1 //===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that AVR uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AVRISelLowering.h"
15 
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/Support/ErrorHandling.h"
26 
27 #include "AVR.h"
28 #include "AVRMachineFunctionInfo.h"
29 #include "AVRSubtarget.h"
30 #include "AVRTargetMachine.h"
31 #include "MCTargetDesc/AVRMCTargetDesc.h"
32 
33 namespace llvm {
34 
AVRTargetLowering(const AVRTargetMachine & TM,const AVRSubtarget & STI)35 AVRTargetLowering::AVRTargetLowering(const AVRTargetMachine &TM,
36                                      const AVRSubtarget &STI)
37     : TargetLowering(TM), Subtarget(STI) {
38   // Set up the register classes.
39   addRegisterClass(MVT::i8, &AVR::GPR8RegClass);
40   addRegisterClass(MVT::i16, &AVR::DREGSRegClass);
41 
42   // Compute derived properties from the register classes.
43   computeRegisterProperties(Subtarget.getRegisterInfo());
44 
45   setBooleanContents(ZeroOrOneBooleanContent);
46   setBooleanVectorContents(ZeroOrOneBooleanContent);
47   setSchedulingPreference(Sched::RegPressure);
48   setStackPointerRegisterToSaveRestore(AVR::SP);
49   setSupportsUnalignedAtomics(true);
50 
51   setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
52   setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
53 
54   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
55   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
56   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
57   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
58 
59   for (MVT VT : MVT::integer_valuetypes()) {
60     for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
61       setLoadExtAction(N, VT, MVT::i1, Promote);
62       setLoadExtAction(N, VT, MVT::i8, Expand);
63     }
64   }
65 
66   setTruncStoreAction(MVT::i16, MVT::i8, Expand);
67 
68   for (MVT VT : MVT::integer_valuetypes()) {
69     setOperationAction(ISD::ADDC, VT, Legal);
70     setOperationAction(ISD::SUBC, VT, Legal);
71     setOperationAction(ISD::ADDE, VT, Legal);
72     setOperationAction(ISD::SUBE, VT, Legal);
73   }
74 
75   // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types
76   // revert into a sub since we don't have an add with immediate instruction.
77   setOperationAction(ISD::ADD, MVT::i32, Custom);
78   setOperationAction(ISD::ADD, MVT::i64, Custom);
79 
80   // our shift instructions are only able to shift 1 bit at a time, so handle
81   // this in a custom way.
82   setOperationAction(ISD::SRA, MVT::i8, Custom);
83   setOperationAction(ISD::SHL, MVT::i8, Custom);
84   setOperationAction(ISD::SRL, MVT::i8, Custom);
85   setOperationAction(ISD::SRA, MVT::i16, Custom);
86   setOperationAction(ISD::SHL, MVT::i16, Custom);
87   setOperationAction(ISD::SRL, MVT::i16, Custom);
88   setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
89   setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
90   setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
91 
92   setOperationAction(ISD::ROTL, MVT::i8, Custom);
93   setOperationAction(ISD::ROTL, MVT::i16, Expand);
94   setOperationAction(ISD::ROTR, MVT::i8, Custom);
95   setOperationAction(ISD::ROTR, MVT::i16, Expand);
96 
97   setOperationAction(ISD::BR_CC, MVT::i8, Custom);
98   setOperationAction(ISD::BR_CC, MVT::i16, Custom);
99   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
100   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
101   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
102 
103   setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
104   setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
105   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
106   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
107   setOperationAction(ISD::SETCC, MVT::i8, Custom);
108   setOperationAction(ISD::SETCC, MVT::i16, Custom);
109   setOperationAction(ISD::SETCC, MVT::i32, Custom);
110   setOperationAction(ISD::SETCC, MVT::i64, Custom);
111   setOperationAction(ISD::SELECT, MVT::i8, Expand);
112   setOperationAction(ISD::SELECT, MVT::i16, Expand);
113 
114   setOperationAction(ISD::BSWAP, MVT::i16, Expand);
115 
116   // Add support for postincrement and predecrement load/stores.
