1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
TargetLowering(const TargetMachine & tm)38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
getTargetNodeName(unsigned Opcode) const41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
isPositionIndependent() const45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
isInTailCallPosition(SelectionDAG & DAG,SDNode * Node,SDValue & Chain) const51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
parametersInCSRMatch(const MachineRegisterInfo & MRI,const uint32_t * CallerPreservedMask,const SmallVectorImpl<CCValAssign> & ArgLocs,const SmallVectorImpl<SDValue> & OutVals) const78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
setAttributes(const CallBase * Call,unsigned ArgIdx)105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
114   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
115   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
116   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
117   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
118   Alignment = Call->getParamAlign(ArgIdx);
119   ByValType = nullptr;
120   if (IsByVal)
121     ByValType = Call->getParamByValType(ArgIdx);
122   PreallocatedType = nullptr;
123   if (IsPreallocated)
124     PreallocatedType = Call->getParamPreallocatedType(ArgIdx);
125 }
126 
127 /// Generate a libcall taking the given operands as arguments and returning a
128 /// result of type RetVT.
129 std::pair<SDValue, SDValue>
makeLibCall(SelectionDAG & DAG,RTLIB::Libcall LC,EVT RetVT,ArrayRef<SDValue> Ops,MakeLibCallOptions CallOptions,const SDLoc & dl,SDValue InChain) const130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
131                             ArrayRef<SDValue> Ops,
132                             MakeLibCallOptions CallOptions,
133                             const SDLoc &dl,
134                             SDValue InChain) const {
135   if (!InChain)
136     InChain = DAG.getEntryNode();
137 
138   TargetLowering::ArgListTy Args;
139   Args.reserve(Ops.size());
140 
141   TargetLowering::ArgListEntry Entry;
142   for (unsigned i = 0; i < Ops.size(); ++i) {
143     SDValue NewOp = Ops[i];
144     Entry.Node = NewOp;
145     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
146     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
147                                                  CallOptions.IsSExt);
148     Entry.IsZExt = !Entry.IsSExt;
149 
150     if (CallOptions.IsSoften &&
151         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
152       Entry.IsSExt = Entry.IsZExt = false;
153     }
154     Args.push_back(Entry);
155   }
156 
157   if (LC == RTLIB::UNKNOWN_LIBCALL)
158     report_fatal_error("Unsupported library call operation!");
159   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
160                                          getPointerTy(DAG.getDataLayout()));
161 
162   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
163   TargetLowering::CallLoweringInfo CLI(DAG);
164   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
165   bool zeroExtend = !signExtend;
166 
167   if (CallOptions.IsSoften &&
168       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
169     signExtend = zeroExtend = false;
170   }
171 
172   CLI.setDebugLoc(dl)
173       .setChain(InChain)
174       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
175       .setNoReturn(CallOptions.DoesNotReturn)
176       .setDiscardResult(!CallOptions.IsReturnValueUsed)
177       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
178       .setSExtResult(signExtend)
179       .setZExtResult(zeroExtend);
180   return LowerCallTo(CLI);
181 }
182 
findOptimalMemOpLowering(std::vector<EVT> & MemOps,unsigned Limit,const MemOp & Op,unsigned DstAS,unsigned SrcAS,const AttributeList & FuncAttributes) const183 bool TargetLowering::findOptimalMemOpLowering(
184     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
185     unsigned SrcAS, const AttributeList &FuncAttributes) const {
186   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
187     return false;
188 
189   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
190 
191   if (VT == MVT::Other) {
192     // Use the largest integer type whose alignment constraints are satisfied.
193     // We only need to check DstAlign here as SrcAlign is always greater or
194     // equal to DstAlign (or zero).
195     VT = MVT::i64;
196     if (Op.isFixedDstAlign())
197       while (
198           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
199           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
200         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
201     assert(VT.isInteger());
202 
203     // Find the largest legal integer type.
204     MVT LVT = MVT::i64;
205     while (!isTypeLegal(LVT))
206       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
207     assert(LVT.isInteger());
208 
209     // If the type we've chosen is larger than the largest legal integer type
210     // then use that instead.
211     if (VT.bitsGT(LVT))
212       VT = LVT;
213   }
214 
215   unsigned NumMemOps = 0;
216   uint64_t Size = Op.size();
217   while (Size) {
218     unsigned VTSize = VT.getSizeInBits() / 8;
219     while (VTSize > Size) {
220       // For now, only use non-vector load / store's for the left-over pieces.
221       EVT NewVT = VT;
222       unsigned NewVTSize;
223 
224       bool Found = false;
225       if (VT.isVector() || VT.isFloatingPoint()) {
226         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
227         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
228             isSafeMemOpType(NewVT.getSimpleVT()))
229           Found = true;
230         else if (NewVT == MVT::i64 &&
231                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
232                  isSafeMemOpType(MVT::f64)) {
233           // i64 is usually not legal on 32-bit targets, but f64 may be.
234           NewVT = MVT::f64;
235           Found = true;
236         }
237       }
238 
239       if (!Found) {
240         do {
241           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
242           if (NewVT == MVT::i8)
243             break;
244         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
245       }
246       NewVTSize = NewVT.getSizeInBits() / 8;
247 
248       // If the new VT cannot cover all of the remaining bits, then consider
249       // issuing a (or a pair of) unaligned and overlapping load / store.
250       bool Fast;
251       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
252           allowsMisalignedMemoryAccesses(
253               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 1,
254               MachineMemOperand::MONone, &Fast) &&
255           Fast)
256         VTSize = Size;
257       else {
258         VT = NewVT;
259         VTSize = NewVTSize;
260       }
261     }
262 
263     if (++NumMemOps > Limit)
264       return false;
265 
266     MemOps.push_back(VT);
267     Size -= VTSize;
268   }
269 
270   return true;
271 }
272 
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
softenSetCCOperands(SelectionDAG & DAG,EVT VT,SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode & CCCode,const SDLoc & dl,const SDValue OldLHS,const SDValue OldRHS) const275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
276                                          SDValue &NewLHS, SDValue &NewRHS,
277                                          ISD::CondCode &CCCode,
278                                          const SDLoc &dl, const SDValue OldLHS,
279                                          const SDValue OldRHS) const {
280   SDValue Chain;
281   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
282                              OldRHS, Chain);
283 }
284 
softenSetCCOperands(SelectionDAG & DAG,EVT VT,SDValue & NewLHS,SDValue & NewRHS,ISD::CondCode & CCCode,const SDLoc & dl,const SDValue OldLHS,const SDValue OldRHS,SDValue & Chain,bool IsSignaling) const285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
286                                          SDValue &NewLHS, SDValue &NewRHS,
287                                          ISD::CondCode &CCCode,
288                                          const SDLoc &dl, const SDValue OldLHS,
289                                          const SDValue OldRHS,
290                                          SDValue &Chain,
291                                          bool IsSignaling) const {
292   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
293   // not supporting it. We can update this code when libgcc provides such
294   // functions.
295 
296   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
297          && "Unsupported setcc type!");
298 
299   // Expand into one or more soft-fp libcall(s).
300   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
301   bool ShouldInvertCC = false;
302   switch (CCCode) {
303   case ISD::SETEQ:
304   case ISD::SETOEQ:
305     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
306           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
307           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
308     break;
309   case ISD::SETNE:
310   case ISD::SETUNE:
311     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
312           (VT == MVT::f64) ? RTLIB::UNE_F64 :
313           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
314     break;
315   case ISD::SETGE:
316   case ISD::SETOGE:
317     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
318           (VT == MVT::f64) ? RTLIB::OGE_F64 :
319           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
320     break;
321   case ISD::SETLT:
322   case ISD::SETOLT:
323     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
324           (VT == MVT::f64) ? RTLIB::OLT_F64 :
325           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
326     break;
327   case ISD::SETLE:
328   case ISD::SETOLE:
329     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
330           (VT == MVT::f64) ? RTLIB::OLE_F64 :
331           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
332     break;
333   case ISD::SETGT:
334   case ISD::SETOGT:
335     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
336           (VT == MVT::f64) ? RTLIB::OGT_F64 :
337           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
338     break;
339   case ISD::SETO:
340     ShouldInvertCC = true;
341     LLVM_FALLTHROUGH;
342   case ISD::SETUO:
343     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
344           (VT == MVT::f64) ? RTLIB::UO_F64 :
345           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
346     break;
347   case ISD::SETONE:
348     // SETONE = O && UNE
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUEQ:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
356           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
357           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
358     break;
359   default:
360     // Invert CC for unordered comparisons
361     ShouldInvertCC = true;
362     switch (CCCode) {
363     case ISD::SETULT:
364       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
365             (VT == MVT::f64) ? RTLIB::OGE_F64 :
366             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
367       break;
368     case ISD::SETULE:
369       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
370             (VT == MVT::f64) ? RTLIB::OGT_F64 :
371             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
372       break;
373     case ISD::SETUGT:
374       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
375             (VT == MVT::f64) ? RTLIB::OLE_F64 :
376             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
377       break;
378     case ISD::SETUGE:
379       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
380             (VT == MVT::f64) ? RTLIB::OLT_F64 :
381             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
382       break;
383     default: llvm_unreachable("Do not know how to soften this setcc!");
384     }
385   }
386 
387   // Use the target specific return value for comparions lib calls.
388   EVT RetVT = getCmpLibcallReturnType();
389   SDValue Ops[2] = {NewLHS, NewRHS};
390   TargetLowering::MakeLibCallOptions CallOptions;
391   EVT OpsVT[2] = { OldLHS.getValueType(),
392                    OldRHS.getValueType() };
393   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
394   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
395   NewLHS = Call.first;
396   NewRHS = DAG.getConstant(0, dl, RetVT);
397 
398   CCCode = getCmpLibcallCC(LC1);
399   if (ShouldInvertCC) {
400     assert(RetVT.isInteger());
401     CCCode = getSetCCInverse(CCCode, RetVT);
402   }
403 
404   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
405     // Update Chain.
406     Chain = Call.second;
407   } else {
408     EVT SetCCVT =
409         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
410     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
411     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
412     CCCode = getCmpLibcallCC(LC2);
413     if (ShouldInvertCC)
414       CCCode = getSetCCInverse(CCCode, RetVT);
415     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
416     if (Chain)
417       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
418                           Call2.second);
419     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
420                          Tmp.getValueType(), Tmp, NewLHS);
421     NewRHS = SDValue();
422   }
423 }
424 
425 /// Return the entry encoding for a jump table in the current function. The
426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
getJumpTableEncoding() const427 unsigned TargetLowering::getJumpTableEncoding() const {
428   // In non-pic modes, just use the address of a block.
429   if (!isPositionIndependent())
430     return MachineJumpTableInfo::EK_BlockAddress;
431 
432   // In PIC mode, if the target supports a GPRel32 directive, use it.
433   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
434     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
435 
436   // Otherwise, use a label difference.
437   return MachineJumpTableInfo::EK_LabelDifference32;
438 }
439 
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
441                                                  SelectionDAG &DAG) const {
442   // If our PIC model is GP relative, use the global offset table as the base.
443   unsigned JTEncoding = getJumpTableEncoding();
444 
445   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
446       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
447     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
448 
449   return Table;
450 }
451 
452 /// This returns the relocation base for the given PIC jumptable, the same as
453 /// getPICJumpTableRelocBase, but as an MCExpr.
454 const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
456                                              unsigned JTI,MCContext &Ctx) const{
457   // The normal PIC reloc base is the label at the start of the jump table.
458   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
459 }
460 
461 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
463   const TargetMachine &TM = getTargetMachine();
464   const GlobalValue *GV = GA->getGlobal();
465 
466   // If the address is not even local to this DSO we will have to load it from
467   // a got and then add the offset.
468   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
469     return false;
470 
471   // If the code is position independent we will have to add a base register.
472   if (isPositionIndependent())
473     return false;
474 
475   // Otherwise we can do it.
476   return true;
477 }
478 
479 //===----------------------------------------------------------------------===//
480 //  Optimization Methods
481 //===----------------------------------------------------------------------===//
482 
483 /// If the specified instruction has a constant integer operand and there are
484 /// bits set in that constant that are not demanded, then clear those bits and
485 /// return true.
ShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,TargetLoweringOpt & TLO) const486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
487                                             const APInt &DemandedBits,
488                                             const APInt &DemandedElts,
489                                             TargetLoweringOpt &TLO) const {
490   SDLoc DL(Op);
491   unsigned Opcode = Op.getOpcode();
492 
493   // Do target-specific constant optimization.
494   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
495     return TLO.New.getNode();
496 
497   // FIXME: ISD::SELECT, ISD::SELECT_CC
498   switch (Opcode) {
499   default:
500     break;
501   case ISD::XOR:
502   case ISD::AND:
503   case ISD::OR: {
504     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
505     if (!Op1C)
506       return false;
507 
508     // If this is a 'not' op, don't touch it because that's a canonical form.
509     const APInt &C = Op1C->getAPIntValue();
510     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
511       return false;
512 
513     if (!C.isSubsetOf(DemandedBits)) {
514       EVT VT = Op.getValueType();
515       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
516       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
517       return TLO.CombineTo(Op, NewOp);
518     }
519 
520     break;
521   }
522   }
523 
524   return false;
525 }
526 
ShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,TargetLoweringOpt & TLO) const527 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
528                                             const APInt &DemandedBits,
529                                             TargetLoweringOpt &TLO) const {
530   EVT VT = Op.getValueType();
531   APInt DemandedElts = VT.isVector()
532                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
533                            : APInt(1, 1);
534   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
535 }
536 
537 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
538 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
539 /// generalized for targets with other types of implicit widening casts.
ShrinkDemandedOp(SDValue Op,unsigned BitWidth,const APInt & Demanded,TargetLoweringOpt & TLO) const540 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
541                                       const APInt &Demanded,
542                                       TargetLoweringOpt &TLO) const {
543   assert(Op.getNumOperands() == 2 &&
544          "ShrinkDemandedOp only supports binary operators!");
545   assert(Op.getNode()->getNumValues() == 1 &&
546          "ShrinkDemandedOp only supports nodes with one result!");
547 
548   SelectionDAG &DAG = TLO.DAG;
549   SDLoc dl(Op);
550 
551   // Early return, as this function cannot handle vector types.
552   if (Op.getValueType().isVector())
553     return false;
554 
555   // Don't do this if the node has another user, which may require the
556   // full value.
557   if (!Op.getNode()->hasOneUse())
558     return false;
559 
560   // Search for the smallest integer type with free casts to and from
561   // Op's type. For expedience, just check power-of-2 integer types.
562   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
563   unsigned DemandedSize = Demanded.getActiveBits();
564   unsigned SmallVTBits = DemandedSize;
565   if (!isPowerOf2_32(SmallVTBits))
566     SmallVTBits = NextPowerOf2(SmallVTBits);
567   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
568     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
569     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
570         TLI.isZExtFree(SmallVT, Op.getValueType())) {
571       // We found a type with free casts.
572       SDValue X = DAG.getNode(
573           Op.getOpcode(), dl, SmallVT,
574           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
575           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
576       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
577       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
578       return TLO.CombineTo(Op, Z);
579     }
580   }
581   return false;
582 }
583 
SimplifyDemandedBits(SDValue Op,const APInt & DemandedBits,DAGCombinerInfo & DCI) const584 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
585                                           DAGCombinerInfo &DCI) const {
586   SelectionDAG &DAG = DCI.DAG;
587   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
588                         !DCI.isBeforeLegalizeOps());
589   KnownBits Known;
590 
591   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
592   if (Simplified) {
593     DCI.AddToWorklist(Op.getNode());
594     DCI.CommitTargetLoweringOpt(TLO);
595   }
596   return Simplified;
597 }
598 
SimplifyDemandedBits(SDValue Op,const APInt & DemandedBits,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth,bool AssumeSingleUse) const599 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
600                                           KnownBits &Known,
601                                           TargetLoweringOpt &TLO,
602                                           unsigned Depth,
603                                           bool AssumeSingleUse) const {
604   EVT VT = Op.getValueType();
605 
606   // TODO: We can probably do more work on calculating the known bits and
607   // simplifying the operations for scalable vectors, but for now we just
608   // bail out.
609   if (VT.isScalableVector()) {
610     // Pretend we don't know anything for now.
611     Known = KnownBits(DemandedBits.getBitWidth());
612     return false;
613   }
614 
615   APInt DemandedElts = VT.isVector()
616                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
617                            : APInt(1, 1);
618   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
619                               AssumeSingleUse);
620 }
621 
622 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
623 // TODO: Under what circumstances can we create nodes? Constant folding?
SimplifyMultipleUseDemandedBits(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,SelectionDAG & DAG,unsigned Depth) const624 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
625     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
626     SelectionDAG &DAG, unsigned Depth) const {
627   // Limit search depth.
628   if (Depth >= SelectionDAG::MaxRecursionDepth)
629     return SDValue();
630 
631   // Ignore UNDEFs.
632   if (Op.isUndef())
633     return SDValue();
634 
635   // Not demanding any bits/elts from Op.
636   if (DemandedBits == 0 || DemandedElts == 0)
637     return DAG.getUNDEF(Op.getValueType());
638 
639   unsigned NumElts = DemandedElts.getBitWidth();
640   unsigned BitWidth = DemandedBits.getBitWidth();
641   KnownBits LHSKnown, RHSKnown;
642   switch (Op.getOpcode()) {
643   case ISD::BITCAST: {
644     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
645     EVT SrcVT = Src.getValueType();
646     EVT DstVT = Op.getValueType();
647     if (SrcVT == DstVT)
648       return Src;
649 
650     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
651     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
652     if (NumSrcEltBits == NumDstEltBits)
653       if (SDValue V = SimplifyMultipleUseDemandedBits(
654               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
655         return DAG.getBitcast(DstVT, V);
656 
657     // TODO - bigendian once we have test coverage.
658     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
659         DAG.getDataLayout().isLittleEndian()) {
660       unsigned Scale = NumDstEltBits / NumSrcEltBits;
661       unsigned NumSrcElts = SrcVT.getVectorNumElements();
662       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
663       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
664       for (unsigned i = 0; i != Scale; ++i) {
665         unsigned Offset = i * NumSrcEltBits;
666         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
667         if (!Sub.isNullValue()) {
668           DemandedSrcBits |= Sub;
669           for (unsigned j = 0; j != NumElts; ++j)
670             if (DemandedElts[j])
671               DemandedSrcElts.setBit((j * Scale) + i);
672         }
673       }
674 
675       if (SDValue V = SimplifyMultipleUseDemandedBits(
676               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
677         return DAG.getBitcast(DstVT, V);
678     }
679 
680     // TODO - bigendian once we have test coverage.
681     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
682         DAG.getDataLayout().isLittleEndian()) {
683       unsigned Scale = NumSrcEltBits / NumDstEltBits;
684       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
685       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
686       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
687       for (unsigned i = 0; i != NumElts; ++i)
688         if (DemandedElts[i]) {
689           unsigned Offset = (i % Scale) * NumDstEltBits;
690           DemandedSrcBits.insertBits(DemandedBits, Offset);
691           DemandedSrcElts.setBit(i / Scale);
692         }
693 
694       if (SDValue V = SimplifyMultipleUseDemandedBits(
695               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
696         return DAG.getBitcast(DstVT, V);
697     }
698 
699     break;
700   }
701   case ISD::AND: {
702     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
703     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
704 
705     // If all of the demanded bits are known 1 on one side, return the other.
706     // These bits cannot contribute to the result of the 'and' in this
707     // context.
708     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
709       return Op.getOperand(0);
710     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
711       return Op.getOperand(1);
712     break;
713   }
714   case ISD::OR: {
715     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
716     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
717 
718     // If all of the demanded bits are known zero on one side, return the
719     // other.  These bits cannot contribute to the result of the 'or' in this
720     // context.
721     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
722       return Op.getOperand(0);
723     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
724       return Op.getOperand(1);
725     break;
726   }
727   case ISD::XOR: {
728     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
729     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
730 
731     // If all of the demanded bits are known zero on one side, return the
732     // other.
733     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
734       return Op.getOperand(0);
735     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
736       return Op.getOperand(1);
737     break;
738   }
739   case ISD::SHL: {
740     // If we are only demanding sign bits then we can use the shift source
741     // directly.
742     if (const APInt *MaxSA =
743             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
744       SDValue Op0 = Op.getOperand(0);
745       unsigned ShAmt = MaxSA->getZExtValue();
746       unsigned NumSignBits =
747           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
748       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
749       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
750         return Op0;
751     }
752     break;
753   }
754   case ISD::SETCC: {
755     SDValue Op0 = Op.getOperand(0);
756     SDValue Op1 = Op.getOperand(1);
757     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
758     // If (1) we only need the sign-bit, (2) the setcc operands are the same
759     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
760     // -1, we may be able to bypass the setcc.
761     if (DemandedBits.isSignMask() &&
762         Op0.getScalarValueSizeInBits() == BitWidth &&
763         getBooleanContents(Op0.getValueType()) ==
764             BooleanContent::ZeroOrNegativeOneBooleanContent) {
765       // If we're testing X < 0, then this compare isn't needed - just use X!
766       // FIXME: We're limiting to integer types here, but this should also work
767       // if we don't care about FP signed-zero. The use of SETLT with FP means
768       // that we don't care about NaNs.
769       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
770           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
771         return Op0;
772     }
773     break;
774   }
775   case ISD::SIGN_EXTEND_INREG: {
776     // If none of the extended bits are demanded, eliminate the sextinreg.
777     SDValue Op0 = Op.getOperand(0);
778     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
779     unsigned ExBits = ExVT.getScalarSizeInBits();
780     if (DemandedBits.getActiveBits() <= ExBits)
781       return Op0;
782     // If the input is already sign extended, just drop the extension.
783     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
784     if (NumSignBits >= (BitWidth - ExBits + 1))
785       return Op0;
786     break;
787   }
788   case ISD::ANY_EXTEND_VECTOR_INREG:
789   case ISD::SIGN_EXTEND_VECTOR_INREG:
790   case ISD::ZERO_EXTEND_VECTOR_INREG: {
791     // If we only want the lowest element and none of extended bits, then we can
792     // return the bitcasted source vector.
793     SDValue Src = Op.getOperand(0);
794     EVT SrcVT = Src.getValueType();
795     EVT DstVT = Op.getValueType();
796     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
797         DAG.getDataLayout().isLittleEndian() &&
798         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
799       return DAG.getBitcast(DstVT, Src);
800     }
801     break;
802   }
803   case ISD::INSERT_VECTOR_ELT: {
804     // If we don't demand the inserted element, return the base vector.
805     SDValue Vec = Op.getOperand(0);
806     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
807     EVT VecVT = Vec.getValueType();
808     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
809         !DemandedElts[CIdx->getZExtValue()])
810       return Vec;
811     break;
812   }
813   case ISD::INSERT_SUBVECTOR: {
814     // If we don't demand the inserted subvector, return the base vector.
815     SDValue Vec = Op.getOperand(0);
816     SDValue Sub = Op.getOperand(1);
817     uint64_t Idx = Op.getConstantOperandVal(2);
818     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
819     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
820       return Vec;
821     break;
822   }
823   case ISD::VECTOR_SHUFFLE: {
824     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
825 
826     // If all the demanded elts are from one operand and are inline,
827     // then we can use the operand directly.
828     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
829     for (unsigned i = 0; i != NumElts; ++i) {
830       int M = ShuffleMask[i];
831       if (M < 0 || !DemandedElts[i])
832         continue;
833       AllUndef = false;
834       IdentityLHS &= (M == (int)i);
835       IdentityRHS &= ((M - NumElts) == i);
836     }
837 
838     if (AllUndef)
839       return DAG.getUNDEF(Op.getValueType());
840     if (IdentityLHS)
841       return Op.getOperand(0);
842     if (IdentityRHS)
843       return Op.getOperand(1);
844     break;
845   }
846   default:
847     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
848       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
849               Op, DemandedBits, DemandedElts, DAG, Depth))
850         return V;
851     break;
852   }
853   return SDValue();
854 }
855 
SimplifyMultipleUseDemandedBits(SDValue Op,const APInt & DemandedBits,SelectionDAG & DAG,unsigned Depth) const856 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
857     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
858     unsigned Depth) const {
859   EVT VT = Op.getValueType();
860   APInt DemandedElts = VT.isVector()
861                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
862                            : APInt(1, 1);
863   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
864                                          Depth);
865 }
866 
SimplifyMultipleUseDemandedVectorElts(SDValue Op,const APInt & DemandedElts,SelectionDAG & DAG,unsigned Depth) const867 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
868     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
869     unsigned Depth) const {
870   APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits());
871   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
872                                          Depth);
873 }
874 
875 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
876 /// result of Op are ever used downstream. If we can use this information to
877 /// simplify Op, create a new simplified DAG node and return true, returning the
878 /// original and new nodes in Old and New. Otherwise, analyze the expression and
879 /// return a mask of Known bits for the expression (used to simplify the
880 /// caller).  The Known bits may only be accurate for those bits in the
881 /// OriginalDemandedBits and OriginalDemandedElts.
SimplifyDemandedBits(SDValue Op,const APInt & OriginalDemandedBits,const APInt & OriginalDemandedElts,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth,bool AssumeSingleUse) const882 bool TargetLowering::SimplifyDemandedBits(
883     SDValue Op, const APInt &OriginalDemandedBits,
884     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
885     unsigned Depth, bool AssumeSingleUse) const {
886   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
887   assert(Op.getScalarValueSizeInBits() == BitWidth &&
888          "Mask size mismatches value type size!");
889 
890   // Don't know anything.
891   Known = KnownBits(BitWidth);
892 
893   // TODO: We can probably do more work on calculating the known bits and
894   // simplifying the operations for scalable vectors, but for now we just
895   // bail out.
896   if (Op.getValueType().isScalableVector())
897     return false;
898 
899   unsigned NumElts = OriginalDemandedElts.getBitWidth();
900   assert((!Op.getValueType().isVector() ||
901           NumElts == Op.getValueType().getVectorNumElements()) &&
902          "Unexpected vector size");
903 
904   APInt DemandedBits = OriginalDemandedBits;
905   APInt DemandedElts = OriginalDemandedElts;
906   SDLoc dl(Op);
907   auto &DL = TLO.DAG.getDataLayout();
908 
909   // Undef operand.
910   if (Op.isUndef())
911     return false;
912 
913   if (Op.getOpcode() == ISD::Constant) {
914     // We know all of the bits for a constant!
915     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
916     Known.Zero = ~Known.One;
917     return false;
918   }
919 
920   if (Op.getOpcode() == ISD::ConstantFP) {
921     // We know all of the bits for a floating point constant!
922     Known.One = cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt();
923     Known.Zero = ~Known.One;
924     return false;
925   }
926 
927   // Other users may use these bits.
928   EVT VT = Op.getValueType();
929   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
930     if (Depth != 0) {
931       // If not at the root, Just compute the Known bits to
932       // simplify things downstream.
933       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
934       return false;
935     }
936     // If this is the root being simplified, allow it to have multiple uses,
937     // just set the DemandedBits/Elts to all bits.
938     DemandedBits = APInt::getAllOnesValue(BitWidth);
939     DemandedElts = APInt::getAllOnesValue(NumElts);
940   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
941     // Not demanding any bits/elts from Op.
942     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
943   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
944     // Limit search depth.
945     return false;
946   }
947 
948   KnownBits Known2;
949   switch (Op.getOpcode()) {
950   case ISD::TargetConstant:
951     llvm_unreachable("Can't simplify this node");
952   case ISD::SCALAR_TO_VECTOR: {
953     if (!DemandedElts[0])
954       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
955 
956     KnownBits SrcKnown;
957     SDValue Src = Op.getOperand(0);
958     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
959     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
960     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
961       return true;
962 
963     // Upper elements are undef, so only get the knownbits if we just demand
964     // the bottom element.
965     if (DemandedElts == 1)
966       Known = SrcKnown.anyextOrTrunc(BitWidth);
967     break;
968   }
969   case ISD::BUILD_VECTOR:
970     // Collect the known bits that are shared by every demanded element.
971     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
972     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
973     return false; // Don't fall through, will infinitely loop.
974   case ISD::LOAD: {
975     LoadSDNode *LD = cast<LoadSDNode>(Op);
976     if (getTargetConstantFromLoad(LD)) {
977       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
978       return false; // Don't fall through, will infinitely loop.
979     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
980       // If this is a ZEXTLoad and we are looking at the loaded value.
981       EVT MemVT = LD->getMemoryVT();
982       unsigned MemBits = MemVT.getScalarSizeInBits();
983       Known.Zero.setBitsFrom(MemBits);
984       return false; // Don't fall through, will infinitely loop.
985     }
986     break;
987   }
988   case ISD::INSERT_VECTOR_ELT: {
989     SDValue Vec = Op.getOperand(0);
990     SDValue Scl = Op.getOperand(1);
991     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
992     EVT VecVT = Vec.getValueType();
993 
994     // If index isn't constant, assume we need all vector elements AND the
995     // inserted element.
996     APInt DemandedVecElts(DemandedElts);
997     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
998       unsigned Idx = CIdx->getZExtValue();
999       DemandedVecElts.clearBit(Idx);
1000 
1001       // Inserted element is not required.
1002       if (!DemandedElts[Idx])
1003         return TLO.CombineTo(Op, Vec);
1004     }
1005 
1006     KnownBits KnownScl;
1007     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1008     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1009     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1010       return true;
1011 
1012     Known = KnownScl.anyextOrTrunc(BitWidth);
1013 
1014     KnownBits KnownVec;
1015     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1016                              Depth + 1))
1017       return true;
1018 
1019     if (!!DemandedVecElts) {
1020       Known.One &= KnownVec.One;
1021       Known.Zero &= KnownVec.Zero;
1022     }
1023 
1024     return false;
1025   }
1026   case ISD::INSERT_SUBVECTOR: {
1027     // Demand any elements from the subvector and the remainder from the src its
1028     // inserted into.
1029     SDValue Src = Op.getOperand(0);
1030     SDValue Sub = Op.getOperand(1);
1031     uint64_t Idx = Op.getConstantOperandVal(2);
1032     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1033     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1034     APInt DemandedSrcElts = DemandedElts;
1035     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
1036 
1037     KnownBits KnownSub, KnownSrc;
1038     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1039                              Depth + 1))
1040       return true;
1041     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1042                              Depth + 1))
1043       return true;
1044 
1045     Known.Zero.setAllBits();
1046     Known.One.setAllBits();
1047     if (!!DemandedSubElts) {
1048       Known.One &= KnownSub.One;
1049       Known.Zero &= KnownSub.Zero;
1050     }
1051     if (!!DemandedSrcElts) {
1052       Known.One &= KnownSrc.One;
1053       Known.Zero &= KnownSrc.Zero;
1054     }
1055 
1056     // Attempt to avoid multi-use src if we don't need anything from it.
