1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81
82 using namespace llvm;
83
84 namespace {
85
86 struct MachineVerifier {
MachineVerifier__anon9440d37e0111::MachineVerifier87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88
89 unsigned verify(const MachineFunction &MF);
90
91 Pass *const PASS;
92 const char *Banner;
93 const MachineFunction *MF;
94 const TargetMachine *TM;
95 const TargetInstrInfo *TII;
96 const TargetRegisterInfo *TRI;
97 const MachineRegisterInfo *MRI;
98
99 unsigned foundErrors;
100
101 // Avoid querying the MachineFunctionProperties for each operand.
102 bool isFunctionRegBankSelected;
103 bool isFunctionSelected;
104
105 using RegVector = SmallVector<Register, 16>;
106 using RegMaskVector = SmallVector<const uint32_t *, 4>;
107 using RegSet = DenseSet<Register>;
108 using RegMap = DenseMap<Register, const MachineInstr *>;
109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110
111 const MachineInstr *FirstNonPHI;
112 const MachineInstr *FirstTerminator;
113 BlockSet FunctionBlocks;
114
115 BitVector regsReserved;
116 RegSet regsLive;
117 RegVector regsDefined, regsDead, regsKilled;
118 RegMaskVector regMasks;
119
120 SlotIndex lastIndex;
121
122 // Add Reg and any sub-registers to RV
addRegWithSubRegs__anon9440d37e0111::MachineVerifier123 void addRegWithSubRegs(RegVector &RV, Register Reg) {
124 RV.push_back(Reg);
125 if (Reg.isPhysical())
126 for (const MCPhysReg &SubReg : TRI->subregs(Reg.asMCReg()))
127 RV.push_back(SubReg);
128 }
129
130 struct BBInfo {
131 // Is this MBB reachable from the MF entry point?
132 bool reachable = false;
133
134 // Vregs that must be live in because they are used without being
135 // defined. Map value is the user. vregsLiveIn doesn't include regs
136 // that only are used by PHI nodes.
137 RegMap vregsLiveIn;
138
139 // Regs killed in MBB. They may be defined again, and will then be in both
140 // regsKilled and regsLiveOut.
141 RegSet regsKilled;
142
143 // Regs defined in MBB and live out. Note that vregs passing through may
144 // be live out without being mentioned here.
145 RegSet regsLiveOut;
146
147 // Vregs that pass through MBB untouched. This set is disjoint from
148 // regsKilled and regsLiveOut.
149 RegSet vregsPassed;
150
151 // Vregs that must pass through MBB because they are needed by a successor
152 // block. This set is disjoint from regsLiveOut.
153 RegSet vregsRequired;
154
155 // Set versions of block's predecessor and successor lists.
156 BlockSet Preds, Succs;
157
158 BBInfo() = default;
159
160 // Add register to vregsRequired if it belongs there. Return true if
161 // anything changed.
addRequired__anon9440d37e0111::MachineVerifier::BBInfo162 bool addRequired(Register Reg) {
163 if (!Reg.isVirtual())
164 return false;
165 if (regsLiveOut.count(Reg))
166 return false;
167 return vregsRequired.insert(Reg).second;
168 }
169
170 // Same for a full set.
addRequired__anon9440d37e0111::MachineVerifier::BBInfo171 bool addRequired(const RegSet &RS) {
172 bool Changed = false;
173 for (Register Reg : RS)
174 Changed |= addRequired(Reg);
175 return Changed;
176 }
177
178 // Same for a full map.
addRequired__anon9440d37e0111::MachineVerifier::BBInfo179 bool addRequired(const RegMap &RM) {
180 bool Changed = false;
181 for (const auto &I : RM)
182 Changed |= addRequired(I.first);
183 return Changed;
184 }
185
186 // Live-out registers are either in regsLiveOut or vregsPassed.
isLiveOut__anon9440d37e0111::MachineVerifier::BBInfo187 bool isLiveOut(Register Reg) const {
188 return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
189 }
190 };
191
192 // Extra register info per MBB.
193 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
194
isReserved__anon9440d37e0111::MachineVerifier195 bool isReserved(Register Reg) {
196 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
197 }
198
isAllocatable__anon9440d37e0111::MachineVerifier199 bool isAllocatable(Register Reg) const {
200 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
201 !regsReserved.test(Reg.id());
202 }
203
204 // Analysis information if available
205 LiveVariables *LiveVars;
206 LiveIntervals *LiveInts;
207 LiveStacks *LiveStks;
208 SlotIndexes *Indexes;
209
210 void visitMachineFunctionBefore();
211 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
212 void visitMachineBundleBefore(const MachineInstr *MI);
213
214 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
215 void verifyPreISelGenericInstruction(const MachineInstr *MI);
216 void visitMachineInstrBefore(const MachineInstr *MI);
217 void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
218 void visitMachineBundleAfter(const MachineInstr *MI);
219 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
220 void visitMachineFunctionAfter();
221
222 void report(const char *msg, const MachineFunction *MF);
223 void report(const char *msg, const MachineBasicBlock *MBB);
224 void report(const char *msg, const MachineInstr *MI);
225 void report(const char *msg, const MachineOperand *MO, unsigned MONum,
226 LLT MOVRegType = LLT{});
227
228 void report_context(const LiveInterval &LI) const;
229 void report_context(const LiveRange &LR, Register VRegUnit,
230 LaneBitmask LaneMask) const;
231 void report_context(const LiveRange::Segment &S) const;
232 void report_context(const VNInfo &VNI) const;
233 void report_context(SlotIndex Pos) const;
234 void report_context(MCPhysReg PhysReg) const;
235 void report_context_liverange(const LiveRange &LR) const;
236 void report_context_lanemask(LaneBitmask LaneMask) const;
237 void report_context_vreg(Register VReg) const;
238 void report_context_vreg_regunit(Register VRegOrUnit) const;
239
240 void verifyInlineAsm(const MachineInstr *MI);
241
242 void checkLiveness(const MachineOperand *MO, unsigned MONum);
243 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
244 SlotIndex UseIdx, const LiveRange &LR,
245 Register VRegOrUnit,
246 LaneBitmask LaneMask = LaneBitmask::getNone());
247 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
248 SlotIndex DefIdx, const LiveRange &LR,
249 Register VRegOrUnit, bool SubRangeCheck = false,
250 LaneBitmask LaneMask = LaneBitmask::getNone());
251
252 void markReachable(const MachineBasicBlock *MBB);
253 void calcRegsPassed();
254 void checkPHIOps(const MachineBasicBlock &MBB);
255
256 void calcRegsRequired();
257 void verifyLiveVariables();
258 void verifyLiveIntervals();
259 void verifyLiveInterval(const LiveInterval&);
260 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
261 LaneBitmask);
262 void verifyLiveRangeSegment(const LiveRange &,
263 const LiveRange::const_iterator I, Register,
264 LaneBitmask);
265 void verifyLiveRange(const LiveRange &, Register,
266 LaneBitmask LaneMask = LaneBitmask::getNone());
267
268 void verifyStackFrame();
269
270 void verifySlotIndexes() const;
271 void verifyProperties(const MachineFunction &MF);
272 };
273
274 struct MachineVerifierPass : public MachineFunctionPass {
275 static char ID; // Pass ID, replacement for typeid
276
277 const std::string Banner;
278
MachineVerifierPass__anon9440d37e0111::MachineVerifierPass279 MachineVerifierPass(std::string banner = std::string())
280 : MachineFunctionPass(ID), Banner(std::move(banner)) {
281 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
282 }
283
getAnalysisUsage__anon9440d37e0111::MachineVerifierPass284 void getAnalysisUsage(AnalysisUsage &AU) const override {
285 AU.setPreservesAll();
286 MachineFunctionPass::getAnalysisUsage(AU);
287 }
288
runOnMachineFunction__anon9440d37e0111::MachineVerifierPass289 bool runOnMachineFunction(MachineFunction &MF) override {
290 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
291 if (FoundErrors)
292 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
293 return false;
294 }
295 };
296
297 } // end anonymous namespace
298
299 char MachineVerifierPass::ID = 0;
300
301 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
302 "Verify generated machine code", false, false)
303
createMachineVerifierPass(const std::string & Banner)304 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
305 return new MachineVerifierPass(Banner);
306 }
307
verifyMachineFunction(MachineFunctionAnalysisManager *,const std::string & Banner,const MachineFunction & MF)308 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
309 const std::string &Banner,
310 const MachineFunction &MF) {
311 // TODO: Use MFAM after porting below analyses.
312 // LiveVariables *LiveVars;
313 // LiveIntervals *LiveInts;
314 // LiveStacks *LiveStks;
315 // SlotIndexes *Indexes;
316 unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
317 if (FoundErrors)
318 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
319 }
320
verify(Pass * p,const char * Banner,bool AbortOnErrors) const321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
322 const {
323 MachineFunction &MF = const_cast<MachineFunction&>(*this);
324 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
325 if (AbortOnErrors && FoundErrors)
326 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
327 return FoundErrors == 0;
328 }
329
verifySlotIndexes() const330 void MachineVerifier::verifySlotIndexes() const {
331 if (Indexes == nullptr)
332 return;
333
334 // Ensure the IdxMBB list is sorted by slot indexes.
335 SlotIndex Last;
336 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
337 E = Indexes->MBBIndexEnd(); I != E; ++I) {
338 assert(!Last.isValid() || I->first > Last);
339 Last = I->first;
340 }
341 }
342
verifyProperties(const MachineFunction & MF)343 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
344 // If a pass has introduced virtual registers without clearing the
345 // NoVRegs property (or set it without allocating the vregs)
346 // then report an error.
347 if (MF.getProperties().hasProperty(
348 MachineFunctionProperties::Property::NoVRegs) &&
349 MRI->getNumVirtRegs())
350 report("Function has NoVRegs property but there are VReg operands", &MF);
351 }
352
verify(const MachineFunction & MF)353 unsigned MachineVerifier::verify(const MachineFunction &MF) {
354 foundErrors = 0;
355
356 this->MF = &MF;
357 TM = &MF.getTarget();
358 TII = MF.getSubtarget().getInstrInfo();
359 TRI = MF.getSubtarget().getRegisterInfo();
360 MRI = &MF.getRegInfo();
361
362 const bool isFunctionFailedISel = MF.getProperties().hasProperty(
363 MachineFunctionProperties::Property::FailedISel);
364
365 // If we're mid-GlobalISel and we already triggered the fallback path then
366 // it's expected that the MIR is somewhat broken but that's ok since we'll
367 // reset it and clear the FailedISel attribute in ResetMachineFunctions.
368 if (isFunctionFailedISel)
369 return foundErrors;
370
371 isFunctionRegBankSelected = MF.getProperties().hasProperty(
372 MachineFunctionProperties::Property::RegBankSelected);
373 isFunctionSelected = MF.getProperties().hasProperty(
374 MachineFunctionProperties::Property::Selected);
375
376 LiveVars = nullptr;
377 LiveInts = nullptr;
378 LiveStks = nullptr;
379 Indexes = nullptr;
380 if (PASS) {
381 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
382 // We don't want to verify LiveVariables if LiveIntervals is available.
383 if (!LiveInts)
384 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
385 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
386 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
387 }
388
389 verifySlotIndexes();
390
391 verifyProperties(MF);
392
393 visitMachineFunctionBefore();
394 for (const MachineBasicBlock &MBB : MF) {
395 visitMachineBasicBlockBefore(&MBB);
396 // Keep track of the current bundle header.
397 const MachineInstr *CurBundle = nullptr;
398 // Do we expect the next instruction to be part of the same bundle?
399 bool InBundle = false;
400
401 for (const MachineInstr &MI : MBB.instrs()) {
402 if (MI.getParent() != &MBB) {
403 report("Bad instruction parent pointer", &MBB);
404 errs() << "Instruction: " << MI;
405 continue;
406 }
407
408 // Check for consistent bundle flags.
409 if (InBundle && !MI.isBundledWithPred())
410 report("Missing BundledPred flag, "
411 "BundledSucc was set on predecessor",
412 &MI);
413 if (!InBundle && MI.isBundledWithPred())
414 report("BundledPred flag is set, "
415 "but BundledSucc not set on predecessor",
416 &MI);
417
418 // Is this a bundle header?
419 if (!MI.isInsideBundle()) {
420 if (CurBundle)
421 visitMachineBundleAfter(CurBundle);
422 CurBundle = &MI;
423 visitMachineBundleBefore(CurBundle);
424 } else if (!CurBundle)
425 report("No bundle header", &MI);
426 visitMachineInstrBefore(&MI);
427 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
428 const MachineOperand &Op = MI.getOperand(I);
429 if (Op.getParent() != &MI) {
430 // Make sure to use correct addOperand / RemoveOperand / ChangeTo
431 // functions when replacing operands of a MachineInstr.
432 report("Instruction has operand with wrong parent set", &MI);
433 }
434
435 visitMachineOperand(&Op, I);
436 }
437
438 // Was this the last bundled instruction?
439 InBundle = MI.isBundledWithSucc();
440 }
441 if (CurBundle)
442 visitMachineBundleAfter(CurBundle);
443 if (InBundle)
444 report("BundledSucc flag set on last instruction in block", &MBB.back());
445 visitMachineBasicBlockAfter(&MBB);
446 }
447 visitMachineFunctionAfter();
448
449 // Clean up.
