1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/CodeGen/LiveVariables.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineConstantPool.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/MachineScheduler.h"
39 #include "llvm/CodeGen/MultiHazardRecognizer.h"
40 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
41 #include "llvm/CodeGen/SelectionDAGNodes.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/CodeGen/TargetSchedule.h"
45 #include "llvm/IR/Attributes.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/MC/MCAsmInfo.h"
51 #include "llvm/MC/MCInstrDesc.h"
52 #include "llvm/MC/MCInstrItineraries.h"
53 #include "llvm/Support/BranchProbability.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetMachine.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <new>
66 #include <utility>
67 #include <vector>
68 
69 using namespace llvm;
70 
71 #define DEBUG_TYPE "arm-instrinfo"
72 
73 #define GET_INSTRINFO_CTOR_DTOR
74 #include "ARMGenInstrInfo.inc"
75 
76 static cl::opt<bool>
77 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
78                cl::desc("Enable ARM 2-addr to 3-addr conv"));
79 
80 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
81 struct ARM_MLxEntry {
82   uint16_t MLxOpc;     // MLA / MLS opcode
83   uint16_t MulOpc;     // Expanded multiplication opcode
84   uint16_t AddSubOpc;  // Expanded add / sub opcode
85   bool NegAcc;         // True if the acc is negated before the add / sub.
86   bool HasLane;        // True if instruction has an extra "lane" operand.
87 };
88 
89 static const ARM_MLxEntry ARM_MLxTable[] = {
90   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
91   // fp scalar ops
92   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
93   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
94   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
95   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
96   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
97   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
98   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
99   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
100 
101   // fp SIMD ops
102   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
103   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
104   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
105   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
106   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
107   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
108   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
109   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
110 };
111 
ARMBaseInstrInfo(const ARMSubtarget & STI)112 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
113   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
114     Subtarget(STI) {
115   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
116     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
117       llvm_unreachable("Duplicated entries?");
118     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
119     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
120   }
121 }
122 
123 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
124 // currently defaults to no prepass hazard recognizer.
125 ScheduleHazardRecognizer *
CreateTargetHazardRecognizer(const TargetSubtargetInfo * STI,const ScheduleDAG * DAG) const126 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
127                                                const ScheduleDAG *DAG) const {
128   if (usePreRAHazardRecognizer()) {
129     const InstrItineraryData *II =
130         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
131     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
132   }
133   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
134 }
135 
136 ScheduleHazardRecognizer *ARMBaseInstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const137 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
138                                    const ScheduleDAG *DAG) const {
139   MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
140 
141   if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
142     MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>());
143 
144   auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
145   if (BHR)
146     MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
147   return MHR;
148 }
149 
convertToThreeAddress(MachineFunction::iterator & MFI,MachineInstr & MI,LiveVariables * LV) const150 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
151     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
152   // FIXME: Thumb2 support.
153 
154   if (!EnableARM3Addr)
155     return nullptr;
156 
157   MachineFunction &MF = *MI.getParent()->getParent();
158   uint64_t TSFlags = MI.getDesc().TSFlags;
159   bool isPre = false;
160   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
161   default: return nullptr;
162   case ARMII::IndexModePre:
163     isPre = true;
164     break;
165   case ARMII::IndexModePost:
166     break;
167   }
168 
169   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
170   // operation.
171   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
172   if (MemOpc == 0)
173     return nullptr;
174 
175   MachineInstr *UpdateMI = nullptr;
176   MachineInstr *MemMI = nullptr;
177   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
178   const MCInstrDesc &MCID = MI.getDesc();
179   unsigned NumOps = MCID.getNumOperands();
180   bool isLoad = !MI.mayStore();
181   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
182   const MachineOperand &Base = MI.getOperand(2);
183   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
184   Register WBReg = WB.getReg();
185   Register BaseReg = Base.getReg();
186   Register OffReg = Offset.getReg();
187   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
188   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
189   switch (AddrMode) {
190   default: llvm_unreachable("Unknown indexed op!");
191   case ARMII::AddrMode2: {
192     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
193     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
194     if (OffReg == 0) {
195       if (ARM_AM::getSOImmVal(Amt) == -1)
196         // Can't encode it in a so_imm operand. This transformation will
197         // add more than 1 instruction. Abandon!
198         return nullptr;
199       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
200                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
201                      .addReg(BaseReg)
202                      .addImm(Amt)
203                      .add(predOps(Pred))
204                      .add(condCodeOp());
205     } else if (Amt != 0) {
206       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
207       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
208       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
209                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
210                      .addReg(BaseReg)
211                      .addReg(OffReg)
212                      .addReg(0)
213                      .addImm(SOOpc)
214                      .add(predOps(Pred))
215                      .add(condCodeOp());
216     } else
217       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
218                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
219                      .addReg(BaseReg)
220                      .addReg(OffReg)
221                      .add(predOps(Pred))
222                      .add(condCodeOp());
223     break;
224   }
225   case ARMII::AddrMode3 : {
226     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
227     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
228     if (OffReg == 0)
229       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
230       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
231                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
232                      .addReg(BaseReg)
233                      .addImm(Amt)
234                      .add(predOps(Pred))
235                      .add(condCodeOp());
236     else
237       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
238                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
239                      .addReg(BaseReg)
240                      .addReg(OffReg)
241                      .add(predOps(Pred))
242                      .add(condCodeOp());
243     break;
244   }
245   }
246 
247   std::vector<MachineInstr*> NewMIs;
248   if (isPre) {
249     if (isLoad)
250       MemMI =
251           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
252               .addReg(WBReg)
253               .addImm(0)
254               .addImm(Pred);
255     else
256       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
257                   .addReg(MI.getOperand(1).getReg())
258                   .addReg(WBReg)
259                   .addReg(0)
260                   .addImm(0)
261                   .addImm(Pred);
262     NewMIs.push_back(MemMI);
263     NewMIs.push_back(UpdateMI);
264   } else {
265     if (isLoad)
266       MemMI =
267           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
268               .addReg(BaseReg)
269               .addImm(0)
270               .addImm(Pred);
271     else
272       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
273                   .addReg(MI.getOperand(1).getReg())
274                   .addReg(BaseReg)
275                   .addReg(0)
276                   .addImm(0)
277                   .addImm(Pred);
278     if (WB.isDead())
279       UpdateMI->getOperand(0).setIsDead();
280     NewMIs.push_back(UpdateMI);
281     NewMIs.push_back(MemMI);
282   }
283 
284   // Transfer LiveVariables states, kill / dead info.
285   if (LV) {
286     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
287       MachineOperand &MO = MI.getOperand(i);
288       if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
289         Register Reg = MO.getReg();
290 
291         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
292         if (MO.isDef()) {
293           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
294           if (MO.isDead())
295             LV->addVirtualRegisterDead(Reg, *NewMI);
296         }
297         if (MO.isUse() && MO.isKill()) {
298           for (unsigned j = 0; j < 2; ++j) {
299             // Look at the two new MI's in reverse order.
300             MachineInstr *NewMI = NewMIs[j];
301             if (!NewMI->readsRegister(Reg))
302               continue;
303             LV->addVirtualRegisterKilled(Reg, *NewMI);
304             if (VI.removeKill(MI))
305               VI.Kills.push_back(NewMI);
306             break;
307           }
308         }
309       }
310     }
311   }
312 
313   MachineBasicBlock::iterator MBBI = MI.getIterator();
314   MFI->insert(MBBI, NewMIs[1]);
315   MFI->insert(MBBI, NewMIs[0]);
316   return NewMIs[0];
317 }
318 
319 // Branch analysis.
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const320 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
321                                      MachineBasicBlock *&TBB,
322                                      MachineBasicBlock *&FBB,
323                                      SmallVectorImpl<MachineOperand> &Cond,
324                                      bool AllowModify) const {
325   TBB = nullptr;
326   FBB = nullptr;
327 
328   MachineBasicBlock::instr_iterator I = MBB.instr_end();
329   if (I == MBB.instr_begin())
330     return false; // Empty blocks are easy.
331   --I;
332 
333   // Walk backwards from the end of the basic block until the branch is
334   // analyzed or we give up.
335   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
336     // Flag to be raised on unanalyzeable instructions. This is useful in cases
337     // where we want to clean up on the end of the basic block before we bail
338     // out.
339     bool CantAnalyze = false;
340 
341     // Skip over DEBUG values and predicated nonterminators.
342     while (I->isDebugInstr() || !I->isTerminator()) {
343       if (I == MBB.instr_begin())
344         return false;
345       --I;
346     }
347 
348     if (isIndirectBranchOpcode(I->getOpcode()) ||
349         isJumpTableBranchOpcode(I->getOpcode())) {
350       // Indirect branches and jump tables can't be analyzed, but we still want
351       // to clean up any instructions at the tail of the basic block.
352       CantAnalyze = true;
353     } else if (isUncondBranchOpcode(I->getOpcode())) {
354       TBB = I->getOperand(0).getMBB();
355     } else if (isCondBranchOpcode(I->getOpcode())) {
356       // Bail out if we encounter multiple conditional branches.
357       if (!Cond.empty())
358         return true;
359 
360       assert(!FBB && "FBB should have been null.");
361       FBB = TBB;
362       TBB = I->getOperand(0).getMBB();
363       Cond.push_back(I->getOperand(1));
364       Cond.push_back(I->getOperand(2));
365     } else if (I->isReturn()) {
366       // Returns can't be analyzed, but we should run cleanup.
367       CantAnalyze = true;
368     } else {
369       // We encountered other unrecognized terminator. Bail out immediately.
370       return true;
371     }
372 
373     // Cleanup code - to be run for unpredicated unconditional branches and
374     //                returns.
375     if (!isPredicated(*I) &&
376           (isUncondBranchOpcode(I->getOpcode()) ||
377            isIndirectBranchOpcode(I->getOpcode()) ||
378            isJumpTableBranchOpcode(I->getOpcode()) ||
379            I->isReturn())) {
380       // Forget any previous condition branch information - it no longer applies.
381       Cond.clear();
382       FBB = nullptr;
383 
384       // If we can modify the function, delete everything below this
385       // unconditional branch.
386       if (AllowModify) {
387         MachineBasicBlock::iterator DI = std::next(I);
388         while (DI != MBB.instr_end()) {
389           MachineInstr &InstToDelete = *DI;
390           ++DI;
391           InstToDelete.eraseFromParent();
392         }
393       }
394     }
395 
396     if (CantAnalyze) {
397       // We may not be able to analyze the block, but we could still have
398       // an unconditional branch as the last instruction in the block, which
399       // just branches to layout successor. If this is the case, then just
400       // remove it if we're allowed to make modifications.
401       if (AllowModify && !isPredicated(MBB.back()) &&
402           isUncondBranchOpcode(MBB.back().getOpcode()) &&
403           TBB && MBB.isLayoutSuccessor(TBB))
404         removeBranch(MBB);
405       return true;
406     }
407 
408     if (I == MBB.instr_begin())
409       return false;
410 
411     --I;
412   }
413 
414   // We made it past the terminators without bailing out - we must have
415   // analyzed this branch successfully.
416   return false;
417 }
418 
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const419 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
420                                         int *BytesRemoved) const {
421   assert(!BytesRemoved && "code size not handled");
422 
423   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
424   if (I == MBB.end())
425     return 0;
426 
427   if (!isUncondBranchOpcode(I->getOpcode()) &&
428       !isCondBranchOpcode(I->getOpcode()))
429     return 0;
430 
431   // Remove the branch.
432   I->eraseFromParent();
433 
434   I = MBB.end();
435 
436   if (I == MBB.begin()) return 1;
437   --I;
438   if (!isCondBranchOpcode(I->getOpcode()))
439     return 1;
440 
441   // Remove the branch.
442   I->eraseFromParent();
443   return 2;
444 }
445 
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const446 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
447                                         MachineBasicBlock *TBB,
448                                         MachineBasicBlock *FBB,
449                                         ArrayRef<MachineOperand> Cond,
450                                         const DebugLoc &DL,
451                                         int *BytesAdded) const {
452   assert(!BytesAdded && "code size not handled");
453   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
454   int BOpc   = !AFI->isThumbFunction()
455     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
456   int BccOpc = !AFI->isThumbFunction()
457     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
458   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
459 
460   // Shouldn't be a fall through.
461   assert(TBB && "insertBranch must not be told to insert a fallthrough");
462   assert((Cond.size() == 2 || Cond.size() == 0) &&
463          "ARM branch conditions have two components!");
464 
465   // For conditional branches, we use addOperand to preserve CPSR flags.
466 
467   if (!FBB) {
468     if (Cond.empty()) { // Unconditional branch?
469       if (isThumb)
470         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
471       else
472         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
473     } else
474       BuildMI(&MBB, DL, get(BccOpc))
475           .addMBB(TBB)
476           .addImm(Cond[0].getImm())
477           .add(Cond[1]);
478     return 1;
479   }
480 
481   // Two-way conditional branch.
482   BuildMI(&MBB, DL, get(BccOpc))
483       .addMBB(TBB)
484       .addImm(Cond[0].getImm())
485       .add(Cond[1]);
486   if (isThumb)
487     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
488   else
489     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
490   return 2;
491 }
492 
493 bool ARMBaseInstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const494 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
495   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
496   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
497   return false;
498 }
499 
isPredicated(const MachineInstr & MI) const500 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
501   if (MI.isBundle()) {
502     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
503     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
504     while (++I != E && I->isInsideBundle()) {
505       int PIdx = I->findFirstPredOperandIdx();
506       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
507         return true;
508     }
509     return false;
510   }
511 
512   int PIdx = MI.findFirstPredOperandIdx();
513   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
514 }
515 
createMIROperandComment(const MachineInstr & MI,const MachineOperand & Op,unsigned OpIdx,const TargetRegisterInfo * TRI) const516 std::string ARMBaseInstrInfo::createMIROperandComment(
517     const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
518     const TargetRegisterInfo *TRI) const {
519 
520   // First, let's see if there is a generic comment for this operand
521   std::string GenericComment =
522       TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
523   if (!GenericComment.empty())
524     return GenericComment;
525 
526   // If not, check if we have an immediate operand.
527   if (Op.getType() != MachineOperand::MO_Immediate)
528     return std::string();
529 
530   // And print its corresponding condition code if the immediate is a
531   // predicate.
532   int FirstPredOp = MI.findFirstPredOperandIdx();
533   if (FirstPredOp != (int) OpIdx)
534     return std::string();
535 
536   std::string CC = "CC::";
537   CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm());
538   return CC;
539 }
540 
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Pred) const541 bool ARMBaseInstrInfo::PredicateInstruction(
542     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
543   unsigned Opc = MI.getOpcode();
544   if (isUncondBranchOpcode(Opc)) {
545     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
546     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
547       .addImm(Pred[0].getImm())
548       .addReg(Pred[1].getReg());
549     return true;
550   }
551 
552   int PIdx = MI.findFirstPredOperandIdx();
553   if (PIdx != -1) {
554     MachineOperand &PMO = MI.getOperand(PIdx);
555     PMO.setImm(Pred[0].getImm());
556     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
557 
558     // Thumb 1 arithmetic instructions do not set CPSR when executed inside an
559     // IT block. This affects how they are printed.
560     const MCInstrDesc &MCID = MI.getDesc();
561     if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
562       assert(MCID.OpInfo[1].isOptionalDef() && "CPSR def isn't expected operand");
563       assert((MI.getOperand(1).isDead() ||
564               MI.getOperand(1).getReg() != ARM::CPSR) &&
565              "if conversion tried to stop defining used CPSR");
566       MI.getOperand(1).setReg(ARM::NoRegister);
567     }
568 
569     return true;
570   }
571   return false;
572 }
573 
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2) const574 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
575                                          ArrayRef<MachineOperand> Pred2) const {
576   if (Pred1.size() > 2 || Pred2.size() > 2)
577     return false;
578 
579   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
580   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
581   if (CC1 == CC2)
582     return true;
583 
584   switch (CC1) {
585   default:
586     return false;
587   case ARMCC::AL:
588     return true;
589   case ARMCC::HS:
590     return CC2 == ARMCC::HI;
591   case ARMCC::LS:
592     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
593   case ARMCC::GE:
594     return CC2 == ARMCC::GT;
595   case ARMCC::LE:
596     return CC2 == ARMCC::LT;
597   }
598 }
599 
ClobbersPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred,bool SkipDead) const600 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI,
601                                          std::vector<MachineOperand> &Pred,
602                                          bool SkipDead) const {
603   bool Found = false;
604   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
605     const MachineOperand &MO = MI.getOperand(i);
606     bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR);
607     bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR;
608     if (ClobbersCPSR || IsCPSR) {
609 
610       // Filter out T1 instructions that have a dead CPSR,
611       // allowing IT blocks to be generated containing T1 instructions
612       const MCInstrDesc &MCID = MI.getDesc();
613       if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() &&
614           SkipDead)
615         continue;
616 
617       Pred.push_back(MO);
618       Found = true;
619     }
620   }
621 
622   return Found;
623 }
624 
isCPSRDefined(const MachineInstr & MI)625 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
626   for (const auto &MO : MI.operands())
627     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
628       return true;
629   return false;
630 }
631 
isEligibleForITBlock(const MachineInstr * MI)632 static bool isEligibleForITBlock(const MachineInstr *MI) {
633   switch (MI->getOpcode()) {
634   default: return true;
635   case ARM::tADC:   // ADC (register) T1
636   case ARM::tADDi3: // ADD (immediate) T1
637   case ARM::tADDi8: // ADD (immediate) T2
638   case ARM::tADDrr: // ADD (register) T1
639   case ARM::tAND:   // AND (register) T1
640   case ARM::tASRri: // ASR (immediate) T1
641   case ARM::tASRrr: // ASR (register) T1
642   case ARM::tBIC:   // BIC (register) T1
643   case ARM::tEOR:   // EOR (register) T1
644   case ARM::tLSLri: // LSL (immediate) T1
645   case ARM::tLSLrr: // LSL (register) T1
646   case ARM::tLSRri: // LSR (immediate) T1
647   case ARM::tLSRrr: // LSR (register) T1
648   case ARM::tMUL:   // MUL T1
649   case ARM::tMVN:   // MVN (register) T1
650   case ARM::tORR:   // ORR (register) T1
651   case ARM::tROR:   // ROR (register) T1
652   case ARM::tRSB:   // RSB (immediate) T1
653   case ARM::tSBC:   // SBC (register) T1
654   case ARM::tSUBi3: // SUB (immediate) T1
655   case ARM::tSUBi8: // SUB (immediate) T2
656   case ARM::tSUBrr: // SUB (register) T1
657     return !ARMBaseInstrInfo::isCPSRDefined(*MI);
658   }
659 }
660 
661 /// isPredicable - Return true if the specified instruction can be predicated.
662 /// By default, this returns true for every instruction with a
663 /// PredicateOperand.
isPredicable(const MachineInstr & MI) const664 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
665   if (!MI.isPredicable())
666     return false;
667 
668   if (MI.isBundle())
669     return false;
670 
671   if (!isEligibleForITBlock(&MI))
672     return false;
673 
674   const ARMFunctionInfo *AFI =
675       MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();
676 
677   // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
678   // In their ARM encoding, they can't be encoded in a conditional form.
679   if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
680     return false;
681 
682   if (AFI->isThumb2Function()) {
683     if (getSubtarget().restrictIT())
684       return isV8EligibleForIT(&MI);
685   }
686 
687   return true;
688 }
689 
690 namespace llvm {
691 
IsCPSRDead(const MachineInstr * MI)692 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
693   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
694     const MachineOperand &MO = MI->getOperand(i);
695     if (!MO.isReg() || MO.isUndef() || MO.isUse())
696       continue;
697     if (MO.getReg() != ARM::CPSR)
698       continue;
699     if (!MO.isDead())
700       return false;
701   }
702   // all definitions of CPSR are dead
703   return true;
704 }
705 
706 } // end namespace llvm
707 
708 /// GetInstSize - Return the size of the specified MachineInstr.
709 ///
getInstSizeInBytes(const MachineInstr & MI) const710 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
711   const MachineBasicBlock &MBB = *MI.getParent();
712   const MachineFunction *MF = MBB.getParent();
713   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
714 
715   const MCInstrDesc &MCID = MI.getDesc();
716   if (MCID.getSize())
717     return MCID.getSize();
718 
719   switch (MI.getOpcode()) {
720   default:
721     // pseudo-instruction sizes are zero.
722     return 0;
723   case TargetOpcode::BUNDLE:
724     return getInstBundleLength(MI);
725   case ARM::MOVi16_ga_pcrel:
726   case ARM::MOVTi16_ga_pcrel:
727   case ARM::t2MOVi16_ga_pcrel:
728   case ARM::t2MOVTi16_ga_pcrel:
729     return 4;
730   case ARM::MOVi32imm:
731   case ARM::t2MOVi32imm:
732     return 8;
733   case ARM::CONSTPOOL_ENTRY:
734   case ARM::JUMPTABLE_INSTS:
735   case ARM::JUMPTABLE_ADDRS:
736   case ARM::JUMPTABLE_TBB:
737   case ARM::JUMPTABLE_TBH:
738     // If this machine instr is a constant pool entry, its size is recorded as
739     // operand #2.
740     return MI.getOperand(2).getImm();
741   case ARM::Int_eh_sjlj_longjmp:
742     return 16;
743   case ARM::tInt_eh_sjlj_longjmp:
744     return 10;
745   case ARM::tInt_WIN_eh_sjlj_longjmp:
746     return 12;
747   case ARM::Int_eh_sjlj_setjmp:
748   case ARM::Int_eh_sjlj_setjmp_nofp:
749     return 20;
750   case ARM::tInt_eh_sjlj_setjmp:
751   case ARM::t2Int_eh_sjlj_setjmp:
752   case ARM::t2Int_eh_sjlj_setjmp_nofp:
753     return 12;
754   case ARM::SPACE:
755     return MI.getOperand(1).getImm();
756   case ARM::INLINEASM:
757   case ARM::INLINEASM_BR: {
758     // If this machine instr is an inline asm, measure it.
759     unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
760     if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
761       Size = alignTo(Size, 4);
762     return Size;
763   }
764   }
765 }
766 
getInstBundleLength(const MachineInstr & MI) const767 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
768   unsigned Size = 0;
769   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
770   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
771   while (++I != E && I->isInsideBundle()) {
772     assert(!I->isBundle() && "No nested bundle!");
773     Size += getInstSizeInBytes(*I);
774   }
775   return Size;
776 }
777 
copyFromCPSR(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,bool KillSrc,const ARMSubtarget & Subtarget) const778 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
779                                     MachineBasicBlock::iterator I,
780                                     unsigned DestReg, bool KillSrc,
781                                     const ARMSubtarget &Subtarget) const {
782   unsigned Opc = Subtarget.isThumb()
783                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
784                      : ARM::MRS;
785 
786   MachineInstrBuilder MIB =
787       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
788 
789   // There is only 1 A/R class MRS instruction, and it always refers to
790   // APSR. However, there are lots of other possibilities on M-class cores.
791   if (Subtarget.isMClass())
792     MIB.addImm(0x800);
793 
794   MIB.add(predOps(ARMCC::AL))
795      .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
796 }
797 
copyToCPSR(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool KillSrc,const ARMSubtarget & Subtarget) const798 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
799                                   MachineBasicBlock::iterator I,
800                                   unsigned SrcReg, bool KillSrc,
801                                   const ARMSubtarget &Subtarget) const {
802   unsigned Opc = Subtarget.isThumb()
803                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
804                      : ARM::MSR;
805 
806   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
807 
808   if (Subtarget.isMClass())
809     MIB.addImm(0x800);
810   else
811     MIB.addImm(8);
812 
813   MIB.addReg(SrcReg, getKillRegState(KillSrc))
814      .add(predOps(ARMCC::AL))
815      .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
816 }
817 
addUnpredicatedMveVpredNOp(MachineInstrBuilder & MIB)818 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
819   MIB.addImm(ARMVCC::None);
820   MIB.addReg(0);
821 }
822 
addUnpredicatedMveVpredROp(MachineInstrBuilder & MIB,Register DestReg)823 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
824                                       Register DestReg) {
825   addUnpredicatedMveVpredNOp(MIB);
826   MIB.addReg(DestReg, RegState::Undef);
827 }
828 
addPredicatedMveVpredNOp(MachineInstrBuilder & MIB,unsigned Cond)829 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
830   MIB.addImm(Cond);
831   MIB.addReg(ARM::VPR, RegState::Implicit);
832 }
833 
addPredicatedMveVpredROp(MachineInstrBuilder & MIB,unsigned Cond,unsigned Inactive)834 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
835                                     unsigned Cond, unsigned Inactive) {
836   addPredicatedMveVpredNOp(MIB, Cond);
837   MIB.addReg(Inactive);
838 }
839 
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc) const840 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
841                                    MachineBasicBlock::iterator I,
842                                    const DebugLoc &DL, MCRegister DestReg,
843                                    MCRegister SrcReg, bool KillSrc) const {
844   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
845   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
846 
847   if (GPRDest && GPRSrc) {
848     BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
849         .addReg(SrcReg, getKillRegState(KillSrc))
850         .add(predOps(ARMCC::AL))
851         .add(condCodeOp());
852     return;
853   }
854 
855   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
856   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
857 
858   unsigned Opc = 0;
859   if (SPRDest && SPRSrc)
860     Opc = ARM::VMOVS;
861   else if (GPRDest && SPRSrc)
862     Opc = ARM::VMOVRS;
863   else if (SPRDest && GPRSrc)
864     Opc = ARM::VMOVSR;
865   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
866     Opc = ARM::VMOVD;
867   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
868     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
869 
870   if (Opc) {
871     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
872     MIB.addReg(SrcReg, getKillRegState(KillSrc));
873     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
874       MIB.addReg(SrcReg, getKillRegState(KillSrc));
875     if (Opc == ARM::MVE_VORR)
876       addUnpredicatedMveVpredROp(MIB, DestReg);
877     else
878       MIB.add(predOps(ARMCC::AL));
879     return;
880   }
881 
882   // Handle register classes that require multiple instructions.
883   unsigned BeginIdx = 0;
884   unsigned SubRegs = 0;
885   int Spacing = 1;
886 
887   // Use VORRq when possible.
888   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
889     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
890     BeginIdx = ARM::qsub_0;
891     SubRegs = 2;
892   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
893     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
894     BeginIdx = ARM::qsub_0;
895     SubRegs = 4;
896   // Fall back to VMOVD.