1057     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
1058         !DemandedSrcElts.isAllOnesValue()) {
1059       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1060           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1061       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1062           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1063       if (NewSub || NewSrc) {
1064         NewSub = NewSub ? NewSub : Sub;
1065         NewSrc = NewSrc ? NewSrc : Src;
1066         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1067                                         Op.getOperand(2));
1068         return TLO.CombineTo(Op, NewOp);
1069       }
1070     }
1071     break;
1072   }
1073   case ISD::EXTRACT_SUBVECTOR: {
1074     // Offset the demanded elts by the subvector index.
1075     SDValue Src = Op.getOperand(0);
1076     if (Src.getValueType().isScalableVector())
1077       break;
1078     uint64_t Idx = Op.getConstantOperandVal(1);
1079     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1080     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1081 
1082     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1083                              Depth + 1))
1084       return true;
1085 
1086     // Attempt to avoid multi-use src if we don't need anything from it.
1087     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1088       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1089           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1090       if (DemandedSrc) {
1091         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1092                                         Op.getOperand(1));
1093         return TLO.CombineTo(Op, NewOp);
1094       }
1095     }
1096     break;
1097   }
1098   case ISD::CONCAT_VECTORS: {
1099     Known.Zero.setAllBits();
1100     Known.One.setAllBits();
1101     EVT SubVT = Op.getOperand(0).getValueType();
1102     unsigned NumSubVecs = Op.getNumOperands();
1103     unsigned NumSubElts = SubVT.getVectorNumElements();
1104     for (unsigned i = 0; i != NumSubVecs; ++i) {
1105       APInt DemandedSubElts =
1106           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1107       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1108                                Known2, TLO, Depth + 1))
1109         return true;
1110       // Known bits are shared by every demanded subvector element.
1111       if (!!DemandedSubElts) {
1112         Known.One &= Known2.One;
1113         Known.Zero &= Known2.Zero;
1114       }
1115     }
1116     break;
1117   }
1118   case ISD::VECTOR_SHUFFLE: {
1119     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1120 
1121     // Collect demanded elements from shuffle operands..
1122     APInt DemandedLHS(NumElts, 0);
1123     APInt DemandedRHS(NumElts, 0);
1124     for (unsigned i = 0; i != NumElts; ++i) {
1125       if (!DemandedElts[i])
1126         continue;
1127       int M = ShuffleMask[i];
1128       if (M < 0) {
1129         // For UNDEF elements, we don't know anything about the common state of
1130         // the shuffle result.
1131         DemandedLHS.clearAllBits();
1132         DemandedRHS.clearAllBits();
1133         break;
1134       }
1135       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1136       if (M < (int)NumElts)
1137         DemandedLHS.setBit(M);
1138       else
1139         DemandedRHS.setBit(M - NumElts);
1140     }
1141 
1142     if (!!DemandedLHS || !!DemandedRHS) {
1143       SDValue Op0 = Op.getOperand(0);
1144       SDValue Op1 = Op.getOperand(1);
1145 
1146       Known.Zero.setAllBits();
1147       Known.One.setAllBits();
1148       if (!!DemandedLHS) {
1149         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1150                                  Depth + 1))
1151           return true;
1152         Known.One &= Known2.One;
1153         Known.Zero &= Known2.Zero;
1154       }
1155       if (!!DemandedRHS) {
1156         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1157                                  Depth + 1))
1158           return true;
1159         Known.One &= Known2.One;
1160         Known.Zero &= Known2.Zero;
1161       }
1162 
1163       // Attempt to avoid multi-use ops if we don't need anything from them.
1164       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1165           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1166       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1167           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1168       if (DemandedOp0 || DemandedOp1) {
1169         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1170         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1171         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1172         return TLO.CombineTo(Op, NewOp);
1173       }
1174     }
1175     break;
1176   }
1177   case ISD::AND: {
1178     SDValue Op0 = Op.getOperand(0);
1179     SDValue Op1 = Op.getOperand(1);
1180 
1181     // If the RHS is a constant, check to see if the LHS would be zero without
1182     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1183     // simplify the LHS, here we're using information from the LHS to simplify
1184     // the RHS.
1185     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1186       // Do not increment Depth here; that can cause an infinite loop.
1187       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1188       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1189       if ((LHSKnown.Zero & DemandedBits) ==
1190           (~RHSC->getAPIntValue() & DemandedBits))
1191         return TLO.CombineTo(Op, Op0);
1192 
1193       // If any of the set bits in the RHS are known zero on the LHS, shrink
1194       // the constant.
1195       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1196                                  DemandedElts, TLO))
1197         return true;
1198 
1199       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1200       // constant, but if this 'and' is only clearing bits that were just set by
1201       // the xor, then this 'and' can be eliminated by shrinking the mask of
1202       // the xor. For example, for a 32-bit X:
1203       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1204       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1205           LHSKnown.One == ~RHSC->getAPIntValue()) {
1206         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1207         return TLO.CombineTo(Op, Xor);
1208       }
1209     }
1210 
1211     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1212                              Depth + 1))
1213       return true;
1214     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1215     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1216                              Known2, TLO, Depth + 1))
1217       return true;
1218     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1219 
1220     // Attempt to avoid multi-use ops if we don't need anything from them.
1221     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1222       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1223           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1224       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1225           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1226       if (DemandedOp0 || DemandedOp1) {
1227         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1228         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1229         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1230         return TLO.CombineTo(Op, NewOp);
1231       }
1232     }
1233 
1234     // If all of the demanded bits are known one on one side, return the other.
1235     // These bits cannot contribute to the result of the 'and'.
1236     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1237       return TLO.CombineTo(Op, Op0);
1238     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1239       return TLO.CombineTo(Op, Op1);
1240     // If all of the demanded bits in the inputs are known zeros, return zero.
1241     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1242       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1243     // If the RHS is a constant, see if we can simplify it.
1244     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1245                                TLO))
1246       return true;
1247     // If the operation can be done in a smaller type, do so.
1248     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1249       return true;
1250 
1251     Known &= Known2;
1252     break;
1253   }
1254   case ISD::OR: {
1255     SDValue Op0 = Op.getOperand(0);
1256     SDValue Op1 = Op.getOperand(1);
1257 
1258     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1259                              Depth + 1))
1260       return true;
1261     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1262     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1263                              Known2, TLO, Depth + 1))
1264       return true;
1265     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1266 
1267     // Attempt to avoid multi-use ops if we don't need anything from them.
1268     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1269       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1270           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1271       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1272           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1273       if (DemandedOp0 || DemandedOp1) {
1274         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1275         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1276         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1277         return TLO.CombineTo(Op, NewOp);
1278       }
1279     }
1280 
1281     // If all of the demanded bits are known zero on one side, return the other.
1282     // These bits cannot contribute to the result of the 'or'.
1283     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1284       return TLO.CombineTo(Op, Op0);
1285     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1286       return TLO.CombineTo(Op, Op1);
1287     // If the RHS is a constant, see if we can simplify it.
1288     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1289       return true;
1290     // If the operation can be done in a smaller type, do so.
1291     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1292       return true;
1293 
1294     Known |= Known2;
1295     break;
1296   }
1297   case ISD::XOR: {
1298     SDValue Op0 = Op.getOperand(0);
1299     SDValue Op1 = Op.getOperand(1);
1300 
1301     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1302                              Depth + 1))
1303       return true;
1304     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1305     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1306                              Depth + 1))
1307       return true;
1308     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1309 
1310     // Attempt to avoid multi-use ops if we don't need anything from them.
1311     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1312       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1313           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1314       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1315           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1316       if (DemandedOp0 || DemandedOp1) {
1317         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1318         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1319         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1320         return TLO.CombineTo(Op, NewOp);
1321       }
1322     }
1323 
1324     // If all of the demanded bits are known zero on one side, return the other.
1325     // These bits cannot contribute to the result of the 'xor'.
1326     if (DemandedBits.isSubsetOf(Known.Zero))
1327       return TLO.CombineTo(Op, Op0);
1328     if (DemandedBits.isSubsetOf(Known2.Zero))
1329       return TLO.CombineTo(Op, Op1);
1330     // If the operation can be done in a smaller type, do so.
1331     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1332       return true;
1333 
1334     // If all of the unknown bits are known to be zero on one side or the other
1335     // turn this into an *inclusive* or.
1336     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1337     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1338       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1339 
1340     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1341     if (C) {
1342       // If one side is a constant, and all of the set bits in the constant are
1343       // also known set on the other side, turn this into an AND, as we know
1344       // the bits will be cleared.
1345       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1346       // NB: it is okay if more bits are known than are requested
1347       if (C->getAPIntValue() == Known2.One) {
1348         SDValue ANDC =
1349             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1350         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1351       }
1352 
1353       // If the RHS is a constant, see if we can change it. Don't alter a -1
1354       // constant because that's a 'not' op, and that is better for combining
1355       // and codegen.
1356       if (!C->isAllOnesValue() &&
1357           DemandedBits.isSubsetOf(C->getAPIntValue())) {
1358         // We're flipping all demanded bits. Flip the undemanded bits too.
1359         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1360         return TLO.CombineTo(Op, New);
1361       }
1362     }
1363 
1364     // If we can't turn this into a 'not', try to shrink the constant.
1365     if (!C || !C->isAllOnesValue())
1366       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1367         return true;
1368 
1369     Known ^= Known2;
1370     break;
1371   }
1372   case ISD::SELECT:
1373     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1374                              Depth + 1))
1375       return true;
1376     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1377                              Depth + 1))
1378       return true;
1379     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1380     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1381 
1382     // If the operands are constants, see if we can simplify them.
1383     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1384       return true;
1385 
1386     // Only known if known in both the LHS and RHS.
1387     Known.One &= Known2.One;
1388     Known.Zero &= Known2.Zero;
1389     break;
1390   case ISD::SELECT_CC:
1391     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1392                              Depth + 1))
1393       return true;
1394     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1395                              Depth + 1))
1396       return true;
1397     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1398     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1399 
1400     // If the operands are constants, see if we can simplify them.
1401     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1402       return true;
1403 
1404     // Only known if known in both the LHS and RHS.
1405     Known.One &= Known2.One;
1406     Known.Zero &= Known2.Zero;
1407     break;
1408   case ISD::SETCC: {
1409     SDValue Op0 = Op.getOperand(0);
1410     SDValue Op1 = Op.getOperand(1);
1411     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1412     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1413     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1414     // -1, we may be able to bypass the setcc.
1415     if (DemandedBits.isSignMask() &&
1416         Op0.getScalarValueSizeInBits() == BitWidth &&
1417         getBooleanContents(Op0.getValueType()) ==
1418             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1419       // If we're testing X < 0, then this compare isn't needed - just use X!
1420       // FIXME: We're limiting to integer types here, but this should also work
1421       // if we don't care about FP signed-zero. The use of SETLT with FP means
1422       // that we don't care about NaNs.
1423       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1424           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1425         return TLO.CombineTo(Op, Op0);
1426 
1427       // TODO: Should we check for other forms of sign-bit comparisons?
1428       // Examples: X <= -1, X >= 0
1429     }
1430     if (getBooleanContents(Op0.getValueType()) ==
1431             TargetLowering::ZeroOrOneBooleanContent &&
1432         BitWidth > 1)
1433       Known.Zero.setBitsFrom(1);
1434     break;
1435   }
1436   case ISD::SHL: {
1437     SDValue Op0 = Op.getOperand(0);
1438     SDValue Op1 = Op.getOperand(1);
1439     EVT ShiftVT = Op1.getValueType();
1440 
1441     if (const APInt *SA =
1442             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1443       unsigned ShAmt = SA->getZExtValue();
1444       if (ShAmt == 0)
1445         return TLO.CombineTo(Op, Op0);
1446 
1447       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1448       // single shift.  We can do this if the bottom bits (which are shifted
1449       // out) are never demanded.
1450       // TODO - support non-uniform vector amounts.
1451       if (Op0.getOpcode() == ISD::SRL) {
1452         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1453           if (const APInt *SA2 =
1454                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1455             unsigned C1 = SA2->getZExtValue();
1456             unsigned Opc = ISD::SHL;
1457             int Diff = ShAmt - C1;
1458             if (Diff < 0) {
1459               Diff = -Diff;
1460               Opc = ISD::SRL;
1461             }
1462             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1463             return TLO.CombineTo(
1464                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1465           }
1466         }
1467       }
1468 
1469       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1470       // are not demanded. This will likely allow the anyext to be folded away.
1471       // TODO - support non-uniform vector amounts.
1472       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1473         SDValue InnerOp = Op0.getOperand(0);
1474         EVT InnerVT = InnerOp.getValueType();
1475         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1476         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1477             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1478           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1479           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1480             ShTy = InnerVT;
1481           SDValue NarrowShl =
1482               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1483                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1484           return TLO.CombineTo(
1485               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1486         }
1487 
1488         // Repeat the SHL optimization above in cases where an extension
1489         // intervenes: (shl (anyext (shr x, c1)), c2) to
1490         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1491         // aren't demanded (as above) and that the shifted upper c1 bits of
1492         // x aren't demanded.
1493         // TODO - support non-uniform vector amounts.
1494         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1495             InnerOp.hasOneUse()) {
1496           if (const APInt *SA2 =
1497                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1498             unsigned InnerShAmt = SA2->getZExtValue();
1499             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1500                 DemandedBits.getActiveBits() <=
1501                     (InnerBits - InnerShAmt + ShAmt) &&
1502                 DemandedBits.countTrailingZeros() >= ShAmt) {
1503               SDValue NewSA =
1504                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1505               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1506                                                InnerOp.getOperand(0));
1507               return TLO.CombineTo(
1508                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1509             }
1510           }
1511         }
1512       }
1513 
1514       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1515       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1516                                Depth + 1))
1517         return true;
1518       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1519       Known.Zero <<= ShAmt;
1520       Known.One <<= ShAmt;
1521       // low bits known zero.
1522       Known.Zero.setLowBits(ShAmt);
1523 
1524       // Try shrinking the operation as long as the shift amount will still be
1525       // in range.
1526       if ((ShAmt < DemandedBits.getActiveBits()) &&
1527           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1528         return true;
1529     }
1530 
1531     // If we are only demanding sign bits then we can use the shift source
1532     // directly.
1533     if (const APInt *MaxSA =
1534             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1535       unsigned ShAmt = MaxSA->getZExtValue();
1536       unsigned NumSignBits =
1537           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1538       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1539       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1540         return TLO.CombineTo(Op, Op0);
1541     }
1542     break;
1543   }
1544   case ISD::SRL: {
1545     SDValue Op0 = Op.getOperand(0);
1546     SDValue Op1 = Op.getOperand(1);
1547     EVT ShiftVT = Op1.getValueType();
1548 
1549     if (const APInt *SA =
1550             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1551       unsigned ShAmt = SA->getZExtValue();
1552       if (ShAmt == 0)
1553         return TLO.CombineTo(Op, Op0);
1554 
1555       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1556       // single shift.  We can do this if the top bits (which are shifted out)
1557       // are never demanded.
1558       // TODO - support non-uniform vector amounts.
1559       if (Op0.getOpcode() == ISD::SHL) {
1560         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1561           if (const APInt *SA2 =
1562                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1563             unsigned C1 = SA2->getZExtValue();
1564             unsigned Opc = ISD::SRL;
1565             int Diff = ShAmt - C1;
1566             if (Diff < 0) {
1567               Diff = -Diff;
1568               Opc = ISD::SHL;
1569             }
1570             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1571             return TLO.CombineTo(
1572                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1573           }
1574         }
1575       }
1576 
1577       APInt InDemandedMask = (DemandedBits << ShAmt);
1578 
1579       // If the shift is exact, then it does demand the low bits (and knows that
1580       // they are zero).
1581       if (Op->getFlags().hasExact())
1582         InDemandedMask.setLowBits(ShAmt);
1583 
1584       // Compute the new bits that are at the top now.
1585       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1586                                Depth + 1))
1587         return true;
1588       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1589       Known.Zero.lshrInPlace(ShAmt);
1590       Known.One.lshrInPlace(ShAmt);
1591       // High bits known zero.
1592       Known.Zero.setHighBits(ShAmt);
1593     }
1594     break;
1595   }
1596   case ISD::SRA: {
1597     SDValue Op0 = Op.getOperand(0);
1598     SDValue Op1 = Op.getOperand(1);
1599     EVT ShiftVT = Op1.getValueType();
1600 
1601     // If we only want bits that already match the signbit then we don't need
1602     // to shift.
1603     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1604     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1605         NumHiDemandedBits)
1606       return TLO.CombineTo(Op, Op0);
1607 
1608     // If this is an arithmetic shift right and only the low-bit is set, we can
1609     // always convert this into a logical shr, even if the shift amount is
1610     // variable.  The low bit of the shift cannot be an input sign bit unless
1611     // the shift amount is >= the size of the datatype, which is undefined.
1612     if (DemandedBits.isOneValue())
1613       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1614 
1615     if (const APInt *SA =
1616             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1617       unsigned ShAmt = SA->getZExtValue();
1618       if (ShAmt == 0)
1619         return TLO.CombineTo(Op, Op0);
1620 
1621       APInt InDemandedMask = (DemandedBits << ShAmt);
1622 
1623       // If the shift is exact, then it does demand the low bits (and knows that
1624       // they are zero).
1625       if (Op->getFlags().hasExact())
1626         InDemandedMask.setLowBits(ShAmt);
1627 
1628       // If any of the demanded bits are produced by the sign extension, we also
1629       // demand the input sign bit.
1630       if (DemandedBits.countLeadingZeros() < ShAmt)
1631         InDemandedMask.setSignBit();
1632 
1633       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1634                                Depth + 1))
1635         return true;
1636       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1637       Known.Zero.lshrInPlace(ShAmt);
1638       Known.One.lshrInPlace(ShAmt);
1639 
1640       // If the input sign bit is known to be zero, or if none of the top bits
1641       // are demanded, turn this into an unsigned shift right.
1642       if (Known.Zero[BitWidth - ShAmt - 1] ||
1643           DemandedBits.countLeadingZeros() >= ShAmt) {
1644         SDNodeFlags Flags;
1645         Flags.setExact(Op->getFlags().hasExact());
1646         return TLO.CombineTo(
1647             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1648       }
1649 
1650       int Log2 = DemandedBits.exactLogBase2();
1651       if (Log2 >= 0) {
1652         // The bit must come from the sign.
1653         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1654         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1655       }
1656 
1657       if (Known.One[BitWidth - ShAmt - 1])
1658         // New bits are known one.
1659         Known.One.setHighBits(ShAmt);
1660 
1661       // Attempt to avoid multi-use ops if we don't need anything from them.
1662       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1663         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1664             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1665         if (DemandedOp0) {
1666           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1667           return TLO.CombineTo(Op, NewOp);
1668         }
1669       }
1670     }
1671     break;
1672   }
1673   case ISD::FSHL:
1674   case ISD::FSHR: {
1675     SDValue Op0 = Op.getOperand(0);
1676     SDValue Op1 = Op.getOperand(1);
1677     SDValue Op2 = Op.getOperand(2);
1678     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1679 
1680     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1681       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1682 
1683       // For fshl, 0-shift returns the 1st arg.
1684       // For fshr, 0-shift returns the 2nd arg.
1685       if (Amt == 0) {
1686         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1687                                  Known, TLO, Depth + 1))
1688           return true;
1689         break;
1690       }
1691 
1692       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1693       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1694       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1695       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1696       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1697                                Depth + 1))
1698         return true;
1699       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1700                                Depth + 1))
1701         return true;
1702 
1703       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1704       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1705       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1706       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1707       Known.One |= Known2.One;
1708       Known.Zero |= Known2.Zero;
1709     }
1710 
1711     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1712     if (isPowerOf2_32(BitWidth)) {
1713       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1714       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1715                                Known2, TLO, Depth + 1))
1716         return true;
1717     }
1718     break;
1719   }
1720   case ISD::ROTL:
1721   case ISD::ROTR: {
1722     SDValue Op0 = Op.getOperand(0);
1723     SDValue Op1 = Op.getOperand(1);
1724 
1725     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1726     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1727       return TLO.CombineTo(Op, Op0);
1728 
1729     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1730     if (isPowerOf2_32(BitWidth)) {
1731       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1732       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1733                                Depth + 1))
1734         return true;
1735     }
1736     break;
1737   }
1738   case ISD::BITREVERSE: {
1739     SDValue Src = Op.getOperand(0);
1740     APInt DemandedSrcBits = DemandedBits.reverseBits();
1741     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1742                              Depth + 1))
1743       return true;
1744     Known.One = Known2.One.reverseBits();
1745     Known.Zero = Known2.Zero.reverseBits();
1746     break;
1747   }
1748   case ISD::BSWAP: {
1749     SDValue Src = Op.getOperand(0);
1750     APInt DemandedSrcBits = DemandedBits.byteSwap();
1751     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1752                              Depth + 1))
1753       return true;
1754     Known.One = Known2.One.byteSwap();
1755     Known.Zero = Known2.Zero.byteSwap();
1756     break;
1757   }
1758   case ISD::CTPOP: {
1759     // If only 1 bit is demanded, replace with PARITY as long as we're before
1760     // op legalization.
1761     // FIXME: Limit to scalars for now.
1762     if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector())
1763       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1764                                                Op.getOperand(0)));
1765 
1766     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1767     break;
1768   }
1769   case ISD::SIGN_EXTEND_INREG: {
1770     SDValue Op0 = Op.getOperand(0);
1771     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1772     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1773 
1774     // If we only care about the highest bit, don't bother shifting right.
1775     if (DemandedBits.isSignMask()) {
1776       unsigned NumSignBits =
1777           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1778       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1779       // However if the input is already sign extended we expect the sign
1780       // extension to be dropped altogether later and do not simplify.
1781       if (!AlreadySignExtended) {
1782         // Compute the correct shift amount type, which must be getShiftAmountTy
1783         // for scalar types after legalization.
1784         EVT ShiftAmtTy = VT;
1785         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1786           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1787 
1788         SDValue ShiftAmt =
1789             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1790         return TLO.CombineTo(Op,
1791                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1792       }
1793     }
1794 
1795     // If none of the extended bits are demanded, eliminate the sextinreg.
1796     if (DemandedBits.getActiveBits() <= ExVTBits)
1797       return TLO.CombineTo(Op, Op0);
1798 
1799     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1800 
1801     // Since the sign extended bits are demanded, we know that the sign
1802     // bit is demanded.
1803     InputDemandedBits.setBit(ExVTBits - 1);
1804 
1805     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1806       return true;
1807     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1808 
1809     // If the sign bit of the input is known set or clear, then we know the
1810     // top bits of the result.
1811 
1812     // If the input sign bit is known zero, convert this into a zero extension.
1813     if (Known.Zero[ExVTBits - 1])
1814       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1815 
1816     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1817     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1818       Known.One.setBitsFrom(ExVTBits);
1819       Known.Zero &= Mask;
1820     } else { // Input sign bit unknown
1821       Known.Zero &= Mask;
1822       Known.One &= Mask;
1823     }
1824     break;
1825   }
1826   case ISD::BUILD_PAIR: {
1827     EVT HalfVT = Op.getOperand(0).getValueType();
1828     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1829 
1830     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1831     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1832 
1833     KnownBits KnownLo, KnownHi;
1834 
1835     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1836       return true;
1837 
1838     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1839       return true;
1840 
1841     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1842                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1843 
1844     Known.One = KnownLo.One.zext(BitWidth) |
1845                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1846     break;
1847   }
1848   case ISD::ZERO_EXTEND:
1849   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1850     SDValue Src = Op.getOperand(0);
1851     EVT SrcVT = Src.getValueType();
1852     unsigned InBits = SrcVT.getScalarSizeInBits();
1853     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1854     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1855 
1856     // If none of the top bits are demanded, convert this into an any_extend.
1857     if (DemandedBits.getActiveBits() <= InBits) {
1858       // If we only need the non-extended bits of the bottom element
1859       // then we can just bitcast to the result.
1860       if (IsVecInReg && DemandedElts == 1 &&
1861           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1862           TLO.DAG.getDataLayout().isLittleEndian())
1863         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1864 
1865       unsigned Opc =
1866           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1867       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1868         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1869     }
1870 
1871     APInt InDemandedBits = DemandedBits.trunc(InBits);
1872     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1873     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1874                              Depth + 1))
1875       return true;
1876     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1877     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1878     Known = Known.zext(BitWidth);
1879 
1880     // Attempt to avoid multi-use ops if we don't need anything from them.
1881     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1882             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1883       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1884     break;
1885   }
1886   case ISD::SIGN_EXTEND:
1887   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1888     SDValue Src = Op.getOperand(0);
1889     EVT SrcVT = Src.getValueType();
1890     unsigned InBits = SrcVT.getScalarSizeInBits();
1891     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1892     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1893 
1894     // If none of the top bits are demanded, convert this into an any_extend.
1895     if (DemandedBits.getActiveBits() <= InBits) {
1896       // If we only need the non-extended bits of the bottom element
1897       // then we can just bitcast to the result.
1898       if (IsVecInReg && DemandedElts == 1 &&
1899           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1900           TLO.DAG.getDataLayout().isLittleEndian())
1901         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1902 
1903       unsigned Opc =
1904           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1905       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1906         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1907     }
1908 
1909     APInt InDemandedBits = DemandedBits.trunc(InBits);
1910     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1911 
1912     // Since some of the sign extended bits are demanded, we know that the sign
1913     // bit is demanded.
1914     InDemandedBits.setBit(InBits - 1);
1915 
1916     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1917                              Depth + 1))
1918       return true;
1919     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1920     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1921 
1922     // If the sign bit is known one, the top bits match.
1923     Known = Known.sext(BitWidth);
1924 
1925     // If the sign bit is known zero, convert this to a zero extend.
1926     if (Known.isNonNegative()) {
1927       unsigned Opc =
1928           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1929       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1930         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1931     }
1932 
1933     // Attempt to avoid multi-use ops if we don't need anything from them.
1934     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1935             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1936       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1937     break;
1938   }
1939   case ISD::ANY_EXTEND:
1940   case ISD::ANY_EXTEND_VECTOR_INREG: {
1941     SDValue Src = Op.getOperand(0);
1942     EVT SrcVT = Src.getValueType();
1943     unsigned InBits = SrcVT.getScalarSizeInBits();
1944     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1945     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1946 
1947     // If we only need the bottom element then we can just bitcast.
1948     // TODO: Handle ANY_EXTEND?
1949     if (IsVecInReg && DemandedElts == 1 &&
1950         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1951         TLO.DAG.getDataLayout().isLittleEndian())
1952       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1953 
1954     APInt InDemandedBits = DemandedBits.trunc(InBits);
1955     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1956     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1957                              Depth + 1))
1958       return true;
1959     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1960     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1961     Known = Known.anyext(BitWidth);
1962 
1963     // Attempt to avoid multi-use ops if we don't need anything from them.
1964     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1965             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1966       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1967     break;
1968   }
1969   case ISD::TRUNCATE: {
1970     SDValue Src = Op.getOperand(0);
1971 
1972     // Simplify the input, using demanded bit information, and compute the known
1973     // zero/one bits live out.
1974     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1975     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1976     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1977       return true;
1978     Known = Known.trunc(BitWidth);
1979 
1980     // Attempt to avoid multi-use ops if we don't need anything from them.
1981     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1982             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1983       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1984 
1985     // If the input is only used by this truncate, see if we can shrink it based
1986     // on the known demanded bits.
1987     if (Src.getNode()->hasOneUse()) {
1988       switch (Src.getOpcode()) {
1989       default:
1990         break;
1991       case ISD::SRL:
1992         // Shrink SRL by a constant if none of the high bits shifted in are
1993         // demanded.
1994         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1995           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1996           // undesirable.
1997           break;
1998 
1999         SDValue ShAmt = Src.getOperand(1);
2000         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
2001         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
2002           break;
2003         uint64_t ShVal = ShAmtC->getZExtValue();
2004 
2005         APInt HighBits =
2006             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2007         HighBits.lshrInPlace(ShVal);
2008         HighBits = HighBits.trunc(BitWidth);
2009 
2010         if (!(HighBits & DemandedBits)) {
2011           // None of the shifted in bits are needed.  Add a truncate of the
2012           // shift input, then shift it.
2013           if (TLO.LegalTypes())
2014             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
2015           SDValue NewTrunc =
2016               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2017           return TLO.CombineTo(
2018               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
2019         }
2020         break;
2021       }
2022     }
2023 
2024     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2025     break;
2026   }
2027   case ISD::AssertZext: {
2028     // AssertZext demands all of the high bits, plus any of the low bits
2029     // demanded by its users.
2030     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2031     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2032     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2033                              TLO, Depth + 1))
2034       return true;
2035     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2036 
2037     Known.Zero |= ~InMask;
2038     break;
2039   }
2040   case ISD::EXTRACT_VECTOR_ELT: {
2041     SDValue Src = Op.getOperand(0);
2042     SDValue Idx = Op.getOperand(1);
2043     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2044     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2045 
2046     if (SrcEltCnt.isScalable())
2047       return false;
2048 
2049     // Demand the bits from every vector element without a constant index.
2050     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2051     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
2052     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2053       if (CIdx->getAPIntValue().ult(NumSrcElts))
2054         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2055 
2056     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2057     // anything about the extended bits.
2058     APInt DemandedSrcBits = DemandedBits;
2059     if (BitWidth > EltBitWidth)
2060       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2061 
2062     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2063                              Depth + 1))
2064       return true;
2065 
2066     // Attempt to avoid multi-use ops if we don't need anything from them.
2067     if (!DemandedSrcBits.isAllOnesValue() ||
2068         !DemandedSrcElts.isAllOnesValue()) {
2069       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2070               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2071         SDValue NewOp =
2072             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2073         return TLO.CombineTo(Op, NewOp);
2074       }
2075     }
2076 
2077     Known = Known2;
2078     if (BitWidth > EltBitWidth)
2079       Known = Known.anyext(BitWidth);
2080     break;
2081   }
2082   case ISD::BITCAST: {
2083     SDValue Src = Op.getOperand(0);
2084     EVT SrcVT = Src.getValueType();
2085     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2086 
2087     // If this is an FP->Int bitcast and if the sign bit is the only
2088     // thing demanded, turn this into a FGETSIGN.
2089     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2090         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2091         SrcVT.isFloatingPoint()) {
2092       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2093       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2094       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2095           SrcVT != MVT::f128) {
2096         // Cannot eliminate/lower SHL for f128 yet.
2097         EVT Ty = OpVTLegal ? VT : MVT::i32;
2098         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2099         // place.  We expect the SHL to be eliminated by other optimizations.
2100         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2101         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2102         if (!OpVTLegal && OpVTSizeInBits > 32)
2103           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2104         unsigned ShVal = Op.getValueSizeInBits() - 1;
2105         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2106         return TLO.CombineTo(Op,
2107                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2108       }
2109     }
2110 
2111     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2112     // Demand the elt/bit if any of the original elts/bits are demanded.
2113     // TODO - bigendian once we have test coverage.
