1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsMips.h"
41 #include "llvm/IR/IntrinsicsNVPTX.h"
42 #include "llvm/IR/IntrinsicsPowerPC.h"
43 #include "llvm/IR/IntrinsicsR600.h"
44 #include "llvm/IR/IntrinsicsRISCV.h"
45 #include "llvm/IR/IntrinsicsS390.h"
46 #include "llvm/IR/IntrinsicsWebAssembly.h"
47 #include "llvm/IR/IntrinsicsX86.h"
48 #include "llvm/IR/IntrinsicsXCore.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/SymbolTableListTraits.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstddef>
65 #include <cstdint>
66 #include <cstring>
67 #include <string>
68 
69 using namespace llvm;
70 using ProfileCount = Function::ProfileCount;
71 
72 // Explicit instantiations of SymbolTableListTraits since some of the methods
73 // are not in the public header file...
74 template class llvm::SymbolTableListTraits<BasicBlock>;
75 
76 //===----------------------------------------------------------------------===//
77 // Argument Implementation
78 //===----------------------------------------------------------------------===//
79 
Argument(Type * Ty,const Twine & Name,Function * Par,unsigned ArgNo)80 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
81     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
82   setName(Name);
83 }
84 
setParent(Function * parent)85 void Argument::setParent(Function *parent) {
86   Parent = parent;
87 }
88 
hasNonNullAttr() const89 bool Argument::hasNonNullAttr() const {
90   if (!getType()->isPointerTy()) return false;
91   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
92     return true;
93   else if (getDereferenceableBytes() > 0 &&
94            !NullPointerIsDefined(getParent(),
95                                  getType()->getPointerAddressSpace()))
96     return true;
97   return false;
98 }
99 
hasByValAttr() const100 bool Argument::hasByValAttr() const {
101   if (!getType()->isPointerTy()) return false;
102   return hasAttribute(Attribute::ByVal);
103 }
104 
hasByRefAttr() const105 bool Argument::hasByRefAttr() const {
106   if (!getType()->isPointerTy())
107     return false;
108   return hasAttribute(Attribute::ByRef);
109 }
110 
hasSwiftSelfAttr() const111 bool Argument::hasSwiftSelfAttr() const {
112   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
113 }
114 
hasSwiftErrorAttr() const115 bool Argument::hasSwiftErrorAttr() const {
116   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
117 }
118 
hasInAllocaAttr() const119 bool Argument::hasInAllocaAttr() const {
120   if (!getType()->isPointerTy()) return false;
121   return hasAttribute(Attribute::InAlloca);
122 }
123 
hasPreallocatedAttr() const124 bool Argument::hasPreallocatedAttr() const {
125   if (!getType()->isPointerTy())
126     return false;
127   return hasAttribute(Attribute::Preallocated);
128 }
129 
hasPassPointeeByValueCopyAttr() const130 bool Argument::hasPassPointeeByValueCopyAttr() const {
131   if (!getType()->isPointerTy()) return false;
132   AttributeList Attrs = getParent()->getAttributes();
133   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
134          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
135          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
136 }
137 
hasPointeeInMemoryValueAttr() const138 bool Argument::hasPointeeInMemoryValueAttr() const {
139   if (!getType()->isPointerTy())
140     return false;
141   AttributeList Attrs = getParent()->getAttributes();
142   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
143          Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) ||
144          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
145          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
146          Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
147 }
148 
149 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
150 /// parameter type.
getMemoryParamAllocType(AttributeSet ParamAttrs,Type * ArgTy)151 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
152   // FIXME: All the type carrying attributes are mutually exclusive, so there
153   // should be a single query to get the stored type that handles any of them.
154   if (Type *ByValTy = ParamAttrs.getByValType())
155     return ByValTy;
156   if (Type *ByRefTy = ParamAttrs.getByRefType())
157     return ByRefTy;
158   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
159     return PreAllocTy;
160 
161   // FIXME: sret and inalloca always depends on pointee element type. It's also
162   // possible for byval to miss it.
163   if (ParamAttrs.hasAttribute(Attribute::InAlloca) ||
164       ParamAttrs.hasAttribute(Attribute::ByVal) ||
165       ParamAttrs.hasAttribute(Attribute::StructRet) ||
166       ParamAttrs.hasAttribute(Attribute::Preallocated))
167     return cast<PointerType>(ArgTy)->getElementType();
168 
169   return nullptr;
170 }
171 
getPassPointeeByValueCopySize(const DataLayout & DL) const172 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
173   AttributeSet ParamAttrs =
174       getParent()->getAttributes().getParamAttributes(getArgNo());
175   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
176     return DL.getTypeAllocSize(MemTy);
177   return 0;
178 }
179 
getPointeeInMemoryValueType() const180 Type *Argument::getPointeeInMemoryValueType() const {
181   AttributeSet ParamAttrs =
182       getParent()->getAttributes().getParamAttributes(getArgNo());
183   return getMemoryParamAllocType(ParamAttrs, getType());
184 }
185 
getParamAlignment() const186 unsigned Argument::getParamAlignment() const {
187   assert(getType()->isPointerTy() && "Only pointers have alignments");
188   return getParent()->getParamAlignment(getArgNo());
189 }
190 
getParamAlign() const191 MaybeAlign Argument::getParamAlign() const {
192   assert(getType()->isPointerTy() && "Only pointers have alignments");
193   return getParent()->getParamAlign(getArgNo());
194 }
195 
getParamByValType() const196 Type *Argument::getParamByValType() const {
197   assert(getType()->isPointerTy() && "Only pointers have byval types");
198   return getParent()->getParamByValType(getArgNo());
199 }
200 
getParamStructRetType() const201 Type *Argument::getParamStructRetType() const {
202   assert(getType()->isPointerTy() && "Only pointers have sret types");
203   return getParent()->getParamStructRetType(getArgNo());
204 }
205 
getParamByRefType() const206 Type *Argument::getParamByRefType() const {
207   assert(getType()->isPointerTy() && "Only pointers have byval types");
208   return getParent()->getParamByRefType(getArgNo());
209 }
210 
getDereferenceableBytes() const211 uint64_t Argument::getDereferenceableBytes() const {
212   assert(getType()->isPointerTy() &&
213          "Only pointers have dereferenceable bytes");
214   return getParent()->getParamDereferenceableBytes(getArgNo());
215 }
216 
getDereferenceableOrNullBytes() const217 uint64_t Argument::getDereferenceableOrNullBytes() const {
218   assert(getType()->isPointerTy() &&
219          "Only pointers have dereferenceable bytes");
220   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
221 }
222 
hasNestAttr() const223 bool Argument::hasNestAttr() const {
224   if (!getType()->isPointerTy()) return false;
225   return hasAttribute(Attribute::Nest);
226 }
227 
hasNoAliasAttr() const228 bool Argument::hasNoAliasAttr() const {
229   if (!getType()->isPointerTy()) return false;
230   return hasAttribute(Attribute::NoAlias);
231 }
232 
hasNoCaptureAttr() const233 bool Argument::hasNoCaptureAttr() const {
234   if (!getType()->isPointerTy()) return false;
235   return hasAttribute(Attribute::NoCapture);
236 }
237 
hasStructRetAttr() const238 bool Argument::hasStructRetAttr() const {
239   if (!getType()->isPointerTy()) return false;
240   return hasAttribute(Attribute::StructRet);
241 }
242 
hasInRegAttr() const243 bool Argument::hasInRegAttr() const {
244   return hasAttribute(Attribute::InReg);
245 }
246 
hasReturnedAttr() const247 bool Argument::hasReturnedAttr() const {
248   return hasAttribute(Attribute::Returned);
249 }
250 
hasZExtAttr() const251 bool Argument::hasZExtAttr() const {
252   return hasAttribute(Attribute::ZExt);
253 }
254 
hasSExtAttr() const255 bool Argument::hasSExtAttr() const {
256   return hasAttribute(Attribute::SExt);
257 }