897   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
898     Opc = ARM::VMOVD;
899     BeginIdx = ARM::dsub_0;
900     SubRegs = 2;
901   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
902     Opc = ARM::VMOVD;
903     BeginIdx = ARM::dsub_0;
904     SubRegs = 3;
905   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
906     Opc = ARM::VMOVD;
907     BeginIdx = ARM::dsub_0;
908     SubRegs = 4;
909   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
910     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
911     BeginIdx = ARM::gsub_0;
912     SubRegs = 2;
913   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
914     Opc = ARM::VMOVD;
915     BeginIdx = ARM::dsub_0;
916     SubRegs = 2;
917     Spacing = 2;
918   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
919     Opc = ARM::VMOVD;
920     BeginIdx = ARM::dsub_0;
921     SubRegs = 3;
922     Spacing = 2;
923   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
924     Opc = ARM::VMOVD;
925     BeginIdx = ARM::dsub_0;
926     SubRegs = 4;
927     Spacing = 2;
928   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
929              !Subtarget.hasFP64()) {
930     Opc = ARM::VMOVS;
931     BeginIdx = ARM::ssub_0;
932     SubRegs = 2;
933   } else if (SrcReg == ARM::CPSR) {
934     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
935     return;
936   } else if (DestReg == ARM::CPSR) {
937     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
938     return;
939   } else if (DestReg == ARM::VPR) {
940     assert(ARM::GPRRegClass.contains(SrcReg));
941     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
942         .addReg(SrcReg, getKillRegState(KillSrc))
943         .add(predOps(ARMCC::AL));
944     return;
945   } else if (SrcReg == ARM::VPR) {
946     assert(ARM::GPRRegClass.contains(DestReg));
947     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
948         .addReg(SrcReg, getKillRegState(KillSrc))
949         .add(predOps(ARMCC::AL));
950     return;
951   } else if (DestReg == ARM::FPSCR_NZCV) {
952     assert(ARM::GPRRegClass.contains(SrcReg));
953     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
954         .addReg(SrcReg, getKillRegState(KillSrc))
955         .add(predOps(ARMCC::AL));
956     return;
957   } else if (SrcReg == ARM::FPSCR_NZCV) {
958     assert(ARM::GPRRegClass.contains(DestReg));
959     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
960         .addReg(SrcReg, getKillRegState(KillSrc))
961         .add(predOps(ARMCC::AL));
962     return;
963   }
964 
965   assert(Opc && "Impossible reg-to-reg copy");
966 
967   const TargetRegisterInfo *TRI = &getRegisterInfo();
968   MachineInstrBuilder Mov;
969 
970   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
971   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
972     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
973     Spacing = -Spacing;
974   }
975 #ifndef NDEBUG
976   SmallSet<unsigned, 4> DstRegs;
977 #endif
978   for (unsigned i = 0; i != SubRegs; ++i) {
979     Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
980     Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
981     assert(Dst && Src && "Bad sub-register");
982 #ifndef NDEBUG
983     assert(!DstRegs.count(Src) && "destructive vector copy");
984     DstRegs.insert(Dst);
985 #endif
986     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
987     // VORR (NEON or MVE) takes two source operands.
988     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
989       Mov.addReg(Src);
990     }
991     // MVE VORR takes predicate operands in place of an ordinary condition.
992     if (Opc == ARM::MVE_VORR)
993       addUnpredicatedMveVpredROp(Mov, Dst);
994     else
995       Mov = Mov.add(predOps(ARMCC::AL));
996     // MOVr can set CC.
997     if (Opc == ARM::MOVr)
998       Mov = Mov.add(condCodeOp());
999   }
1000   // Add implicit super-register defs and kills to the last instruction.
1001   Mov->addRegisterDefined(DestReg, TRI);
1002   if (KillSrc)
1003     Mov->addRegisterKilled(SrcReg, TRI);
1004 }
1005 
1006 Optional<DestSourcePair>
isCopyInstrImpl(const MachineInstr & MI) const1007 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
1008   // VMOVRRD is also a copy instruction but it requires
1009   // special way of handling. It is more complex copy version
1010   // and since that we are not considering it. For recognition
1011   // of such instruction isExtractSubregLike MI interface fuction
1012   // could be used.
1013   // VORRq is considered as a move only if two inputs are
1014   // the same register.
1015   if (!MI.isMoveReg() ||
1016       (MI.getOpcode() == ARM::VORRq &&
1017        MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1018     return None;
1019   return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1020 }
1021 
1022 Optional<ParamLoadedValue>
describeLoadedValue(const MachineInstr & MI,Register Reg) const1023 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI,
1024                                       Register Reg) const {
1025   if (auto DstSrcPair = isCopyInstrImpl(MI)) {
1026     Register DstReg = DstSrcPair->Destination->getReg();
1027 
1028     // TODO: We don't handle cases where the forwarding reg is narrower/wider
1029     // than the copy registers. Consider for example:
1030     //
1031     //   s16 = VMOVS s0
1032     //   s17 = VMOVS s1
1033     //   call @callee(d0)
1034     //
1035     // We'd like to describe the call site value of d0 as d8, but this requires
1036     // gathering and merging the descriptions for the two VMOVS instructions.
1037     //
1038     // We also don't handle the reverse situation, where the forwarding reg is
1039     // narrower than the copy destination:
1040     //
1041     //   d8 = VMOVD d0
1042     //   call @callee(s1)
1043     //
1044     // We need to produce a fragment description (the call site value of s1 is
1045     // /not/ just d8).
1046     if (DstReg != Reg)
1047       return None;
1048   }
1049   return TargetInstrInfo::describeLoadedValue(MI, Reg);
1050 }
1051 
1052 const MachineInstrBuilder &
AddDReg(MachineInstrBuilder & MIB,unsigned Reg,unsigned SubIdx,unsigned State,const TargetRegisterInfo * TRI) const1053 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1054                           unsigned SubIdx, unsigned State,
1055                           const TargetRegisterInfo *TRI) const {
1056   if (!SubIdx)
1057     return MIB.addReg(Reg, State);
1058 
1059   if (Register::isPhysicalRegister(Reg))
1060     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1061   return MIB.addReg(Reg, State, SubIdx);
1062 }
1063 
1064 void ARMBaseInstrInfo::
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,Register SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1065 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1066                     Register SrcReg, bool isKill, int FI,
1067                     const TargetRegisterClass *RC,
1068                     const TargetRegisterInfo *TRI) const {
1069   MachineFunction &MF = *MBB.getParent();
1070   MachineFrameInfo &MFI = MF.getFrameInfo();
1071   Align Alignment = MFI.getObjectAlign(FI);
1072 
1073   MachineMemOperand *MMO = MF.getMachineMemOperand(
1074       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
1075       MFI.getObjectSize(FI), Alignment);
1076 
1077   switch (TRI->getSpillSize(*RC)) {
1078     case 2:
1079       if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1080         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1081             .addReg(SrcReg, getKillRegState(isKill))
1082             .addFrameIndex(FI)
1083             .addImm(0)
1084             .addMemOperand(MMO)
1085             .add(predOps(ARMCC::AL));
1086       } else
1087         llvm_unreachable("Unknown reg class!");
1088       break;
1089     case 4:
1090       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1091         BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1092             .addReg(SrcReg, getKillRegState(isKill))
1093             .addFrameIndex(FI)
1094             .addImm(0)
1095             .addMemOperand(MMO)
1096             .add(predOps(ARMCC::AL));
1097       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1098         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1099             .addReg(SrcReg, getKillRegState(isKill))
1100             .addFrameIndex(FI)
1101             .addImm(0)
1102             .addMemOperand(MMO)
1103             .add(predOps(ARMCC::AL));
1104       } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1105         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1106             .addReg(SrcReg, getKillRegState(isKill))
1107             .addFrameIndex(FI)
1108             .addImm(0)
1109             .addMemOperand(MMO)
1110             .add(predOps(ARMCC::AL));
1111       } else
1112         llvm_unreachable("Unknown reg class!");
1113       break;
1114     case 8:
1115       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1116         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1117             .addReg(SrcReg, getKillRegState(isKill))
1118             .addFrameIndex(FI)
1119             .addImm(0)
1120             .addMemOperand(MMO)
1121             .add(predOps(ARMCC::AL));
1122       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1123         if (Subtarget.hasV5TEOps()) {
1124           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1125           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1126           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1127           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1128              .add(predOps(ARMCC::AL));
1129         } else {
1130           // Fallback to STM instruction, which has existed since the dawn of
1131           // time.
1132           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1133                                         .addFrameIndex(FI)
1134                                         .addMemOperand(MMO)
1135                                         .add(predOps(ARMCC::AL));
1136           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1137           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1138         }
1139       } else
1140         llvm_unreachable("Unknown reg class!");
1141       break;
1142     case 16:
1143       if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1144         // Use aligned spills if the stack can be realigned.
1145         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1146           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1147               .addFrameIndex(FI)
1148               .addImm(16)
1149               .addReg(SrcReg, getKillRegState(isKill))
1150               .addMemOperand(MMO)
1151               .add(predOps(ARMCC::AL));
1152         } else {
1153           BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1154               .addReg(SrcReg, getKillRegState(isKill))
1155               .addFrameIndex(FI)
1156               .addMemOperand(MMO)
1157               .add(predOps(ARMCC::AL));
1158         }
1159       } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1160                  Subtarget.hasMVEIntegerOps()) {
1161         auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1162         MIB.addReg(SrcReg, getKillRegState(isKill))
1163           .addFrameIndex(FI)
1164           .addImm(0)
1165           .addMemOperand(MMO);
1166         addUnpredicatedMveVpredNOp(MIB);
1167       } else
1168         llvm_unreachable("Unknown reg class!");
1169       break;
1170     case 24:
1171       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1172         // Use aligned spills if the stack can be realigned.
1173         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1174             Subtarget.hasNEON()) {
1175           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1176               .addFrameIndex(FI)
1177               .addImm(16)
1178               .addReg(SrcReg, getKillRegState(isKill))
1179               .addMemOperand(MMO)
1180               .add(predOps(ARMCC::AL));
1181         } else {
1182           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1183                                             get(ARM::VSTMDIA))
1184                                         .addFrameIndex(FI)
1185                                         .add(predOps(ARMCC::AL))
1186                                         .addMemOperand(MMO);
1187           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1188           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1189           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1190         }
1191       } else
1192         llvm_unreachable("Unknown reg class!");
1193       break;
1194     case 32:
1195       if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1196         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1197             Subtarget.hasNEON()) {
1198           // FIXME: It's possible to only store part of the QQ register if the
1199           // spilled def has a sub-register index.
1200           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1201               .addFrameIndex(FI)
1202               .addImm(16)
1203               .addReg(SrcReg, getKillRegState(isKill))
1204               .addMemOperand(MMO)
1205               .add(predOps(ARMCC::AL));
1206         } else {
1207           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1208                                             get(ARM::VSTMDIA))
1209                                         .addFrameIndex(FI)
1210                                         .add(predOps(ARMCC::AL))
1211                                         .addMemOperand(MMO);
1212           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1213           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1214           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1215                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1216         }
1217       } else
1218         llvm_unreachable("Unknown reg class!");
1219       break;
1220     case 64:
1221       if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1222         MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1223                                       .addFrameIndex(FI)
1224                                       .add(predOps(ARMCC::AL))
1225                                       .addMemOperand(MMO);
1226         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1227         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1228         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1229         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1230         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1231         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1232         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1233               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1234       } else
1235         llvm_unreachable("Unknown reg class!");
1236       break;
1237     default:
1238       llvm_unreachable("Unknown reg class!");
1239   }
1240 }
1241 
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const1242 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1243                                               int &FrameIndex) const {
1244   switch (MI.getOpcode()) {
1245   default: break;
1246   case ARM::STRrs:
1247   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1248     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1249         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1250         MI.getOperand(3).getImm() == 0) {
1251       FrameIndex = MI.getOperand(1).getIndex();
1252       return MI.getOperand(0).getReg();
1253     }
1254     break;
1255   case ARM::STRi12:
1256   case ARM::t2STRi12:
1257   case ARM::tSTRspi:
1258   case ARM::VSTRD:
1259   case ARM::VSTRS:
1260     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1261         MI.getOperand(2).getImm() == 0) {
1262       FrameIndex = MI.getOperand(1).getIndex();
1263       return MI.getOperand(0).getReg();
1264     }
1265     break;
1266   case ARM::VSTR_P0_off:
1267     if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
1268         MI.getOperand(1).getImm() == 0) {
1269       FrameIndex = MI.getOperand(0).getIndex();
1270       return ARM::P0;
1271     }
1272     break;
1273   case ARM::VST1q64:
1274   case ARM::VST1d64TPseudo:
1275   case ARM::VST1d64QPseudo:
1276     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1277       FrameIndex = MI.getOperand(0).getIndex();
1278       return MI.getOperand(2).getReg();
1279     }
1280     break;
1281   case ARM::VSTMQIA:
1282     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1283       FrameIndex = MI.getOperand(1).getIndex();
1284       return MI.getOperand(0).getReg();
1285     }
1286     break;
1287   }
1288 
1289   return 0;
1290 }
1291 
isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const1292 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1293                                                     int &FrameIndex) const {
1294   SmallVector<const MachineMemOperand *, 1> Accesses;
1295   if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1296       Accesses.size() == 1) {
1297     FrameIndex =
1298         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1299             ->getFrameIndex();
1300     return true;
1301   }
1302   return false;
1303 }
1304 
1305 void ARMBaseInstrInfo::
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,Register DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1306 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1307                      Register DestReg, int FI,
1308                      const TargetRegisterClass *RC,
1309                      const TargetRegisterInfo *TRI) const {
1310   DebugLoc DL;
1311   if (I != MBB.end()) DL = I->getDebugLoc();
1312   MachineFunction &MF = *MBB.getParent();
1313   MachineFrameInfo &MFI = MF.getFrameInfo();
1314   const Align Alignment = MFI.getObjectAlign(FI);
1315   MachineMemOperand *MMO = MF.getMachineMemOperand(
1316       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1317       MFI.getObjectSize(FI), Alignment);
1318 
1319   switch (TRI->getSpillSize(*RC)) {
1320   case 2:
1321     if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1322       BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1323           .addFrameIndex(FI)
1324           .addImm(0)
1325           .addMemOperand(MMO)
1326           .add(predOps(ARMCC::AL));
1327     } else
1328       llvm_unreachable("Unknown reg class!");
1329     break;
1330   case 4:
1331     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1332       BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1333           .addFrameIndex(FI)
1334           .addImm(0)
1335           .addMemOperand(MMO)
1336           .add(predOps(ARMCC::AL));
1337     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1338       BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1339           .addFrameIndex(FI)
1340           .addImm(0)
1341           .addMemOperand(MMO)
1342           .add(predOps(ARMCC::AL));
1343     } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1344       BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1345           .addFrameIndex(FI)
1346           .addImm(0)
1347           .addMemOperand(MMO)
1348           .add(predOps(ARMCC::AL));
1349     } else
1350       llvm_unreachable("Unknown reg class!");
1351     break;
1352   case 8:
1353     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1354       BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1355           .addFrameIndex(FI)
1356           .addImm(0)
1357           .addMemOperand(MMO)
1358           .add(predOps(ARMCC::AL));
1359     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1360       MachineInstrBuilder MIB;
1361 
1362       if (Subtarget.hasV5TEOps()) {
1363         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1364         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1365         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1366         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1367            .add(predOps(ARMCC::AL));
1368       } else {
1369         // Fallback to LDM instruction, which has existed since the dawn of
1370         // time.
1371         MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1372                   .addFrameIndex(FI)
1373                   .addMemOperand(MMO)
1374                   .add(predOps(ARMCC::AL));
1375         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1376         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1377       }
1378 
1379       if (Register::isPhysicalRegister(DestReg))
1380         MIB.addReg(DestReg, RegState::ImplicitDefine);
1381     } else
1382       llvm_unreachable("Unknown reg class!");
1383     break;
1384   case 16:
1385     if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1386       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1387         BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1388             .addFrameIndex(FI)
1389             .addImm(16)
1390             .addMemOperand(MMO)
1391             .add(predOps(ARMCC::AL));
1392       } else {
1393         BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1394             .addFrameIndex(FI)
1395             .addMemOperand(MMO)
1396             .add(predOps(ARMCC::AL));
1397       }
1398     } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1399                Subtarget.hasMVEIntegerOps()) {
1400       auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1401       MIB.addFrameIndex(FI)
1402         .addImm(0)
1403         .addMemOperand(MMO);
1404       addUnpredicatedMveVpredNOp(MIB);
1405     } else
1406       llvm_unreachable("Unknown reg class!");
1407     break;
1408   case 24:
1409     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1410       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1411           Subtarget.hasNEON()) {
1412         BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1413             .addFrameIndex(FI)
1414             .addImm(16)
1415             .addMemOperand(MMO)
1416             .add(predOps(ARMCC::AL));
1417       } else {
1418         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1419                                       .addFrameIndex(FI)
1420                                       .addMemOperand(MMO)
1421                                       .add(predOps(ARMCC::AL));
1422         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1423         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1424         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1425         if (Register::isPhysicalRegister(DestReg))
1426           MIB.addReg(DestReg, RegState::ImplicitDefine);
1427       }
1428     } else
1429       llvm_unreachable("Unknown reg class!");
1430     break;
1431    case 32:
1432     if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1433       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1434           Subtarget.hasNEON()) {
1435         BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1436             .addFrameIndex(FI)
1437             .addImm(16)
1438             .addMemOperand(MMO)
1439             .add(predOps(ARMCC::AL));
1440       } else {
1441         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1442                                       .addFrameIndex(FI)
1443                                       .add(predOps(ARMCC::AL))
1444                                       .addMemOperand(MMO);
1445         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1446         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1447         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1448         MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1449         if (Register::isPhysicalRegister(DestReg))
1450           MIB.addReg(DestReg, RegState::ImplicitDefine);
1451       }
1452     } else
1453       llvm_unreachable("Unknown reg class!");
1454     break;
1455   case 64:
1456     if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1457       MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1458                                     .addFrameIndex(FI)
1459                                     .add(predOps(ARMCC::AL))
1460                                     .addMemOperand(MMO);
1461       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1462       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1463       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1464       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1465       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1466       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1467       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1468       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1469       if (Register::isPhysicalRegister(DestReg))
1470         MIB.addReg(DestReg, RegState::ImplicitDefine);
1471     } else
1472       llvm_unreachable("Unknown reg class!");
1473     break;
1474   default:
1475     llvm_unreachable("Unknown regclass!");
1476   }
1477 }
1478 
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const1479 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1480                                                int &FrameIndex) const {
1481   switch (MI.getOpcode()) {
1482   default: break;
1483   case ARM::LDRrs:
1484   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1485     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1486         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1487         MI.getOperand(3).getImm() == 0) {
1488       FrameIndex = MI.getOperand(1).getIndex();
1489       return MI.getOperand(0).getReg();
1490     }
1491     break;
1492   case ARM::LDRi12:
1493   case ARM::t2LDRi12:
1494   case ARM::tLDRspi:
1495   case ARM::VLDRD:
1496   case ARM::VLDRS:
1497     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1498         MI.getOperand(2).getImm() == 0) {
1499       FrameIndex = MI.getOperand(1).getIndex();
1500       return MI.getOperand(0).getReg();
1501     }
1502     break;
1503   case ARM::VLDR_P0_off:
1504     if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
1505         MI.getOperand(1).getImm() == 0) {
1506       FrameIndex = MI.getOperand(0).getIndex();
1507       return ARM::P0;
1508     }
1509     break;
1510   case ARM::VLD1q64:
1511   case ARM::VLD1d8TPseudo:
1512   case ARM::VLD1d16TPseudo:
1513   case ARM::VLD1d32TPseudo:
1514   case ARM::VLD1d64TPseudo:
1515   case ARM::VLD1d8QPseudo:
1516   case ARM::VLD1d16QPseudo:
1517   case ARM::VLD1d32QPseudo:
1518   case ARM::VLD1d64QPseudo:
1519     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1520       FrameIndex = MI.getOperand(1).getIndex();
1521       return MI.getOperand(0).getReg();
1522     }
1523     break;
1524   case ARM::VLDMQIA:
1525     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1526       FrameIndex = MI.getOperand(1).getIndex();
1527       return MI.getOperand(0).getReg();
1528     }
1529     break;
1530   }
1531 
1532   return 0;
1533 }
1534 
isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const1535 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1536                                                      int &FrameIndex) const {
1537   SmallVector<const MachineMemOperand *, 1> Accesses;
1538   if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1539       Accesses.size() == 1) {
1540     FrameIndex =
1541         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1542             ->getFrameIndex();
1543     return true;
1544   }
1545   return false;
1546 }
1547 
1548 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1549 /// depending on whether the result is used.
expandMEMCPY(MachineBasicBlock::iterator MI) const1550 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1551   bool isThumb1 = Subtarget.isThumb1Only();
1552   bool isThumb2 = Subtarget.isThumb2();
1553   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1554 
1555   DebugLoc dl = MI->getDebugLoc();
1556   MachineBasicBlock *BB = MI->getParent();
1557 
1558   MachineInstrBuilder LDM, STM;
1559   if (isThumb1 || !MI->getOperand(1).isDead()) {
1560     MachineOperand LDWb(MI->getOperand(1));
1561     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1562                                                  : isThumb1 ? ARM::tLDMIA_UPD
1563                                                             : ARM::LDMIA_UPD))
1564               .add(LDWb);
1565   } else {
1566     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1567   }
1568 
1569   if (isThumb1 || !MI->getOperand(0).isDead()) {
1570     MachineOperand STWb(MI->getOperand(0));
1571     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1572                                                  : isThumb1 ? ARM::tSTMIA_UPD
1573                                                             : ARM::STMIA_UPD))
1574               .add(STWb);
1575   } else {
1576     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1577   }
1578 
1579   MachineOperand LDBase(MI->getOperand(3));
1580   LDM.add(LDBase).add(predOps(ARMCC::AL));
1581 
1582   MachineOperand STBase(MI->getOperand(2));
1583   STM.add(STBase).add(predOps(ARMCC::AL));
1584 
1585   // Sort the scratch registers into ascending order.
1586   const TargetRegisterInfo &TRI = getRegisterInfo();
1587   SmallVector<unsigned, 6> ScratchRegs;
1588   for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1589     ScratchRegs.push_back(MI->getOperand(I).getReg());
1590   llvm::sort(ScratchRegs,
1591              [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1592                return TRI.getEncodingValue(Reg1) <
1593                       TRI.getEncodingValue(Reg2);
1594              });
1595 
1596   for (const auto &Reg : ScratchRegs) {
1597     LDM.addReg(Reg, RegState::Define);
1598     STM.addReg(Reg, RegState::Kill);
1599   }
1600 
1601   BB->erase(MI);
1602 }
1603 
expandPostRAPseudo(MachineInstr & MI) const1604 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1605   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1606     assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1607            "LOAD_STACK_GUARD currently supported only for MachO.");
1608     expandLoadStackGuard(MI);
1609     MI.getParent()->erase(MI);
1610     return true;
1611   }
1612 
1613   if (MI.getOpcode() == ARM::MEMCPY) {
1614     expandMEMCPY(MI);
1615     return true;
1616   }
1617 
1618   // This hook gets to expand COPY instructions before they become
1619   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1620   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1621   // changed into a VORR that can go down the NEON pipeline.
1622   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1623     return false;
1624 
1625   // Look for a copy between even S-registers.  That is where we keep floats
1626   // when using NEON v2f32 instructions for f32 arithmetic.
1627   Register DstRegS = MI.getOperand(0).getReg();
1628   Register SrcRegS = MI.getOperand(1).getReg();
1629   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1630     return false;
1631 
1632   const TargetRegisterInfo *TRI = &getRegisterInfo();
1633   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1634                                               &ARM::DPRRegClass);
1635   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1636                                               &ARM::DPRRegClass);
1637   if (!DstRegD || !SrcRegD)
1638     return false;
1639 
1640   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1641   // legal if the COPY already defines the full DstRegD, and it isn't a
1642   // sub-register insertion.
1643   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1644     return false;
1645 
1646   // A dead copy shouldn't show up here, but reject it just in case.
1647   if (MI.getOperand(0).isDead())
1648     return false;
1649 
1650   // All clear, widen the COPY.
1651   LLVM_DEBUG(dbgs() << "widening:    " << MI);
1652   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1653 
1654   // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
1655   // or some other super-register.
1656   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1657   if (ImpDefIdx != -1)
1658     MI.RemoveOperand(ImpDefIdx);
1659 
1660   // Change the opcode and operands.
1661   MI.setDesc(get(ARM::VMOVD));
1662   MI.getOperand(0).setReg(DstRegD);
1663   MI.getOperand(1).setReg(SrcRegD);
1664   MIB.add(predOps(ARMCC::AL));
1665 
1666   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1667   // register scavenger and machine verifier, so we need to indicate that we
1668   // are reading an undefined value from SrcRegD, but a proper value from
1669   // SrcRegS.
1670   MI.getOperand(1).setIsUndef();
1671   MIB.addReg(SrcRegS, RegState::Implicit);
1672 
1673   // SrcRegD may actually contain an unrelated value in the ssub_1
1674   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1675   if (MI.getOperand(1).isKill()) {
1676     MI.getOperand(1).setIsKill(false);
1677     MI.addRegisterKilled(SrcRegS, TRI, true);
1678   }
1679 
1680   LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1681   return true;
1682 }
1683 
1684 /// Create a copy of a const pool value. Update CPI to the new index and return
1685 /// the label UID.
duplicateCPV(MachineFunction & MF,unsigned & CPI)1686 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1687   MachineConstantPool *MCP = MF.getConstantPool();
1688   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1689 
1690   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1691   assert(MCPE.isMachineConstantPoolEntry() &&
1692          "Expecting a machine constantpool entry!");
1693   ARMConstantPoolValue *ACPV =
1694     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1695 
1696   unsigned PCLabelId = AFI->createPICLabelUId();
1697   ARMConstantPoolValue *NewCPV = nullptr;
1698 
1699   // FIXME: The below assumes PIC relocation model and that the function
1700   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1701   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1702   // instructions, so that's probably OK, but is PIC always correct when
1703   // we get here?
1704   if (ACPV->isGlobalValue())
1705     NewCPV = ARMConstantPoolConstant::Create(
1706         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1707         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1708   else if (ACPV->isExtSymbol())
1709     NewCPV = ARMConstantPoolSymbol::
1710       Create(MF.getFunction().getContext(),
1711              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1712   else if (ACPV->isBlockAddress())
1713     NewCPV = ARMConstantPoolConstant::
1714       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1715              ARMCP::CPBlockAddress, 4);
1716   else if (ACPV->isLSDA())
1717     NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1718                                              ARMCP::CPLSDA, 4);
1719   else if (ACPV->isMachineBasicBlock())
1720     NewCPV = ARMConstantPoolMBB::
1721       Create(MF.getFunction().getContext(),
1722              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1723   else
1724     llvm_unreachable("Unexpected ARM constantpool value type!!");
1725   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign());
1726   return PCLabelId;
1727 }
1728 
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,Register DestReg,unsigned SubIdx,const MachineInstr & Orig,const TargetRegisterInfo & TRI) const1729 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1730                                      MachineBasicBlock::iterator I,
1731                                      Register DestReg, unsigned SubIdx,
1732                                      const MachineInstr &Orig,
1733                                      const TargetRegisterInfo &TRI) const {
1734   unsigned Opcode = Orig.getOpcode();
1735   switch (Opcode) {
1736   default: {
1737     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1738     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1739     MBB.insert(I, MI);
1740     break;
1741   }
1742   case ARM::tLDRpci_pic:
1743   case ARM::t2LDRpci_pic: {
1744     MachineFunction &MF = *MBB.getParent();
1745     unsigned CPI = Orig.getOperand(1).getIndex();
1746     unsigned PCLabelId = duplicateCPV(MF, CPI);
1747     BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1748         .addConstantPoolIndex(CPI)
1749         .addImm(PCLabelId)
1750         .cloneMemRefs(Orig);
1751     break;
1752   }
1753   }
1754 }
1755 
1756 MachineInstr &
duplicate(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,const MachineInstr & Orig) const1757 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1758     MachineBasicBlock::iterator InsertBefore,
1759     const MachineInstr &Orig) const {
1760   MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1761   MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1762   for (;;) {
1763     switch (I->getOpcode()) {
1764     case ARM::tLDRpci_pic:
1765     case ARM::t2LDRpci_pic: {
1766       MachineFunction &MF = *MBB.getParent();
1767       unsigned CPI = I->getOperand(1).getIndex();
1768       unsigned PCLabelId = duplicateCPV(MF, CPI);
1769       I->getOperand(1).setIndex(CPI);
1770       I->getOperand(2).setImm(PCLabelId);
1771       break;
1772     }
1773     }
1774     if (!I->isBundledWithSucc())
1775       break;
1776     ++I;
1777   }
1778   return Cloned;
1779 }
1780 
produceSameValue(const MachineInstr & MI0,const MachineInstr & MI1,const MachineRegisterInfo * MRI) const1781 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1782                                         const MachineInstr &MI1,
1783                                         const MachineRegisterInfo *MRI) const {
1784   unsigned Opcode = MI0.getOpcode();
1785   if (Opcode == ARM::t2LDRpci ||
1786       Opcode == ARM::t2LDRpci_pic ||
1787       Opcode == ARM::tLDRpci ||
1788       Opcode == ARM::tLDRpci_pic ||
1789       Opcode == ARM::LDRLIT_ga_pcrel ||
1790       Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1791       Opcode == ARM::tLDRLIT_ga_pcrel ||
1792       Opcode == ARM::MOV_ga_pcrel ||
1793       Opcode == ARM::MOV_ga_pcrel_ldr ||
1794       Opcode == ARM::t2MOV_ga_pcrel) {
1795     if (MI1.getOpcode() != Opcode)
1796       return false;
1797     if (MI0.getNumOperands() != MI1.getNumOperands())
1798       return false;
1799 
1800     const MachineOperand &MO0 = MI0.getOperand(1);
1801     const MachineOperand &MO1 = MI1.getOperand(1);
1802     if (MO0.getOffset() != MO1.getOffset())
1803       return false;
1804 
1805     if (Opcode == ARM::LDRLIT_ga_pcrel ||
1806         Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1807         Opcode == ARM::tLDRLIT_ga_pcrel ||
1808         Opcode == ARM::MOV_ga_pcrel ||
1809         Opcode == ARM::MOV_ga_pcrel_ldr ||
1810         Opcode == ARM::t2MOV_ga_pcrel)
1811       // Ignore the PC labels.