2114     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2115         TLO.DAG.getDataLayout().isLittleEndian()) {
2116       unsigned Scale = BitWidth / NumSrcEltBits;
2117       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2118       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2119       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2120       for (unsigned i = 0; i != Scale; ++i) {
2121         unsigned Offset = i * NumSrcEltBits;
2122         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2123         if (!Sub.isNullValue()) {
2124           DemandedSrcBits |= Sub;
2125           for (unsigned j = 0; j != NumElts; ++j)
2126             if (DemandedElts[j])
2127               DemandedSrcElts.setBit((j * Scale) + i);
2128         }
2129       }
2130 
2131       APInt KnownSrcUndef, KnownSrcZero;
2132       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2133                                      KnownSrcZero, TLO, Depth + 1))
2134         return true;
2135 
2136       KnownBits KnownSrcBits;
2137       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2138                                KnownSrcBits, TLO, Depth + 1))
2139         return true;
2140     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2141                TLO.DAG.getDataLayout().isLittleEndian()) {
2142       unsigned Scale = NumSrcEltBits / BitWidth;
2143       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2144       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2145       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2146       for (unsigned i = 0; i != NumElts; ++i)
2147         if (DemandedElts[i]) {
2148           unsigned Offset = (i % Scale) * BitWidth;
2149           DemandedSrcBits.insertBits(DemandedBits, Offset);
2150           DemandedSrcElts.setBit(i / Scale);
2151         }
2152 
2153       if (SrcVT.isVector()) {
2154         APInt KnownSrcUndef, KnownSrcZero;
2155         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2156                                        KnownSrcZero, TLO, Depth + 1))
2157           return true;
2158       }
2159 
2160       KnownBits KnownSrcBits;
2161       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2162                                KnownSrcBits, TLO, Depth + 1))
2163         return true;
2164     }
2165 
2166     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2167     // recursive call where Known may be useful to the caller.
2168     if (Depth > 0) {
2169       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2170       return false;
2171     }
2172     break;
2173   }
2174   case ISD::ADD:
2175   case ISD::MUL:
2176   case ISD::SUB: {
2177     // Add, Sub, and Mul don't demand any bits in positions beyond that
2178     // of the highest bit demanded of them.
2179     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2180     SDNodeFlags Flags = Op.getNode()->getFlags();
2181     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2182     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2183     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2184                              Depth + 1) ||
2185         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2186                              Depth + 1) ||
2187         // See if the operation should be performed at a smaller bit width.
2188         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2189       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2190         // Disable the nsw and nuw flags. We can no longer guarantee that we
2191         // won't wrap after simplification.
2192         Flags.setNoSignedWrap(false);
2193         Flags.setNoUnsignedWrap(false);
2194         SDValue NewOp =
2195             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2196         return TLO.CombineTo(Op, NewOp);
2197       }
2198       return true;
2199     }
2200 
2201     // Attempt to avoid multi-use ops if we don't need anything from them.
2202     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2203       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2204           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2205       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2206           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2207       if (DemandedOp0 || DemandedOp1) {
2208         Flags.setNoSignedWrap(false);
2209         Flags.setNoUnsignedWrap(false);
2210         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2211         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2212         SDValue NewOp =
2213             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2214         return TLO.CombineTo(Op, NewOp);
2215       }
2216     }
2217 
2218     // If we have a constant operand, we may be able to turn it into -1 if we
2219     // do not demand the high bits. This can make the constant smaller to
2220     // encode, allow more general folding, or match specialized instruction
2221     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2222     // is probably not useful (and could be detrimental).
2223     ConstantSDNode *C = isConstOrConstSplat(Op1);
2224     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2225     if (C && !C->isAllOnesValue() && !C->isOne() &&
2226         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2227       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2228       // Disable the nsw and nuw flags. We can no longer guarantee that we
2229       // won't wrap after simplification.
2230       Flags.setNoSignedWrap(false);
2231       Flags.setNoUnsignedWrap(false);
2232       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2233       return TLO.CombineTo(Op, NewOp);
2234     }
2235 
2236     LLVM_FALLTHROUGH;
2237   }
2238   default:
2239     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2240       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2241                                             Known, TLO, Depth))
2242         return true;
2243       break;
2244     }
2245 
2246     // Just use computeKnownBits to compute output bits.
2247     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2248     break;
2249   }
2250 
2251   // If we know the value of all of the demanded bits, return this as a
2252   // constant.
2253   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2254     // Avoid folding to a constant if any OpaqueConstant is involved.
2255     const SDNode *N = Op.getNode();
2256     for (SDNodeIterator I = SDNodeIterator::begin(N),
2257                         E = SDNodeIterator::end(N);
2258          I != E; ++I) {
2259       SDNode *Op = *I;
2260       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2261         if (C->isOpaque())
2262           return false;
2263     }
2264     if (VT.isInteger())
2265       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2266     if (VT.isFloatingPoint())
2267       return TLO.CombineTo(
2268           Op,
2269           TLO.DAG.getConstantFP(
2270               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2271   }
2272 
2273   return false;
2274 }
2275 
SimplifyDemandedVectorElts(SDValue Op,const APInt & DemandedElts,APInt & KnownUndef,APInt & KnownZero,DAGCombinerInfo & DCI) const2276 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2277                                                 const APInt &DemandedElts,
2278                                                 APInt &KnownUndef,
2279                                                 APInt &KnownZero,
2280                                                 DAGCombinerInfo &DCI) const {
2281   SelectionDAG &DAG = DCI.DAG;
2282   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2283                         !DCI.isBeforeLegalizeOps());
2284 
2285   bool Simplified =
2286       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2287   if (Simplified) {
2288     DCI.AddToWorklist(Op.getNode());
2289     DCI.CommitTargetLoweringOpt(TLO);
2290   }
2291 
2292   return Simplified;
2293 }
2294 
2295 /// Given a vector binary operation and known undefined elements for each input
2296 /// operand, compute whether each element of the output is undefined.
getKnownUndefForVectorBinop(SDValue BO,SelectionDAG & DAG,const APInt & UndefOp0,const APInt & UndefOp1)2297 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2298                                          const APInt &UndefOp0,
2299                                          const APInt &UndefOp1) {
2300   EVT VT = BO.getValueType();
2301   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2302          "Vector binop only");
2303 
2304   EVT EltVT = VT.getVectorElementType();
2305   unsigned NumElts = VT.getVectorNumElements();
2306   assert(UndefOp0.getBitWidth() == NumElts &&
2307          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2308 
2309   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2310                                    const APInt &UndefVals) {
2311     if (UndefVals[Index])
2312       return DAG.getUNDEF(EltVT);
2313 
2314     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2315       // Try hard to make sure that the getNode() call is not creating temporary
2316       // nodes. Ignore opaque integers because they do not constant fold.
2317       SDValue Elt = BV->getOperand(Index);
2318       auto *C = dyn_cast<ConstantSDNode>(Elt);
2319       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2320         return Elt;
2321     }
2322 
2323     return SDValue();
2324   };
2325 
2326   APInt KnownUndef = APInt::getNullValue(NumElts);
2327   for (unsigned i = 0; i != NumElts; ++i) {
2328     // If both inputs for this element are either constant or undef and match
2329     // the element type, compute the constant/undef result for this element of
2330     // the vector.
2331     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2332     // not handle FP constants. The code within getNode() should be refactored
2333     // to avoid the danger of creating a bogus temporary node here.
2334     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2335     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2336     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2337       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2338         KnownUndef.setBit(i);
2339   }
2340   return KnownUndef;
2341 }
2342 
SimplifyDemandedVectorElts(SDValue Op,const APInt & OriginalDemandedElts,APInt & KnownUndef,APInt & KnownZero,TargetLoweringOpt & TLO,unsigned Depth,bool AssumeSingleUse) const2343 bool TargetLowering::SimplifyDemandedVectorElts(
2344     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2345     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2346     bool AssumeSingleUse) const {
2347   EVT VT = Op.getValueType();
2348   unsigned Opcode = Op.getOpcode();
2349   APInt DemandedElts = OriginalDemandedElts;
2350   unsigned NumElts = DemandedElts.getBitWidth();
2351   assert(VT.isVector() && "Expected vector op");
2352 
2353   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2354 
2355   // TODO: For now we assume we know nothing about scalable vectors.
2356   if (VT.isScalableVector())
2357     return false;
2358 
2359   assert(VT.getVectorNumElements() == NumElts &&
2360          "Mask size mismatches value type element count!");
2361 
2362   // Undef operand.
2363   if (Op.isUndef()) {
2364     KnownUndef.setAllBits();
2365     return false;
2366   }
2367 
2368   // If Op has other users, assume that all elements are needed.
2369   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2370     DemandedElts.setAllBits();
2371 
2372   // Not demanding any elements from Op.
2373   if (DemandedElts == 0) {
2374     KnownUndef.setAllBits();
2375     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2376   }
2377 
2378   // Limit search depth.
2379   if (Depth >= SelectionDAG::MaxRecursionDepth)
2380     return false;
2381 
2382   SDLoc DL(Op);
2383   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2384 
2385   // Helper for demanding the specified elements and all the bits of both binary
2386   // operands.
2387   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2388     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2389                                                            TLO.DAG, Depth + 1);
2390     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2391                                                            TLO.DAG, Depth + 1);
2392     if (NewOp0 || NewOp1) {
2393       SDValue NewOp = TLO.DAG.getNode(
2394           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2395       return TLO.CombineTo(Op, NewOp);
2396     }
2397     return false;
2398   };
2399 
2400   switch (Opcode) {
2401   case ISD::SCALAR_TO_VECTOR: {
2402     if (!DemandedElts[0]) {
2403       KnownUndef.setAllBits();
2404       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2405     }
2406     KnownUndef.setHighBits(NumElts - 1);
2407     break;
2408   }
2409   case ISD::BITCAST: {
2410     SDValue Src = Op.getOperand(0);
2411     EVT SrcVT = Src.getValueType();
2412 
2413     // We only handle vectors here.
2414     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2415     if (!SrcVT.isVector())
2416       break;
2417 
2418     // Fast handling of 'identity' bitcasts.
2419     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2420     if (NumSrcElts == NumElts)
2421       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2422                                         KnownZero, TLO, Depth + 1);
2423 
2424     APInt SrcZero, SrcUndef;
2425     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2426 
2427     // Bitcast from 'large element' src vector to 'small element' vector, we
2428     // must demand a source element if any DemandedElt maps to it.
2429     if ((NumElts % NumSrcElts) == 0) {
2430       unsigned Scale = NumElts / NumSrcElts;
2431       for (unsigned i = 0; i != NumElts; ++i)
2432         if (DemandedElts[i])
2433           SrcDemandedElts.setBit(i / Scale);
2434 
2435       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2436                                      TLO, Depth + 1))
2437         return true;
2438 
2439       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2440       // of the large element.
2441       // TODO - bigendian once we have test coverage.
2442       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2443         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2444         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2445         for (unsigned i = 0; i != NumElts; ++i)
2446           if (DemandedElts[i]) {
2447             unsigned Ofs = (i % Scale) * EltSizeInBits;
2448             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2449           }
2450 
2451         KnownBits Known;
2452         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2453                                  TLO, Depth + 1))
2454           return true;
2455       }
2456 
2457       // If the src element is zero/undef then all the output elements will be -
2458       // only demanded elements are guaranteed to be correct.
2459       for (unsigned i = 0; i != NumSrcElts; ++i) {
2460         if (SrcDemandedElts[i]) {
2461           if (SrcZero[i])
2462             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2463           if (SrcUndef[i])
2464             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2465         }
2466       }
2467     }
2468 
2469     // Bitcast from 'small element' src vector to 'large element' vector, we
2470     // demand all smaller source elements covered by the larger demanded element
2471     // of this vector.
2472     if ((NumSrcElts % NumElts) == 0) {
2473       unsigned Scale = NumSrcElts / NumElts;
2474       for (unsigned i = 0; i != NumElts; ++i)
2475         if (DemandedElts[i])
2476           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2477 
2478       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2479                                      TLO, Depth + 1))
2480         return true;
2481 
2482       // If all the src elements covering an output element are zero/undef, then
2483       // the output element will be as well, assuming it was demanded.
2484       for (unsigned i = 0; i != NumElts; ++i) {
2485         if (DemandedElts[i]) {
2486           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2487             KnownZero.setBit(i);
2488           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2489             KnownUndef.setBit(i);
2490         }
2491       }
2492     }
2493     break;
2494   }
2495   case ISD::BUILD_VECTOR: {
2496     // Check all elements and simplify any unused elements with UNDEF.
2497     if (!DemandedElts.isAllOnesValue()) {
2498       // Don't simplify BROADCASTS.
2499       if (llvm::any_of(Op->op_values(),
2500                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2501         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2502         bool Updated = false;
2503         for (unsigned i = 0; i != NumElts; ++i) {
2504           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2505             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2506             KnownUndef.setBit(i);
2507             Updated = true;
2508           }
2509         }
2510         if (Updated)
2511           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2512       }
2513     }
2514     for (unsigned i = 0; i != NumElts; ++i) {
2515       SDValue SrcOp = Op.getOperand(i);
2516       if (SrcOp.isUndef()) {
2517         KnownUndef.setBit(i);
2518       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2519                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2520         KnownZero.setBit(i);
2521       }
2522     }
2523     break;
2524   }
2525   case ISD::CONCAT_VECTORS: {
2526     EVT SubVT = Op.getOperand(0).getValueType();
2527     unsigned NumSubVecs = Op.getNumOperands();
2528     unsigned NumSubElts = SubVT.getVectorNumElements();
2529     for (unsigned i = 0; i != NumSubVecs; ++i) {
2530       SDValue SubOp = Op.getOperand(i);
2531       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2532       APInt SubUndef, SubZero;
2533       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2534                                      Depth + 1))
2535         return true;
2536       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2537       KnownZero.insertBits(SubZero, i * NumSubElts);
2538     }
2539     break;
2540   }
2541   case ISD::INSERT_SUBVECTOR: {
2542     // Demand any elements from the subvector and the remainder from the src its
2543     // inserted into.
2544     SDValue Src = Op.getOperand(0);
2545     SDValue Sub = Op.getOperand(1);
2546     uint64_t Idx = Op.getConstantOperandVal(2);
2547     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2548     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2549     APInt DemandedSrcElts = DemandedElts;
2550     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2551 
2552     APInt SubUndef, SubZero;
2553     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2554                                    Depth + 1))
2555       return true;
2556 
2557     // If none of the src operand elements are demanded, replace it with undef.
2558     if (!DemandedSrcElts && !Src.isUndef())
2559       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2560                                                TLO.DAG.getUNDEF(VT), Sub,
2561                                                Op.getOperand(2)));
2562 
2563     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2564                                    TLO, Depth + 1))
2565       return true;
2566     KnownUndef.insertBits(SubUndef, Idx);
2567     KnownZero.insertBits(SubZero, Idx);
2568 
2569     // Attempt to avoid multi-use ops if we don't need anything from them.
2570     if (!DemandedSrcElts.isAllOnesValue() ||
2571         !DemandedSubElts.isAllOnesValue()) {
2572       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2573           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2574       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2575           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2576       if (NewSrc || NewSub) {
2577         NewSrc = NewSrc ? NewSrc : Src;
2578         NewSub = NewSub ? NewSub : Sub;
2579         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2580                                         NewSub, Op.getOperand(2));
2581         return TLO.CombineTo(Op, NewOp);
2582       }
2583     }
2584     break;
2585   }
2586   case ISD::EXTRACT_SUBVECTOR: {
2587     // Offset the demanded elts by the subvector index.
2588     SDValue Src = Op.getOperand(0);
2589     if (Src.getValueType().isScalableVector())
2590       break;
2591     uint64_t Idx = Op.getConstantOperandVal(1);
2592     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2593     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2594 
2595     APInt SrcUndef, SrcZero;
2596     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2597                                    Depth + 1))
2598       return true;
2599     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2600     KnownZero = SrcZero.extractBits(NumElts, Idx);
2601 
2602     // Attempt to avoid multi-use ops if we don't need anything from them.
2603     if (!DemandedElts.isAllOnesValue()) {
2604       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2605           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2606       if (NewSrc) {
2607         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2608                                         Op.getOperand(1));
2609         return TLO.CombineTo(Op, NewOp);
2610       }
2611     }
2612     break;
2613   }
2614   case ISD::INSERT_VECTOR_ELT: {
2615     SDValue Vec = Op.getOperand(0);
2616     SDValue Scl = Op.getOperand(1);
2617     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2618 
2619     // For a legal, constant insertion index, if we don't need this insertion
2620     // then strip it, else remove it from the demanded elts.
2621     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2622       unsigned Idx = CIdx->getZExtValue();
2623       if (!DemandedElts[Idx])
2624         return TLO.CombineTo(Op, Vec);
2625 
2626       APInt DemandedVecElts(DemandedElts);
2627       DemandedVecElts.clearBit(Idx);
2628       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2629                                      KnownZero, TLO, Depth + 1))
2630         return true;
2631 
2632       KnownUndef.setBitVal(Idx, Scl.isUndef());
2633 
2634       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2635       break;
2636     }
2637 
2638     APInt VecUndef, VecZero;
2639     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2640                                    Depth + 1))
2641       return true;
2642     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2643     break;
2644   }
2645   case ISD::VSELECT: {
2646     // Try to transform the select condition based on the current demanded
2647     // elements.
2648     // TODO: If a condition element is undef, we can choose from one arm of the
2649     //       select (and if one arm is undef, then we can propagate that to the
2650     //       result).
2651     // TODO - add support for constant vselect masks (see IR version of this).
2652     APInt UnusedUndef, UnusedZero;
2653     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2654                                    UnusedZero, TLO, Depth + 1))
2655       return true;
2656 
2657     // See if we can simplify either vselect operand.
2658     APInt DemandedLHS(DemandedElts);
2659     APInt DemandedRHS(DemandedElts);
2660     APInt UndefLHS, ZeroLHS;
2661     APInt UndefRHS, ZeroRHS;
2662     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2663                                    ZeroLHS, TLO, Depth + 1))
2664       return true;
2665     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2666                                    ZeroRHS, TLO, Depth + 1))
2667       return true;
2668 
2669     KnownUndef = UndefLHS & UndefRHS;
2670     KnownZero = ZeroLHS & ZeroRHS;
2671     break;
2672   }
2673   case ISD::VECTOR_SHUFFLE: {
2674     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2675 
2676     // Collect demanded elements from shuffle operands..
2677     APInt DemandedLHS(NumElts, 0);
2678     APInt DemandedRHS(NumElts, 0);
2679     for (unsigned i = 0; i != NumElts; ++i) {
2680       int M = ShuffleMask[i];
2681       if (M < 0 || !DemandedElts[i])
2682         continue;
2683       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2684       if (M < (int)NumElts)
2685         DemandedLHS.setBit(M);
2686       else
2687         DemandedRHS.setBit(M - NumElts);
2688     }
2689 
2690     // See if we can simplify either shuffle operand.
2691     APInt UndefLHS, ZeroLHS;
2692     APInt UndefRHS, ZeroRHS;
2693     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2694                                    ZeroLHS, TLO, Depth + 1))
2695       return true;
2696     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2697                                    ZeroRHS, TLO, Depth + 1))
2698       return true;
2699 
2700     // Simplify mask using undef elements from LHS/RHS.
2701     bool Updated = false;
2702     bool IdentityLHS = true, IdentityRHS = true;
2703     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2704     for (unsigned i = 0; i != NumElts; ++i) {
2705       int &M = NewMask[i];
2706       if (M < 0)
2707         continue;
2708       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2709           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2710         Updated = true;
2711         M = -1;
2712       }
2713       IdentityLHS &= (M < 0) || (M == (int)i);
2714       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2715     }
2716 
2717     // Update legal shuffle masks based on demanded elements if it won't reduce
2718     // to Identity which can cause premature removal of the shuffle mask.
2719     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2720       SDValue LegalShuffle =
2721           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2722                                   NewMask, TLO.DAG);
2723       if (LegalShuffle)
2724         return TLO.CombineTo(Op, LegalShuffle);
2725     }
2726 
2727     // Propagate undef/zero elements from LHS/RHS.
2728     for (unsigned i = 0; i != NumElts; ++i) {
2729       int M = ShuffleMask[i];
2730       if (M < 0) {
2731         KnownUndef.setBit(i);
2732       } else if (M < (int)NumElts) {
2733         if (UndefLHS[M])
2734           KnownUndef.setBit(i);
2735         if (ZeroLHS[M])
2736           KnownZero.setBit(i);
2737       } else {
2738         if (UndefRHS[M - NumElts])
2739           KnownUndef.setBit(i);
2740         if (ZeroRHS[M - NumElts])
2741           KnownZero.setBit(i);
2742       }
2743     }
2744     break;
2745   }
2746   case ISD::ANY_EXTEND_VECTOR_INREG:
2747   case ISD::SIGN_EXTEND_VECTOR_INREG:
2748   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2749     APInt SrcUndef, SrcZero;
2750     SDValue Src = Op.getOperand(0);
2751     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2752     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2753     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2754                                    Depth + 1))
2755       return true;
2756     KnownZero = SrcZero.zextOrTrunc(NumElts);
2757     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2758 
2759     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2760         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2761         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2762       // aext - if we just need the bottom element then we can bitcast.
2763       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2764     }
2765 
2766     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2767       // zext(undef) upper bits are guaranteed to be zero.
2768       if (DemandedElts.isSubsetOf(KnownUndef))
2769         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2770       KnownUndef.clearAllBits();
2771     }
2772     break;
2773   }
2774 
2775   // TODO: There are more binop opcodes that could be handled here - MIN,
2776   // MAX, saturated math, etc.
2777   case ISD::OR:
2778   case ISD::XOR:
2779   case ISD::ADD:
2780   case ISD::SUB:
2781   case ISD::FADD:
2782   case ISD::FSUB:
2783   case ISD::FMUL:
2784   case ISD::FDIV:
2785   case ISD::FREM: {
2786     SDValue Op0 = Op.getOperand(0);
2787     SDValue Op1 = Op.getOperand(1);
2788 
2789     APInt UndefRHS, ZeroRHS;
2790     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2791                                    Depth + 1))
2792       return true;
2793     APInt UndefLHS, ZeroLHS;
2794     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2795                                    Depth + 1))
2796       return true;
2797 
2798     KnownZero = ZeroLHS & ZeroRHS;
2799     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2800 
2801     // Attempt to avoid multi-use ops if we don't need anything from them.
2802     // TODO - use KnownUndef to relax the demandedelts?
2803     if (!DemandedElts.isAllOnesValue())
2804       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2805         return true;
2806     break;
2807   }
2808   case ISD::SHL:
2809   case ISD::SRL:
2810   case ISD::SRA:
2811   case ISD::ROTL:
2812   case ISD::ROTR: {
2813     SDValue Op0 = Op.getOperand(0);
2814     SDValue Op1 = Op.getOperand(1);
2815 
2816     APInt UndefRHS, ZeroRHS;
2817     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2818                                    Depth + 1))
2819       return true;
2820     APInt UndefLHS, ZeroLHS;
2821     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2822                                    Depth + 1))
2823       return true;
2824 
2825     KnownZero = ZeroLHS;
2826     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2827 
2828     // Attempt to avoid multi-use ops if we don't need anything from them.
2829     // TODO - use KnownUndef to relax the demandedelts?
2830     if (!DemandedElts.isAllOnesValue())
2831       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2832         return true;
2833     break;
2834   }
2835   case ISD::MUL:
2836   case ISD::AND: {
2837     SDValue Op0 = Op.getOperand(0);
2838     SDValue Op1 = Op.getOperand(1);
2839 
2840     APInt SrcUndef, SrcZero;
2841     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2842                                    Depth + 1))
2843       return true;
2844     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2845                                    TLO, Depth + 1))
2846       return true;
2847 
2848     // If either side has a zero element, then the result element is zero, even
2849     // if the other is an UNDEF.
2850     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2851     // and then handle 'and' nodes with the rest of the binop opcodes.
2852     KnownZero |= SrcZero;
2853     KnownUndef &= SrcUndef;
2854     KnownUndef &= ~KnownZero;
2855 
2856     // Attempt to avoid multi-use ops if we don't need anything from them.
2857     // TODO - use KnownUndef to relax the demandedelts?
2858     if (!DemandedElts.isAllOnesValue())
2859       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2860         return true;
2861     break;
2862   }
2863   case ISD::TRUNCATE:
2864   case ISD::SIGN_EXTEND:
2865   case ISD::ZERO_EXTEND:
2866     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2867                                    KnownZero, TLO, Depth + 1))
2868       return true;
2869 
2870     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2871       // zext(undef) upper bits are guaranteed to be zero.
2872       if (DemandedElts.isSubsetOf(KnownUndef))
2873         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2874       KnownUndef.clearAllBits();
2875     }
2876     break;
2877   default: {
2878     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2879       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2880                                                   KnownZero, TLO, Depth))
2881         return true;
2882     } else {
2883       KnownBits Known;
2884       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2885       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2886                                TLO, Depth, AssumeSingleUse))
2887         return true;
2888     }
2889     break;
2890   }
2891   }
2892   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2893 
2894   // Constant fold all undef cases.
2895   // TODO: Handle zero cases as well.
2896   if (DemandedElts.isSubsetOf(KnownUndef))
2897     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2898 
2899   return false;
2900 }
2901 
2902 /// Determine which of the bits specified in Mask are known to be either zero or
2903 /// one and return them in the Known.
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const2904 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2905                                                    KnownBits &Known,
2906                                                    const APInt &DemandedElts,
2907                                                    const SelectionDAG &DAG,
2908                                                    unsigned Depth) const {
2909   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2910           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2911           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2912           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2913          "Should use MaskedValueIsZero if you don't know whether Op"
2914          " is a target node!");
2915   Known.resetAll();
2916 }
2917 
computeKnownBitsForTargetInstr(GISelKnownBits & Analysis,Register R,KnownBits & Known,const APInt & DemandedElts,const MachineRegisterInfo & MRI,unsigned Depth) const2918 void TargetLowering::computeKnownBitsForTargetInstr(
2919     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2920     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2921     unsigned Depth) const {
2922   Known.resetAll();
2923 }
2924 
computeKnownBitsForFrameIndex(const int FrameIdx,KnownBits & Known,const MachineFunction & MF) const2925 void TargetLowering::computeKnownBitsForFrameIndex(
2926   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2927   // The low bits are known zero if the pointer is aligned.
2928   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2929 }
2930 
computeKnownAlignForTargetInstr(GISelKnownBits & Analysis,Register R,const MachineRegisterInfo & MRI,unsigned Depth) const2931 Align TargetLowering::computeKnownAlignForTargetInstr(
2932   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2933   unsigned Depth) const {
2934   return Align(1);
2935 }
2936 
2937 /// This method can be implemented by targets that want to expose additional
2938 /// information about sign bits to the DAG Combiner.
ComputeNumSignBitsForTargetNode(SDValue Op,const APInt &,const SelectionDAG &,unsigned Depth) const2939 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2940                                                          const APInt &,
2941                                                          const SelectionDAG &,
2942                                                          unsigned Depth) const {
2943   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2944           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2945           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2946           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2947          "Should use ComputeNumSignBits if you don't know whether Op"
2948          " is a target node!");
2949   return 1;
2950 }
2951 
computeNumSignBitsForTargetInstr(GISelKnownBits & Analysis,Register R,const APInt & DemandedElts,const MachineRegisterInfo & MRI,unsigned Depth) const2952 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2953   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2954   const MachineRegisterInfo &MRI, unsigned Depth) const {
2955   return 1;
2956 }
2957 
SimplifyDemandedVectorEltsForTargetNode(SDValue Op,const APInt & DemandedElts,APInt & KnownUndef,APInt & KnownZero,TargetLoweringOpt & TLO,unsigned Depth) const2958 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2959     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2960     TargetLoweringOpt &TLO, unsigned Depth) const {
2961   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2962           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2963           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2964           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2965          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2966          " is a target node!");
2967   return false;
2968 }
2969 
SimplifyDemandedBitsForTargetNode(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,KnownBits & Known,TargetLoweringOpt & TLO,unsigned Depth) const2970 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2971     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2972     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2973   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2974           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2975           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2976           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2977          "Should use SimplifyDemandedBits if you don't know whether Op"
2978          " is a target node!");
2979   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2980   return false;
2981 }
2982 
SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,SelectionDAG & DAG,unsigned Depth) const2983 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2984     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2985     SelectionDAG &DAG, unsigned Depth) const {
2986   assert(
2987       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2988        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2989        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2990        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2991       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2992       " is a target node!");
2993   return SDValue();
2994 }
2995 
2996 SDValue
buildLegalVectorShuffle(EVT VT,const SDLoc & DL,SDValue N0,SDValue N1,MutableArrayRef<int> Mask,SelectionDAG & DAG) const2997 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2998                                         SDValue N1, MutableArrayRef<int> Mask,
2999                                         SelectionDAG &DAG) const {
3000   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3001   if (!LegalMask) {
3002     std::swap(N0, N1);
3003     ShuffleVectorSDNode::commuteMask(Mask);
3004     LegalMask = isShuffleMaskLegal(Mask, VT);
3005   }
3006 
3007   if (!LegalMask)
3008     return SDValue();
3009 
3010   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3011 }
3012 
getTargetConstantFromLoad(LoadSDNode *) const3013 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3014   return nullptr;
3015 }
3016 
isKnownNeverNaNForTargetNode(SDValue Op,const SelectionDAG & DAG,bool SNaN,unsigned Depth) const3017 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3018                                                   const SelectionDAG &DAG,
3019                                                   bool SNaN,
3020                                                   unsigned Depth) const {
3021   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3022           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3023           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3024           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3025          "Should use isKnownNeverNaN if you don't know whether Op"
3026          " is a target node!");
3027   return false;
3028 }
3029 
3030 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3031 // work with truncating build vectors and vectors with elements of less than
3032 // 8 bits.
isConstTrueVal(const SDNode * N) const3033 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3034   if (!N)
3035     return false;
3036 
3037   APInt CVal;
3038   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3039     CVal = CN->getAPIntValue();
3040   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3041     auto *CN = BV->getConstantSplatNode();
3042     if (!CN)
3043       return false;
3044 
3045     // If this is a truncating build vector, truncate the splat value.
3046     // Otherwise, we may fail to match the expected values below.