117   setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
118   setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
119   setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal);
120   setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal);
121   setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
122   setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
123   setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal);
124   setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal);
125 
126   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
127 
128   setOperationAction(ISD::VASTART, MVT::Other, Custom);
129   setOperationAction(ISD::VAEND, MVT::Other, Expand);
130   setOperationAction(ISD::VAARG, MVT::Other, Expand);
131   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
132 
133   // Atomic operations which must be lowered to rtlib calls
134   for (MVT VT : MVT::integer_valuetypes()) {
135     setOperationAction(ISD::ATOMIC_SWAP, VT, Expand);
136     setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand);
137     setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
138     setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
139     setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
140     setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
141     setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
142   }
143 
144   // Division/remainder
145   setOperationAction(ISD::UDIV, MVT::i8, Expand);
146   setOperationAction(ISD::UDIV, MVT::i16, Expand);
147   setOperationAction(ISD::UREM, MVT::i8, Expand);
148   setOperationAction(ISD::UREM, MVT::i16, Expand);
149   setOperationAction(ISD::SDIV, MVT::i8, Expand);
150   setOperationAction(ISD::SDIV, MVT::i16, Expand);
151   setOperationAction(ISD::SREM, MVT::i8, Expand);
152   setOperationAction(ISD::SREM, MVT::i16, Expand);
153 
154   // Make division and modulus custom
155   setOperationAction(ISD::UDIVREM, MVT::i8, Custom);
156   setOperationAction(ISD::UDIVREM, MVT::i16, Custom);
157   setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
158   setOperationAction(ISD::SDIVREM, MVT::i8, Custom);
159   setOperationAction(ISD::SDIVREM, MVT::i16, Custom);
160   setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
161 
162   // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co.
163   setOperationAction(ISD::MUL, MVT::i8, Expand);
164   setOperationAction(ISD::MUL, MVT::i16, Expand);
165 
166   // Expand 16 bit multiplications.
167   setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
168   setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
169 
170   // Expand multiplications to libcalls when there is
171   // no hardware MUL.
172   if (!Subtarget.supportsMultiplication()) {
173     setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand);
174     setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand);
175   }
176 
177   for (MVT VT : MVT::integer_valuetypes()) {
178     setOperationAction(ISD::MULHS, VT, Expand);
179     setOperationAction(ISD::MULHU, VT, Expand);
180   }
181 
182   for (MVT VT : MVT::integer_valuetypes()) {
183     setOperationAction(ISD::CTPOP, VT, Expand);
184     setOperationAction(ISD::CTLZ, VT, Expand);
185     setOperationAction(ISD::CTTZ, VT, Expand);
186   }
187 
188   for (MVT VT : MVT::integer_valuetypes()) {
189     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
190     // TODO: The generated code is pretty poor. Investigate using the
191     // same "shift and subtract with carry" trick that we do for
192     // extending 8-bit to 16-bit. This may require infrastructure
193     // improvements in how we treat 16-bit "registers" to be feasible.
194   }
195 
196   // Division rtlib functions (not supported), use divmod functions instead
197   setLibcallName(RTLIB::SDIV_I8, nullptr);
198   setLibcallName(RTLIB::SDIV_I16, nullptr);
199   setLibcallName(RTLIB::SDIV_I32, nullptr);
200   setLibcallName(RTLIB::UDIV_I8, nullptr);
201   setLibcallName(RTLIB::UDIV_I16, nullptr);
202   setLibcallName(RTLIB::UDIV_I32, nullptr);
203 
204   // Modulus rtlib functions (not supported), use divmod functions instead
205   setLibcallName(RTLIB::SREM_I8, nullptr);
206   setLibcallName(RTLIB::SREM_I16, nullptr);
207   setLibcallName(RTLIB::SREM_I32, nullptr);
208   setLibcallName(RTLIB::UREM_I8, nullptr);
209   setLibcallName(RTLIB::UREM_I16, nullptr);
210   setLibcallName(RTLIB::UREM_I32, nullptr);
211 
212   // Division and modulus rtlib functions
213   setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4");
214   setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4");
215   setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
216   setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4");
217   setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4");
218   setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
219 
220   // Several of the runtime library functions use a special calling conv