450 regsLive.clear();
451 regsDefined.clear();
452 regsDead.clear();
453 regsKilled.clear();
454 regMasks.clear();
455 MBBInfoMap.clear();
456
457 return foundErrors;
458 }
459
report(const char * msg,const MachineFunction * MF)460 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
461 assert(MF);
462 errs() << '\n';
463 if (!foundErrors++) {
464 if (Banner)
465 errs() << "# " << Banner << '\n';
466 if (LiveInts != nullptr)
467 LiveInts->print(errs());
468 else
469 MF->print(errs(), Indexes);
470 }
471 errs() << "*** Bad machine code: " << msg << " ***\n"
472 << "- function: " << MF->getName() << "\n";
473 }
474
report(const char * msg,const MachineBasicBlock * MBB)475 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
476 assert(MBB);
477 report(msg, MBB->getParent());
478 errs() << "- basic block: " << printMBBReference(*MBB) << ' '
479 << MBB->getName() << " (" << (const void *)MBB << ')';
480 if (Indexes)
481 errs() << " [" << Indexes->getMBBStartIdx(MBB)
482 << ';' << Indexes->getMBBEndIdx(MBB) << ')';
483 errs() << '\n';
484 }
485
report(const char * msg,const MachineInstr * MI)486 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
487 assert(MI);
488 report(msg, MI->getParent());
489 errs() << "- instruction: ";
490 if (Indexes && Indexes->hasIndex(*MI))
491 errs() << Indexes->getInstructionIndex(*MI) << '\t';
492 MI->print(errs(), /*IsStandalone=*/true);
493 }
494
report(const char * msg,const MachineOperand * MO,unsigned MONum,LLT MOVRegType)495 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
496 unsigned MONum, LLT MOVRegType) {
497 assert(MO);
498 report(msg, MO->getParent());
499 errs() << "- operand " << MONum << ": ";
500 MO->print(errs(), MOVRegType, TRI);
501 errs() << "\n";
502 }
503
report_context(SlotIndex Pos) const504 void MachineVerifier::report_context(SlotIndex Pos) const {
505 errs() << "- at: " << Pos << '\n';
506 }
507
report_context(const LiveInterval & LI) const508 void MachineVerifier::report_context(const LiveInterval &LI) const {
509 errs() << "- interval: " << LI << '\n';
510 }
511
report_context(const LiveRange & LR,Register VRegUnit,LaneBitmask LaneMask) const512 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
513 LaneBitmask LaneMask) const {
514 report_context_liverange(LR);
515 report_context_vreg_regunit(VRegUnit);
516 if (LaneMask.any())
517 report_context_lanemask(LaneMask);
518 }
519
report_context(const LiveRange::Segment & S) const520 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
521 errs() << "- segment: " << S << '\n';
522 }
523
report_context(const VNInfo & VNI) const524 void MachineVerifier::report_context(const VNInfo &VNI) const {
525 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n";
526 }
527
report_context_liverange(const LiveRange & LR) const528 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
529 errs() << "- liverange: " << LR << '\n';
530 }
531
report_context(MCPhysReg PReg) const532 void MachineVerifier::report_context(MCPhysReg PReg) const {
533 errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
534 }
535
report_context_vreg(Register VReg) const536 void MachineVerifier::report_context_vreg(Register VReg) const {
537 errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
538 }
539
report_context_vreg_regunit(Register VRegOrUnit) const540 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
541 if (Register::isVirtualRegister(VRegOrUnit)) {
542 report_context_vreg(VRegOrUnit);
543 } else {
544 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n';
545 }
546 }
547
report_context_lanemask(LaneBitmask LaneMask) const548 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
549 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n';
550 }
551
markReachable(const MachineBasicBlock * MBB)552 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
553 BBInfo &MInfo = MBBInfoMap[MBB];
554 if (!MInfo.reachable) {
555 MInfo.reachable = true;
556 for (const MachineBasicBlock *Succ : MBB->successors())
557 markReachable(Succ);
558 }
559 }
560
visitMachineFunctionBefore()561 void MachineVerifier::visitMachineFunctionBefore() {
562 lastIndex = SlotIndex();
563 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
564 : TRI->getReservedRegs(*MF);
565
566 if (!MF->empty())
567 markReachable(&MF->front());
568
569 // Build a set of the basic blocks in the function.
570 FunctionBlocks.clear();
571 for (const auto &MBB : *MF) {
572 FunctionBlocks.insert(&MBB);
573 BBInfo &MInfo = MBBInfoMap[&MBB];
574
575 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
576 if (MInfo.Preds.size() != MBB.pred_size())
577 report("MBB has duplicate entries in its predecessor list.", &MBB);
578
579 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
580 if (MInfo.Succs.size() != MBB.succ_size())
581 report("MBB has duplicate entries in its successor list.", &MBB);
582 }
583
584 // Check that the register use lists are sane.
585 MRI->verifyUseLists();
586
587 if (!MF->empty())
588 verifyStackFrame();
589 }
590
591 void
visitMachineBasicBlockBefore(const MachineBasicBlock * MBB)592 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
593 FirstTerminator = nullptr;
594 FirstNonPHI = nullptr;
595
596 if (!MF->getProperties().hasProperty(
597 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
598 // If this block has allocatable physical registers live-in, check that
599 // it is an entry block or landing pad.
600 for (const auto &LI : MBB->liveins()) {
601 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
602 MBB->getIterator() != MBB->getParent()->begin()) {
603 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
604 report_context(LI.PhysReg);
605 }
606 }
607 }
608
609 // Count the number of landing pad successors.
610 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
611 for (const auto *succ : MBB->successors()) {
612 if (succ->isEHPad())
613 LandingPadSuccs.insert(succ);
614 if (!FunctionBlocks.count(succ))
615 report("MBB has successor that isn't part of the function.", MBB);
616 if (!MBBInfoMap[succ].Preds.count(MBB)) {
617 report("Inconsistent CFG", MBB);
618 errs() << "MBB is not in the predecessor list of the successor "
619 << printMBBReference(*succ) << ".\n";
620 }
621 }
622
623 // Check the predecessor list.
624 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
625 if (!FunctionBlocks.count(Pred))
626 report("MBB has predecessor that isn't part of the function.", MBB);
627 if (!MBBInfoMap[Pred].Succs.count(MBB)) {
628 report("Inconsistent CFG", MBB);
629 errs() << "MBB is not in the successor list of the predecessor "
630 << printMBBReference(*Pred) << ".\n";
631 }
632 }
633
634 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
635 const BasicBlock *BB = MBB->getBasicBlock();
636 const Function &F = MF->getFunction();
637 if (LandingPadSuccs.size() > 1 &&
638 !(AsmInfo &&
639 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
640 BB && isa<SwitchInst>(BB->getTerminator())) &&
641 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
642 report("MBB has more than one landing pad successor", MBB);
643
644 // Call analyzeBranch. If it succeeds, there several more conditions to check.
645 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
646 SmallVector<MachineOperand, 4> Cond;
647 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
648 Cond)) {
649 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
650 // check whether its answers match up with reality.
651 if (!TBB && !FBB) {
652 // Block falls through to its successor.
653 if (!MBB->empty() && MBB->back().isBarrier() &&
654 !TII->isPredicated(MBB->back())) {
655 report("MBB exits via unconditional fall-through but ends with a "
656 "barrier instruction!", MBB);
657 }
658 if (!Cond.empty()) {
659 report("MBB exits via unconditional fall-through but has a condition!",
660 MBB);
661 }
662 } else if (TBB && !FBB && Cond.empty()) {
663 // Block unconditionally branches somewhere.
664 if (MBB->empty()) {
665 report("MBB exits via unconditional branch but doesn't contain "
666 "any instructions!", MBB);
667 } else if (!MBB->back().isBarrier()) {
668 report("MBB exits via unconditional branch but doesn't end with a "
669 "barrier instruction!", MBB);
670 } else if (!MBB->back().isTerminator()) {
671 report("MBB exits via unconditional branch but the branch isn't a "
672 "terminator instruction!", MBB);
673 }
674 } else if (TBB && !FBB && !Cond.empty()) {
675 // Block conditionally branches somewhere, otherwise falls through.
676 if (MBB->empty()) {
677 report("MBB exits via conditional branch/fall-through but doesn't "
678 "contain any instructions!", MBB);
679 } else if (MBB->back().isBarrier()) {
680 report("MBB exits via conditional branch/fall-through but ends with a "
681 "barrier instruction!", MBB);
682 } else if (!MBB->back().isTerminator()) {
683 report("MBB exits via conditional branch/fall-through but the branch "
684 "isn't a terminator instruction!", MBB);
685 }
686 } else if (TBB && FBB) {
687 // Block conditionally branches somewhere, otherwise branches
688 // somewhere else.
689 if (MBB->empty()) {
690 report("MBB exits via conditional branch/branch but doesn't "
691 "contain any instructions!", MBB);
692 } else if (!MBB->back().isBarrier()) {
693 report("MBB exits via conditional branch/branch but doesn't end with a "
694 "barrier instruction!", MBB);
695 } else if (!MBB->back().isTerminator()) {
696 report("MBB exits via conditional branch/branch but the branch "
697 "isn't a terminator instruction!", MBB);
698 }
699 if (Cond.empty()) {
700 report("MBB exits via conditional branch/branch but there's no "
701 "condition!", MBB);
702 }
703 } else {
704 report("analyzeBranch returned invalid data!", MBB);
705 }
706
707 // Now check that the successors match up with the answers reported by
708 // analyzeBranch.
709 if (TBB && !MBB->isSuccessor(TBB))
710 report("MBB exits via jump or conditional branch, but its target isn't a "
711 "CFG successor!",
712 MBB);
713 if (FBB && !MBB->isSuccessor(FBB))
714 report("MBB exits via conditional branch, but its target isn't a CFG "
715 "successor!",
716 MBB);
717
718 // There might be a fallthrough to the next block if there's either no
719 // unconditional true branch, or if there's a condition, and one of the
720 // branches is missing.
721 bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
722
723 // A conditional fallthrough must be an actual CFG successor, not
724 // unreachable. (Conversely, an unconditional fallthrough might not really
725 // be a successor, because the block might end in unreachable.)
726 if (!Cond.empty() && !FBB) {
727 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
728 if (MBBI == MF->end()) {
729 report("MBB conditionally falls through out of function!", MBB);
730 } else if (!MBB->isSuccessor(&*MBBI))
731 report("MBB exits via conditional branch/fall-through but the CFG "
732 "successors don't match the actual successors!",
733 MBB);
734 }
735
736 // Verify that there aren't any extra un-accounted-for successors.
737 for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
738 // If this successor is one of the branch targets, it's okay.
739 if (SuccMBB == TBB || SuccMBB == FBB)
740 continue;
741 // If we might have a fallthrough, and the successor is the fallthrough
742 // block, that's also ok.
743 if (Fallthrough && SuccMBB == MBB->getNextNode())
744 continue;
745 // Also accept successors which are for exception-handling or might be
746 // inlineasm_br targets.
747 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
748 continue;
749 report("MBB has unexpected successors which are not branch targets, "
750 "fallthrough, EHPads, or inlineasm_br targets.",
751 MBB);
752 }
753 }
754
755 regsLive.clear();
756 if (MRI->tracksLiveness()) {
757 for (const auto &LI : MBB->liveins()) {
758 if (!Register::isPhysicalRegister(LI.PhysReg)) {
759 report("MBB live-in list contains non-physical register", MBB);
760 continue;
761 }
762 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
763 regsLive.insert(SubReg);
764 }
765 }
766
767 const MachineFrameInfo &MFI = MF->getFrameInfo();
768 BitVector PR = MFI.getPristineRegs(*MF);
769 for (unsigned I : PR.set_bits()) {
770 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
771 regsLive.insert(SubReg);
772 }
773
774 regsKilled.clear();
775 regsDefined.clear();
776
777 if (Indexes)
778 lastIndex = Indexes->getMBBStartIdx(MBB);
779 }
780
781 // This function gets called for all bundle headers, including normal
782 // stand-alone unbundled instructions.
visitMachineBundleBefore(const MachineInstr * MI)783 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
784 if (Indexes && Indexes->hasIndex(*MI)) {
785 SlotIndex idx = Indexes->getInstructionIndex(*MI);
786 if (!(idx > lastIndex)) {
787 report("Instruction index out of order", MI);
788 errs() << "Last instruction was at " << lastIndex << '\n';
789 }
790 lastIndex = idx;
791 }
792
793 // Ensure non-terminators don't follow terminators.
794 if (MI->isTerminator()) {
795 if (!FirstTerminator)
796 FirstTerminator = MI;
797 } else if (FirstTerminator) {
798 report("Non-terminator instruction after the first terminator", MI);
799 errs() << "First terminator was:\t" << *FirstTerminator;
800 }
801 }
802
803 // The operands on an INLINEASM instruction must follow a template.
804 // Verify that the flag operands make sense.
verifyInlineAsm(const MachineInstr * MI)805 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
806 // The first two operands on INLINEASM are the asm string and global flags.
