1 //===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "MCTargetDesc/AArch64FixupKinds.h"
10 #include "MCTargetDesc/AArch64MCExpr.h"
11 #include "MCTargetDesc/AArch64MCTargetDesc.h"
12 #include "Utils/AArch64BaseInfo.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/BinaryFormat/MachO.h"
15 #include "llvm/MC/MCAsmBackend.h"
16 #include "llvm/MC/MCAssembler.h"
17 #include "llvm/MC/MCContext.h"
18 #include "llvm/MC/MCDirectives.h"
19 #include "llvm/MC/MCELFObjectWriter.h"
20 #include "llvm/MC/MCFixupKindInfo.h"
21 #include "llvm/MC/MCObjectWriter.h"
22 #include "llvm/MC/MCRegisterInfo.h"
23 #include "llvm/MC/MCSectionELF.h"
24 #include "llvm/MC/MCSectionMachO.h"
25 #include "llvm/MC/MCTargetOptions.h"
26 #include "llvm/MC/MCValue.h"
27 #include "llvm/Support/EndianStream.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/TargetRegistry.h"
30 using namespace llvm;
31 
32 namespace {
33 
34 class AArch64AsmBackend : public MCAsmBackend {
35   static const unsigned PCRelFlagVal =
36       MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel;
37 protected:
38   Triple TheTriple;
39 
40 public:
AArch64AsmBackend(const Target & T,const Triple & TT,bool IsLittleEndian)41   AArch64AsmBackend(const Target &T, const Triple &TT, bool IsLittleEndian)
42       : MCAsmBackend(IsLittleEndian ? support::little : support::big),
43         TheTriple(TT) {}
44 
getNumFixupKinds() const45   unsigned getNumFixupKinds() const override {
46     return AArch64::NumTargetFixupKinds;
47   }
48 
49   Optional<MCFixupKind> getFixupKind(StringRef Name) const override;
50 
getFixupKindInfo(MCFixupKind Kind) const51   const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
52     const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = {
53         // This table *must* be in the order that the fixup_* kinds are defined
54         // in AArch64FixupKinds.h.
55         //
56         // Name                           Offset (bits) Size (bits)     Flags
57         {"fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal},
58         {"fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal},
59         {"fixup_aarch64_add_imm12", 10, 12, 0},
60         {"fixup_aarch64_ldst_imm12_scale1", 10, 12, 0},
61         {"fixup_aarch64_ldst_imm12_scale2", 10, 12, 0},
62         {"fixup_aarch64_ldst_imm12_scale4", 10, 12, 0},
63         {"fixup_aarch64_ldst_imm12_scale8", 10, 12, 0},
64         {"fixup_aarch64_ldst_imm12_scale16", 10, 12, 0},
65         {"fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal},
66         {"fixup_aarch64_movw", 5, 16, 0},
67         {"fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal},
68         {"fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal},
69         {"fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal},
70         {"fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal},
71         {"fixup_aarch64_tlsdesc_call", 0, 0, 0}};
72 
73     // Fixup kinds from .reloc directive are like R_AARCH64_NONE. They do not
74     // require any extra processing.
75     if (Kind >= FirstLiteralRelocationKind)
76       return MCAsmBackend::getFixupKindInfo(FK_NONE);
77 
78     if (Kind < FirstTargetFixupKind)
79       return MCAsmBackend::getFixupKindInfo(Kind);
80 
81     assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
82            "Invalid kind!");
83     return Infos[Kind - FirstTargetFixupKind];
84   }
85 
86   void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
87                   const MCValue &Target, MutableArrayRef<char> Data,
88                   uint64_t Value, bool IsResolved,
89                   const MCSubtargetInfo *STI) const override;
90 
91   bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
92                             const MCRelaxableFragment *DF,
93                             const MCAsmLayout &Layout) const override;
94   void relaxInstruction(MCInst &Inst,
95                         const MCSubtargetInfo &STI) const override;
96   bool writeNopData(raw_ostream &OS, uint64_t Count) const override;
97 
HandleAssemblerFlag(MCAssemblerFlag Flag)98   void HandleAssemblerFlag(MCAssemblerFlag Flag) {}
99 
getPointerSize() const100   unsigned getPointerSize() const { return 8; }
101 
102   unsigned getFixupKindContainereSizeInBytes(unsigned Kind) const;
103 
104   bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup,
105                              const MCValue &Target) override;
106 };
107 
108 } // end anonymous namespace
109 
110 /// The number of bytes the fixup may change.