258 
onlyReadsMemory() const259 bool Argument::onlyReadsMemory() const {
260   AttributeList Attrs = getParent()->getAttributes();
261   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
262          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
263 }
264 
addAttrs(AttrBuilder & B)265 void Argument::addAttrs(AttrBuilder &B) {
266   AttributeList AL = getParent()->getAttributes();
267   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
268   getParent()->setAttributes(AL);
269 }
270 
addAttr(Attribute::AttrKind Kind)271 void Argument::addAttr(Attribute::AttrKind Kind) {
272   getParent()->addParamAttr(getArgNo(), Kind);
273 }
274 
addAttr(Attribute Attr)275 void Argument::addAttr(Attribute Attr) {
276   getParent()->addParamAttr(getArgNo(), Attr);
277 }
278 
removeAttr(Attribute::AttrKind Kind)279 void Argument::removeAttr(Attribute::AttrKind Kind) {
280   getParent()->removeParamAttr(getArgNo(), Kind);
281 }
282 
hasAttribute(Attribute::AttrKind Kind) const283 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
284   return getParent()->hasParamAttribute(getArgNo(), Kind);
285 }
286 
getAttribute(Attribute::AttrKind Kind) const287 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
288   return getParent()->getParamAttribute(getArgNo(), Kind);
289 }
290 
291 //===----------------------------------------------------------------------===//
292 // Helper Methods in Function
293 //===----------------------------------------------------------------------===//
294 
getContext() const295 LLVMContext &Function::getContext() const {
296   return getType()->getContext();
297 }
298 
getInstructionCount() const299 unsigned Function::getInstructionCount() const {
300   unsigned NumInstrs = 0;
301   for (const BasicBlock &BB : BasicBlocks)
302     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
303                                BB.instructionsWithoutDebug().end());
304   return NumInstrs;
305 }
306 
Create(FunctionType * Ty,LinkageTypes Linkage,const Twine & N,Module & M)307 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
308                            const Twine &N, Module &M) {
309   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
310 }
311 
removeFromParent()312 void Function::removeFromParent() {
313   getParent()->getFunctionList().remove(getIterator());
314 }
315 
eraseFromParent()316 void Function::eraseFromParent() {
317   getParent()->getFunctionList().erase(getIterator());
318 }
319 
320 //===----------------------------------------------------------------------===//
321 // Function Implementation
322 //===----------------------------------------------------------------------===//
323 
computeAddrSpace(unsigned AddrSpace,Module * M)324 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
325   // If AS == -1 and we are passed a valid module pointer we place the function
326   // in the program address space. Otherwise we default to AS0.
327   if (AddrSpace == static_cast<unsigned>(-1))
328     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
329   return AddrSpace;
330 }
331 
Function(FunctionType * Ty,LinkageTypes Linkage,unsigned AddrSpace,const Twine & name,Module * ParentModule)332 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
333                    const Twine &name, Module *ParentModule)
334     : GlobalObject(Ty, Value::FunctionVal,
335                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
336                    computeAddrSpace(AddrSpace, ParentModule)),
337       NumArgs(Ty->getNumParams()) {
338   assert(FunctionType::isValidReturnType(getReturnType()) &&
339          "invalid return type");
340   setGlobalObjectSubClassData(0);
341 
342   // We only need a symbol table for a function if the context keeps value names
343   if (!getContext().shouldDiscardValueNames())
344     SymTab = std::make_unique<ValueSymbolTable>();
345 
346   // If the function has arguments, mark them as lazily built.
347   if (Ty->getNumParams())
348     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
349 
350   if (ParentModule)
351     ParentModule->getFunctionList().push_back(this);
352 
353   HasLLVMReservedName = getName().startswith("llvm.");
354   // Ensure intrinsics have the right parameter attributes.
355   // Note, the IntID field will have been set in Value::setName if this function
356   // name is a valid intrinsic ID.
357   if (IntID)
358     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
359 }
360 
~Function()361 Function::~Function() {
362   dropAllReferences();    // After this it is safe to delete instructions.
363 
364   // Delete all of the method arguments and unlink from symbol table...
365   if (Arguments)
366     clearArguments();
367 
368   // Remove the function from the on-the-side GC table.
369   clearGC();
370 }
371 
BuildLazyArguments() const372 void Function::BuildLazyArguments() const {
373   // Create the arguments vector, all arguments start out unnamed.
374   auto *FT = getFunctionType();
375   if (NumArgs > 0) {
376     Arguments = std::allocator<Argument>().allocate(NumArgs);
377     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
378       Type *ArgTy = FT->getParamType(i);
379       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
380       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
381     }
382   }
383 
384   // Clear the lazy arguments bit.
385   unsigned SDC = getSubclassDataFromValue();
386   SDC &= ~(1 << 0);
387   const_cast<Function*>(this)->setValueSubclassData(SDC);
388   assert(!hasLazyArguments());
389 }
390 
makeArgArray(Argument * Args,size_t Count)391 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
392   return MutableArrayRef<Argument>(Args, Count);
393 }
394 
isConstrainedFPIntrinsic() const395 bool Function::isConstrainedFPIntrinsic() const {
396   switch (getIntrinsicID()) {
397 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
398   case Intrinsic::INTRINSIC:
399 #include "llvm/IR/ConstrainedOps.def"
400     return true;
401 #undef INSTRUCTION
402   default:
403     return false;
404   }
405 }
406 
clearArguments()407 void Function::clearArguments() {
408   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
409     A.setName("");
410     A.~Argument();
411   }
412   std::allocator<Argument>().deallocate(Arguments, NumArgs);
413   Arguments = nullptr;
414 }
415 
stealArgumentListFrom(Function & Src)416 void Function::stealArgumentListFrom(Function &Src) {
417   assert(isDeclaration() && "Expected no references to current arguments");
418 
419   // Drop the current arguments, if any, and set the lazy argument bit.
420   if (!hasLazyArguments()) {
421     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
422                         [](const Argument &A) { return A.use_empty(); }) &&
423            "Expected arguments to be unused in declaration");
424     clearArguments();
425     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
426   }
427 
428   // Nothing to steal if Src has lazy arguments.
429   if (Src.hasLazyArguments())
430     return;
431 
432   // Steal arguments from Src, and fix the lazy argument bits.
433   assert(arg_size() == Src.arg_size());
434   Arguments = Src.Arguments;
435   Src.Arguments = nullptr;
436   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
437     // FIXME: This does the work of transferNodesFromList inefficiently.
438     SmallString<128> Name;
439     if (A.hasName())
440       Name = A.getName();
441     if (!Name.empty())
442       A.setName("");
443     A.setParent(this);
444     if (!Name.empty())
445       A.setName(Name);
446   }
447 
448   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
449   assert(!hasLazyArguments());
450   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
451 }
452 
453 // dropAllReferences() - This function causes all the subinstructions to "let
454 // go" of all references that they are maintaining.  This allows one to
455 // 'delete' a whole class at a time, even though there may be circular
456 // references... first all references are dropped, and all use counts go to
457 // zero.  Then everything is deleted for real.  Note that no operations are
458 // valid on an object that has "dropped all references", except operator
459 // delete.