1812       return MO0.getGlobal() == MO1.getGlobal();
1813 
1814     const MachineFunction *MF = MI0.getParent()->getParent();
1815     const MachineConstantPool *MCP = MF->getConstantPool();
1816     int CPI0 = MO0.getIndex();
1817     int CPI1 = MO1.getIndex();
1818     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1819     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1820     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1821     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1822     if (isARMCP0 && isARMCP1) {
1823       ARMConstantPoolValue *ACPV0 =
1824         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1825       ARMConstantPoolValue *ACPV1 =
1826         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1827       return ACPV0->hasSameValue(ACPV1);
1828     } else if (!isARMCP0 && !isARMCP1) {
1829       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1830     }
1831     return false;
1832   } else if (Opcode == ARM::PICLDR) {
1833     if (MI1.getOpcode() != Opcode)
1834       return false;
1835     if (MI0.getNumOperands() != MI1.getNumOperands())
1836       return false;
1837 
1838     Register Addr0 = MI0.getOperand(1).getReg();
1839     Register Addr1 = MI1.getOperand(1).getReg();
1840     if (Addr0 != Addr1) {
1841       if (!MRI || !Register::isVirtualRegister(Addr0) ||
1842           !Register::isVirtualRegister(Addr1))
1843         return false;
1844 
1845       // This assumes SSA form.
1846       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1847       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1848       // Check if the loaded value, e.g. a constantpool of a global address, are
1849       // the same.
1850       if (!produceSameValue(*Def0, *Def1, MRI))
1851         return false;
1852     }
1853 
1854     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1855       // %12 = PICLDR %11, 0, 14, %noreg
1856       const MachineOperand &MO0 = MI0.getOperand(i);
1857       const MachineOperand &MO1 = MI1.getOperand(i);
1858       if (!MO0.isIdenticalTo(MO1))
1859         return false;
1860     }
1861     return true;
1862   }
1863 
1864   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1865 }
1866 
1867 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1868 /// determine if two loads are loading from the same base address. It should
1869 /// only return true if the base pointers are the same and the only differences
1870 /// between the two addresses is the offset. It also returns the offsets by
1871 /// reference.
1872 ///
1873 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1874 /// is permanently disabled.
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2) const1875 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1876                                                int64_t &Offset1,
1877                                                int64_t &Offset2) const {
1878   // Don't worry about Thumb: just ARM and Thumb2.
1879   if (Subtarget.isThumb1Only()) return false;
1880 
1881   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1882     return false;
1883 
1884   switch (Load1->getMachineOpcode()) {
1885   default:
1886     return false;
1887   case ARM::LDRi12:
1888   case ARM::LDRBi12:
1889   case ARM::LDRD:
1890   case ARM::LDRH:
1891   case ARM::LDRSB:
1892   case ARM::LDRSH:
1893   case ARM::VLDRD:
1894   case ARM::VLDRS:
1895   case ARM::t2LDRi8:
1896   case ARM::t2LDRBi8:
1897   case ARM::t2LDRDi8:
1898   case ARM::t2LDRSHi8:
1899   case ARM::t2LDRi12:
1900   case ARM::t2LDRBi12:
1901   case ARM::t2LDRSHi12:
1902     break;
1903   }
1904 
1905   switch (Load2->getMachineOpcode()) {
1906   default:
1907     return false;
1908   case ARM::LDRi12:
1909   case ARM::LDRBi12:
1910   case ARM::LDRD:
1911   case ARM::LDRH:
1912   case ARM::LDRSB:
1913   case ARM::LDRSH:
1914   case ARM::VLDRD:
1915   case ARM::VLDRS:
1916   case ARM::t2LDRi8:
1917   case ARM::t2LDRBi8:
1918   case ARM::t2LDRSHi8:
1919   case ARM::t2LDRi12:
1920   case ARM::t2LDRBi12:
1921   case ARM::t2LDRSHi12:
1922     break;
1923   }
1924 
1925   // Check if base addresses and chain operands match.
1926   if (Load1->getOperand(0) != Load2->getOperand(0) ||
1927       Load1->getOperand(4) != Load2->getOperand(4))
1928     return false;
1929 
1930   // Index should be Reg0.
1931   if (Load1->getOperand(3) != Load2->getOperand(3))
1932     return false;
1933 
1934   // Determine the offsets.
1935   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1936       isa<ConstantSDNode>(Load2->getOperand(1))) {
1937     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1938     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1939     return true;
1940   }
1941 
1942   return false;
1943 }
1944 
1945 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1946 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1947 /// be scheduled togther. On some targets if two loads are loading from
1948 /// addresses in the same cache line, it's better if they are scheduled
1949 /// together. This function takes two integers that represent the load offsets
1950 /// from the common base address. It returns true if it decides it's desirable
1951 /// to schedule the two loads together. "NumLoads" is the number of loads that
1952 /// have already been scheduled after Load1.
1953 ///
1954 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1955 /// is permanently disabled.
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads) const1956 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1957                                                int64_t Offset1, int64_t Offset2,
1958                                                unsigned NumLoads) const {
1959   // Don't worry about Thumb: just ARM and Thumb2.
1960   if (Subtarget.isThumb1Only()) return false;
1961 
1962   assert(Offset2 > Offset1);
1963 
1964   if ((Offset2 - Offset1) / 8 > 64)
1965     return false;
1966 
1967   // Check if the machine opcodes are different. If they are different
1968   // then we consider them to not be of the same base address,
1969   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1970   // In this case, they are considered to be the same because they are different
1971   // encoding forms of the same basic instruction.
1972   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1973       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1974          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1975         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1976          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1977     return false;  // FIXME: overly conservative?
1978 
1979   // Four loads in a row should be sufficient.
1980   if (NumLoads >= 3)
1981     return false;
1982 
1983   return true;
1984 }
1985 
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const1986 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1987                                             const MachineBasicBlock *MBB,
1988                                             const MachineFunction &MF) const {
1989   // Debug info is never a scheduling boundary. It's necessary to be explicit
1990   // due to the special treatment of IT instructions below, otherwise a
1991   // dbg_value followed by an IT will result in the IT instruction being
1992   // considered a scheduling hazard, which is wrong. It should be the actual
1993   // instruction preceding the dbg_value instruction(s), just like it is
1994   // when debug info is not present.
1995   if (MI.isDebugInstr())
1996     return false;
1997 
1998   // Terminators and labels can't be scheduled around.
1999   if (MI.isTerminator() || MI.isPosition())
2000     return true;
2001 
2002   // INLINEASM_BR can jump to another block
2003   if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
2004     return true;
2005 
2006   // Treat the start of the IT block as a scheduling boundary, but schedule
2007   // t2IT along with all instructions following it.
2008   // FIXME: This is a big hammer. But the alternative is to add all potential
2009   // true and anti dependencies to IT block instructions as implicit operands
2010   // to the t2IT instruction. The added compile time and complexity does not
2011   // seem worth it.
2012   MachineBasicBlock::const_iterator I = MI;
2013   // Make sure to skip any debug instructions
2014   while (++I != MBB->end() && I->isDebugInstr())
2015     ;
2016   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
2017     return true;
2018 
2019   // Don't attempt to schedule around any instruction that defines
2020   // a stack-oriented pointer, as it's unlikely to be profitable. This
2021   // saves compile time, because it doesn't require every single
2022   // stack slot reference to depend on the instruction that does the
2023   // modification.
2024   // Calls don't actually change the stack pointer, even if they have imp-defs.
2025   // No ARM calling conventions change the stack pointer. (X86 calling
2026   // conventions sometimes do).
2027   if (!MI.isCall() && MI.definesRegister(ARM::SP))
2028     return true;
2029 
2030   return false;
2031 }
2032 
2033 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability) const2034 isProfitableToIfCvt(MachineBasicBlock &MBB,
2035                     unsigned NumCycles, unsigned ExtraPredCycles,
2036                     BranchProbability Probability) const {
2037   if (!NumCycles)
2038     return false;
2039 
2040   // If we are optimizing for size, see if the branch in the predecessor can be
2041   // lowered to cbn?z by the constant island lowering pass, and return false if
2042   // so. This results in a shorter instruction sequence.
2043   if (MBB.getParent()->getFunction().hasOptSize()) {
2044     MachineBasicBlock *Pred = *MBB.pred_begin();
2045     if (!Pred->empty()) {
2046       MachineInstr *LastMI = &*Pred->rbegin();
2047       if (LastMI->getOpcode() == ARM::t2Bcc) {
2048         const TargetRegisterInfo *TRI = &getRegisterInfo();
2049         MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
2050         if (CmpMI)
2051           return false;
2052       }
2053     }
2054   }
2055   return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
2056                              MBB, 0, 0, Probability);
2057 }
2058 
2059 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & TBB,unsigned TCycles,unsigned TExtra,MachineBasicBlock & FBB,unsigned FCycles,unsigned FExtra,BranchProbability Probability) const2060 isProfitableToIfCvt(MachineBasicBlock &TBB,
2061                     unsigned TCycles, unsigned TExtra,
2062                     MachineBasicBlock &FBB,
2063                     unsigned FCycles, unsigned FExtra,
2064                     BranchProbability Probability) const {
2065   if (!TCycles)
2066     return false;
2067 
2068   // In thumb code we often end up trading one branch for a IT block, and
2069   // if we are cloning the instruction can increase code size. Prevent
2070   // blocks with multiple predecesors from being ifcvted to prevent this
2071   // cloning.
2072   if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2073     if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2074       return false;
2075   }
2076 
2077   // Attempt to estimate the relative costs of predication versus branching.
2078   // Here we scale up each component of UnpredCost to avoid precision issue when
2079   // scaling TCycles/FCycles by Probability.
2080   const unsigned ScalingUpFactor = 1024;
2081 
2082   unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2083   unsigned UnpredCost;
2084   if (!Subtarget.hasBranchPredictor()) {
2085     // When we don't have a branch predictor it's always cheaper to not take a
2086     // branch than take it, so we have to take that into account.
2087     unsigned NotTakenBranchCost = 1;
2088     unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2089     unsigned TUnpredCycles, FUnpredCycles;
2090     if (!FCycles) {
2091       // Triangle: TBB is the fallthrough
2092       TUnpredCycles = TCycles + NotTakenBranchCost;
2093       FUnpredCycles = TakenBranchCost;
2094     } else {
2095       // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2096       TUnpredCycles = TCycles + TakenBranchCost;
2097       FUnpredCycles = FCycles + NotTakenBranchCost;
2098       // The branch at the end of FBB will disappear when it's predicated, so
2099       // discount it from PredCost.
2100       PredCost -= 1 * ScalingUpFactor;
2101     }
2102     // The total cost is the cost of each path scaled by their probabilites
2103     unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
2104     unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
2105     UnpredCost = TUnpredCost + FUnpredCost;
2106     // When predicating assume that the first IT can be folded away but later
2107     // ones cost one cycle each
2108     if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2109       PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2110     }
2111   } else {
2112     unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
2113     unsigned FUnpredCost =
2114       Probability.getCompl().scale(FCycles * ScalingUpFactor);
2115     UnpredCost = TUnpredCost + FUnpredCost;
2116     UnpredCost += 1 * ScalingUpFactor; // The branch itself
2117     UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2118   }
2119 
2120   return PredCost <= UnpredCost;
2121 }
2122 
2123 unsigned
extraSizeToPredicateInstructions(const MachineFunction & MF,unsigned NumInsts) const2124 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
2125                                                    unsigned NumInsts) const {
2126   // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
2127   // ARM has a condition code field in every predicable instruction, using it
2128   // doesn't change code size.
2129   if (!Subtarget.isThumb2())
2130     return 0;
2131 
2132   // It's possible that the size of the IT is restricted to a single block.
2133   unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4;
2134   return divideCeil(NumInsts, MaxInsts) * 2;
2135 }
2136 
2137 unsigned
predictBranchSizeForIfCvt(MachineInstr & MI) const2138 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
2139   // If this branch is likely to be folded into the comparison to form a
2140   // CB(N)Z, then removing it won't reduce code size at all, because that will
2141   // just replace the CB(N)Z with a CMP.
2142   if (MI.getOpcode() == ARM::t2Bcc &&
2143       findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
2144     return 0;
2145 
2146   unsigned Size = getInstSizeInBytes(MI);
2147 
2148   // For Thumb2, all branches are 32-bit instructions during the if conversion
2149   // pass, but may be replaced with 16-bit instructions during size reduction.
2150   // Since the branches considered by if conversion tend to be forward branches
2151   // over small basic blocks, they are very likely to be in range for the
2152   // narrow instructions, so we assume the final code size will be half what it
2153   // currently is.
2154   if (Subtarget.isThumb2())
2155     Size /= 2;
2156 
2157   return Size;
2158 }
2159 
2160 bool
isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB) const2161 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2162                                             MachineBasicBlock &FMBB) const {
2163   // Reduce false anti-dependencies to let the target's out-of-order execution
2164   // engine do its thing.
2165   return Subtarget.isProfitableToUnpredicate();
2166 }
2167 
2168 /// getInstrPredicate - If instruction is predicated, returns its predicate
2169 /// condition, otherwise returns AL. It also returns the condition code
2170 /// register by reference.
getInstrPredicate(const MachineInstr & MI,Register & PredReg)2171 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2172                                          Register &PredReg) {
2173   int PIdx = MI.findFirstPredOperandIdx();
2174   if (PIdx == -1) {
2175     PredReg = 0;
2176     return ARMCC::AL;
2177   }
2178 
2179   PredReg = MI.getOperand(PIdx+1).getReg();
2180   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2181 }
2182 
getMatchingCondBranchOpcode(unsigned Opc)2183 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2184   if (Opc == ARM::B)
2185     return ARM::Bcc;
2186   if (Opc == ARM::tB)
2187     return ARM::tBcc;
2188   if (Opc == ARM::t2B)
2189     return ARM::t2Bcc;
2190 
2191   llvm_unreachable("Unknown unconditional branch opcode!");
2192 }
2193 
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const2194 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2195                                                        bool NewMI,
2196                                                        unsigned OpIdx1,
2197                                                        unsigned OpIdx2) const {
2198   switch (MI.getOpcode()) {
2199   case ARM::MOVCCr:
2200   case ARM::t2MOVCCr: {
2201     // MOVCC can be commuted by inverting the condition.
2202     Register PredReg;
2203     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2204     // MOVCC AL can't be inverted. Shouldn't happen.
2205     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2206       return nullptr;
2207     MachineInstr *CommutedMI =
2208         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2209     if (!CommutedMI)
2210       return nullptr;
2211     // After swapping the MOVCC operands, also invert the condition.
2212     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2213         .setImm(ARMCC::getOppositeCondition(CC));
2214     return CommutedMI;
2215   }
2216   }
2217   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2218 }
2219 
2220 /// Identify instructions that can be folded into a MOVCC instruction, and
2221 /// return the defining instruction.
2222 MachineInstr *
canFoldIntoMOVCC(Register Reg,const MachineRegisterInfo & MRI,const TargetInstrInfo * TII) const2223 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
2224                                    const TargetInstrInfo *TII) const {
2225   if (!Reg.isVirtual())
2226     return nullptr;
2227   if (!MRI.hasOneNonDBGUse(Reg))
2228     return nullptr;
2229   MachineInstr *MI = MRI.getVRegDef(Reg);
2230   if (!MI)
2231     return nullptr;
2232   // Check if MI can be predicated and folded into the MOVCC.
2233   if (!isPredicable(*MI))
2234     return nullptr;
2235   // Check if MI has any non-dead defs or physreg uses. This also detects
2236   // predicated instructions which will be reading CPSR.
2237   for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
2238     const MachineOperand &MO = MI->getOperand(i);
2239     // Reject frame index operands, PEI can't handle the predicated pseudos.
2240     if (MO.isFI() || MO.isCPI() || MO.isJTI())
2241       return nullptr;
2242     if (!MO.isReg())
2243       continue;
2244     // MI can't have any tied operands, that would conflict with predication.
2245     if (MO.isTied())
2246       return nullptr;
2247     if (Register::isPhysicalRegister(MO.getReg()))
2248       return nullptr;
2249     if (MO.isDef() && !MO.isDead())
2250       return nullptr;
2251   }
2252   bool DontMoveAcrossStores = true;
2253   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2254     return nullptr;
2255   return MI;
2256 }
2257 
analyzeSelect(const MachineInstr & MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable) const2258 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2259                                      SmallVectorImpl<MachineOperand> &Cond,
2260                                      unsigned &TrueOp, unsigned &FalseOp,
2261                                      bool &Optimizable) const {
2262   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2263          "Unknown select instruction");
2264   // MOVCC operands:
2265   // 0: Def.
2266   // 1: True use.
2267   // 2: False use.
2268   // 3: Condition code.
2269   // 4: CPSR use.
2270   TrueOp = 1;
2271   FalseOp = 2;
2272   Cond.push_back(MI.getOperand(3));
2273   Cond.push_back(MI.getOperand(4));
2274   // We can always fold a def.
2275   Optimizable = true;
2276   return false;
2277 }
2278 
2279 MachineInstr *
optimizeSelect(MachineInstr & MI,SmallPtrSetImpl<MachineInstr * > & SeenMIs,bool PreferFalse) const2280 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2281                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2282                                  bool PreferFalse) const {
2283   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2284          "Unknown select instruction");
2285   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2286   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2287   bool Invert = !DefMI;
2288   if (!DefMI)
2289     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2290   if (!DefMI)
2291     return nullptr;
2292 
2293   // Find new register class to use.
2294   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2295   Register DestReg = MI.getOperand(0).getReg();
2296   const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
2297   if (!MRI.constrainRegClass(DestReg, PreviousClass))
2298     return nullptr;
2299 
2300   // Create a new predicated version of DefMI.
2301   // Rfalse is the first use.
2302   MachineInstrBuilder NewMI =
2303       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2304 
2305   // Copy all the DefMI operands, excluding its (null) predicate.
2306   const MCInstrDesc &DefDesc = DefMI->getDesc();
2307   for (unsigned i = 1, e = DefDesc.getNumOperands();
2308        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2309     NewMI.add(DefMI->getOperand(i));
2310 
2311   unsigned CondCode = MI.getOperand(3).getImm();
2312   if (Invert)
2313     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2314   else
2315     NewMI.addImm(CondCode);
2316   NewMI.add(MI.getOperand(4));
2317 
2318   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2319   if (NewMI->hasOptionalDef())
2320     NewMI.add(condCodeOp());
2321 
2322   // The output register value when the predicate is false is an implicit
2323   // register operand tied to the first def.
2324   // The tie makes the register allocator ensure the FalseReg is allocated the
2325   // same register as operand 0.
2326   FalseReg.setImplicit();
2327   NewMI.add(FalseReg);
2328   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2329 
2330   // Update SeenMIs set: register newly created MI and erase removed DefMI.
2331   SeenMIs.insert(NewMI);
2332   SeenMIs.erase(DefMI);
2333 
2334   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2335   // DefMI would be invalid when tranferred inside the loop.  Checking for a
2336   // loop is expensive, but at least remove kill flags if they are in different
2337   // BBs.
2338   if (DefMI->getParent() != MI.getParent())
2339     NewMI->clearKillInfo();
2340 
2341   // The caller will erase MI, but not DefMI.
2342   DefMI->eraseFromParent();
2343   return NewMI;
2344 }
2345 
2346 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2347 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2348 /// def operand.
2349 ///
2350 /// This will go away once we can teach tblgen how to set the optional CPSR def
2351 /// operand itself.
2352 struct AddSubFlagsOpcodePair {
2353   uint16_t PseudoOpc;
2354   uint16_t MachineOpc;
2355 };
2356 
2357 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2358   {ARM::ADDSri, ARM::ADDri},
2359   {ARM::ADDSrr, ARM::ADDrr},
2360   {ARM::ADDSrsi, ARM::ADDrsi},
2361   {ARM::ADDSrsr, ARM::ADDrsr},
2362 
2363   {ARM::SUBSri, ARM::SUBri},
2364   {ARM::SUBSrr, ARM::SUBrr},
2365   {ARM::SUBSrsi, ARM::SUBrsi},
2366   {ARM::SUBSrsr, ARM::SUBrsr},
2367 
2368   {ARM::RSBSri, ARM::RSBri},
2369   {ARM::RSBSrsi, ARM::RSBrsi},
2370   {ARM::RSBSrsr, ARM::RSBrsr},
2371 
2372   {ARM::tADDSi3, ARM::tADDi3},
2373   {ARM::tADDSi8, ARM::tADDi8},
2374   {ARM::tADDSrr, ARM::tADDrr},
2375   {ARM::tADCS, ARM::tADC},
2376 
2377   {ARM::tSUBSi3, ARM::tSUBi3},
2378   {ARM::tSUBSi8, ARM::tSUBi8},
2379   {ARM::tSUBSrr, ARM::tSUBrr},
2380   {ARM::tSBCS, ARM::tSBC},
2381   {ARM::tRSBS, ARM::tRSB},
2382   {ARM::tLSLSri, ARM::tLSLri},
2383 
2384   {ARM::t2ADDSri, ARM::t2ADDri},
2385   {ARM::t2ADDSrr, ARM::t2ADDrr},
2386   {ARM::t2ADDSrs, ARM::t2ADDrs},
2387 
2388   {ARM::t2SUBSri, ARM::t2SUBri},
2389   {ARM::t2SUBSrr, ARM::t2SUBrr},
2390   {ARM::t2SUBSrs, ARM::t2SUBrs},
2391 
2392   {ARM::t2RSBSri, ARM::t2RSBri},
2393   {ARM::t2RSBSrs, ARM::t2RSBrs},
2394 };
2395 
convertAddSubFlagsOpcode(unsigned OldOpc)2396 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2397   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2398     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2399       return AddSubFlagsOpcodeMap[i].MachineOpc;
2400   return 0;
2401 }
2402 
emitARMRegPlusImmediate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & dl,Register DestReg,Register BaseReg,int NumBytes,ARMCC::CondCodes Pred,Register PredReg,const ARMBaseInstrInfo & TII,unsigned MIFlags)2403 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2404                                    MachineBasicBlock::iterator &MBBI,
2405                                    const DebugLoc &dl, Register DestReg,
2406                                    Register BaseReg, int NumBytes,
2407                                    ARMCC::CondCodes Pred, Register PredReg,
2408                                    const ARMBaseInstrInfo &TII,
2409                                    unsigned MIFlags) {
2410   if (NumBytes == 0 && DestReg != BaseReg) {
2411     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2412         .addReg(BaseReg, RegState::Kill)
2413         .add(predOps(Pred, PredReg))
2414         .add(condCodeOp())
2415         .setMIFlags(MIFlags);
2416     return;
2417   }
2418 
2419   bool isSub = NumBytes < 0;
2420   if (isSub) NumBytes = -NumBytes;
2421 
2422   while (NumBytes) {
2423     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2424     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2425     assert(ThisVal && "Didn't extract field correctly");
2426 
2427     // We will handle these bits from offset, clear them.
2428     NumBytes &= ~ThisVal;
2429 
2430     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2431 
2432     // Build the new ADD / SUB.
2433     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2434     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2435         .addReg(BaseReg, RegState::Kill)
2436         .addImm(ThisVal)
2437         .add(predOps(Pred, PredReg))
2438         .add(condCodeOp())
2439         .setMIFlags(MIFlags);
2440     BaseReg = DestReg;
2441   }
2442 }
2443 
tryFoldSPUpdateIntoPushPop(const ARMSubtarget & Subtarget,MachineFunction & MF,MachineInstr * MI,unsigned NumBytes)2444 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2445                                       MachineFunction &MF, MachineInstr *MI,
2446                                       unsigned NumBytes) {
2447   // This optimisation potentially adds lots of load and store
2448   // micro-operations, it's only really a great benefit to code-size.
2449   if (!Subtarget.hasMinSize())
2450     return false;
2451 
2452   // If only one register is pushed/popped, LLVM can use an LDR/STR
2453   // instead. We can't modify those so make sure we're dealing with an
2454   // instruction we understand.
2455   bool IsPop = isPopOpcode(MI->getOpcode());
2456   bool IsPush = isPushOpcode(MI->getOpcode());
2457   if (!IsPush && !IsPop)
2458     return false;
2459 
2460   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2461                       MI->getOpcode() == ARM::VLDMDIA_UPD;
2462   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2463                      MI->getOpcode() == ARM::tPOP ||
2464                      MI->getOpcode() == ARM::tPOP_RET;
2465 
2466   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2467                           MI->getOperand(1).getReg() == ARM::SP)) &&
2468          "trying to fold sp update into non-sp-updating push/pop");
2469 
2470   // The VFP push & pop act on D-registers, so we can only fold an adjustment
2471   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2472   // if this is violated.
2473   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2474     return false;
2475 
2476   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2477   // pred) so the list starts at 4. Thumb1 starts after the predicate.
2478   int RegListIdx = IsT1PushPop ? 2 : 4;
2479 
2480   // Calculate the space we'll need in terms of registers.
2481   unsigned RegsNeeded;
2482   const TargetRegisterClass *RegClass;
2483   if (IsVFPPushPop) {
2484     RegsNeeded = NumBytes / 8;
2485     RegClass = &ARM::DPRRegClass;
2486   } else {
2487     RegsNeeded = NumBytes / 4;
2488     RegClass = &ARM::GPRRegClass;
2489   }
2490 
2491   // We're going to have to strip all list operands off before
2492   // re-adding them since the order matters, so save the existing ones
2493   // for later.
2494   SmallVector<MachineOperand, 4> RegList;
2495 
2496   // We're also going to need the first register transferred by this
2497   // instruction, which won't necessarily be the first register in the list.
2498   unsigned FirstRegEnc = -1;
2499 
2500   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2501   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2502     MachineOperand &MO = MI->getOperand(i);
2503     RegList.push_back(MO);
2504 
2505     if (MO.isReg() && !MO.isImplicit() &&
2506         TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2507       FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2508   }
2509 
2510   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2511 
2512   // Now try to find enough space in the reglist to allocate NumBytes.
2513   for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2514        --CurRegEnc) {
2515     unsigned CurReg = RegClass->getRegister(CurRegEnc);
2516     if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
2517       continue;
2518     if (!IsPop) {
2519       // Pushing any register is completely harmless, mark the register involved
2520       // as undef since we don't care about its value and must not restore it
2521       // during stack unwinding.
2522       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2523                                                   false, false, true));
2524       --RegsNeeded;
2525       continue;
2526     }
2527 
2528     // However, we can only pop an extra register if it's not live. For
2529     // registers live within the function we might clobber a return value
2530     // register; the other way a register can be live here is if it's
2531     // callee-saved.