3047     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3048     CVal = CN->getAPIntValue();
3049     if (BVEltWidth < CVal.getBitWidth())
3050       CVal = CVal.trunc(BVEltWidth);
3051   } else {
3052     return false;
3053   }
3054 
3055   switch (getBooleanContents(N->getValueType(0))) {
3056   case UndefinedBooleanContent:
3057     return CVal[0];
3058   case ZeroOrOneBooleanContent:
3059     return CVal.isOneValue();
3060   case ZeroOrNegativeOneBooleanContent:
3061     return CVal.isAllOnesValue();
3062   }
3063 
3064   llvm_unreachable("Invalid boolean contents");
3065 }
3066 
isConstFalseVal(const SDNode * N) const3067 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3068   if (!N)
3069     return false;
3070 
3071   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3072   if (!CN) {
3073     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3074     if (!BV)
3075       return false;
3076 
3077     // Only interested in constant splats, we don't care about undef
3078     // elements in identifying boolean constants and getConstantSplatNode
3079     // returns NULL if all ops are undef;
3080     CN = BV->getConstantSplatNode();
3081     if (!CN)
3082       return false;
3083   }
3084 
3085   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3086     return !CN->getAPIntValue()[0];
3087 
3088   return CN->isNullValue();
3089 }
3090 
isExtendedTrueVal(const ConstantSDNode * N,EVT VT,bool SExt) const3091 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3092                                        bool SExt) const {
3093   if (VT == MVT::i1)
3094     return N->isOne();
3095 
3096   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3097   switch (Cnt) {
3098   case TargetLowering::ZeroOrOneBooleanContent:
3099     // An extended value of 1 is always true, unless its original type is i1,
3100     // in which case it will be sign extended to -1.
3101     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3102   case TargetLowering::UndefinedBooleanContent:
3103   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3104     return N->isAllOnesValue() && SExt;
3105   }
3106   llvm_unreachable("Unexpected enumeration.");
3107 }
3108 
3109 /// This helper function of SimplifySetCC tries to optimize the comparison when
3110 /// either operand of the SetCC node is a bitwise-and instruction.
foldSetCCWithAnd(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,const SDLoc & DL,DAGCombinerInfo & DCI) const3111 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3112                                          ISD::CondCode Cond, const SDLoc &DL,
3113                                          DAGCombinerInfo &DCI) const {
3114   // Match these patterns in any of their permutations:
3115   // (X & Y) == Y
3116   // (X & Y) != Y
3117   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3118     std::swap(N0, N1);
3119 
3120   EVT OpVT = N0.getValueType();
3121   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3122       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3123     return SDValue();
3124 
3125   SDValue X, Y;
3126   if (N0.getOperand(0) == N1) {
3127     X = N0.getOperand(1);
3128     Y = N0.getOperand(0);
3129   } else if (N0.getOperand(1) == N1) {
3130     X = N0.getOperand(0);
3131     Y = N0.getOperand(1);
3132   } else {
3133     return SDValue();
3134   }
3135 
3136   SelectionDAG &DAG = DCI.DAG;
3137   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3138   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3139     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3140     // Note that where Y is variable and is known to have at most one bit set
3141     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3142     // equivalent when Y == 0.
3143     assert(OpVT.isInteger());
3144     Cond = ISD::getSetCCInverse(Cond, OpVT);
3145     if (DCI.isBeforeLegalizeOps() ||
3146         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3147       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3148   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3149     // If the target supports an 'and-not' or 'and-complement' logic operation,
3150     // try to use that to make a comparison operation more efficient.
3151     // But don't do this transform if the mask is a single bit because there are
3152     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3153     // 'rlwinm' on PPC).
3154 
3155     // Bail out if the compare operand that we want to turn into a zero is
3156     // already a zero (otherwise, infinite loop).
3157     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3158     if (YConst && YConst->isNullValue())
3159       return SDValue();
3160 
3161     // Transform this into: ~X & Y == 0.
3162     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3163     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3164     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3165   }
3166 
3167   return SDValue();
3168 }
3169 
3170 /// There are multiple IR patterns that could be checking whether certain
3171 /// truncation of a signed number would be lossy or not. The pattern which is
3172 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3173 /// We are looking for the following pattern: (KeptBits is a constant)
3174 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3175 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3176 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3177 /// We will unfold it into the natural trunc+sext pattern:
3178 ///   ((%x << C) a>> C) dstcond %x
3179 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
optimizeSetCCOfSignedTruncationCheck(EVT SCCVT,SDValue N0,SDValue N1,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const3180 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3181     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3182     const SDLoc &DL) const {
3183   // We must be comparing with a constant.
3184   ConstantSDNode *C1;
3185   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3186     return SDValue();
3187 
3188   // N0 should be:  add %x, (1 << (KeptBits-1))
3189   if (N0->getOpcode() != ISD::ADD)
3190     return SDValue();
3191 
3192   // And we must be 'add'ing a constant.
3193   ConstantSDNode *C01;
3194   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3195     return SDValue();
3196 
3197   SDValue X = N0->getOperand(0);
3198   EVT XVT = X.getValueType();
3199 
3200   // Validate constants ...
3201 
3202   APInt I1 = C1->getAPIntValue();
3203 
3204   ISD::CondCode NewCond;
3205   if (Cond == ISD::CondCode::SETULT) {
3206     NewCond = ISD::CondCode::SETEQ;
3207   } else if (Cond == ISD::CondCode::SETULE) {
3208     NewCond = ISD::CondCode::SETEQ;
3209     // But need to 'canonicalize' the constant.
3210     I1 += 1;
3211   } else if (Cond == ISD::CondCode::SETUGT) {
3212     NewCond = ISD::CondCode::SETNE;
3213     // But need to 'canonicalize' the constant.
3214     I1 += 1;
3215   } else if (Cond == ISD::CondCode::SETUGE) {
3216     NewCond = ISD::CondCode::SETNE;
3217   } else
3218     return SDValue();
3219 
3220   APInt I01 = C01->getAPIntValue();
3221 
3222   auto checkConstants = [&I1, &I01]() -> bool {
3223     // Both of them must be power-of-two, and the constant from setcc is bigger.
3224     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3225   };
3226 
3227   if (checkConstants()) {
3228     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3229   } else {
3230     // What if we invert constants? (and the target predicate)
3231     I1.negate();
3232     I01.negate();
3233     assert(XVT.isInteger());
3234     NewCond = getSetCCInverse(NewCond, XVT);
3235     if (!checkConstants())
3236       return SDValue();
3237     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3238   }
3239 
3240   // They are power-of-two, so which bit is set?
3241   const unsigned KeptBits = I1.logBase2();
3242   const unsigned KeptBitsMinusOne = I01.logBase2();
3243 
3244   // Magic!
3245   if (KeptBits != (KeptBitsMinusOne + 1))
3246     return SDValue();
3247   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3248 
3249   // We don't want to do this in every single case.
3250   SelectionDAG &DAG = DCI.DAG;
3251   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3252           XVT, KeptBits))
3253     return SDValue();
3254 
3255   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3256   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3257 
3258   // Unfold into:  ((%x << C) a>> C) cond %x
3259   // Where 'cond' will be either 'eq' or 'ne'.
3260   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3261   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3262   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3263   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3264 
3265   return T2;
3266 }
3267 
3268 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
optimizeSetCCByHoistingAndByConstFromLogicalShift(EVT SCCVT,SDValue N0,SDValue N1C,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const3269 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3270     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3271     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3272   assert(isConstOrConstSplat(N1C) &&
3273          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3274          "Should be a comparison with 0.");
3275   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3276          "Valid only for [in]equality comparisons.");
3277 
3278   unsigned NewShiftOpcode;
3279   SDValue X, C, Y;
3280 
3281   SelectionDAG &DAG = DCI.DAG;
3282   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3283 
3284   // Look for '(C l>>/<< Y)'.
3285   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3286     // The shift should be one-use.
3287     if (!V.hasOneUse())
3288       return false;
3289     unsigned OldShiftOpcode = V.getOpcode();
3290     switch (OldShiftOpcode) {
3291     case ISD::SHL:
3292       NewShiftOpcode = ISD::SRL;
3293       break;
3294     case ISD::SRL:
3295       NewShiftOpcode = ISD::SHL;
3296       break;
3297     default:
3298       return false; // must be a logical shift.
3299     }
3300     // We should be shifting a constant.
3301     // FIXME: best to use isConstantOrConstantVector().
3302     C = V.getOperand(0);
3303     ConstantSDNode *CC =
3304         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3305     if (!CC)
3306       return false;
3307     Y = V.getOperand(1);
3308 
3309     ConstantSDNode *XC =
3310         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3311     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3312         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3313   };
3314 
3315   // LHS of comparison should be an one-use 'and'.
3316   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3317     return SDValue();
3318 
3319   X = N0.getOperand(0);
3320   SDValue Mask = N0.getOperand(1);
3321 
3322   // 'and' is commutative!
3323   if (!Match(Mask)) {
3324     std::swap(X, Mask);
3325     if (!Match(Mask))
3326       return SDValue();
3327   }
3328 
3329   EVT VT = X.getValueType();
3330 
3331   // Produce:
3332   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3333   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3334   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3335   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3336   return T2;
3337 }
3338 
3339 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3340 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3341 /// handle the commuted versions of these patterns.
foldSetCCWithBinOp(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,const SDLoc & DL,DAGCombinerInfo & DCI) const3342 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3343                                            ISD::CondCode Cond, const SDLoc &DL,
3344                                            DAGCombinerInfo &DCI) const {
3345   unsigned BOpcode = N0.getOpcode();
3346   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3347          "Unexpected binop");
3348   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3349 
3350   // (X + Y) == X --> Y == 0
3351   // (X - Y) == X --> Y == 0
3352   // (X ^ Y) == X --> Y == 0
3353   SelectionDAG &DAG = DCI.DAG;
3354   EVT OpVT = N0.getValueType();
3355   SDValue X = N0.getOperand(0);
3356   SDValue Y = N0.getOperand(1);
3357   if (X == N1)
3358     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3359 
3360   if (Y != N1)
3361     return SDValue();
3362 
3363   // (X + Y) == Y --> X == 0
3364   // (X ^ Y) == Y --> X == 0
3365   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3366     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3367 
3368   // The shift would not be valid if the operands are boolean (i1).
3369   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3370     return SDValue();
3371 
3372   // (X - Y) == Y --> X == Y << 1
3373   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3374                                  !DCI.isBeforeLegalize());
3375   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3376   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3377   if (!DCI.isCalledByLegalizer())
3378     DCI.AddToWorklist(YShl1.getNode());
3379   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3380 }
3381 
simplifySetCCWithCTPOP(const TargetLowering & TLI,EVT VT,SDValue N0,const APInt & C1,ISD::CondCode Cond,const SDLoc & dl,SelectionDAG & DAG)3382 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3383                                       SDValue N0, const APInt &C1,
3384                                       ISD::CondCode Cond, const SDLoc &dl,
3385                                       SelectionDAG &DAG) {
3386   // Look through truncs that don't change the value of a ctpop.
3387   // FIXME: Add vector support? Need to be careful with setcc result type below.
3388   SDValue CTPOP = N0;
3389   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3390       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3391     CTPOP = N0.getOperand(0);
3392 
3393   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3394     return SDValue();
3395 
3396   EVT CTVT = CTPOP.getValueType();
3397   SDValue CTOp = CTPOP.getOperand(0);
3398 
3399   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3400   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3401   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3402     return SDValue();
3403 
3404   // (ctpop x) u< 2 -> (x & x-1) == 0
3405   // (ctpop x) u> 1 -> (x & x-1) != 0
3406   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3407     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3408     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3409       return SDValue();
3410     if (C1 == 0 && (Cond == ISD::SETULT))
3411       return SDValue(); // This is handled elsewhere.
3412 
3413     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3414 
3415     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3416     SDValue Result = CTOp;
3417     for (unsigned i = 0; i < Passes; i++) {
3418       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3419       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3420     }
3421     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3422     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3423   }
3424 
3425   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3426   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3427     // For scalars, keep CTPOP if it is legal or custom.
3428     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3429       return SDValue();
3430     // This is based on X86's custom lowering for CTPOP which produces more
3431     // instructions than the expansion here.
3432 
3433     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3434     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3435     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3436     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3437     assert(CTVT.isInteger());
3438     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3439     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3440     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3441     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3442     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3443     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3444     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3445   }
3446 
3447   return SDValue();
3448 }
3449 
3450 /// Try to simplify a setcc built with the specified operands and cc. If it is
3451 /// unable to simplify it, return a null SDValue.
SimplifySetCC(EVT VT,SDValue N0,SDValue N1,ISD::CondCode Cond,bool foldBooleans,DAGCombinerInfo & DCI,const SDLoc & dl) const3452 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3453                                       ISD::CondCode Cond, bool foldBooleans,
3454                                       DAGCombinerInfo &DCI,
3455                                       const SDLoc &dl) const {
3456   SelectionDAG &DAG = DCI.DAG;
3457   const DataLayout &Layout = DAG.getDataLayout();
3458   EVT OpVT = N0.getValueType();
3459 
3460   // Constant fold or commute setcc.
3461   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3462     return Fold;
3463 
3464   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3465   // TODO: Handle non-splat vector constants. All undef causes trouble.
3466   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3467   if (isConstOrConstSplat(N0) &&
3468       (DCI.isBeforeLegalizeOps() ||
3469        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3470     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3471 
3472   // If we have a subtract with the same 2 non-constant operands as this setcc
3473   // -- but in reverse order -- then try to commute the operands of this setcc
3474   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3475   // instruction on some targets.
3476   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3477       (DCI.isBeforeLegalizeOps() ||
3478        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3479       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3480       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3481     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3482 
3483   if (auto *N1C = isConstOrConstSplat(N1)) {
3484     const APInt &C1 = N1C->getAPIntValue();
3485 
3486     // Optimize some CTPOP cases.
3487     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3488       return V;
3489   }
3490 
3491   // FIXME: Support vectors.
3492   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3493     const APInt &C1 = N1C->getAPIntValue();
3494 
3495     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3496     // equality comparison, then we're just comparing whether X itself is
3497     // zero.
3498     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3499         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3500         N0.getOperand(1).getOpcode() == ISD::Constant) {
3501       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3502       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3503           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3504         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3505           // (srl (ctlz x), 5) == 0  -> X != 0
3506           // (srl (ctlz x), 5) != 1  -> X != 0
3507           Cond = ISD::SETNE;
3508         } else {
3509           // (srl (ctlz x), 5) != 0  -> X == 0
3510           // (srl (ctlz x), 5) == 1  -> X == 0
3511           Cond = ISD::SETEQ;
3512         }
3513         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3514         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3515                             Zero, Cond);
3516       }
3517     }
3518 
3519     // (zext x) == C --> x == (trunc C)
3520     // (sext x) == C --> x == (trunc C)
3521     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3522         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3523       unsigned MinBits = N0.getValueSizeInBits();
3524       SDValue PreExt;
3525       bool Signed = false;
3526       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3527         // ZExt
3528         MinBits = N0->getOperand(0).getValueSizeInBits();
3529         PreExt = N0->getOperand(0);
3530       } else if (N0->getOpcode() == ISD::AND) {
3531         // DAGCombine turns costly ZExts into ANDs
3532         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3533           if ((C->getAPIntValue()+1).isPowerOf2()) {
3534             MinBits = C->getAPIntValue().countTrailingOnes();
3535             PreExt = N0->getOperand(0);
3536           }
3537       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3538         // SExt
3539         MinBits = N0->getOperand(0).getValueSizeInBits();
3540         PreExt = N0->getOperand(0);
3541         Signed = true;
3542       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3543         // ZEXTLOAD / SEXTLOAD
3544         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3545           MinBits = LN0->getMemoryVT().getSizeInBits();
3546           PreExt = N0;
3547         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3548           Signed = true;
3549           MinBits = LN0->getMemoryVT().getSizeInBits();
3550           PreExt = N0;
3551         }
3552       }
3553 
3554       // Figure out how many bits we need to preserve this constant.
3555       unsigned ReqdBits = Signed ?
3556         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3557         C1.getActiveBits();
3558 
3559       // Make sure we're not losing bits from the constant.
3560       if (MinBits > 0 &&
3561           MinBits < C1.getBitWidth() &&
3562           MinBits >= ReqdBits) {
3563         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3564         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3565           // Will get folded away.
3566           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3567           if (MinBits == 1 && C1 == 1)
3568             // Invert the condition.
3569             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3570                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3571           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3572           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3573         }
3574 
3575         // If truncating the setcc operands is not desirable, we can still
3576         // simplify the expression in some cases:
3577         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3578         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3579         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3580         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3581         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3582         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3583         SDValue TopSetCC = N0->getOperand(0);
3584         unsigned N0Opc = N0->getOpcode();
3585         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3586         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3587             TopSetCC.getOpcode() == ISD::SETCC &&
3588             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3589             (isConstFalseVal(N1C) ||
3590              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3591 
3592           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3593                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3594 
3595           if (!Inverse)
3596             return TopSetCC;
3597 
3598           ISD::CondCode InvCond = ISD::getSetCCInverse(
3599               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3600               TopSetCC.getOperand(0).getValueType());
3601           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3602                                       TopSetCC.getOperand(1),
3603                                       InvCond);
3604         }
3605       }
3606     }
3607 
3608     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3609     // equality or unsigned, and all 1 bits of the const are in the same
3610     // partial word, see if we can shorten the load.
3611     if (DCI.isBeforeLegalize() &&
3612         !ISD::isSignedIntSetCC(Cond) &&
3613         N0.getOpcode() == ISD::AND && C1 == 0 &&
3614         N0.getNode()->hasOneUse() &&
3615         isa<LoadSDNode>(N0.getOperand(0)) &&
3616         N0.getOperand(0).getNode()->hasOneUse() &&
3617         isa<ConstantSDNode>(N0.getOperand(1))) {
3618       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3619       APInt bestMask;
3620       unsigned bestWidth = 0, bestOffset = 0;
3621       if (Lod->isSimple() && Lod->isUnindexed()) {
3622         unsigned origWidth = N0.getValueSizeInBits();
3623         unsigned maskWidth = origWidth;
3624         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3625         // 8 bits, but have to be careful...
3626         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3627           origWidth = Lod->getMemoryVT().getSizeInBits();
3628         const APInt &Mask = N0.getConstantOperandAPInt(1);
3629         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3630           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3631           for (unsigned offset=0; offset<origWidth/width; offset++) {
3632             if (Mask.isSubsetOf(newMask)) {
3633               if (Layout.isLittleEndian())
3634                 bestOffset = (uint64_t)offset * (width/8);
3635               else
3636                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3637               bestMask = Mask.lshr(offset * (width/8) * 8);
3638               bestWidth = width;
3639               break;
3640             }
3641             newMask <<= width;
3642           }
3643         }
3644       }
3645       if (bestWidth) {
3646         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3647         if (newVT.isRound() &&
3648             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3649           SDValue Ptr = Lod->getBasePtr();
3650           if (bestOffset != 0)
3651             Ptr =
3652                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3653           SDValue NewLoad =
3654               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3655                           Lod->getPointerInfo().getWithOffset(bestOffset),
3656                           Lod->getOriginalAlign());
3657           return DAG.getSetCC(dl, VT,
3658                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3659                                       DAG.getConstant(bestMask.trunc(bestWidth),
3660                                                       dl, newVT)),
3661                               DAG.getConstant(0LL, dl, newVT), Cond);
3662         }
3663       }
3664     }
3665 
3666     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3667     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3668       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3669 
3670       // If the comparison constant has bits in the upper part, the
3671       // zero-extended value could never match.
3672       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3673                                               C1.getBitWidth() - InSize))) {
3674         switch (Cond) {
3675         case ISD::SETUGT:
3676         case ISD::SETUGE:
3677         case ISD::SETEQ:
3678           return DAG.getConstant(0, dl, VT);
3679         case ISD::SETULT:
3680         case ISD::SETULE:
3681         case ISD::SETNE:
3682           return DAG.getConstant(1, dl, VT);
3683         case ISD::SETGT:
3684         case ISD::SETGE:
3685           // True if the sign bit of C1 is set.
3686           return DAG.getConstant(C1.isNegative(), dl, VT);
3687         case ISD::SETLT:
3688         case ISD::SETLE:
3689           // True if the sign bit of C1 isn't set.
3690           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3691         default:
3692           break;
3693         }
3694       }
3695 
3696       // Otherwise, we can perform the comparison with the low bits.
3697       switch (Cond) {
3698       case ISD::SETEQ:
3699       case ISD::SETNE:
3700       case ISD::SETUGT:
3701       case ISD::SETUGE:
3702       case ISD::SETULT:
3703       case ISD::SETULE: {
3704         EVT newVT = N0.getOperand(0).getValueType();
3705         if (DCI.isBeforeLegalizeOps() ||
3706             (isOperationLegal(ISD::SETCC, newVT) &&
3707              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3708           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3709           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3710 
3711           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3712                                           NewConst, Cond);
3713           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3714         }
3715         break;
3716       }
3717       default:
3718         break; // todo, be more careful with signed comparisons
3719       }
3720     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3721                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3722       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3723       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3724       EVT ExtDstTy = N0.getValueType();
3725       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3726 
3727       // If the constant doesn't fit into the number of bits for the source of
3728       // the sign extension, it is impossible for both sides to be equal.
3729       if (C1.getMinSignedBits() > ExtSrcTyBits)
3730         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3731 
3732       SDValue ZextOp;
3733       EVT Op0Ty = N0.getOperand(0).getValueType();
3734       if (Op0Ty == ExtSrcTy) {
3735         ZextOp = N0.getOperand(0);
3736       } else {
3737         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3738         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3739                              DAG.getConstant(Imm, dl, Op0Ty));
3740       }
3741       if (!DCI.isCalledByLegalizer())
3742         DCI.AddToWorklist(ZextOp.getNode());
3743       // Otherwise, make this a use of a zext.
3744       return DAG.getSetCC(dl, VT, ZextOp,
3745                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3746                                                               ExtDstTyBits,
3747                                                               ExtSrcTyBits),
3748                                           dl, ExtDstTy),
3749                           Cond);
3750     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3751                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3752       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3753       if (N0.getOpcode() == ISD::SETCC &&
3754           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3755           (N0.getValueType() == MVT::i1 ||
3756            getBooleanContents(N0.getOperand(0).getValueType()) ==
3757                        ZeroOrOneBooleanContent)) {
3758         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3759         if (TrueWhenTrue)
3760           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3761         // Invert the condition.
3762         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3763         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3764         if (DCI.isBeforeLegalizeOps() ||
3765             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3766           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3767       }
3768 
3769       if ((N0.getOpcode() == ISD::XOR ||
3770            (N0.getOpcode() == ISD::AND &&
3771             N0.getOperand(0).getOpcode() == ISD::XOR &&
3772             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3773           isa<ConstantSDNode>(N0.getOperand(1)) &&
3774           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3775         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3776         // can only do this if the top bits are known zero.
3777         unsigned BitWidth = N0.getValueSizeInBits();
3778         if (DAG.MaskedValueIsZero(N0,
3779                                   APInt::getHighBitsSet(BitWidth,
3780                                                         BitWidth-1))) {
3781           // Okay, get the un-inverted input value.
3782           SDValue Val;
3783           if (N0.getOpcode() == ISD::XOR) {
3784             Val = N0.getOperand(0);
3785           } else {
3786             assert(N0.getOpcode() == ISD::AND &&
3787                     N0.getOperand(0).getOpcode() == ISD::XOR);
3788             // ((X^1)&1)^1 -> X & 1
3789             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3790                               N0.getOperand(0).getOperand(0),
3791                               N0.getOperand(1));
3792           }
3793 
3794           return DAG.getSetCC(dl, VT, Val, N1,
3795                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3796         }
3797       } else if (N1C->isOne()) {
3798         SDValue Op0 = N0;
3799         if (Op0.getOpcode() == ISD::TRUNCATE)
3800           Op0 = Op0.getOperand(0);
3801 
3802         if ((Op0.getOpcode() == ISD::XOR) &&
3803             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3804             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3805           SDValue XorLHS = Op0.getOperand(0);
3806           SDValue XorRHS = Op0.getOperand(1);
3807           // Ensure that the input setccs return an i1 type or 0/1 value.
3808           if (Op0.getValueType() == MVT::i1 ||
3809               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3810                       ZeroOrOneBooleanContent &&
3811                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3812                         ZeroOrOneBooleanContent)) {
3813             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3814             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3815             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3816           }
3817         }
3818         if (Op0.getOpcode() == ISD::AND &&
3819             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3820             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3821           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3822           if (Op0.getValueType().bitsGT(VT))
3823             Op0 = DAG.getNode(ISD::AND, dl, VT,
3824                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3825                           DAG.getConstant(1, dl, VT));
3826           else if (Op0.getValueType().bitsLT(VT))
3827             Op0 = DAG.getNode(ISD::AND, dl, VT,
3828                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3829                         DAG.getConstant(1, dl, VT));
3830 
3831           return DAG.getSetCC(dl, VT, Op0,
3832                               DAG.getConstant(0, dl, Op0.getValueType()),
3833                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3834         }
3835         if (Op0.getOpcode() == ISD::AssertZext &&
3836             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3837           return DAG.getSetCC(dl, VT, Op0,
3838                               DAG.getConstant(0, dl, Op0.getValueType()),
3839                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3840       }
3841     }
3842 
3843     // Given:
3844     //   icmp eq/ne (urem %x, %y), 0
3845     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3846     //   icmp eq/ne %x, 0
3847     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3848         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3849       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3850       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3851       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3852         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3853     }
3854 
3855     if (SDValue V =
3856             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3857       return V;
3858   }
3859 
3860   // These simplifications apply to splat vectors as well.
3861   // TODO: Handle more splat vector cases.
3862   if (auto *N1C = isConstOrConstSplat(N1)) {
3863     const APInt &C1 = N1C->getAPIntValue();
3864 
3865     APInt MinVal, MaxVal;
3866     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3867     if (ISD::isSignedIntSetCC(Cond)) {
3868       MinVal = APInt::getSignedMinValue(OperandBitSize);
3869       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3870     } else {
3871       MinVal = APInt::getMinValue(OperandBitSize);
3872       MaxVal = APInt::getMaxValue(OperandBitSize);
3873     }
3874 
3875     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3876     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3877       // X >= MIN --> true
3878       if (C1 == MinVal)
3879         return DAG.getBoolConstant(true, dl, VT, OpVT);
3880 
3881       if (!VT.isVector()) { // TODO: Support this for vectors.
3882         // X >= C0 --> X > (C0 - 1)
3883         APInt C = C1 - 1;
3884         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3885         if ((DCI.isBeforeLegalizeOps() ||
3886              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3887             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3888                                   isLegalICmpImmediate(C.getSExtValue())))) {
3889           return DAG.getSetCC(dl, VT, N0,
3890                               DAG.getConstant(C, dl, N1.getValueType()),
3891                               NewCC);
3892         }
3893       }
3894     }
3895 
3896     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3897       // X <= MAX --> true
3898       if (C1 == MaxVal)
3899         return DAG.getBoolConstant(true, dl, VT, OpVT);
3900 
3901       // X <= C0 --> X < (C0 + 1)
3902       if (!VT.isVector()) { // TODO: Support this for vectors.
3903         APInt C = C1 + 1;
3904         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3905         if ((DCI.isBeforeLegalizeOps() ||
3906              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3907             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3908                                   isLegalICmpImmediate(C.getSExtValue())))) {
3909           return DAG.getSetCC(dl, VT, N0,
3910                               DAG.getConstant(C, dl, N1.getValueType()),
3911                               NewCC);
3912         }
3913       }
3914     }
3915 
3916     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3917       if (C1 == MinVal)
3918         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3919 
3920       // TODO: Support this for vectors after legalize ops.
3921       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3922         // Canonicalize setlt X, Max --> setne X, Max
3923         if (C1 == MaxVal)
3924           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3925 
3926         // If we have setult X, 1, turn it into seteq X, 0
3927         if (C1 == MinVal+1)
3928           return DAG.getSetCC(dl, VT, N0,
3929                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3930                               ISD::SETEQ);
3931       }
3932     }
3933 
3934     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3935       if (C1 == MaxVal)
3936         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3937 
3938       // TODO: Support this for vectors after legalize ops.
3939       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3940         // Canonicalize setgt X, Min --> setne X, Min
3941         if (C1 == MinVal)
3942           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3943 
3944         // If we have setugt X, Max-1, turn it into seteq X, Max
3945         if (C1 == MaxVal-1)
3946           return DAG.getSetCC(dl, VT, N0,
3947                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3948                               ISD::SETEQ);
3949       }
3950     }
3951 
3952     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3953       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3954       if (C1.isNullValue())
3955         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3956                 VT, N0, N1, Cond, DCI, dl))
3957           return CC;
3958     }
3959 
3960     // If we have "setcc X, C0", check to see if we can shrink the immediate
3961     // by changing cc.
3962     // TODO: Support this for vectors after legalize ops.
3963     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3964       // SETUGT X, SINTMAX  -> SETLT X, 0
3965       // SETUGE X, SINTMIN -> SETLT X, 0
3966       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
3967           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
3968         return DAG.getSetCC(dl, VT, N0,
3969                             DAG.getConstant(0, dl, N1.getValueType()),
3970                             ISD::SETLT);
3971 
3972       // SETULT X, SINTMIN  -> SETGT X, -1
3973       // SETULE X, SINTMAX  -> SETGT X, -1
3974       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
3975           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
3976         return DAG.getSetCC(dl, VT, N0,
3977                             DAG.getAllOnesConstant(dl, N1.getValueType()),
3978                             ISD::SETGT);
3979     }
3980   }
3981 
3982   // Back to non-vector simplifications.
3983   // TODO: Can we do these for vector splats?
3984   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3985     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3986     const APInt &C1 = N1C->getAPIntValue();
3987     EVT ShValTy = N0.getValueType();
3988 
3989     // Fold bit comparisons when we can. This will result in an
3990     // incorrect value when boolean false is negative one, unless
3991     // the bitsize is 1 in which case the false value is the same
3992     // in practice regardless of the representation.
3993     if ((VT.getSizeInBits() == 1 ||
3994          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
3995         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3996         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3997         N0.getOpcode() == ISD::AND) {
3998       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3999         EVT ShiftTy =
4000             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4001         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4002           // Perform the xform if the AND RHS is a single bit.
4003           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4004           if (AndRHS->getAPIntValue().isPowerOf2() &&
4005               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4006             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4007                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4008                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4009           }
4010         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4011           // (X & 8) == 8  -->  (X & 8) >> 3
4012           // Perform the xform if C1 is a single bit.