460 //
dropAllReferences()461 void Function::dropAllReferences() {
462   setIsMaterializable(false);
463 
464   for (BasicBlock &BB : *this)
465     BB.dropAllReferences();
466 
467   // Delete all basic blocks. They are now unused, except possibly by
468   // blockaddresses, but BasicBlock's destructor takes care of those.
469   while (!BasicBlocks.empty())
470     BasicBlocks.begin()->eraseFromParent();
471 
472   // Drop uses of any optional data (real or placeholder).
473   if (getNumOperands()) {
474     User::dropAllReferences();
475     setNumHungOffUseOperands(0);
476     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
477   }
478 
479   // Metadata is stored in a side-table.
480   clearMetadata();
481 }
482 
addAttribute(unsigned i,Attribute::AttrKind Kind)483 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
484   AttributeList PAL = getAttributes();
485   PAL = PAL.addAttribute(getContext(), i, Kind);
486   setAttributes(PAL);
487 }
488 
addAttribute(unsigned i,Attribute Attr)489 void Function::addAttribute(unsigned i, Attribute Attr) {
490   AttributeList PAL = getAttributes();
491   PAL = PAL.addAttribute(getContext(), i, Attr);
492   setAttributes(PAL);
493 }
494 
addAttributes(unsigned i,const AttrBuilder & Attrs)495 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
496   AttributeList PAL = getAttributes();
497   PAL = PAL.addAttributes(getContext(), i, Attrs);
498   setAttributes(PAL);
499 }
500 
addParamAttr(unsigned ArgNo,Attribute::AttrKind Kind)501 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
502   AttributeList PAL = getAttributes();
503   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
504   setAttributes(PAL);
505 }
506 
addParamAttr(unsigned ArgNo,Attribute Attr)507 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
508   AttributeList PAL = getAttributes();
509   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
510   setAttributes(PAL);
511 }
512 
addParamAttrs(unsigned ArgNo,const AttrBuilder & Attrs)513 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
514   AttributeList PAL = getAttributes();
515   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
516   setAttributes(PAL);
517 }
518 
removeAttribute(unsigned i,Attribute::AttrKind Kind)519 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
520   AttributeList PAL = getAttributes();
521   PAL = PAL.removeAttribute(getContext(), i, Kind);
522   setAttributes(PAL);
523 }
524 
removeAttribute(unsigned i,StringRef Kind)525 void Function::removeAttribute(unsigned i, StringRef Kind) {
526   AttributeList PAL = getAttributes();
527   PAL = PAL.removeAttribute(getContext(), i, Kind);
528   setAttributes(PAL);
529 }
530 
removeAttributes(unsigned i,const AttrBuilder & Attrs)531 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
532   AttributeList PAL = getAttributes();
533   PAL = PAL.removeAttributes(getContext(), i, Attrs);
534   setAttributes(PAL);
535 }
536 
removeParamAttr(unsigned ArgNo,Attribute::AttrKind Kind)537 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
538   AttributeList PAL = getAttributes();
539   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
540   setAttributes(PAL);
541 }
542 
removeParamAttr(unsigned ArgNo,StringRef Kind)543 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
544   AttributeList PAL = getAttributes();
545   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
546   setAttributes(PAL);
547 }
548 
removeParamAttrs(unsigned ArgNo,const AttrBuilder & Attrs)549 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
550   AttributeList PAL = getAttributes();
551   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
552   setAttributes(PAL);
553 }
554 
addDereferenceableAttr(unsigned i,uint64_t Bytes)555 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
556   AttributeList PAL = getAttributes();
557   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
558   setAttributes(PAL);
559 }
560 
addDereferenceableParamAttr(unsigned ArgNo,uint64_t Bytes)561 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
562   AttributeList PAL = getAttributes();
563   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
564   setAttributes(PAL);
565 }
566 
addDereferenceableOrNullAttr(unsigned i,uint64_t Bytes)567 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
568   AttributeList PAL = getAttributes();
569   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
570   setAttributes(PAL);
571 }
572 
addDereferenceableOrNullParamAttr(unsigned ArgNo,uint64_t Bytes)573 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
574                                                  uint64_t Bytes) {
575   AttributeList PAL = getAttributes();
576   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
577   setAttributes(PAL);
578 }
579 
getDenormalMode(const fltSemantics & FPType) const580 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
581   if (&FPType == &APFloat::IEEEsingle()) {
582     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
583     StringRef Val = Attr.getValueAsString();
584     if (!Val.empty())
585       return parseDenormalFPAttribute(Val);
586 
587     // If the f32 variant of the attribute isn't specified, try to use the
588     // generic one.
589   }
590 
591   Attribute Attr = getFnAttribute("denormal-fp-math");
592   return parseDenormalFPAttribute(Attr.getValueAsString());
593 }
594 
getGC() const595 const std::string &Function::getGC() const {
596   assert(hasGC() && "Function has no collector");
597   return getContext().getGC(*this);
598 }
599 
setGC(std::string Str)600 void Function::setGC(std::string Str) {
601   setValueSubclassDataBit(14, !Str.empty());
602   getContext().setGC(*this, std::move(Str));
603 }
604 
clearGC()605 void Function::clearGC() {
606   if (!hasGC())
607     return;
608   getContext().deleteGC(*this);
609   setValueSubclassDataBit(14, false);
610 }
611 
612 /// Copy all additional attributes (those not needed to create a Function) from
613 /// the Function Src to this one.
copyAttributesFrom(const Function * Src)614 void Function::copyAttributesFrom(const Function *Src) {
615   GlobalObject::copyAttributesFrom(Src);
616   setCallingConv(Src->getCallingConv());
617   setAttributes(Src->getAttributes());
618   if (Src->hasGC())
619     setGC(Src->getGC());
620   else
621     clearGC();
622   if (Src->hasPersonalityFn())
623     setPersonalityFn(Src->getPersonalityFn());
624   if (Src->hasPrefixData())
625     setPrefixData(Src->getPrefixData());
626   if (Src->hasPrologueData())
627     setPrologueData(Src->getPrologueData());
628 }
629 
630 /// Table of string intrinsic names indexed by enum value.
631 static const char * const IntrinsicNameTable[] = {
632   "not_intrinsic",
633 #define GET_INTRINSIC_NAME_TABLE
634 #include "llvm/IR/IntrinsicImpl.inc"
635 #undef GET_INTRINSIC_NAME_TABLE
636 };
637 
638 /// Table of per-target intrinsic name tables.
639 #define GET_INTRINSIC_TARGET_DATA
640 #include "llvm/IR/IntrinsicImpl.inc"
641 #undef GET_INTRINSIC_TARGET_DATA
642 
isTargetIntrinsic(Intrinsic::ID IID)643 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
644   return IID > TargetInfos[0].Count;
645 }
646 
isTargetIntrinsic() const647 bool Function::isTargetIntrinsic() const {
648   return isTargetIntrinsic(IntID);
649 }
650 
651 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
652 /// target as \c Name, or the generic table if \c Name is not target specific.
653 ///
654 /// Returns the relevant slice of \c IntrinsicNameTable
findTargetSubtable(StringRef Name)655 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
656   assert(Name.startswith("llvm."));
657 
658   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
659   // Drop "llvm." and take the first dotted component. That will be the target
660   // if this is target specific.
661   StringRef Target = Name.drop_front(5).split('.').first;
662   auto It = partition_point(
663       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
664   // We've either found the target or just fall back to the generic set, which
665   // is always first.