2532     if (isCalleeSavedRegister(CurReg, CSRegs) ||
2533         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2534         MachineBasicBlock::LQR_Dead) {
2535       // VFP pops don't allow holes in the register list, so any skip is fatal
2536       // for our transformation. GPR pops do, so we should just keep looking.
2537       if (IsVFPPushPop)
2538         return false;
2539       else
2540         continue;
2541     }
2542 
2543     // Mark the unimportant registers as <def,dead> in the POP.
2544     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2545                                                 true));
2546     --RegsNeeded;
2547   }
2548 
2549   if (RegsNeeded > 0)
2550     return false;
2551 
2552   // Finally we know we can profitably perform the optimisation so go
2553   // ahead: strip all existing registers off and add them back again
2554   // in the right order.
2555   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2556     MI->RemoveOperand(i);
2557 
2558   // Add the complete list back in.
2559   MachineInstrBuilder MIB(MF, &*MI);
2560   for (int i = RegList.size() - 1; i >= 0; --i)
2561     MIB.add(RegList[i]);
2562 
2563   return true;
2564 }
2565 
rewriteARMFrameIndex(MachineInstr & MI,unsigned FrameRegIdx,Register FrameReg,int & Offset,const ARMBaseInstrInfo & TII)2566 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2567                                 Register FrameReg, int &Offset,
2568                                 const ARMBaseInstrInfo &TII) {
2569   unsigned Opcode = MI.getOpcode();
2570   const MCInstrDesc &Desc = MI.getDesc();
2571   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2572   bool isSub = false;
2573 
2574   // Memory operands in inline assembly always use AddrMode2.
2575   if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2576     AddrMode = ARMII::AddrMode2;
2577 
2578   if (Opcode == ARM::ADDri) {
2579     Offset += MI.getOperand(FrameRegIdx+1).getImm();
2580     if (Offset == 0) {
2581       // Turn it into a move.
2582       MI.setDesc(TII.get(ARM::MOVr));
2583       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2584       MI.RemoveOperand(FrameRegIdx+1);
2585       Offset = 0;
2586       return true;
2587     } else if (Offset < 0) {
2588       Offset = -Offset;
2589       isSub = true;
2590       MI.setDesc(TII.get(ARM::SUBri));
2591     }
2592 
2593     // Common case: small offset, fits into instruction.
2594     if (ARM_AM::getSOImmVal(Offset) != -1) {
2595       // Replace the FrameIndex with sp / fp
2596       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2597       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2598       Offset = 0;
2599       return true;
2600     }
2601 
2602     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2603     // as possible.
2604     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2605     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2606 
2607     // We will handle these bits from offset, clear them.
2608     Offset &= ~ThisImmVal;
2609 
2610     // Get the properly encoded SOImmVal field.
2611     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2612            "Bit extraction didn't work?");
2613     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2614  } else {
2615     unsigned ImmIdx = 0;
2616     int InstrOffs = 0;
2617     unsigned NumBits = 0;
2618     unsigned Scale = 1;
2619     switch (AddrMode) {
2620     case ARMII::AddrMode_i12:
2621       ImmIdx = FrameRegIdx + 1;
2622       InstrOffs = MI.getOperand(ImmIdx).getImm();
2623       NumBits = 12;
2624       break;
2625     case ARMII::AddrMode2:
2626       ImmIdx = FrameRegIdx+2;
2627       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2628       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2629         InstrOffs *= -1;
2630       NumBits = 12;
2631       break;
2632     case ARMII::AddrMode3:
2633       ImmIdx = FrameRegIdx+2;
2634       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2635       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2636         InstrOffs *= -1;
2637       NumBits = 8;
2638       break;
2639     case ARMII::AddrMode4:
2640     case ARMII::AddrMode6:
2641       // Can't fold any offset even if it's zero.
2642       return false;
2643     case ARMII::AddrMode5:
2644       ImmIdx = FrameRegIdx+1;
2645       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2646       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2647         InstrOffs *= -1;
2648       NumBits = 8;
2649       Scale = 4;
2650       break;
2651     case ARMII::AddrMode5FP16:
2652       ImmIdx = FrameRegIdx+1;
2653       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2654       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2655         InstrOffs *= -1;
2656       NumBits = 8;
2657       Scale = 2;
2658       break;
2659     case ARMII::AddrModeT2_i7:
2660     case ARMII::AddrModeT2_i7s2:
2661     case ARMII::AddrModeT2_i7s4:
2662       ImmIdx = FrameRegIdx+1;
2663       InstrOffs = MI.getOperand(ImmIdx).getImm();
2664       NumBits = 7;
2665       Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2666                AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2667       break;
2668     default:
2669       llvm_unreachable("Unsupported addressing mode!");
2670     }
2671 
2672     Offset += InstrOffs * Scale;
2673     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2674     if (Offset < 0) {
2675       Offset = -Offset;
2676       isSub = true;
2677     }
2678 
2679     // Attempt to fold address comp. if opcode has offset bits
2680     if (NumBits > 0) {
2681       // Common case: small offset, fits into instruction.
2682       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2683       int ImmedOffset = Offset / Scale;
2684       unsigned Mask = (1 << NumBits) - 1;
2685       if ((unsigned)Offset <= Mask * Scale) {
2686         // Replace the FrameIndex with sp
2687         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2688         // FIXME: When addrmode2 goes away, this will simplify (like the
2689         // T2 version), as the LDR.i12 versions don't need the encoding
2690         // tricks for the offset value.
2691         if (isSub) {
2692           if (AddrMode == ARMII::AddrMode_i12)
2693             ImmedOffset = -ImmedOffset;
2694           else
2695             ImmedOffset |= 1 << NumBits;
2696         }
2697         ImmOp.ChangeToImmediate(ImmedOffset);
2698         Offset = 0;
2699         return true;
2700       }
2701 
2702       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2703       ImmedOffset = ImmedOffset & Mask;
2704       if (isSub) {
2705         if (AddrMode == ARMII::AddrMode_i12)
2706           ImmedOffset = -ImmedOffset;
2707         else
2708           ImmedOffset |= 1 << NumBits;
2709       }
2710       ImmOp.ChangeToImmediate(ImmedOffset);
2711       Offset &= ~(Mask*Scale);
2712     }
2713   }
2714 
2715   Offset = (isSub) ? -Offset : Offset;
2716   return Offset == 0;
2717 }
2718 
2719 /// analyzeCompare - For a comparison instruction, return the source registers
2720 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2721 /// compares against in CmpValue. Return true if the comparison instruction
2722 /// can be analyzed.
analyzeCompare(const MachineInstr & MI,Register & SrcReg,Register & SrcReg2,int & CmpMask,int & CmpValue) const2723 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2724                                       Register &SrcReg2, int &CmpMask,
2725                                       int &CmpValue) const {
2726   switch (MI.getOpcode()) {
2727   default: break;
2728   case ARM::CMPri:
2729   case ARM::t2CMPri:
2730   case ARM::tCMPi8:
2731     SrcReg = MI.getOperand(0).getReg();
2732     SrcReg2 = 0;
2733     CmpMask = ~0;
2734     CmpValue = MI.getOperand(1).getImm();
2735     return true;
2736   case ARM::CMPrr:
2737   case ARM::t2CMPrr:
2738   case ARM::tCMPr:
2739     SrcReg = MI.getOperand(0).getReg();
2740     SrcReg2 = MI.getOperand(1).getReg();
2741     CmpMask = ~0;
2742     CmpValue = 0;
2743     return true;
2744   case ARM::TSTri:
2745   case ARM::t2TSTri:
2746     SrcReg = MI.getOperand(0).getReg();
2747     SrcReg2 = 0;
2748     CmpMask = MI.getOperand(1).getImm();
2749     CmpValue = 0;
2750     return true;
2751   }
2752 
2753   return false;
2754 }
2755 
2756 /// isSuitableForMask - Identify a suitable 'and' instruction that
2757 /// operates on the given source register and applies the same mask
2758 /// as a 'tst' instruction. Provide a limited look-through for copies.
2759 /// When successful, MI will hold the found instruction.
isSuitableForMask(MachineInstr * & MI,Register SrcReg,int CmpMask,bool CommonUse)2760 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg,
2761                               int CmpMask, bool CommonUse) {
2762   switch (MI->getOpcode()) {
2763     case ARM::ANDri:
2764     case ARM::t2ANDri:
2765       if (CmpMask != MI->getOperand(2).getImm())
2766         return false;
2767       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2768         return true;
2769       break;
2770   }
2771 
2772   return false;
2773 }
2774 
2775 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2776 /// the condition code if we modify the instructions such that flags are
2777 /// set by ADD(a,b,X).
getCmpToAddCondition(ARMCC::CondCodes CC)2778 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2779   switch (CC) {
2780   default: return ARMCC::AL;
2781   case ARMCC::HS: return ARMCC::LO;
2782   case ARMCC::LO: return ARMCC::HS;
2783   case ARMCC::VS: return ARMCC::VS;
2784   case ARMCC::VC: return ARMCC::VC;
2785   }
2786 }
2787 
2788 /// isRedundantFlagInstr - check whether the first instruction, whose only
2789 /// purpose is to update flags, can be made redundant.
2790 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2791 /// CMPri can be made redundant by SUBri if the operands are the same.
2792 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2793 /// This function can be extended later on.
isRedundantFlagInstr(const MachineInstr * CmpI,Register SrcReg,Register SrcReg2,int ImmValue,const MachineInstr * OI,bool & IsThumb1)2794 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2795                                         Register SrcReg, Register SrcReg2,
2796                                         int ImmValue, const MachineInstr *OI,
2797                                         bool &IsThumb1) {
2798   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2799       (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2800       ((OI->getOperand(1).getReg() == SrcReg &&
2801         OI->getOperand(2).getReg() == SrcReg2) ||
2802        (OI->getOperand(1).getReg() == SrcReg2 &&
2803         OI->getOperand(2).getReg() == SrcReg))) {
2804     IsThumb1 = false;
2805     return true;
2806   }
2807 
2808   if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2809       ((OI->getOperand(2).getReg() == SrcReg &&
2810         OI->getOperand(3).getReg() == SrcReg2) ||
2811        (OI->getOperand(2).getReg() == SrcReg2 &&
2812         OI->getOperand(3).getReg() == SrcReg))) {
2813     IsThumb1 = true;
2814     return true;
2815   }
2816 
2817   if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2818       (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2819       OI->getOperand(1).getReg() == SrcReg &&
2820       OI->getOperand(2).getImm() == ImmValue) {
2821     IsThumb1 = false;
2822     return true;
2823   }
2824 
2825   if (CmpI->getOpcode() == ARM::tCMPi8 &&
2826       (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2827       OI->getOperand(2).getReg() == SrcReg &&
2828       OI->getOperand(3).getImm() == ImmValue) {
2829     IsThumb1 = true;
2830     return true;
2831   }
2832 
2833   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2834       (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2835        OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2836       OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2837       OI->getOperand(0).getReg() == SrcReg &&
2838       OI->getOperand(1).getReg() == SrcReg2) {
2839     IsThumb1 = false;
2840     return true;
2841   }
2842 
2843   if (CmpI->getOpcode() == ARM::tCMPr &&
2844       (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2845        OI->getOpcode() == ARM::tADDrr) &&
2846       OI->getOperand(0).getReg() == SrcReg &&
2847       OI->getOperand(2).getReg() == SrcReg2) {
2848     IsThumb1 = true;
2849     return true;
2850   }
2851 
2852   return false;
2853 }
2854 
isOptimizeCompareCandidate(MachineInstr * MI,bool & IsThumb1)2855 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2856   switch (MI->getOpcode()) {
2857   default: return false;
2858   case ARM::tLSLri:
2859   case ARM::tLSRri:
2860   case ARM::tLSLrr:
2861   case ARM::tLSRrr:
2862   case ARM::tSUBrr:
2863   case ARM::tADDrr:
2864   case ARM::tADDi3:
2865   case ARM::tADDi8:
2866   case ARM::tSUBi3:
2867   case ARM::tSUBi8:
2868   case ARM::tMUL:
2869   case ARM::tADC:
2870   case ARM::tSBC:
2871   case ARM::tRSB:
2872   case ARM::tAND:
2873   case ARM::tORR:
2874   case ARM::tEOR:
2875   case ARM::tBIC:
2876   case ARM::tMVN:
2877   case ARM::tASRri:
2878   case ARM::tASRrr:
2879   case ARM::tROR:
2880     IsThumb1 = true;
2881     LLVM_FALLTHROUGH;
2882   case ARM::RSBrr:
2883   case ARM::RSBri:
2884   case ARM::RSCrr:
2885   case ARM::RSCri:
2886   case ARM::ADDrr:
2887   case ARM::ADDri:
2888   case ARM::ADCrr:
2889   case ARM::ADCri:
2890   case ARM::SUBrr:
2891   case ARM::SUBri:
2892   case ARM::SBCrr:
2893   case ARM::SBCri:
2894   case ARM::t2RSBri:
2895   case ARM::t2ADDrr:
2896   case ARM::t2ADDri:
2897   case ARM::t2ADCrr:
2898   case ARM::t2ADCri:
2899   case ARM::t2SUBrr:
2900   case ARM::t2SUBri:
2901   case ARM::t2SBCrr:
2902   case ARM::t2SBCri:
2903   case ARM::ANDrr:
2904   case ARM::ANDri:
2905   case ARM::t2ANDrr:
2906   case ARM::t2ANDri:
2907   case ARM::ORRrr:
2908   case ARM::ORRri:
2909   case ARM::t2ORRrr:
2910   case ARM::t2ORRri:
2911   case ARM::EORrr:
2912   case ARM::EORri:
2913   case ARM::t2EORrr:
2914   case ARM::t2EORri:
2915   case ARM::t2LSRri:
2916   case ARM::t2LSRrr:
2917   case ARM::t2LSLri:
2918   case ARM::t2LSLrr:
2919     return true;
2920   }
2921 }
2922 
2923 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2924 /// comparison into one that sets the zero bit in the flags register;
2925 /// Remove a redundant Compare instruction if an earlier instruction can set the
2926 /// flags in the same way as Compare.
2927 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2928 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2929 /// condition code of instructions which use the flags.
optimizeCompareInstr(MachineInstr & CmpInstr,Register SrcReg,Register SrcReg2,int CmpMask,int CmpValue,const MachineRegisterInfo * MRI) const2930 bool ARMBaseInstrInfo::optimizeCompareInstr(
2931     MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int CmpMask,
2932     int CmpValue, const MachineRegisterInfo *MRI) const {
2933   // Get the unique definition of SrcReg.
2934   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2935   if (!MI) return false;
2936 
2937   // Masked compares sometimes use the same register as the corresponding 'and'.
2938   if (CmpMask != ~0) {
2939     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
2940       MI = nullptr;
2941       for (MachineRegisterInfo::use_instr_iterator
2942            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2943            UI != UE; ++UI) {
2944         if (UI->getParent() != CmpInstr.getParent())
2945           continue;
2946         MachineInstr *PotentialAND = &*UI;
2947         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2948             isPredicated(*PotentialAND))
2949           continue;
2950         MI = PotentialAND;
2951         break;
2952       }
2953       if (!MI) return false;
2954     }
2955   }
2956 
2957   // Get ready to iterate backward from CmpInstr.
2958   MachineBasicBlock::iterator I = CmpInstr, E = MI,
2959                               B = CmpInstr.getParent()->begin();
2960 
2961   // Early exit if CmpInstr is at the beginning of the BB.
2962   if (I == B) return false;
2963 
2964   // There are two possible candidates which can be changed to set CPSR:
2965   // One is MI, the other is a SUB or ADD instruction.
2966   // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
2967   // ADDr[ri](r1, r2, X).
2968   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2969   MachineInstr *SubAdd = nullptr;
2970   if (SrcReg2 != 0)
2971     // MI is not a candidate for CMPrr.
2972     MI = nullptr;
2973   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
2974     // Conservatively refuse to convert an instruction which isn't in the same
2975     // BB as the comparison.
2976     // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
2977     // Thus we cannot return here.
2978     if (CmpInstr.getOpcode() == ARM::CMPri ||
2979         CmpInstr.getOpcode() == ARM::t2CMPri ||
2980         CmpInstr.getOpcode() == ARM::tCMPi8)
2981       MI = nullptr;
2982     else
2983       return false;
2984   }
2985 
2986   bool IsThumb1 = false;
2987   if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
2988     return false;
2989 
2990   // We also want to do this peephole for cases like this: if (a*b == 0),
2991   // and optimise away the CMP instruction from the generated code sequence:
2992   // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
2993   // resulting from the select instruction, but these MOVS instructions for
2994   // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
2995   // However, if we only have MOVS instructions in between the CMP and the
2996   // other instruction (the MULS in this example), then the CPSR is dead so we
2997   // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
2998   // reordering and then continue the analysis hoping we can eliminate the
2999   // CMP. This peephole works on the vregs, so is still in SSA form. As a
3000   // consequence, the movs won't redefine/kill the MUL operands which would
3001   // make this reordering illegal.
3002   const TargetRegisterInfo *TRI = &getRegisterInfo();
3003   if (MI && IsThumb1) {
3004     --I;
3005     if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
3006       bool CanReorder = true;
3007       for (; I != E; --I) {
3008         if (I->getOpcode() != ARM::tMOVi8) {
3009           CanReorder = false;
3010           break;
3011         }
3012       }
3013       if (CanReorder) {
3014         MI = MI->removeFromParent();
3015         E = CmpInstr;
3016         CmpInstr.getParent()->insert(E, MI);
3017       }
3018     }
3019     I = CmpInstr;
3020     E = MI;
3021   }
3022 
3023   // Check that CPSR isn't set between the comparison instruction and the one we
3024   // want to change. At the same time, search for SubAdd.
3025   bool SubAddIsThumb1 = false;
3026   do {
3027     const MachineInstr &Instr = *--I;
3028 
3029     // Check whether CmpInstr can be made redundant by the current instruction.
3030     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
3031                              SubAddIsThumb1)) {
3032       SubAdd = &*I;
3033       break;
3034     }
3035 
3036     // Allow E (which was initially MI) to be SubAdd but do not search before E.
3037     if (I == E)
3038       break;
3039 
3040     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
3041         Instr.readsRegister(ARM::CPSR, TRI))
3042       // This instruction modifies or uses CPSR after the one we want to
3043       // change. We can't do this transformation.
3044       return false;
3045 
3046     if (I == B) {
3047       // In some cases, we scan the use-list of an instruction for an AND;
3048       // that AND is in the same BB, but may not be scheduled before the
3049       // corresponding TST.  In that case, bail out.
3050       //
3051       // FIXME: We could try to reschedule the AND.
3052       return false;
3053     }
3054   } while (true);
3055 
3056   // Return false if no candidates exist.
3057   if (!MI && !SubAdd)
3058     return false;
3059 
3060   // If we found a SubAdd, use it as it will be closer to the CMP
3061   if (SubAdd) {
3062     MI = SubAdd;
3063     IsThumb1 = SubAddIsThumb1;
3064   }
3065 
3066   // We can't use a predicated instruction - it doesn't always write the flags.
3067   if (isPredicated(*MI))
3068     return false;
3069 
3070   // Scan forward for the use of CPSR
3071   // When checking against MI: if it's a conditional code that requires
3072   // checking of the V bit or C bit, then this is not safe to do.
3073   // It is safe to remove CmpInstr if CPSR is redefined or killed.
3074   // If we are done with the basic block, we need to check whether CPSR is
3075   // live-out.
3076   SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3077       OperandsToUpdate;
3078   bool isSafe = false;
3079   I = CmpInstr;
3080   E = CmpInstr.getParent()->end();
3081   while (!isSafe && ++I != E) {
3082     const MachineInstr &Instr = *I;
3083     for (unsigned IO = 0, EO = Instr.getNumOperands();
3084          !isSafe && IO != EO; ++IO) {
3085       const MachineOperand &MO = Instr.getOperand(IO);
3086       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3087         isSafe = true;
3088         break;
3089       }
3090       if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3091         continue;
3092       if (MO.isDef()) {
3093         isSafe = true;
3094         break;
3095       }
3096       // Condition code is after the operand before CPSR except for VSELs.
3097       ARMCC::CondCodes CC;
3098       bool IsInstrVSel = true;
3099       switch (Instr.getOpcode()) {
3100       default:
3101         IsInstrVSel = false;
3102         CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
3103         break;
3104       case ARM::VSELEQD:
3105       case ARM::VSELEQS:
3106       case ARM::VSELEQH:
3107         CC = ARMCC::EQ;
3108         break;
3109       case ARM::VSELGTD:
3110       case ARM::VSELGTS:
3111       case ARM::VSELGTH:
3112         CC = ARMCC::GT;
3113         break;
3114       case ARM::VSELGED:
3115       case ARM::VSELGES:
3116       case ARM::VSELGEH:
3117         CC = ARMCC::GE;
3118         break;
3119       case ARM::VSELVSD:
3120       case ARM::VSELVSS:
3121       case ARM::VSELVSH:
3122         CC = ARMCC::VS;
3123         break;
3124       }
3125 
3126       if (SubAdd) {
3127         // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3128         // on CMP needs to be updated to be based on SUB.
3129         // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3130         // needs to be modified.
3131         // Push the condition code operands to OperandsToUpdate.
3132         // If it is safe to remove CmpInstr, the condition code of these
3133         // operands will be modified.
3134         unsigned Opc = SubAdd->getOpcode();
3135         bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3136                      Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3137                      Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3138                      Opc == ARM::tSUBi8;
3139         unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3140         if (!IsSub ||
3141             (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
3142              SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
3143           // VSel doesn't support condition code update.
3144           if (IsInstrVSel)
3145             return false;
3146           // Ensure we can swap the condition.
3147           ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3148           if (NewCC == ARMCC::AL)
3149             return false;
3150           OperandsToUpdate.push_back(
3151               std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
3152         }
3153       } else {
3154         // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3155         switch (CC) {
3156         case ARMCC::EQ: // Z
3157         case ARMCC::NE: // Z
3158         case ARMCC::MI: // N
3159         case ARMCC::PL: // N
3160         case ARMCC::AL: // none
3161           // CPSR can be used multiple times, we should continue.
3162           break;
3163         case ARMCC::HS: // C
3164         case ARMCC::LO: // C
3165         case ARMCC::VS: // V
3166         case ARMCC::VC: // V
3167         case ARMCC::HI: // C Z
3168         case ARMCC::LS: // C Z
3169         case ARMCC::GE: // N V
3170         case ARMCC::LT: // N V
3171         case ARMCC::GT: // Z N V
3172         case ARMCC::LE: // Z N V
3173           // The instruction uses the V bit or C bit which is not safe.
3174           return false;
3175         }
3176       }
3177     }
3178   }
3179 
3180   // If CPSR is not killed nor re-defined, we should check whether it is
3181   // live-out. If it is live-out, do not optimize.
3182   if (!isSafe) {
3183     MachineBasicBlock *MBB = CmpInstr.getParent();
3184     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
3185              SE = MBB->succ_end(); SI != SE; ++SI)
3186       if ((*SI)->isLiveIn(ARM::CPSR))
3187         return false;
3188   }
3189 
3190   // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3191   // set CPSR so this is represented as an explicit output)
3192   if (!IsThumb1) {
3193     MI->getOperand(5).setReg(ARM::CPSR);
3194     MI->getOperand(5).setIsDef(true);
3195   }
3196   assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3197   CmpInstr.eraseFromParent();
3198 
3199   // Modify the condition code of operands in OperandsToUpdate.
3200   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3201   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3202   for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3203     OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3204 
3205   MI->clearRegisterDeads(ARM::CPSR);
3206 
3207   return true;
3208 }
3209 
shouldSink(const MachineInstr & MI) const3210 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3211   // Do not sink MI if it might be used to optimize a redundant compare.
3212   // We heuristically only look at the instruction immediately following MI to
3213   // avoid potentially searching the entire basic block.
3214   if (isPredicated(MI))
3215     return true;
3216   MachineBasicBlock::const_iterator Next = &MI;
3217   ++Next;
3218   Register SrcReg, SrcReg2;
3219   int CmpMask, CmpValue;
3220   bool IsThumb1;
3221   if (Next != MI.getParent()->end() &&
3222       analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3223       isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3224     return false;
3225   return true;
3226 }
3227 
FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,Register Reg,MachineRegisterInfo * MRI) const3228 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3229                                      Register Reg,
3230                                      MachineRegisterInfo *MRI) const {
3231   // Fold large immediates into add, sub, or, xor.
3232   unsigned DefOpc = DefMI.getOpcode();
3233   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
3234     return false;
3235   if (!DefMI.getOperand(1).isImm())
3236     // Could be t2MOVi32imm @xx
3237     return false;
3238 
3239   if (!MRI->hasOneNonDBGUse(Reg))
3240     return false;
3241 
3242   const MCInstrDesc &DefMCID = DefMI.getDesc();
3243   if (DefMCID.hasOptionalDef()) {
3244     unsigned NumOps = DefMCID.getNumOperands();
3245     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3246     if (MO.getReg() == ARM::CPSR && !MO.isDead())
3247       // If DefMI defines CPSR and it is not dead, it's obviously not safe
3248       // to delete DefMI.
3249       return false;
3250   }
3251 
3252   const MCInstrDesc &UseMCID = UseMI.getDesc();
3253   if (UseMCID.hasOptionalDef()) {
3254     unsigned NumOps = UseMCID.getNumOperands();
3255     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3256       // If the instruction sets the flag, do not attempt this optimization
3257       // since it may change the semantics of the code.
3258       return false;
3259   }
3260 
3261   unsigned UseOpc = UseMI.getOpcode();
3262   unsigned NewUseOpc = 0;
3263   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3264   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3265   bool Commute = false;
3266   switch (UseOpc) {
3267   default: return false;
3268   case ARM::SUBrr:
3269   case ARM::ADDrr:
3270   case ARM::ORRrr:
3271   case ARM::EORrr:
3272   case ARM::t2SUBrr:
3273   case ARM::t2ADDrr:
3274   case ARM::t2ORRrr:
3275   case ARM::t2EORrr: {
3276     Commute = UseMI.getOperand(2).getReg() != Reg;
3277     switch (UseOpc) {
3278     default: break;
3279     case ARM::ADDrr:
3280     case ARM::SUBrr:
3281       if (UseOpc == ARM::SUBrr && Commute)
3282         return false;
3283 
3284       // ADD/SUB are special because they're essentially the same operation, so
3285       // we can handle a larger range of immediates.
3286       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3287         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3288       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3289         ImmVal = -ImmVal;
3290         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3291       } else
3292         return false;
3293       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3294       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3295       break;
3296     case ARM::ORRrr:
3297     case ARM::EORrr:
3298       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3299         return false;
3300       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3301       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3302       switch (UseOpc) {
3303       default: break;
3304       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3305       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3306       }
3307       break;
3308     case ARM::t2ADDrr:
3309     case ARM::t2SUBrr: {
3310       if (UseOpc == ARM::t2SUBrr && Commute)
3311         return false;
3312 
3313       // ADD/SUB are special because they're essentially the same operation, so
3314       // we can handle a larger range of immediates.
