time under the medium code model if ``x`` is an
20185``unnamed_addr`` function. However, it does not provide this guarantee for
20186a constant initializer folded into a function body. This intrinsic can be
20187used to avoid the possibility of overflows when loading from such a constant.
20188
20189.. _llvm_sideeffect:
20190
20191'``llvm.sideeffect``' Intrinsic
20192^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20193
20194Syntax:
20195"""""""
20196
20197::
20198
20199      declare void @llvm.sideeffect() inaccessiblememonly nounwind
20200
20201Overview:
20202"""""""""
20203
20204The ``llvm.sideeffect`` intrinsic doesn't perform any operation. Optimizers
20205treat it as having side effects, so it can be inserted into a loop to
20206indicate that the loop shouldn't be assumed to terminate (which could
20207potentially lead to the loop being optimized away entirely), even if it's
20208an infinite loop with no other side effects.
20209
20210Arguments:
20211""""""""""
20212
20213None.
20214
20215Semantics:
20216""""""""""
20217
20218This intrinsic actually does nothing, but optimizers must assume that it
20219has externally observable side effects.
20220
20221'``llvm.is.constant.*``' Intrinsic
20222^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20223
20224Syntax:
20225"""""""
20226
20227This is an overloaded intrinsic. You can use llvm.is.constant with any argument type.
20228
20229::
20230
20231      declare i1 @llvm.is.constant.i32(i32 %operand) nounwind readnone
20232      declare i1 @llvm.is.constant.f32(float %operand) nounwind readnone
20233      declare i1 @llvm.is.constant.TYPENAME(TYPE %operand) nounwind readnone
20234
20235Overview:
20236"""""""""
20237
20238The '``llvm.is.constant``' intrinsic will return true if the argument
20239is known to be a manifest compile-time constant. It is guaranteed to
20240fold to either true or false before generating machine code.
20241
20242Semantics:
20243""""""""""
20244
20245This intrinsic generates no code. If its argument is known to be a
20246manifest compile-time constant value, then the intrinsic will be
20247converted to a constant true value. Otherwise, it will be converted to
20248a constant false value.
20249
20250In particular, note that if the argument is a constant expression
20251which refers to a global (the address of which _is_ a constant, but
20252not manifest during the compile), then the intrinsic evaluates to
20253false.
20254
20255The result also intentionally depends on the result of optimization
20256passes -- e.g., the result can change depending on whether a
20257function gets inlined or not. A function's parameters are
20258obviously not constant. However, a call like
20259``llvm.is.constant.i32(i32 %param)`` *can* return true after the
20260function is inlined, if the value passed to the function parameter was
20261a constant.
20262
20263On the other hand, if constant folding is not run, it will never
20264evaluate to true, even in simple cases.
20265
20266.. _int_ptrmask:
20267
20268'``llvm.ptrmask``' Intrinsic
20269^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20270
20271Syntax:
20272"""""""
20273
20274::
20275
20276      declare ptrty llvm.ptrmask(ptrty %ptr, intty %mask) readnone speculatable
20277
20278Arguments:
20279""""""""""
20280
20281The first argument is a pointer. The second argument is an integer.
20282
20283Overview:
20284""""""""""
20285
20286The ``llvm.ptrmask`` intrinsic masks out bits of the pointer according to a mask.
20287This allows stripping data from tagged pointers without converting them to an
20288integer (ptrtoint/inttoptr). As a consequence, we can preserve more information
20289to facilitate alias analysis and underlying-object detection.
20290
20291Semantics:
20292""""""""""
20293
20294The result of ``ptrmask(ptr, mask)`` is equivalent to
20295``getelementptr ptr, (ptrtoint(ptr) & mask) - ptrtoint(ptr)``. Both the returned
20296pointer and the first argument are based on the same underlying object (for more
20297information on the *based on* terminology see
20298:ref:`the pointer aliasing rules <pointeraliasing>`). If the bitwidth of the
20299mask argument does not match the pointer size of the target, the mask is
20300zero-extended or truncated accordingly.
20301
20302.. _int_vscale:
20303
20304'``llvm.vscale``' Intrinsic
20305^^^^^^^^^^^^^^^^^^^^^^^^^^^
20306
20307Syntax:
20308"""""""
20309
20310::
20311
20312      declare i32 llvm.vscale.i32()
20313      declare i64 llvm.vscale.i64()
20314
20315Overview:
20316"""""""""
20317
20318The ``llvm.vscale`` intrinsic returns the value for ``vscale`` in scalable
20319vectors such as ``<vscale x 16 x i8>``.