221   setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
222   setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
223   setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
224   setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);
225 
226   // Trigonometric rtlib functions
227   setLibcallName(RTLIB::SIN_F32, "sin");
228   setLibcallName(RTLIB::COS_F32, "cos");
229 
230   setMinFunctionAlignment(Align(2));
231   setMinimumJumpTableEntries(UINT_MAX);
232 }
233 
getTargetNodeName(unsigned Opcode) const234 const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const {
235 #define NODE(name)       \
236   case AVRISD::name:     \
237     return #name
238 
239   switch (Opcode) {
240   default:
241     return nullptr;
242     NODE(RET_FLAG);
243     NODE(RETI_FLAG);
244     NODE(CALL);
245     NODE(WRAPPER);
246     NODE(LSL);
247     NODE(LSR);
248     NODE(ROL);
249     NODE(ROR);
250     NODE(ASR);
251     NODE(LSLLOOP);
252     NODE(LSRLOOP);
253     NODE(ROLLOOP);
254     NODE(RORLOOP);
255     NODE(ASRLOOP);
256     NODE(BRCOND);
257     NODE(CMP);
258     NODE(CMPC);
259     NODE(TST);
260     NODE(SELECT_CC);
261 #undef NODE
262   }
263 }
264 
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const265 EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
266                                           EVT VT) const {
267   assert(!VT.isVector() && "No AVR SetCC type for vectors!");
268   return MVT::i8;
269 }
270 
LowerShifts(SDValue Op,SelectionDAG & DAG) const271 SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const {
272   //:TODO: this function has to be completely rewritten to produce optimal
273   // code, for now it's producing very long but correct code.
274   unsigned Opc8;
275   const SDNode *N = Op.getNode();
276   EVT VT = Op.getValueType();
277   SDLoc dl(N);
278   assert(isPowerOf2_32(VT.getSizeInBits()) &&
279          "Expected power-of-2 shift amount");
280 
281   // Expand non-constant shifts to loops.
282   if (!isa<ConstantSDNode>(N->getOperand(1))) {
283     switch (Op.getOpcode()) {
284     default:
285       llvm_unreachable("Invalid shift opcode!");
286     case ISD::SHL:
287       return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0),
288                          N->getOperand(1));
289     case ISD::SRL:
290       return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0),
291                          N->getOperand(1));
292     case ISD::ROTL: {
293       SDValue Amt = N->getOperand(1);
294       EVT AmtVT = Amt.getValueType();
295       Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt,
296                         DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT));
297       return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0), Amt);
298     }
299     case ISD::ROTR: {
300       SDValue Amt = N->getOperand(1);
301       EVT AmtVT = Amt.getValueType();
302       Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt,
303                         DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT));
304       return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0), Amt);
305     }
306     case ISD::SRA:
307       return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0),
308                          N->getOperand(1));
309     }
310   }
311 
312   uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
313   SDValue Victim = N->getOperand(0);
314 
315   switch (Op.getOpcode()) {
316   case ISD::SRA:
317     Opc8 = AVRISD::ASR;
318     break;
319   case ISD::ROTL:
320     Opc8 = AVRISD::ROL;
321     ShiftAmount = ShiftAmount % VT.getSizeInBits();
322     break;
323   case ISD::ROTR:
324     Opc8 = AVRISD::ROR;
325     ShiftAmount = ShiftAmount % VT.getSizeInBits();
326     break;
327   case ISD::SRL:
328     Opc8 = AVRISD::LSR;
329     break;
330   case ISD::SHL:
331     Opc8 = AVRISD::LSL;
332     break;
333   default:
334     llvm_unreachable("Invalid shift opcode");
335   }
336 
337   while (ShiftAmount--) {
338     Victim = DAG.getNode(Opc8, dl, VT, Victim);
339   }
340 
341   return Victim;
342 }
343 
LowerDivRem(SDValue Op,SelectionDAG & DAG) const344 SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
345   unsigned Opcode = Op->getOpcode();
346   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
347          "Invalid opcode for Div/Rem lowering");
348   bool IsSigned = (Opcode == ISD::SDIVREM);
349   EVT VT = Op->getValueType(0);
350   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
351 
352   RTLIB::Libcall LC;
353   switch (VT.getSimpleVT().SimpleTy) {
354   default:
355     llvm_unreachable("Unexpected request for libcall!");
356   case MVT::i8:
357     LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
358     break;
359   case MVT::i16:
360     LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
361     break;
362   case MVT::i32:
363     LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
364     break;
365   }
366 
367   SDValue InChain = DAG.getEntryNode();