3315       const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
3316       const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
3317       const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
3318       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3319         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
3320       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3321         ImmVal = -ImmVal;
3322         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
3323       } else
3324         return false;
3325       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3326       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3327       break;
3328     }
3329     case ARM::t2ORRrr:
3330     case ARM::t2EORrr:
3331       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3332         return false;
3333       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3334       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3335       switch (UseOpc) {
3336       default: break;
3337       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3338       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3339       }
3340       break;
3341     }
3342   }
3343   }
3344 
3345   unsigned OpIdx = Commute ? 2 : 1;
3346   Register Reg1 = UseMI.getOperand(OpIdx).getReg();
3347   bool isKill = UseMI.getOperand(OpIdx).isKill();
3348   const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
3349   Register NewReg = MRI->createVirtualRegister(TRC);
3350   BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3351           NewReg)
3352       .addReg(Reg1, getKillRegState(isKill))
3353       .addImm(SOImmValV1)
3354       .add(predOps(ARMCC::AL))
3355       .add(condCodeOp());
3356   UseMI.setDesc(get(NewUseOpc));
3357   UseMI.getOperand(1).setReg(NewReg);
3358   UseMI.getOperand(1).setIsKill();
3359   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3360   DefMI.eraseFromParent();
3361   // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
3362   // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
3363   // Then the below code will not be needed, as the input/output register
3364   // classes will be rgpr or gprSP.
3365   // For now, we fix the UseMI operand explicitly here:
3366   switch(NewUseOpc){
3367     case ARM::t2ADDspImm:
3368     case ARM::t2SUBspImm:
3369     case ARM::t2ADDri:
3370     case ARM::t2SUBri:
3371       MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC);
3372   }
3373   return true;
3374 }
3375 
getNumMicroOpsSwiftLdSt(const InstrItineraryData * ItinData,const MachineInstr & MI)3376 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3377                                         const MachineInstr &MI) {
3378   switch (MI.getOpcode()) {
3379   default: {
3380     const MCInstrDesc &Desc = MI.getDesc();
3381     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3382     assert(UOps >= 0 && "bad # UOps");
3383     return UOps;
3384   }
3385 
3386   case ARM::LDRrs:
3387   case ARM::LDRBrs:
3388   case ARM::STRrs:
3389   case ARM::STRBrs: {
3390     unsigned ShOpVal = MI.getOperand(3).getImm();
3391     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3392     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3393     if (!isSub &&
3394         (ShImm == 0 ||
3395          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3396           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3397       return 1;
3398     return 2;
3399   }
3400 
3401   case ARM::LDRH:
3402   case ARM::STRH: {
3403     if (!MI.getOperand(2).getReg())
3404       return 1;
3405 
3406     unsigned ShOpVal = MI.getOperand(3).getImm();
3407     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3408     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3409     if (!isSub &&
3410         (ShImm == 0 ||
3411          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3412           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3413       return 1;
3414     return 2;
3415   }
3416 
3417   case ARM::LDRSB:
3418   case ARM::LDRSH:
3419     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3420 
3421   case ARM::LDRSB_POST:
3422   case ARM::LDRSH_POST: {
3423     Register Rt = MI.getOperand(0).getReg();
3424     Register Rm = MI.getOperand(3).getReg();
3425     return (Rt == Rm) ? 4 : 3;
3426   }
3427 
3428   case ARM::LDR_PRE_REG:
3429   case ARM::LDRB_PRE_REG: {
3430     Register Rt = MI.getOperand(0).getReg();
3431     Register Rm = MI.getOperand(3).getReg();
3432     if (Rt == Rm)
3433       return 3;
3434     unsigned ShOpVal = MI.getOperand(4).getImm();
3435     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3436     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3437     if (!isSub &&
3438         (ShImm == 0 ||
3439          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3440           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3441       return 2;
3442     return 3;
3443   }
3444 
3445   case ARM::STR_PRE_REG:
3446   case ARM::STRB_PRE_REG: {
3447     unsigned ShOpVal = MI.getOperand(4).getImm();
3448     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3449     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3450     if (!isSub &&
3451         (ShImm == 0 ||
3452          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3453           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3454       return 2;
3455     return 3;
3456   }
3457 
3458   case ARM::LDRH_PRE:
3459   case ARM::STRH_PRE: {
3460     Register Rt = MI.getOperand(0).getReg();
3461     Register Rm = MI.getOperand(3).getReg();
3462     if (!Rm)
3463       return 2;
3464     if (Rt == Rm)
3465       return 3;
3466     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3467   }
3468 
3469   case ARM::LDR_POST_REG:
3470   case ARM::LDRB_POST_REG:
3471   case ARM::LDRH_POST: {
3472     Register Rt = MI.getOperand(0).getReg();
3473     Register Rm = MI.getOperand(3).getReg();
3474     return (Rt == Rm) ? 3 : 2;
3475   }
3476 
3477   case ARM::LDR_PRE_IMM:
3478   case ARM::LDRB_PRE_IMM:
3479   case ARM::LDR_POST_IMM:
3480   case ARM::LDRB_POST_IMM:
3481   case ARM::STRB_POST_IMM:
3482   case ARM::STRB_POST_REG:
3483   case ARM::STRB_PRE_IMM:
3484   case ARM::STRH_POST:
3485   case ARM::STR_POST_IMM:
3486   case ARM::STR_POST_REG:
3487   case ARM::STR_PRE_IMM:
3488     return 2;
3489 
3490   case ARM::LDRSB_PRE:
3491   case ARM::LDRSH_PRE: {
3492     Register Rm = MI.getOperand(3).getReg();
3493     if (Rm == 0)
3494       return 3;
3495     Register Rt = MI.getOperand(0).getReg();
3496     if (Rt == Rm)
3497       return 4;
3498     unsigned ShOpVal = MI.getOperand(4).getImm();
3499     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3500     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3501     if (!isSub &&
3502         (ShImm == 0 ||
3503          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3504           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3505       return 3;
3506     return 4;
3507   }
3508 
3509   case ARM::LDRD: {
3510     Register Rt = MI.getOperand(0).getReg();
3511     Register Rn = MI.getOperand(2).getReg();
3512     Register Rm = MI.getOperand(3).getReg();
3513     if (Rm)
3514       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3515                                                                           : 3;
3516     return (Rt == Rn) ? 3 : 2;
3517   }
3518 
3519   case ARM::STRD: {
3520     Register Rm = MI.getOperand(3).getReg();
3521     if (Rm)
3522       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3523                                                                           : 3;
3524     return 2;
3525   }
3526 
3527   case ARM::LDRD_POST:
3528   case ARM::t2LDRD_POST:
3529     return 3;
3530 
3531   case ARM::STRD_POST:
3532   case ARM::t2STRD_POST:
3533     return 4;
3534 
3535   case ARM::LDRD_PRE: {
3536     Register Rt = MI.getOperand(0).getReg();
3537     Register Rn = MI.getOperand(3).getReg();
3538     Register Rm = MI.getOperand(4).getReg();
3539     if (Rm)
3540       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3541                                                                           : 4;
3542     return (Rt == Rn) ? 4 : 3;
3543   }
3544 
3545   case ARM::t2LDRD_PRE: {
3546     Register Rt = MI.getOperand(0).getReg();
3547     Register Rn = MI.getOperand(3).getReg();
3548     return (Rt == Rn) ? 4 : 3;
3549   }
3550 
3551   case ARM::STRD_PRE: {
3552     Register Rm = MI.getOperand(4).getReg();
3553     if (Rm)
3554       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3555                                                                           : 4;
3556     return 3;
3557   }
3558 
3559   case ARM::t2STRD_PRE:
3560     return 3;
3561 
3562   case ARM::t2LDR_POST:
3563   case ARM::t2LDRB_POST:
3564   case ARM::t2LDRB_PRE:
3565   case ARM::t2LDRSBi12:
3566   case ARM::t2LDRSBi8:
3567   case ARM::t2LDRSBpci:
3568   case ARM::t2LDRSBs:
3569   case ARM::t2LDRH_POST:
3570   case ARM::t2LDRH_PRE:
3571   case ARM::t2LDRSBT:
3572   case ARM::t2LDRSB_POST:
3573   case ARM::t2LDRSB_PRE:
3574   case ARM::t2LDRSH_POST:
3575   case ARM::t2LDRSH_PRE:
3576   case ARM::t2LDRSHi12:
3577   case ARM::t2LDRSHi8:
3578   case ARM::t2LDRSHpci:
3579   case ARM::t2LDRSHs:
3580     return 2;
3581 
3582   case ARM::t2LDRDi8: {
3583     Register Rt = MI.getOperand(0).getReg();
3584     Register Rn = MI.getOperand(2).getReg();
3585     return (Rt == Rn) ? 3 : 2;
3586   }
3587 
3588   case ARM::t2STRB_POST:
3589   case ARM::t2STRB_PRE:
3590   case ARM::t2STRBs:
3591   case ARM::t2STRDi8:
3592   case ARM::t2STRH_POST:
3593   case ARM::t2STRH_PRE:
3594   case ARM::t2STRHs:
3595   case ARM::t2STR_POST:
3596   case ARM::t2STR_PRE:
3597   case ARM::t2STRs:
3598     return 2;
3599   }
3600 }
3601 
3602 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3603 // can't be easily determined return 0 (missing MachineMemOperand).
3604 //
3605 // FIXME: The current MachineInstr design does not support relying on machine
3606 // mem operands to determine the width of a memory access. Instead, we expect
3607 // the target to provide this information based on the instruction opcode and
3608 // operands. However, using MachineMemOperand is the best solution now for
3609 // two reasons:
3610 //
3611 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3612 // operands. This is much more dangerous than using the MachineMemOperand
3613 // sizes because CodeGen passes can insert/remove optional machine operands. In
3614 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3615 // postRA passes as well.
3616 //
3617 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3618 // machine model that calls this should handle the unknown (zero size) case.
3619 //
3620 // Long term, we should require a target hook that verifies MachineMemOperand
3621 // sizes during MC lowering. That target hook should be local to MC lowering
3622 // because we can't ensure that it is aware of other MI forms. Doing this will
3623 // ensure that MachineMemOperands are correctly propagated through all passes.
getNumLDMAddresses(const MachineInstr & MI) const3624 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3625   unsigned Size = 0;
3626   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3627                                   E = MI.memoperands_end();
3628        I != E; ++I) {
3629     Size += (*I)->getSize();
3630   }
3631   // FIXME: The scheduler currently can't handle values larger than 16. But
3632   // the values can actually go up to 32 for floating-point load/store
3633   // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3634   // operations isn't right; we could end up with "extra" memory operands for
3635   // various reasons, like tail merge merging two memory operations.
3636   return std::min(Size / 4, 16U);
3637 }
3638 
getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,unsigned NumRegs)3639 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3640                                                     unsigned NumRegs) {
3641   unsigned UOps = 1 + NumRegs; // 1 for address computation.
3642   switch (Opc) {
3643   default:
3644     break;
3645   case ARM::VLDMDIA_UPD:
3646   case ARM::VLDMDDB_UPD:
3647   case ARM::VLDMSIA_UPD:
3648   case ARM::VLDMSDB_UPD:
3649   case ARM::VSTMDIA_UPD:
3650   case ARM::VSTMDDB_UPD:
3651   case ARM::VSTMSIA_UPD:
3652   case ARM::VSTMSDB_UPD:
3653   case ARM::LDMIA_UPD:
3654   case ARM::LDMDA_UPD:
3655   case ARM::LDMDB_UPD:
3656   case ARM::LDMIB_UPD:
3657   case ARM::STMIA_UPD:
3658   case ARM::STMDA_UPD:
3659   case ARM::STMDB_UPD:
3660   case ARM::STMIB_UPD:
3661   case ARM::tLDMIA_UPD:
3662   case ARM::tSTMIA_UPD:
3663   case ARM::t2LDMIA_UPD:
3664   case ARM::t2LDMDB_UPD:
3665   case ARM::t2STMIA_UPD:
3666   case ARM::t2STMDB_UPD:
3667     ++UOps; // One for base register writeback.
3668     break;
3669   case ARM::LDMIA_RET:
3670   case ARM::tPOP_RET:
3671   case ARM::t2LDMIA_RET:
3672     UOps += 2; // One for base reg wb, one for write to pc.
3673     break;
3674   }
3675   return UOps;
3676 }
3677 
getNumMicroOps(const InstrItineraryData * ItinData,const MachineInstr & MI) const3678 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3679                                           const MachineInstr &MI) const {
3680   if (!ItinData || ItinData->isEmpty())
3681     return 1;
3682 
3683   const MCInstrDesc &Desc = MI.getDesc();
3684   unsigned Class = Desc.getSchedClass();
3685   int ItinUOps = ItinData->getNumMicroOps(Class);
3686   if (ItinUOps >= 0) {
3687     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3688       return getNumMicroOpsSwiftLdSt(ItinData, MI);
3689 
3690     return ItinUOps;
3691   }
3692 
3693   unsigned Opc = MI.getOpcode();
3694   switch (Opc) {
3695   default:
3696     llvm_unreachable("Unexpected multi-uops instruction!");
3697   case ARM::VLDMQIA:
3698   case ARM::VSTMQIA:
3699     return 2;
3700 
3701   // The number of uOps for load / store multiple are determined by the number
3702   // registers.
3703   //
3704   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3705   // same cycle. The scheduling for the first load / store must be done
3706   // separately by assuming the address is not 64-bit aligned.
3707   //
3708   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3709   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
3710   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3711   case ARM::VLDMDIA:
3712   case ARM::VLDMDIA_UPD:
3713   case ARM::VLDMDDB_UPD:
3714   case ARM::VLDMSIA:
3715   case ARM::VLDMSIA_UPD:
3716   case ARM::VLDMSDB_UPD:
3717   case ARM::VSTMDIA:
3718   case ARM::VSTMDIA_UPD:
3719   case ARM::VSTMDDB_UPD:
3720   case ARM::VSTMSIA:
3721   case ARM::VSTMSIA_UPD:
3722   case ARM::VSTMSDB_UPD: {
3723     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3724     return (NumRegs / 2) + (NumRegs % 2) + 1;
3725   }
3726 
3727   case ARM::LDMIA_RET:
3728   case ARM::LDMIA:
3729   case ARM::LDMDA:
3730   case ARM::LDMDB:
3731   case ARM::LDMIB:
3732   case ARM::LDMIA_UPD:
3733   case ARM::LDMDA_UPD:
3734   case ARM::LDMDB_UPD:
3735   case ARM::LDMIB_UPD:
3736   case ARM::STMIA:
3737   case ARM::STMDA:
3738   case ARM::STMDB:
3739   case ARM::STMIB:
3740   case ARM::STMIA_UPD:
3741   case ARM::STMDA_UPD:
3742   case ARM::STMDB_UPD:
3743   case ARM::STMIB_UPD:
3744   case ARM::tLDMIA:
3745   case ARM::tLDMIA_UPD:
3746   case ARM::tSTMIA_UPD:
3747   case ARM::tPOP_RET:
3748   case ARM::tPOP:
3749   case ARM::tPUSH:
3750   case ARM::t2LDMIA_RET:
3751   case ARM::t2LDMIA:
3752   case ARM::t2LDMDB:
3753   case ARM::t2LDMIA_UPD:
3754   case ARM::t2LDMDB_UPD:
3755   case ARM::t2STMIA:
3756   case ARM::t2STMDB:
3757   case ARM::t2STMIA_UPD:
3758   case ARM::t2STMDB_UPD: {
3759     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3760     switch (Subtarget.getLdStMultipleTiming()) {
3761     case ARMSubtarget::SingleIssuePlusExtras:
3762       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3763     case ARMSubtarget::SingleIssue:
3764       // Assume the worst.
3765       return NumRegs;
3766     case ARMSubtarget::DoubleIssue: {
3767       if (NumRegs < 4)
3768         return 2;
3769       // 4 registers would be issued: 2, 2.
3770       // 5 registers would be issued: 2, 2, 1.
3771       unsigned UOps = (NumRegs / 2);
3772       if (NumRegs % 2)
3773         ++UOps;
3774       return UOps;
3775     }
3776     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3777       unsigned UOps = (NumRegs / 2);
3778       // If there are odd number of registers or if it's not 64-bit aligned,
3779       // then it takes an extra AGU (Address Generation Unit) cycle.
3780       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3781           (*MI.memoperands_begin())->getAlign() < Align(8))
3782         ++UOps;
3783       return UOps;
3784       }
3785     }
3786   }
3787   }
3788   llvm_unreachable("Didn't find the number of microops");
3789 }
3790 
3791 int
getVLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const3792 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3793                                   const MCInstrDesc &DefMCID,
3794                                   unsigned DefClass,
3795                                   unsigned DefIdx, unsigned DefAlign) const {
3796   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3797   if (RegNo <= 0)
3798     // Def is the address writeback.
3799     return ItinData->getOperandCycle(DefClass, DefIdx);
3800 
3801   int DefCycle;
3802   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3803     // (regno / 2) + (regno % 2) + 1
3804     DefCycle = RegNo / 2 + 1;
3805     if (RegNo % 2)
3806       ++DefCycle;
3807   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3808     DefCycle = RegNo;
3809     bool isSLoad = false;
3810 
3811     switch (DefMCID.getOpcode()) {
3812     default: break;
3813     case ARM::VLDMSIA:
3814     case ARM::VLDMSIA_UPD:
3815     case ARM::VLDMSDB_UPD:
3816       isSLoad = true;
3817       break;
3818     }
3819 
3820     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3821     // then it takes an extra cycle.
3822     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3823       ++DefCycle;
3824   } else {
3825     // Assume the worst.
3826     DefCycle = RegNo + 2;
3827   }
3828 
3829   return DefCycle;
3830 }
3831 
3832 int
getLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const3833 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3834                                  const MCInstrDesc &DefMCID,
3835                                  unsigned DefClass,
3836                                  unsigned DefIdx, unsigned DefAlign) const {
3837   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3838   if (RegNo <= 0)
3839     // Def is the address writeback.
3840     return ItinData->getOperandCycle(DefClass, DefIdx);
3841 
3842   int DefCycle;
3843   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3844     // 4 registers would be issued: 1, 2, 1.
3845     // 5 registers would be issued: 1, 2, 2.
3846     DefCycle = RegNo / 2;
3847     if (DefCycle < 1)
3848       DefCycle = 1;
3849     // Result latency is issue cycle + 2: E2.
3850     DefCycle += 2;
3851   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3852     DefCycle = (RegNo / 2);
3853     // If there are odd number of registers or if it's not 64-bit aligned,
3854     // then it takes an extra AGU (Address Generation Unit) cycle.
3855     if ((RegNo % 2) || DefAlign < 8)
3856       ++DefCycle;
3857     // Result latency is AGU cycles + 2.
3858     DefCycle += 2;
3859   } else {
3860     // Assume the worst.
3861     DefCycle = RegNo + 2;
3862   }
3863 
3864   return DefCycle;
3865 }
3866 
3867 int
getVSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const3868 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3869                                   const MCInstrDesc &UseMCID,
3870                                   unsigned UseClass,
3871                                   unsigned UseIdx, unsigned UseAlign) const {
3872   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3873   if (RegNo <= 0)
3874     return ItinData->getOperandCycle(UseClass, UseIdx);
3875 
3876   int UseCycle;
3877   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3878     // (regno / 2) + (regno % 2) + 1
3879     UseCycle = RegNo / 2 + 1;
3880     if (RegNo % 2)
3881       ++UseCycle;
3882   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3883     UseCycle = RegNo;
3884     bool isSStore = false;
3885 
3886     switch (UseMCID.getOpcode()) {
3887     default: break;
3888     case ARM::VSTMSIA:
3889     case ARM::VSTMSIA_UPD:
3890     case ARM::VSTMSDB_UPD:
3891       isSStore = true;
3892       break;
3893     }
3894 
3895     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3896     // then it takes an extra cycle.
3897     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3898       ++UseCycle;
3899   } else {
3900     // Assume the worst.
3901     UseCycle = RegNo + 2;
3902   }
3903 
3904   return UseCycle;
3905 }
3906 
3907 int
getSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const3908 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3909                                  const MCInstrDesc &UseMCID,
3910                                  unsigned UseClass,
3911                                  unsigned UseIdx, unsigned UseAlign) const {
3912   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3913   if (RegNo <= 0)
3914     return ItinData->getOperandCycle(UseClass, UseIdx);
3915 
3916   int UseCycle;
3917   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3918     UseCycle = RegNo / 2;
3919     if (UseCycle < 2)
3920       UseCycle = 2;
3921     // Read in E3.
3922     UseCycle += 2;
3923   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3924     UseCycle = (RegNo / 2);
3925     // If there are odd number of registers or if it's not 64-bit aligned,
3926     // then it takes an extra AGU (Address Generation Unit) cycle.
3927     if ((RegNo % 2) || UseAlign < 8)
3928       ++UseCycle;
3929   } else {
3930     // Assume the worst.
3931     UseCycle = 1;
3932   }
3933   return UseCycle;
3934 }
3935 
3936 int
getOperandLatency(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefIdx,unsigned DefAlign,const MCInstrDesc & UseMCID,unsigned UseIdx,unsigned UseAlign) const3937 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3938                                     const MCInstrDesc &DefMCID,
3939                                     unsigned DefIdx, unsigned DefAlign,
3940                                     const MCInstrDesc &UseMCID,
3941                                     unsigned UseIdx, unsigned UseAlign) const {
3942   unsigned DefClass = DefMCID.getSchedClass();
3943   unsigned UseClass = UseMCID.getSchedClass();
3944 
3945   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3946     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3947 
3948   // This may be a def / use of a variable_ops instruction, the operand
3949   // latency might be determinable dynamically. Let the target try to
3950   // figure it out.
3951   int DefCycle = -1;
3952   bool LdmBypass = false;
3953   switch (DefMCID.getOpcode()) {
3954   default:
3955     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3956     break;
3957 
3958   case ARM::VLDMDIA:
3959   case ARM::VLDMDIA_UPD:
3960   case ARM::VLDMDDB_UPD:
3961   case ARM::VLDMSIA:
3962   case ARM::VLDMSIA_UPD:
3963   case ARM::VLDMSDB_UPD:
3964     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3965     break;
3966 
3967   case ARM::LDMIA_RET:
3968   case ARM::LDMIA:
3969   case ARM::LDMDA:
3970   case ARM::LDMDB:
3971   case ARM::LDMIB:
3972   case ARM::LDMIA_UPD:
3973   case ARM::LDMDA_UPD:
3974   case ARM::LDMDB_UPD:
3975   case ARM::LDMIB_UPD:
3976   case ARM::tLDMIA:
3977   case ARM::tLDMIA_UPD:
3978   case ARM::tPUSH:
3979   case ARM::t2LDMIA_RET:
3980   case ARM::t2LDMIA:
3981   case ARM::t2LDMDB:
3982   case ARM::t2LDMIA_UPD:
3983   case ARM::t2LDMDB_UPD:
3984     LdmBypass = true;
3985     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3986     break;
3987   }
3988 
3989   if (DefCycle == -1)
3990     // We can't seem to determine the result latency of the def, assume it's 2.
3991     DefCycle = 2;
3992 
3993   int UseCycle = -1;
3994   switch (UseMCID.getOpcode()) {
3995   default:
3996     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3997     break;
3998 
3999   case ARM::VSTMDIA:
4000   case ARM::VSTMDIA_UPD:
4001   case ARM::VSTMDDB_UPD:
4002   case ARM::VSTMSIA:
4003   case ARM::VSTMSIA_UPD:
4004   case ARM::VSTMSDB_UPD:
4005     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4006     break;
4007 
4008   case ARM::STMIA:
4009   case ARM::STMDA:
4010   case ARM::STMDB:
4011   case ARM::STMIB:
4012   case ARM::STMIA_UPD:
4013   case ARM::STMDA_UPD:
4014   case ARM::STMDB_UPD:
4015   case ARM::STMIB_UPD:
4016   case ARM::tSTMIA_UPD:
4017   case ARM::tPOP_RET:
4018   case ARM::tPOP:
4019   case ARM::t2STMIA:
4020   case ARM::t2STMDB:
4021   case ARM::t2STMIA_UPD:
4022   case ARM::t2STMDB_UPD:
4023     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4024     break;
4025   }
4026 
4027   if (UseCycle == -1)
4028     // Assume it's read in the first stage.
4029     UseCycle = 1;
4030 
4031   UseCycle = DefCycle - UseCycle + 1;
4032   if (UseCycle > 0) {
4033     if (LdmBypass) {
4034       // It's a variable_ops instruction so we can't use DefIdx here. Just use
4035       // first def operand.
4036       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
4037                                           UseClass, UseIdx))
4038         --UseCycle;
4039     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
4040                                                UseClass, UseIdx)) {
4041       --UseCycle;
4042     }
4043   }
4044 
4045   return UseCycle;
4046 }
4047 
getBundledDefMI(const TargetRegisterInfo * TRI,const MachineInstr * MI,unsigned Reg,unsigned & DefIdx,unsigned & Dist)4048 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
4049                                            const MachineInstr *MI, unsigned Reg,
4050                                            unsigned &DefIdx, unsigned &Dist) {
4051   Dist = 0;
4052 
4053   MachineBasicBlock::const_iterator I = MI; ++I;
4054   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
4055   assert(II->isInsideBundle() && "Empty bundle?");
4056 
4057   int Idx = -1;
4058   while (II->isInsideBundle()) {
4059     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
4060     if (Idx != -1)
4061       break;
4062     --II;
4063     ++Dist;
4064   }
4065 
4066   assert(Idx != -1 && "Cannot find bundled definition!");
4067   DefIdx = Idx;
4068   return &*II;
4069 }
4070 
getBundledUseMI(const TargetRegisterInfo * TRI,const MachineInstr & MI,unsigned Reg,unsigned & UseIdx,unsigned & Dist)4071 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4072                                            const MachineInstr &MI, unsigned Reg,
4073                                            unsigned &UseIdx, unsigned &Dist) {
4074   Dist = 0;
4075 
4076   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4077   assert(II->isInsideBundle() && "Empty bundle?");
4078   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4079 
4080   // FIXME: This doesn't properly handle multiple uses.
4081   int Idx = -1;
4082   while (II != E && II->isInsideBundle()) {
4083     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
4084     if (Idx != -1)
4085       break;
4086     if (II->getOpcode() != ARM::t2IT)
4087       ++Dist;
4088     ++II;
4089   }
4090 
4091   if (Idx == -1) {
4092     Dist = 0;
4093     return nullptr;
4094   }
4095 
4096   UseIdx = Idx;
4097   return &*II;
4098 }
4099 
4100 /// Return the number of cycles to add to (or subtract from) the static
4101 /// itinerary based on the def opcode and alignment. The caller will ensure that
4102 /// adjusted latency is at least one cycle.
adjustDefLatency(const ARMSubtarget & Subtarget,const MachineInstr & DefMI,const MCInstrDesc & DefMCID,unsigned DefAlign)4103 static int adjustDefLatency(const ARMSubtarget &Subtarget,
4104                             const MachineInstr &DefMI,
4105                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
4106   int Adjust = 0;
4107   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4108     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4109     // variants are one cycle cheaper.
4110     switch (DefMCID.getOpcode()) {
4111     default: break;
4112     case ARM::LDRrs:
4113     case ARM::LDRBrs: {
4114       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4115       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4116       if (ShImm == 0 ||
4117           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4118         --Adjust;
4119       break;
4120     }
4121     case ARM::t2LDRs:
4122     case ARM::t2LDRBs:
4123     case ARM::t2LDRHs:
4124     case ARM::t2LDRSHs: {
4125       // Thumb2 mode: lsl only.
4126       unsigned ShAmt = DefMI.getOperand(3).getImm();
4127       if (ShAmt == 0 || ShAmt == 2)
4128         --Adjust;
4129       break;
4130     }
4131     }
4132   } else if (Subtarget.isSwift()) {
4133     // FIXME: Properly handle all of the latency adjustments for address
4134     // writeback.
4135     switch (DefMCID.getOpcode()) {
4136     default: break;
4137     case ARM::LDRrs:
4138     case ARM::LDRBrs: {
4139       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4140       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
4141       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4142       if (!isSub &&
4143           (ShImm == 0 ||
4144            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4145             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
4146         Adjust -= 2;
4147       else if (!isSub &&
4148                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4149         --Adjust;
4150       break;
4151     }
4152     case ARM::t2LDRs:
4153     case ARM::t2LDRBs:
4154     case ARM::t2LDRHs:
4155     case ARM::t2LDRSHs: {
4156       // Thumb2 mode: lsl only.