807 if (MI->getNumOperands() < 2) {
808 report("Too few operands on inline asm", MI);
809 return;
810 }
811 if (!MI->getOperand(0).isSymbol())
812 report("Asm string must be an external symbol", MI);
813 if (!MI->getOperand(1).isImm())
814 report("Asm flags must be an immediate", MI);
815 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
816 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
817 // and Extra_IsConvergent = 32.
818 if (!isUInt<6>(MI->getOperand(1).getImm()))
819 report("Unknown asm flags", &MI->getOperand(1), 1);
820
821 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
822
823 unsigned OpNo = InlineAsm::MIOp_FirstOperand;
824 unsigned NumOps;
825 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
826 const MachineOperand &MO = MI->getOperand(OpNo);
827 // There may be implicit ops after the fixed operands.
828 if (!MO.isImm())
829 break;
830 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
831 }
832
833 if (OpNo > MI->getNumOperands())
834 report("Missing operands in last group", MI);
835
836 // An optional MDNode follows the groups.
837 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
838 ++OpNo;
839
840 // All trailing operands must be implicit registers.
841 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
842 const MachineOperand &MO = MI->getOperand(OpNo);
843 if (!MO.isReg() || !MO.isImplicit())
844 report("Expected implicit register after groups", &MO, OpNo);
845 }
846 }
847
848 /// Check that types are consistent when two operands need to have the same
849 /// number of vector elements.
850 /// \return true if the types are valid.
verifyVectorElementMatch(LLT Ty0,LLT Ty1,const MachineInstr * MI)851 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
852 const MachineInstr *MI) {
853 if (Ty0.isVector() != Ty1.isVector()) {
854 report("operand types must be all-vector or all-scalar", MI);
855 // Generally we try to report as many issues as possible at once, but in
856 // this case it's not clear what should we be comparing the size of the
857 // scalar with: the size of the whole vector or its lane. Instead of
858 // making an arbitrary choice and emitting not so helpful message, let's
859 // avoid the extra noise and stop here.
860 return false;
861 }
862
863 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
864 report("operand types must preserve number of vector elements", MI);
865 return false;
866 }
867
868 return true;
869 }
870
verifyPreISelGenericInstruction(const MachineInstr * MI)871 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
872 if (isFunctionSelected)
873 report("Unexpected generic instruction in a Selected function", MI);
874
875 const MCInstrDesc &MCID = MI->getDesc();
876 unsigned NumOps = MI->getNumOperands();
877
878 // Branches must reference a basic block if they are not indirect
879 if (MI->isBranch() && !MI->isIndirectBranch()) {
880 bool HasMBB = false;
881 for (const MachineOperand &Op : MI->operands()) {
882 if (Op.isMBB()) {
883 HasMBB = true;
884 break;
885 }
886 }
887
888 if (!HasMBB) {
889 report("Branch instruction is missing a basic block operand or "
890 "isIndirectBranch property",
891 MI);
892 }
893 }
894
895 // Check types.
896 SmallVector<LLT, 4> Types;
897 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
898 I != E; ++I) {
899 if (!MCID.OpInfo[I].isGenericType())
900 continue;
901 // Generic instructions specify type equality constraints between some of
902 // their operands. Make sure these are consistent.
903 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
904 Types.resize(std::max(TypeIdx + 1, Types.size()));
905
906 const MachineOperand *MO = &MI->getOperand(I);
907 if (!MO->isReg()) {
908 report("generic instruction must use register operands", MI);
909 continue;
910 }
911
912 LLT OpTy = MRI->getType(MO->getReg());
913 // Don't report a type mismatch if there is no actual mismatch, only a
914 // type missing, to reduce noise:
915 if (OpTy.isValid()) {
916 // Only the first valid type for a type index will be printed: don't
917 // overwrite it later so it's always clear which type was expected:
918 if (!Types[TypeIdx].isValid())
919 Types[TypeIdx] = OpTy;
920 else if (Types[TypeIdx] != OpTy)
921 report("Type mismatch in generic instruction", MO, I, OpTy);
922 } else {
923 // Generic instructions must have types attached to their operands.
924 report("Generic instruction is missing a virtual register type", MO, I);
925 }
926 }
927
928 // Generic opcodes must not have physical register operands.
929 for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
930 const MachineOperand *MO = &MI->getOperand(I);
931 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
932 report("Generic instruction cannot have physical register", MO, I);
933 }
934
935 // Avoid out of bounds in checks below. This was already reported earlier.
936 if (MI->getNumOperands() < MCID.getNumOperands())
937 return;
938
939 StringRef ErrorInfo;
940 if (!TII->verifyInstruction(*MI, ErrorInfo))
941 report(ErrorInfo.data(), MI);
942
943 // Verify properties of various specific instruction types
944 switch (MI->getOpcode()) {
945 case TargetOpcode::G_CONSTANT:
946 case TargetOpcode::G_FCONSTANT: {
947 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
948 if (DstTy.isVector())
949 report("Instruction cannot use a vector result type", MI);
950
951 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
952 if (!MI->getOperand(1).isCImm()) {
953 report("G_CONSTANT operand must be cimm", MI);
954 break;
955 }
956
957 const ConstantInt *CI = MI->getOperand(1).getCImm();
958 if (CI->getBitWidth() != DstTy.getSizeInBits())
959 report("inconsistent constant size", MI);
960 } else {
961 if (!MI->getOperand(1).isFPImm()) {
962 report("G_FCONSTANT operand must be fpimm", MI);
963 break;
964 }
965 const ConstantFP *CF = MI->getOperand(1).getFPImm();
966
967 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
968 DstTy.getSizeInBits()) {
969 report("inconsistent constant size", MI);
970 }
971 }
972
973 break;
974 }
975 case TargetOpcode::G_LOAD:
976 case TargetOpcode::G_STORE:
977 case TargetOpcode::G_ZEXTLOAD:
978 case TargetOpcode::G_SEXTLOAD: {
979 LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
980 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
981 if (!PtrTy.isPointer())
982 report("Generic memory instruction must access a pointer", MI);
983
984 // Generic loads and stores must have a single MachineMemOperand
985 // describing that access.
986 if (!MI->hasOneMemOperand()) {
987 report("Generic instruction accessing memory must have one mem operand",
988 MI);
989 } else {
990 const MachineMemOperand &MMO = **MI->memoperands_begin();
991 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
992 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
993 if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
994 report("Generic extload must have a narrower memory type", MI);
995 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
996 if (MMO.getSize() > ValTy.getSizeInBytes())
997 report("load memory size cannot exceed result size", MI);
998 } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
999 if (ValTy.getSizeInBytes() < MMO.getSize())
1000 report("store memory size cannot exceed value size", MI);
1001 }
1002 }
1003
1004 break;
1005 }
1006 case TargetOpcode::G_PHI: {
1007 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1008 if (!DstTy.isValid() ||
1009 !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1010 [this, &DstTy](const MachineOperand &MO) {
1011 if (!MO.isReg())
1012 return true;
1013 LLT Ty = MRI->getType(MO.getReg());
1014 if (!Ty.isValid() || (Ty != DstTy))
1015 return false;
1016 return true;
1017 }))
1018 report("Generic Instruction G_PHI has operands with incompatible/missing "
1019 "types",
1020 MI);
1021 break;
1022 }
1023 case TargetOpcode::G_BITCAST: {
1024 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1025 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1026 if (!DstTy.isValid() || !SrcTy.isValid())
1027 break;
1028
1029 if (SrcTy.isPointer() != DstTy.isPointer())
1030 report("bitcast cannot convert between pointers and other types", MI);
1031
1032 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1033 report("bitcast sizes must match", MI);
1034
1035 if (SrcTy == DstTy)
1036 report("bitcast must change the type", MI);
1037
1038 break;
1039 }
1040 case TargetOpcode::G_INTTOPTR:
1041 case TargetOpcode::G_PTRTOINT:
1042 case TargetOpcode::G_ADDRSPACE_CAST: {
1043 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1044 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1045 if (!DstTy.isValid() || !SrcTy.isValid())
1046 break;
1047
1048 verifyVectorElementMatch(DstTy, SrcTy, MI);
1049
1050 DstTy = DstTy.getScalarType();
1051 SrcTy = SrcTy.getScalarType();
1052
1053 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1054 if (!DstTy.isPointer())
1055 report("inttoptr result type must be a pointer", MI);
1056 if (SrcTy.isPointer())
1057 report("inttoptr source type must not be a pointer", MI);
1058 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1059 if (!SrcTy.isPointer())
1060 report("ptrtoint source type must be a pointer", MI);
1061 if (DstTy.isPointer())
1062 report("ptrtoint result type must not be a pointer", MI);
1063 } else {
1064 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1065 if (!SrcTy.isPointer() || !DstTy.isPointer())
1066 report("addrspacecast types must be pointers", MI);
1067 else {
1068 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1069 report("addrspacecast must convert different address spaces", MI);
1070 }
1071 }
1072
1073 break;
1074 }
1075 case TargetOpcode::G_PTR_ADD: {
1076 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1077 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1078 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1079 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1080 break;
1081
1082 if (!PtrTy.getScalarType().isPointer())
1083 report("gep first operand must be a pointer", MI);
1084
1085 if (OffsetTy.getScalarType().isPointer())
1086 report("gep offset operand must not be a pointer", MI);
1087
1088 // TODO: Is the offset allowed to be a scalar with a vector?
1089 break;
1090 }
1091 case TargetOpcode::G_PTRMASK: {
1092 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1093 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1094 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1095 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1096 break;
1097
1098 if (!DstTy.getScalarType().isPointer())
1099 report("ptrmask result type must be a pointer", MI);
1100
1101 if (!MaskTy.getScalarType().isScalar())
1102 report("ptrmask mask type must be an integer", MI);
1103
1104 verifyVectorElementMatch(DstTy, MaskTy, MI);
1105 break;
1106 }
1107 case TargetOpcode::G_SEXT:
1108 case TargetOpcode::G_ZEXT:
1109 case TargetOpcode::G_ANYEXT:
1110 case TargetOpcode::G_TRUNC:
1111 case TargetOpcode::G_FPEXT:
1112 case TargetOpcode::G_FPTRUNC: {
1113 // Number of operands and presense of types is already checked (and
1114 // reported in case of any issues), so no need to report them again. As
1115 // we're trying to report as many issues as possible at once, however, the
1116 // instructions aren't guaranteed to have the right number of operands or
1117 // types attached to them at this point
1118 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1119 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1120 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1121 if (!DstTy.isValid() || !SrcTy.isValid())
1122 break;
1123
1124 LLT DstElTy = DstTy.getScalarType();
1125 LLT SrcElTy = SrcTy.getScalarType();
1126 if (DstElTy.isPointer() || SrcElTy.isPointer())
1127 report("Generic extend/truncate can not operate on pointers", MI);
1128
1129 verifyVectorElementMatch(DstTy, SrcTy, MI);
1130
1131 unsigned DstSize = DstElTy.getSizeInBits();
1132 unsigned SrcSize = SrcElTy.getSizeInBits();
1133 switch (MI->getOpcode()) {
1134 default:
1135 if (DstSize <= SrcSize)
1136 report("Generic extend has destination type no larger than source", MI);
1137 break;
1138 case TargetOpcode::G_TRUNC:
1139 case TargetOpcode::G_FPTRUNC:
1140 if (DstSize >= SrcSize)
1141 report("Generic truncate has destination type no smaller than source",
1142 MI);
1143 break;
1144 }
1145 break;
1146 }
1147 case TargetOpcode::G_SELECT: {
1148 LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1149 LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1150 if (!SelTy.isValid() || !CondTy.isValid())
1151 break;
1152
1153 // Scalar condition select on a vector is valid.
1154 if (CondTy.isVector())
1155 verifyVectorElementMatch(SelTy, CondTy, MI);
1156 break;
1157 }
1158 case TargetOpcode::G_MERGE_VALUES: {
1159 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1160 // e.g. s2N = MERGE sN, sN
1161 // Merging multiple scalars into a vector is not allowed, should use
1162 // G_BUILD_VECTOR for that.
1163 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1164 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1165 if (DstTy.isVector() || SrcTy.isVector())
1166 report("G_MERGE_VALUES cannot operate on vectors", MI);
1167
1168 const unsigned NumOps = MI->getNumOperands();
1169 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1170 report("G_MERGE_VALUES result size is inconsistent", MI);
1171
1172 for (unsigned I = 2; I != NumOps; ++I) {
1173 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1174 report("G_MERGE_VALUES source types do not match", MI);
1175 }
1176
1177 break;
1178 }
1179 case TargetOpcode::G_UNMERGE_VALUES: {
1180 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1181 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1182 // For now G_UNMERGE can split vectors.
1183 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1184 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1185 report("G_UNMERGE_VALUES destination types do not match", MI);
1186 }
1187 if (SrcTy.getSizeInBits() !=
1188 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1189 report("G_UNMERGE_VALUES source operand does not cover dest operands",
1190 MI);
1191 }
1192 break;
1193 }
1194 case TargetOpcode::G_BUILD_VECTOR: {
1195 // Source types must be scalars, dest type a vector. Total size of scalars
1196 // must match the dest vector size.