4013           unsigned ShCt = C1.logBase2();
4014           if (C1.isPowerOf2() &&
4015               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4016             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4017                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4018                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4019           }
4020         }
4021       }
4022     }
4023 
4024     if (C1.getMinSignedBits() <= 64 &&
4025         !isLegalICmpImmediate(C1.getSExtValue())) {
4026       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4027       // (X & -256) == 256 -> (X >> 8) == 1
4028       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4029           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4030         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4031           const APInt &AndRHSC = AndRHS->getAPIntValue();
4032           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
4033             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4034             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4035               SDValue Shift =
4036                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4037                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4038               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4039               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4040             }
4041           }
4042         }
4043       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4044                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4045         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4046         // X <  0x100000000 -> (X >> 32) <  1
4047         // X >= 0x100000000 -> (X >> 32) >= 1
4048         // X <= 0x0ffffffff -> (X >> 32) <  1
4049         // X >  0x0ffffffff -> (X >> 32) >= 1
4050         unsigned ShiftBits;
4051         APInt NewC = C1;
4052         ISD::CondCode NewCond = Cond;
4053         if (AdjOne) {
4054           ShiftBits = C1.countTrailingOnes();
4055           NewC = NewC + 1;
4056           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4057         } else {
4058           ShiftBits = C1.countTrailingZeros();
4059         }
4060         NewC.lshrInPlace(ShiftBits);
4061         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4062             isLegalICmpImmediate(NewC.getSExtValue()) &&
4063             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4064           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4065                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4066           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4067           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4068         }
4069       }
4070     }
4071   }
4072 
4073   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4074     auto *CFP = cast<ConstantFPSDNode>(N1);
4075     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4076 
4077     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4078     // constant if knowing that the operand is non-nan is enough.  We prefer to
4079     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4080     // materialize 0.0.
4081     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4082       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4083 
4084     // setcc (fneg x), C -> setcc swap(pred) x, -C
4085     if (N0.getOpcode() == ISD::FNEG) {
4086       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4087       if (DCI.isBeforeLegalizeOps() ||
4088           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4089         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4090         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4091       }
4092     }
4093 
4094     // If the condition is not legal, see if we can find an equivalent one
4095     // which is legal.
4096     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4097       // If the comparison was an awkward floating-point == or != and one of
4098       // the comparison operands is infinity or negative infinity, convert the
4099       // condition to a less-awkward <= or >=.
4100       if (CFP->getValueAPF().isInfinity()) {
4101         bool IsNegInf = CFP->getValueAPF().isNegative();
4102         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4103         switch (Cond) {
4104         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4105         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4106         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4107         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4108         default: break;
4109         }
4110         if (NewCond != ISD::SETCC_INVALID &&
4111             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4112           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4113       }
4114     }
4115   }
4116 
4117   if (N0 == N1) {
4118     // The sext(setcc()) => setcc() optimization relies on the appropriate
4119     // constant being emitted.
4120     assert(!N0.getValueType().isInteger() &&
4121            "Integer types should be handled by FoldSetCC");
4122 
4123     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4124     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4125     if (UOF == 2) // FP operators that are undefined on NaNs.
4126       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4127     if (UOF == unsigned(EqTrue))
4128       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4129     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4130     // if it is not already.
4131     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4132     if (NewCond != Cond &&
4133         (DCI.isBeforeLegalizeOps() ||
4134                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4135       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4136   }
4137 
4138   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4139       N0.getValueType().isInteger()) {
4140     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4141         N0.getOpcode() == ISD::XOR) {
4142       // Simplify (X+Y) == (X+Z) -->  Y == Z
4143       if (N0.getOpcode() == N1.getOpcode()) {
4144         if (N0.getOperand(0) == N1.getOperand(0))
4145           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4146         if (N0.getOperand(1) == N1.getOperand(1))
4147           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4148         if (isCommutativeBinOp(N0.getOpcode())) {
4149           // If X op Y == Y op X, try other combinations.
4150           if (N0.getOperand(0) == N1.getOperand(1))
4151             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4152                                 Cond);
4153           if (N0.getOperand(1) == N1.getOperand(0))
4154             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4155                                 Cond);
4156         }
4157       }
4158 
4159       // If RHS is a legal immediate value for a compare instruction, we need
4160       // to be careful about increasing register pressure needlessly.
4161       bool LegalRHSImm = false;
4162 
4163       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4164         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4165           // Turn (X+C1) == C2 --> X == C2-C1
4166           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4167             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4168                                 DAG.getConstant(RHSC->getAPIntValue()-
4169                                                 LHSR->getAPIntValue(),
4170                                 dl, N0.getValueType()), Cond);
4171           }
4172 
4173           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4174           if (N0.getOpcode() == ISD::XOR)
4175             // If we know that all of the inverted bits are zero, don't bother
4176             // performing the inversion.
4177             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4178               return
4179                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4180                              DAG.getConstant(LHSR->getAPIntValue() ^
4181                                                RHSC->getAPIntValue(),
4182                                              dl, N0.getValueType()),
4183                              Cond);
4184         }
4185 
4186         // Turn (C1-X) == C2 --> X == C1-C2
4187         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4188           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4189             return
4190               DAG.getSetCC(dl, VT, N0.getOperand(1),
4191                            DAG.getConstant(SUBC->getAPIntValue() -
4192                                              RHSC->getAPIntValue(),
4193                                            dl, N0.getValueType()),
4194                            Cond);
4195           }
4196         }
4197 
4198         // Could RHSC fold directly into a compare?
4199         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4200           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4201       }
4202 
4203       // (X+Y) == X --> Y == 0 and similar folds.
4204       // Don't do this if X is an immediate that can fold into a cmp
4205       // instruction and X+Y has other uses. It could be an induction variable
4206       // chain, and the transform would increase register pressure.
4207       if (!LegalRHSImm || N0.hasOneUse())
4208         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4209           return V;
4210     }
4211 
4212     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4213         N1.getOpcode() == ISD::XOR)
4214       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4215         return V;
4216 
4217     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4218       return V;
4219   }
4220 
4221   // Fold remainder of division by a constant.
4222   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4223       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4224     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4225 
4226     // When division is cheap or optimizing for minimum size,
4227     // fall through to DIVREM creation by skipping this fold.
4228     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4229       if (N0.getOpcode() == ISD::UREM) {
4230         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4231           return Folded;
4232       } else if (N0.getOpcode() == ISD::SREM) {
4233         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4234           return Folded;
4235       }
4236     }
4237   }
4238 
4239   // Fold away ALL boolean setcc's.
4240   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4241     SDValue Temp;
4242     switch (Cond) {
4243     default: llvm_unreachable("Unknown integer setcc!");
4244     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4245       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4246       N0 = DAG.getNOT(dl, Temp, OpVT);
4247       if (!DCI.isCalledByLegalizer())
4248         DCI.AddToWorklist(Temp.getNode());
4249       break;
4250     case ISD::SETNE:  // X != Y   -->  (X^Y)
4251       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4252       break;
4253     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4254     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4255       Temp = DAG.getNOT(dl, N0, OpVT);
4256       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4257       if (!DCI.isCalledByLegalizer())
4258         DCI.AddToWorklist(Temp.getNode());
4259       break;
4260     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4261     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4262       Temp = DAG.getNOT(dl, N1, OpVT);
4263       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4264       if (!DCI.isCalledByLegalizer())
4265         DCI.AddToWorklist(Temp.getNode());
4266       break;
4267     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4268     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4269       Temp = DAG.getNOT(dl, N0, OpVT);
4270       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4271       if (!DCI.isCalledByLegalizer())
4272         DCI.AddToWorklist(Temp.getNode());
4273       break;
4274     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4275     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4276       Temp = DAG.getNOT(dl, N1, OpVT);
4277       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4278       break;
4279     }
4280     if (VT.getScalarType() != MVT::i1) {
4281       if (!DCI.isCalledByLegalizer())
4282         DCI.AddToWorklist(N0.getNode());
4283       // FIXME: If running after legalize, we probably can't do this.
4284       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4285       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4286     }
4287     return N0;
4288   }
4289 
4290   // Could not fold it.
4291   return SDValue();
4292 }
4293 
4294 /// Returns true (and the GlobalValue and the offset) if the node is a
4295 /// GlobalAddress + offset.
isGAPlusOffset(SDNode * WN,const GlobalValue * & GA,int64_t & Offset) const4296 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4297                                     int64_t &Offset) const {
4298 
4299   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4300 
4301   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4302     GA = GASD->getGlobal();
4303     Offset += GASD->getOffset();
4304     return true;
4305   }
4306 
4307   if (N->getOpcode() == ISD::ADD) {
4308     SDValue N1 = N->getOperand(0);
4309     SDValue N2 = N->getOperand(1);
4310     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4311       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4312         Offset += V->getSExtValue();
4313         return true;
4314       }
4315     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4316       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4317         Offset += V->getSExtValue();
4318         return true;
4319       }
4320     }
4321   }
4322 
4323   return false;
4324 }
4325 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const4326 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4327                                           DAGCombinerInfo &DCI) const {
4328   // Default implementation: no optimization.
4329   return SDValue();
4330 }
4331 
4332 //===----------------------------------------------------------------------===//
4333 //  Inline Assembler Implementation Methods
4334 //===----------------------------------------------------------------------===//
4335 
4336 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const4337 TargetLowering::getConstraintType(StringRef Constraint) const {
4338   unsigned S = Constraint.size();
4339 
4340   if (S == 1) {
4341     switch (Constraint[0]) {
4342     default: break;
4343     case 'r':
4344       return C_RegisterClass;
4345     case 'm': // memory
4346     case 'o': // offsetable
4347     case 'V': // not offsetable
4348       return C_Memory;
4349     case 'n': // Simple Integer
4350     case 'E': // Floating Point Constant
4351     case 'F': // Floating Point Constant
4352       return C_Immediate;
4353     case 'i': // Simple Integer or Relocatable Constant
4354     case 's': // Relocatable Constant
4355     case 'p': // Address.
4356     case 'X': // Allow ANY value.
4357     case 'I': // Target registers.
4358     case 'J':
4359     case 'K':
4360     case 'L':
4361     case 'M':
4362     case 'N':
4363     case 'O':
4364     case 'P':
4365     case '<':
4366     case '>':
4367       return C_Other;
4368     }
4369   }
4370 
4371   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4372     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4373       return C_Memory;
4374     return C_Register;
4375   }
4376   return C_Unknown;
4377 }
4378 
4379 /// Try to replace an X constraint, which matches anything, with another that
4380 /// has more specific requirements based on the type of the corresponding
4381 /// operand.
LowerXConstraint(EVT ConstraintVT) const4382 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4383   if (ConstraintVT.isInteger())
4384     return "r";
4385   if (ConstraintVT.isFloatingPoint())
4386     return "f"; // works for many targets
4387   return nullptr;
4388 }
4389 
LowerAsmOutputForConstraint(SDValue & Chain,SDValue & Flag,const SDLoc & DL,const AsmOperandInfo & OpInfo,SelectionDAG & DAG) const4390 SDValue TargetLowering::LowerAsmOutputForConstraint(
4391     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4392     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4393   return SDValue();
4394 }
4395 
4396 /// Lower the specified operand into the Ops vector.
4397 /// If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const4398 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4399                                                   std::string &Constraint,
4400                                                   std::vector<SDValue> &Ops,
4401                                                   SelectionDAG &DAG) const {
4402 
4403   if (Constraint.length() > 1) return;
4404 
4405   char ConstraintLetter = Constraint[0];
4406   switch (ConstraintLetter) {
4407   default: break;
4408   case 'X':     // Allows any operand; labels (basic block) use this.
4409     if (Op.getOpcode() == ISD::BasicBlock ||
4410         Op.getOpcode() == ISD::TargetBlockAddress) {
4411       Ops.push_back(Op);
4412       return;
4413     }
4414     LLVM_FALLTHROUGH;
4415   case 'i':    // Simple Integer or Relocatable Constant
4416   case 'n':    // Simple Integer
4417   case 's': {  // Relocatable Constant
4418 
4419     GlobalAddressSDNode *GA;
4420     ConstantSDNode *C;
4421     BlockAddressSDNode *BA;
4422     uint64_t Offset = 0;
4423 
4424     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4425     // etc., since getelementpointer is variadic. We can't use
4426     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4427     // while in this case the GA may be furthest from the root node which is
4428     // likely an ISD::ADD.
4429     while (1) {
4430       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4431         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4432                                                  GA->getValueType(0),
4433                                                  Offset + GA->getOffset()));
4434         return;
4435       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4436                  ConstraintLetter != 's') {
4437         // gcc prints these as sign extended.  Sign extend value to 64 bits
4438         // now; without this it would get ZExt'd later in
4439         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4440         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4441         BooleanContent BCont = getBooleanContents(MVT::i64);
4442         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4443                                       : ISD::SIGN_EXTEND;
4444         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4445                                                     : C->getSExtValue();
4446         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4447                                             SDLoc(C), MVT::i64));
4448         return;
4449       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4450                  ConstraintLetter != 'n') {
4451         Ops.push_back(DAG.getTargetBlockAddress(
4452             BA->getBlockAddress(), BA->getValueType(0),
4453             Offset + BA->getOffset(), BA->getTargetFlags()));
4454         return;
4455       } else {
4456         const unsigned OpCode = Op.getOpcode();
4457         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4458           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4459             Op = Op.getOperand(1);
4460           // Subtraction is not commutative.
4461           else if (OpCode == ISD::ADD &&
4462                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4463             Op = Op.getOperand(0);
4464           else
4465             return;
4466           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4467           continue;
4468         }
4469       }
4470       return;
4471     }
4472     break;
4473   }
4474   }
4475 }
4476 
4477 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * RI,StringRef Constraint,MVT VT) const4478 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4479                                              StringRef Constraint,
4480                                              MVT VT) const {
4481   if (Constraint.empty() || Constraint[0] != '{')
4482     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4483   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4484 
4485   // Remove the braces from around the name.
4486   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4487 
4488   std::pair<unsigned, const TargetRegisterClass *> R =
4489       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4490 
4491   // Figure out which register class contains this reg.
4492   for (const TargetRegisterClass *RC : RI->regclasses()) {
4493     // If none of the value types for this register class are valid, we
4494     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4495     if (!isLegalRC(*RI, *RC))
4496       continue;
4497 
4498     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4499          I != E; ++I) {
4500       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4501         std::pair<unsigned, const TargetRegisterClass *> S =
4502             std::make_pair(*I, RC);
4503 
4504         // If this register class has the requested value type, return it,
4505         // otherwise keep searching and return the first class found
4506         // if no other is found which explicitly has the requested type.
4507         if (RI->isTypeLegalForClass(*RC, VT))
4508           return S;
4509         if (!R.second)
4510           R = S;
4511       }
4512     }
4513   }
4514 
4515   return R;
4516 }
4517 
4518 //===----------------------------------------------------------------------===//
4519 // Constraint Selection.
4520 
4521 /// Return true of this is an input operand that is a matching constraint like
4522 /// "4".
isMatchingInputConstraint() const4523 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4524   assert(!ConstraintCode.empty() && "No known constraint!");
4525   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4526 }
4527 
4528 /// If this is an input matching constraint, this method returns the output
4529 /// operand it matches.
getMatchedOperand() const4530 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4531   assert(!ConstraintCode.empty() && "No known constraint!");
4532   return atoi(ConstraintCode.c_str());
4533 }
4534 
4535 /// Split up the constraint string from the inline assembly value into the
4536 /// specific constraints and their prefixes, and also tie in the associated
4537 /// operand values.
4538 /// If this returns an empty vector, and if the constraint string itself
4539 /// isn't empty, there was an error parsing.
4540 TargetLowering::AsmOperandInfoVector
ParseConstraints(const DataLayout & DL,const TargetRegisterInfo * TRI,const CallBase & Call) const4541 TargetLowering::ParseConstraints(const DataLayout &DL,
4542                                  const TargetRegisterInfo *TRI,
4543                                  const CallBase &Call) const {
4544   /// Information about all of the constraints.
4545   AsmOperandInfoVector ConstraintOperands;
4546   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4547   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4548 
4549   // Do a prepass over the constraints, canonicalizing them, and building up the
4550   // ConstraintOperands list.
4551   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4552   unsigned ResNo = 0; // ResNo - The result number of the next output.
4553 
4554   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4555     ConstraintOperands.emplace_back(std::move(CI));
4556     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4557 
4558     // Update multiple alternative constraint count.
4559     if (OpInfo.multipleAlternatives.size() > maCount)
4560       maCount = OpInfo.multipleAlternatives.size();
4561 
4562     OpInfo.ConstraintVT = MVT::Other;
4563 
4564     // Compute the value type for each operand.
4565     switch (OpInfo.Type) {
4566     case InlineAsm::isOutput:
4567       // Indirect outputs just consume an argument.
4568       if (OpInfo.isIndirect) {
4569         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4570         break;
4571       }
4572 
4573       // The return value of the call is this value.  As such, there is no
4574       // corresponding argument.
4575       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4576       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4577         OpInfo.ConstraintVT =
4578             getSimpleValueType(DL, STy->getElementType(ResNo));
4579       } else {
4580         assert(ResNo == 0 && "Asm only has one result!");
4581         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4582       }
4583       ++ResNo;
4584       break;
4585     case InlineAsm::isInput:
4586       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4587       break;
4588     case InlineAsm::isClobber:
4589       // Nothing to do.
4590       break;
4591     }
4592 
4593     if (OpInfo.CallOperandVal) {
4594       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4595       if (OpInfo.isIndirect) {
4596         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4597         if (!PtrTy)
4598           report_fatal_error("Indirect operand for inline asm not a pointer!");
4599         OpTy = PtrTy->getElementType();
4600       }
4601 
4602       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4603       if (StructType *STy = dyn_cast<StructType>(OpTy))
4604         if (STy->getNumElements() == 1)
4605           OpTy = STy->getElementType(0);
4606 
4607       // If OpTy is not a single value, it may be a struct/union that we
4608       // can tile with integers.
4609       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4610         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4611         switch (BitSize) {
4612         default: break;
4613         case 1:
4614         case 8:
4615         case 16:
4616         case 32:
4617         case 64:
4618         case 128:
4619           OpInfo.ConstraintVT =
4620               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4621           break;
4622         }
4623       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4624         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4625         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4626       } else {
4627         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4628       }
4629     }
4630   }
4631 
4632   // If we have multiple alternative constraints, select the best alternative.
4633   if (!ConstraintOperands.empty()) {
4634     if (maCount) {
4635       unsigned bestMAIndex = 0;
4636       int bestWeight = -1;
4637       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4638       int weight = -1;
4639       unsigned maIndex;
4640       // Compute the sums of the weights for each alternative, keeping track
4641       // of the best (highest weight) one so far.
4642       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4643         int weightSum = 0;
4644         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4645              cIndex != eIndex; ++cIndex) {
4646           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4647           if (OpInfo.Type == InlineAsm::isClobber)
4648             continue;
4649 
4650           // If this is an output operand with a matching input operand,
4651           // look up the matching input. If their types mismatch, e.g. one
4652           // is an integer, the other is floating point, or their sizes are
4653           // different, flag it as an maCantMatch.
4654           if (OpInfo.hasMatchingInput()) {
4655             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4656             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4657               if ((OpInfo.ConstraintVT.isInteger() !=
4658                    Input.ConstraintVT.isInteger()) ||
4659                   (OpInfo.ConstraintVT.getSizeInBits() !=
4660                    Input.ConstraintVT.getSizeInBits())) {
4661                 weightSum = -1; // Can't match.
4662                 break;
4663               }
4664             }
4665           }
4666           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4667           if (weight == -1) {
4668             weightSum = -1;
4669             break;
4670           }
4671           weightSum += weight;
4672         }
4673         // Update best.
4674         if (weightSum > bestWeight) {
4675           bestWeight = weightSum;
4676           bestMAIndex = maIndex;
4677         }
4678       }
4679 
4680       // Now select chosen alternative in each constraint.
4681       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4682            cIndex != eIndex; ++cIndex) {
4683         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4684         if (cInfo.Type == InlineAsm::isClobber)
4685           continue;
4686         cInfo.selectAlternative(bestMAIndex);
4687       }
4688     }
4689   }
4690 
4691   // Check and hook up tied operands, choose constraint code to use.
4692   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4693        cIndex != eIndex; ++cIndex) {
4694     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4695 
4696     // If this is an output operand with a matching input operand, look up the
4697     // matching input. If their types mismatch, e.g. one is an integer, the
4698     // other is floating point, or their sizes are different, flag it as an
4699     // error.
4700     if (OpInfo.hasMatchingInput()) {
4701       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4702 
4703       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4704         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4705             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4706                                          OpInfo.ConstraintVT);
4707         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4708             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4709                                          Input.ConstraintVT);
4710         if ((OpInfo.ConstraintVT.isInteger() !=
4711              Input.ConstraintVT.isInteger()) ||
4712             (MatchRC.second != InputRC.second)) {
4713           report_fatal_error("Unsupported asm: input constraint"
4714                              " with a matching output constraint of"
4715                              " incompatible type!");
4716         }
4717       }
4718     }
4719   }
4720 
4721   return ConstraintOperands;
4722 }
4723 
4724 /// Return an integer indicating how general CT is.
getConstraintGenerality(TargetLowering::ConstraintType CT)4725 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4726   switch (CT) {
4727   case TargetLowering::C_Immediate:
4728   case TargetLowering::C_Other:
4729   case TargetLowering::C_Unknown:
4730     return 0;
4731   case TargetLowering::C_Register:
4732     return 1;
4733   case TargetLowering::C_RegisterClass:
4734     return 2;
4735   case TargetLowering::C_Memory:
4736     return 3;
4737   }
4738   llvm_unreachable("Invalid constraint type");
4739 }
4740 
4741 /// Examine constraint type and operand type and determine a weight value.
4742 /// This object must already have been set up with the operand type
4743 /// and the current alternative constraint selected.
4744 TargetLowering::ConstraintWeight
getMultipleConstraintMatchWeight(AsmOperandInfo & info,int maIndex) const4745   TargetLowering::getMultipleConstraintMatchWeight(
4746     AsmOperandInfo &info, int maIndex) const {
4747   InlineAsm::ConstraintCodeVector *rCodes;
4748   if (maIndex >= (int)info.multipleAlternatives.size())
4749     rCodes = &info.Codes;
4750   else
4751     rCodes = &info.multipleAlternatives[maIndex].Codes;
4752   ConstraintWeight BestWeight = CW_Invalid;
4753 
4754   // Loop over the options, keeping track of the most general one.
4755   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4756     ConstraintWeight weight =
4757       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4758     if (weight > BestWeight)
4759       BestWeight = weight;
4760   }
4761 
4762   return BestWeight;
4763 }
4764 
4765 /// Examine constraint type and operand type and determine a weight value.
4766 /// This object must already have been set up with the operand type
4767 /// and the current alternative constraint selected.
4768 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const4769   TargetLowering::getSingleConstraintMatchWeight(
4770     AsmOperandInfo &info, const char *constraint) const {
4771   ConstraintWeight weight = CW_Invalid;
4772   Value *CallOperandVal = info.CallOperandVal;
4773     // If we don't have a value, we can't do a match,
4774     // but allow it at the lowest weight.
4775   if (!CallOperandVal)
4776     return CW_Default;
4777   // Look at the constraint type.
4778   switch (*constraint) {
4779     case 'i': // immediate integer.
4780     case 'n': // immediate integer with a known value.
4781       if (isa<ConstantInt>(CallOperandVal))
4782         weight = CW_Constant;
4783       break;
4784     case 's': // non-explicit intregal immediate.
4785       if (isa<GlobalValue>(CallOperandVal))
4786         weight = CW_Constant;
4787       break;
4788     case 'E': // immediate float if host format.
4789     case 'F': // immediate float.
4790       if (isa<ConstantFP>(CallOperandVal))
4791         weight = CW_Constant;
4792       break;
4793     case '<': // memory operand with autodecrement.
4794     case '>': // memory operand with autoincrement.
4795     case 'm': // memory operand.
4796     case 'o': // offsettable memory operand
4797     case 'V': // non-offsettable memory operand
4798       weight = CW_Memory;
4799       break;
4800     case 'r': // general register.
4801     case 'g': // general register, memory operand or immediate integer.
4802               // note: Clang converts "g" to "imr".
4803       if (CallOperandVal->getType()->isIntegerTy())
4804         weight = CW_Register;
4805       break;
4806     case 'X': // any operand.
4807   default:
4808     weight = CW_Default;
4809     break;
4810   }
4811   return weight;
4812 }
4813 
4814 /// If there are multiple different constraints that we could pick for this
4815 /// operand (e.g. "imr") try to pick the 'best' one.
4816 /// This is somewhat tricky: constraints fall into four classes:
4817 ///    Other         -> immediates and magic values
4818 ///    Register      -> one specific register
4819 ///    RegisterClass -> a group of regs
4820 ///    Memory        -> memory
4821 /// Ideally, we would pick the most specific constraint possible: if we have
4822 /// something that fits into a register, we would pick it.  The problem here
4823 /// is that if we have something that could either be in a register or in
4824 /// memory that use of the register could cause selection of *other*
4825 /// operands to fail: they might only succeed if we pick memory.  Because of
4826 /// this the heuristic we use is:
4827 ///
4828 ///  1) If there is an 'other' constraint, and if the operand is valid for
4829 ///     that constraint, use it.  This makes us take advantage of 'i'
4830 ///     constraints when available.
4831 ///  2) Otherwise, pick the most general constraint present.  This prefers
4832 ///     'm' over 'r', for example.
4833 ///
ChooseConstraint(TargetLowering::AsmOperandInfo & OpInfo,const TargetLowering & TLI,SDValue Op,SelectionDAG * DAG)4834 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4835                              const TargetLowering &TLI,
4836                              SDValue Op, SelectionDAG *DAG) {
4837   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4838   unsigned BestIdx = 0;
4839   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4840   int BestGenerality = -1;
4841 
4842   // Loop over the options, keeping track of the most general one.
4843   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4844     TargetLowering::ConstraintType CType =
4845       TLI.getConstraintType(OpInfo.Codes[i]);
4846 
4847     // Indirect 'other' or 'immediate' constraints are not allowed.
4848     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4849                                CType == TargetLowering::C_Register ||
4850                                CType == TargetLowering::C_RegisterClass))
4851       continue;
4852 
4853     // If this is an 'other' or 'immediate' constraint, see if the operand is
4854     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4855     // the operand is an integer in the range [0..31] we want to use I (saving a
4856     // load of a register), otherwise we must use 'r'.
4857     if ((CType == TargetLowering::C_Other ||
4858          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4859       assert(OpInfo.Codes[i].size() == 1 &&
4860              "Unhandled multi-letter 'other' constraint");
4861       std::vector<SDValue> ResultOps;
4862       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4863                                        ResultOps, *DAG);
4864       if (!ResultOps.empty()) {
4865         BestType = CType;
4866         BestIdx = i;
4867         break;
4868       }
4869     }
4870 
4871     // Things with matching constraints can only be registers, per gcc
4872     // documentation.  This mainly affects "g" constraints.
4873     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4874       continue;
4875 
4876     // This constraint letter is more general than the previous one, use it.
4877     int Generality = getConstraintGenerality(CType);
4878     if (Generality > BestGenerality) {
4879       BestType = CType;
4880       BestIdx = i;
4881       BestGenerality = Generality;
4882     }
4883   }
4884 
4885   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4886   OpInfo.ConstraintType = BestType;
4887 }
4888 
4889 /// Determines the constraint code and constraint type to use for the specific
4890 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
ComputeConstraintToUse(AsmOperandInfo & OpInfo,SDValue Op,SelectionDAG * DAG) const4891 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4892                                             SDValue Op,
4893                                             SelectionDAG *DAG) const {
4894   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4895 
4896   // Single-letter constraints ('r') are very common.
4897   if (OpInfo.Codes.size() == 1) {
4898     OpInfo.ConstraintCode = OpInfo.Codes[0];
4899     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4900   } else {
4901     ChooseConstraint(OpInfo, *this, Op, DAG);
4902   }
4903 
4904   // 'X' matches anything.
4905   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4906     // Labels and constants are handled elsewhere ('X' is the only thing
4907     // that matches labels).  For Functions, the type here is the type of
4908     // the result, which is not what we want to look at; leave them alone.
4909     Value *v = OpInfo.CallOperandVal;
4910     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4911       OpInfo.CallOperandVal = v;
4912       return;
4913     }
4914 
4915     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4916       return;
4917 
4918     // Otherwise, try to resolve it to something we know about by looking at
4919     // the actual operand type.
4920     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4921       OpInfo.ConstraintCode = Repl;
4922       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4923     }
4924   }
4925 }
4926 
4927 /// Given an exact SDIV by a constant, create a multiplication
4928 /// with the multiplicative inverse of the constant.
BuildExactSDIV(const TargetLowering & TLI,SDNode * N,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created)4929 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4930                               const SDLoc &dl, SelectionDAG &DAG,
4931                               SmallVectorImpl<SDNode *> &Created) {
4932   SDValue Op0 = N->getOperand(0);
4933   SDValue Op1 = N->getOperand(1);
4934   EVT VT = N->getValueType(0);
4935   EVT SVT = VT.getScalarType();
4936   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4937   EVT ShSVT = ShVT.getScalarType();
4938 
4939   bool UseSRA = false;
4940   SmallVector<SDValue, 16> Shifts, Factors;
4941 
4942   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4943     if (C->isNullValue())
4944       return false;
4945     APInt Divisor = C->getAPIntValue();
4946     unsigned Shift = Divisor.countTrailingZeros();
4947     if (Shift) {
4948       Divisor.ashrInPlace(Shift);
4949       UseSRA = true;
4950     }
4951     // Calculate the multiplicative inverse, using Newton's method.
4952     APInt t;
4953     APInt Factor = Divisor;
4954     while ((t = Divisor * Factor) != 1)
4955       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4956     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4957     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4958     return true;
4959   };
4960 
4961   // Collect all magic values from the build vector.
4962   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4963     return SDValue();
4964 
4965   SDValue Shift, Factor;
4966   if (VT.isVector()) {
4967     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4968     Factor = DAG.getBuildVector(VT, dl, Factors);
4969   } else {
4970     Shift = Shifts[0];
4971     Factor = Factors[0];
4972   }
4973 
4974   SDValue Res = Op0;
4975 
4976   // Shift the value upfront if it is even, so the LSB is one.
4977   if (UseSRA) {
4978     // TODO: For UDIV use SRL instead of SRA.
4979     SDNodeFlags Flags;
4980     Flags.setExact(true);
4981     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4982     Created.push_back(Res.getNode());
4983   }
4984 
4985   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4986 }
4987 
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const4988 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4989                               SelectionDAG &DAG,
4990                               SmallVectorImpl<SDNode *> &Created) const {
4991   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4992   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4993   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4994     return SDValue(N, 0); // Lower SDIV as SDIV
4995   return SDValue();
4996 }
4997 
4998 /// Given an ISD::SDIV node expressing a divide by constant,
4999 /// return a DAG expression to select that will generate the same value by
5000 /// multiplying by a magic number.
5001 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildSDIV(SDNode * N,SelectionDAG & DAG,bool IsAfterLegalization,SmallVectorImpl<SDNode * > & Created) const5002 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5003                                   bool IsAfterLegalization,
5004                                   SmallVectorImpl<SDNode *> &Created) const {
5005   SDLoc dl(N);
5006   EVT VT = N->getValueType(0);
5007   EVT SVT = VT.getScalarType();
5008   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5009   EVT ShSVT = ShVT.getScalarType();
5010   unsigned EltBits = VT.getScalarSizeInBits();
5011 
5012   // Check to see if we can do this.