4157       unsigned ShAmt = DefMI.getOperand(3).getImm();
4158       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4159         Adjust -= 2;
4160       break;
4161     }
4162     }
4163   }
4164 
4165   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4166     switch (DefMCID.getOpcode()) {
4167     default: break;
4168     case ARM::VLD1q8:
4169     case ARM::VLD1q16:
4170     case ARM::VLD1q32:
4171     case ARM::VLD1q64:
4172     case ARM::VLD1q8wb_fixed:
4173     case ARM::VLD1q16wb_fixed:
4174     case ARM::VLD1q32wb_fixed:
4175     case ARM::VLD1q64wb_fixed:
4176     case ARM::VLD1q8wb_register:
4177     case ARM::VLD1q16wb_register:
4178     case ARM::VLD1q32wb_register:
4179     case ARM::VLD1q64wb_register:
4180     case ARM::VLD2d8:
4181     case ARM::VLD2d16:
4182     case ARM::VLD2d32:
4183     case ARM::VLD2q8:
4184     case ARM::VLD2q16:
4185     case ARM::VLD2q32:
4186     case ARM::VLD2d8wb_fixed:
4187     case ARM::VLD2d16wb_fixed:
4188     case ARM::VLD2d32wb_fixed:
4189     case ARM::VLD2q8wb_fixed:
4190     case ARM::VLD2q16wb_fixed:
4191     case ARM::VLD2q32wb_fixed:
4192     case ARM::VLD2d8wb_register:
4193     case ARM::VLD2d16wb_register:
4194     case ARM::VLD2d32wb_register:
4195     case ARM::VLD2q8wb_register:
4196     case ARM::VLD2q16wb_register:
4197     case ARM::VLD2q32wb_register:
4198     case ARM::VLD3d8:
4199     case ARM::VLD3d16:
4200     case ARM::VLD3d32:
4201     case ARM::VLD1d64T:
4202     case ARM::VLD3d8_UPD:
4203     case ARM::VLD3d16_UPD:
4204     case ARM::VLD3d32_UPD:
4205     case ARM::VLD1d64Twb_fixed:
4206     case ARM::VLD1d64Twb_register:
4207     case ARM::VLD3q8_UPD:
4208     case ARM::VLD3q16_UPD:
4209     case ARM::VLD3q32_UPD:
4210     case ARM::VLD4d8:
4211     case ARM::VLD4d16:
4212     case ARM::VLD4d32:
4213     case ARM::VLD1d64Q:
4214     case ARM::VLD4d8_UPD:
4215     case ARM::VLD4d16_UPD:
4216     case ARM::VLD4d32_UPD:
4217     case ARM::VLD1d64Qwb_fixed:
4218     case ARM::VLD1d64Qwb_register:
4219     case ARM::VLD4q8_UPD:
4220     case ARM::VLD4q16_UPD:
4221     case ARM::VLD4q32_UPD:
4222     case ARM::VLD1DUPq8:
4223     case ARM::VLD1DUPq16:
4224     case ARM::VLD1DUPq32:
4225     case ARM::VLD1DUPq8wb_fixed:
4226     case ARM::VLD1DUPq16wb_fixed:
4227     case ARM::VLD1DUPq32wb_fixed:
4228     case ARM::VLD1DUPq8wb_register:
4229     case ARM::VLD1DUPq16wb_register:
4230     case ARM::VLD1DUPq32wb_register:
4231     case ARM::VLD2DUPd8:
4232     case ARM::VLD2DUPd16:
4233     case ARM::VLD2DUPd32:
4234     case ARM::VLD2DUPd8wb_fixed:
4235     case ARM::VLD2DUPd16wb_fixed:
4236     case ARM::VLD2DUPd32wb_fixed:
4237     case ARM::VLD2DUPd8wb_register:
4238     case ARM::VLD2DUPd16wb_register:
4239     case ARM::VLD2DUPd32wb_register:
4240     case ARM::VLD4DUPd8:
4241     case ARM::VLD4DUPd16:
4242     case ARM::VLD4DUPd32:
4243     case ARM::VLD4DUPd8_UPD:
4244     case ARM::VLD4DUPd16_UPD:
4245     case ARM::VLD4DUPd32_UPD:
4246     case ARM::VLD1LNd8:
4247     case ARM::VLD1LNd16:
4248     case ARM::VLD1LNd32:
4249     case ARM::VLD1LNd8_UPD:
4250     case ARM::VLD1LNd16_UPD:
4251     case ARM::VLD1LNd32_UPD:
4252     case ARM::VLD2LNd8:
4253     case ARM::VLD2LNd16:
4254     case ARM::VLD2LNd32:
4255     case ARM::VLD2LNq16:
4256     case ARM::VLD2LNq32:
4257     case ARM::VLD2LNd8_UPD:
4258     case ARM::VLD2LNd16_UPD:
4259     case ARM::VLD2LNd32_UPD:
4260     case ARM::VLD2LNq16_UPD:
4261     case ARM::VLD2LNq32_UPD:
4262     case ARM::VLD4LNd8:
4263     case ARM::VLD4LNd16:
4264     case ARM::VLD4LNd32:
4265     case ARM::VLD4LNq16:
4266     case ARM::VLD4LNq32:
4267     case ARM::VLD4LNd8_UPD:
4268     case ARM::VLD4LNd16_UPD:
4269     case ARM::VLD4LNd32_UPD:
4270     case ARM::VLD4LNq16_UPD:
4271     case ARM::VLD4LNq32_UPD:
4272       // If the address is not 64-bit aligned, the latencies of these
4273       // instructions increases by one.
4274       ++Adjust;
4275       break;
4276     }
4277   }
4278   return Adjust;
4279 }
4280 
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const4281 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4282                                         const MachineInstr &DefMI,
4283                                         unsigned DefIdx,
4284                                         const MachineInstr &UseMI,
4285                                         unsigned UseIdx) const {
4286   // No operand latency. The caller may fall back to getInstrLatency.
4287   if (!ItinData || ItinData->isEmpty())
4288     return -1;
4289 
4290   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4291   Register Reg = DefMO.getReg();
4292 
4293   const MachineInstr *ResolvedDefMI = &DefMI;
4294   unsigned DefAdj = 0;
4295   if (DefMI.isBundle())
4296     ResolvedDefMI =
4297         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4298   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4299       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4300     return 1;
4301   }
4302 
4303   const MachineInstr *ResolvedUseMI = &UseMI;
4304   unsigned UseAdj = 0;
4305   if (UseMI.isBundle()) {
4306     ResolvedUseMI =
4307         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4308     if (!ResolvedUseMI)
4309       return -1;
4310   }
4311 
4312   return getOperandLatencyImpl(
4313       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4314       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4315 }
4316 
getOperandLatencyImpl(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MCInstrDesc & DefMCID,unsigned DefAdj,const MachineOperand & DefMO,unsigned Reg,const MachineInstr & UseMI,unsigned UseIdx,const MCInstrDesc & UseMCID,unsigned UseAdj) const4317 int ARMBaseInstrInfo::getOperandLatencyImpl(
4318     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4319     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4320     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4321     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4322   if (Reg == ARM::CPSR) {
4323     if (DefMI.getOpcode() == ARM::FMSTAT) {
4324       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4325       return Subtarget.isLikeA9() ? 1 : 20;
4326     }
4327 
4328     // CPSR set and branch can be paired in the same cycle.
4329     if (UseMI.isBranch())
4330       return 0;
4331 
4332     // Otherwise it takes the instruction latency (generally one).
4333     unsigned Latency = getInstrLatency(ItinData, DefMI);
4334 
4335     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4336     // its uses. Instructions which are otherwise scheduled between them may
4337     // incur a code size penalty (not able to use the CPSR setting 16-bit
4338     // instructions).
4339     if (Latency > 0 && Subtarget.isThumb2()) {
4340       const MachineFunction *MF = DefMI.getParent()->getParent();
4341       // FIXME: Use Function::hasOptSize().
4342       if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4343         --Latency;
4344     }
4345     return Latency;
4346   }
4347 
4348   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4349     return -1;
4350 
4351   unsigned DefAlign = DefMI.hasOneMemOperand()
4352                           ? (*DefMI.memoperands_begin())->getAlign().value()
4353                           : 0;
4354   unsigned UseAlign = UseMI.hasOneMemOperand()
4355                           ? (*UseMI.memoperands_begin())->getAlign().value()
4356                           : 0;
4357 
4358   // Get the itinerary's latency if possible, and handle variable_ops.
4359   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4360                                   UseIdx, UseAlign);
4361   // Unable to find operand latency. The caller may resort to getInstrLatency.
4362   if (Latency < 0)
4363     return Latency;
4364 
4365   // Adjust for IT block position.
4366   int Adj = DefAdj + UseAdj;
4367 
4368   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4369   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4370   if (Adj >= 0 || (int)Latency > -Adj) {
4371     return Latency + Adj;
4372   }
4373   // Return the itinerary latency, which may be zero but not less than zero.
4374   return Latency;
4375 }
4376 
4377 int
getOperandLatency(const InstrItineraryData * ItinData,SDNode * DefNode,unsigned DefIdx,SDNode * UseNode,unsigned UseIdx) const4378 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4379                                     SDNode *DefNode, unsigned DefIdx,
4380                                     SDNode *UseNode, unsigned UseIdx) const {
4381   if (!DefNode->isMachineOpcode())
4382     return 1;
4383 
4384   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4385 
4386   if (isZeroCost(DefMCID.Opcode))
4387     return 0;
4388 
4389   if (!ItinData || ItinData->isEmpty())
4390     return DefMCID.mayLoad() ? 3 : 1;
4391 
4392   if (!UseNode->isMachineOpcode()) {
4393     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4394     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4395     int Threshold = 1 + Adj;
4396     return Latency <= Threshold ? 1 : Latency - Adj;
4397   }
4398 
4399   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4400   auto *DefMN = cast<MachineSDNode>(DefNode);
4401   unsigned DefAlign = !DefMN->memoperands_empty()
4402                           ? (*DefMN->memoperands_begin())->getAlign().value()
4403                           : 0;
4404   auto *UseMN = cast<MachineSDNode>(UseNode);
4405   unsigned UseAlign = !UseMN->memoperands_empty()
4406                           ? (*UseMN->memoperands_begin())->getAlign().value()
4407                           : 0;
4408   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4409                                   UseMCID, UseIdx, UseAlign);
4410 
4411   if (Latency > 1 &&
4412       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4413        Subtarget.isCortexA7())) {
4414     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4415     // variants are one cycle cheaper.
4416     switch (DefMCID.getOpcode()) {
4417     default: break;
4418     case ARM::LDRrs:
4419     case ARM::LDRBrs: {
4420       unsigned ShOpVal =
4421         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4422       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4423       if (ShImm == 0 ||
4424           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4425         --Latency;
4426       break;
4427     }
4428     case ARM::t2LDRs:
4429     case ARM::t2LDRBs:
4430     case ARM::t2LDRHs:
4431     case ARM::t2LDRSHs: {
4432       // Thumb2 mode: lsl only.
4433       unsigned ShAmt =
4434         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4435       if (ShAmt == 0 || ShAmt == 2)
4436         --Latency;
4437       break;
4438     }
4439     }
4440   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4441     // FIXME: Properly handle all of the latency adjustments for address
4442     // writeback.
4443     switch (DefMCID.getOpcode()) {
4444     default: break;
4445     case ARM::LDRrs:
4446     case ARM::LDRBrs: {
4447       unsigned ShOpVal =
4448         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4449       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4450       if (ShImm == 0 ||
4451           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4452            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4453         Latency -= 2;
4454       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4455         --Latency;
4456       break;
4457     }
4458     case ARM::t2LDRs:
4459     case ARM::t2LDRBs:
4460     case ARM::t2LDRHs:
4461     case ARM::t2LDRSHs:
4462       // Thumb2 mode: lsl 0-3 only.
4463       Latency -= 2;
4464       break;
4465     }
4466   }
4467 
4468   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4469     switch (DefMCID.getOpcode()) {
4470     default: break;
4471     case ARM::VLD1q8:
4472     case ARM::VLD1q16:
4473     case ARM::VLD1q32:
4474     case ARM::VLD1q64:
4475     case ARM::VLD1q8wb_register:
4476     case ARM::VLD1q16wb_register:
4477     case ARM::VLD1q32wb_register:
4478     case ARM::VLD1q64wb_register:
4479     case ARM::VLD1q8wb_fixed:
4480     case ARM::VLD1q16wb_fixed:
4481     case ARM::VLD1q32wb_fixed:
4482     case ARM::VLD1q64wb_fixed:
4483     case ARM::VLD2d8:
4484     case ARM::VLD2d16:
4485     case ARM::VLD2d32:
4486     case ARM::VLD2q8Pseudo:
4487     case ARM::VLD2q16Pseudo:
4488     case ARM::VLD2q32Pseudo:
4489     case ARM::VLD2d8wb_fixed:
4490     case ARM::VLD2d16wb_fixed:
4491     case ARM::VLD2d32wb_fixed:
4492     case ARM::VLD2q8PseudoWB_fixed:
4493     case ARM::VLD2q16PseudoWB_fixed:
4494     case ARM::VLD2q32PseudoWB_fixed:
4495     case ARM::VLD2d8wb_register:
4496     case ARM::VLD2d16wb_register:
4497     case ARM::VLD2d32wb_register:
4498     case ARM::VLD2q8PseudoWB_register:
4499     case ARM::VLD2q16PseudoWB_register:
4500     case ARM::VLD2q32PseudoWB_register:
4501     case ARM::VLD3d8Pseudo:
4502     case ARM::VLD3d16Pseudo:
4503     case ARM::VLD3d32Pseudo:
4504     case ARM::VLD1d8TPseudo:
4505     case ARM::VLD1d16TPseudo:
4506     case ARM::VLD1d32TPseudo:
4507     case ARM::VLD1d64TPseudo:
4508     case ARM::VLD1d64TPseudoWB_fixed:
4509     case ARM::VLD1d64TPseudoWB_register:
4510     case ARM::VLD3d8Pseudo_UPD:
4511     case ARM::VLD3d16Pseudo_UPD:
4512     case ARM::VLD3d32Pseudo_UPD:
4513     case ARM::VLD3q8Pseudo_UPD:
4514     case ARM::VLD3q16Pseudo_UPD:
4515     case ARM::VLD3q32Pseudo_UPD:
4516     case ARM::VLD3q8oddPseudo:
4517     case ARM::VLD3q16oddPseudo:
4518     case ARM::VLD3q32oddPseudo:
4519     case ARM::VLD3q8oddPseudo_UPD:
4520     case ARM::VLD3q16oddPseudo_UPD:
4521     case ARM::VLD3q32oddPseudo_UPD:
4522     case ARM::VLD4d8Pseudo:
4523     case ARM::VLD4d16Pseudo:
4524     case ARM::VLD4d32Pseudo:
4525     case ARM::VLD1d8QPseudo:
4526     case ARM::VLD1d16QPseudo:
4527     case ARM::VLD1d32QPseudo:
4528     case ARM::VLD1d64QPseudo:
4529     case ARM::VLD1d64QPseudoWB_fixed:
4530     case ARM::VLD1d64QPseudoWB_register:
4531     case ARM::VLD1q8HighQPseudo:
4532     case ARM::VLD1q8LowQPseudo_UPD:
4533     case ARM::VLD1q8HighTPseudo:
4534     case ARM::VLD1q8LowTPseudo_UPD:
4535     case ARM::VLD1q16HighQPseudo:
4536     case ARM::VLD1q16LowQPseudo_UPD:
4537     case ARM::VLD1q16HighTPseudo:
4538     case ARM::VLD1q16LowTPseudo_UPD:
4539     case ARM::VLD1q32HighQPseudo:
4540     case ARM::VLD1q32LowQPseudo_UPD:
4541     case ARM::VLD1q32HighTPseudo:
4542     case ARM::VLD1q32LowTPseudo_UPD:
4543     case ARM::VLD1q64HighQPseudo:
4544     case ARM::VLD1q64LowQPseudo_UPD:
4545     case ARM::VLD1q64HighTPseudo:
4546     case ARM::VLD1q64LowTPseudo_UPD:
4547     case ARM::VLD4d8Pseudo_UPD:
4548     case ARM::VLD4d16Pseudo_UPD:
4549     case ARM::VLD4d32Pseudo_UPD:
4550     case ARM::VLD4q8Pseudo_UPD:
4551     case ARM::VLD4q16Pseudo_UPD:
4552     case ARM::VLD4q32Pseudo_UPD:
4553     case ARM::VLD4q8oddPseudo:
4554     case ARM::VLD4q16oddPseudo:
4555     case ARM::VLD4q32oddPseudo:
4556     case ARM::VLD4q8oddPseudo_UPD:
4557     case ARM::VLD4q16oddPseudo_UPD:
4558     case ARM::VLD4q32oddPseudo_UPD:
4559     case ARM::VLD1DUPq8:
4560     case ARM::VLD1DUPq16:
4561     case ARM::VLD1DUPq32:
4562     case ARM::VLD1DUPq8wb_fixed:
4563     case ARM::VLD1DUPq16wb_fixed:
4564     case ARM::VLD1DUPq32wb_fixed:
4565     case ARM::VLD1DUPq8wb_register:
4566     case ARM::VLD1DUPq16wb_register:
4567     case ARM::VLD1DUPq32wb_register:
4568     case ARM::VLD2DUPd8:
4569     case ARM::VLD2DUPd16:
4570     case ARM::VLD2DUPd32:
4571     case ARM::VLD2DUPd8wb_fixed:
4572     case ARM::VLD2DUPd16wb_fixed:
4573     case ARM::VLD2DUPd32wb_fixed:
4574     case ARM::VLD2DUPd8wb_register:
4575     case ARM::VLD2DUPd16wb_register:
4576     case ARM::VLD2DUPd32wb_register:
4577     case ARM::VLD2DUPq8EvenPseudo:
4578     case ARM::VLD2DUPq8OddPseudo:
4579     case ARM::VLD2DUPq16EvenPseudo:
4580     case ARM::VLD2DUPq16OddPseudo:
4581     case ARM::VLD2DUPq32EvenPseudo:
4582     case ARM::VLD2DUPq32OddPseudo:
4583     case ARM::VLD3DUPq8EvenPseudo:
4584     case ARM::VLD3DUPq8OddPseudo:
4585     case ARM::VLD3DUPq16EvenPseudo:
4586     case ARM::VLD3DUPq16OddPseudo:
4587     case ARM::VLD3DUPq32EvenPseudo:
4588     case ARM::VLD3DUPq32OddPseudo:
4589     case ARM::VLD4DUPd8Pseudo:
4590     case ARM::VLD4DUPd16Pseudo:
4591     case ARM::VLD4DUPd32Pseudo:
4592     case ARM::VLD4DUPd8Pseudo_UPD:
4593     case ARM::VLD4DUPd16Pseudo_UPD:
4594     case ARM::VLD4DUPd32Pseudo_UPD:
4595     case ARM::VLD4DUPq8EvenPseudo:
4596     case ARM::VLD4DUPq8OddPseudo:
4597     case ARM::VLD4DUPq16EvenPseudo:
4598     case ARM::VLD4DUPq16OddPseudo:
4599     case ARM::VLD4DUPq32EvenPseudo:
4600     case ARM::VLD4DUPq32OddPseudo:
4601     case ARM::VLD1LNq8Pseudo:
4602     case ARM::VLD1LNq16Pseudo:
4603     case ARM::VLD1LNq32Pseudo:
4604     case ARM::VLD1LNq8Pseudo_UPD:
4605     case ARM::VLD1LNq16Pseudo_UPD:
4606     case ARM::VLD1LNq32Pseudo_UPD:
4607     case ARM::VLD2LNd8Pseudo:
4608     case ARM::VLD2LNd16Pseudo:
4609     case ARM::VLD2LNd32Pseudo:
4610     case ARM::VLD2LNq16Pseudo:
4611     case ARM::VLD2LNq32Pseudo:
4612     case ARM::VLD2LNd8Pseudo_UPD:
4613     case ARM::VLD2LNd16Pseudo_UPD:
4614     case ARM::VLD2LNd32Pseudo_UPD:
4615     case ARM::VLD2LNq16Pseudo_UPD:
4616     case ARM::VLD2LNq32Pseudo_UPD:
4617     case ARM::VLD4LNd8Pseudo:
4618     case ARM::VLD4LNd16Pseudo:
4619     case ARM::VLD4LNd32Pseudo:
4620     case ARM::VLD4LNq16Pseudo:
4621     case ARM::VLD4LNq32Pseudo:
4622     case ARM::VLD4LNd8Pseudo_UPD:
4623     case ARM::VLD4LNd16Pseudo_UPD:
4624     case ARM::VLD4LNd32Pseudo_UPD:
4625     case ARM::VLD4LNq16Pseudo_UPD:
4626     case ARM::VLD4LNq32Pseudo_UPD:
4627       // If the address is not 64-bit aligned, the latencies of these
4628       // instructions increases by one.
4629       ++Latency;
4630       break;
4631     }
4632 
4633   return Latency;
4634 }
4635 
getPredicationCost(const MachineInstr & MI) const4636 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4637   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4638       MI.isImplicitDef())
4639     return 0;
4640 
4641   if (MI.isBundle())
4642     return 0;
4643 
4644   const MCInstrDesc &MCID = MI.getDesc();
4645 
4646   if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4647                         !Subtarget.cheapPredicableCPSRDef())) {
4648     // When predicated, CPSR is an additional source operand for CPSR updating
4649     // instructions, this apparently increases their latencies.
4650     return 1;
4651   }
4652   return 0;
4653 }
4654 
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr & MI,unsigned * PredCost) const4655 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4656                                            const MachineInstr &MI,
4657                                            unsigned *PredCost) const {
4658   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4659       MI.isImplicitDef())
4660     return 1;
4661 
4662   // An instruction scheduler typically runs on unbundled instructions, however
4663   // other passes may query the latency of a bundled instruction.
4664   if (MI.isBundle()) {
4665     unsigned Latency = 0;
4666     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4667     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4668     while (++I != E && I->isInsideBundle()) {
4669       if (I->getOpcode() != ARM::t2IT)
4670         Latency += getInstrLatency(ItinData, *I, PredCost);
4671     }
4672     return Latency;
4673   }
4674 
4675   const MCInstrDesc &MCID = MI.getDesc();
4676   if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4677                                      !Subtarget.cheapPredicableCPSRDef()))) {
4678     // When predicated, CPSR is an additional source operand for CPSR updating
4679     // instructions, this apparently increases their latencies.
4680     *PredCost = 1;
4681   }
4682   // Be sure to call getStageLatency for an empty itinerary in case it has a
4683   // valid MinLatency property.
4684   if (!ItinData)
4685     return MI.mayLoad() ? 3 : 1;
4686 
4687   unsigned Class = MCID.getSchedClass();
4688 
4689   // For instructions with variable uops, use uops as latency.
4690   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4691     return getNumMicroOps(ItinData, MI);
4692 
4693   // For the common case, fall back on the itinerary's latency.
4694   unsigned Latency = ItinData->getStageLatency(Class);
4695 
4696   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4697   unsigned DefAlign =
4698       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0;
4699   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4700   if (Adj >= 0 || (int)Latency > -Adj) {
4701     return Latency + Adj;
4702   }
4703   return Latency;
4704 }
4705 
getInstrLatency(const InstrItineraryData * ItinData,SDNode * Node) const4706 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4707                                       SDNode *Node) const {
4708   if (!Node->isMachineOpcode())
4709     return 1;
4710 
4711   if (!ItinData || ItinData->isEmpty())
4712     return 1;
4713 
4714   unsigned Opcode = Node->getMachineOpcode();
4715   switch (Opcode) {
4716   default:
4717     return ItinData->getStageLatency(get(Opcode).getSchedClass());
4718   case ARM::VLDMQIA:
4719   case ARM::VSTMQIA:
4720     return 2;
4721   }
4722 }
4723 
hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const4724 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4725                                              const MachineRegisterInfo *MRI,
4726                                              const MachineInstr &DefMI,
4727                                              unsigned DefIdx,
4728                                              const MachineInstr &UseMI,
4729                                              unsigned UseIdx) const {
4730   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4731   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4732   if (Subtarget.nonpipelinedVFP() &&
4733       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4734     return true;
4735 
4736   // Hoist VFP / NEON instructions with 4 or higher latency.
4737   unsigned Latency =
4738       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4739   if (Latency <= 3)
4740     return false;
4741   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4742          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4743 }
4744 
hasLowDefLatency(const TargetSchedModel & SchedModel,const MachineInstr & DefMI,unsigned DefIdx) const4745 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4746                                         const MachineInstr &DefMI,
4747                                         unsigned DefIdx) const {
4748   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4749   if (!ItinData || ItinData->isEmpty())
4750     return false;
4751 
4752   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4753   if (DDomain == ARMII::DomainGeneral) {
4754     unsigned DefClass = DefMI.getDesc().getSchedClass();
4755     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4756     return (DefCycle != -1 && DefCycle <= 2);
4757   }
4758   return false;
4759 }
4760 
verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo) const4761 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4762                                          StringRef &ErrInfo) const {
4763   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4764     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4765     return false;
4766   }
4767   if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4768     // Make sure we don't generate a lo-lo mov that isn't supported.
4769     if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4770         !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4771       ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4772       return false;
4773     }
4774   }
4775   if (MI.getOpcode() == ARM::tPUSH ||
4776       MI.getOpcode() == ARM::tPOP ||
4777       MI.getOpcode() == ARM::tPOP_RET) {
4778     for (int i = 2, e = MI.getNumOperands(); i < e; ++i) {
4779       if (MI.getOperand(i).isImplicit() ||
4780           !MI.getOperand(i).isReg())
4781         continue;
4782       Register Reg = MI.getOperand(i).getReg();
4783       if (Reg < ARM::R0 || Reg > ARM::R7) {
4784         if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4785             !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4786           ErrInfo = "Unsupported register in Thumb1 push/pop";
4787           return false;
4788         }
4789       }
4790     }
4791   }
4792   return true;
4793 }
4794 
4795 // LoadStackGuard has so far only been implemented for MachO. Different code
4796 // sequence is needed for other targets.
expandLoadStackGuardBase(MachineBasicBlock::iterator MI,unsigned LoadImmOpc,unsigned LoadOpc) const4797 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4798                                                 unsigned LoadImmOpc,
4799                                                 unsigned LoadOpc) const {
4800   assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4801          "ROPI/RWPI not currently supported with stack guard");
4802 
4803   MachineBasicBlock &MBB = *MI->getParent();
4804   DebugLoc DL = MI->getDebugLoc();
4805   Register Reg = MI->getOperand(0).getReg();
4806   const GlobalValue *GV =
4807       cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4808   MachineInstrBuilder MIB;
4809 
4810   BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4811       .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4812 
4813   if (Subtarget.isGVIndirectSymbol(GV)) {
4814     MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4815     MIB.addReg(Reg, RegState::Kill).addImm(0);
4816     auto Flags = MachineMemOperand::MOLoad |
4817                  MachineMemOperand::MODereferenceable |
4818                  MachineMemOperand::MOInvariant;
4819     MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4820         MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4));
4821     MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4822   }
4823 
4824   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4825   MIB.addReg(Reg, RegState::Kill)
4826       .addImm(0)
4827       .cloneMemRefs(*MI)
4828       .add(predOps(ARMCC::AL));
4829 }
4830 
4831 bool
isFpMLxInstruction(unsigned Opcode,unsigned & MulOpc,unsigned & AddSubOpc,bool & NegAcc,bool & HasLane) const4832 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4833                                      unsigned &AddSubOpc,
4834                                      bool &NegAcc, bool &HasLane) const {
4835   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4836   if (I == MLxEntryMap.end())
4837     return false;
4838 
4839   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4840   MulOpc = Entry.MulOpc;
4841   AddSubOpc = Entry.AddSubOpc;
4842   NegAcc = Entry.NegAcc;
4843   HasLane = Entry.HasLane;
4844   return true;
4845 }
4846 
4847 //===----------------------------------------------------------------------===//
4848 // Execution domains.