666   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
667   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
668 }
669 
670 /// This does the actual lookup of an intrinsic ID which
671 /// matches the given function name.
lookupIntrinsicID(StringRef Name)672 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
673   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
674   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
675   if (Idx == -1)
676     return Intrinsic::not_intrinsic;
677 
678   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
679   // an index into a sub-table.
680   int Adjust = NameTable.data() - IntrinsicNameTable;
681   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
682 
683   // If the intrinsic is not overloaded, require an exact match. If it is
684   // overloaded, require either exact or prefix match.
685   const auto MatchSize = strlen(NameTable[Idx]);
686   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
687   bool IsExactMatch = Name.size() == MatchSize;
688   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
689                                                      : Intrinsic::not_intrinsic;
690 }
691 
recalculateIntrinsicID()692 void Function::recalculateIntrinsicID() {
693   StringRef Name = getName();
694   if (!Name.startswith("llvm.")) {
695     HasLLVMReservedName = false;
696     IntID = Intrinsic::not_intrinsic;
697     return;
698   }
699   HasLLVMReservedName = true;
700   IntID = lookupIntrinsicID(Name);
701 }
702 
703 /// Returns a stable mangling for the type specified for use in the name
704 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
705 /// of named types is simply their name.  Manglings for unnamed types consist
706 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
707 /// combined with the mangling of their component types.  A vararg function
708 /// type will have a suffix of 'vararg'.  Since function types can contain
709 /// other function types, we close a function type mangling with suffix 'f'
710 /// which can't be confused with it's prefix.  This ensures we don't have
711 /// collisions between two unrelated function types. Otherwise, you might
712 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
713 ///
getMangledTypeStr(Type * Ty)714 static std::string getMangledTypeStr(Type* Ty) {
715   std::string Result;
716   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
717     Result += "p" + utostr(PTyp->getAddressSpace()) +
718       getMangledTypeStr(PTyp->getElementType());
719   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
720     Result += "a" + utostr(ATyp->getNumElements()) +
721       getMangledTypeStr(ATyp->getElementType());
722   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
723     if (!STyp->isLiteral()) {
724       Result += "s_";
725       Result += STyp->getName();
726     } else {
727       Result += "sl_";
728       for (auto Elem : STyp->elements())
729         Result += getMangledTypeStr(Elem);
730     }
731     // Ensure nested structs are distinguishable.
732     Result += "s";
733   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
734     Result += "f_" + getMangledTypeStr(FT->getReturnType());
735     for (size_t i = 0; i < FT->getNumParams(); i++)
736       Result += getMangledTypeStr(FT->getParamType(i));
737     if (FT->isVarArg())
738       Result += "vararg";
739     // Ensure nested function types are distinguishable.
740     Result += "f";
741   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
742     ElementCount EC = VTy->getElementCount();
743     if (EC.isScalable())
744       Result += "nx";
745     Result += "v" + utostr(EC.getKnownMinValue()) +
746               getMangledTypeStr(VTy->getElementType());
747   } else if (Ty) {
748     switch (Ty->getTypeID()) {
749     default: llvm_unreachable("Unhandled type");
750     case Type::VoidTyID:      Result += "isVoid";   break;
751     case Type::MetadataTyID:  Result += "Metadata"; break;
752     case Type::HalfTyID:      Result += "f16";      break;
753     case Type::BFloatTyID:    Result += "bf16";     break;
754     case Type::FloatTyID:     Result += "f32";      break;
755     case Type::DoubleTyID:    Result += "f64";      break;
756     case Type::X86_FP80TyID:  Result += "f80";      break;
757     case Type::FP128TyID:     Result += "f128";     break;
758     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
759     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
760     case Type::IntegerTyID:
761       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
762       break;
763     }
764   }
765   return Result;
766 }
767 
getName(ID id)768 StringRef Intrinsic::getName(ID id) {
769   assert(id < num_intrinsics && "Invalid intrinsic ID!");
770   assert(!Intrinsic::isOverloaded(id) &&
771          "This version of getName does not support overloading");
772   return IntrinsicNameTable[id];
773 }
774 
getName(ID id,ArrayRef<Type * > Tys)775 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
776   assert(id < num_intrinsics && "Invalid intrinsic ID!");
777   std::string Result(IntrinsicNameTable[id]);
778   for (Type *Ty : Tys) {
779     Result += "." + getMangledTypeStr(Ty);
780   }
781   return Result;
782 }
783 
784 /// IIT_Info - These are enumerators that describe the entries returned by the
785 /// getIntrinsicInfoTableEntries function.
786 ///
787 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
788 enum IIT_Info {
789   // Common values should be encoded with 0-15.
790   IIT_Done = 0,
791   IIT_I1   = 1,
792   IIT_I8   = 2,
793   IIT_I16  = 3,
794   IIT_I32  = 4,
795   IIT_I64  = 5,
796   IIT_F16  = 6,
797   IIT_F32  = 7,
798   IIT_F64  = 8,
799   IIT_V2   = 9,
800   IIT_V4   = 10,
801   IIT_V8   = 11,
802   IIT_V16  = 12,
803   IIT_V32  = 13,
804   IIT_PTR  = 14,
805   IIT_ARG  = 15,
806 
807   // Values from 16+ are only encodable with the inefficient encoding.
808   IIT_V64  = 16,
809   IIT_MMX  = 17,
810   IIT_TOKEN = 18,
811   IIT_METADATA = 19,
812   IIT_EMPTYSTRUCT = 20,
813   IIT_STRUCT2 = 21,
814   IIT_STRUCT3 = 22,
815   IIT_STRUCT4 = 23,
816   IIT_STRUCT5 = 24,
817   IIT_EXTEND_ARG = 25,
818   IIT_TRUNC_ARG = 26,
819   IIT_ANYPTR = 27,
820   IIT_V1   = 28,
821   IIT_VARARG = 29,
822   IIT_HALF_VEC_ARG = 30,
823   IIT_SAME_VEC_WIDTH_ARG = 31,
824   IIT_PTR_TO_ARG = 32,
825   IIT_PTR_TO_ELT = 33,
826   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
827   IIT_I128 = 35,
828   IIT_V512 = 36,
829   IIT_V1024 = 37,
830   IIT_STRUCT6 = 38,
831   IIT_STRUCT7 = 39,
832   IIT_STRUCT8 = 40,
833   IIT_F128 = 41,
834   IIT_VEC_ELEMENT = 42,
835   IIT_SCALABLE_VEC = 43,
836   IIT_SUBDIVIDE2_ARG = 44,
837   IIT_SUBDIVIDE4_ARG = 45,
838   IIT_VEC_OF_BITCASTS_TO_INT = 46,
839   IIT_V128 = 47,
840   IIT_BF16 = 48,
841   IIT_STRUCT9 = 49,
842   IIT_V256 = 50
843 };
844 
DecodeIITType(unsigned & NextElt,ArrayRef<unsigned char> Infos,IIT_Info LastInfo,SmallVectorImpl<Intrinsic::IITDescriptor> & OutputTable)845 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
846                       IIT_Info LastInfo,
847                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
848   using namespace Intrinsic;
849 
850   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
851 
852   IIT_Info Info = IIT_Info(Infos[NextElt++]);
853   unsigned StructElts = 2;
854 
855   switch (Info) {
856   case IIT_Done:
857     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
858     return;
859   case IIT_VARARG:
860     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
861     return;
862   case IIT_MMX:
863     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
864     return;
865   case IIT_TOKEN:
866     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
867     return;
868   case IIT_METADATA:
869     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
870     return;
871   case IIT_F16:
872     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
873     return;
874   case IIT_BF16:
875     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
876     return;
877   case IIT_F32:
878     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
879     return;
880   case IIT_F64:
881     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
882     return;
883   case IIT_F128:
884     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
885     return;
886   case IIT_I1:
887     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
888     return;
889   case IIT_I8:
890     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
891     return;
892   case IIT_I16:
893     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
894     return;
895   case IIT_I32:
896     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
897     return;
898   case IIT_I64:
899     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
900     return;
901   case IIT_I128:
902     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
903     return;
904   case IIT_V1:
905     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
906     DecodeIITType(NextElt, Infos, Info, OutputTable);
907     return;
908   case IIT_V2:
909     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
910     DecodeIITType(NextElt, Infos, Info, OutputTable);
911     return;
912   case IIT_V4:
913     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
914     DecodeIITType(NextElt, Infos, Info, OutputTable);
915     return;
916   case IIT_V8:
917     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
918     DecodeIITType(NextElt, Infos, Info, OutputTable);
919     return;
920   case IIT_V16:
921     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
922     DecodeIITType(NextElt, Infos, Info, OutputTable);
923     return;
924   case IIT_V32:
925     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
926     DecodeIITType(NextElt, Infos, Info, OutputTable);
927     return;
928   case IIT_V64:
929     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
930     DecodeIITType(NextElt, Infos, Info, OutputTable);
931     return;
932   case IIT_V128:
933     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
934     DecodeIITType(NextElt, Infos, Info, OutputTable);
935     return;
936   case IIT_V256:
937     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
938     DecodeIITType(NextElt, Infos, Info, OutputTable);
939     return;
940   case IIT_V512:
941     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
942     DecodeIITType(NextElt, Infos, Info, OutputTable);
943     return;
944   case IIT_V1024:
945     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
946     DecodeIITType(NextElt, Infos, Info, OutputTable);
947     return;
948   case IIT_PTR:
949     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
950     DecodeIITType(NextElt, Infos, Info, OutputTable);
951     return;
952   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
953     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
954                                              Infos[NextElt++]));
955     DecodeIITType(NextElt, Infos, Info, OutputTable);
956     return;
957   }
958   case IIT_ARG: {
959     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
960     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
961     return;
962   }
963   case IIT_EXTEND_ARG: {
964     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
965     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
966                                              ArgInfo));
967     return;
968   }
969   case IIT_TRUNC_ARG: {
970     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
971     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
972                                              ArgInfo));
973     return;
974   }
975   case IIT_HALF_VEC_ARG: {
976     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
977     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
978                                              ArgInfo));
979     return;
980   }
981   case IIT_SAME_VEC_WIDTH_ARG: {
982     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
983     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
984                                              ArgInfo));
985     return;
986   }
987   case IIT_PTR_TO_ARG: {
988     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
989     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
990                                              ArgInfo));
991     return;
992   }
993   case IIT_PTR_TO_ELT: {
994     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
995     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
996     return;
997   }
998   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
999     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1000     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1001     OutputTable.push_back(
1002         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1003     return;
1004   }
1005   case IIT_EMPTYSTRUCT:
1006     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1007     return;
1008   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1009   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1010   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1011   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1012   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1013   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1014   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1015   case IIT_STRUCT2: {
1016     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1017 
1018     for (unsigned i = 0; i != StructElts; ++i)
1019       DecodeIITType(NextElt, Infos, Info, OutputTable);
1020     return;
1021   }
1022   case IIT_SUBDIVIDE2_ARG: {
1023     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1024     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1025                                              ArgInfo));
1026     return;
1027   }
1028   case IIT_SUBDIVIDE4_ARG: {
1029     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1030     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1031                                              ArgInfo));
1032     return;
1033   }
1034   case IIT_VEC_ELEMENT: {
1035     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1036     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1037                                              ArgInfo));
1038     return;
1039   }
1040   case IIT_SCALABLE_VEC: {
1041     DecodeIITType(NextElt, Infos, Info, OutputTable);
1042     return;
1043   }
1044   case IIT_VEC_OF_BITCASTS_TO_INT: {
1045     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1046     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1047                                              ArgInfo));
1048     return;
1049   }
1050   }
1051   llvm_unreachable("unhandled");
1052 }
1053 
1054 #define GET_INTRINSIC_GENERATOR_GLOBAL
1055 #include "llvm/IR/IntrinsicImpl.inc"
1056 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1057 
getIntrinsicInfoTableEntries(ID id,SmallVectorImpl<IITDescriptor> & T)1058 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1059                                              SmallVectorImpl<IITDescriptor> &T){
1060   // Check to see if the intrinsic's type was expressible by the table.
1061   unsigned TableVal = IIT_Table[id-1];
1062 
1063   // Decode the TableVal into an array of IITValues.
1064   SmallVector<unsigned char, 8> IITValues;
1065   ArrayRef<unsigned char> IITEntries;
1066   unsigned NextElt = 0;
1067   if ((TableVal >> 31) != 0) {
1068     // This is an offset into the IIT_LongEncodingTable.
1069     IITEntries = IIT_LongEncodingTable;
1070 
1071     // Strip sentinel bit.
1072     NextElt = (TableVal << 1) >> 1;
1073   } else {
1074     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1075     // into a single word in the table itself, decode it now.
1076     do {
1077       IITValues.push_back(TableVal & 0xF);
1078       TableVal >>= 4;
1079     } while (TableVal);
1080 
1081     IITEntries = IITValues;
1082     NextElt = 0;
1083   }
1084 
1085   // Okay, decode the table into the output vector of IITDescriptors.