1197 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1198 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1199 if (!DstTy.isVector() || SrcEltTy.isVector()) {
1200 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1201 break;
1202 }
1203
1204 if (DstTy.getElementType() != SrcEltTy)
1205 report("G_BUILD_VECTOR result element type must match source type", MI);
1206
1207 if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1208 report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1209
1210 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1211 if (MRI->getType(MI->getOperand(1).getReg()) !=
1212 MRI->getType(MI->getOperand(i).getReg()))
1213 report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1214 }
1215
1216 break;
1217 }
1218 case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1219 // Source types must be scalars, dest type a vector. Scalar types must be
1220 // larger than the dest vector elt type, as this is a truncating operation.
1221 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1222 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1223 if (!DstTy.isVector() || SrcEltTy.isVector())
1224 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1225 MI);
1226 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1227 if (MRI->getType(MI->getOperand(1).getReg()) !=
1228 MRI->getType(MI->getOperand(i).getReg()))
1229 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1230 MI);
1231 }
1232 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1233 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1234 "dest elt type",
1235 MI);
1236 break;
1237 }
1238 case TargetOpcode::G_CONCAT_VECTORS: {
1239 // Source types should be vectors, and total size should match the dest
1240 // vector size.
1241 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1242 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1243 if (!DstTy.isVector() || !SrcTy.isVector())
1244 report("G_CONCAT_VECTOR requires vector source and destination operands",
1245 MI);
1246 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1247 if (MRI->getType(MI->getOperand(1).getReg()) !=
1248 MRI->getType(MI->getOperand(i).getReg()))
1249 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1250 }
1251 if (DstTy.getNumElements() !=
1252 SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1253 report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1254 break;
1255 }
1256 case TargetOpcode::G_ICMP:
1257 case TargetOpcode::G_FCMP: {
1258 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1259 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1260
1261 if ((DstTy.isVector() != SrcTy.isVector()) ||
1262 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1263 report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1264
1265 break;
1266 }
1267 case TargetOpcode::G_EXTRACT: {
1268 const MachineOperand &SrcOp = MI->getOperand(1);
1269 if (!SrcOp.isReg()) {
1270 report("extract source must be a register", MI);
1271 break;
1272 }
1273
1274 const MachineOperand &OffsetOp = MI->getOperand(2);
1275 if (!OffsetOp.isImm()) {
1276 report("extract offset must be a constant", MI);
1277 break;
1278 }
1279
1280 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1281 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1282 if (SrcSize == DstSize)
1283 report("extract source must be larger than result", MI);
1284
1285 if (DstSize + OffsetOp.getImm() > SrcSize)
1286 report("extract reads past end of register", MI);
1287 break;
1288 }
1289 case TargetOpcode::G_INSERT: {
1290 const MachineOperand &SrcOp = MI->getOperand(2);
1291 if (!SrcOp.isReg()) {
1292 report("insert source must be a register", MI);
1293 break;
1294 }
1295
1296 const MachineOperand &OffsetOp = MI->getOperand(3);
1297 if (!OffsetOp.isImm()) {
1298 report("insert offset must be a constant", MI);
1299 break;
1300 }
1301
1302 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1303 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1304
1305 if (DstSize <= SrcSize)
1306 report("inserted size must be smaller than total register", MI);
1307
1308 if (SrcSize + OffsetOp.getImm() > DstSize)
1309 report("insert writes past end of register", MI);
1310
1311 break;
1312 }
1313 case TargetOpcode::G_JUMP_TABLE: {
1314 if (!MI->getOperand(1).isJTI())
1315 report("G_JUMP_TABLE source operand must be a jump table index", MI);
1316 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1317 if (!DstTy.isPointer())
1318 report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1319 break;
1320 }
1321 case TargetOpcode::G_BRJT: {
1322 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1323 report("G_BRJT src operand 0 must be a pointer type", MI);
1324
1325 if (!MI->getOperand(1).isJTI())
1326 report("G_BRJT src operand 1 must be a jump table index", MI);
1327
1328 const auto &IdxOp = MI->getOperand(2);
1329 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1330 report("G_BRJT src operand 2 must be a scalar reg type", MI);
1331 break;
1332 }
1333 case TargetOpcode::G_INTRINSIC:
1334 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1335 // TODO: Should verify number of def and use operands, but the current
1336 // interface requires passing in IR types for mangling.
1337 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1338 if (!IntrIDOp.isIntrinsicID()) {
1339 report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1340 break;
1341 }
1342
1343 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1344 unsigned IntrID = IntrIDOp.getIntrinsicID();
1345 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1346 AttributeList Attrs
1347 = Intrinsic::getAttributes(MF->getFunction().getContext(),
1348 static_cast<Intrinsic::ID>(IntrID));
1349 bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
1350 if (NoSideEffects && DeclHasSideEffects) {
1351 report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1352 break;
1353 }
1354 if (!NoSideEffects && !DeclHasSideEffects) {
1355 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1356 break;
1357 }
1358 }
1359
1360 break;
1361 }
1362 case TargetOpcode::G_SEXT_INREG: {
1363 if (!MI->getOperand(2).isImm()) {
1364 report("G_SEXT_INREG expects an immediate operand #2", MI);
1365 break;
1366 }
1367
1368 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1369 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1370 verifyVectorElementMatch(DstTy, SrcTy, MI);
1371
1372 int64_t Imm = MI->getOperand(2).getImm();
1373 if (Imm <= 0)
1374 report("G_SEXT_INREG size must be >= 1", MI);
1375 if (Imm >= SrcTy.getScalarSizeInBits())
1376 report("G_SEXT_INREG size must be less than source bit width", MI);
1377 break;
1378 }
1379 case TargetOpcode::G_SHUFFLE_VECTOR: {
1380 const MachineOperand &MaskOp = MI->getOperand(3);
1381 if (!MaskOp.isShuffleMask()) {
1382 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1383 break;
1384 }
1385
1386 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1387 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1388 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1389
1390 if (Src0Ty != Src1Ty)
1391 report("Source operands must be the same type", MI);
1392
1393 if (Src0Ty.getScalarType() != DstTy.getScalarType())
1394 report("G_SHUFFLE_VECTOR cannot change element type", MI);
1395
1396 // Don't check that all operands are vector because scalars are used in
1397 // place of 1 element vectors.
1398 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1399 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1400
1401 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1402
1403 if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1404 report("Wrong result type for shufflemask", MI);
1405
1406 for (int Idx : MaskIdxes) {
1407 if (Idx < 0)
1408 continue;
1409
1410 if (Idx >= 2 * SrcNumElts)
1411 report("Out of bounds shuffle index", MI);
1412 }
1413
1414 break;
1415 }
1416 case TargetOpcode::G_DYN_STACKALLOC: {
1417 const MachineOperand &DstOp = MI->getOperand(0);
1418 const MachineOperand &AllocOp = MI->getOperand(1);
1419 const MachineOperand &AlignOp = MI->getOperand(2);
1420
1421 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1422 report("dst operand 0 must be a pointer type", MI);
1423 break;
1424 }
1425
1426 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1427 report("src operand 1 must be a scalar reg type", MI);
1428 break;
1429 }
1430
1431 if (!AlignOp.isImm()) {
1432 report("src operand 2 must be an immediate type", MI);
1433 break;
1434 }
1435 break;
1436 }
1437 case TargetOpcode::G_MEMCPY:
1438 case TargetOpcode::G_MEMMOVE: {
1439 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1440 if (MMOs.size() != 2) {
1441 report("memcpy/memmove must have 2 memory operands", MI);
1442 break;
1443 }
1444
1445 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1446 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1447 report("wrong memory operand types", MI);
1448 break;
1449 }
1450
1451 if (MMOs[0]->getSize() != MMOs[1]->getSize())
1452 report("inconsistent memory operand sizes", MI);
1453
1454 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1455 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1456
1457 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1458 report("memory instruction operand must be a pointer", MI);
1459 break;
1460 }
1461
1462 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1463 report("inconsistent store address space", MI);
1464 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1465 report("inconsistent load address space", MI);
1466
1467 break;
1468 }
1469 case TargetOpcode::G_MEMSET: {
1470 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1471 if (MMOs.size() != 1) {
1472 report("memset must have 1 memory operand", MI);
1473 break;
1474 }
1475
1476 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1477 report("memset memory operand must be a store", MI);
1478 break;
1479 }
1480
1481 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1482 if (!DstPtrTy.isPointer()) {
1483 report("memset operand must be a pointer", MI);
1484 break;
1485 }
1486
1487 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1488 report("inconsistent memset address space", MI);
1489
1490 break;
1491 }
1492 case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1493 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1494 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1495 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1496 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1497 if (!DstTy.isScalar())
1498 report("Vector reduction requires a scalar destination type", MI);
1499 if (!Src1Ty.isScalar())
1500 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1501 if (!Src2Ty.isVector())
1502 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1503 break;
1504 }
1505 case TargetOpcode::G_VECREDUCE_FADD:
1506 case TargetOpcode::G_VECREDUCE_FMUL:
1507 case TargetOpcode::G_VECREDUCE_FMAX:
1508 case TargetOpcode::G_VECREDUCE_FMIN:
1509 case TargetOpcode::G_VECREDUCE_ADD:
1510 case TargetOpcode::G_VECREDUCE_MUL:
1511 case TargetOpcode::G_VECREDUCE_AND:
1512 case TargetOpcode::G_VECREDUCE_OR:
1513 case TargetOpcode::G_VECREDUCE_XOR:
1514 case TargetOpcode::G_VECREDUCE_SMAX:
1515 case TargetOpcode::G_VECREDUCE_SMIN:
1516 case TargetOpcode::G_VECREDUCE_UMAX:
1517 case TargetOpcode::G_VECREDUCE_UMIN: {
1518 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1519 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1520 if (!DstTy.isScalar())
1521 report("Vector reduction requires a scalar destination type", MI);
1522 if (!SrcTy.isVector())
1523 report("Vector reduction requires vector source=", MI);
1524 break;
1525 }
1526 default:
1527 break;
1528 }
1529 }
1530
visitMachineInstrBefore(const MachineInstr * MI)1531 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1532 const MCInstrDesc &MCID = MI->getDesc();
1533 if (MI->getNumOperands() < MCID.getNumOperands()) {
1534 report("Too few operands", MI);
1535 errs() << MCID.getNumOperands() << " operands expected, but "
1536 << MI->getNumOperands() << " given.\n";
1537 }
1538
1539 if (MI->isPHI()) {
1540 if (MF->getProperties().hasProperty(
1541 MachineFunctionProperties::Property::NoPHIs))
1542 report("Found PHI instruction with NoPHIs property set", MI);
1543
1544 if (FirstNonPHI)
1545 report("Found PHI instruction after non-PHI", MI);
1546 } else if (FirstNonPHI == nullptr)
1547 FirstNonPHI = MI;
1548
1549 // Check the tied operands.
1550 if (MI->isInlineAsm())
1551 verifyInlineAsm(MI);
1552
1553 // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1554 // DBG_VALUEs: these are convenient to use in tests, but should never get
1555 // generated.
1556 if (MI->isDebugValue() && MI->getNumOperands() == 4)
1557 if (!MI->getDebugLoc())
1558 report("Missing DebugLoc for debug instruction", MI);
1559
1560 // Meta instructions should never be the subject of debug value tracking,
1561 // they don't create a value in the output program at all.
1562 if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1563 report("Metadata instruction should not have a value tracking number", MI);
1564
1565 // Check the MachineMemOperands for basic consistency.
1566 for (MachineMemOperand *Op : MI->memoperands()) {
1567 if (Op->isLoad() && !MI->mayLoad())
1568 report("Missing mayLoad flag", MI);
1569 if (Op->isStore() && !MI->mayStore())
1570 report("Missing mayStore flag", MI);
1571 }
1572
1573 // Debug values must not have a slot index.
1574 // Other instructions must have one, unless they are inside a bundle.
1575 if (LiveInts) {
1576 bool mapped = !LiveInts->isNotInMIMap(*MI);
1577 if (MI->isDebugInstr()) {
1578 if (mapped)
1579 report("Debug instruction has a slot index", MI);
1580 } else if (MI->isInsideBundle()) {
1581 if (mapped)
1582 report("Instruction inside bundle has a slot index", MI);
1583 } else {
1584 if (!mapped)
1585 report("Missing slot index", MI);
1586 }
1587 }
1588
1589 if (isPreISelGenericOpcode(MCID.getOpcode())) {
1590 verifyPreISelGenericInstruction(MI);
1591 return;
1592 }
1593
1594 StringRef ErrorInfo;
1595 if (!TII->verifyInstruction(*MI, ErrorInfo))
1596 report(ErrorInfo.data(), MI);
1597
1598 // Verify properties of various specific instruction types
1599 switch (MI->getOpcode()) {
1600 case TargetOpcode::COPY: {
1601 if (foundErrors)
1602 break;
1603 const MachineOperand &DstOp = MI->getOperand(0);
1604 const MachineOperand &SrcOp = MI->getOperand(1);
1605 LLT DstTy = MRI->getType(DstOp.getReg());
1606 LLT SrcTy = MRI->getType(SrcOp.getReg());
1607 if (SrcTy.isValid() && DstTy.isValid()) {
1608 // If both types are valid, check that the types are the same.
1609 if (SrcTy != DstTy) {
1610 report("Copy Instruction is illegal with mismatching types", MI);
1611 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1612 }
1613 }
1614 if (SrcTy.isValid() || DstTy.isValid()) {
1615 // If one of them have valid types, let's just check they have the same
1616 // size.