4849 //===----------------------------------------------------------------------===//
4850 //
4851 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4852 // and some can go down both.  The vmov instructions go down the VFP pipeline,
4853 // but they can be changed to vorr equivalents that are executed by the NEON
4854 // pipeline.
4855 //
4856 // We use the following execution domain numbering:
4857 //
4858 enum ARMExeDomain {
4859   ExeGeneric = 0,
4860   ExeVFP = 1,
4861   ExeNEON = 2
4862 };
4863 
4864 //
4865 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4866 //
4867 std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr & MI) const4868 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4869   // If we don't have access to NEON instructions then we won't be able
4870   // to swizzle anything to the NEON domain. Check to make sure.
4871   if (Subtarget.hasNEON()) {
4872     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4873     // if they are not predicated.
4874     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4875       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4876 
4877     // CortexA9 is particularly picky about mixing the two and wants these
4878     // converted.
4879     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
4880         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
4881          MI.getOpcode() == ARM::VMOVS))
4882       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4883   }
4884   // No other instructions can be swizzled, so just determine their domain.
4885   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
4886 
4887   if (Domain & ARMII::DomainNEON)
4888     return std::make_pair(ExeNEON, 0);
4889 
4890   // Certain instructions can go either way on Cortex-A8.
4891   // Treat them as NEON instructions.
4892   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4893     return std::make_pair(ExeNEON, 0);
4894 
4895   if (Domain & ARMII::DomainVFP)
4896     return std::make_pair(ExeVFP, 0);
4897 
4898   return std::make_pair(ExeGeneric, 0);
4899 }
4900 
getCorrespondingDRegAndLane(const TargetRegisterInfo * TRI,unsigned SReg,unsigned & Lane)4901 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4902                                             unsigned SReg, unsigned &Lane) {
4903   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4904   Lane = 0;
4905 
4906   if (DReg != ARM::NoRegister)
4907    return DReg;
4908 
4909   Lane = 1;
4910   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4911 
4912   assert(DReg && "S-register with no D super-register?");
4913   return DReg;
4914 }
4915 
4916 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4917 /// set ImplicitSReg to a register number that must be marked as implicit-use or
4918 /// zero if no register needs to be defined as implicit-use.
4919 ///
4920 /// If the function cannot determine if an SPR should be marked implicit use or
4921 /// not, it returns false.
4922 ///
4923 /// This function handles cases where an instruction is being modified from taking
4924 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4925 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4926 /// lane of the DPR).
4927 ///
4928 /// If the other SPR is defined, an implicit-use of it should be added. Else,
4929 /// (including the case where the DPR itself is defined), it should not.
4930 ///
getImplicitSPRUseForDPRUse(const TargetRegisterInfo * TRI,MachineInstr & MI,unsigned DReg,unsigned Lane,unsigned & ImplicitSReg)4931 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4932                                        MachineInstr &MI, unsigned DReg,
4933                                        unsigned Lane, unsigned &ImplicitSReg) {
4934   // If the DPR is defined or used already, the other SPR lane will be chained
4935   // correctly, so there is nothing to be done.
4936   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
4937     ImplicitSReg = 0;
4938     return true;
4939   }
4940 
4941   // Otherwise we need to go searching to see if the SPR is set explicitly.
4942   ImplicitSReg = TRI->getSubReg(DReg,
4943                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4944   MachineBasicBlock::LivenessQueryResult LQR =
4945       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
4946 
4947   if (LQR == MachineBasicBlock::LQR_Live)
4948     return true;
4949   else if (LQR == MachineBasicBlock::LQR_Unknown)
4950     return false;
4951 
4952   // If the register is known not to be live, there is no need to add an
4953   // implicit-use.
4954   ImplicitSReg = 0;
4955   return true;
4956 }
4957 
setExecutionDomain(MachineInstr & MI,unsigned Domain) const4958 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
4959                                           unsigned Domain) const {
4960   unsigned DstReg, SrcReg, DReg;
4961   unsigned Lane;
4962   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4963   const TargetRegisterInfo *TRI = &getRegisterInfo();
4964   switch (MI.getOpcode()) {
4965   default:
4966     llvm_unreachable("cannot handle opcode!");
4967     break;
4968   case ARM::VMOVD:
4969     if (Domain != ExeNEON)
4970       break;
4971 
4972     // Zap the predicate operands.
4973     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4974 
4975     // Make sure we've got NEON instructions.
4976     assert(Subtarget.hasNEON() && "VORRd requires NEON");
4977 
4978     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4979     DstReg = MI.getOperand(0).getReg();
4980     SrcReg = MI.getOperand(1).getReg();
4981 
4982     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4983       MI.RemoveOperand(i - 1);
4984 
4985     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4986     MI.setDesc(get(ARM::VORRd));
4987     MIB.addReg(DstReg, RegState::Define)
4988         .addReg(SrcReg)
4989         .addReg(SrcReg)
4990         .add(predOps(ARMCC::AL));
4991     break;
4992   case ARM::VMOVRS:
4993     if (Domain != ExeNEON)
4994       break;
4995     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
4996 
4997     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4998     DstReg = MI.getOperand(0).getReg();
4999     SrcReg = MI.getOperand(1).getReg();
5000 
5001     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5002       MI.RemoveOperand(i - 1);
5003 
5004     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
5005 
5006     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
5007     // Note that DSrc has been widened and the other lane may be undef, which
5008     // contaminates the entire register.
5009     MI.setDesc(get(ARM::VGETLNi32));
5010     MIB.addReg(DstReg, RegState::Define)
5011         .addReg(DReg, RegState::Undef)
5012         .addImm(Lane)
5013         .add(predOps(ARMCC::AL));
5014 
5015     // The old source should be an implicit use, otherwise we might think it
5016     // was dead before here.
5017     MIB.addReg(SrcReg, RegState::Implicit);
5018     break;
5019   case ARM::VMOVSR: {
5020     if (Domain != ExeNEON)
5021       break;
5022     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
5023 
5024     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
5025     DstReg = MI.getOperand(0).getReg();
5026     SrcReg = MI.getOperand(1).getReg();
5027 
5028     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
5029 
5030     unsigned ImplicitSReg;
5031     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
5032       break;
5033 
5034     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5035       MI.RemoveOperand(i - 1);
5036 
5037     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
5038     // Again DDst may be undefined at the beginning of this instruction.
5039     MI.setDesc(get(ARM::VSETLNi32));
5040     MIB.addReg(DReg, RegState::Define)
5041         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
5042         .addReg(SrcReg)
5043         .addImm(Lane)
5044         .add(predOps(ARMCC::AL));
5045 
5046     // The narrower destination must be marked as set to keep previous chains
5047     // in place.
5048     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5049     if (ImplicitSReg != 0)
5050       MIB.addReg(ImplicitSReg, RegState::Implicit);
5051     break;
5052     }
5053     case ARM::VMOVS: {
5054       if (Domain != ExeNEON)
5055         break;
5056 
5057       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
5058       DstReg = MI.getOperand(0).getReg();
5059       SrcReg = MI.getOperand(1).getReg();
5060 
5061       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
5062       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
5063       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
5064 
5065       unsigned ImplicitSReg;
5066       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
5067         break;
5068 
5069       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5070         MI.RemoveOperand(i - 1);
5071 
5072       if (DSrc == DDst) {
5073         // Destination can be:
5074         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5075         MI.setDesc(get(ARM::VDUPLN32d));
5076         MIB.addReg(DDst, RegState::Define)
5077             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
5078             .addImm(SrcLane)
5079             .add(predOps(ARMCC::AL));
5080 
5081         // Neither the source or the destination are naturally represented any
5082         // more, so add them in manually.
5083         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
5084         MIB.addReg(SrcReg, RegState::Implicit);
5085         if (ImplicitSReg != 0)
5086           MIB.addReg(ImplicitSReg, RegState::Implicit);
5087         break;
5088       }
5089 
5090       // In general there's no single instruction that can perform an S <-> S
5091       // move in NEON space, but a pair of VEXT instructions *can* do the
5092       // job. It turns out that the VEXTs needed will only use DSrc once, with
5093       // the position based purely on the combination of lane-0 and lane-1
5094       // involved. For example
5095       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
5096       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
5097       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
5098       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
5099       //
5100       // Pattern of the MachineInstrs is:
5101       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5102       MachineInstrBuilder NewMIB;
5103       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5104                        DDst);
5105 
5106       // On the first instruction, both DSrc and DDst may be undef if present.
5107       // Specifically when the original instruction didn't have them as an
5108       // <imp-use>.
5109       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5110       bool CurUndef = !MI.readsRegister(CurReg, TRI);
5111       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
5112 
5113       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5114       CurUndef = !MI.readsRegister(CurReg, TRI);
5115       NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
5116             .addImm(1)
5117             .add(predOps(ARMCC::AL));
5118 
5119       if (SrcLane == DstLane)
5120         NewMIB.addReg(SrcReg, RegState::Implicit);
5121 
5122       MI.setDesc(get(ARM::VEXTd32));
5123       MIB.addReg(DDst, RegState::Define);
5124 
5125       // On the second instruction, DDst has definitely been defined above, so
5126       // it is not undef. DSrc, if present, can be undef as above.
5127       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5128       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5129       MIB.addReg(CurReg, getUndefRegState(CurUndef));
5130 
5131       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5132       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5133       MIB.addReg(CurReg, getUndefRegState(CurUndef))
5134          .addImm(1)
5135          .add(predOps(ARMCC::AL));
5136 
5137       if (SrcLane != DstLane)
5138         MIB.addReg(SrcReg, RegState::Implicit);
5139 
5140       // As before, the original destination is no longer represented, add it
5141       // implicitly.
5142       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5143       if (ImplicitSReg != 0)
5144         MIB.addReg(ImplicitSReg, RegState::Implicit);
5145       break;
5146     }
5147   }
5148 }
5149 
5150 //===----------------------------------------------------------------------===//
5151 // Partial register updates
5152 //===----------------------------------------------------------------------===//
5153 //
5154 // Swift renames NEON registers with 64-bit granularity.  That means any
5155 // instruction writing an S-reg implicitly reads the containing D-reg.  The
5156 // problem is mostly avoided by translating f32 operations to v2f32 operations
5157 // on D-registers, but f32 loads are still a problem.
5158 //
5159 // These instructions can load an f32 into a NEON register:
5160 //
5161 // VLDRS - Only writes S, partial D update.
5162 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5163 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5164 //
5165 // FCONSTD can be used as a dependency-breaking instruction.
getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5166 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5167     const MachineInstr &MI, unsigned OpNum,
5168     const TargetRegisterInfo *TRI) const {
5169   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5170   if (!PartialUpdateClearance)
5171     return 0;
5172 
5173   assert(TRI && "Need TRI instance");
5174 
5175   const MachineOperand &MO = MI.getOperand(OpNum);
5176   if (MO.readsReg())
5177     return 0;
5178   Register Reg = MO.getReg();
5179   int UseOp = -1;
5180 
5181   switch (MI.getOpcode()) {
5182   // Normal instructions writing only an S-register.
5183   case ARM::VLDRS:
5184   case ARM::FCONSTS:
5185   case ARM::VMOVSR:
5186   case ARM::VMOVv8i8:
5187   case ARM::VMOVv4i16:
5188   case ARM::VMOVv2i32:
5189   case ARM::VMOVv2f32:
5190   case ARM::VMOVv1i64:
5191     UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
5192     break;
5193 
5194     // Explicitly reads the dependency.
5195   case ARM::VLD1LNd32:
5196     UseOp = 3;
5197     break;
5198   default:
5199     return 0;
5200   }
5201 
5202   // If this instruction actually reads a value from Reg, there is no unwanted
5203   // dependency.
5204   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5205     return 0;
5206 
5207   // We must be able to clobber the whole D-reg.
5208   if (Register::isVirtualRegister(Reg)) {
5209     // Virtual register must be a def undef foo:ssub_0 operand.
5210     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5211       return 0;
5212   } else if (ARM::SPRRegClass.contains(Reg)) {
5213     // Physical register: MI must define the full D-reg.
5214     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5215                                              &ARM::DPRRegClass);
5216     if (!DReg || !MI.definesRegister(DReg, TRI))
5217       return 0;
5218   }
5219 
5220   // MI has an unwanted D-register dependency.
5221   // Avoid defs in the previous N instructrions.
5222   return PartialUpdateClearance;
5223 }
5224 
5225 // Break a partial register dependency after getPartialRegUpdateClearance
5226 // returned non-zero.
breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5227 void ARMBaseInstrInfo::breakPartialRegDependency(
5228     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5229   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5230   assert(TRI && "Need TRI instance");
5231 
5232   const MachineOperand &MO = MI.getOperand(OpNum);
5233   Register Reg = MO.getReg();
5234   assert(Register::isPhysicalRegister(Reg) &&
5235          "Can't break virtual register dependencies.");
5236   unsigned DReg = Reg;
5237 
5238   // If MI defines an S-reg, find the corresponding D super-register.
5239   if (ARM::SPRRegClass.contains(Reg)) {
5240     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5241     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5242   }
5243 
5244   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5245   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5246 
5247   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5248   // the full D-register by loading the same value to both lanes.  The
5249   // instruction is micro-coded with 2 uops, so don't do this until we can
5250   // properly schedule micro-coded instructions.  The dispatcher stalls cause
5251   // too big regressions.
5252 
5253   // Insert the dependency-breaking FCONSTD before MI.
5254   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5255   BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5256       .addImm(96)
5257       .add(predOps(ARMCC::AL));
5258   MI.addRegisterKilled(DReg, TRI, true);
5259 }
5260 
hasNOP() const5261 bool ARMBaseInstrInfo::hasNOP() const {
5262   return Subtarget.getFeatureBits()[ARM::HasV6KOps];
5263 }
5264 
isSwiftFastImmShift(const MachineInstr * MI) const5265 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5266   if (MI->getNumOperands() < 4)
5267     return true;
5268   unsigned ShOpVal = MI->getOperand(3).getImm();
5269   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5270   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5271   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5272       ((ShImm == 1 || ShImm == 2) &&
5273        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5274     return true;
5275 
5276   return false;
5277 }
5278 
getRegSequenceLikeInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs) const5279 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5280     const MachineInstr &MI, unsigned DefIdx,
5281     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5282   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5283   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5284 
5285   switch (MI.getOpcode()) {
5286   case ARM::VMOVDRR:
5287     // dX = VMOVDRR rY, rZ
5288     // is the same as:
5289     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5290     // Populate the InputRegs accordingly.
5291     // rY
5292     const MachineOperand *MOReg = &MI.getOperand(1);
5293     if (!MOReg->isUndef())
5294       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5295                                               MOReg->getSubReg(), ARM::ssub_0));
5296     // rZ
5297     MOReg = &MI.getOperand(2);
5298     if (!MOReg->isUndef())
5299       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5300                                               MOReg->getSubReg(), ARM::ssub_1));
5301     return true;
5302   }
5303   llvm_unreachable("Target dependent opcode missing");
5304 }
5305 
getExtractSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg) const5306 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5307     const MachineInstr &MI, unsigned DefIdx,
5308     RegSubRegPairAndIdx &InputReg) const {
5309   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5310   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5311 
5312   switch (MI.getOpcode()) {
5313   case ARM::VMOVRRD:
5314     // rX, rY = VMOVRRD dZ
5315     // is the same as:
5316     // rX = EXTRACT_SUBREG dZ, ssub_0
5317     // rY = EXTRACT_SUBREG dZ, ssub_1
5318     const MachineOperand &MOReg = MI.getOperand(2);
5319     if (MOReg.isUndef())
5320       return false;
5321     InputReg.Reg = MOReg.getReg();
5322     InputReg.SubReg = MOReg.getSubReg();
5323     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5324     return true;
5325   }
5326   llvm_unreachable("Target dependent opcode missing");
5327 }
5328 
getInsertSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg) const5329 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5330     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5331     RegSubRegPairAndIdx &InsertedReg) const {
5332   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5333   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5334 
5335   switch (MI.getOpcode()) {
5336   case ARM::VSETLNi32:
5337     // dX = VSETLNi32 dY, rZ, imm
5338     const MachineOperand &MOBaseReg = MI.getOperand(1);
5339     const MachineOperand &MOInsertedReg = MI.getOperand(2);
5340     if (MOInsertedReg.isUndef())
5341       return false;
5342     const MachineOperand &MOIndex = MI.getOperand(3);
5343     BaseReg.Reg = MOBaseReg.getReg();
5344     BaseReg.SubReg = MOBaseReg.getSubReg();
5345 
5346     InsertedReg.Reg = MOInsertedReg.getReg();
5347     InsertedReg.SubReg = MOInsertedReg.getSubReg();
5348     InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
5349     return true;
5350   }
5351   llvm_unreachable("Target dependent opcode missing");
5352 }
5353 
5354 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const5355 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5356   const unsigned Mask = ARMII::MO_OPTION_MASK;
5357   return std::make_pair(TF & Mask, TF & ~Mask);
5358 }
5359 
5360 ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const5361 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5362   using namespace ARMII;
5363 
5364   static const std::pair<unsigned, const char *> TargetFlags[] = {
5365       {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
5366   return makeArrayRef(TargetFlags);
5367 }
5368 
5369 ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags() const5370 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5371   using namespace ARMII;
5372 
5373   static const std::pair<unsigned, const char *> TargetFlags[] = {
5374       {MO_COFFSTUB, "arm-coffstub"},
5375       {MO_GOT, "arm-got"},
5376       {MO_SBREL, "arm-sbrel"},
5377       {MO_DLLIMPORT, "arm-dllimport"},
5378       {MO_SECREL, "arm-secrel"},
5379       {MO_NONLAZY, "arm-nonlazy"}};
5380   return makeArrayRef(TargetFlags);
5381 }
5382 
isAddImmediate(const MachineInstr & MI,Register Reg) const5383 Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI,
5384                                                       Register Reg) const {
5385   int Sign = 1;
5386   unsigned Opcode = MI.getOpcode();
5387   int64_t Offset = 0;
5388 
5389   // TODO: Handle cases where Reg is a super- or sub-register of the
5390   // destination register.
5391   const MachineOperand &Op0 = MI.getOperand(0);
5392   if (!Op0.isReg() || Reg != Op0.getReg())
5393     return None;
5394 
5395   // We describe SUBri or ADDri instructions.
5396   if (Opcode == ARM::SUBri)
5397     Sign = -1;
5398   else if (Opcode != ARM::ADDri)
5399     return None;
5400 
5401   // TODO: Third operand can be global address (usually some string). Since
5402   //       strings can be relocated we cannot calculate their offsets for
5403   //       now.
5404   if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm())
5405     return None;
5406 
5407   Offset = MI.getOperand(2).getImm() * Sign;
5408   return RegImmPair{MI.getOperand(1).getReg(), Offset};
5409 }
5410 
registerDefinedBetween(unsigned Reg,MachineBasicBlock::iterator From,MachineBasicBlock::iterator To,const TargetRegisterInfo * TRI)5411 bool llvm::registerDefinedBetween(unsigned Reg,
5412                                   MachineBasicBlock::iterator From,
5413                                   MachineBasicBlock::iterator To,
5414                                   const TargetRegisterInfo *TRI) {
5415   for (auto I = From; I != To; ++I)
5416     if (I->modifiesRegister(Reg, TRI))
5417       return true;
5418   return false;
5419 }
5420 
findCMPToFoldIntoCBZ(MachineInstr * Br,const TargetRegisterInfo * TRI)5421 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5422                                          const TargetRegisterInfo *TRI) {
5423   // Search backwards to the instruction that defines CSPR. This may or not
5424   // be a CMP, we check that after this loop. If we find another instruction
5425   // that reads cpsr, we return nullptr.
5426   MachineBasicBlock::iterator CmpMI = Br;
5427   while (CmpMI != Br->getParent()->begin()) {
5428     --CmpMI;
5429     if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5430       break;
5431     if (CmpMI->readsRegister(ARM::CPSR, TRI))
5432       break;
5433   }
5434 
5435   // Check that this inst is a CMP r[0-7], #0 and that the register
5436   // is not redefined between the cmp and the br.
5437   if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5438     return nullptr;
5439   Register Reg = CmpMI->getOperand(0).getReg();
5440   Register PredReg;
5441   ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5442   if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5443     return nullptr;
5444   if (!isARMLowRegister(Reg))
5445     return nullptr;
5446   if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5447     return nullptr;
5448 
5449   return &*CmpMI;
5450 }
5451 
ConstantMaterializationCost(unsigned Val,const ARMSubtarget * Subtarget,bool ForCodesize)5452 unsigned llvm::ConstantMaterializationCost(unsigned Val,
5453                                            const ARMSubtarget *Subtarget,
5454                                            bool ForCodesize) {
5455   if (Subtarget->isThumb()) {
5456     if (Val <= 255) // MOV
5457       return ForCodesize ? 2 : 1;
5458     if (Subtarget->hasV6T2Ops() && (Val <= 0xffff ||                    // MOV
5459                                     ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
5460                                     ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
5461       return ForCodesize ? 4 : 1;
5462     if (Val <= 510) // MOV + ADDi8
5463       return ForCodesize ? 4 : 2;
5464     if (~Val <= 255) // MOV + MVN
5465       return ForCodesize ? 4 : 2;
5466     if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
5467       return ForCodesize ? 4 : 2;
5468   } else {
5469     if (ARM_AM::getSOImmVal(Val) != -1) // MOV
5470       return ForCodesize ? 4 : 1;
5471     if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
5472       return ForCodesize ? 4 : 1;
5473     if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
5474       return ForCodesize ? 4 : 1;
5475     if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
5476       return ForCodesize ? 8 : 2;
5477     if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs
5478       return ForCodesize ? 8 : 2;
5479   }
5480   if (Subtarget->useMovt()) // MOVW + MOVT
5481     return ForCodesize ? 8 : 2;
5482   return ForCodesize ? 8 : 3; // Literal pool load
5483 }
5484 
HasLowerConstantMaterializationCost(unsigned Val1,unsigned Val2,const ARMSubtarget * Subtarget,bool ForCodesize)5485 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
5486                                                const ARMSubtarget *Subtarget,
5487                                                bool ForCodesize) {
5488   // Check with ForCodesize
5489   unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
5490   unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
5491   if (Cost1 < Cost2)
5492     return true;
5493   if (Cost1 > Cost2)
5494     return false;
5495 
5496   // If they are equal, try with !ForCodesize
5497   return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
5498          ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
5499 }
5500 
5501 /// Constants defining how certain sequences should be outlined.
5502 /// This encompasses how an outlined function should be called, and what kind of
5503 /// frame should be emitted for that outlined function.
5504 ///
5505 /// \p MachineOutlinerTailCall implies that the function is being created from
5506 /// a sequence of instructions ending in a return.
5507 ///
5508 /// That is,
5509 ///
5510 /// I1                                OUTLINED_FUNCTION:
5511 /// I2    --> B OUTLINED_FUNCTION     I1
5512 /// BX LR                             I2
5513 ///                                   BX LR
5514 ///
5515 /// +-------------------------+--------+-----+
5516 /// |                         | Thumb2 | ARM |
5517 /// +-------------------------+--------+-----+
5518 /// | Call overhead in Bytes  |      4 |   4 |
5519 /// | Frame overhead in Bytes |      0 |   0 |
5520 /// | Stack fixup required    |     No |  No |
5521 /// +-------------------------+--------+-----+
5522 ///
5523 /// \p MachineOutlinerThunk implies that the function is being created from
5524 /// a sequence of instructions ending in a call. The outlined function is
5525 /// called with a BL instruction, and the outlined function tail-calls the
5526 /// original call destination.
5527 ///
5528 /// That is,
5529 ///
5530 /// I1                                OUTLINED_FUNCTION:
5531 /// I2   --> BL OUTLINED_FUNCTION     I1
5532 /// BL f                              I2
5533 ///                                   B f
5534 ///
5535 /// +-------------------------+--------+-----+
5536 /// |                         | Thumb2 | ARM |
5537 /// +-------------------------+--------+-----+
5538 /// | Call overhead in Bytes  |      4 |   4 |
5539 /// | Frame overhead in Bytes |      0 |   0 |
5540 /// | Stack fixup required    |     No |  No |
5541 /// +-------------------------+--------+-----+
5542 ///
5543 /// \p MachineOutlinerNoLRSave implies that the function should be called using
5544 /// a BL instruction, but doesn't require LR to be saved and restored. This
5545 /// happens when LR is known to be dead.
5546 ///
5547 /// That is,
5548 ///
5549 /// I1                                OUTLINED_FUNCTION:
5550 /// I2 --> BL OUTLINED_FUNCTION       I1
5551 /// I3                                I2
5552 ///                                   I3
5553 ///                                   BX LR
5554 ///
5555 /// +-------------------------+--------+-----+
5556 /// |                         | Thumb2 | ARM |
5557 /// +-------------------------+--------+-----+
5558 /// | Call overhead in Bytes  |      4 |   4 |
5559 /// | Frame overhead in Bytes |      4 |   4 |
5560 /// | Stack fixup required    |     No |  No |
5561 /// +-------------------------+--------+-----+
5562 ///
5563 /// \p MachineOutlinerRegSave implies that the function should be called with a
5564 /// save and restore of LR to an available register. This allows us to avoid
5565 /// stack fixups. Note that this outlining variant is compatible with the
5566 /// NoLRSave case.
5567 ///
5568 /// That is,
5569 ///
5570 /// I1     Save LR                    OUTLINED_FUNCTION:
5571 /// I2 --> BL OUTLINED_FUNCTION       I1
5572 /// I3     Restore LR                 I2
5573 ///                                   I3
5574 ///                                   BX LR
5575 ///
5576 /// +-------------------------+--------+-----+
5577 /// |                         | Thumb2 | ARM |
5578 /// +-------------------------+--------+-----+
5579 /// | Call overhead in Bytes  |      8 |  12 |
5580 /// | Frame overhead in Bytes |      2 |   4 |
5581 /// | Stack fixup required    |     No |  No |
5582 /// +-------------------------+--------+-----+
5583 ///
5584 /// \p MachineOutlinerDefault implies that the function should be called with
5585 /// a save and restore of LR to the stack.