368 
369   TargetLowering::ArgListTy Args;
370   TargetLowering::ArgListEntry Entry;
371   for (SDValue const &Value : Op->op_values()) {
372     Entry.Node = Value;
373     Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext());
374     Entry.IsSExt = IsSigned;
375     Entry.IsZExt = !IsSigned;
376     Args.push_back(Entry);
377   }
378 
379   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
380                                          getPointerTy(DAG.getDataLayout()));
381 
382   Type *RetTy = (Type *)StructType::get(Ty, Ty);
383 
384   SDLoc dl(Op);
385   TargetLowering::CallLoweringInfo CLI(DAG);
386   CLI.setDebugLoc(dl)
387       .setChain(InChain)
388       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
389       .setInRegister()
390       .setSExtResult(IsSigned)
391       .setZExtResult(!IsSigned);
392 
393   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
394   return CallInfo.first;
395 }
396 
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const397 SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op,
398                                               SelectionDAG &DAG) const {
399   auto DL = DAG.getDataLayout();
400 
401   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
402   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
403 
404   // Create the TargetGlobalAddress node, folding in the constant offset.
405   SDValue Result =
406       DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset);
407   return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
408 }
409 
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const410 SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op,
411                                              SelectionDAG &DAG) const {
412   auto DL = DAG.getDataLayout();
413   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
414 
415   SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL));
416 
417   return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
418 }
419 
420 /// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC.
intCCToAVRCC(ISD::CondCode CC)421 static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) {
422   switch (CC) {
423   default:
424     llvm_unreachable("Unknown condition code!");
425   case ISD::SETEQ:
426     return AVRCC::COND_EQ;
427   case ISD::SETNE:
428     return AVRCC::COND_NE;
429   case ISD::SETGE:
430     return AVRCC::COND_GE;
431   case ISD::SETLT:
432     return AVRCC::COND_LT;
433   case ISD::SETUGE:
434     return AVRCC::COND_SH;
435   case ISD::SETULT:
436     return AVRCC::COND_LO;
437   }
438 }
439 
440 /// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for
441 /// the given operands.
getAVRCmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & AVRcc,SelectionDAG & DAG,SDLoc DL) const442 SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
443                                      SDValue &AVRcc, SelectionDAG &DAG,
444                                      SDLoc DL) const {
445   SDValue Cmp;
446   EVT VT = LHS.getValueType();
447   bool UseTest = false;
448 
449   switch (CC) {
450   default:
451     break;
452   case ISD::SETLE: {
453     // Swap operands and reverse the branching condition.
454     std::swap(LHS, RHS);
455     CC = ISD::SETGE;
456     break;
457   }
458   case ISD::SETGT: {
459     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
460       switch (C->getSExtValue()) {
461       case -1: {
462         // When doing lhs > -1 use a tst instruction on the top part of lhs
463         // and use brpl instead of using a chain of cp/cpc.
464         UseTest = true;
465         AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8);
466         break;
467       }
468       case 0: {
469         // Turn lhs > 0 into 0 < lhs since 0 can be materialized with
470         // __zero_reg__ in lhs.
471         RHS = LHS;
472         LHS = DAG.getConstant(0, DL, VT);
473         CC = ISD::SETLT;
474         break;
475       }
476       default: {
477         // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows
478         // us to  fold the constant into the cmp instruction.
479         RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
480         CC = ISD::SETGE;
481         break;
482       }
483       }
484       break;
485     }
486     // Swap operands and reverse the branching condition.
487     std::swap(LHS, RHS);
488     CC = ISD::SETLT;
489     break;
490   }
491   case ISD::SETLT: {
492     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
493       switch (C->getSExtValue()) {
494       case 1: {
495         // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with
496         // __zero_reg__ in lhs.
497         RHS = LHS;
498         LHS = DAG.getConstant(0, DL, VT);
499         CC = ISD::SETGE;
500         break;
501       }
502       case 0: {
503         // When doing lhs < 0 use a tst instruction on the top part of lhs
504         // and use brmi instead of using a chain of cp/cpc.