getFixupKindNumBytes(unsigned Kind)111 static unsigned getFixupKindNumBytes(unsigned Kind) {
112   switch (Kind) {
113   default:
114     llvm_unreachable("Unknown fixup kind!");
115 
116   case AArch64::fixup_aarch64_tlsdesc_call:
117     return 0;
118 
119   case FK_Data_1:
120     return 1;
121 
122   case FK_Data_2:
123   case FK_SecRel_2:
124     return 2;
125 
126   case AArch64::fixup_aarch64_movw:
127   case AArch64::fixup_aarch64_pcrel_branch14:
128   case AArch64::fixup_aarch64_add_imm12:
129   case AArch64::fixup_aarch64_ldst_imm12_scale1:
130   case AArch64::fixup_aarch64_ldst_imm12_scale2:
131   case AArch64::fixup_aarch64_ldst_imm12_scale4:
132   case AArch64::fixup_aarch64_ldst_imm12_scale8:
133   case AArch64::fixup_aarch64_ldst_imm12_scale16:
134   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
135   case AArch64::fixup_aarch64_pcrel_branch19:
136     return 3;
137 
138   case AArch64::fixup_aarch64_pcrel_adr_imm21:
139   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
140   case AArch64::fixup_aarch64_pcrel_branch26:
141   case AArch64::fixup_aarch64_pcrel_call26:
142   case FK_Data_4:
143   case FK_SecRel_4:
144     return 4;
145 
146   case FK_Data_8:
147     return 8;
148   }
149 }
150 
AdrImmBits(unsigned Value)151 static unsigned AdrImmBits(unsigned Value) {
152   unsigned lo2 = Value & 0x3;
153   unsigned hi19 = (Value & 0x1ffffc) >> 2;
154   return (hi19 << 5) | (lo2 << 29);
155 }
156 
adjustFixupValue(const MCFixup & Fixup,const MCValue & Target,uint64_t Value,MCContext & Ctx,const Triple & TheTriple,bool IsResolved)157 static uint64_t adjustFixupValue(const MCFixup &Fixup, const MCValue &Target,
158                                  uint64_t Value, MCContext &Ctx,
159                                  const Triple &TheTriple, bool IsResolved) {
160   int64_t SignedValue = static_cast<int64_t>(Value);
161   switch (Fixup.getTargetKind()) {
162   default:
163     llvm_unreachable("Unknown fixup kind!");
164   case AArch64::fixup_aarch64_pcrel_adr_imm21:
165     if (SignedValue > 2097151 || SignedValue < -2097152)
166       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
167     return AdrImmBits(Value & 0x1fffffULL);
168   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
169     assert(!IsResolved);
170     if (TheTriple.isOSBinFormatCOFF())
171       return AdrImmBits(Value & 0x1fffffULL);
172     return AdrImmBits((Value & 0x1fffff000ULL) >> 12);
173   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
174   case AArch64::fixup_aarch64_pcrel_branch19:
175     // Signed 21-bit immediate
176     if (SignedValue > 2097151 || SignedValue < -2097152)
177       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
178     if (Value & 0x3)
179       Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
180     // Low two bits are not encoded.