1086   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1087   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1088     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1089 }
1090 
DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> & Infos,ArrayRef<Type * > Tys,LLVMContext & Context)1091 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1092                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1093   using namespace Intrinsic;
1094 
1095   IITDescriptor D = Infos.front();
1096   Infos = Infos.slice(1);
1097 
1098   switch (D.Kind) {
1099   case IITDescriptor::Void: return Type::getVoidTy(Context);
1100   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1101   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1102   case IITDescriptor::Token: return Type::getTokenTy(Context);
1103   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1104   case IITDescriptor::Half: return Type::getHalfTy(Context);
1105   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1106   case IITDescriptor::Float: return Type::getFloatTy(Context);
1107   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1108   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1109 
1110   case IITDescriptor::Integer:
1111     return IntegerType::get(Context, D.Integer_Width);
1112   case IITDescriptor::Vector:
1113     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1114                            D.Vector_Width);
1115   case IITDescriptor::Pointer:
1116     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1117                             D.Pointer_AddressSpace);
1118   case IITDescriptor::Struct: {
1119     SmallVector<Type *, 8> Elts;
1120     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1121       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1122     return StructType::get(Context, Elts);
1123   }
1124   case IITDescriptor::Argument:
1125     return Tys[D.getArgumentNumber()];
1126   case IITDescriptor::ExtendArgument: {
1127     Type *Ty = Tys[D.getArgumentNumber()];
1128     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1129       return VectorType::getExtendedElementVectorType(VTy);
1130 
1131     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1132   }
1133   case IITDescriptor::TruncArgument: {
1134     Type *Ty = Tys[D.getArgumentNumber()];
1135     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1136       return VectorType::getTruncatedElementVectorType(VTy);
1137 
1138     IntegerType *ITy = cast<IntegerType>(Ty);
1139     assert(ITy->getBitWidth() % 2 == 0);
1140     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1141   }
1142   case IITDescriptor::Subdivide2Argument:
1143   case IITDescriptor::Subdivide4Argument: {
1144     Type *Ty = Tys[D.getArgumentNumber()];
1145     VectorType *VTy = dyn_cast<VectorType>(Ty);
1146     assert(VTy && "Expected an argument of Vector Type");
1147     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1148     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1149   }
1150   case IITDescriptor::HalfVecArgument:
1151     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1152                                                   Tys[D.getArgumentNumber()]));
1153   case IITDescriptor::SameVecWidthArgument: {
1154     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1155     Type *Ty = Tys[D.getArgumentNumber()];
1156     if (auto *VTy = dyn_cast<VectorType>(Ty))
1157       return VectorType::get(EltTy, VTy->getElementCount());
1158     return EltTy;
1159   }
1160   case IITDescriptor::PtrToArgument: {
1161     Type *Ty = Tys[D.getArgumentNumber()];
1162     return PointerType::getUnqual(Ty);
1163   }
1164   case IITDescriptor::PtrToElt: {
1165     Type *Ty = Tys[D.getArgumentNumber()];
1166     VectorType *VTy = dyn_cast<VectorType>(Ty);
1167     if (!VTy)
1168       llvm_unreachable("Expected an argument of Vector Type");
1169     Type *EltTy = VTy->getElementType();
1170     return PointerType::getUnqual(EltTy);
1171   }
1172   case IITDescriptor::VecElementArgument: {
1173     Type *Ty = Tys[D.getArgumentNumber()];
1174     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1175       return VTy->getElementType();
1176     llvm_unreachable("Expected an argument of Vector Type");
1177   }
1178   case IITDescriptor::VecOfBitcastsToInt: {
1179     Type *Ty = Tys[D.getArgumentNumber()];
1180     VectorType *VTy = dyn_cast<VectorType>(Ty);
1181     assert(VTy && "Expected an argument of Vector Type");
1182     return VectorType::getInteger(VTy);
1183   }
1184   case IITDescriptor::VecOfAnyPtrsToElt:
1185     // Return the overloaded type (which determines the pointers address space)
1186     return Tys[D.getOverloadArgNumber()];
1187   }
1188   llvm_unreachable("unhandled");
1189 }
1190 
getType(LLVMContext & Context,ID id,ArrayRef<Type * > Tys)1191 FunctionType *Intrinsic::getType(LLVMContext &Context,
1192                                  ID id, ArrayRef<Type*> Tys) {
1193   SmallVector<IITDescriptor, 8> Table;
1194   getIntrinsicInfoTableEntries(id, Table);
1195 
1196   ArrayRef<IITDescriptor> TableRef = Table;
1197   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1198 
1199   SmallVector<Type*, 8> ArgTys;
1200   while (!TableRef.empty())
1201     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1202 
1203   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1204   // If we see void type as the type of the last argument, it is vararg intrinsic
1205   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1206     ArgTys.pop_back();
1207     return FunctionType::get(ResultTy, ArgTys, true);
1208   }
1209   return FunctionType::get(ResultTy, ArgTys, false);
1210 }
1211 
isOverloaded(ID id)1212 bool Intrinsic::isOverloaded(ID id) {
1213 #define GET_INTRINSIC_OVERLOAD_TABLE
1214 #include "llvm/IR/IntrinsicImpl.inc"
1215 #undef GET_INTRINSIC_OVERLOAD_TABLE
1216 }
1217 
isLeaf(ID id)1218 bool Intrinsic::isLeaf(ID id) {
1219   switch (id) {
1220   default:
1221     return true;
1222 
1223   case Intrinsic::experimental_gc_statepoint:
1224   case Intrinsic::experimental_patchpoint_void:
1225   case Intrinsic::experimental_patchpoint_i64:
1226     return false;
1227   }
1228 }
1229 
1230 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1231 #define GET_INTRINSIC_ATTRIBUTES
1232 #include "llvm/IR/IntrinsicImpl.inc"
1233 #undef GET_INTRINSIC_ATTRIBUTES
1234 
getDeclaration(Module * M,ID id,ArrayRef<Type * > Tys)1235 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1236   // There can never be multiple globals with the same name of different types,
1237   // because intrinsics must be a specific type.
1238   return cast<Function>(
1239       M->getOrInsertFunction(getName(id, Tys),
1240                              getType(M->getContext(), id, Tys))
1241           .getCallee());
1242 }
1243 
1244 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1245 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1246 #include "llvm/IR/IntrinsicImpl.inc"
1247 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1248 
1249 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1250 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1251 #include "llvm/IR/IntrinsicImpl.inc"
1252 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1253 
1254 using DeferredIntrinsicMatchPair =
1255     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1256 
matchIntrinsicType(Type * Ty,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys,SmallVectorImpl<DeferredIntrinsicMatchPair> & DeferredChecks,bool IsDeferredCheck)1257 static bool matchIntrinsicType(
1258     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1259     SmallVectorImpl<Type *> &ArgTys,
1260     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1261     bool IsDeferredCheck) {
1262   using namespace Intrinsic;
1263 
1264   // If we ran out of descriptors, there are too many arguments.
1265   if (Infos.empty()) return true;
1266 
1267   // Do this before slicing off the 'front' part
1268   auto InfosRef = Infos;
1269   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1270     DeferredChecks.emplace_back(T, InfosRef);
1271     return false;
1272   };
1273 
1274   IITDescriptor D = Infos.front();
1275   Infos = Infos.slice(1);
1276 
1277   switch (D.Kind) {
1278     case IITDescriptor::Void: return !Ty->isVoidTy();
1279     case IITDescriptor::VarArg: return true;
1280     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1281     case IITDescriptor::Token: return !Ty->isTokenTy();
1282     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1283     case IITDescriptor::Half: return !Ty->isHalfTy();
1284     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1285     case IITDescriptor::Float: return !Ty->isFloatTy();
1286     case IITDescriptor::Double: return !Ty->isDoubleTy();
1287     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1288     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1289     case IITDescriptor::Vector: {
1290       VectorType *VT = dyn_cast<VectorType>(Ty);
1291       return !VT || VT->getElementCount() != D.Vector_Width ||
1292              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1293                                 DeferredChecks, IsDeferredCheck);
1294     }
1295     case IITDescriptor::Pointer: {
1296       PointerType *PT = dyn_cast<PointerType>(Ty);
1297       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1298              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1299                                 DeferredChecks, IsDeferredCheck);
1300     }
1301 
1302     case IITDescriptor::Struct: {
1303       StructType *ST = dyn_cast<StructType>(Ty);
1304       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1305         return true;
1306 
1307       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1308         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1309                                DeferredChecks, IsDeferredCheck))
1310           return true;
1311       return false;
1312     }
1313 
1314     case IITDescriptor::Argument:
1315       // If this is the second occurrence of an argument,
1316       // verify that the later instance matches the previous instance.
1317       if (D.getArgumentNumber() < ArgTys.size())
1318         return Ty != ArgTys[D.getArgumentNumber()];
1319 
1320       if (D.getArgumentNumber() > ArgTys.size() ||
1321           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1322         return IsDeferredCheck || DeferCheck(Ty);
1323 
1324       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1325              "Table consistency error");
1326       ArgTys.push_back(Ty);
1327 
1328       switch (D.getArgumentKind()) {
1329         case IITDescriptor::AK_Any:        return false; // Success
1330         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1331         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1332         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1333         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1334         default:                           break;
1335       }
1336       llvm_unreachable("all argument kinds not covered");
1337 
1338     case IITDescriptor::ExtendArgument: {
1339       // If this is a forward reference, defer the check for later.