20320
20321Semantics:
20322""""""""""
20323
20324``vscale`` is a positive value that is constant throughout program
20325execution, but is unknown at compile time.
20326If the result value does not fit in the result type, then the result is
20327a :ref:`poison value <poisonvalues>`.
20328
20329
20330Stack Map Intrinsics
20331--------------------
20332
20333LLVM provides experimental intrinsics to support runtime patching
20334mechanisms commonly desired in dynamic language JITs. These intrinsics
20335are described in :doc:`StackMaps`.
20336
20337Element Wise Atomic Memory Intrinsics
20338-------------------------------------
20339
20340These intrinsics are similar to the standard library memory intrinsics except
20341that they perform memory transfer as a sequence of atomic memory accesses.
20342
20343.. _int_memcpy_element_unordered_atomic:
20344
20345'``llvm.memcpy.element.unordered.atomic``' Intrinsic
20346^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20347
20348Syntax:
20349"""""""
20350
20351This is an overloaded intrinsic. You can use ``llvm.memcpy.element.unordered.atomic`` on
20352any integer bit width and for different address spaces. Not all targets
20353support all bit widths however.
20354
20355::
20356
20357      declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
20358                                                                       i8* <src>,
20359                                                                       i32 <len>,
20360                                                                       i32 <element_size>)
20361      declare void @llvm.memcpy.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
20362                                                                       i8* <src>,
20363                                                                       i64 <len>,
20364                                                                       i32 <element_size>)
20365
20366Overview:
20367"""""""""
20368
20369The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic is a specialization of the
20370'``llvm.memcpy.*``' intrinsic. It differs in that the ``dest`` and ``src`` are treated
20371as arrays with elements that are exactly ``element_size`` bytes, and the copy between
20372buffers uses a sequence of :ref:`unordered atomic <ordering>` load/store operations
20373that are a positive integer multiple of the ``element_size`` in size.
20374
20375Arguments:
20376""""""""""
20377
20378The first three arguments are the same as they are in the :ref:`@llvm.memcpy <int_memcpy>`
20379intrinsic, with the added constraint that ``len`` is required to be a positive integer
20380multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
20381``element_size``, then the behaviour of the intrinsic is undefined.
20382
20383``element_size`` must be a compile-time constant positive power of two no greater than
20384target-specific atomic access size limit.
20385
20386For each of the input pointers ``align`` parameter attribute must be specified. It
20387must be a power of two no less than the ``element_size``. Caller guarantees that
20388both the source and destination pointers are aligned to that boundary.
20389
20390Semantics:
20391""""""""""
20392
20393The '``llvm.memcpy.element.unordered.atomic.*``' intrinsic copies ``len`` bytes of
20394memory from the source location to the destination location. These locations are not
20395allowed to overlap. The memory copy is performed as a sequence of load/store operations
20396where each access is guaranteed to be a multiple of ``element_size`` bytes wide and
20397aligned at an ``element_size`` boundary.
20398
20399The order of the copy is unspecified. The same value may be read from the source
20400buffer many times, but only one write is issued to the destination buffer per
20401element. It is well defined to have concurrent reads and writes to both source and
20402destination provided those reads and writes are unordered atomic when specified.
20403
20404This intrinsic does not provide any additional ordering guarantees over those
20405provided by a set of unordered loads from the source location and stores to the
20406destination.
20407
20408Lowering:
20409"""""""""
20410
20411In the most general case call to the '``llvm.memcpy.element.unordered.atomic.*``' is
20412lowered to a call to the symbol ``__llvm_memcpy_element_unordered_atomic_*``. Where '*'
20413is replaced with an actual element size. See :ref:`RewriteStatepointsForGC intrinsic
20414lowering <RewriteStatepointsForGC_intrinsic_lowering>` for details on GC specific
20415lowering.
20416
20417Optimizer is allowed to inline memory copy when it's profitable to do so.
20418
20419'``llvm.memmove.element.unordered.atomic``' Intrinsic
20420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20421
20422Syntax:
20423"""""""
20424
20425This is an overloaded intrinsic. You can use
20426``llvm.memmove.element.unordered.atomic`` on any integer bit width and for
20427different address spaces. Not all targets support all bit widths however.