181     return (Value >> 2) & 0x7ffff;
182   case AArch64::fixup_aarch64_add_imm12:
183   case AArch64::fixup_aarch64_ldst_imm12_scale1:
184     if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
185       Value &= 0xfff;
186     // Unsigned 12-bit immediate
187     if (Value >= 0x1000)
188       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
189     return Value;
190   case AArch64::fixup_aarch64_ldst_imm12_scale2:
191     if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
192       Value &= 0xfff;
193     // Unsigned 12-bit immediate which gets multiplied by 2
194     if (Value >= 0x2000)
195       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
196     if (Value & 0x1)
197       Ctx.reportError(Fixup.getLoc(), "fixup must be 2-byte aligned");
198     return Value >> 1;
199   case AArch64::fixup_aarch64_ldst_imm12_scale4:
200     if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
201       Value &= 0xfff;
202     // Unsigned 12-bit immediate which gets multiplied by 4
203     if (Value >= 0x4000)
204       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
205     if (Value & 0x3)
206       Ctx.reportError(Fixup.getLoc(), "fixup must be 4-byte aligned");
207     return Value >> 2;
208   case AArch64::fixup_aarch64_ldst_imm12_scale8:
209     if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
210       Value &= 0xfff;
211     // Unsigned 12-bit immediate which gets multiplied by 8
212     if (Value >= 0x8000)
213       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
214     if (Value & 0x7)
215       Ctx.reportError(Fixup.getLoc(), "fixup must be 8-byte aligned");
216     return Value >> 3;
217   case AArch64::fixup_aarch64_ldst_imm12_scale16:
218     if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
219       Value &= 0xfff;
220     // Unsigned 12-bit immediate which gets multiplied by 16
221     if (Value >= 0x10000)
222       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
223     if (Value & 0xf)
224       Ctx.reportError(Fixup.getLoc(), "fixup must be 16-byte aligned");
225     return Value >> 4;
226   case AArch64::fixup_aarch64_movw: {
227     AArch64MCExpr::VariantKind RefKind =
228         static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
229     if (AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_ABS &&
230         AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_SABS) {
231       if (!RefKind) {
232         // The fixup is an expression
233         if (SignedValue > 0xFFFF || SignedValue < -0xFFFF)
234           Ctx.reportError(Fixup.getLoc(),
235                           "fixup value out of range [-0xFFFF, 0xFFFF]");
236 
237         // Invert the negative immediate because it will feed into a MOVN.
238         if (SignedValue < 0)
239           SignedValue = ~SignedValue;
240         Value = static_cast<uint64_t>(SignedValue);
241       } else
242         // VK_GOTTPREL, VK_TPREL, VK_DTPREL are movw fixups, but they can't
243         // ever be resolved in the assembler.
244         Ctx.reportError(Fixup.getLoc(),
245                         "relocation for a thread-local variable points to an "
246                         "absolute symbol");
247       return Value;
248     }
249 
250     if (!IsResolved) {
251       // FIXME: Figure out when this can actually happen, and verify our
252       // behavior.
253       Ctx.reportError(Fixup.getLoc(), "unresolved movw fixup not yet "
254                                       "implemented");
255       return Value;
256     }
257 
258     if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) {
259       switch (AArch64MCExpr::getAddressFrag(RefKind)) {
260       case AArch64MCExpr::VK_G0:
261         break;
262       case AArch64MCExpr::VK_G1:
263         SignedValue = SignedValue >> 16;
264         break;
265       case AArch64MCExpr::VK_G2:
266         SignedValue = SignedValue >> 32;
267         break;
268       case AArch64MCExpr::VK_G3:
269         SignedValue = SignedValue >> 48;
270         break;
271       default:
272         llvm_unreachable("Variant kind doesn't correspond to fixup");
273       }
274 
275     } else {
276       switch (AArch64MCExpr::getAddressFrag(RefKind)) {
277       case AArch64MCExpr::VK_G0:
278         break;
279       case AArch64MCExpr::VK_G1:
280         Value = Value >> 16;
281         break;
282       case AArch64MCExpr::VK_G2:
283         Value = Value >> 32;
284         break;
285       case AArch64MCExpr::VK_G3:
286         Value = Value >> 48;
287         break;
288       default:
289         llvm_unreachable("Variant kind doesn't correspond to fixup");
290       }
291     }
292 
293     if (RefKind & AArch64MCExpr::VK_NC) {
294       Value &= 0xFFFF;
295     }
296     else if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) {
297       if (SignedValue > 0xFFFF || SignedValue < -0xFFFF)
298         Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
299 
300       // Invert the negative immediate because it will feed into a MOVN.