5013   // FIXME: We should be more aggressive here.
5014   if (!isTypeLegal(VT))
5015     return SDValue();
5016 
5017   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5018   if (N->getFlags().hasExact())
5019     return BuildExactSDIV(*this, N, dl, DAG, Created);
5020 
5021   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5022 
5023   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5024     if (C->isNullValue())
5025       return false;
5026 
5027     const APInt &Divisor = C->getAPIntValue();
5028     APInt::ms magics = Divisor.magic();
5029     int NumeratorFactor = 0;
5030     int ShiftMask = -1;
5031 
5032     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
5033       // If d is +1/-1, we just multiply the numerator by +1/-1.
5034       NumeratorFactor = Divisor.getSExtValue();
5035       magics.m = 0;
5036       magics.s = 0;
5037       ShiftMask = 0;
5038     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
5039       // If d > 0 and m < 0, add the numerator.
5040       NumeratorFactor = 1;
5041     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
5042       // If d < 0 and m > 0, subtract the numerator.
5043       NumeratorFactor = -1;
5044     }
5045 
5046     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
5047     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5048     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
5049     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5050     return true;
5051   };
5052 
5053   SDValue N0 = N->getOperand(0);
5054   SDValue N1 = N->getOperand(1);
5055 
5056   // Collect the shifts / magic values from each element.
5057   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5058     return SDValue();
5059 
5060   SDValue MagicFactor, Factor, Shift, ShiftMask;
5061   if (VT.isVector()) {
5062     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5063     Factor = DAG.getBuildVector(VT, dl, Factors);
5064     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5065     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5066   } else {
5067     MagicFactor = MagicFactors[0];
5068     Factor = Factors[0];
5069     Shift = Shifts[0];
5070     ShiftMask = ShiftMasks[0];
5071   }
5072 
5073   // Multiply the numerator (operand 0) by the magic value.
5074   // FIXME: We should support doing a MUL in a wider type.
5075   SDValue Q;
5076   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
5077                           : isOperationLegalOrCustom(ISD::MULHS, VT))
5078     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
5079   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
5080                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
5081     SDValue LoHi =
5082         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
5083     Q = SDValue(LoHi.getNode(), 1);
5084   } else
5085     return SDValue(); // No mulhs or equivalent.
5086   Created.push_back(Q.getNode());
5087 
5088   // (Optionally) Add/subtract the numerator using Factor.
5089   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5090   Created.push_back(Factor.getNode());
5091   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5092   Created.push_back(Q.getNode());
5093 
5094   // Shift right algebraic by shift value.
5095   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5096   Created.push_back(Q.getNode());
5097 
5098   // Extract the sign bit, mask it and add it to the quotient.
5099   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5100   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5101   Created.push_back(T.getNode());
5102   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5103   Created.push_back(T.getNode());
5104   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5105 }
5106 
5107 /// Given an ISD::UDIV node expressing a divide by constant,
5108 /// return a DAG expression to select that will generate the same value by
5109 /// multiplying by a magic number.
5110 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
BuildUDIV(SDNode * N,SelectionDAG & DAG,bool IsAfterLegalization,SmallVectorImpl<SDNode * > & Created) const5111 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5112                                   bool IsAfterLegalization,
5113                                   SmallVectorImpl<SDNode *> &Created) const {
5114   SDLoc dl(N);
5115   EVT VT = N->getValueType(0);
5116   EVT SVT = VT.getScalarType();
5117   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5118   EVT ShSVT = ShVT.getScalarType();
5119   unsigned EltBits = VT.getScalarSizeInBits();
5120 
5121   // Check to see if we can do this.
5122   // FIXME: We should be more aggressive here.
5123   if (!isTypeLegal(VT))
5124     return SDValue();
5125 
5126   bool UseNPQ = false;
5127   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5128 
5129   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5130     if (C->isNullValue())
5131       return false;
5132     // FIXME: We should use a narrower constant when the upper
5133     // bits are known to be zero.
5134     APInt Divisor = C->getAPIntValue();
5135     APInt::mu magics = Divisor.magicu();
5136     unsigned PreShift = 0, PostShift = 0;
5137 
5138     // If the divisor is even, we can avoid using the expensive fixup by
5139     // shifting the divided value upfront.
5140     if (magics.a != 0 && !Divisor[0]) {
5141       PreShift = Divisor.countTrailingZeros();
5142       // Get magic number for the shifted divisor.
5143       magics = Divisor.lshr(PreShift).magicu(PreShift);
5144       assert(magics.a == 0 && "Should use cheap fixup now");
5145     }
5146 
5147     APInt Magic = magics.m;
5148 
5149     unsigned SelNPQ;
5150     if (magics.a == 0 || Divisor.isOneValue()) {
5151       assert(magics.s < Divisor.getBitWidth() &&
5152              "We shouldn't generate an undefined shift!");
5153       PostShift = magics.s;
5154       SelNPQ = false;
5155     } else {
5156       PostShift = magics.s - 1;
5157       SelNPQ = true;
5158     }
5159 
5160     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5161     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5162     NPQFactors.push_back(
5163         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5164                                : APInt::getNullValue(EltBits),
5165                         dl, SVT));
5166     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5167     UseNPQ |= SelNPQ;
5168     return true;
5169   };
5170 
5171   SDValue N0 = N->getOperand(0);
5172   SDValue N1 = N->getOperand(1);
5173 
5174   // Collect the shifts/magic values from each element.
5175   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5176     return SDValue();
5177 
5178   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5179   if (VT.isVector()) {
5180     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5181     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5182     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5183     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5184   } else {
5185     PreShift = PreShifts[0];
5186     MagicFactor = MagicFactors[0];
5187     PostShift = PostShifts[0];
5188   }
5189 
5190   SDValue Q = N0;
5191   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5192   Created.push_back(Q.getNode());
5193 
5194   // FIXME: We should support doing a MUL in a wider type.
5195   auto GetMULHU = [&](SDValue X, SDValue Y) {
5196     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
5197                             : isOperationLegalOrCustom(ISD::MULHU, VT))
5198       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5199     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
5200                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
5201       SDValue LoHi =
5202           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5203       return SDValue(LoHi.getNode(), 1);
5204     }
5205     return SDValue(); // No mulhu or equivalent
5206   };
5207 
5208   // Multiply the numerator (operand 0) by the magic value.
5209   Q = GetMULHU(Q, MagicFactor);
5210   if (!Q)
5211     return SDValue();
5212 
5213   Created.push_back(Q.getNode());
5214 
5215   if (UseNPQ) {
5216     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5217     Created.push_back(NPQ.getNode());
5218 
5219     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5220     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5221     if (VT.isVector())
5222       NPQ = GetMULHU(NPQ, NPQFactor);
5223     else
5224       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5225 
5226     Created.push_back(NPQ.getNode());
5227 
5228     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5229     Created.push_back(Q.getNode());
5230   }
5231 
5232   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5233   Created.push_back(Q.getNode());
5234 
5235   SDValue One = DAG.getConstant(1, dl, VT);
5236   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5237   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5238 }
5239 
5240 /// If all values in Values that *don't* match the predicate are same 'splat'
5241 /// value, then replace all values with that splat value.
5242 /// Else, if AlternativeReplacement was provided, then replace all values that
5243 /// do match predicate with AlternativeReplacement value.
5244 static void
turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,std::function<bool (SDValue)> Predicate,SDValue AlternativeReplacement=SDValue ())5245 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5246                           std::function<bool(SDValue)> Predicate,
5247                           SDValue AlternativeReplacement = SDValue()) {
5248   SDValue Replacement;
5249   // Is there a value for which the Predicate does *NOT* match? What is it?
5250   auto SplatValue = llvm::find_if_not(Values, Predicate);
5251   if (SplatValue != Values.end()) {
5252     // Does Values consist only of SplatValue's and values matching Predicate?
5253     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5254           return Value == *SplatValue || Predicate(Value);
5255         })) // Then we shall replace values matching predicate with SplatValue.
5256       Replacement = *SplatValue;
5257   }
5258   if (!Replacement) {
5259     // Oops, we did not find the "baseline" splat value.
5260     if (!AlternativeReplacement)
5261       return; // Nothing to do.
5262     // Let's replace with provided value then.
5263     Replacement = AlternativeReplacement;
5264   }
5265   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5266 }
5267 
5268 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5269 /// where the divisor is constant and the comparison target is zero,
5270 /// return a DAG expression that will generate the same comparison result
5271 /// using only multiplications, additions and shifts/rotations.
5272 /// Ref: "Hacker's Delight" 10-17.
buildUREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const5273 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5274                                         SDValue CompTargetNode,
5275                                         ISD::CondCode Cond,
5276                                         DAGCombinerInfo &DCI,
5277                                         const SDLoc &DL) const {
5278   SmallVector<SDNode *, 5> Built;
5279   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5280                                          DCI, DL, Built)) {
5281     for (SDNode *N : Built)
5282       DCI.AddToWorklist(N);
5283     return Folded;
5284   }
5285 
5286   return SDValue();
5287 }
5288 
5289 SDValue
prepareUREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL,SmallVectorImpl<SDNode * > & Created) const5290 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5291                                   SDValue CompTargetNode, ISD::CondCode Cond,
5292                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5293                                   SmallVectorImpl<SDNode *> &Created) const {
5294   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5295   // - D must be constant, with D = D0 * 2^K where D0 is odd
5296   // - P is the multiplicative inverse of D0 modulo 2^W
5297   // - Q = floor(((2^W) - 1) / D)
5298   // where W is the width of the common type of N and D.
5299   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5300          "Only applicable for (in)equality comparisons.");
5301 
5302   SelectionDAG &DAG = DCI.DAG;
5303 
5304   EVT VT = REMNode.getValueType();
5305   EVT SVT = VT.getScalarType();
5306   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5307   EVT ShSVT = ShVT.getScalarType();
5308 
5309   // If MUL is unavailable, we cannot proceed in any case.
5310   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5311     return SDValue();
5312 
5313   bool ComparingWithAllZeros = true;
5314   bool AllComparisonsWithNonZerosAreTautological = true;
5315   bool HadTautologicalLanes = false;
5316   bool AllLanesAreTautological = true;
5317   bool HadEvenDivisor = false;
5318   bool AllDivisorsArePowerOfTwo = true;
5319   bool HadTautologicalInvertedLanes = false;
5320   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5321 
5322   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5323     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5324     if (CDiv->isNullValue())
5325       return false;
5326 
5327     const APInt &D = CDiv->getAPIntValue();
5328     const APInt &Cmp = CCmp->getAPIntValue();
5329 
5330     ComparingWithAllZeros &= Cmp.isNullValue();
5331 
5332     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5333     // if C2 is not less than C1, the comparison is always false.
5334     // But we will only be able to produce the comparison that will give the
5335     // opposive tautological answer. So this lane would need to be fixed up.
5336     bool TautologicalInvertedLane = D.ule(Cmp);
5337     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5338 
5339     // If all lanes are tautological (either all divisors are ones, or divisor
5340     // is not greater than the constant we are comparing with),
5341     // we will prefer to avoid the fold.
5342     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5343     HadTautologicalLanes |= TautologicalLane;
5344     AllLanesAreTautological &= TautologicalLane;
5345 
5346     // If we are comparing with non-zero, we need'll need  to subtract said
5347     // comparison value from the LHS. But there is no point in doing that if
5348     // every lane where we are comparing with non-zero is tautological..
5349     if (!Cmp.isNullValue())
5350       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5351 
5352     // Decompose D into D0 * 2^K
5353     unsigned K = D.countTrailingZeros();
5354     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5355     APInt D0 = D.lshr(K);
5356 
5357     // D is even if it has trailing zeros.
5358     HadEvenDivisor |= (K != 0);
5359     // D is a power-of-two if D0 is one.
5360     // If all divisors are power-of-two, we will prefer to avoid the fold.
5361     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5362 
5363     // P = inv(D0, 2^W)
5364     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5365     unsigned W = D.getBitWidth();
5366     APInt P = D0.zext(W + 1)
5367                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5368                   .trunc(W);
5369     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5370     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5371 
5372     // Q = floor((2^W - 1) u/ D)
5373     // R = ((2^W - 1) u% D)
5374     APInt Q, R;
5375     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5376 
5377     // If we are comparing with zero, then that comparison constant is okay,
5378     // else it may need to be one less than that.
5379     if (Cmp.ugt(R))
5380       Q -= 1;
5381 
5382     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5383            "We are expecting that K is always less than all-ones for ShSVT");
5384 
5385     // If the lane is tautological the result can be constant-folded.
5386     if (TautologicalLane) {
5387       // Set P and K amount to a bogus values so we can try to splat them.
5388       P = 0;
5389       K = -1;
5390       // And ensure that comparison constant is tautological,
5391       // it will always compare true/false.
5392       Q = -1;
5393     }
5394 
5395     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5396     KAmts.push_back(
5397         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5398     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5399     return true;
5400   };
5401 
5402   SDValue N = REMNode.getOperand(0);
5403   SDValue D = REMNode.getOperand(1);
5404 
5405   // Collect the values from each element.
5406   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5407     return SDValue();
5408 
5409   // If all lanes are tautological, the result can be constant-folded.
5410   if (AllLanesAreTautological)
5411     return SDValue();
5412 
5413   // If this is a urem by a powers-of-two, avoid the fold since it can be
5414   // best implemented as a bit test.
5415   if (AllDivisorsArePowerOfTwo)
5416     return SDValue();
5417 
5418   SDValue PVal, KVal, QVal;
5419   if (VT.isVector()) {
5420     if (HadTautologicalLanes) {
5421       // Try to turn PAmts into a splat, since we don't care about the values
5422       // that are currently '0'. If we can't, just keep '0'`s.
5423       turnVectorIntoSplatVector(PAmts, isNullConstant);
5424       // Try to turn KAmts into a splat, since we don't care about the values
5425       // that are currently '-1'. If we can't, change them to '0'`s.
5426       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5427                                 DAG.getConstant(0, DL, ShSVT));
5428     }
5429 
5430     PVal = DAG.getBuildVector(VT, DL, PAmts);
5431     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5432     QVal = DAG.getBuildVector(VT, DL, QAmts);
5433   } else {
5434     PVal = PAmts[0];
5435     KVal = KAmts[0];
5436     QVal = QAmts[0];
5437   }
5438 
5439   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5440     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5441       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5442     assert(CompTargetNode.getValueType() == N.getValueType() &&
5443            "Expecting that the types on LHS and RHS of comparisons match.");
5444     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5445   }
5446 
5447   // (mul N, P)
5448   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5449   Created.push_back(Op0.getNode());
5450 
5451   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5452   // divisors as a performance improvement, since rotating by 0 is a no-op.
5453   if (HadEvenDivisor) {
5454     // We need ROTR to do this.
5455     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5456       return SDValue();
5457     SDNodeFlags Flags;
5458     Flags.setExact(true);
5459     // UREM: (rotr (mul N, P), K)
5460     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5461     Created.push_back(Op0.getNode());
5462   }
5463 
5464   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5465   SDValue NewCC =
5466       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5467                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5468   if (!HadTautologicalInvertedLanes)
5469     return NewCC;
5470 
5471   // If any lanes previously compared always-false, the NewCC will give
5472   // always-true result for them, so we need to fixup those lanes.
5473   // Or the other way around for inequality predicate.
5474   assert(VT.isVector() && "Can/should only get here for vectors.");
5475   Created.push_back(NewCC.getNode());
5476 
5477   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5478   // if C2 is not less than C1, the comparison is always false.
5479   // But we have produced the comparison that will give the
5480   // opposive tautological answer. So these lanes would need to be fixed up.
5481   SDValue TautologicalInvertedChannels =
5482       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5483   Created.push_back(TautologicalInvertedChannels.getNode());
5484 
5485   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5486     // If we have a vector select, let's replace the comparison results in the
5487     // affected lanes with the correct tautological result.
5488     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5489                                               DL, SETCCVT, SETCCVT);
5490     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5491                        Replacement, NewCC);
5492   }
5493 
5494   // Else, we can just invert the comparison result in the appropriate lanes.
5495   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5496     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5497                        TautologicalInvertedChannels);
5498 
5499   return SDValue(); // Don't know how to lower.
5500 }
5501 
5502 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5503 /// where the divisor is constant and the comparison target is zero,
5504 /// return a DAG expression that will generate the same comparison result
5505 /// using only multiplications, additions and shifts/rotations.
5506 /// Ref: "Hacker's Delight" 10-17.
buildSREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL) const5507 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5508                                         SDValue CompTargetNode,
5509                                         ISD::CondCode Cond,
5510                                         DAGCombinerInfo &DCI,
5511                                         const SDLoc &DL) const {
5512   SmallVector<SDNode *, 7> Built;
5513   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5514                                          DCI, DL, Built)) {
5515     assert(Built.size() <= 7 && "Max size prediction failed.");
5516     for (SDNode *N : Built)
5517       DCI.AddToWorklist(N);
5518     return Folded;
5519   }
5520 
5521   return SDValue();
5522 }
5523 
5524 SDValue
prepareSREMEqFold(EVT SETCCVT,SDValue REMNode,SDValue CompTargetNode,ISD::CondCode Cond,DAGCombinerInfo & DCI,const SDLoc & DL,SmallVectorImpl<SDNode * > & Created) const5525 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5526                                   SDValue CompTargetNode, ISD::CondCode Cond,
5527                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5528                                   SmallVectorImpl<SDNode *> &Created) const {
5529   // Fold:
5530   //   (seteq/ne (srem N, D), 0)
5531   // To:
5532   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5533   //
5534   // - D must be constant, with D = D0 * 2^K where D0 is odd
5535   // - P is the multiplicative inverse of D0 modulo 2^W
5536   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5537   // - Q = floor((2 * A) / (2^K))
5538   // where W is the width of the common type of N and D.
5539   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5540          "Only applicable for (in)equality comparisons.");
5541 
5542   SelectionDAG &DAG = DCI.DAG;
5543 
5544   EVT VT = REMNode.getValueType();
5545   EVT SVT = VT.getScalarType();
5546   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5547   EVT ShSVT = ShVT.getScalarType();
5548 
5549   // If MUL is unavailable, we cannot proceed in any case.
5550   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5551     return SDValue();
5552 
5553   // TODO: Could support comparing with non-zero too.
5554   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5555   if (!CompTarget || !CompTarget->isNullValue())
5556     return SDValue();
5557 
5558   bool HadIntMinDivisor = false;
5559   bool HadOneDivisor = false;
5560   bool AllDivisorsAreOnes = true;
5561   bool HadEvenDivisor = false;
5562   bool NeedToApplyOffset = false;
5563   bool AllDivisorsArePowerOfTwo = true;
5564   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5565 
5566   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5567     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5568     if (C->isNullValue())
5569       return false;
5570 
5571     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5572 
5573     // WARNING: this fold is only valid for positive divisors!
5574     APInt D = C->getAPIntValue();
5575     if (D.isNegative())
5576       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5577 
5578     HadIntMinDivisor |= D.isMinSignedValue();
5579 
5580     // If all divisors are ones, we will prefer to avoid the fold.
5581     HadOneDivisor |= D.isOneValue();
5582     AllDivisorsAreOnes &= D.isOneValue();
5583 
5584     // Decompose D into D0 * 2^K
5585     unsigned K = D.countTrailingZeros();
5586     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5587     APInt D0 = D.lshr(K);
5588 
5589     if (!D.isMinSignedValue()) {
5590       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5591       // we don't care about this lane in this fold, we'll special-handle it.
5592       HadEvenDivisor |= (K != 0);
5593     }
5594 
5595     // D is a power-of-two if D0 is one. This includes INT_MIN.
5596     // If all divisors are power-of-two, we will prefer to avoid the fold.
5597     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5598 
5599     // P = inv(D0, 2^W)
5600     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5601     unsigned W = D.getBitWidth();
5602     APInt P = D0.zext(W + 1)
5603                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5604                   .trunc(W);
5605     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5606     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5607 
5608     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5609     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5610     A.clearLowBits(K);
5611 
5612     if (!D.isMinSignedValue()) {
5613       // If divisor INT_MIN, then we don't care about this lane in this fold,
5614       // we'll special-handle it.
5615       NeedToApplyOffset |= A != 0;
5616     }
5617 
5618     // Q = floor((2 * A) / (2^K))
5619     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5620 
5621     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5622            "We are expecting that A is always less than all-ones for SVT");
5623     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5624            "We are expecting that K is always less than all-ones for ShSVT");
5625 
5626     // If the divisor is 1 the result can be constant-folded. Likewise, we
5627     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5628     if (D.isOneValue()) {
5629       // Set P, A and K to a bogus values so we can try to splat them.
5630       P = 0;
5631       A = -1;
5632       K = -1;
5633 
5634       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5635       Q = -1;
5636     }
5637 
5638     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5639     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5640     KAmts.push_back(
5641         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5642     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5643     return true;
5644   };
5645 
5646   SDValue N = REMNode.getOperand(0);
5647   SDValue D = REMNode.getOperand(1);
5648 
5649   // Collect the values from each element.
5650   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5651     return SDValue();
5652 
5653   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5654   if (AllDivisorsAreOnes)
5655     return SDValue();
5656 
5657   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5658   // since it can be best implemented as a bit test.
5659   if (AllDivisorsArePowerOfTwo)
5660     return SDValue();
5661 
5662   SDValue PVal, AVal, KVal, QVal;
5663   if (VT.isVector()) {
5664     if (HadOneDivisor) {
5665       // Try to turn PAmts into a splat, since we don't care about the values
5666       // that are currently '0'. If we can't, just keep '0'`s.
5667       turnVectorIntoSplatVector(PAmts, isNullConstant);
5668       // Try to turn AAmts into a splat, since we don't care about the
5669       // values that are currently '-1'. If we can't, change them to '0'`s.
5670       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5671                                 DAG.getConstant(0, DL, SVT));
5672       // Try to turn KAmts into a splat, since we don't care about the values
5673       // that are currently '-1'. If we can't, change them to '0'`s.
5674       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5675                                 DAG.getConstant(0, DL, ShSVT));
5676     }
5677 
5678     PVal = DAG.getBuildVector(VT, DL, PAmts);
5679     AVal = DAG.getBuildVector(VT, DL, AAmts);
5680     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5681     QVal = DAG.getBuildVector(VT, DL, QAmts);
5682   } else {
5683     PVal = PAmts[0];
5684     AVal = AAmts[0];
5685     KVal = KAmts[0];
5686     QVal = QAmts[0];
5687   }
5688 
5689   // (mul N, P)
5690   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5691   Created.push_back(Op0.getNode());
5692 
5693   if (NeedToApplyOffset) {
5694     // We need ADD to do this.
5695     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5696       return SDValue();
5697 
5698     // (add (mul N, P), A)
5699     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5700     Created.push_back(Op0.getNode());
5701   }
5702 
5703   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5704   // divisors as a performance improvement, since rotating by 0 is a no-op.
5705   if (HadEvenDivisor) {
5706     // We need ROTR to do this.
5707     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5708       return SDValue();
5709     SDNodeFlags Flags;
5710     Flags.setExact(true);
5711     // SREM: (rotr (add (mul N, P), A), K)
5712     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5713     Created.push_back(Op0.getNode());
5714   }
5715 
5716   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5717   SDValue Fold =
5718       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5719                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5720 
5721   // If we didn't have lanes with INT_MIN divisor, then we're done.
5722   if (!HadIntMinDivisor)
5723     return Fold;
5724 
5725   // That fold is only valid for positive divisors. Which effectively means,
5726   // it is invalid for INT_MIN divisors. So if we have such a lane,
5727   // we must fix-up results for said lanes.
5728   assert(VT.isVector() && "Can/should only get here for vectors.");
5729 
5730   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5731       !isOperationLegalOrCustom(ISD::AND, VT) ||
5732       !isOperationLegalOrCustom(Cond, VT) ||
5733       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5734     return SDValue();
5735 
5736   Created.push_back(Fold.getNode());
5737 
5738   SDValue IntMin = DAG.getConstant(
5739       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5740   SDValue IntMax = DAG.getConstant(
5741       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5742   SDValue Zero =
5743       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5744 
5745   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5746   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5747   Created.push_back(DivisorIsIntMin.getNode());
5748 
5749   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5750   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5751   Created.push_back(Masked.getNode());
5752   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5753   Created.push_back(MaskedIsZero.getNode());
5754 
5755   // To produce final result we need to blend 2 vectors: 'SetCC' and
5756   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5757   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5758   // constant-folded, select can get lowered to a shuffle with constant mask.
5759   SDValue Blended =
5760       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5761 
5762   return Blended;
5763 }
5764 
5765 bool TargetLowering::
verifyReturnAddressArgumentIsConstant(SDValue Op,SelectionDAG & DAG) const5766 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5767   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5768     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5769                                 "be a constant integer");
5770     return true;
5771   }
5772 
5773   return false;
5774 }
5775 
getNegatedExpression(SDValue Op,SelectionDAG & DAG,bool LegalOps,bool OptForSize,NegatibleCost & Cost,unsigned Depth) const5776 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5777                                              bool LegalOps, bool OptForSize,
5778                                              NegatibleCost &Cost,
5779                                              unsigned Depth) const {
5780   // fneg is removable even if it has multiple uses.
5781   if (Op.getOpcode() == ISD::FNEG) {
5782     Cost = NegatibleCost::Cheaper;
5783     return Op.getOperand(0);
5784   }
5785 
5786   // Don't recurse exponentially.
5787   if (Depth > SelectionDAG::MaxRecursionDepth)
5788     return SDValue();
5789 
5790   // Pre-increment recursion depth for use in recursive calls.
5791   ++Depth;
5792   const SDNodeFlags Flags = Op->getFlags();
5793   const TargetOptions &Options = DAG.getTarget().Options;
5794   EVT VT = Op.getValueType();
5795   unsigned Opcode = Op.getOpcode();
5796 
5797   // Don't allow anything with multiple uses unless we know it is free.
5798   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
5799     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
5800                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5801     if (!IsFreeExtend)
5802       return SDValue();
5803   }
5804 
5805   auto RemoveDeadNode = [&](SDValue N) {
5806     if (N && N.getNode()->use_empty())
5807       DAG.RemoveDeadNode(N.getNode());
5808   };
5809 
5810   SDLoc DL(Op);
5811 
5812   switch (Opcode) {
5813   case ISD::ConstantFP: {
5814     // Don't invert constant FP values after legalization unless the target says
5815     // the negated constant is legal.
5816     bool IsOpLegal =
5817         isOperationLegal(ISD::ConstantFP, VT) ||
5818         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5819                      OptForSize);
5820 
5821     if (LegalOps && !IsOpLegal)
5822       break;
5823 
5824     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5825     V.changeSign();
5826     SDValue CFP = DAG.getConstantFP(V, DL, VT);
5827 
5828     // If we already have the use of the negated floating constant, it is free
5829     // to negate it even it has multiple uses.
5830     if (!Op.hasOneUse() && CFP.use_empty())
5831       break;
5832     Cost = NegatibleCost::Neutral;
5833     return CFP;
5834   }
5835   case ISD::BUILD_VECTOR: {
5836     // Only permit BUILD_VECTOR of constants.
5837     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5838           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5839         }))
5840       break;
5841 
5842     bool IsOpLegal =
5843         (isOperationLegal(ISD::ConstantFP, VT) &&
5844          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
5845         llvm::all_of(Op->op_values(), [&](SDValue N) {
5846           return N.isUndef() ||
5847                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5848                               OptForSize);
5849         });
5850 
5851     if (LegalOps && !IsOpLegal)
5852       break;
5853 
5854     SmallVector<SDValue, 4> Ops;
5855     for (SDValue C : Op->op_values()) {
5856       if (C.isUndef()) {
5857         Ops.push_back(C);
5858         continue;
5859       }
5860       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5861       V.changeSign();
5862       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
5863     }
5864     Cost = NegatibleCost::Neutral;
5865     return DAG.getBuildVector(VT, DL, Ops);
5866   }
5867   case ISD::FADD: {
5868     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5869       break;
5870 
5871     // After operation legalization, it might not be legal to create new FSUBs.
5872     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
5873       break;
5874     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5875 
5876     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
5877     NegatibleCost CostX = NegatibleCost::Expensive;
5878     SDValue NegX =
5879         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5880     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
5881     NegatibleCost CostY = NegatibleCost::Expensive;
5882     SDValue NegY =
5883         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5884 
5885     // Negate the X if its cost is less or equal than Y.
5886     if (NegX && (CostX <= CostY)) {
5887       Cost = CostX;
5888       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
5889       if (NegY != N)
5890         RemoveDeadNode(NegY);
5891       return N;
5892     }
5893 
5894     // Negate the Y if it is not expensive.
5895     if (NegY) {
5896       Cost = CostY;
5897       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
5898       if (NegX != N)
5899         RemoveDeadNode(NegX);
5900       return N;
5901     }
5902     break;
5903   }
5904   case ISD::FSUB: {
5905     // We can't turn -(A-B) into B-A when we honor signed zeros.
5906     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5907       break;
5908 
5909     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5910     // fold (fneg (fsub 0, Y)) -> Y
5911     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
5912       if (C->isZero()) {
5913         Cost = NegatibleCost::Cheaper;
5914         return Y;
5915       }
5916 
5917     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
5918     Cost = NegatibleCost::Neutral;
5919     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
5920   }
5921   case ISD::FMUL:
5922   case ISD::FDIV: {
5923     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5924 
5925     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5926     NegatibleCost CostX = NegatibleCost::Expensive;
5927     SDValue NegX =
5928         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5929     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5930     NegatibleCost CostY = NegatibleCost::Expensive;
5931     SDValue NegY =
5932         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5933 
5934     // Negate the X if its cost is less or equal than Y.
5935     if (NegX && (CostX <= CostY)) {
5936       Cost = CostX;
5937       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
5938       if (NegY != N)
5939         RemoveDeadNode(NegY);
5940       return N;
5941     }
5942 
5943     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5944     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5945       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5946         break;
5947 
5948     // Negate the Y if it is not expensive.
5949     if (NegY) {
5950       Cost = CostY;
5951       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
5952       if (NegX != N)
5953         RemoveDeadNode(NegX);
5954       return N;
5955     }
5956     break;
5957   }
5958   case ISD::FMA:
5959   case ISD::FMAD: {
5960     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5961       break;
5962 
5963     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
5964     NegatibleCost CostZ = NegatibleCost::Expensive;
5965     SDValue NegZ =
5966         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
5967     // Give up if fail to negate the Z.
5968     if (!NegZ)
5969       break;
5970 
5971     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5972     NegatibleCost CostX = NegatibleCost::Expensive;
5973     SDValue NegX =
5974         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5975     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5976     NegatibleCost CostY = NegatibleCost::Expensive;
5977     SDValue NegY =
5978         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5979 
5980     // Negate the X if its cost is less or equal than Y.