1617 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1618 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1619 assert(SrcSize && "Expecting size here");
1620 assert(DstSize && "Expecting size here");
1621 if (SrcSize != DstSize)
1622 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1623 report("Copy Instruction is illegal with mismatching sizes", MI);
1624 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1625 << "\n";
1626 }
1627 }
1628 break;
1629 }
1630 case TargetOpcode::STATEPOINT: {
1631 StatepointOpers SO(MI);
1632 if (!MI->getOperand(SO.getIDPos()).isImm() ||
1633 !MI->getOperand(SO.getNBytesPos()).isImm() ||
1634 !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1635 report("meta operands to STATEPOINT not constant!", MI);
1636 break;
1637 }
1638
1639 auto VerifyStackMapConstant = [&](unsigned Offset) {
1640 if (!MI->getOperand(Offset - 1).isImm() ||
1641 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1642 !MI->getOperand(Offset).isImm())
1643 report("stack map constant to STATEPOINT not well formed!", MI);
1644 };
1645 VerifyStackMapConstant(SO.getCCIdx());
1646 VerifyStackMapConstant(SO.getFlagsIdx());
1647 VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1648
1649 // TODO: verify we have properly encoded deopt arguments
1650 } break;
1651 }
1652 }
1653
1654 void
visitMachineOperand(const MachineOperand * MO,unsigned MONum)1655 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1656 const MachineInstr *MI = MO->getParent();
1657 const MCInstrDesc &MCID = MI->getDesc();
1658 unsigned NumDefs = MCID.getNumDefs();
1659 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1660 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1661
1662 // The first MCID.NumDefs operands must be explicit register defines
1663 if (MONum < NumDefs) {
1664 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1665 if (!MO->isReg())
1666 report("Explicit definition must be a register", MO, MONum);
1667 else if (!MO->isDef() && !MCOI.isOptionalDef())
1668 report("Explicit definition marked as use", MO, MONum);
1669 else if (MO->isImplicit())
1670 report("Explicit definition marked as implicit", MO, MONum);
1671 } else if (MONum < MCID.getNumOperands()) {
1672 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1673 // Don't check if it's the last operand in a variadic instruction. See,
1674 // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1675 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1676 if (!IsOptional) {
1677 if (MO->isReg()) {
1678 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1679 report("Explicit operand marked as def", MO, MONum);
1680 if (MO->isImplicit())
1681 report("Explicit operand marked as implicit", MO, MONum);
1682 }
1683
1684 // Check that an instruction has register operands only as expected.
1685 if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1686 !MO->isReg() && !MO->isFI())
1687 report("Expected a register operand.", MO, MONum);
1688 if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1689 MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg())
1690 report("Expected a non-register operand.", MO, MONum);
1691 }
1692
1693 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1694 if (TiedTo != -1) {
1695 if (!MO->isReg())
1696 report("Tied use must be a register", MO, MONum);
1697 else if (!MO->isTied())
1698 report("Operand should be tied", MO, MONum);
1699 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1700 report("Tied def doesn't match MCInstrDesc", MO, MONum);
1701 else if (Register::isPhysicalRegister(MO->getReg())) {
1702 const MachineOperand &MOTied = MI->getOperand(TiedTo);
1703 if (!MOTied.isReg())
1704 report("Tied counterpart must be a register", &MOTied, TiedTo);
1705 else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1706 MO->getReg() != MOTied.getReg())
1707 report("Tied physical registers must match.", &MOTied, TiedTo);
1708 }
1709 } else if (MO->isReg() && MO->isTied())
1710 report("Explicit operand should not be tied", MO, MONum);
1711 } else {
1712 // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1713 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1714 report("Extra explicit operand on non-variadic instruction", MO, MONum);
1715 }
1716
1717 switch (MO->getType()) {
1718 case MachineOperand::MO_Register: {
1719 const Register Reg = MO->getReg();
1720 if (!Reg)
1721 return;
1722 if (MRI->tracksLiveness() && !MI->isDebugValue())
1723 checkLiveness(MO, MONum);
1724
1725 // Verify the consistency of tied operands.
1726 if (MO->isTied()) {
1727 unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1728 const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1729 if (!OtherMO.isReg())
1730 report("Must be tied to a register", MO, MONum);
1731 if (!OtherMO.isTied())
1732 report("Missing tie flags on tied operand", MO, MONum);
1733 if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1734 report("Inconsistent tie links", MO, MONum);
1735 if (MONum < MCID.getNumDefs()) {
1736 if (OtherIdx < MCID.getNumOperands()) {
1737 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1738 report("Explicit def tied to explicit use without tie constraint",
1739 MO, MONum);
1740 } else {
1741 if (!OtherMO.isImplicit())
1742 report("Explicit def should be tied to implicit use", MO, MONum);
1743 }
1744 }
1745 }
1746
1747 // Verify two-address constraints after the twoaddressinstruction pass.
1748 // Both twoaddressinstruction pass and phi-node-elimination pass call
1749 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1750 // twoaddressinstruction pass not after phi-node-elimination pass. So we
1751 // shouldn't use the NoSSA as the condition, we should based on
1752 // TiedOpsRewritten property to verify two-address constraints, this
1753 // property will be set in twoaddressinstruction pass.
1754 unsigned DefIdx;
1755 if (MF->getProperties().hasProperty(
1756 MachineFunctionProperties::Property::TiedOpsRewritten) &&
1757 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1758 Reg != MI->getOperand(DefIdx).getReg())
1759 report("Two-address instruction operands must be identical", MO, MONum);
1760
1761 // Check register classes.
1762 unsigned SubIdx = MO->getSubReg();
1763
1764 if (Register::isPhysicalRegister(Reg)) {
1765 if (SubIdx) {
1766 report("Illegal subregister index for physical register", MO, MONum);
1767 return;
1768 }
1769 if (MONum < MCID.getNumOperands()) {
1770 if (const TargetRegisterClass *DRC =
1771 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1772 if (!DRC->contains(Reg)) {
1773 report("Illegal physical register for instruction", MO, MONum);
1774 errs() << printReg(Reg, TRI) << " is not a "
1775 << TRI->getRegClassName(DRC) << " register.\n";
1776 }
1777 }
1778 }
1779 if (MO->isRenamable()) {
1780 if (MRI->isReserved(Reg)) {
1781 report("isRenamable set on reserved register", MO, MONum);
1782 return;
1783 }
1784 }
1785 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1786 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1787 return;
1788 }
1789 } else {
1790 // Virtual register.
1791 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1792 if (!RC) {
1793 // This is a generic virtual register.
1794
1795 // Do not allow undef uses for generic virtual registers. This ensures
1796 // getVRegDef can never fail and return null on a generic register.
1797 //
1798 // FIXME: This restriction should probably be broadened to all SSA
1799 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1800 // run on the SSA function just before phi elimination.
1801 if (MO->isUndef())
1802 report("Generic virtual register use cannot be undef", MO, MONum);
1803
1804 // If we're post-Select, we can't have gvregs anymore.
1805 if (isFunctionSelected) {
1806 report("Generic virtual register invalid in a Selected function",
1807 MO, MONum);
1808 return;
1809 }
1810
1811 // The gvreg must have a type and it must not have a SubIdx.
1812 LLT Ty = MRI->getType(Reg);
1813 if (!Ty.isValid()) {
1814 report("Generic virtual register must have a valid type", MO,
1815 MONum);
1816 return;
1817 }
1818
1819 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1820
1821 // If we're post-RegBankSelect, the gvreg must have a bank.
1822 if (!RegBank && isFunctionRegBankSelected) {
1823 report("Generic virtual register must have a bank in a "
1824 "RegBankSelected function",
1825 MO, MONum);
1826 return;
1827 }
1828
1829 // Make sure the register fits into its register bank if any.
1830 if (RegBank && Ty.isValid() &&
1831 RegBank->getSize() < Ty.getSizeInBits()) {
1832 report("Register bank is too small for virtual register", MO,
1833 MONum);
1834 errs() << "Register bank " << RegBank->getName() << " too small("
1835 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1836 << "-bits\n";
1837 return;
1838 }
1839 if (SubIdx) {
1840 report("Generic virtual register does not allow subregister index", MO,
1841 MONum);
1842 return;
1843 }
1844
1845 // If this is a target specific instruction and this operand
1846 // has register class constraint, the virtual register must
1847 // comply to it.
1848 if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1849 MONum < MCID.getNumOperands() &&
1850 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1851 report("Virtual register does not match instruction constraint", MO,
1852 MONum);
1853 errs() << "Expect register class "
1854 << TRI->getRegClassName(
1855 TII->getRegClass(MCID, MONum, TRI, *MF))
1856 << " but got nothing\n";
1857 return;
1858 }
1859
1860 break;
1861 }
1862 if (SubIdx) {
1863 const TargetRegisterClass *SRC =
1864 TRI->getSubClassWithSubReg(RC, SubIdx);
1865 if (!SRC) {
1866 report("Invalid subregister index for virtual register", MO, MONum);
1867 errs() << "Register class " << TRI->getRegClassName(RC)
1868 << " does not support subreg index " << SubIdx << "\n";
1869 return;
1870 }
1871 if (RC != SRC) {
1872 report("Invalid register class for subregister index", MO, MONum);
1873 errs() << "Register class " << TRI->getRegClassName(RC)
1874 << " does not fully support subreg index " << SubIdx << "\n";
1875 return;
1876 }
1877 }
1878 if (MONum < MCID.getNumOperands()) {
1879 if (const TargetRegisterClass *DRC =
1880 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1881 if (SubIdx) {
1882 const TargetRegisterClass *SuperRC =
1883 TRI->getLargestLegalSuperClass(RC, *MF);
1884 if (!SuperRC) {
1885 report("No largest legal super class exists.", MO, MONum);
1886 return;
1887 }
1888 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1889 if (!DRC) {
1890 report("No matching super-reg register class.", MO, MONum);
1891 return;
1892 }
1893 }
1894 if (!RC->hasSuperClassEq(DRC)) {
1895 report("Illegal virtual register for instruction", MO, MONum);
1896 errs() << "Expected a " << TRI->getRegClassName(DRC)
1897 << " register, but got a " << TRI->getRegClassName(RC)
1898 << " register\n";
1899 }
1900 }
1901 }
1902 }
1903 break;
1904 }
1905
1906 case MachineOperand::MO_RegisterMask:
1907 regMasks.push_back(MO->getRegMask());
1908 break;
1909
1910 case MachineOperand::MO_MachineBasicBlock:
1911 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1912 report("PHI operand is not in the CFG", MO, MONum);
1913 break;
1914
1915 case MachineOperand::MO_FrameIndex:
1916 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1917 LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1918 int FI = MO->getIndex();
1919 LiveInterval &LI = LiveStks->getInterval(FI);
1920 SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1921
1922 bool stores = MI->mayStore();
1923 bool loads = MI->mayLoad();
1924 // For a memory-to-memory move, we need to check if the frame
1925 // index is used for storing or loading, by inspecting the
1926 // memory operands.
1927 if (stores && loads) {
1928 for (auto *MMO : MI->memoperands()) {
1929 const PseudoSourceValue *PSV = MMO->getPseudoValue();
1930 if (PSV == nullptr) continue;
1931 const FixedStackPseudoSourceValue *Value =
1932 dyn_cast<FixedStackPseudoSourceValue>(PSV);
1933 if (Value == nullptr) continue;
1934 if (Value->getFrameIndex() != FI) continue;
1935
1936 if (MMO->isStore())
1937 loads = false;
1938 else
1939 stores = false;
1940 break;
1941 }
1942 if (loads == stores)
1943 report("Missing fixed stack memoperand.", MI);
1944 }
1945 if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1946 report("Instruction loads from dead spill slot", MO, MONum);
1947 errs() << "Live stack: " << LI << '\n';
1948 }
1949 if (stores && !LI.liveAt(Idx.getRegSlot())) {
1950 report("Instruction stores to dead spill slot", MO, MONum);
1951 errs() << "Live stack: " << LI << '\n';
1952 }
1953 }
1954 break;
1955
1956 default:
1957 break;
1958 }
1959 }
1960
checkLivenessAtUse(const MachineOperand * MO,unsigned MONum,SlotIndex UseIdx,const LiveRange & LR,Register VRegOrUnit,LaneBitmask LaneMask)1961 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1962 unsigned MONum, SlotIndex UseIdx,
1963 const LiveRange &LR,
1964 Register VRegOrUnit,
1965 LaneBitmask LaneMask) {
1966 LiveQueryResult LRQ = LR.Query(UseIdx);
1967 // Check if we have a segment at the use, note however that we only need one
1968 // live subregister range, the others may be dead.