301       if (SignedValue < 0)
302         SignedValue = ~SignedValue;
303       Value = static_cast<uint64_t>(SignedValue);
304     }
305     else if (Value > 0xFFFF) {
306       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
307     }
308     return Value;
309   }
310   case AArch64::fixup_aarch64_pcrel_branch14:
311     // Signed 16-bit immediate
312     if (SignedValue > 32767 || SignedValue < -32768)
313       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
314     // Low two bits are not encoded (4-byte alignment assumed).
315     if (Value & 0x3)
316       Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
317     return (Value >> 2) & 0x3fff;
318   case AArch64::fixup_aarch64_pcrel_branch26:
319   case AArch64::fixup_aarch64_pcrel_call26:
320     // Signed 28-bit immediate
321     if (SignedValue > 134217727 || SignedValue < -134217728)
322       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
323     // Low two bits are not encoded (4-byte alignment assumed).
324     if (Value & 0x3)
325       Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
326     return (Value >> 2) & 0x3ffffff;
327   case FK_Data_1:
328   case FK_Data_2:
329   case FK_Data_4:
330   case FK_Data_8:
331   case FK_SecRel_2:
332   case FK_SecRel_4:
333     return Value;
334   }
335 }
336 
getFixupKind(StringRef Name) const337 Optional<MCFixupKind> AArch64AsmBackend::getFixupKind(StringRef Name) const {
338   if (!TheTriple.isOSBinFormatELF())
339     return None;
340 
341   unsigned Type = llvm::StringSwitch<unsigned>(Name)
342 #define ELF_RELOC(X, Y)  .Case(#X, Y)
343 #include "llvm/BinaryFormat/ELFRelocs/AArch64.def"
344 #undef ELF_RELOC
345                       .Default(-1u);
346   if (Type == -1u)
347     return None;
348   return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
349 }
350 
351 /// getFixupKindContainereSizeInBytes - The number of bytes of the
352 /// container involved in big endian or 0 if the item is little endian
getFixupKindContainereSizeInBytes(unsigned Kind) const353 unsigned AArch64AsmBackend::getFixupKindContainereSizeInBytes(unsigned Kind) const {
354   if (Endian == support::little)
355     return 0;
356 
357   switch (Kind) {
358   default:
359     llvm_unreachable("Unknown fixup kind!");
360 
361   case FK_Data_1:
362     return 1;
363   case FK_Data_2:
364     return 2;
365   case FK_Data_4:
366     return 4;
367   case FK_Data_8:
368     return 8;
369 
370   case AArch64::fixup_aarch64_tlsdesc_call:
371   case AArch64::fixup_aarch64_movw:
372   case AArch64::fixup_aarch64_pcrel_branch14:
373   case AArch64::fixup_aarch64_add_imm12:
374   case AArch64::fixup_aarch64_ldst_imm12_scale1:
375   case AArch64::fixup_aarch64_ldst_imm12_scale2:
376   case AArch64::fixup_aarch64_ldst_imm12_scale4:
377   case AArch64::fixup_aarch64_ldst_imm12_scale8:
378   case AArch64::fixup_aarch64_ldst_imm12_scale16:
379   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
380   case AArch64::fixup_aarch64_pcrel_branch19:
381   case AArch64::fixup_aarch64_pcrel_adr_imm21:
382   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
383   case AArch64::fixup_aarch64_pcrel_branch26:
384   case AArch64::fixup_aarch64_pcrel_call26:
385     // Instructions are always little endian
386     return 0;
387   }
388 }
389 
applyFixup(const MCAssembler & Asm,const MCFixup & Fixup,const MCValue & Target,MutableArrayRef<char> Data,uint64_t Value,bool IsResolved,const MCSubtargetInfo * STI) const390 void AArch64AsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
391                                    const MCValue &Target,
392                                    MutableArrayRef<char> Data, uint64_t Value,
393                                    bool IsResolved,
394                                    const MCSubtargetInfo *STI) const {
395   if (!Value)
396     return; // Doesn't change encoding.
397   unsigned Kind = Fixup.getKind();
398   if (Kind >= FirstLiteralRelocationKind)
399     return;
400   unsigned NumBytes = getFixupKindNumBytes(Kind);
401   MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
402   MCContext &Ctx = Asm.getContext();
403   int64_t SignedValue = static_cast<int64_t>(Value);
404   // Apply any target-specific value adjustments.