505         UseTest = true;
506         AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8);
507         break;
508       }
509       }
510     }
511     break;
512   }
513   case ISD::SETULE: {
514     // Swap operands and reverse the branching condition.
515     std::swap(LHS, RHS);
516     CC = ISD::SETUGE;
517     break;
518   }
519   case ISD::SETUGT: {
520     // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
521     // fold the constant into the cmp instruction.
522     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
523       RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
524       CC = ISD::SETUGE;
525       break;
526     }
527     // Swap operands and reverse the branching condition.
528     std::swap(LHS, RHS);
529     CC = ISD::SETULT;
530     break;
531   }
532   }
533 
534   // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of
535   // using the default and/or/xor expansion code which is much longer.
536   if (VT == MVT::i32) {
537     SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
538                                 DAG.getIntPtrConstant(0, DL));
539     SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
540                                 DAG.getIntPtrConstant(1, DL));
541     SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
542                                 DAG.getIntPtrConstant(0, DL));
543     SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
544                                 DAG.getIntPtrConstant(1, DL));
545 
546     if (UseTest) {
547       // When using tst we only care about the highest part.
548       SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi,
549                                 DAG.getIntPtrConstant(1, DL));
550       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
551     } else {
552       Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
553       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
554     }
555   } else if (VT == MVT::i64) {
556     SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
557                                 DAG.getIntPtrConstant(0, DL));
558     SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
559                                 DAG.getIntPtrConstant(1, DL));
560 
561     SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
562                                DAG.getIntPtrConstant(0, DL));
563     SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
564                                DAG.getIntPtrConstant(1, DL));
565     SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
566                                DAG.getIntPtrConstant(0, DL));
567     SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
568                                DAG.getIntPtrConstant(1, DL));
569 
570     SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
571                                 DAG.getIntPtrConstant(0, DL));
572     SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
573                                 DAG.getIntPtrConstant(1, DL));
574 
575     SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
576                                DAG.getIntPtrConstant(0, DL));
577     SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
578                                DAG.getIntPtrConstant(1, DL));
579     SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
580                                DAG.getIntPtrConstant(0, DL));
581     SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
582                                DAG.getIntPtrConstant(1, DL));
583 
584     if (UseTest) {
585       // When using tst we only care about the highest part.
586       SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3,
587                                 DAG.getIntPtrConstant(1, DL));
588       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
589     } else {
590       Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS0, RHS0);
591       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp);
592       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp);
593       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp);
594     }
595   } else if (VT == MVT::i8 || VT == MVT::i16) {
596     if (UseTest) {
597       // When using tst we only care about the highest part.
598       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue,
599                         (VT == MVT::i8)
600                             ? LHS
601                             : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8,
602                                           LHS, DAG.getIntPtrConstant(1, DL)));
603     } else {
604       Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS);
605     }
606   } else {
607     llvm_unreachable("Invalid comparison size");
608   }
609 
610   // When using a test instruction AVRcc is already set.
611   if (!UseTest) {
612     AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8);
613   }
614 
615   return Cmp;
616 }
617 
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const618 SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
619   SDValue Chain = Op.getOperand(0);
620   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
621   SDValue LHS = Op.getOperand(2);
622   SDValue RHS = Op.getOperand(3);
623   SDValue Dest = Op.getOperand(4);
624   SDLoc dl(Op);
625 
626   SDValue TargetCC;
627   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
628 
629   return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC,
630                      Cmp);
631 }
632 
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const633 SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
634   SDValue LHS = Op.getOperand(0);
635   SDValue RHS = Op.getOperand(1);
636   SDValue TrueV = Op.getOperand(2);
637   SDValue FalseV = Op.getOperand(3);
638   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
639   SDLoc dl(Op);
640 
641   SDValue TargetCC;
642   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
643 
644   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
645   SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
646 
647   return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops);
648 }
649 
LowerSETCC(SDValue Op,SelectionDAG & DAG) const650 SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
651   SDValue LHS = Op.getOperand(0);
652   SDValue RHS = Op.getOperand(1);
653   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
654   SDLoc DL(Op);
655 
656   SDValue TargetCC;
657   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL);
658 
659   SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType());
660   SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType());
661   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
662   SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
663 
664   return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops);
665 }
666 
LowerVASTART(SDValue Op,SelectionDAG & DAG) const667 SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
668   const MachineFunction &MF = DAG.getMachineFunction();
669   const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
670   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
671   auto DL = DAG.getDataLayout();
672   SDLoc dl(Op);
673 
674   // Vastart just stores the address of the VarArgsFrameIndex slot into the
675   // memory location argument.