1340       if (D.getArgumentNumber() >= ArgTys.size())
1341         return IsDeferredCheck || DeferCheck(Ty);
1342 
1343       Type *NewTy = ArgTys[D.getArgumentNumber()];
1344       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1345         NewTy = VectorType::getExtendedElementVectorType(VTy);
1346       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1347         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1348       else
1349         return true;
1350 
1351       return Ty != NewTy;
1352     }
1353     case IITDescriptor::TruncArgument: {
1354       // If this is a forward reference, defer the check for later.
1355       if (D.getArgumentNumber() >= ArgTys.size())
1356         return IsDeferredCheck || DeferCheck(Ty);
1357 
1358       Type *NewTy = ArgTys[D.getArgumentNumber()];
1359       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1360         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1361       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1362         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1363       else
1364         return true;
1365 
1366       return Ty != NewTy;
1367     }
1368     case IITDescriptor::HalfVecArgument:
1369       // If this is a forward reference, defer the check for later.
1370       if (D.getArgumentNumber() >= ArgTys.size())
1371         return IsDeferredCheck || DeferCheck(Ty);
1372       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1373              VectorType::getHalfElementsVectorType(
1374                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1375     case IITDescriptor::SameVecWidthArgument: {
1376       if (D.getArgumentNumber() >= ArgTys.size()) {
1377         // Defer check and subsequent check for the vector element type.
1378         Infos = Infos.slice(1);
1379         return IsDeferredCheck || DeferCheck(Ty);
1380       }
1381       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1382       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1383       // Both must be vectors of the same number of elements or neither.
1384       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1385         return true;
1386       Type *EltTy = Ty;
1387       if (ThisArgType) {
1388         if (ReferenceType->getElementCount() !=
1389             ThisArgType->getElementCount())
1390           return true;
1391         EltTy = ThisArgType->getElementType();
1392       }
1393       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1394                                 IsDeferredCheck);
1395     }
1396     case IITDescriptor::PtrToArgument: {
1397       if (D.getArgumentNumber() >= ArgTys.size())
1398         return IsDeferredCheck || DeferCheck(Ty);
1399       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1400       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1401       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1402     }
1403     case IITDescriptor::PtrToElt: {
1404       if (D.getArgumentNumber() >= ArgTys.size())
1405         return IsDeferredCheck || DeferCheck(Ty);
1406       VectorType * ReferenceType =
1407         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1408       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1409 
1410       return (!ThisArgType || !ReferenceType ||
1411               ThisArgType->getElementType() != ReferenceType->getElementType());
1412     }
1413     case IITDescriptor::VecOfAnyPtrsToElt: {
1414       unsigned RefArgNumber = D.getRefArgNumber();
1415       if (RefArgNumber >= ArgTys.size()) {
1416         if (IsDeferredCheck)
1417           return true;
1418         // If forward referencing, already add the pointer-vector type and
1419         // defer the checks for later.
1420         ArgTys.push_back(Ty);
1421         return DeferCheck(Ty);
1422       }
1423 
1424       if (!IsDeferredCheck){
1425         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1426                "Table consistency error");
1427         ArgTys.push_back(Ty);
1428       }
1429 
1430       // Verify the overloaded type "matches" the Ref type.
1431       // i.e. Ty is a vector with the same width as Ref.
1432       // Composed of pointers to the same element type as Ref.
1433       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1434       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1435       if (!ThisArgVecTy || !ReferenceType ||
1436           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1437         return true;
1438       PointerType *ThisArgEltTy =
1439           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1440       if (!ThisArgEltTy)
1441         return true;
1442       return ThisArgEltTy->getElementType() != ReferenceType->getElementType();
1443     }
1444     case IITDescriptor::VecElementArgument: {
1445       if (D.getArgumentNumber() >= ArgTys.size())
1446         return IsDeferredCheck ? true : DeferCheck(Ty);
1447       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1448       return !ReferenceType || Ty != ReferenceType->getElementType();
1449     }
1450     case IITDescriptor::Subdivide2Argument:
1451     case IITDescriptor::Subdivide4Argument: {
1452       // If this is a forward reference, defer the check for later.
1453       if (D.getArgumentNumber() >= ArgTys.size())
1454         return IsDeferredCheck || DeferCheck(Ty);
1455 
1456       Type *NewTy = ArgTys[D.getArgumentNumber()];
1457       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1458         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1459         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1460         return Ty != NewTy;
1461       }
1462       return true;
1463     }
1464     case IITDescriptor::VecOfBitcastsToInt: {
1465       if (D.getArgumentNumber() >= ArgTys.size())
1466         return IsDeferredCheck || DeferCheck(Ty);
1467       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1468       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1469       if (!ThisArgVecTy || !ReferenceType)
1470         return true;
1471       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1472     }
1473   }
1474   llvm_unreachable("unhandled");
1475 }
1476 
1477 Intrinsic::MatchIntrinsicTypesResult
matchIntrinsicSignature(FunctionType * FTy,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys)1478 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1479                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1480                                    SmallVectorImpl<Type *> &ArgTys) {
1481   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1482   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1483                          false))
1484     return MatchIntrinsicTypes_NoMatchRet;
1485 
1486   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1487 
1488   for (auto Ty : FTy->params())
1489     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1490       return MatchIntrinsicTypes_NoMatchArg;
1491 
1492   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1493     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1494     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1495                            true))
1496       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1497                                          : MatchIntrinsicTypes_NoMatchArg;
1498   }
1499 
1500   return MatchIntrinsicTypes_Match;
1501 }
1502 
1503 bool
matchIntrinsicVarArg(bool isVarArg,ArrayRef<Intrinsic::IITDescriptor> & Infos)1504 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1505                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1506   // If there are no descriptors left, then it can't be a vararg.
1507   if (Infos.empty())
1508     return isVarArg;
1509 
1510   // There should be only one descriptor remaining at this point.
1511   if (Infos.size() != 1)
1512     return true;
1513 
1514   // Check and verify the descriptor.
1515   IITDescriptor D = Infos.front();
1516   Infos = Infos.slice(1);
1517   if (D.Kind == IITDescriptor::VarArg)
1518     return !isVarArg;
1519 
1520   return true;
1521 }
1522 
getIntrinsicSignature(Function * F,SmallVectorImpl<Type * > & ArgTys)1523 bool Intrinsic::getIntrinsicSignature(Function *F,
1524                                       SmallVectorImpl<Type *> &ArgTys) {
1525   Intrinsic::ID ID = F->getIntrinsicID();
1526   if (!ID)
1527     return false;
1528 
1529   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1530   getIntrinsicInfoTableEntries(ID, Table);
1531   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1532 
1533   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1534                                          ArgTys) !=
1535       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1536     return false;
1537   }
1538   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1539                                       TableRef))
1540     return false;
1541   return true;
1542 }
1543 
remangleIntrinsicFunction(Function * F)1544 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1545   SmallVector<Type *, 4> ArgTys;
1546   if (!getIntrinsicSignature(F, ArgTys))
1547     return None;
1548 
1549   Intrinsic::ID ID = F->getIntrinsicID();
1550   StringRef Name = F->getName();
1551   if (Name == Intrinsic::getName(ID, ArgTys))
1552     return None;
1553 
1554   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1555   NewDecl->setCallingConv(F->getCallingConv());
1556   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1557          "Shouldn't change the signature");
1558   return NewDecl;
1559 }
1560 
1561 /// hasAddressTaken - returns true if there are any uses of this function
1562 /// other than direct calls or invokes to it. Optionally ignores callback
1563 /// uses.