405   Value = adjustFixupValue(Fixup, Target, Value, Ctx, TheTriple, IsResolved);
406 
407   // Shift the value into position.
408   Value <<= Info.TargetOffset;
409 
410   unsigned Offset = Fixup.getOffset();
411   assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
412 
413   // Used to point to big endian bytes.
414   unsigned FulleSizeInBytes = getFixupKindContainereSizeInBytes(Fixup.getKind());
415 
416   // For each byte of the fragment that the fixup touches, mask in the
417   // bits from the fixup value.
418   if (FulleSizeInBytes == 0) {
419     // Handle as little-endian
420     for (unsigned i = 0; i != NumBytes; ++i) {
421       Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
422     }
423   } else {
424     // Handle as big-endian
425     assert((Offset + FulleSizeInBytes) <= Data.size() && "Invalid fixup size!");
426     assert(NumBytes <= FulleSizeInBytes && "Invalid fixup size!");
427     for (unsigned i = 0; i != NumBytes; ++i) {
428       unsigned Idx = FulleSizeInBytes - 1 - i;
429       Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
430     }
431   }
432 
433   // FIXME: getFixupKindInfo() and getFixupKindNumBytes() could be fixed to
434   // handle this more cleanly. This may affect the output of -show-mc-encoding.
435   AArch64MCExpr::VariantKind RefKind =
436       static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
437   if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS ||
438       (!RefKind && Fixup.getTargetKind() == AArch64::fixup_aarch64_movw)) {
439     // If the immediate is negative, generate MOVN else MOVZ.
440     // (Bit 30 = 0) ==> MOVN, (Bit 30 = 1) ==> MOVZ.
441     if (SignedValue < 0)
442       Data[Offset + 3] &= ~(1 << 6);
443     else
444       Data[Offset + 3] |= (1 << 6);
445   }
446 }
447 
fixupNeedsRelaxation(const MCFixup & Fixup,uint64_t Value,const MCRelaxableFragment * DF,const MCAsmLayout & Layout) const448 bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
449                                              uint64_t Value,
450                                              const MCRelaxableFragment *DF,
451                                              const MCAsmLayout &Layout) const {
452   // FIXME:  This isn't correct for AArch64. Just moving the "generic" logic
453   // into the targets for now.
454   //
455   // Relax if the value is too big for a (signed) i8.
456   return int64_t(Value) != int64_t(int8_t(Value));
457 }
458 
relaxInstruction(MCInst & Inst,const MCSubtargetInfo & STI) const459 void AArch64AsmBackend::relaxInstruction(MCInst &Inst,
460                                          const MCSubtargetInfo &STI) const {
461   llvm_unreachable("AArch64AsmBackend::relaxInstruction() unimplemented");
462 }
463 
writeNopData(raw_ostream & OS,uint64_t Count) const464 bool AArch64AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
465   // If the count is not 4-byte aligned, we must be writing data into the text
466   // section (otherwise we have unaligned instructions, and thus have far
467   // bigger problems), so just write zeros instead.
468   OS.write_zeros(Count % 4);
469 
470   // We are properly aligned, so write NOPs as requested.
471   Count /= 4;
472   for (uint64_t i = 0; i != Count; ++i)
473     support::endian::write<uint32_t>(OS, 0xd503201f, Endian);
474   return true;
475 }
476 
shouldForceRelocation(const MCAssembler & Asm,const MCFixup & Fixup,const MCValue & Target)477 bool AArch64AsmBackend::shouldForceRelocation(const MCAssembler &Asm,
478                                               const MCFixup &Fixup,
479                                               const MCValue &Target) {
480   unsigned Kind = Fixup.getKind();
481   if (Kind >= FirstLiteralRelocationKind)
482     return true;
483 
484   // The ADRP instruction adds some multiple of 0x1000 to the current PC &
485   // ~0xfff. This means that the required offset to reach a symbol can vary by
486   // up to one step depending on where the ADRP is in memory. For example:
487   //
488   //     ADRP x0, there
489   //  there:
490   //
491   // If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and
492   // we'll need that as an offset. At any other address "there" will be in the
493   // same page as the ADRP and the instruction should encode 0x0. Assuming the
494   // section isn't 0x1000-aligned, we therefore need to delegate this decision
495   // to the linker -- a relocation!