1969 if (!LRQ.valueIn() && LaneMask.none()) {
1970 report("No live segment at use", MO, MONum);
1971 report_context_liverange(LR);
1972 report_context_vreg_regunit(VRegOrUnit);
1973 report_context(UseIdx);
1974 }
1975 if (MO->isKill() && !LRQ.isKill()) {
1976 report("Live range continues after kill flag", MO, MONum);
1977 report_context_liverange(LR);
1978 report_context_vreg_regunit(VRegOrUnit);
1979 if (LaneMask.any())
1980 report_context_lanemask(LaneMask);
1981 report_context(UseIdx);
1982 }
1983 }
1984
checkLivenessAtDef(const MachineOperand * MO,unsigned MONum,SlotIndex DefIdx,const LiveRange & LR,Register VRegOrUnit,bool SubRangeCheck,LaneBitmask LaneMask)1985 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1986 unsigned MONum, SlotIndex DefIdx,
1987 const LiveRange &LR,
1988 Register VRegOrUnit,
1989 bool SubRangeCheck,
1990 LaneBitmask LaneMask) {
1991 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1992 assert(VNI && "NULL valno is not allowed");
1993 if (VNI->def != DefIdx) {
1994 report("Inconsistent valno->def", MO, MONum);
1995 report_context_liverange(LR);
1996 report_context_vreg_regunit(VRegOrUnit);
1997 if (LaneMask.any())
1998 report_context_lanemask(LaneMask);
1999 report_context(*VNI);
2000 report_context(DefIdx);
2001 }
2002 } else {
2003 report("No live segment at def", MO, MONum);
2004 report_context_liverange(LR);
2005 report_context_vreg_regunit(VRegOrUnit);
2006 if (LaneMask.any())
2007 report_context_lanemask(LaneMask);
2008 report_context(DefIdx);
2009 }
2010 // Check that, if the dead def flag is present, LiveInts agree.
2011 if (MO->isDead()) {
2012 LiveQueryResult LRQ = LR.Query(DefIdx);
2013 if (!LRQ.isDeadDef()) {
2014 assert(Register::isVirtualRegister(VRegOrUnit) &&
2015 "Expecting a virtual register.");
2016 // A dead subreg def only tells us that the specific subreg is dead. There
2017 // could be other non-dead defs of other subregs, or we could have other
2018 // parts of the register being live through the instruction. So unless we
2019 // are checking liveness for a subrange it is ok for the live range to
2020 // continue, given that we have a dead def of a subregister.
2021 if (SubRangeCheck || MO->getSubReg() == 0) {
2022 report("Live range continues after dead def flag", MO, MONum);
2023 report_context_liverange(LR);
2024 report_context_vreg_regunit(VRegOrUnit);
2025 if (LaneMask.any())
2026 report_context_lanemask(LaneMask);
2027 }
2028 }
2029 }
2030 }
2031
checkLiveness(const MachineOperand * MO,unsigned MONum)2032 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2033 const MachineInstr *MI = MO->getParent();
2034 const Register Reg = MO->getReg();
2035
2036 // Both use and def operands can read a register.
2037 if (MO->readsReg()) {
2038 if (MO->isKill())
2039 addRegWithSubRegs(regsKilled, Reg);
2040
2041 // Check that LiveVars knows this kill.
2042 if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
2043 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2044 if (!is_contained(VI.Kills, MI))
2045 report("Kill missing from LiveVariables", MO, MONum);
2046 }
2047
2048 // Check LiveInts liveness and kill.
2049 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2050 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2051 // Check the cached regunit intervals.
2052 if (Reg.isPhysical() && !isReserved(Reg)) {
2053 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2054 ++Units) {
2055 if (MRI->isReservedRegUnit(*Units))
2056 continue;
2057 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2058 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2059 }
2060 }
2061
2062 if (Register::isVirtualRegister(Reg)) {
2063 if (LiveInts->hasInterval(Reg)) {
2064 // This is a virtual register interval.
2065 const LiveInterval &LI = LiveInts->getInterval(Reg);
2066 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
2067
2068 if (LI.hasSubRanges() && !MO->isDef()) {
2069 unsigned SubRegIdx = MO->getSubReg();
2070 LaneBitmask MOMask = SubRegIdx != 0
2071 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2072 : MRI->getMaxLaneMaskForVReg(Reg);
2073 LaneBitmask LiveInMask;
2074 for (const LiveInterval::SubRange &SR : LI.subranges()) {
2075 if ((MOMask & SR.LaneMask).none())
2076 continue;
2077 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2078 LiveQueryResult LRQ = SR.Query(UseIdx);
2079 if (LRQ.valueIn())
2080 LiveInMask |= SR.LaneMask;
2081 }
2082 // At least parts of the register has to be live at the use.
2083 if ((LiveInMask & MOMask).none()) {
2084 report("No live subrange at use", MO, MONum);
2085 report_context(LI);
2086 report_context(UseIdx);
2087 }
2088 }
2089 } else {
2090 report("Virtual register has no live interval", MO, MONum);
2091 }
2092 }
2093 }
2094
2095 // Use of a dead register.
2096 if (!regsLive.count(Reg)) {
2097 if (Register::isPhysicalRegister(Reg)) {
2098 // Reserved registers may be used even when 'dead'.
2099 bool Bad = !isReserved(Reg);
2100 // We are fine if just any subregister has a defined value.
2101 if (Bad) {
2102
2103 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2104 if (regsLive.count(SubReg)) {
2105 Bad = false;
2106 break;
2107 }
2108 }
2109 }
2110 // If there is an additional implicit-use of a super register we stop
2111 // here. By definition we are fine if the super register is not
2112 // (completely) dead, if the complete super register is dead we will
2113 // get a report for its operand.
2114 if (Bad) {
2115 for (const MachineOperand &MOP : MI->uses()) {
2116 if (!MOP.isReg() || !MOP.isImplicit())
2117 continue;
2118
2119 if (!Register::isPhysicalRegister(MOP.getReg()))
2120 continue;
2121
2122 for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) {
2123 if (SubReg == Reg) {
2124 Bad = false;
2125 break;
2126 }
2127 }
2128 }
2129 }
2130 if (Bad)
2131 report("Using an undefined physical register", MO, MONum);
2132 } else if (MRI->def_empty(Reg)) {
2133 report("Reading virtual register without a def", MO, MONum);
2134 } else {
2135 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2136 // We don't know which virtual registers are live in, so only complain
2137 // if vreg was killed in this MBB. Otherwise keep track of vregs that
2138 // must be live in. PHI instructions are handled separately.
2139 if (MInfo.regsKilled.count(Reg))
2140 report("Using a killed virtual register", MO, MONum);
2141 else if (!MI->isPHI())
2142 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2143 }
2144 }
2145 }
2146
2147 if (MO->isDef()) {
2148 // Register defined.
2149 // TODO: verify that earlyclobber ops are not used.
2150 if (MO->isDead())
2151 addRegWithSubRegs(regsDead, Reg);
2152 else
2153 addRegWithSubRegs(regsDefined, Reg);
2154
2155 // Verify SSA form.
2156 if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2157 std::next(MRI->def_begin(Reg)) != MRI->def_end())
2158 report("Multiple virtual register defs in SSA form", MO, MONum);
2159
2160 // Check LiveInts for a live segment, but only for virtual registers.
2161 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2162 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2163 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2164
2165 if (Register::isVirtualRegister(Reg)) {
2166 if (LiveInts->hasInterval(Reg)) {
2167 const LiveInterval &LI = LiveInts->getInterval(Reg);
2168 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2169
2170 if (LI.hasSubRanges()) {
2171 unsigned SubRegIdx = MO->getSubReg();
2172 LaneBitmask MOMask = SubRegIdx != 0
2173 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2174 : MRI->getMaxLaneMaskForVReg(Reg);
2175 for (const LiveInterval::SubRange &SR : LI.subranges()) {
2176 if ((SR.LaneMask & MOMask).none())
2177 continue;
2178 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2179 }
2180 }
2181 } else {
2182 report("Virtual register has no Live interval", MO, MONum);
2183 }
2184 }
2185 }
2186 }
2187 }
2188
2189 // This function gets called after visiting all instructions in a bundle. The
2190 // argument points to the bundle header.
2191 // Normal stand-alone instructions are also considered 'bundles', and this
2192 // function is called for all of them.
visitMachineBundleAfter(const MachineInstr * MI)2193 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2194 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2195 set_union(MInfo.regsKilled, regsKilled);
2196 set_subtract(regsLive, regsKilled); regsKilled.clear();
2197 // Kill any masked registers.
2198 while (!regMasks.empty()) {
2199 const uint32_t *Mask = regMasks.pop_back_val();
2200 for (Register Reg : regsLive)
2201 if (Reg.isPhysical() &&
2202 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2203 regsDead.push_back(Reg);
2204 }
2205 set_subtract(regsLive, regsDead); regsDead.clear();
2206 set_union(regsLive, regsDefined); regsDefined.clear();
2207 }
2208
2209 void
visitMachineBasicBlockAfter(const MachineBasicBlock * MBB)2210 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2211 MBBInfoMap[MBB].regsLiveOut = regsLive;
2212 regsLive.clear();
2213
2214 if (Indexes) {
2215 SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2216 if (!(stop > lastIndex)) {
2217 report("Block ends before last instruction index", MBB);
2218 errs() << "Block ends at " << stop
2219 << " last instruction was at " << lastIndex << '\n';
2220 }
2221 lastIndex = stop;
2222 }
2223 }
2224
2225 namespace {
2226 // This implements a set of registers that serves as a filter: can filter other
2227 // sets by passing through elements not in the filter and blocking those that
2228 // are. Any filter implicitly includes the full set of physical registers upon
2229 // creation, thus filtering them all out. The filter itself as a set only grows,
2230 // and needs to be as efficient as possible.
2231 struct VRegFilter {
2232 // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2233 // no duplicates. Both virtual and physical registers are fine.
add__anon9440d37e0411::VRegFilter2234 template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2235 SmallVector<Register, 0> VRegsBuffer;
2236 filterAndAdd(FromRegSet, VRegsBuffer);
2237 }
2238 // Filter \p FromRegSet through the filter and append passed elements into \p
2239 // ToVRegs. All elements appended are then added to the filter itself.
2240 // \returns true if anything changed.
2241 template <typename RegSetT>
filterAndAdd__anon9440d37e0411::VRegFilter2242 bool filterAndAdd(const RegSetT &FromRegSet,
2243 SmallVectorImpl<Register> &ToVRegs) {
2244 unsigned SparseUniverse = Sparse.size();
2245 unsigned NewSparseUniverse = SparseUniverse;
2246 unsigned NewDenseSize = Dense.size();
2247 size_t Begin = ToVRegs.size();
2248 for (Register Reg : FromRegSet) {
2249 if (!Reg.isVirtual())
2250 continue;
2251 unsigned Index = Register::virtReg2Index(Reg);
2252 if (Index < SparseUniverseMax) {
2253 if (Index < SparseUniverse && Sparse.test(Index))
2254 continue;
2255 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2256 } else {
2257 if (Dense.count(Reg))
2258 continue;
2259 ++NewDenseSize;
2260 }
2261 ToVRegs.push_back(Reg);
2262 }
2263 size_t End = ToVRegs.size();
2264 if (Begin == End)
2265 return false;
2266 // Reserving space in sets once performs better than doing so continuously
2267 // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2268 // tuned all the way down) and double iteration (the second one is over a
2269 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2270 Sparse.resize(NewSparseUniverse);
2271 Dense.reserve(NewDenseSize);
2272 for (unsigned I = Begin; I < End; ++I) {
2273 Register Reg = ToVRegs[I];
2274 unsigned Index = Register::virtReg2Index(Reg);
2275 if (Index < SparseUniverseMax)
2276 Sparse.set(Index);
2277 else
2278 Dense.insert(Reg);
2279 }
2280 return true;
2281 }
2282
2283 private:
2284 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2285 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2286 // are tracked by Dense. The only purpose of the threashold and the Dense set
2287 // is to have a reasonably growing memory usage in pathological cases (large
2288 // number of very sparse VRegFilter instances live at the same time). In
2289 // practice even in the worst-by-execution time cases having all elements
2290 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2291 // space efficient than if tracked by Dense. The threashold is set to keep the
2292 // worst-case memory usage within 2x of figures determined empirically for
2293 // "all Dense" scenario in such worst-by-execution-time cases.
2294 BitVector Sparse;
2295 DenseSet<unsigned> Dense;
2296 };
2297
2298 // Implements both a transfer function and a (binary, in-place) join operator
2299 // for a dataflow over register sets with set union join and filtering transfer
2300 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2301 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2302 // time, where n is the size of the set (as opposed to O(U) where U is the
2303 // universe). filter_b implicitly contains all physical registers at all times.
2304 class FilteringVRegSet {
2305 VRegFilter Filter;
2306 SmallVector<Register, 0> VRegs;
2307
2308 public:
2309 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2310 // Both virtual and physical registers are fine.
addToFilter(const RegSetT & RS)2311 template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2312 Filter.add(RS);
2313 }
2314 // Passes \p RS through the filter_b (transfer function) and adds what's left
2315 // to itself (out_b).
add(const RegSetT & RS)2316 template <typename RegSetT> bool add(const RegSetT &RS) {
2317 // Double-duty the Filter: to maintain VRegs a set (and the join operation
2318 // a set union) just add everything being added here to the Filter as well.
2319 return Filter.filterAndAdd(RS, VRegs);
2320 }
2321 using const_iterator = decltype(VRegs)::const_iterator;
begin() const2322 const_iterator begin() const { return VRegs.begin(); }
end() const2323 const_iterator end() const { return VRegs.end(); }
size() const2324 size_t size() const { return VRegs.size(); }
2325 };
2326 } // namespace
2327
2328 // Calculate the largest possible vregsPassed sets. These are the registers that
2329 // can pass through an MBB live, but may not be live every time. It is assumed
2330 // that all vregsPassed sets are empty before the call.
calcRegsPassed()2331 void MachineVerifier::calcRegsPassed() {
2332 if (MF->empty())
2333 // ReversePostOrderTraversal doesn't handle empty functions.