5981     if (NegX && (CostX <= CostY)) {
5982       Cost = std::min(CostX, CostZ);
5983       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
5984       if (NegY != N)
5985         RemoveDeadNode(NegY);
5986       return N;
5987     }
5988 
5989     // Negate the Y if it is not expensive.
5990     if (NegY) {
5991       Cost = std::min(CostY, CostZ);
5992       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
5993       if (NegX != N)
5994         RemoveDeadNode(NegX);
5995       return N;
5996     }
5997     break;
5998   }
5999 
6000   case ISD::FP_EXTEND:
6001   case ISD::FSIN:
6002     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6003                                             OptForSize, Cost, Depth))
6004       return DAG.getNode(Opcode, DL, VT, NegV);
6005     break;
6006   case ISD::FP_ROUND:
6007     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6008                                             OptForSize, Cost, Depth))
6009       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6010     break;
6011   }
6012 
6013   return SDValue();
6014 }
6015 
6016 //===----------------------------------------------------------------------===//
6017 // Legalization Utilities
6018 //===----------------------------------------------------------------------===//
6019 
expandMUL_LOHI(unsigned Opcode,EVT VT,const SDLoc & dl,SDValue LHS,SDValue RHS,SmallVectorImpl<SDValue> & Result,EVT HiLoVT,SelectionDAG & DAG,MulExpansionKind Kind,SDValue LL,SDValue LH,SDValue RL,SDValue RH) const6020 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6021                                     SDValue LHS, SDValue RHS,
6022                                     SmallVectorImpl<SDValue> &Result,
6023                                     EVT HiLoVT, SelectionDAG &DAG,
6024                                     MulExpansionKind Kind, SDValue LL,
6025                                     SDValue LH, SDValue RL, SDValue RH) const {
6026   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6027          Opcode == ISD::SMUL_LOHI);
6028 
6029   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6030                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6031   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6032                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6033   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6034                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6035   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6036                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6037 
6038   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6039     return false;
6040 
6041   unsigned OuterBitSize = VT.getScalarSizeInBits();
6042   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6043   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
6044   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
6045 
6046   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6047   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6048          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6049 
6050   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6051   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6052                           bool Signed) -> bool {
6053     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6054       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6055       Hi = SDValue(Lo.getNode(), 1);
6056       return true;
6057     }
6058     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6059       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6060       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6061       return true;
6062     }
6063     return false;
6064   };
6065 
6066   SDValue Lo, Hi;
6067 
6068   if (!LL.getNode() && !RL.getNode() &&
6069       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6070     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6071     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6072   }
6073 
6074   if (!LL.getNode())
6075     return false;
6076 
6077   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6078   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6079       DAG.MaskedValueIsZero(RHS, HighMask)) {
6080     // The inputs are both zero-extended.
6081     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6082       Result.push_back(Lo);
6083       Result.push_back(Hi);
6084       if (Opcode != ISD::MUL) {
6085         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6086         Result.push_back(Zero);
6087         Result.push_back(Zero);
6088       }
6089       return true;
6090     }
6091   }
6092 
6093   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
6094       RHSSB > InnerBitSize) {
6095     // The input values are both sign-extended.
6096     // TODO non-MUL case?
6097     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6098       Result.push_back(Lo);
6099       Result.push_back(Hi);
6100       return true;
6101     }
6102   }
6103 
6104   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6105   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6106   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6107     // FIXME getShiftAmountTy does not always return a sensible result when VT
6108     // is an illegal type, and so the type may be too small to fit the shift
6109     // amount. Override it with i32. The shift will have to be legalized.
6110     ShiftAmountTy = MVT::i32;
6111   }
6112   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6113 
6114   if (!LH.getNode() && !RH.getNode() &&
6115       isOperationLegalOrCustom(ISD::SRL, VT) &&
6116       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6117     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6118     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6119     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6120     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6121   }
6122 
6123   if (!LH.getNode())
6124     return false;
6125 
6126   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6127     return false;
6128 
6129   Result.push_back(Lo);
6130 
6131   if (Opcode == ISD::MUL) {
6132     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6133     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6134     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6135     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6136     Result.push_back(Hi);
6137     return true;
6138   }
6139 
6140   // Compute the full width result.
6141   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6142     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6143     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6144     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6145     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6146   };
6147 
6148   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6149   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6150     return false;
6151 
6152   // This is effectively the add part of a multiply-add of half-sized operands,
6153   // so it cannot overflow.
6154   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6155 
6156   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6157     return false;
6158 
6159   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6160   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6161 
6162   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6163                   isOperationLegalOrCustom(ISD::ADDE, VT));
6164   if (UseGlue)
6165     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6166                        Merge(Lo, Hi));
6167   else
6168     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6169                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6170 
6171   SDValue Carry = Next.getValue(1);
6172   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6173   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6174 
6175   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6176     return false;
6177 
6178   if (UseGlue)
6179     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6180                      Carry);
6181   else
6182     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6183                      Zero, Carry);
6184 
6185   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6186 
6187   if (Opcode == ISD::SMUL_LOHI) {
6188     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6189                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6190     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6191 
6192     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6193                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6194     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6195   }
6196 
6197   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6198   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6199   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6200   return true;
6201 }
6202 
expandMUL(SDNode * N,SDValue & Lo,SDValue & Hi,EVT HiLoVT,SelectionDAG & DAG,MulExpansionKind Kind,SDValue LL,SDValue LH,SDValue RL,SDValue RH) const6203 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6204                                SelectionDAG &DAG, MulExpansionKind Kind,
6205                                SDValue LL, SDValue LH, SDValue RL,
6206                                SDValue RH) const {
6207   SmallVector<SDValue, 2> Result;
6208   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6209                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6210                            DAG, Kind, LL, LH, RL, RH);
6211   if (Ok) {
6212     assert(Result.size() == 2);
6213     Lo = Result[0];
6214     Hi = Result[1];
6215   }
6216   return Ok;
6217 }
6218 
6219 // Check that (every element of) Z is undef or not an exact multiple of BW.
isNonZeroModBitWidthOrUndef(SDValue Z,unsigned BW)6220 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6221   return ISD::matchUnaryPredicate(
6222       Z,
6223       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6224       true);
6225 }
6226 
expandFunnelShift(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const6227 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6228                                        SelectionDAG &DAG) const {
6229   EVT VT = Node->getValueType(0);
6230 
6231   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6232                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6233                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6234                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6235     return false;
6236 
6237   SDValue X = Node->getOperand(0);
6238   SDValue Y = Node->getOperand(1);
6239   SDValue Z = Node->getOperand(2);
6240 
6241   unsigned BW = VT.getScalarSizeInBits();
6242   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6243   SDLoc DL(SDValue(Node, 0));
6244 
6245   EVT ShVT = Z.getValueType();
6246 
6247   // If a funnel shift in the other direction is more supported, use it.
6248   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6249   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6250       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6251     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6252       // fshl X, Y, Z -> fshr X, Y, -Z
6253       // fshr X, Y, Z -> fshl X, Y, -Z
6254       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6255       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6256     } else {
6257       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6258       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6259       SDValue One = DAG.getConstant(1, DL, ShVT);
6260       if (IsFSHL) {
6261         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6262         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6263       } else {
6264         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6265         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6266       }
6267       Z = DAG.getNOT(DL, Z, ShVT);
6268     }
6269     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6270     return true;
6271   }
6272 
6273   SDValue ShX, ShY;
6274   SDValue ShAmt, InvShAmt;
6275   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6276     // fshl: X << C | Y >> (BW - C)
6277     // fshr: X << (BW - C) | Y >> C
6278     // where C = Z % BW is not zero
6279     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6280     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6281     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6282     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6283     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6284   } else {
6285     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6286     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6287     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6288     if (isPowerOf2_32(BW)) {
6289       // Z % BW -> Z & (BW - 1)
6290       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6291       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6292       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6293     } else {
6294       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6295       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6296       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6297     }
6298 
6299     SDValue One = DAG.getConstant(1, DL, ShVT);
6300     if (IsFSHL) {
6301       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6302       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6303       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6304     } else {
6305       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6306       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6307       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6308     }
6309   }
6310   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6311   return true;
6312 }
6313 
6314 // TODO: Merge with expandFunnelShift.
expandROT(SDNode * Node,bool AllowVectorOps,SDValue & Result,SelectionDAG & DAG) const6315 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6316                                SDValue &Result, SelectionDAG &DAG) const {
6317   EVT VT = Node->getValueType(0);
6318   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6319   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6320   SDValue Op0 = Node->getOperand(0);
6321   SDValue Op1 = Node->getOperand(1);
6322   SDLoc DL(SDValue(Node, 0));
6323 
6324   EVT ShVT = Op1.getValueType();
6325   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6326 
6327   // If a rotate in the other direction is supported, use it.
6328   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6329   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6330     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6331     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6332     return true;
6333   }
6334 
6335   if (!AllowVectorOps && VT.isVector() &&
6336       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6337        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6338        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6339        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6340        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6341     return false;
6342 
6343   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6344   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6345   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6346   SDValue ShVal;
6347   SDValue HsVal;
6348   if (isPowerOf2_32(EltSizeInBits)) {
6349     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6350     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6351     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6352     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6353     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6354     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6355     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6356   } else {
6357     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6358     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6359     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6360     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6361     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6362     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6363     SDValue One = DAG.getConstant(1, DL, ShVT);
6364     HsVal =
6365         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6366   }
6367   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6368   return true;
6369 }
6370 
expandFP_TO_SINT(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const6371 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6372                                       SelectionDAG &DAG) const {
6373   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6374   SDValue Src = Node->getOperand(OpNo);
6375   EVT SrcVT = Src.getValueType();
6376   EVT DstVT = Node->getValueType(0);
6377   SDLoc dl(SDValue(Node, 0));
6378 
6379   // FIXME: Only f32 to i64 conversions are supported.
6380   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6381     return false;
6382 
6383   if (Node->isStrictFPOpcode())
6384     // When a NaN is converted to an integer a trap is allowed. We can't
6385     // use this expansion here because it would eliminate that trap. Other
6386     // traps are also allowed and cannot be eliminated. See
6387     // IEEE 754-2008 sec 5.8.
6388     return false;
6389 
6390   // Expand f32 -> i64 conversion
6391   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6392   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6393   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6394   EVT IntVT = SrcVT.changeTypeToInteger();
6395   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6396 
6397   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6398   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6399   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6400   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6401   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6402   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6403 
6404   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6405 
6406   SDValue ExponentBits = DAG.getNode(
6407       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6408       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6409   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6410 
6411   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6412                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6413                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6414   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6415 
6416   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6417                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6418                           DAG.getConstant(0x00800000, dl, IntVT));
6419 
6420   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6421 
6422   R = DAG.getSelectCC(
6423       dl, Exponent, ExponentLoBit,
6424       DAG.getNode(ISD::SHL, dl, DstVT, R,
6425                   DAG.getZExtOrTrunc(
6426                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6427                       dl, IntShVT)),
6428       DAG.getNode(ISD::SRL, dl, DstVT, R,
6429                   DAG.getZExtOrTrunc(
6430                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6431                       dl, IntShVT)),
6432       ISD::SETGT);
6433 
6434   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6435                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6436 
6437   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6438                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6439   return true;
6440 }
6441 
expandFP_TO_UINT(SDNode * Node,SDValue & Result,SDValue & Chain,SelectionDAG & DAG) const6442 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6443                                       SDValue &Chain,
6444                                       SelectionDAG &DAG) const {
6445   SDLoc dl(SDValue(Node, 0));
6446   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6447   SDValue Src = Node->getOperand(OpNo);
6448 
6449   EVT SrcVT = Src.getValueType();
6450   EVT DstVT = Node->getValueType(0);
6451   EVT SetCCVT =
6452       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6453   EVT DstSetCCVT =
6454       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6455 
6456   // Only expand vector types if we have the appropriate vector bit operations.
6457   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6458                                                    ISD::FP_TO_SINT;
6459   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6460                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6461     return false;
6462 
6463   // If the maximum float value is smaller then the signed integer range,
6464   // the destination signmask can't be represented by the float, so we can
6465   // just use FP_TO_SINT directly.
6466   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6467   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6468   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6469   if (APFloat::opOverflow &
6470       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6471     if (Node->isStrictFPOpcode()) {
6472       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6473                            { Node->getOperand(0), Src });
6474       Chain = Result.getValue(1);
6475     } else
6476       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6477     return true;
6478   }
6479 
6480   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6481   SDValue Sel;
6482 
6483   if (Node->isStrictFPOpcode()) {
6484     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6485                        Node->getOperand(0), /*IsSignaling*/ true);
6486     Chain = Sel.getValue(1);
6487   } else {
6488     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6489   }
6490 
6491   bool Strict = Node->isStrictFPOpcode() ||
6492                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6493 
6494   if (Strict) {
6495     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6496     // signmask then offset (the result of which should be fully representable).
6497     // Sel = Src < 0x8000000000000000
6498     // FltOfs = select Sel, 0, 0x8000000000000000
6499     // IntOfs = select Sel, 0, 0x8000000000000000
6500     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6501 
6502     // TODO: Should any fast-math-flags be set for the FSUB?
6503     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6504                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6505     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6506     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6507                                    DAG.getConstant(0, dl, DstVT),
6508                                    DAG.getConstant(SignMask, dl, DstVT));
6509     SDValue SInt;
6510     if (Node->isStrictFPOpcode()) {
6511       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6512                                 { Chain, Src, FltOfs });
6513       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6514                          { Val.getValue(1), Val });
6515       Chain = SInt.getValue(1);
6516     } else {
6517       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6518       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6519     }
6520     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6521   } else {
6522     // Expand based on maximum range of FP_TO_SINT:
6523     // True = fp_to_sint(Src)
6524     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6525     // Result = select (Src < 0x8000000000000000), True, False
6526 
6527     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6528     // TODO: Should any fast-math-flags be set for the FSUB?
6529     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6530                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6531     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6532                         DAG.getConstant(SignMask, dl, DstVT));
6533     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6534     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6535   }
6536   return true;
6537 }
6538 
expandUINT_TO_FP(SDNode * Node,SDValue & Result,SDValue & Chain,SelectionDAG & DAG) const6539 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6540                                       SDValue &Chain,
6541                                       SelectionDAG &DAG) const {
6542   // This transform is not correct for converting 0 when rounding mode is set
6543   // to round toward negative infinity which will produce -0.0. So disable under
6544   // strictfp.
6545   if (Node->isStrictFPOpcode())
6546     return false;
6547 
6548   SDValue Src = Node->getOperand(0);
6549   EVT SrcVT = Src.getValueType();
6550   EVT DstVT = Node->getValueType(0);
6551 
6552   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6553     return false;
6554 
6555   // Only expand vector types if we have the appropriate vector bit operations.
6556   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6557                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6558                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6559                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6560                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6561     return false;
6562 
6563   SDLoc dl(SDValue(Node, 0));
6564   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6565 
6566   // Implementation of unsigned i64 to f64 following the algorithm in
6567   // __floatundidf in compiler_rt.  This implementation performs rounding
6568   // correctly in all rounding modes with the exception of converting 0
6569   // when rounding toward negative infinity. In that case the fsub will produce
6570   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6571   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6572   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6573       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6574   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6575   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6576   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6577 
6578   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6579   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6580   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6581   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6582   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6583   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6584   SDValue HiSub =
6585       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6586   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6587   return true;
6588 }
6589 
expandFMINNUM_FMAXNUM(SDNode * Node,SelectionDAG & DAG) const6590 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6591                                               SelectionDAG &DAG) const {
6592   SDLoc dl(Node);
6593   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6594     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6595   EVT VT = Node->getValueType(0);
6596   if (isOperationLegalOrCustom(NewOp, VT)) {
6597     SDValue Quiet0 = Node->getOperand(0);
6598     SDValue Quiet1 = Node->getOperand(1);
6599 
6600     if (!Node->getFlags().hasNoNaNs()) {
6601       // Insert canonicalizes if it's possible we need to quiet to get correct
6602       // sNaN behavior.
6603       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6604         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6605                              Node->getFlags());
6606       }
6607       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6608         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6609                              Node->getFlags());
6610       }
6611     }
6612 
6613     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6614   }
6615 
6616   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6617   // instead if there are no NaNs.
6618   if (Node->getFlags().hasNoNaNs()) {
6619     unsigned IEEE2018Op =
6620         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6621     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6622       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6623                          Node->getOperand(1), Node->getFlags());
6624     }
6625   }
6626 
6627   // If none of the above worked, but there are no NaNs, then expand to
6628   // a compare/select sequence.  This is required for correctness since
6629   // InstCombine might have canonicalized a fcmp+select sequence to a
6630   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6631   // expansion to libcall, we might introduce a link-time dependency
6632   // on libm into a file that originally did not have one.
6633   if (Node->getFlags().hasNoNaNs()) {
6634     ISD::CondCode Pred =
6635         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6636     SDValue Op1 = Node->getOperand(0);
6637     SDValue Op2 = Node->getOperand(1);
6638     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6639     // Copy FMF flags, but always set the no-signed-zeros flag
6640     // as this is implied by the FMINNUM/FMAXNUM semantics.
6641     SDNodeFlags Flags = Node->getFlags();
6642     Flags.setNoSignedZeros(true);
6643     SelCC->setFlags(Flags);
6644     return SelCC;
6645   }
6646 
6647   return SDValue();
6648 }
6649 
expandCTPOP(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const6650 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6651                                  SelectionDAG &DAG) const {
6652   SDLoc dl(Node);
6653   EVT VT = Node->getValueType(0);
6654   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6655   SDValue Op = Node->getOperand(0);
6656   unsigned Len = VT.getScalarSizeInBits();
6657   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6658 
6659   // TODO: Add support for irregular type lengths.
6660   if (!(Len <= 128 && Len % 8 == 0))
6661     return false;
6662 
6663   // Only expand vector types if we have the appropriate vector bit operations.
6664   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6665                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6666                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6667                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6668                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6669     return false;
6670 
6671   // This is the "best" algorithm from
6672   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6673   SDValue Mask55 =
6674       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6675   SDValue Mask33 =
6676       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6677   SDValue Mask0F =
6678       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6679   SDValue Mask01 =
6680       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6681 
6682   // v = v - ((v >> 1) & 0x55555555...)
6683   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6684                    DAG.getNode(ISD::AND, dl, VT,
6685                                DAG.getNode(ISD::SRL, dl, VT, Op,
6686                                            DAG.getConstant(1, dl, ShVT)),
6687                                Mask55));
6688   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6689   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6690                    DAG.getNode(ISD::AND, dl, VT,
6691                                DAG.getNode(ISD::SRL, dl, VT, Op,
6692                                            DAG.getConstant(2, dl, ShVT)),
6693                                Mask33));
6694   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6695   Op = DAG.getNode(ISD::AND, dl, VT,
6696                    DAG.getNode(ISD::ADD, dl, VT, Op,
6697                                DAG.getNode(ISD::SRL, dl, VT, Op,
6698                                            DAG.getConstant(4, dl, ShVT))),
6699                    Mask0F);
6700   // v = (v * 0x01010101...) >> (Len - 8)
6701   if (Len > 8)
6702     Op =
6703         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6704                     DAG.getConstant(Len - 8, dl, ShVT));
6705 
6706   Result = Op;
6707   return true;
6708 }
6709 
expandCTLZ(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const6710 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6711                                 SelectionDAG &DAG) const {
6712   SDLoc dl(Node);
6713   EVT VT = Node->getValueType(0);
6714   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6715   SDValue Op = Node->getOperand(0);
6716   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6717 
6718   // If the non-ZERO_UNDEF version is supported we can use that instead.
6719   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6720       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6721     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6722     return true;
6723   }
6724 
6725   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6726   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6727     EVT SetCCVT =
6728         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6729     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6730     SDValue Zero = DAG.getConstant(0, dl, VT);
6731     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6732     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6733                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6734     return true;
6735   }
6736 
6737   // Only expand vector types if we have the appropriate vector bit operations.
6738   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6739                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6740                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6741                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6742     return false;
6743 
6744   // for now, we do this:
6745   // x = x | (x >> 1);
6746   // x = x | (x >> 2);
6747   // ...
6748   // x = x | (x >>16);
6749   // x = x | (x >>32); // for 64-bit input
6750   // return popcount(~x);
6751   //
6752   // Ref: "Hacker's Delight" by Henry Warren
6753   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6754     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6755     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6756                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6757   }
6758   Op = DAG.getNOT(dl, Op, VT);
6759   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6760   return true;
6761 }
6762 
expandCTTZ(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const6763 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6764                                 SelectionDAG &DAG) const {
6765   SDLoc dl(Node);
6766   EVT VT = Node->getValueType(0);
6767   SDValue Op = Node->getOperand(0);
6768   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6769 
6770   // If the non-ZERO_UNDEF version is supported we can use that instead.
6771   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6772       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6773     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6774     return true;
6775   }
6776 
6777   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6778   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6779     EVT SetCCVT =
6780         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6781     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6782     SDValue Zero = DAG.getConstant(0, dl, VT);
6783     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6784     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6785                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6786     return true;
6787   }
6788 
6789   // Only expand vector types if we have the appropriate vector bit operations.
6790   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6791                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6792                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6793                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6794                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6795                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6796     return false;
6797 
6798   // for now, we use: { return popcount(~x & (x - 1)); }
6799   // unless the target has ctlz but not ctpop, in which case we use:
6800   // { return 32 - nlz(~x & (x-1)); }
6801   // Ref: "Hacker's Delight" by Henry Warren
6802   SDValue Tmp = DAG.getNode(
6803       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6804       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6805 
6806   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6807   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6808     Result =
6809         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6810                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6811     return true;
6812   }
6813 
6814   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6815   return true;
6816 }
6817 
expandABS(SDNode * N,SDValue & Result,SelectionDAG & DAG) const6818 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6819                                SelectionDAG &DAG) const {
6820   SDLoc dl(N);
6821   EVT VT = N->getValueType(0);
6822   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6823   SDValue Op = N->getOperand(0);
6824 
6825   // Only expand vector types if we have the appropriate vector operations.
6826   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6827                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6828                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6829     return false;
6830 
6831   SDValue Shift =
6832       DAG.getNode(ISD::SRA, dl, VT, Op,
6833                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6834   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6835   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6836   return true;
6837 }
6838 
6839 std::pair<SDValue, SDValue>
scalarizeVectorLoad(LoadSDNode * LD,SelectionDAG & DAG) const6840 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6841                                     SelectionDAG &DAG) const {
6842   SDLoc SL(LD);
6843   SDValue Chain = LD->getChain();
6844   SDValue BasePTR = LD->getBasePtr();
6845   EVT SrcVT = LD->getMemoryVT();
6846   EVT DstVT = LD->getValueType(0);
6847   ISD::LoadExtType ExtType = LD->getExtensionType();
6848 
6849   if (SrcVT.isScalableVector())
6850     report_fatal_error("Cannot scalarize scalable vector loads");
6851 
6852   unsigned NumElem = SrcVT.getVectorNumElements();
6853 
6854   EVT SrcEltVT = SrcVT.getScalarType();
6855   EVT DstEltVT = DstVT.getScalarType();
6856 
6857   // A vector must always be stored in memory as-is, i.e. without any padding
6858   // between the elements, since various code depend on it, e.g. in the
6859   // handling of a bitcast of a vector type to int, which may be done with a
6860   // vector store followed by an integer load. A vector that does not have
6861   // elements that are byte-sized must therefore be stored as an integer
6862   // built out of the extracted vector elements.
6863   if (!SrcEltVT.isByteSized()) {
6864     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
6865     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
6866 
6867     unsigned NumSrcBits = SrcVT.getSizeInBits();
6868     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
6869 
6870     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
6871     SDValue SrcEltBitMask = DAG.getConstant(
6872         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
6873 
6874     // Load the whole vector and avoid masking off the top bits as it makes
6875     // the codegen worse.
6876     SDValue Load =
6877         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
6878                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
6879                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6880 
6881     SmallVector<SDValue, 8> Vals;
6882     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6883       unsigned ShiftIntoIdx =
6884           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6885       SDValue ShiftAmount =
6886           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
6887                                      LoadVT, SL, /*LegalTypes=*/false);
6888       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
6889       SDValue Elt =
6890           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
6891       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
6892 
6893       if (ExtType != ISD::NON_EXTLOAD) {
6894         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
6895         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
6896       }
6897 
6898       Vals.push_back(Scalar);
6899     }
6900 
6901     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6902     return std::make_pair(Value, Load.getValue(1));
6903   }
6904 
6905   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6906   assert(SrcEltVT.isByteSized());
6907 
6908   SmallVector<SDValue, 8> Vals;
6909   SmallVector<SDValue, 8> LoadChains;
6910 
6911   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6912     SDValue ScalarLoad =
6913         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6914                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6915                        SrcEltVT, LD->getOriginalAlign(),
6916                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6917 
6918     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
6919 
6920     Vals.push_back(ScalarLoad.getValue(0));
6921     LoadChains.push_back(ScalarLoad.getValue(1));
6922   }
6923 
6924   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6925   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6926 
6927   return std::make_pair(Value, NewChain);
6928 }
6929 
scalarizeVectorStore(StoreSDNode * ST,SelectionDAG & DAG) const6930 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6931                                              SelectionDAG &DAG) const {
6932   SDLoc SL(ST);
6933 
6934   SDValue Chain = ST->getChain();
6935   SDValue BasePtr = ST->getBasePtr();
6936   SDValue Value = ST->getValue();
6937   EVT StVT = ST->getMemoryVT();
6938 
6939   if (StVT.isScalableVector())
6940     report_fatal_error("Cannot scalarize scalable vector stores");
6941 
6942   // The type of the data we want to save
6943   EVT RegVT = Value.getValueType();
6944   EVT RegSclVT = RegVT.getScalarType();
6945 
6946   // The type of data as saved in memory.
6947   EVT MemSclVT = StVT.getScalarType();
6948 
6949   unsigned NumElem = StVT.getVectorNumElements();
6950 
6951   // A vector must always be stored in memory as-is, i.e. without any padding
6952   // between the elements, since various code depend on it, e.g. in the
6953   // handling of a bitcast of a vector type to int, which may be done with a
6954   // vector store followed by an integer load. A vector that does not have
6955   // elements that are byte-sized must therefore be stored as an integer
6956   // built out of the extracted vector elements.
6957   if (!MemSclVT.isByteSized()) {
6958     unsigned NumBits = StVT.getSizeInBits();
6959     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6960 
6961     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6962 
6963     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6964       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6965                                 DAG.getVectorIdxConstant(Idx, SL));
6966       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6967       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6968       unsigned ShiftIntoIdx =
6969           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6970       SDValue ShiftAmount =
6971           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6972       SDValue ShiftedElt =
6973           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6974       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6975     }
6976 
6977     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6978                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
6979                         ST->getAAInfo());
6980   }
6981 
6982   // Store Stride in bytes
6983   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6984   assert(Stride && "Zero stride!");
6985   // Extract each of the elements from the original vector and save them into
6986   // memory individually.
6987   SmallVector<SDValue, 8> Stores;
6988   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6989     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6990                               DAG.getVectorIdxConstant(Idx, SL));
6991 
6992     SDValue Ptr =
6993         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
6994 
6995     // This scalar TruncStore may be illegal, but we legalize it later.
6996     SDValue Store = DAG.getTruncStore(
6997         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6998         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
6999         ST->getAAInfo());
7000 
7001     Stores.push_back(Store);
7002   }
7003 
7004   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7005 }
7006 
7007 std::pair<SDValue, SDValue>
expandUnalignedLoad(LoadSDNode * LD,SelectionDAG & DAG) const7008 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7009   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7010          "unaligned indexed loads not implemented!");
7011   SDValue Chain = LD->getChain();
7012   SDValue Ptr = LD->getBasePtr();
7013   EVT VT = LD->getValueType(0);
7014   EVT LoadedVT = LD->getMemoryVT();
7015   SDLoc dl(LD);
7016   auto &MF = DAG.getMachineFunction();
7017 
7018   if (VT.isFloatingPoint() || VT.isVector()) {
7019     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7020     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7021       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7022           LoadedVT.isVector()) {
7023         // Scalarize the load and let the individual components be handled.
7024         return scalarizeVectorLoad(LD, DAG);
7025       }
7026 
7027       // Expand to a (misaligned) integer load of the same size,
7028       // then bitconvert to floating point or vector.
7029       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7030                                     LD->getMemOperand());
7031       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7032       if (LoadedVT != VT)
7033         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7034                              ISD::ANY_EXTEND, dl, VT, Result);
7035 
7036       return std::make_pair(Result, newLoad.getValue(1));
7037     }
7038 
7039     // Copy the value to a (aligned) stack slot using (unaligned) integer
7040     // loads and stores, then do a (aligned) load from the stack slot.
7041     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7042     unsigned LoadedBytes = LoadedVT.getStoreSize();
7043     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7044     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7045 
7046     // Make sure the stack slot is also aligned for the register type.
7047     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7048     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7049     SmallVector<SDValue, 8> Stores;
7050     SDValue StackPtr = StackBase;
7051     unsigned Offset = 0;
7052 
7053     EVT PtrVT = Ptr.getValueType();
7054     EVT StackPtrVT = StackPtr.getValueType();
7055 
7056     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7057     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7058 
7059     // Do all but one copies using the full register width.
7060     for (unsigned i = 1; i < NumRegs; i++) {
7061       // Load one integer register's worth from the original location.
7062       SDValue Load = DAG.getLoad(
7063           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7064           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7065           LD->getAAInfo());
7066       // Follow the load with a store to the stack slot.  Remember the store.
7067       Stores.push_back(DAG.getStore(
7068           Load.getValue(1), dl, Load, StackPtr,
7069           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7070       // Increment the pointers.
7071       Offset += RegBytes;
7072 
7073       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7074       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7075     }
7076 
7077     // The last copy may be partial.  Do an extending load.
7078     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7079                                   8 * (LoadedBytes - Offset));
7080     SDValue Load =
7081         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7082                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7083                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7084                        LD->getAAInfo());
7085     // Follow the load with a store to the stack slot.  Remember the store.
7086     // On big-endian machines this requires a truncating store to ensure
7087     // that the bits end up in the right place.
7088     Stores.push_back(DAG.getTruncStore(
7089         Load.getValue(1), dl, Load, StackPtr,
7090         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7091 
7092     // The order of the stores doesn't matter - say it with a TokenFactor.
7093     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7094 
7095     // Finally, perform the original load only redirected to the stack slot.
7096     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7097                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7098                           LoadedVT);
7099 
7100     // Callers expect a MERGE_VALUES node.
7101     return std::make_pair(Load, TF);
7102   }
7103 
7104   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7105          "Unaligned load of unsupported type.");
7106 
7107   // Compute the new VT that is half the size of the old one.  This is an
7108   // integer MVT.