496   if (Kind == AArch64::fixup_aarch64_pcrel_adrp_imm21)
497     return true;
498 
499   AArch64MCExpr::VariantKind RefKind =
500       static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
501   AArch64MCExpr::VariantKind SymLoc = AArch64MCExpr::getSymbolLoc(RefKind);
502   // LDR GOT relocations need a relocation
503   if (Kind == AArch64::fixup_aarch64_ldr_pcrel_imm19 &&
504       SymLoc == AArch64MCExpr::VK_GOT)
505     return true;
506   return false;
507 }
508 
509 namespace {
510 
511 namespace CU {
512 
513 /// Compact unwind encoding values.
514 enum CompactUnwindEncodings {
515   /// A "frameless" leaf function, where no non-volatile registers are
516   /// saved. The return remains in LR throughout the function.
517   UNWIND_ARM64_MODE_FRAMELESS = 0x02000000,
518 
519   /// No compact unwind encoding available. Instead the low 23-bits of
520   /// the compact unwind encoding is the offset of the DWARF FDE in the
521   /// __eh_frame section. This mode is never used in object files. It is only
522   /// generated by the linker in final linked images, which have only DWARF info
523   /// for a function.
524   UNWIND_ARM64_MODE_DWARF = 0x03000000,
525 
526   /// This is a standard arm64 prologue where FP/LR are immediately
527   /// pushed on the stack, then SP is copied to FP. If there are any
528   /// non-volatile register saved, they are copied into the stack fame in pairs
529   /// in a contiguous ranger right below the saved FP/LR pair. Any subset of the
530   /// five X pairs and four D pairs can be saved, but the memory layout must be
531   /// in register number order.
532   UNWIND_ARM64_MODE_FRAME = 0x04000000,
533 
534   /// Frame register pair encodings.
535   UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001,
536   UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002,
537   UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004,
538   UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008,
539   UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010,
540   UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100,
541   UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200,
542   UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400,
543   UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800
544 };
545 
546 } // end CU namespace
547 
548 // FIXME: This should be in a separate file.
549 class DarwinAArch64AsmBackend : public AArch64AsmBackend {
550   const MCRegisterInfo &MRI;
551 
552   /// Encode compact unwind stack adjustment for frameless functions.
553   /// See UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h.
554   /// The stack size always needs to be 16 byte aligned.
encodeStackAdjustment(uint32_t StackSize) const555   uint32_t encodeStackAdjustment(uint32_t StackSize) const {
556     return (StackSize / 16) << 12;
557   }
558 
559 public:
DarwinAArch64AsmBackend(const Target & T,const Triple & TT,const MCRegisterInfo & MRI)560   DarwinAArch64AsmBackend(const Target &T, const Triple &TT,
561                           const MCRegisterInfo &MRI)
562       : AArch64AsmBackend(T, TT, /*IsLittleEndian*/ true), MRI(MRI) {}
563 
564   std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const565   createObjectTargetWriter() const override {
566     uint32_t CPUType = cantFail(MachO::getCPUType(TheTriple));
567     uint32_t CPUSubType = cantFail(MachO::getCPUSubType(TheTriple));
568     return createAArch64MachObjectWriter(CPUType, CPUSubType,
569                                          TheTriple.isArch32Bit());
570   }
571 
572   /// Generate the compact unwind encoding from the CFI directives.
generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const573   uint32_t generateCompactUnwindEncoding(
574                              ArrayRef<MCCFIInstruction> Instrs) const override {
575     if (Instrs.empty())
576       return CU::UNWIND_ARM64_MODE_FRAMELESS;
577 
578     bool HasFP = false;
579     unsigned StackSize = 0;
580 
581     uint32_t CompactUnwindEncoding = 0;
582     for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
583       const MCCFIInstruction &Inst = Instrs[i];
584 
585       switch (Inst.getOperation()) {
586       default:
587         // Cannot handle this directive:  bail out.