20428
20429::
20430
20431      declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i32(i8* <dest>,
20432                                                                        i8* <src>,
20433                                                                        i32 <len>,
20434                                                                        i32 <element_size>)
20435      declare void @llvm.memmove.element.unordered.atomic.p0i8.p0i8.i64(i8* <dest>,
20436                                                                        i8* <src>,
20437                                                                        i64 <len>,
20438                                                                        i32 <element_size>)
20439
20440Overview:
20441"""""""""
20442
20443The '``llvm.memmove.element.unordered.atomic.*``' intrinsic is a specialization
20444of the '``llvm.memmove.*``' intrinsic. It differs in that the ``dest`` and
20445``src`` are treated as arrays with elements that are exactly ``element_size``
20446bytes, and the copy between buffers uses a sequence of
20447:ref:`unordered atomic <ordering>` load/store operations that are a positive
20448integer multiple of the ``element_size`` in size.
20449
20450Arguments:
20451""""""""""
20452
20453The first three arguments are the same as they are in the
20454:ref:`@llvm.memmove <int_memmove>` intrinsic, with the added constraint that
20455``len`` is required to be a positive integer multiple of the ``element_size``.
20456If ``len`` is not a positive integer multiple of ``element_size``, then the
20457behaviour of the intrinsic is undefined.
20458
20459``element_size`` must be a compile-time constant positive power of two no
20460greater than a target-specific atomic access size limit.
20461
20462For each of the input pointers the ``align`` parameter attribute must be
20463specified. It must be a power of two no less than the ``element_size``. Caller
20464guarantees that both the source and destination pointers are aligned to that
20465boundary.
20466
20467Semantics:
20468""""""""""
20469
20470The '``llvm.memmove.element.unordered.atomic.*``' intrinsic copies ``len`` bytes
20471of memory from the source location to the destination location. These locations
20472are allowed to overlap. The memory copy is performed as a sequence of load/store
20473operations where each access is guaranteed to be a multiple of ``element_size``
20474bytes wide and aligned at an ``element_size`` boundary.
20475
20476The order of the copy is unspecified. The same value may be read from the source
20477buffer many times, but only one write is issued to the destination buffer per
20478element. It is well defined to have concurrent reads and writes to both source
20479and destination provided those reads and writes are unordered atomic when
20480specified.
20481
20482This intrinsic does not provide any additional ordering guarantees over those
20483provided by a set of unordered loads from the source location and stores to the
20484destination.
20485
20486Lowering:
20487"""""""""
20488
20489In the most general case call to the
20490'``llvm.memmove.element.unordered.atomic.*``' is lowered to a call to the symbol
20491``__llvm_memmove_element_unordered_atomic_*``. Where '*' is replaced with an
20492actual element size. See :ref:`RewriteStatepointsForGC intrinsic lowering
20493<RewriteStatepointsForGC_intrinsic_lowering>` for details on GC specific
20494lowering.
20495
20496The optimizer is allowed to inline the memory copy when it's profitable to do so.
20497
20498.. _int_memset_element_unordered_atomic:
20499
20500'``llvm.memset.element.unordered.atomic``' Intrinsic
20501^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20502
20503Syntax:
20504"""""""
20505
20506This is an overloaded intrinsic. You can use ``llvm.memset.element.unordered.atomic`` on
20507any integer bit width and for different address spaces. Not all targets
20508support all bit widths however.
20509
20510::
20511
20512      declare void @llvm.memset.element.unordered.atomic.p0i8.i32(i8* <dest>,
20513                                                                  i8 <value>,
20514                                                                  i32 <len>,
20515                                                                  i32 <element_size>)
20516      declare void @llvm.memset.element.unordered.atomic.p0i8.i64(i8* <dest>,
20517                                                                  i8 <value>,
20518                                                                  i64 <len>,
20519                                                                  i32 <element_size>)
20520
20521Overview:
20522"""""""""
20523
20524The '``llvm.memset.element.unordered.atomic.*``' intrinsic is a specialization of the
20525'``llvm.memset.*``' intrinsic. It differs in that the ``dest`` is treated as an array
20526with elements that are exactly ``element_size`` bytes, and the assignment to that array
20527uses uses a sequence of :ref:`unordered atomic <ordering>` store operations
20528that are a positive integer multiple of the ``element_size`` in size.