hasAddressTaken(const User ** PutOffender,bool IgnoreCallbackUses) const1564 bool Function::hasAddressTaken(const User **PutOffender,
1565                                bool IgnoreCallbackUses) const {
1566   for (const Use &U : uses()) {
1567     const User *FU = U.getUser();
1568     if (isa<BlockAddress>(FU))
1569       continue;
1570 
1571     if (IgnoreCallbackUses) {
1572       AbstractCallSite ACS(&U);
1573       if (ACS && ACS.isCallbackCall())
1574         continue;
1575     }
1576 
1577     const auto *Call = dyn_cast<CallBase>(FU);
1578     if (!Call) {
1579       if (PutOffender)
1580         *PutOffender = FU;
1581       return true;
1582     }
1583     if (!Call->isCallee(&U)) {
1584       if (PutOffender)
1585         *PutOffender = FU;
1586       return true;
1587     }
1588   }
1589   return false;
1590 }
1591 
isDefTriviallyDead() const1592 bool Function::isDefTriviallyDead() const {
1593   // Check the linkage
1594   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1595       !hasAvailableExternallyLinkage())
1596     return false;
1597 
1598   // Check if the function is used by anything other than a blockaddress.
1599   for (const User *U : users())
1600     if (!isa<BlockAddress>(U))
1601       return false;
1602 
1603   return true;
1604 }
1605 
1606 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1607 /// setjmp or other function that gcc recognizes as "returning twice".
callsFunctionThatReturnsTwice() const1608 bool Function::callsFunctionThatReturnsTwice() const {
1609   for (const Instruction &I : instructions(this))
1610     if (const auto *Call = dyn_cast<CallBase>(&I))
1611       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1612         return true;
1613 
1614   return false;
1615 }
1616 
getPersonalityFn() const1617 Constant *Function::getPersonalityFn() const {
1618   assert(hasPersonalityFn() && getNumOperands());
1619   return cast<Constant>(Op<0>());
1620 }
1621 
setPersonalityFn(Constant * Fn)1622 void Function::setPersonalityFn(Constant *Fn) {
1623   setHungoffOperand<0>(Fn);
1624   setValueSubclassDataBit(3, Fn != nullptr);
1625 }
1626 
getPrefixData() const1627 Constant *Function::getPrefixData() const {
1628   assert(hasPrefixData() && getNumOperands());
1629   return cast<Constant>(Op<1>());
1630 }
1631 
setPrefixData(Constant * PrefixData)1632 void Function::setPrefixData(Constant *PrefixData) {
1633   setHungoffOperand<1>(PrefixData);
1634   setValueSubclassDataBit(1, PrefixData != nullptr);
1635 }
1636 
getPrologueData() const1637 Constant *Function::getPrologueData() const {
1638   assert(hasPrologueData() && getNumOperands());
1639   return cast<Constant>(Op<2>());
1640 }
1641 
setPrologueData(Constant * PrologueData)1642 void Function::setPrologueData(Constant *PrologueData) {
1643   setHungoffOperand<2>(PrologueData);
1644   setValueSubclassDataBit(2, PrologueData != nullptr);
1645 }
1646 
allocHungoffUselist()1647 void Function::allocHungoffUselist() {
1648   // If we've already allocated a uselist, stop here.
1649   if (getNumOperands())
1650     return;
1651 
1652   allocHungoffUses(3, /*IsPhi=*/ false);
1653   setNumHungOffUseOperands(3);
1654 
1655   // Initialize the uselist with placeholder operands to allow traversal.
1656   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1657   Op<0>().set(CPN);
1658   Op<1>().set(CPN);
1659   Op<2>().set(CPN);
1660 }
1661 
1662 template <int Idx>
setHungoffOperand(Constant * C)1663 void Function::setHungoffOperand(Constant *C) {
1664   if (C) {
1665     allocHungoffUselist();
1666     Op<Idx>().set(C);
1667   } else if (getNumOperands()) {
1668     Op<Idx>().set(
1669         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1670   }
1671 }
1672 
setValueSubclassDataBit(unsigned Bit,bool On)1673 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1674   assert(Bit < 16 && "SubclassData contains only 16 bits");
1675   if (On)
1676     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1677   else
1678     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1679 }
1680 
setEntryCount(ProfileCount Count,const DenseSet<GlobalValue::GUID> * S)1681 void Function::setEntryCount(ProfileCount Count,
1682                              const DenseSet<GlobalValue::GUID> *S) {
1683   assert(Count.hasValue());
1684 #if !defined(NDEBUG)
1685   auto PrevCount = getEntryCount();
1686   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1687 #endif
1688 
1689   auto ImportGUIDs = getImportGUIDs();
1690   if (S == nullptr && ImportGUIDs.size())
1691     S = &ImportGUIDs;
1692 
1693   MDBuilder MDB(getContext());
1694   setMetadata(
1695       LLVMContext::MD_prof,
1696       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1697 }
1698 
setEntryCount(uint64_t Count,Function::ProfileCountType Type,const DenseSet<GlobalValue::GUID> * Imports)1699 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1700                              const DenseSet<GlobalValue::GUID> *Imports) {
1701   setEntryCount(ProfileCount(Count, Type), Imports);
1702 }
1703 
getEntryCount(bool AllowSynthetic) const1704 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1705   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1706   if (MD && MD->getOperand(0))
1707     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1708       if (MDS->getString().equals("function_entry_count")) {
1709         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1710         uint64_t Count = CI->getValue().getZExtValue();
1711         // A value of -1 is used for SamplePGO when there were no samples.
1712         // Treat this the same as unknown.
1713         if (Count == (uint64_t)-1)
1714           return ProfileCount::getInvalid();
1715         return ProfileCount(Count, PCT_Real);
1716       } else if (AllowSynthetic &&
1717                  MDS->getString().equals("synthetic_function_entry_count")) {
1718         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1719         uint64_t Count = CI->getValue().getZExtValue();
1720         return ProfileCount(Count, PCT_Synthetic);
1721       }
1722     }
1723   return ProfileCount::getInvalid();
1724 }
1725 
getImportGUIDs() const1726 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1727   DenseSet<GlobalValue::GUID> R;
1728   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1729     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1730       if (MDS->getString().equals("function_entry_count"))
1731         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1732           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1733                        ->getValue()
1734                        .getZExtValue());
1735   return R;
1736 }
1737 
setSectionPrefix(StringRef Prefix)1738 void Function::setSectionPrefix(StringRef Prefix) {
1739   MDBuilder MDB(getContext());
1740   setMetadata(LLVMContext::MD_section_prefix,
1741               MDB.createFunctionSectionPrefix(Prefix));
1742 }
1743 
getSectionPrefix() const1744 Optional<StringRef> Function::getSectionPrefix() const {
1745   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1746     assert(cast<MDString>(MD->getOperand(0))
1747                ->getString()
1748                .equals("function_section_prefix") &&
1749            "Metadata not match");
1750     return cast<MDString>(MD->getOperand(1))->getString();
1751   }
1752   return None;
1753 }
1754 
nullPointerIsDefined() const1755 bool Function::nullPointerIsDefined() const {
1756   return hasFnAttribute(Attribute::NullPointerIsValid);
1757 }
1758 
NullPointerIsDefined(const Function * F,unsigned AS)1759 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1760   if (F && F->nullPointerIsDefined())
1761     return true;
1762 
1763   if (AS != 0)
1764     return true;
1765 
1766   return false;
1767 }
1768