588         return CU::UNWIND_ARM64_MODE_DWARF;
589       case MCCFIInstruction::OpDefCfa: {
590         // Defines a frame pointer.
591         unsigned XReg =
592             getXRegFromWReg(*MRI.getLLVMRegNum(Inst.getRegister(), true));
593 
594         // Other CFA registers than FP are not supported by compact unwind.
595         // Fallback on DWARF.
596         // FIXME: When opt-remarks are supported in MC, add a remark to notify
597         // the user.
598         if (XReg != AArch64::FP)
599           return CU::UNWIND_ARM64_MODE_DWARF;
600 
601         assert(XReg == AArch64::FP && "Invalid frame pointer!");
602         assert(i + 2 < e && "Insufficient CFI instructions to define a frame!");
603 
604         const MCCFIInstruction &LRPush = Instrs[++i];
605         assert(LRPush.getOperation() == MCCFIInstruction::OpOffset &&
606                "Link register not pushed!");
607         const MCCFIInstruction &FPPush = Instrs[++i];
608         assert(FPPush.getOperation() == MCCFIInstruction::OpOffset &&
609                "Frame pointer not pushed!");
610 
611         unsigned LRReg = *MRI.getLLVMRegNum(LRPush.getRegister(), true);
612         unsigned FPReg = *MRI.getLLVMRegNum(FPPush.getRegister(), true);
613 
614         LRReg = getXRegFromWReg(LRReg);
615         FPReg = getXRegFromWReg(FPReg);
616 
617         assert(LRReg == AArch64::LR && FPReg == AArch64::FP &&
618                "Pushing invalid registers for frame!");
619 
620         // Indicate that the function has a frame.
621         CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAME;
622         HasFP = true;
623         break;
624       }
625       case MCCFIInstruction::OpDefCfaOffset: {
626         assert(StackSize == 0 && "We already have the CFA offset!");
627         StackSize = std::abs(Inst.getOffset());
628         break;
629       }
630       case MCCFIInstruction::OpOffset: {
631         // Registers are saved in pairs. We expect there to be two consecutive
632         // `.cfi_offset' instructions with the appropriate registers specified.
633         unsigned Reg1 = *MRI.getLLVMRegNum(Inst.getRegister(), true);
634         if (i + 1 == e)
635           return CU::UNWIND_ARM64_MODE_DWARF;
636 
637         const MCCFIInstruction &Inst2 = Instrs[++i];
638         if (Inst2.getOperation() != MCCFIInstruction::OpOffset)
639           return CU::UNWIND_ARM64_MODE_DWARF;
640         unsigned Reg2 = *MRI.getLLVMRegNum(Inst2.getRegister(), true);
641 
642         // N.B. The encodings must be in register number order, and the X
643         // registers before the D registers.
644 
645         // X19/X20 pair = 0x00000001,
646         // X21/X22 pair = 0x00000002,
647         // X23/X24 pair = 0x00000004,
648         // X25/X26 pair = 0x00000008,
649         // X27/X28 pair = 0x00000010
650         Reg1 = getXRegFromWReg(Reg1);
651         Reg2 = getXRegFromWReg(Reg2);
652 
653         if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 &&
654             (CompactUnwindEncoding & 0xF1E) == 0)
655           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X19_X20_PAIR;
656         else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 &&
657                  (CompactUnwindEncoding & 0xF1C) == 0)
658           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X21_X22_PAIR;
659         else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 &&
660                  (CompactUnwindEncoding & 0xF18) == 0)
661           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X23_X24_PAIR;
662         else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 &&
663                  (CompactUnwindEncoding & 0xF10) == 0)
664           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X25_X26_PAIR;
665         else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 &&
666                  (CompactUnwindEncoding & 0xF00) == 0)
667           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X27_X28_PAIR;
668         else {
669           Reg1 = getDRegFromBReg(Reg1);
670           Reg2 = getDRegFromBReg(Reg2);
671 
672           // D8/D9 pair   = 0x00000100,
673           // D10/D11 pair = 0x00000200,
674           // D12/D13 pair = 0x00000400,
675           // D14/D15 pair = 0x00000800
676           if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 &&
677               (CompactUnwindEncoding & 0xE00) == 0)
678             CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D8_D9_PAIR;
679           else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 &&
680                    (CompactUnwindEncoding & 0xC00) == 0)
681             CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D10_D11_PAIR;
682           else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 &&
683                    (CompactUnwindEncoding & 0x800) == 0)
684             CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D12_D13_PAIR;
685           else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15)
686             CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D14_D15_PAIR;
687           else
688             // A pair was pushed which we cannot handle.