2334 return;
2335
2336 for (const MachineBasicBlock *MB :
2337 ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2338 FilteringVRegSet VRegs;
2339 BBInfo &Info = MBBInfoMap[MB];
2340 assert(Info.reachable);
2341
2342 VRegs.addToFilter(Info.regsKilled);
2343 VRegs.addToFilter(Info.regsLiveOut);
2344 for (const MachineBasicBlock *Pred : MB->predecessors()) {
2345 const BBInfo &PredInfo = MBBInfoMap[Pred];
2346 if (!PredInfo.reachable)
2347 continue;
2348
2349 VRegs.add(PredInfo.regsLiveOut);
2350 VRegs.add(PredInfo.vregsPassed);
2351 }
2352 Info.vregsPassed.reserve(VRegs.size());
2353 Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2354 }
2355 }
2356
2357 // Calculate the set of virtual registers that must be passed through each basic
2358 // block in order to satisfy the requirements of successor blocks. This is very
2359 // similar to calcRegsPassed, only backwards.
calcRegsRequired()2360 void MachineVerifier::calcRegsRequired() {
2361 // First push live-in regs to predecessors' vregsRequired.
2362 SmallPtrSet<const MachineBasicBlock*, 8> todo;
2363 for (const auto &MBB : *MF) {
2364 BBInfo &MInfo = MBBInfoMap[&MBB];
2365 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2366 BBInfo &PInfo = MBBInfoMap[Pred];
2367 if (PInfo.addRequired(MInfo.vregsLiveIn))
2368 todo.insert(Pred);
2369 }
2370
2371 // Handle the PHI node.
2372 for (const MachineInstr &MI : MBB.phis()) {
2373 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2374 // Skip those Operands which are undef regs or not regs.
2375 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2376 continue;
2377
2378 // Get register and predecessor for one PHI edge.
2379 Register Reg = MI.getOperand(i).getReg();
2380 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2381
2382 BBInfo &PInfo = MBBInfoMap[Pred];
2383 if (PInfo.addRequired(Reg))
2384 todo.insert(Pred);
2385 }
2386 }
2387 }
2388
2389 // Iteratively push vregsRequired to predecessors. This will converge to the
2390 // same final state regardless of DenseSet iteration order.
2391 while (!todo.empty()) {
2392 const MachineBasicBlock *MBB = *todo.begin();
2393 todo.erase(MBB);
2394 BBInfo &MInfo = MBBInfoMap[MBB];
2395 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2396 if (Pred == MBB)
2397 continue;
2398 BBInfo &SInfo = MBBInfoMap[Pred];
2399 if (SInfo.addRequired(MInfo.vregsRequired))
2400 todo.insert(Pred);
2401 }
2402 }
2403 }
2404
2405 // Check PHI instructions at the beginning of MBB. It is assumed that
2406 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
checkPHIOps(const MachineBasicBlock & MBB)2407 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2408 BBInfo &MInfo = MBBInfoMap[&MBB];
2409
2410 SmallPtrSet<const MachineBasicBlock*, 8> seen;
2411 for (const MachineInstr &Phi : MBB) {
2412 if (!Phi.isPHI())
2413 break;
2414 seen.clear();
2415
2416 const MachineOperand &MODef = Phi.getOperand(0);
2417 if (!MODef.isReg() || !MODef.isDef()) {
2418 report("Expected first PHI operand to be a register def", &MODef, 0);
2419 continue;
2420 }
2421 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2422 MODef.isEarlyClobber() || MODef.isDebug())
2423 report("Unexpected flag on PHI operand", &MODef, 0);
2424 Register DefReg = MODef.getReg();
2425 if (!Register::isVirtualRegister(DefReg))
2426 report("Expected first PHI operand to be a virtual register", &MODef, 0);
2427
2428 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2429 const MachineOperand &MO0 = Phi.getOperand(I);
2430 if (!MO0.isReg()) {
2431 report("Expected PHI operand to be a register", &MO0, I);
2432 continue;
2433 }
2434 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2435 MO0.isDebug() || MO0.isTied())
2436 report("Unexpected flag on PHI operand", &MO0, I);
2437
2438 const MachineOperand &MO1 = Phi.getOperand(I + 1);
2439 if (!MO1.isMBB()) {
2440 report("Expected PHI operand to be a basic block", &MO1, I + 1);
2441 continue;
2442 }
2443
2444 const MachineBasicBlock &Pre = *MO1.getMBB();
2445 if (!Pre.isSuccessor(&MBB)) {
2446 report("PHI input is not a predecessor block", &MO1, I + 1);
2447 continue;
2448 }
2449
2450 if (MInfo.reachable) {
2451 seen.insert(&Pre);
2452 BBInfo &PrInfo = MBBInfoMap[&Pre];
2453 if (!MO0.isUndef() && PrInfo.reachable &&
2454 !PrInfo.isLiveOut(MO0.getReg()))
2455 report("PHI operand is not live-out from predecessor", &MO0, I);
2456 }
2457 }
2458
2459 // Did we see all predecessors?
2460 if (MInfo.reachable) {
2461 for (MachineBasicBlock *Pred : MBB.predecessors()) {
2462 if (!seen.count(Pred)) {
2463 report("Missing PHI operand", &Phi);
2464 errs() << printMBBReference(*Pred)
2465 << " is a predecessor according to the CFG.\n";
2466 }
2467 }
2468 }
2469 }
2470 }
2471
visitMachineFunctionAfter()2472 void MachineVerifier::visitMachineFunctionAfter() {
2473 calcRegsPassed();
2474
2475 for (const MachineBasicBlock &MBB : *MF)
2476 checkPHIOps(MBB);
2477
2478 // Now check liveness info if available
2479 calcRegsRequired();
2480
2481 // Check for killed virtual registers that should be live out.
2482 for (const auto &MBB : *MF) {
2483 BBInfo &MInfo = MBBInfoMap[&MBB];
2484 for (Register VReg : MInfo.vregsRequired)
2485 if (MInfo.regsKilled.count(VReg)) {
2486 report("Virtual register killed in block, but needed live out.", &MBB);
2487 errs() << "Virtual register " << printReg(VReg)
2488 << " is used after the block.\n";
2489 }
2490 }
2491
2492 if (!MF->empty()) {
2493 BBInfo &MInfo = MBBInfoMap[&MF->front()];
2494 for (Register VReg : MInfo.vregsRequired) {
2495 report("Virtual register defs don't dominate all uses.", MF);
2496 report_context_vreg(VReg);
2497 }
2498 }
2499
2500 if (LiveVars)
2501 verifyLiveVariables();
2502 if (LiveInts)
2503 verifyLiveIntervals();
2504
2505 // Check live-in list of each MBB. If a register is live into MBB, check
2506 // that the register is in regsLiveOut of each predecessor block. Since
2507 // this must come from a definition in the predecesssor or its live-in
2508 // list, this will catch a live-through case where the predecessor does not
2509 // have the register in its live-in list. This currently only checks
2510 // registers that have no aliases, are not allocatable and are not
2511 // reserved, which could mean a condition code register for instance.
2512 if (MRI->tracksLiveness())
2513 for (const auto &MBB : *MF)
2514 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2515 MCPhysReg LiveInReg = P.PhysReg;
2516 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2517 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2518 continue;
2519 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2520 BBInfo &PInfo = MBBInfoMap[Pred];
2521 if (!PInfo.regsLiveOut.count(LiveInReg)) {
2522 report("Live in register not found to be live out from predecessor.",
2523 &MBB);
2524 errs() << TRI->getName(LiveInReg)
2525 << " not found to be live out from "
2526 << printMBBReference(*Pred) << "\n";
2527 }
2528 }
2529 }
2530
2531 for (auto CSInfo : MF->getCallSitesInfo())
2532 if (!CSInfo.first->isCall())
2533 report("Call site info referencing instruction that is not call", MF);
2534
2535 // If there's debug-info, check that we don't have any duplicate value
2536 // tracking numbers.
2537 if (MF->getFunction().getSubprogram()) {
2538 DenseSet<unsigned> SeenNumbers;
2539 for (auto &MBB : *MF) {
2540 for (auto &MI : MBB) {
2541 if (auto Num = MI.peekDebugInstrNum()) {
2542 auto Result = SeenNumbers.insert((unsigned)Num);
2543 if (!Result.second)
2544 report("Instruction has a duplicated value tracking number", &MI);
2545 }
2546 }
2547 }
2548 }
2549 }
2550
verifyLiveVariables()2551 void MachineVerifier::verifyLiveVariables() {
2552 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2553 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2554 Register Reg = Register::index2VirtReg(I);
2555 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2556 for (const auto &MBB : *MF) {
2557 BBInfo &MInfo = MBBInfoMap[&MBB];
2558
2559 // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2560 if (MInfo.vregsRequired.count(Reg)) {
2561 if (!VI.AliveBlocks.test(MBB.getNumber())) {
2562 report("LiveVariables: Block missing from AliveBlocks", &MBB);
2563 errs() << "Virtual register " << printReg(Reg)
2564 << " must be live through the block.\n";
2565 }
2566 } else {
2567 if (VI.AliveBlocks.test(MBB.getNumber())) {
2568 report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2569 errs() << "Virtual register " << printReg(Reg)
2570 << " is not needed live through the block.\n";
2571 }
2572 }
2573 }
2574 }
2575 }
2576
verifyLiveIntervals()2577 void MachineVerifier::verifyLiveIntervals() {
2578 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2579 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2580 Register Reg = Register::index2VirtReg(I);
2581
2582 // Spilling and splitting may leave unused registers around. Skip them.
2583 if (MRI->reg_nodbg_empty(Reg))
2584 continue;
2585
2586 if (!LiveInts->hasInterval(Reg)) {
2587 report("Missing live interval for virtual register", MF);
2588 errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2589 continue;
2590 }
2591
2592 const LiveInterval &LI = LiveInts->getInterval(Reg);
2593 assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2594 verifyLiveInterval(LI);
2595 }
2596
2597 // Verify all the cached regunit intervals.
2598 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2599 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2600 verifyLiveRange(*LR, i);
2601 }
2602
verifyLiveRangeValue(const LiveRange & LR,const VNInfo * VNI,Register Reg,LaneBitmask LaneMask)2603 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2604 const VNInfo *VNI, Register Reg,
2605 LaneBitmask LaneMask) {
2606 if (VNI->isUnused())
2607 return;
2608
2609 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2610
2611 if (!DefVNI) {
2612 report("Value not live at VNInfo def and not marked unused", MF);
2613 report_context(LR, Reg, LaneMask);
2614 report_context(*VNI);
2615 return;
2616 }
2617
2618 if (DefVNI != VNI) {
2619 report("Live segment at def has different VNInfo", MF);
2620 report_context(LR, Reg, LaneMask);
2621 report_context(*VNI);
2622 return;
2623 }
2624
2625 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2626 if (!MBB) {
2627 report("Invalid VNInfo definition index", MF);
2628 report_context(LR, Reg, LaneMask);
2629 report_context(*VNI);
2630 return;
2631 }
2632
2633 if (VNI->isPHIDef()) {
2634 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2635 report("PHIDef VNInfo is not defined at MBB start", MBB);
2636 report_context(LR, Reg, LaneMask);
2637 report_context(*VNI);
2638 }
2639 return;
2640 }
2641
2642 // Non-PHI def.
2643 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2644 if (!MI) {
2645 report("No instruction at VNInfo def index", MBB);
2646 report_context(LR, Reg, LaneMask);
2647 report_context(*VNI);
2648 return;
2649 }
2650
2651 if (Reg != 0) {
2652 bool hasDef = false;
2653 bool isEarlyClobber = false;
2654 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2655 if (!MOI->isReg() || !MOI->isDef())
2656 continue;
2657 if (Register::isVirtualRegister(Reg)) {
2658 if (MOI->getReg() != Reg)
2659 continue;
2660 } else {
2661 if (!Register::isPhysicalRegister(MOI->getReg()) ||
2662 !TRI->hasRegUnit(MOI->getReg(), Reg))
2663 continue;
2664 }
2665 if (LaneMask.any() &&
2666 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2667 continue;
2668 hasDef = true;
2669 if (MOI->isEarlyClobber())
2670 isEarlyClobber = true;
2671 }
2672
2673 if (!hasDef) {
2674 report("Defining instruction does not modify register", MI);
2675 report_context(LR, Reg, LaneMask);
2676 report_context(*VNI);
2677 }
2678
2679 // Early clobber defs begin at USE slots, but other defs must begin at
2680 // DEF slots.