20529
20530Arguments:
20531""""""""""
20532
20533The first three arguments are the same as they are in the :ref:`@llvm.memset <int_memset>`
20534intrinsic, with the added constraint that ``len`` is required to be a positive integer
20535multiple of the ``element_size``. If ``len`` is not a positive integer multiple of
20536``element_size``, then the behaviour of the intrinsic is undefined.
20537
20538``element_size`` must be a compile-time constant positive power of two no greater than
20539target-specific atomic access size limit.
20540
20541The ``dest`` input pointer must have the ``align`` parameter attribute specified. It
20542must be a power of two no less than the ``element_size``. Caller guarantees that
20543the destination pointer is aligned to that boundary.
20544
20545Semantics:
20546""""""""""
20547
20548The '``llvm.memset.element.unordered.atomic.*``' intrinsic sets the ``len`` bytes of
20549memory starting at the destination location to the given ``value``. The memory is
20550set with a sequence of store operations where each access is guaranteed to be a
20551multiple of ``element_size`` bytes wide and aligned at an ``element_size`` boundary.
20552
20553The order of the assignment is unspecified. Only one write is issued to the
20554destination buffer per element. It is well defined to have concurrent reads and
20555writes to the destination provided those reads and writes are unordered atomic
20556when specified.
20557
20558This intrinsic does not provide any additional ordering guarantees over those
20559provided by a set of unordered stores to the destination.
20560
20561Lowering:
20562"""""""""
20563
20564In the most general case call to the '``llvm.memset.element.unordered.atomic.*``' is
20565lowered to a call to the symbol ``__llvm_memset_element_unordered_atomic_*``. Where '*'
20566is replaced with an actual element size.
20567
20568The optimizer is allowed to inline the memory assignment when it's profitable to do so.
20569
20570Objective-C ARC Runtime Intrinsics
20571----------------------------------
20572
20573LLVM provides intrinsics that lower to Objective-C ARC runtime entry points.
20574LLVM is aware of the semantics of these functions, and optimizes based on that
20575knowledge. You can read more about the details of Objective-C ARC `here
20576<https://clang.llvm.org/docs/AutomaticReferenceCounting.html>`_.
20577
20578'``llvm.objc.autorelease``' Intrinsic
20579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20580
20581Syntax:
20582"""""""
20583::
20584
20585      declare i8* @llvm.objc.autorelease(i8*)
20586
20587Lowering:
20588"""""""""
20589
20590Lowers to a call to `objc_autorelease <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autorelease>`_.
20591
20592'``llvm.objc.autoreleasePoolPop``' Intrinsic
20593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20594
20595Syntax:
20596"""""""
20597::
20598
20599      declare void @llvm.objc.autoreleasePoolPop(i8*)
20600
20601Lowering:
20602"""""""""
20603
20604Lowers to a call to `objc_autoreleasePoolPop <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-autoreleasepoolpop-void-pool>`_.
20605
20606'``llvm.objc.autoreleasePoolPush``' Intrinsic
20607^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20608
20609Syntax:
20610"""""""
20611::
20612
20613      declare i8* @llvm.objc.autoreleasePoolPush()
20614
20615Lowering:
20616"""""""""
20617
20618Lowers to a call to `objc_autoreleasePoolPush <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-autoreleasepoolpush-void>`_.
20619
20620'``llvm.objc.autoreleaseReturnValue``' Intrinsic
20621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20622
20623Syntax:
20624"""""""
20625::
20626
20627      declare i8* @llvm.objc.autoreleaseReturnValue(i8*)
20628
20629Lowering:
20630"""""""""
20631
20632Lowers to a call to `objc_autoreleaseReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-autoreleasereturnvalue>`_.
20633
20634'``llvm.objc.copyWeak``' Intrinsic
20635^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20636
20637Syntax:
20638"""""""
20639::
20640
20641      declare void @llvm.objc.copyWeak(i8**, i8**)
20642
20643Lowering:
20644"""""""""
20645
20646Lowers to a call to `objc_copyWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-copyweak-id-dest-id-src>`_.
20647
20648'``llvm.objc.destroyWeak``' Intrinsic
20649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20650
20651Syntax:
20652"""""""
20653::
20654
20655      declare void @llvm.objc.destroyWeak(i8**)
20656
20657Lowering:
20658"""""""""
20659
20660Lowers to a call to `objc_destroyWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-destroyweak-id-object>`_.