689             return CU::UNWIND_ARM64_MODE_DWARF;
690         }
691 
692         break;
693       }
694       }
695     }
696 
697     if (!HasFP) {
698       // With compact unwind info we can only represent stack adjustments of up
699       // to 65520 bytes.
700       if (StackSize > 65520)
701         return CU::UNWIND_ARM64_MODE_DWARF;
702 
703       CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAMELESS;
704       CompactUnwindEncoding |= encodeStackAdjustment(StackSize);
705     }
706 
707     return CompactUnwindEncoding;
708   }
709 };
710 
711 } // end anonymous namespace
712 
713 namespace {
714 
715 class ELFAArch64AsmBackend : public AArch64AsmBackend {
716 public:
717   uint8_t OSABI;
718   bool IsILP32;
719 
ELFAArch64AsmBackend(const Target & T,const Triple & TT,uint8_t OSABI,bool IsLittleEndian,bool IsILP32)720   ELFAArch64AsmBackend(const Target &T, const Triple &TT, uint8_t OSABI,
721                        bool IsLittleEndian, bool IsILP32)
722       : AArch64AsmBackend(T, TT, IsLittleEndian), OSABI(OSABI),
723         IsILP32(IsILP32) {}
724 
725   std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const726   createObjectTargetWriter() const override {
727     return createAArch64ELFObjectWriter(OSABI, IsILP32);
728   }
729 };
730 
731 }
732 
733 namespace {
734 class COFFAArch64AsmBackend : public AArch64AsmBackend {
735 public:
COFFAArch64AsmBackend(const Target & T,const Triple & TheTriple)736   COFFAArch64AsmBackend(const Target &T, const Triple &TheTriple)
737       : AArch64AsmBackend(T, TheTriple, /*IsLittleEndian*/ true) {}
738 
739   std::unique_ptr<MCObjectTargetWriter>
createObjectTargetWriter() const740   createObjectTargetWriter() const override {
741     return createAArch64WinCOFFObjectWriter();
742   }
743 };
744 }
745 
createAArch64leAsmBackend(const Target & T,const MCSubtargetInfo & STI,const MCRegisterInfo & MRI,const MCTargetOptions & Options)746 MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
747                                               const MCSubtargetInfo &STI,
748                                               const MCRegisterInfo &MRI,
749                                               const MCTargetOptions &Options) {
750   const Triple &TheTriple = STI.getTargetTriple();
751   if (TheTriple.isOSBinFormatMachO()) {
752     return new DarwinAArch64AsmBackend(T, TheTriple, MRI);
753   }
754 
755   if (TheTriple.isOSBinFormatCOFF())
756     return new COFFAArch64AsmBackend(T, TheTriple);
757 
758   assert(TheTriple.isOSBinFormatELF() && "Invalid target");
759 
760   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
761   bool IsILP32 = Options.getABIName() == "ilp32";
762   return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/true,
763                                   IsILP32);
764 }
765 
createAArch64beAsmBackend(const Target & T,const MCSubtargetInfo & STI,const MCRegisterInfo & MRI,const MCTargetOptions & Options)766 MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
767                                               const MCSubtargetInfo &STI,
768                                               const MCRegisterInfo &MRI,
769                                               const MCTargetOptions &Options) {
770   const Triple &TheTriple = STI.getTargetTriple();
771   assert(TheTriple.isOSBinFormatELF() &&
772          "Big endian is only supported for ELF targets!");
773   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
774   bool IsILP32 = Options.getABIName() == "ilp32";
775   return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/false,
776                                   IsILP32);
777 }
778