5586 ///
5587 /// That is,
5588 ///
5589 /// I1     Save LR                    OUTLINED_FUNCTION:
5590 /// I2 --> BL OUTLINED_FUNCTION       I1
5591 /// I3     Restore LR                 I2
5592 ///                                   I3
5593 ///                                   BX LR
5594 ///
5595 /// +-------------------------+--------+-----+
5596 /// |                         | Thumb2 | ARM |
5597 /// +-------------------------+--------+-----+
5598 /// | Call overhead in Bytes  |      8 |  12 |
5599 /// | Frame overhead in Bytes |      2 |   4 |
5600 /// | Stack fixup required    |    Yes | Yes |
5601 /// +-------------------------+--------+-----+
5602 
5603 enum MachineOutlinerClass {
5604   MachineOutlinerTailCall,
5605   MachineOutlinerThunk,
5606   MachineOutlinerNoLRSave,
5607   MachineOutlinerRegSave,
5608   MachineOutlinerDefault
5609 };
5610 
5611 enum MachineOutlinerMBBFlags {
5612   LRUnavailableSomewhere = 0x2,
5613   HasCalls = 0x4,
5614   UnsafeRegsDead = 0x8
5615 };
5616 
5617 struct OutlinerCosts {
5618   const int CallTailCall;
5619   const int FrameTailCall;
5620   const int CallThunk;
5621   const int FrameThunk;
5622   const int CallNoLRSave;
5623   const int FrameNoLRSave;
5624   const int CallRegSave;
5625   const int FrameRegSave;
5626   const int CallDefault;
5627   const int FrameDefault;
5628   const int SaveRestoreLROnStack;
5629 
OutlinerCostsOutlinerCosts5630   OutlinerCosts(const ARMSubtarget &target)
5631       : CallTailCall(target.isThumb() ? 4 : 4),
5632         FrameTailCall(target.isThumb() ? 0 : 0),
5633         CallThunk(target.isThumb() ? 4 : 4),
5634         FrameThunk(target.isThumb() ? 0 : 0),
5635         CallNoLRSave(target.isThumb() ? 4 : 4),
5636         FrameNoLRSave(target.isThumb() ? 4 : 4),
5637         CallRegSave(target.isThumb() ? 8 : 12),
5638         FrameRegSave(target.isThumb() ? 2 : 4),
5639         CallDefault(target.isThumb() ? 8 : 12),
5640         FrameDefault(target.isThumb() ? 2 : 4),
5641         SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {}
5642 };
5643 
5644 unsigned
findRegisterToSaveLRTo(const outliner::Candidate & C) const5645 ARMBaseInstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const {
5646   assert(C.LRUWasSet && "LRU wasn't set?");
5647   MachineFunction *MF = C.getMF();
5648   const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo *>(
5649       MF->getSubtarget().getRegisterInfo());
5650 
5651   BitVector regsReserved = ARI->getReservedRegs(*MF);
5652   // Check if there is an available register across the sequence that we can
5653   // use.
5654   for (unsigned Reg : ARM::rGPRRegClass) {
5655     if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) &&
5656         Reg != ARM::LR &&  // LR is not reserved, but don't use it.
5657         Reg != ARM::R12 && // R12 is not guaranteed to be preserved.
5658         C.LRU.available(Reg) && C.UsedInSequence.available(Reg))
5659       return Reg;
5660   }
5661 
5662   // No suitable register. Return 0.
5663   return 0u;
5664 }
5665 
5666 // Compute liveness of LR at the point after the interval [I, E), which
5667 // denotes a *backward* iteration through instructions. Used only for return
5668 // basic blocks, which do not end with a tail call.
isLRAvailable(const TargetRegisterInfo & TRI,MachineBasicBlock::reverse_iterator I,MachineBasicBlock::reverse_iterator E)5669 static bool isLRAvailable(const TargetRegisterInfo &TRI,
5670                           MachineBasicBlock::reverse_iterator I,
5671                           MachineBasicBlock::reverse_iterator E) {
5672   // At the end of the function LR dead.
5673   bool Live = false;
5674   for (; I != E; ++I) {
5675     const MachineInstr &MI = *I;
5676 
5677     // Check defs of LR.
5678     if (MI.modifiesRegister(ARM::LR, &TRI))
5679       Live = false;
5680 
5681     // Check uses of LR.
5682     unsigned Opcode = MI.getOpcode();
5683     if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR ||
5684         Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET ||
5685         Opcode == ARM::tBXNS_RET) {
5686       // These instructions use LR, but it's not an (explicit or implicit)
5687       // operand.
5688       Live = true;
5689       continue;
5690     }
5691     if (MI.readsRegister(ARM::LR, &TRI))
5692       Live = true;
5693   }
5694   return !Live;
5695 }
5696 
getOutliningCandidateInfo(std::vector<outliner::Candidate> & RepeatedSequenceLocs) const5697 outliner::OutlinedFunction ARMBaseInstrInfo::getOutliningCandidateInfo(
5698     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
5699   outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
5700   unsigned SequenceSize =
5701       std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0,
5702                       [this](unsigned Sum, const MachineInstr &MI) {
5703                         return Sum + getInstSizeInBytes(MI);
5704                       });
5705 
5706   // Properties about candidate MBBs that hold for all of them.
5707   unsigned FlagsSetInAll = 0xF;
5708 
5709   // Compute liveness information for each candidate, and set FlagsSetInAll.
5710   const TargetRegisterInfo &TRI = getRegisterInfo();
5711   std::for_each(
5712       RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(),
5713       [&FlagsSetInAll](outliner::Candidate &C) { FlagsSetInAll &= C.Flags; });
5714 
5715   // According to the ARM Procedure Call Standard, the following are
5716   // undefined on entry/exit from a function call:
5717   //
5718   // * Register R12(IP),
5719   // * Condition codes (and thus the CPSR register)
5720   //
5721   // Since we control the instructions which are part of the outlined regions
5722   // we don't need to be fully compliant with the AAPCS, but we have to
5723   // guarantee that if a veneer is inserted at link time the code is still
5724   // correct.  Because of this, we can't outline any sequence of instructions
5725   // where one of these registers is live into/across it. Thus, we need to
5726   // delete those candidates.
5727   auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
5728     // If the unsafe registers in this block are all dead, then we don't need
5729     // to compute liveness here.
5730     if (C.Flags & UnsafeRegsDead)
5731       return false;
5732     C.initLRU(TRI);
5733     LiveRegUnits LRU = C.LRU;
5734     return (!LRU.available(ARM::R12) || !LRU.available(ARM::CPSR));
5735   };
5736 
5737   // Are there any candidates where those registers are live?
5738   if (!(FlagsSetInAll & UnsafeRegsDead)) {
5739     // Erase every candidate that violates the restrictions above. (It could be
5740     // true that we have viable candidates, so it's not worth bailing out in
5741     // the case that, say, 1 out of 20 candidates violate the restructions.)
5742     RepeatedSequenceLocs.erase(std::remove_if(RepeatedSequenceLocs.begin(),
5743                                               RepeatedSequenceLocs.end(),
5744                                               CantGuaranteeValueAcrossCall),
5745                                RepeatedSequenceLocs.end());
5746 
5747     // If the sequence doesn't have enough candidates left, then we're done.
5748     if (RepeatedSequenceLocs.size() < 2)
5749       return outliner::OutlinedFunction();
5750   }
5751 
5752   // At this point, we have only "safe" candidates to outline. Figure out
5753   // frame + call instruction information.
5754 
5755   unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode();
5756 
5757   // Helper lambda which sets call information for every candidate.
5758   auto SetCandidateCallInfo =
5759       [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
5760         for (outliner::Candidate &C : RepeatedSequenceLocs)
5761           C.setCallInfo(CallID, NumBytesForCall);
5762       };
5763 
5764   OutlinerCosts Costs(Subtarget);
5765   unsigned FrameID = MachineOutlinerDefault;
5766   unsigned NumBytesToCreateFrame = Costs.FrameDefault;
5767 
5768   // If the last instruction in any candidate is a terminator, then we should
5769   // tail call all of the candidates.
5770   if (RepeatedSequenceLocs[0].back()->isTerminator()) {
5771     FrameID = MachineOutlinerTailCall;
5772     NumBytesToCreateFrame = Costs.FrameTailCall;
5773     SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall);
5774   } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX ||
5775              LastInstrOpcode == ARM::tBL || LastInstrOpcode == ARM::tBLXr ||
5776              LastInstrOpcode == ARM::tBLXi) {
5777     FrameID = MachineOutlinerThunk;
5778     NumBytesToCreateFrame = Costs.FrameThunk;
5779     SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk);
5780   } else {
5781     // We need to decide how to emit calls + frames. We can always emit the same
5782     // frame if we don't need to save to the stack. If we have to save to the
5783     // stack, then we need a different frame.
5784     unsigned NumBytesNoStackCalls = 0;
5785     std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
5786 
5787     for (outliner::Candidate &C : RepeatedSequenceLocs) {
5788       C.initLRU(TRI);
5789       // LR liveness is overestimated in return blocks, unless they end with a
5790       // tail call.
5791       const auto Last = C.getMBB()->rbegin();
5792       const bool LRIsAvailable =
5793           C.getMBB()->isReturnBlock() && !Last->isCall()
5794               ? isLRAvailable(TRI, Last,
5795                               (MachineBasicBlock::reverse_iterator)C.front())
5796               : C.LRU.available(ARM::LR);
5797       if (LRIsAvailable) {
5798         FrameID = MachineOutlinerNoLRSave;
5799         NumBytesNoStackCalls += Costs.CallNoLRSave;
5800         C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave);
5801         CandidatesWithoutStackFixups.push_back(C);
5802       }
5803 
5804       // Is an unused register available? If so, we won't modify the stack, so
5805       // we can outline with the same frame type as those that don't save LR.
5806       else if (findRegisterToSaveLRTo(C)) {
5807         FrameID = MachineOutlinerRegSave;
5808         NumBytesNoStackCalls += Costs.CallRegSave;
5809         C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave);
5810         CandidatesWithoutStackFixups.push_back(C);
5811       }
5812 
5813       // Is SP used in the sequence at all? If not, we don't have to modify
5814       // the stack, so we are guaranteed to get the same frame.
5815       else if (C.UsedInSequence.available(ARM::SP)) {
5816         NumBytesNoStackCalls += Costs.CallDefault;
5817         C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault);
5818         SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault);
5819         CandidatesWithoutStackFixups.push_back(C);
5820       } else
5821         return outliner::OutlinedFunction();
5822     }
5823 
5824     // Does every candidate's MBB contain a call?  If so, then we might have a
5825     // call in the range.
5826     if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
5827       // check if the range contains a call.  These require a save + restore of
5828       // the link register.
5829       if (std::any_of(FirstCand.front(), FirstCand.back(),
5830                       [](const MachineInstr &MI) { return MI.isCall(); }))
5831         NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
5832 
5833       // Handle the last instruction separately.  If it is tail call, then the
5834       // last instruction is a call, we don't want to save + restore in this
5835       // case.  However, it could be possible that the last instruction is a
5836       // call without it being valid to tail call this sequence.  We should
5837       // consider this as well.
5838       else if (FrameID != MachineOutlinerThunk &&
5839                FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall())
5840         NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
5841     }
5842     RepeatedSequenceLocs = CandidatesWithoutStackFixups;
5843   }
5844 
5845   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
5846                                     NumBytesToCreateFrame, FrameID);
5847 }
5848 
isFunctionSafeToOutlineFrom(MachineFunction & MF,bool OutlineFromLinkOnceODRs) const5849 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom(
5850     MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
5851   const Function &F = MF.getFunction();
5852 
5853   // Can F be deduplicated by the linker? If it can, don't outline from it.
5854   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
5855     return false;
5856 
5857   // Don't outline from functions with section markings; the program could
5858   // expect that all the code is in the named section.
5859   // FIXME: Allow outlining from multiple functions with the same section
5860   // marking.
5861   if (F.hasSection())
5862     return false;
5863 
5864   // FIXME: Thumb1 outlining is not handled
5865   if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction())
5866     return false;
5867 
5868   // It's safe to outline from MF.
5869   return true;
5870 }
5871 
isMBBSafeToOutlineFrom(MachineBasicBlock & MBB,unsigned & Flags) const5872 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
5873                                               unsigned &Flags) const {
5874   // Check if LR is available through all of the MBB. If it's not, then set
5875   // a flag.
5876   assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
5877          "Suitable Machine Function for outlining must track liveness");
5878 
5879   LiveRegUnits LRU(getRegisterInfo());
5880 
5881   std::for_each(MBB.rbegin(), MBB.rend(),
5882                 [&LRU](MachineInstr &MI) { LRU.accumulate(MI); });
5883 
5884   // Check if each of the unsafe registers are available...
5885   bool R12AvailableInBlock = LRU.available(ARM::R12);
5886   bool CPSRAvailableInBlock = LRU.available(ARM::CPSR);
5887 
5888   // If all of these are dead (and not live out), we know we don't have to check
5889   // them later.
5890   if (R12AvailableInBlock && CPSRAvailableInBlock)
5891     Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
5892 
5893   // Now, add the live outs to the set.
5894   LRU.addLiveOuts(MBB);
5895 
5896   // If any of these registers is available in the MBB, but also a live out of
5897   // the block, then we know outlining is unsafe.
5898   if (R12AvailableInBlock && !LRU.available(ARM::R12))
5899     return false;
5900   if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR))
5901     return false;
5902 
5903   // Check if there's a call inside this MachineBasicBlock.  If there is, then
5904   // set a flag.
5905   if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
5906     Flags |= MachineOutlinerMBBFlags::HasCalls;
5907 
5908   // LR liveness is overestimated in return blocks.
5909 
5910   bool LRIsAvailable =
5911       MBB.isReturnBlock() && !MBB.back().isCall()
5912           ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend())
5913           : LRU.available(ARM::LR);
5914   if (!LRIsAvailable)
5915     Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
5916 
5917   return true;
5918 }
5919 
5920 outliner::InstrType
getOutliningType(MachineBasicBlock::iterator & MIT,unsigned Flags) const5921 ARMBaseInstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,
5922                                    unsigned Flags) const {
5923   MachineInstr &MI = *MIT;
5924   const TargetRegisterInfo *TRI = &getRegisterInfo();
5925 
5926   // Be conservative with inline ASM
5927   if (MI.isInlineAsm())
5928     return outliner::InstrType::Illegal;
5929 
5930   // Don't allow debug values to impact outlining type.
5931   if (MI.isDebugInstr() || MI.isIndirectDebugValue())
5932     return outliner::InstrType::Invisible;
5933 
5934   // At this point, KILL or IMPLICIT_DEF instructions don't really tell us much
5935   // so we can go ahead and skip over them.
5936   if (MI.isKill() || MI.isImplicitDef())
5937     return outliner::InstrType::Invisible;
5938 
5939   // PIC instructions contain labels, outlining them would break offset
5940   // computing.  unsigned Opc = MI.getOpcode();
5941   unsigned Opc = MI.getOpcode();
5942   if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR ||
5943       Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR ||
5944       Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB ||
5945       Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic ||
5946       Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel ||
5947       Opc == ARM::t2MOV_ga_pcrel)
5948     return outliner::InstrType::Illegal;
5949 
5950   // Be conservative with ARMv8.1 MVE instructions.
5951   if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart ||
5952       Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart ||
5953       Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd)
5954     return outliner::InstrType::Illegal;
5955 
5956   const MCInstrDesc &MCID = MI.getDesc();
5957   uint64_t MIFlags = MCID.TSFlags;
5958   if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE)
5959     return outliner::InstrType::Illegal;
5960 
5961   // Is this a terminator for a basic block?
5962   if (MI.isTerminator()) {
5963     // Don't outline if the branch is not unconditional.
5964     if (isPredicated(MI))
5965       return outliner::InstrType::Illegal;
5966 
5967     // Is this the end of a function?
5968     if (MI.getParent()->succ_empty())
5969       return outliner::InstrType::Legal;
5970 
5971     // It's not, so don't outline it.
5972     return outliner::InstrType::Illegal;
5973   }
5974 
5975   // Make sure none of the operands are un-outlinable.
5976   for (const MachineOperand &MOP : MI.operands()) {
5977     if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
5978         MOP.isTargetIndex())
5979       return outliner::InstrType::Illegal;
5980   }
5981 
5982   // Don't outline if link register or program counter value are used.
5983   if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI))
5984     return outliner::InstrType::Illegal;
5985 
5986   if (MI.isCall()) {
5987     // Get the function associated with the call.  Look at each operand and find
5988     // the one that represents the calle and get its name.
5989     const Function *Callee = nullptr;
5990     for (const MachineOperand &MOP : MI.operands()) {
5991       if (MOP.isGlobal()) {
5992         Callee = dyn_cast<Function>(MOP.getGlobal());
5993         break;
5994       }
5995     }
5996 
5997     // Dont't outline calls to "mcount" like functions, in particular Linux
5998     // kernel function tracing relies on it.
5999     if (Callee &&
6000         (Callee->getName() == "\01__gnu_mcount_nc" ||
6001          Callee->getName() == "\01mcount" || Callee->getName() == "__mcount"))
6002       return outliner::InstrType::Illegal;
6003 
6004     // If we don't know anything about the callee, assume it depends on the
6005     // stack layout of the caller. In that case, it's only legal to outline
6006     // as a tail-call. Explicitly list the call instructions we know about so
6007     // we don't get unexpected results with call pseudo-instructions.
6008     auto UnknownCallOutlineType = outliner::InstrType::Illegal;
6009     if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX ||
6010         Opc == ARM::tBLXr || Opc == ARM::tBLXi)
6011       UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
6012 
6013     if (!Callee)
6014       return UnknownCallOutlineType;
6015 
6016     // We have a function we have information about.  Check if it's something we
6017     // can safely outline.
6018     MachineFunction *MF = MI.getParent()->getParent();
6019     MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
6020 
6021     // We don't know what's going on with the callee at all.  Don't touch it.
6022     if (!CalleeMF)
6023       return UnknownCallOutlineType;
6024 
6025     // Check if we know anything about the callee saves on the function. If we
6026     // don't, then don't touch it, since that implies that we haven't computed
6027     // anything about its stack frame yet.
6028     MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
6029     if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
6030         MFI.getNumObjects() > 0)
6031       return UnknownCallOutlineType;
6032 
6033     // At this point, we can say that CalleeMF ought to not pass anything on the
6034     // stack. Therefore, we can outline it.
6035     return outliner::InstrType::Legal;
6036   }
6037 
6038   // Since calls are handled, don't touch LR or PC
6039   if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI))
6040     return outliner::InstrType::Illegal;
6041 
6042   // Does this use the stack?
6043   if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) {
6044     // True if there is no chance that any outlined candidate from this range
6045     // could require stack fixups. That is, both
6046     // * LR is available in the range (No save/restore around call)
6047     // * The range doesn't include calls (No save/restore in outlined frame)
6048     // are true.
6049     // FIXME: This is very restrictive; the flags check the whole block,
6050     // not just the bit we will try to outline.
6051     bool MightNeedStackFixUp =
6052         (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere |
6053                   MachineOutlinerMBBFlags::HasCalls));
6054 
6055     if (!MightNeedStackFixUp)
6056       return outliner::InstrType::Legal;
6057 
6058     return outliner::InstrType::Illegal;
6059   }
6060 
6061   // Be conservative with IT blocks.
6062   if (MI.readsRegister(ARM::ITSTATE, TRI) ||
6063       MI.modifiesRegister(ARM::ITSTATE, TRI))
6064     return outliner::InstrType::Illegal;
6065 
6066   // Don't outline positions.
6067   if (MI.isPosition())
6068     return outliner::InstrType::Illegal;
6069 
6070   return outliner::InstrType::Legal;
6071 }
6072 
saveLROnStack(MachineBasicBlock & MBB,MachineBasicBlock::iterator It) const6073 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB,
6074                                      MachineBasicBlock::iterator It) const {
6075   unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM;
6076   int Align = -Subtarget.getStackAlignment().value();
6077   BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP)
6078     .addReg(ARM::LR, RegState::Kill)
6079     .addReg(ARM::SP)
6080     .addImm(Align)
6081     .add(predOps(ARMCC::AL));
6082 }
6083 
emitCFIForLRSaveOnStack(MachineBasicBlock & MBB,MachineBasicBlock::iterator It) const6084 void ARMBaseInstrInfo::emitCFIForLRSaveOnStack(
6085     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6086   MachineFunction &MF = *MBB.getParent();
6087   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6088   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6089   int Align = Subtarget.getStackAlignment().value();
6090   // Add a CFI saying the stack was moved down.
6091   int64_t StackPosEntry =
6092       MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align));
6093   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6094       .addCFIIndex(StackPosEntry)
6095       .setMIFlags(MachineInstr::FrameSetup);
6096 
6097   // Add a CFI saying that the LR that we want to find is now higher than
6098   // before.
6099   int64_t LRPosEntry =
6100       MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfLR, -Align));
6101   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6102       .addCFIIndex(LRPosEntry)
6103       .setMIFlags(MachineInstr::FrameSetup);
6104 }
6105 
emitCFIForLRSaveToReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator It,Register Reg) const6106 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB,
6107                                              MachineBasicBlock::iterator It,
6108                                              Register Reg) const {
6109   MachineFunction &MF = *MBB.getParent();
6110   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6111   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6112   unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
6113 
6114   int64_t LRPosEntry = MF.addFrameInst(
6115       MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg));
6116   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6117       .addCFIIndex(LRPosEntry)
6118       .setMIFlags(MachineInstr::FrameSetup);
6119 }
6120 
restoreLRFromStack(MachineBasicBlock & MBB,MachineBasicBlock::iterator It) const6121 void ARMBaseInstrInfo::restoreLRFromStack(
6122     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6123   unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6124   MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR)
6125     .addReg(ARM::SP, RegState::Define)
6126     .addReg(ARM::SP);
6127   if (!Subtarget.isThumb())
6128     MIB.addReg(0);
6129   MIB.addImm(Subtarget.getStackAlignment().value()).add(predOps(ARMCC::AL));
6130 }
6131 
emitCFIForLRRestoreFromStack(MachineBasicBlock & MBB,MachineBasicBlock::iterator It) const6132 void ARMBaseInstrInfo::emitCFIForLRRestoreFromStack(
6133     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6134   // Now stack has moved back up...
6135   MachineFunction &MF = *MBB.getParent();
6136   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6137   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6138   int64_t StackPosEntry =
6139       MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
6140   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6141       .addCFIIndex(StackPosEntry)
6142       .setMIFlags(MachineInstr::FrameDestroy);
6143 
6144   // ... and we have restored LR.
6145   int64_t LRPosEntry =
6146       MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6147   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6148       .addCFIIndex(LRPosEntry)
6149       .setMIFlags(MachineInstr::FrameDestroy);
6150 }
6151 
emitCFIForLRRestoreFromReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator It) const6152 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg(
6153     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6154   MachineFunction &MF = *MBB.getParent();
6155   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6156   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6157 
6158   int64_t LRPosEntry =
6159       MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6160   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6161       .addCFIIndex(LRPosEntry)
6162       .setMIFlags(MachineInstr::FrameDestroy);
6163 }
6164 
buildOutlinedFrame(MachineBasicBlock & MBB,MachineFunction & MF,const outliner::OutlinedFunction & OF) const6165 void ARMBaseInstrInfo::buildOutlinedFrame(
6166     MachineBasicBlock &MBB, MachineFunction &MF,
6167     const outliner::OutlinedFunction &OF) const {
6168   // For thunk outlining, rewrite the last instruction from a call to a
6169   // tail-call.
6170   if (OF.FrameConstructionID == MachineOutlinerThunk) {
6171     MachineInstr *Call = &*--MBB.instr_end();
6172     bool isThumb = Subtarget.isThumb();
6173     unsigned FuncOp = isThumb ? 2 : 0;
6174     unsigned Opc = Call->getOperand(FuncOp).isReg()
6175                        ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr
6176                        : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd
6177                                                              : ARM::tTAILJMPdND
6178                                  : ARM::TAILJMPd;
6179     MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc))
6180                                   .add(Call->getOperand(FuncOp));
6181     if (isThumb && !Call->getOperand(FuncOp).isReg())
6182       MIB.add(predOps(ARMCC::AL));
6183     Call->eraseFromParent();
6184   }
6185 
6186   // Is there a call in the outlined range?
6187   auto IsNonTailCall = [](MachineInstr &MI) {
6188     return MI.isCall() && !MI.isReturn();
6189   };
6190   if (std::any_of(MBB.instr_begin(), MBB.instr_end(), IsNonTailCall)) {
6191     MachineBasicBlock::iterator It = MBB.begin();
6192     MachineBasicBlock::iterator Et = MBB.end();
6193 
6194     if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6195         OF.FrameConstructionID == MachineOutlinerThunk)
6196       Et = std::prev(MBB.end());
6197 
6198     // We have to save and restore LR, we need to add it to the liveins if it
6199     // is not already part of the set.  This is suffient since outlined
6200     // functions only have one block.
6201     if (!MBB.isLiveIn(ARM::LR))
6202       MBB.addLiveIn(ARM::LR);
6203 
6204     // Insert a save before the outlined region
6205     saveLROnStack(MBB, It);
6206     emitCFIForLRSaveOnStack(MBB, It);
6207 
6208     // Insert a restore before the terminator for the function.  Restore LR.
6209     restoreLRFromStack(MBB, Et);
6210     emitCFIForLRRestoreFromStack(MBB, Et);
6211   }
6212 
6213   // If this is a tail call outlined function, then there's already a return.
6214   if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6215       OF.FrameConstructionID == MachineOutlinerThunk)
6216     return;
6217 
6218   // Here we have to insert the return ourselves.  Get the correct opcode from
6219   // current feature set.
6220   BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode()))
6221       .add(predOps(ARMCC::AL));
6222 }
6223 
insertOutlinedCall(Module & M,MachineBasicBlock & MBB,MachineBasicBlock::iterator & It,MachineFunction & MF,const outliner::Candidate & C) const6224 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall(
6225     Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
6226     MachineFunction &MF, const outliner::Candidate &C) const {
6227   MachineInstrBuilder MIB;
6228   MachineBasicBlock::iterator CallPt;
6229   unsigned Opc;
6230   bool isThumb = Subtarget.isThumb();
6231 
6232   // Are we tail calling?
6233   if (C.CallConstructionID == MachineOutlinerTailCall) {
6234     // If yes, then we can just branch to the label.
6235     Opc = isThumb
6236               ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND
6237               : ARM::TAILJMPd;
6238     MIB = BuildMI(MF, DebugLoc(), get(Opc))
6239               .addGlobalAddress(M.getNamedValue(MF.getName()));
6240     if (isThumb)
6241       MIB.add(predOps(ARMCC::AL));
6242     It = MBB.insert(It, MIB);
6243     return It;
6244   }
6245 
6246   // Create the call instruction.
6247   Opc = isThumb ? ARM::tBL : ARM::BL;
6248   MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc));
6249   if (isThumb)
6250     CallMIB.add(predOps(ARMCC::AL));
6251   CallMIB.addGlobalAddress(M.getNamedValue(MF.getName()));
6252 
6253   if (C.CallConstructionID == MachineOutlinerNoLRSave ||
6254       C.CallConstructionID == MachineOutlinerThunk) {
6255     // No, so just insert the call.
6256     It = MBB.insert(It, CallMIB);
6257     return It;
6258   }
6259 
6260   const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
6261   // Can we save to a register?
6262   if (C.CallConstructionID == MachineOutlinerRegSave) {
6263     unsigned Reg = findRegisterToSaveLRTo(C);
6264     assert(Reg != 0 && "No callee-saved register available?");
6265 
6266     // Save and restore LR from that register.
6267     copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true);
6268     if (!AFI.isLRSpilled())
6269       emitCFIForLRSaveToReg(MBB, It, Reg);
6270     CallPt = MBB.insert(It, CallMIB);
6271     copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true);
6272     if (!AFI.isLRSpilled())
6273       emitCFIForLRRestoreFromReg(MBB, It);
6274     It--;
6275     return CallPt;
6276   }
6277   // We have the default case. Save and restore from SP.
6278   saveLROnStack(MBB, It);
6279   if (!AFI.isLRSpilled())
6280     emitCFIForLRSaveOnStack(MBB, It);
6281   CallPt = MBB.insert(It, CallMIB);
6282   restoreLRFromStack(MBB, It);
6283   if (!AFI.isLRSpilled())
6284     emitCFIForLRRestoreFromStack(MBB, It);
6285   It--;
6286   return CallPt;
6287 }
6288 
shouldOutlineFromFunctionByDefault(MachineFunction & MF) const6289 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault(
6290     MachineFunction &MF) const {
6291   return Subtarget.isMClass() && MF.getFunction().hasMinSize();
6292 }
6293 
isReallyTriviallyReMaterializable(const MachineInstr & MI,AAResults * AA) const6294 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
6295                                                          AAResults *AA) const {
6296   // Try hard to rematerialize any VCTPs because if we spill P0, it will block
6297   // the tail predication conversion. This means that the element count
6298   // register has to be live for longer, but that has to be better than
6299   // spill/restore and VPT predication.
6300   return isVCTP(&MI) && !isPredicated(MI);
6301 }
6302