2681 if (isEarlyClobber) {
2682 if (!VNI->def.isEarlyClobber()) {
2683 report("Early clobber def must be at an early-clobber slot", MBB);
2684 report_context(LR, Reg, LaneMask);
2685 report_context(*VNI);
2686 }
2687 } else if (!VNI->def.isRegister()) {
2688 report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2689 report_context(LR, Reg, LaneMask);
2690 report_context(*VNI);
2691 }
2692 }
2693 }
2694
verifyLiveRangeSegment(const LiveRange & LR,const LiveRange::const_iterator I,Register Reg,LaneBitmask LaneMask)2695 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2696 const LiveRange::const_iterator I,
2697 Register Reg,
2698 LaneBitmask LaneMask) {
2699 const LiveRange::Segment &S = *I;
2700 const VNInfo *VNI = S.valno;
2701 assert(VNI && "Live segment has no valno");
2702
2703 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2704 report("Foreign valno in live segment", MF);
2705 report_context(LR, Reg, LaneMask);
2706 report_context(S);
2707 report_context(*VNI);
2708 }
2709
2710 if (VNI->isUnused()) {
2711 report("Live segment valno is marked unused", MF);
2712 report_context(LR, Reg, LaneMask);
2713 report_context(S);
2714 }
2715
2716 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2717 if (!MBB) {
2718 report("Bad start of live segment, no basic block", MF);
2719 report_context(LR, Reg, LaneMask);
2720 report_context(S);
2721 return;
2722 }
2723 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2724 if (S.start != MBBStartIdx && S.start != VNI->def) {
2725 report("Live segment must begin at MBB entry or valno def", MBB);
2726 report_context(LR, Reg, LaneMask);
2727 report_context(S);
2728 }
2729
2730 const MachineBasicBlock *EndMBB =
2731 LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2732 if (!EndMBB) {
2733 report("Bad end of live segment, no basic block", MF);
2734 report_context(LR, Reg, LaneMask);
2735 report_context(S);
2736 return;
2737 }
2738
2739 // No more checks for live-out segments.
2740 if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2741 return;
2742
2743 // RegUnit intervals are allowed dead phis.
2744 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2745 S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2746 return;
2747
2748 // The live segment is ending inside EndMBB
2749 const MachineInstr *MI =
2750 LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2751 if (!MI) {
2752 report("Live segment doesn't end at a valid instruction", EndMBB);
2753 report_context(LR, Reg, LaneMask);
2754 report_context(S);
2755 return;
2756 }
2757
2758 // The block slot must refer to a basic block boundary.
2759 if (S.end.isBlock()) {
2760 report("Live segment ends at B slot of an instruction", EndMBB);
2761 report_context(LR, Reg, LaneMask);
2762 report_context(S);
2763 }
2764
2765 if (S.end.isDead()) {
2766 // Segment ends on the dead slot.
2767 // That means there must be a dead def.
2768 if (!SlotIndex::isSameInstr(S.start, S.end)) {
2769 report("Live segment ending at dead slot spans instructions", EndMBB);
2770 report_context(LR, Reg, LaneMask);
2771 report_context(S);
2772 }
2773 }
2774
2775 // A live segment can only end at an early-clobber slot if it is being
2776 // redefined by an early-clobber def.
2777 if (S.end.isEarlyClobber()) {
2778 if (I+1 == LR.end() || (I+1)->start != S.end) {
2779 report("Live segment ending at early clobber slot must be "
2780 "redefined by an EC def in the same instruction", EndMBB);
2781 report_context(LR, Reg, LaneMask);
2782 report_context(S);
2783 }
2784 }
2785
2786 // The following checks only apply to virtual registers. Physreg liveness
2787 // is too weird to check.
2788 if (Register::isVirtualRegister(Reg)) {
2789 // A live segment can end with either a redefinition, a kill flag on a
2790 // use, or a dead flag on a def.
2791 bool hasRead = false;
2792 bool hasSubRegDef = false;
2793 bool hasDeadDef = false;
2794 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2795 if (!MOI->isReg() || MOI->getReg() != Reg)
2796 continue;
2797 unsigned Sub = MOI->getSubReg();
2798 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2799 : LaneBitmask::getAll();
2800 if (MOI->isDef()) {
2801 if (Sub != 0) {
2802 hasSubRegDef = true;
2803 // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2804 // mask for subregister defs. Read-undef defs will be handled by
2805 // readsReg below.
2806 SLM = ~SLM;
2807 }
2808 if (MOI->isDead())
2809 hasDeadDef = true;
2810 }
2811 if (LaneMask.any() && (LaneMask & SLM).none())
2812 continue;
2813 if (MOI->readsReg())
2814 hasRead = true;
2815 }
2816 if (S.end.isDead()) {
2817 // Make sure that the corresponding machine operand for a "dead" live
2818 // range has the dead flag. We cannot perform this check for subregister
2819 // liveranges as partially dead values are allowed.
2820 if (LaneMask.none() && !hasDeadDef) {
2821 report("Instruction ending live segment on dead slot has no dead flag",
2822 MI);
2823 report_context(LR, Reg, LaneMask);
2824 report_context(S);
2825 }
2826 } else {
2827 if (!hasRead) {
2828 // When tracking subregister liveness, the main range must start new
2829 // values on partial register writes, even if there is no read.
2830 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2831 !hasSubRegDef) {
2832 report("Instruction ending live segment doesn't read the register",
2833 MI);
2834 report_context(LR, Reg, LaneMask);
2835 report_context(S);
2836 }
2837 }
2838 }
2839 }
2840
2841 // Now check all the basic blocks in this live segment.
2842 MachineFunction::const_iterator MFI = MBB->getIterator();
2843 // Is this live segment the beginning of a non-PHIDef VN?
2844 if (S.start == VNI->def && !VNI->isPHIDef()) {
2845 // Not live-in to any blocks.
2846 if (MBB == EndMBB)
2847 return;
2848 // Skip this block.
2849 ++MFI;
2850 }
2851
2852 SmallVector<SlotIndex, 4> Undefs;
2853 if (LaneMask.any()) {
2854 LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2855 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2856 }
2857
2858 while (true) {
2859 assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2860 // We don't know how to track physregs into a landing pad.
2861 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
2862 if (&*MFI == EndMBB)
2863 break;
2864 ++MFI;
2865 continue;
2866 }
2867
2868 // Is VNI a PHI-def in the current block?
2869 bool IsPHI = VNI->isPHIDef() &&
2870 VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2871
2872 // Check that VNI is live-out of all predecessors.
2873 for (const MachineBasicBlock *Pred : MFI->predecessors()) {
2874 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
2875 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2876
2877 // All predecessors must have a live-out value. However for a phi
2878 // instruction with subregister intervals
2879 // only one of the subregisters (not necessarily the current one) needs to
2880 // be defined.
2881 if (!PVNI && (LaneMask.none() || !IsPHI)) {
2882 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
2883 continue;
2884 report("Register not marked live out of predecessor", Pred);
2885 report_context(LR, Reg, LaneMask);
2886 report_context(*VNI);
2887 errs() << " live into " << printMBBReference(*MFI) << '@'
2888 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2889 << PEnd << '\n';
2890 continue;
2891 }
2892
2893 // Only PHI-defs can take different predecessor values.
2894 if (!IsPHI && PVNI != VNI) {
2895 report("Different value live out of predecessor", Pred);
2896 report_context(LR, Reg, LaneMask);
2897 errs() << "Valno #" << PVNI->id << " live out of "
2898 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
2899 << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2900 << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2901 }
2902 }
2903 if (&*MFI == EndMBB)
2904 break;
2905 ++MFI;
2906 }
2907 }
2908
verifyLiveRange(const LiveRange & LR,Register Reg,LaneBitmask LaneMask)2909 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
2910 LaneBitmask LaneMask) {
2911 for (const VNInfo *VNI : LR.valnos)
2912 verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2913
2914 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2915 verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2916 }
2917
verifyLiveInterval(const LiveInterval & LI)2918 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2919 Register Reg = LI.reg();
2920 assert(Register::isVirtualRegister(Reg));
2921 verifyLiveRange(LI, Reg);
2922
2923 LaneBitmask Mask;
2924 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2925 for (const LiveInterval::SubRange &SR : LI.subranges()) {
2926 if ((Mask & SR.LaneMask).any()) {
2927 report("Lane masks of sub ranges overlap in live interval", MF);
2928 report_context(LI);
2929 }
2930 if ((SR.LaneMask & ~MaxMask).any()) {
2931 report("Subrange lanemask is invalid", MF);
2932 report_context(LI);
2933 }
2934 if (SR.empty()) {
2935 report("Subrange must not be empty", MF);
2936 report_context(SR, LI.reg(), SR.LaneMask);
2937 }
2938 Mask |= SR.LaneMask;
2939 verifyLiveRange(SR, LI.reg(), SR.LaneMask);
2940 if (!LI.covers(SR)) {
2941 report("A Subrange is not covered by the main range", MF);
2942 report_context(LI);
2943 }
2944 }
2945
2946 // Check the LI only has one connected component.
2947 ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2948 unsigned NumComp = ConEQ.Classify(LI);
2949 if (NumComp > 1) {
2950 report("Multiple connected components in live interval", MF);
2951 report_context(LI);
2952 for (unsigned comp = 0; comp != NumComp; ++comp) {
2953 errs() << comp << ": valnos";
2954 for (const VNInfo *I : LI.valnos)
2955 if (comp == ConEQ.getEqClass(I))
2956 errs() << ' ' << I->id;
2957 errs() << '\n';
2958 }
2959 }
2960 }
2961
2962 namespace {
2963
2964 // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2965 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2966 // value is zero.
2967 // We use a bool plus an integer to capture the stack state.
2968 struct StackStateOfBB {
2969 StackStateOfBB() = default;
StackStateOfBB__anon9440d37e0511::StackStateOfBB2970 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2971 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2972 ExitIsSetup(ExitSetup) {}
2973
2974 // Can be negative, which means we are setting up a frame.
2975 int EntryValue = 0;
2976 int ExitValue = 0;
2977 bool EntryIsSetup = false;
2978 bool ExitIsSetup = false;
2979 };
2980
2981 } // end anonymous namespace
2982
2983 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2984 /// by a FrameDestroy <n>, stack adjustments are identical on all
2985 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
verifyStackFrame()2986 void MachineVerifier::verifyStackFrame() {
2987 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
2988 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2989 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2990 return;
2991
2992 SmallVector<StackStateOfBB, 8> SPState;
2993 SPState.resize(MF->getNumBlockIDs());
2994 df_iterator_default_set<const MachineBasicBlock*> Reachable;
2995
2996 // Visit the MBBs in DFS order.
2997 for (df_ext_iterator<const MachineFunction *,
2998 df_iterator_default_set<const MachineBasicBlock *>>
2999 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3000 DFI != DFE; ++DFI) {
3001 const MachineBasicBlock *MBB = *DFI;
3002
3003 StackStateOfBB BBState;
3004 // Check the exit state of the DFS stack predecessor.
3005 if (DFI.getPathLength() >= 2) {
3006 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3007 assert(Reachable.count(StackPred) &&
3008 "DFS stack predecessor is already visited.\n");
3009 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3010 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3011 BBState.ExitValue = BBState.EntryValue;
3012 BBState.ExitIsSetup = BBState.EntryIsSetup;
3013 }
3014
3015 // Update stack state by checking contents of MBB.
3016 for (const auto &I : *MBB) {
3017 if (I.getOpcode() == FrameSetupOpcode) {
3018 if (BBState.ExitIsSetup)
3019 report("FrameSetup is after another FrameSetup", &I);
3020 BBState.ExitValue -= TII->getFrameTotalSize(I);
3021 BBState.ExitIsSetup = true;
3022 }
3023
3024 if (I.getOpcode() == FrameDestroyOpcode) {
3025 int Size = TII->getFrameTotalSize(I);
3026 if (!BBState.ExitIsSetup)
3027 report("FrameDestroy is not after a FrameSetup", &I);
3028 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3029 BBState.ExitValue;
3030 if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3031 report("FrameDestroy <n> is after FrameSetup <m>", &I);
3032 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3033 << AbsSPAdj << ">.\n";
3034 }
3035 BBState.ExitValue += Size;
3036 BBState.ExitIsSetup = false;
3037 }
3038 }
3039 SPState[MBB->getNumber()] = BBState;
3040
3041 // Make sure the exit state of any predecessor is consistent with the entry
3042 // state.
3043 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3044 if (Reachable.count(Pred) &&
3045 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3046 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3047 report("The exit stack state of a predecessor is inconsistent.", MBB);
3048 errs() << "Predecessor " << printMBBReference(*Pred)
3049 << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3050 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3051 << printMBBReference(*MBB) << " has entry state ("
3052 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3053 }
3054 }
3055
3056 // Make sure the entry state of any successor is consistent with the exit
3057 // state.
3058 for (const MachineBasicBlock *Succ : MBB->successors()) {
3059 if (Reachable.count(Succ) &&
3060 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3061 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3062 report("The entry stack state of a successor is inconsistent.", MBB);
3063 errs() << "Successor " << printMBBReference(*Succ)
3064 << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3065 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3066 << printMBBReference(*MBB) << " has exit state ("
3067 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3068 }
3069 }
3070
3071 // Make sure a basic block with return ends with zero stack adjustment.
3072 if (!MBB->empty() && MBB->back().isReturn()) {
3073 if (BBState.ExitIsSetup)
3074 report("A return block ends with a FrameSetup.", MBB);
3075 if (BBState.ExitValue)
3076 report("A return block ends with a nonzero stack adjustment.", MBB);
3077 }
3078 }
3079 }
3080