20661
20662'``llvm.objc.initWeak``' Intrinsic
20663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20664
20665Syntax:
20666"""""""
20667::
20668
20669      declare i8* @llvm.objc.initWeak(i8**, i8*)
20670
20671Lowering:
20672"""""""""
20673
20674Lowers to a call to `objc_initWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-initweak>`_.
20675
20676'``llvm.objc.loadWeak``' Intrinsic
20677^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20678
20679Syntax:
20680"""""""
20681::
20682
20683      declare i8* @llvm.objc.loadWeak(i8**)
20684
20685Lowering:
20686"""""""""
20687
20688Lowers to a call to `objc_loadWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-loadweak>`_.
20689
20690'``llvm.objc.loadWeakRetained``' Intrinsic
20691^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20692
20693Syntax:
20694"""""""
20695::
20696
20697      declare i8* @llvm.objc.loadWeakRetained(i8**)
20698
20699Lowering:
20700"""""""""
20701
20702Lowers to a call to `objc_loadWeakRetained <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-loadweakretained>`_.
20703
20704'``llvm.objc.moveWeak``' Intrinsic
20705^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20706
20707Syntax:
20708"""""""
20709::
20710
20711      declare void @llvm.objc.moveWeak(i8**, i8**)
20712
20713Lowering:
20714"""""""""
20715
20716Lowers to a call to `objc_moveWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-moveweak-id-dest-id-src>`_.
20717
20718'``llvm.objc.release``' Intrinsic
20719^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20720
20721Syntax:
20722"""""""
20723::
20724
20725      declare void @llvm.objc.release(i8*)
20726
20727Lowering:
20728"""""""""
20729
20730Lowers to a call to `objc_release <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-release-id-value>`_.
20731
20732'``llvm.objc.retain``' Intrinsic
20733^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20734
20735Syntax:
20736"""""""
20737::
20738
20739      declare i8* @llvm.objc.retain(i8*)
20740
20741Lowering:
20742"""""""""
20743
20744Lowers to a call to `objc_retain <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retain>`_.
20745
20746'``llvm.objc.retainAutorelease``' Intrinsic
20747^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20748
20749Syntax:
20750"""""""
20751::
20752
20753      declare i8* @llvm.objc.retainAutorelease(i8*)
20754
20755Lowering:
20756"""""""""
20757
20758Lowers to a call to `objc_retainAutorelease <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautorelease>`_.
20759
20760'``llvm.objc.retainAutoreleaseReturnValue``' Intrinsic
20761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20762
20763Syntax:
20764"""""""
20765::
20766
20767      declare i8* @llvm.objc.retainAutoreleaseReturnValue(i8*)
20768
20769Lowering:
20770"""""""""
20771
20772Lowers to a call to `objc_retainAutoreleaseReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautoreleasereturnvalue>`_.
20773
20774'``llvm.objc.retainAutoreleasedReturnValue``' Intrinsic
20775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20776
20777Syntax:
20778"""""""
20779::
20780
20781      declare i8* @llvm.objc.retainAutoreleasedReturnValue(i8*)
20782
20783Lowering:
20784"""""""""
20785
20786Lowers to a call to `objc_retainAutoreleasedReturnValue <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainautoreleasedreturnvalue>`_.
20787
20788'``llvm.objc.retainBlock``' Intrinsic
20789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20790
20791Syntax:
20792"""""""
20793::
20794
20795      declare i8* @llvm.objc.retainBlock(i8*)
20796
20797Lowering:
20798"""""""""
20799
20800Lowers to a call to `objc_retainBlock <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-retainblock>`_.
20801
20802'``llvm.objc.storeStrong``' Intrinsic
20803^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20804
20805Syntax:
20806"""""""
20807::
20808
20809      declare void @llvm.objc.storeStrong(i8**, i8*)
20810
20811Lowering:
20812"""""""""
20813
20814Lowers to a call to `objc_storeStrong <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#void-objc-storestrong-id-object-id-value>`_.
20815
20816'``llvm.objc.storeWeak``' Intrinsic
20817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20818
20819Syntax:
20820"""""""
20821::
20822
20823      declare i8* @llvm.objc.storeWeak(i8**, i8*)
20824
20825Lowering:
20826"""""""""
20827
20828Lowers to a call to `objc_storeWeak <https://clang.llvm.org/docs/AutomaticReferenceCounting.html#arc-runtime-objc-storeweak>`_.