7109   unsigned NumBits = LoadedVT.getSizeInBits();
7110   EVT NewLoadedVT;
7111   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7112   NumBits >>= 1;
7113 
7114   Align Alignment = LD->getOriginalAlign();
7115   unsigned IncrementSize = NumBits / 8;
7116   ISD::LoadExtType HiExtType = LD->getExtensionType();
7117 
7118   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7119   if (HiExtType == ISD::NON_EXTLOAD)
7120     HiExtType = ISD::ZEXTLOAD;
7121 
7122   // Load the value in two parts
7123   SDValue Lo, Hi;
7124   if (DAG.getDataLayout().isLittleEndian()) {
7125     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7126                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7127                         LD->getAAInfo());
7128 
7129     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7130     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7131                         LD->getPointerInfo().getWithOffset(IncrementSize),
7132                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7133                         LD->getAAInfo());
7134   } else {
7135     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7136                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7137                         LD->getAAInfo());
7138 
7139     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7140     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7141                         LD->getPointerInfo().getWithOffset(IncrementSize),
7142                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7143                         LD->getAAInfo());
7144   }
7145 
7146   // aggregate the two parts
7147   SDValue ShiftAmount =
7148       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7149                                                     DAG.getDataLayout()));
7150   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7151   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7152 
7153   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7154                              Hi.getValue(1));
7155 
7156   return std::make_pair(Result, TF);
7157 }
7158 
expandUnalignedStore(StoreSDNode * ST,SelectionDAG & DAG) const7159 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7160                                              SelectionDAG &DAG) const {
7161   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7162          "unaligned indexed stores not implemented!");
7163   SDValue Chain = ST->getChain();
7164   SDValue Ptr = ST->getBasePtr();
7165   SDValue Val = ST->getValue();
7166   EVT VT = Val.getValueType();
7167   Align Alignment = ST->getOriginalAlign();
7168   auto &MF = DAG.getMachineFunction();
7169   EVT StoreMemVT = ST->getMemoryVT();
7170 
7171   SDLoc dl(ST);
7172   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7173     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7174     if (isTypeLegal(intVT)) {
7175       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7176           StoreMemVT.isVector()) {
7177         // Scalarize the store and let the individual components be handled.
7178         SDValue Result = scalarizeVectorStore(ST, DAG);
7179         return Result;
7180       }
7181       // Expand to a bitconvert of the value to the integer type of the
7182       // same size, then a (misaligned) int store.
7183       // FIXME: Does not handle truncating floating point stores!
7184       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7185       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7186                             Alignment, ST->getMemOperand()->getFlags());
7187       return Result;
7188     }
7189     // Do a (aligned) store to a stack slot, then copy from the stack slot
7190     // to the final destination using (unaligned) integer loads and stores.
7191     MVT RegVT = getRegisterType(
7192         *DAG.getContext(),
7193         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7194     EVT PtrVT = Ptr.getValueType();
7195     unsigned StoredBytes = StoreMemVT.getStoreSize();
7196     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7197     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7198 
7199     // Make sure the stack slot is also aligned for the register type.
7200     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7201     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7202 
7203     // Perform the original store, only redirected to the stack slot.
7204     SDValue Store = DAG.getTruncStore(
7205         Chain, dl, Val, StackPtr,
7206         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7207 
7208     EVT StackPtrVT = StackPtr.getValueType();
7209 
7210     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7211     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7212     SmallVector<SDValue, 8> Stores;
7213     unsigned Offset = 0;
7214 
7215     // Do all but one copies using the full register width.
7216     for (unsigned i = 1; i < NumRegs; i++) {
7217       // Load one integer register's worth from the stack slot.
7218       SDValue Load = DAG.getLoad(
7219           RegVT, dl, Store, StackPtr,
7220           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7221       // Store it to the final location.  Remember the store.
7222       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7223                                     ST->getPointerInfo().getWithOffset(Offset),
7224                                     ST->getOriginalAlign(),
7225                                     ST->getMemOperand()->getFlags()));
7226       // Increment the pointers.
7227       Offset += RegBytes;
7228       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7229       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7230     }
7231 
7232     // The last store may be partial.  Do a truncating store.  On big-endian
7233     // machines this requires an extending load from the stack slot to ensure
7234     // that the bits are in the right place.
7235     EVT LoadMemVT =
7236         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7237 
7238     // Load from the stack slot.
7239     SDValue Load = DAG.getExtLoad(
7240         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7241         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7242 
7243     Stores.push_back(
7244         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7245                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7246                           ST->getOriginalAlign(),
7247                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7248     // The order of the stores doesn't matter - say it with a TokenFactor.
7249     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7250     return Result;
7251   }
7252 
7253   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7254          "Unaligned store of unknown type.");
7255   // Get the half-size VT
7256   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7257   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7258   unsigned IncrementSize = NumBits / 8;
7259 
7260   // Divide the stored value in two parts.
7261   SDValue ShiftAmount = DAG.getConstant(
7262       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7263   SDValue Lo = Val;
7264   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7265 
7266   // Store the two parts
7267   SDValue Store1, Store2;
7268   Store1 = DAG.getTruncStore(Chain, dl,
7269                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7270                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7271                              ST->getMemOperand()->getFlags());
7272 
7273   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7274   Store2 = DAG.getTruncStore(
7275       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7276       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7277       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7278 
7279   SDValue Result =
7280       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7281   return Result;
7282 }
7283 
7284 SDValue
IncrementMemoryAddress(SDValue Addr,SDValue Mask,const SDLoc & DL,EVT DataVT,SelectionDAG & DAG,bool IsCompressedMemory) const7285 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7286                                        const SDLoc &DL, EVT DataVT,
7287                                        SelectionDAG &DAG,
7288                                        bool IsCompressedMemory) const {
7289   SDValue Increment;
7290   EVT AddrVT = Addr.getValueType();
7291   EVT MaskVT = Mask.getValueType();
7292   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7293          "Incompatible types of Data and Mask");
7294   if (IsCompressedMemory) {
7295     if (DataVT.isScalableVector())
7296       report_fatal_error(
7297           "Cannot currently handle compressed memory with scalable vectors");
7298     // Incrementing the pointer according to number of '1's in the mask.
7299     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7300     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7301     if (MaskIntVT.getSizeInBits() < 32) {
7302       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7303       MaskIntVT = MVT::i32;
7304     }
7305 
7306     // Count '1's with POPCNT.
7307     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7308     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7309     // Scale is an element size in bytes.
7310     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7311                                     AddrVT);
7312     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7313   } else if (DataVT.isScalableVector()) {
7314     Increment = DAG.getVScale(DL, AddrVT,
7315                               APInt(AddrVT.getFixedSizeInBits(),
7316                                     DataVT.getStoreSize().getKnownMinSize()));
7317   } else
7318     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7319 
7320   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7321 }
7322 
clampDynamicVectorIndex(SelectionDAG & DAG,SDValue Idx,EVT VecVT,const SDLoc & dl)7323 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7324                                        SDValue Idx,
7325                                        EVT VecVT,
7326                                        const SDLoc &dl) {
7327   if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7328     return Idx;
7329 
7330   EVT IdxVT = Idx.getValueType();
7331   unsigned NElts = VecVT.getVectorMinNumElements();
7332   if (VecVT.isScalableVector()) {
7333     SDValue VS = DAG.getVScale(dl, IdxVT,
7334                                APInt(IdxVT.getFixedSizeInBits(),
7335                                      NElts));
7336     SDValue Sub = DAG.getNode(ISD::SUB, dl, IdxVT, VS,
7337                               DAG.getConstant(1, dl, IdxVT));
7338 
7339     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7340   } else {
7341     if (isPowerOf2_32(NElts)) {
7342       APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7343                                        Log2_32(NElts));
7344       return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7345                          DAG.getConstant(Imm, dl, IdxVT));
7346     }
7347   }
7348 
7349   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7350                      DAG.getConstant(NElts - 1, dl, IdxVT));
7351 }
7352 
getVectorElementPointer(SelectionDAG & DAG,SDValue VecPtr,EVT VecVT,SDValue Index) const7353 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7354                                                 SDValue VecPtr, EVT VecVT,
7355                                                 SDValue Index) const {
7356   SDLoc dl(Index);
7357   // Make sure the index type is big enough to compute in.
7358   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7359 
7360   EVT EltVT = VecVT.getVectorElementType();
7361 
7362   // Calculate the element offset and add it to the pointer.
7363   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7364   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7365          "Converting bits to bytes lost precision");
7366 
7367   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7368 
7369   EVT IdxVT = Index.getValueType();
7370 
7371   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7372                       DAG.getConstant(EltSize, dl, IdxVT));
7373   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7374 }
7375 
7376 //===----------------------------------------------------------------------===//
7377 // Implementation of Emulated TLS Model
7378 //===----------------------------------------------------------------------===//
7379 
LowerToTLSEmulatedModel(const GlobalAddressSDNode * GA,SelectionDAG & DAG) const7380 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7381                                                 SelectionDAG &DAG) const {
7382   // Access to address of TLS varialbe xyz is lowered to a function call:
7383   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7384   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7385   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7386   SDLoc dl(GA);
7387 
7388   ArgListTy Args;
7389   ArgListEntry Entry;
7390   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7391   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7392   StringRef EmuTlsVarName(NameString);
7393   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7394   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7395   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7396   Entry.Ty = VoidPtrType;
7397   Args.push_back(Entry);
7398 
7399   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7400 
7401   TargetLowering::CallLoweringInfo CLI(DAG);
7402   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7403   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7404   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7405 
7406   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7407   // At last for X86 targets, maybe good for other targets too?
7408   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7409   MFI.setAdjustsStack(true); // Is this only for X86 target?
7410   MFI.setHasCalls(true);
7411 
7412   assert((GA->getOffset() == 0) &&
7413          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7414   return CallResult.first;
7415 }
7416 
lowerCmpEqZeroToCtlzSrl(SDValue Op,SelectionDAG & DAG) const7417 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7418                                                 SelectionDAG &DAG) const {
7419   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7420   if (!isCtlzFast())
7421     return SDValue();
7422   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7423   SDLoc dl(Op);
7424   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7425     if (C->isNullValue() && CC == ISD::SETEQ) {
7426       EVT VT = Op.getOperand(0).getValueType();
7427       SDValue Zext = Op.getOperand(0);
7428       if (VT.bitsLT(MVT::i32)) {
7429         VT = MVT::i32;
7430         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7431       }
7432       unsigned Log2b = Log2_32(VT.getSizeInBits());
7433       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7434       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7435                                 DAG.getConstant(Log2b, dl, MVT::i32));
7436       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7437     }
7438   }
7439   return SDValue();
7440 }
7441 
7442 // Convert redundant addressing modes (e.g. scaling is redundant
7443 // when accessing bytes).
7444 ISD::MemIndexType
getCanonicalIndexType(ISD::MemIndexType IndexType,EVT MemVT,SDValue Offsets) const7445 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
7446                                       SDValue Offsets) const {
7447   bool IsScaledIndex =
7448       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
7449   bool IsSignedIndex =
7450       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
7451 
7452   // Scaling is unimportant for bytes, canonicalize to unscaled.
7453   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) {
7454     IsScaledIndex = false;
7455     IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
7456   }
7457 
7458   return IndexType;
7459 }
7460 
expandAddSubSat(SDNode * Node,SelectionDAG & DAG) const7461 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7462   unsigned Opcode = Node->getOpcode();
7463   SDValue LHS = Node->getOperand(0);
7464   SDValue RHS = Node->getOperand(1);
7465   EVT VT = LHS.getValueType();
7466   SDLoc dl(Node);
7467 
7468   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7469   assert(VT.isInteger() && "Expected operands to be integers");
7470 
7471   // usub.sat(a, b) -> umax(a, b) - b
7472   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7473     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7474     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7475   }
7476 
7477   // uadd.sat(a, b) -> umin(a, ~b) + b
7478   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7479     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7480     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7481     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7482   }
7483 
7484   unsigned OverflowOp;
7485   switch (Opcode) {
7486   case ISD::SADDSAT:
7487     OverflowOp = ISD::SADDO;
7488     break;
7489   case ISD::UADDSAT:
7490     OverflowOp = ISD::UADDO;
7491     break;
7492   case ISD::SSUBSAT:
7493     OverflowOp = ISD::SSUBO;
7494     break;
7495   case ISD::USUBSAT:
7496     OverflowOp = ISD::USUBO;
7497     break;
7498   default:
7499     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7500                      "addition or subtraction node.");
7501   }
7502 
7503   // FIXME: Should really try to split the vector in case it's legal on a
7504   // subvector.
7505   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7506     return DAG.UnrollVectorOp(Node);
7507 
7508   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7509   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7510   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7511                                LHS, RHS);
7512   SDValue SumDiff = Result.getValue(0);
7513   SDValue Overflow = Result.getValue(1);
7514   SDValue Zero = DAG.getConstant(0, dl, VT);
7515   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7516 
7517   if (Opcode == ISD::UADDSAT) {
7518     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7519       // (LHS + RHS) | OverflowMask
7520       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7521       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7522     }
7523     // Overflow ? 0xffff.... : (LHS + RHS)
7524     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7525   } else if (Opcode == ISD::USUBSAT) {
7526     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7527       // (LHS - RHS) & ~OverflowMask
7528       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7529       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7530       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7531     }
7532     // Overflow ? 0 : (LHS - RHS)
7533     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7534   } else {
7535     // SatMax -> Overflow && SumDiff < 0
7536     // SatMin -> Overflow && SumDiff >= 0
7537     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7538     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7539     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7540     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7541     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7542     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7543     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7544   }
7545 }
7546 
expandShlSat(SDNode * Node,SelectionDAG & DAG) const7547 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
7548   unsigned Opcode = Node->getOpcode();
7549   bool IsSigned = Opcode == ISD::SSHLSAT;
7550   SDValue LHS = Node->getOperand(0);
7551   SDValue RHS = Node->getOperand(1);
7552   EVT VT = LHS.getValueType();
7553   SDLoc dl(Node);
7554 
7555   assert((Node->getOpcode() == ISD::SSHLSAT ||
7556           Node->getOpcode() == ISD::USHLSAT) &&
7557           "Expected a SHLSAT opcode");
7558   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7559   assert(VT.isInteger() && "Expected operands to be integers");
7560 
7561   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
7562 
7563   unsigned BW = VT.getScalarSizeInBits();
7564   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
7565   SDValue Orig =
7566       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
7567 
7568   SDValue SatVal;
7569   if (IsSigned) {
7570     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
7571     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
7572     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
7573                              SatMin, SatMax, ISD::SETLT);
7574   } else {
7575     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
7576   }
7577   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
7578 
7579   return Result;
7580 }
7581 
7582 SDValue
expandFixedPointMul(SDNode * Node,SelectionDAG & DAG) const7583 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7584   assert((Node->getOpcode() == ISD::SMULFIX ||
7585           Node->getOpcode() == ISD::UMULFIX ||
7586           Node->getOpcode() == ISD::SMULFIXSAT ||
7587           Node->getOpcode() == ISD::UMULFIXSAT) &&
7588          "Expected a fixed point multiplication opcode");
7589 
7590   SDLoc dl(Node);
7591   SDValue LHS = Node->getOperand(0);
7592   SDValue RHS = Node->getOperand(1);
7593   EVT VT = LHS.getValueType();
7594   unsigned Scale = Node->getConstantOperandVal(2);
7595   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7596                      Node->getOpcode() == ISD::UMULFIXSAT);
7597   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7598                  Node->getOpcode() == ISD::SMULFIXSAT);
7599   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7600   unsigned VTSize = VT.getScalarSizeInBits();
7601 
7602   if (!Scale) {
7603     // [us]mul.fix(a, b, 0) -> mul(a, b)
7604     if (!Saturating) {
7605       if (isOperationLegalOrCustom(ISD::MUL, VT))
7606         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7607     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7608       SDValue Result =
7609           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7610       SDValue Product = Result.getValue(0);
7611       SDValue Overflow = Result.getValue(1);
7612       SDValue Zero = DAG.getConstant(0, dl, VT);
7613 
7614       APInt MinVal = APInt::getSignedMinValue(VTSize);
7615       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7616       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7617       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7618       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7619       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7620       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7621     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7622       SDValue Result =
7623           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7624       SDValue Product = Result.getValue(0);
7625       SDValue Overflow = Result.getValue(1);
7626 
7627       APInt MaxVal = APInt::getMaxValue(VTSize);
7628       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7629       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7630     }
7631   }
7632 
7633   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7634          "Expected scale to be less than the number of bits if signed or at "
7635          "most the number of bits if unsigned.");
7636   assert(LHS.getValueType() == RHS.getValueType() &&
7637          "Expected both operands to be the same type");
7638 
7639   // Get the upper and lower bits of the result.
7640   SDValue Lo, Hi;
7641   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7642   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7643   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7644     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7645     Lo = Result.getValue(0);
7646     Hi = Result.getValue(1);
7647   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7648     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7649     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7650   } else if (VT.isVector()) {
7651     return SDValue();
7652   } else {
7653     report_fatal_error("Unable to expand fixed point multiplication.");
7654   }
7655 
7656   if (Scale == VTSize)
7657     // Result is just the top half since we'd be shifting by the width of the
7658     // operand. Overflow impossible so this works for both UMULFIX and
7659     // UMULFIXSAT.
7660     return Hi;
7661 
7662   // The result will need to be shifted right by the scale since both operands
7663   // are scaled. The result is given to us in 2 halves, so we only want part of
7664   // both in the result.
7665   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7666   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7667                                DAG.getConstant(Scale, dl, ShiftTy));
7668   if (!Saturating)
7669     return Result;
7670 
7671   if (!Signed) {
7672     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7673     // widened multiplication) aren't all zeroes.
7674 
7675     // Saturate to max if ((Hi >> Scale) != 0),
7676     // which is the same as if (Hi > ((1 << Scale) - 1))
7677     APInt MaxVal = APInt::getMaxValue(VTSize);
7678     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7679                                       dl, VT);
7680     Result = DAG.getSelectCC(dl, Hi, LowMask,
7681                              DAG.getConstant(MaxVal, dl, VT), Result,
7682                              ISD::SETUGT);
7683 
7684     return Result;
7685   }
7686 
7687   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7688   // widened multiplication) aren't all ones or all zeroes.
7689 
7690   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7691   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7692 
7693   if (Scale == 0) {
7694     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7695                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7696     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7697     // Saturated to SatMin if wide product is negative, and SatMax if wide
7698     // product is positive ...
7699     SDValue Zero = DAG.getConstant(0, dl, VT);
7700     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7701                                                ISD::SETLT);
7702     // ... but only if we overflowed.
7703     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7704   }
7705 
7706   //  We handled Scale==0 above so all the bits to examine is in Hi.
7707 
7708   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7709   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7710   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7711                                     dl, VT);
7712   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7713   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7714   // which is the same as if (HI < (-1 << (Scale - 1))
7715   SDValue HighMask =
7716       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7717                       dl, VT);
7718   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7719   return Result;
7720 }
7721 
7722 SDValue
expandFixedPointDiv(unsigned Opcode,const SDLoc & dl,SDValue LHS,SDValue RHS,unsigned Scale,SelectionDAG & DAG) const7723 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7724                                     SDValue LHS, SDValue RHS,
7725                                     unsigned Scale, SelectionDAG &DAG) const {
7726   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7727           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7728          "Expected a fixed point division opcode");
7729 
7730   EVT VT = LHS.getValueType();
7731   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7732   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7733   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7734 
7735   // If there is enough room in the type to upscale the LHS or downscale the
7736   // RHS before the division, we can perform it in this type without having to
7737   // resize. For signed operations, the LHS headroom is the number of
7738   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7739   // The headroom for the RHS is the number of trailing zeroes.
7740   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7741                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7742   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7743 
7744   // For signed saturating operations, we need to be able to detect true integer
7745   // division overflow; that is, when you have MIN / -EPS. However, this
7746   // is undefined behavior and if we emit divisions that could take such
7747   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7748   // example).
7749   // Avoid this by requiring an extra bit so that we never get this case.
7750   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7751   // signed saturating division, we need to emit a whopping 32-bit division.
7752   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7753     return SDValue();
7754 
7755   unsigned LHSShift = std::min(LHSLead, Scale);
7756   unsigned RHSShift = Scale - LHSShift;
7757 
7758   // At this point, we know that if we shift the LHS up by LHSShift and the
7759   // RHS down by RHSShift, we can emit a regular division with a final scaling
7760   // factor of Scale.
7761 
7762   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7763   if (LHSShift)
7764     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7765                       DAG.getConstant(LHSShift, dl, ShiftTy));
7766   if (RHSShift)
7767     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7768                       DAG.getConstant(RHSShift, dl, ShiftTy));
7769 
7770   SDValue Quot;
7771   if (Signed) {
7772     // For signed operations, if the resulting quotient is negative and the
7773     // remainder is nonzero, subtract 1 from the quotient to round towards
7774     // negative infinity.
7775     SDValue Rem;
7776     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7777     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7778     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7779     if (isTypeLegal(VT) &&
7780         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7781       Quot = DAG.getNode(ISD::SDIVREM, dl,
7782                          DAG.getVTList(VT, VT),
7783                          LHS, RHS);
7784       Rem = Quot.getValue(1);
7785       Quot = Quot.getValue(0);
7786     } else {
7787       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7788                          LHS, RHS);
7789       Rem = DAG.getNode(ISD::SREM, dl, VT,
7790                         LHS, RHS);
7791     }
7792     SDValue Zero = DAG.getConstant(0, dl, VT);
7793     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7794     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7795     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7796     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7797     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7798                                DAG.getConstant(1, dl, VT));
7799     Quot = DAG.getSelect(dl, VT,
7800                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7801                          Sub1, Quot);
7802   } else
7803     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7804                        LHS, RHS);
7805 
7806   return Quot;
7807 }
7808 
expandUADDSUBO(SDNode * Node,SDValue & Result,SDValue & Overflow,SelectionDAG & DAG) const7809 void TargetLowering::expandUADDSUBO(
7810     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7811   SDLoc dl(Node);
7812   SDValue LHS = Node->getOperand(0);
7813   SDValue RHS = Node->getOperand(1);
7814   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7815 
7816   // If ADD/SUBCARRY is legal, use that instead.
7817   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7818   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7819     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7820     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7821                                     { LHS, RHS, CarryIn });
7822     Result = SDValue(NodeCarry.getNode(), 0);
7823     Overflow = SDValue(NodeCarry.getNode(), 1);
7824     return;
7825   }
7826 
7827   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7828                             LHS.getValueType(), LHS, RHS);
7829 
7830   EVT ResultType = Node->getValueType(1);
7831   EVT SetCCType = getSetCCResultType(
7832       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7833   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7834   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7835   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7836 }
7837 
expandSADDSUBO(SDNode * Node,SDValue & Result,SDValue & Overflow,SelectionDAG & DAG) const7838 void TargetLowering::expandSADDSUBO(
7839     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7840   SDLoc dl(Node);
7841   SDValue LHS = Node->getOperand(0);
7842   SDValue RHS = Node->getOperand(1);
7843   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7844 
7845   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7846                             LHS.getValueType(), LHS, RHS);
7847 
7848   EVT ResultType = Node->getValueType(1);
7849   EVT OType = getSetCCResultType(
7850       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7851 
7852   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7853   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7854   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7855     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7856     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7857     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7858     return;
7859   }
7860 
7861   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7862 
7863   // For an addition, the result should be less than one of the operands (LHS)
7864   // if and only if the other operand (RHS) is negative, otherwise there will
7865   // be overflow.
7866   // For a subtraction, the result should be less than one of the operands
7867   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7868   // otherwise there will be overflow.
7869   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7870   SDValue ConditionRHS =
7871       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7872 
7873   Overflow = DAG.getBoolExtOrTrunc(
7874       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7875       ResultType, ResultType);
7876 }
7877 
expandMULO(SDNode * Node,SDValue & Result,SDValue & Overflow,SelectionDAG & DAG) const7878 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7879                                 SDValue &Overflow, SelectionDAG &DAG) const {
7880   SDLoc dl(Node);
7881   EVT VT = Node->getValueType(0);
7882   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7883   SDValue LHS = Node->getOperand(0);
7884   SDValue RHS = Node->getOperand(1);
7885   bool isSigned = Node->getOpcode() == ISD::SMULO;
7886 
7887   // For power-of-two multiplications we can use a simpler shift expansion.
7888   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7889     const APInt &C = RHSC->getAPIntValue();
7890     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7891     if (C.isPowerOf2()) {
7892       // smulo(x, signed_min) is same as umulo(x, signed_min).
7893       bool UseArithShift = isSigned && !C.isMinSignedValue();
7894       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7895       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7896       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7897       Overflow = DAG.getSetCC(dl, SetCCVT,
7898           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7899                       dl, VT, Result, ShiftAmt),
7900           LHS, ISD::SETNE);
7901       return true;
7902     }
7903   }
7904 
7905   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7906   if (VT.isVector())
7907     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7908                               VT.getVectorNumElements());
7909 
7910   SDValue BottomHalf;
7911   SDValue TopHalf;
7912   static const unsigned Ops[2][3] =
7913       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7914         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7915   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7916     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7917     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7918   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7919     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7920                              RHS);
7921     TopHalf = BottomHalf.getValue(1);
7922   } else if (isTypeLegal(WideVT)) {
7923     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7924     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7925     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7926     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7927     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7928         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7929     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7930                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7931   } else {
7932     if (VT.isVector())
7933       return false;
7934 
7935     // We can fall back to a libcall with an illegal type for the MUL if we
7936     // have a libcall big enough.
7937     // Also, we can fall back to a division in some cases, but that's a big
7938     // performance hit in the general case.
7939     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7940     if (WideVT == MVT::i16)
7941       LC = RTLIB::MUL_I16;
7942     else if (WideVT == MVT::i32)
7943       LC = RTLIB::MUL_I32;
7944     else if (WideVT == MVT::i64)
7945       LC = RTLIB::MUL_I64;
7946     else if (WideVT == MVT::i128)
7947       LC = RTLIB::MUL_I128;
7948     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7949 
7950     SDValue HiLHS;
7951     SDValue HiRHS;
7952     if (isSigned) {
7953       // The high part is obtained by SRA'ing all but one of the bits of low
7954       // part.
7955       unsigned LoSize = VT.getFixedSizeInBits();
7956       HiLHS =
7957           DAG.getNode(ISD::SRA, dl, VT, LHS,
7958                       DAG.getConstant(LoSize - 1, dl,
7959                                       getPointerTy(DAG.getDataLayout())));
7960       HiRHS =
7961           DAG.getNode(ISD::SRA, dl, VT, RHS,
7962                       DAG.getConstant(LoSize - 1, dl,
7963                                       getPointerTy(DAG.getDataLayout())));
7964     } else {
7965         HiLHS = DAG.getConstant(0, dl, VT);
7966         HiRHS = DAG.getConstant(0, dl, VT);
7967     }
7968 
7969     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7970     // pre-lowered to the correct types. This all depends upon WideVT not
7971     // being a legal type for the architecture and thus has to be split to
7972     // two arguments.
7973     SDValue Ret;
7974     TargetLowering::MakeLibCallOptions CallOptions;
7975     CallOptions.setSExt(isSigned);
7976     CallOptions.setIsPostTypeLegalization(true);
7977     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7978       // Halves of WideVT are packed into registers in different order
7979       // depending on platform endianness. This is usually handled by
7980       // the C calling convention, but we can't defer to it in
7981       // the legalizer.
7982       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7983       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7984     } else {
7985       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7986       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7987     }
7988     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7989            "Ret value is a collection of constituent nodes holding result.");
7990     if (DAG.getDataLayout().isLittleEndian()) {
7991       // Same as above.
7992       BottomHalf = Ret.getOperand(0);
7993       TopHalf = Ret.getOperand(1);
7994     } else {
7995       BottomHalf = Ret.getOperand(1);
7996       TopHalf = Ret.getOperand(0);
7997     }
7998   }
7999 
8000   Result = BottomHalf;
8001   if (isSigned) {
8002     SDValue ShiftAmt = DAG.getConstant(
8003         VT.getScalarSizeInBits() - 1, dl,
8004         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8005     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8006     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8007   } else {
8008     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8009                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8010   }
8011 
8012   // Truncate the result if SetCC returns a larger type than needed.
8013   EVT RType = Node->getValueType(1);
8014   if (RType.bitsLT(Overflow.getValueType()))
8015     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8016 
8017   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8018          "Unexpected result type for S/UMULO legalization");
8019   return true;
8020 }
8021 
expandVecReduce(SDNode * Node,SelectionDAG & DAG) const8022 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8023   SDLoc dl(Node);
8024   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8025   SDValue Op = Node->getOperand(0);
8026   EVT VT = Op.getValueType();
8027 
8028   if (VT.isScalableVector())
8029     report_fatal_error(
8030         "Expanding reductions for scalable vectors is undefined.");
8031 
8032   // Try to use a shuffle reduction for power of two vectors.
8033   if (VT.isPow2VectorType()) {
8034     while (VT.getVectorNumElements() > 1) {
8035       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8036       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8037         break;
8038 
8039       SDValue Lo, Hi;
8040       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8041       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8042       VT = HalfVT;
8043     }
8044   }
8045 
8046   EVT EltVT = VT.getVectorElementType();
8047   unsigned NumElts = VT.getVectorNumElements();
8048 
8049   SmallVector<SDValue, 8> Ops;
8050   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8051 
8052   SDValue Res = Ops[0];
8053   for (unsigned i = 1; i < NumElts; i++)
8054     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8055 
8056   // Result type may be wider than element type.
8057   if (EltVT != Node->getValueType(0))
8058     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8059   return Res;
8060 }
8061 
expandVecReduceSeq(SDNode * Node,SelectionDAG & DAG) const8062 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8063   SDLoc dl(Node);
8064   SDValue AccOp = Node->getOperand(0);
8065   SDValue VecOp = Node->getOperand(1);
8066   SDNodeFlags Flags = Node->getFlags();
8067 
8068   EVT VT = VecOp.getValueType();
8069   EVT EltVT = VT.getVectorElementType();
8070   unsigned NumElts = VT.getVectorNumElements();
8071 
8072   SmallVector<SDValue, 8> Ops;
8073   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8074 
8075   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8076 
8077   SDValue Res = AccOp;
8078   for (unsigned i = 0; i < NumElts; i++)
8079     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8080 
8081   return Res;
8082 }
8083 
expandREM(SDNode * Node,SDValue & Result,SelectionDAG & DAG) const8084 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8085                                SelectionDAG &DAG) const {
8086   EVT VT = Node->getValueType(0);
8087   SDLoc dl(Node);
8088   bool isSigned = Node->getOpcode() == ISD::SREM;
8089   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8090   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8091   SDValue Dividend = Node->getOperand(0);
8092   SDValue Divisor = Node->getOperand(1);
8093   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8094     SDVTList VTs = DAG.getVTList(VT, VT);
8095     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8096     return true;
8097   } else if (isOperationLegalOrCustom(DivOpc, VT)) {
8098     // X % Y -> X-X/Y*Y
8099     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8100     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8101     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8102     return true;
8103   }
8104   return false;
8105 }
8106