20829
20830Preserving Debug Information Intrinsics
20831^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20832
20833These intrinsics are used to carry certain debuginfo together with
20834IR-level operations. For example, it may be desirable to
20835know the structure/union name and the original user-level field
20836indices. Such information got lost in IR GetElementPtr instruction
20837since the IR types are different from debugInfo types and unions
20838are converted to structs in IR.
20839
20840'``llvm.preserve.array.access.index``' Intrinsic
20841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20842
20843Syntax:
20844"""""""
20845::
20846
20847      declare <ret_type>
20848      @llvm.preserve.array.access.index.p0s_union.anons.p0a10s_union.anons(<type> base,
20849                                                                           i32 dim,
20850                                                                           i32 index)
20851
20852Overview:
20853"""""""""
20854
20855The '``llvm.preserve.array.access.index``' intrinsic returns the getelementptr address
20856based on array base ``base``, array dimension ``dim`` and the last access index ``index``
20857into the array. The return type ``ret_type`` is a pointer type to the array element.
20858The array ``dim`` and ``index`` are preserved which is more robust than
20859getelementptr instruction which may be subject to compiler transformation.
20860The ``llvm.preserve.access.index`` type of metadata is attached to this call instruction
20861to provide array or pointer debuginfo type.
20862The metadata is a ``DICompositeType`` or ``DIDerivedType`` representing the
20863debuginfo version of ``type``.
20864
20865Arguments:
20866""""""""""
20867
20868The ``base`` is the array base address.  The ``dim`` is the array dimension.
20869The ``base`` is a pointer if ``dim`` equals 0.
20870The ``index`` is the last access index into the array or pointer.
20871
20872Semantics:
20873""""""""""
20874
20875The '``llvm.preserve.array.access.index``' intrinsic produces the same result
20876as a getelementptr with base ``base`` and access operands ``{dim's 0's, index}``.
20877
20878'``llvm.preserve.union.access.index``' Intrinsic
20879^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20880
20881Syntax:
20882"""""""
20883::
20884
20885      declare <type>
20886      @llvm.preserve.union.access.index.p0s_union.anons.p0s_union.anons(<type> base,
20887                                                                        i32 di_index)
20888
20889Overview:
20890"""""""""
20891
20892The '``llvm.preserve.union.access.index``' intrinsic carries the debuginfo field index
20893``di_index`` and returns the ``base`` address.
20894The ``llvm.preserve.access.index`` type of metadata is attached to this call instruction
20895to provide union debuginfo type.
20896The metadata is a ``DICompositeType`` representing the debuginfo version of ``type``.
20897The return type ``type`` is the same as the ``base`` type.
20898
20899Arguments:
20900""""""""""
20901
20902The ``base`` is the union base address. The ``di_index`` is the field index in debuginfo.
20903
20904Semantics:
20905""""""""""
20906
20907The '``llvm.preserve.union.access.index``' intrinsic returns the ``base`` address.
20908
20909'``llvm.preserve.struct.access.index``' Intrinsic
20910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
20911
20912Syntax:
20913"""""""
20914::
20915
20916      declare <ret_type>
20917      @llvm.preserve.struct.access.index.p0i8.p0s_struct.anon.0s(<type> base,
20918                                                                 i32 gep_index,
20919                                                                 i32 di_index)
20920
20921Overview:
20922"""""""""
20923
20924The '``llvm.preserve.struct.access.index``' intrinsic returns the getelementptr address
20925based on struct base ``base`` and IR struct member index ``gep_index``.
20926The ``llvm.preserve.access.index`` type of metadata is attached to this call instruction
20927to provide struct debuginfo type.
20928The metadata is a ``DICompositeType`` representing the debuginfo version of ``type``.
20929The return type ``ret_type`` is a pointer type to the structure member.
20930
20931Arguments:
20932""""""""""
20933
20934The ``base`` is the structure base address. The ``gep_index`` is the struct member index
20935based on IR structures. The ``di_index`` is the struct member index based on debuginfo.
20936
20937Semantics:
20938""""""""""
20939
20940The '``llvm.preserve.struct.access.index``' intrinsic produces the same result
20941as a getelementptr with base ``base`` and access operands ``{0, gep_index}``.
20942