676   SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL));
677 
678   return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
679                       MachinePointerInfo(SV));
680 }
681 
LowerOperation(SDValue Op,SelectionDAG & DAG) const682 SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
683   switch (Op.getOpcode()) {
684   default:
685     llvm_unreachable("Don't know how to custom lower this!");
686   case ISD::SHL:
687   case ISD::SRA:
688   case ISD::SRL:
689   case ISD::ROTL:
690   case ISD::ROTR:
691     return LowerShifts(Op, DAG);
692   case ISD::GlobalAddress:
693     return LowerGlobalAddress(Op, DAG);
694   case ISD::BlockAddress:
695     return LowerBlockAddress(Op, DAG);
696   case ISD::BR_CC:
697     return LowerBR_CC(Op, DAG);
698   case ISD::SELECT_CC:
699     return LowerSELECT_CC(Op, DAG);
700   case ISD::SETCC:
701     return LowerSETCC(Op, DAG);
702   case ISD::VASTART:
703     return LowerVASTART(Op, DAG);
704   case ISD::SDIVREM:
705   case ISD::UDIVREM:
706     return LowerDivRem(Op, DAG);
707   }
708 
709   return SDValue();
710 }
711 
712 /// Replace a node with an illegal result type
713 /// with a new node built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const714 void AVRTargetLowering::ReplaceNodeResults(SDNode *N,
715                                            SmallVectorImpl<SDValue> &Results,
716                                            SelectionDAG &DAG) const {
717   SDLoc DL(N);
718 
719   switch (N->getOpcode()) {
720   case ISD::ADD: {
721     // Convert add (x, imm) into sub (x, -imm).
722     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
723       SDValue Sub = DAG.getNode(
724           ISD::SUB, DL, N->getValueType(0), N->getOperand(0),
725           DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0)));
726       Results.push_back(Sub);
727     }
728     break;
729   }
730   default: {
731     SDValue Res = LowerOperation(SDValue(N, 0), DAG);
732 
733     for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
734       Results.push_back(Res.getValue(I));
735 
736     break;
737   }
738   }
739 }
740 
741 /// Return true if the addressing mode represented
742 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const743 bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL,
744                                               const AddrMode &AM, Type *Ty,
745                                               unsigned AS, Instruction *I) const {
746   int64_t Offs = AM.BaseOffs;
747 
748   // Allow absolute addresses.
749   if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) {
750     return true;
751   }
752 
753   // Flash memory instructions only allow zero offsets.
754   if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) {
755     return false;
756   }
757 
758   // Allow reg+<6bit> offset.
759   if (Offs < 0)
760     Offs = -Offs;
761   if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) {
762     return true;
763   }
764 
765   return false;
766 }
767 
768 /// Returns true by value, base pointer and
769 /// offset pointer and addressing mode by reference if the node's address
770 /// can be legally represented as pre-indexed load / store address.
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const771 bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
772                                                   SDValue &Offset,
773                                                   ISD::MemIndexedMode &AM,
774                                                   SelectionDAG &DAG) const {
775   EVT VT;
776   const SDNode *Op;
777   SDLoc DL(N);
778 
779   if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
780     VT = LD->getMemoryVT();
781     Op = LD->getBasePtr().getNode();
782     if (LD->getExtensionType() != ISD::NON_EXTLOAD)
783       return false;
784     if (AVR::isProgramMemoryAccess(LD)) {
785       return false;
786     }
787   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
788     VT = ST->getMemoryVT();
789     Op = ST->getBasePtr().getNode();
790     if (AVR::isProgramMemoryAccess(ST)) {
791       return false;
792     }
793   } else {
794     return false;
795   }
796 
797   if (VT != MVT::i8 && VT != MVT::i16) {
798     return false;
799   }
800 
801   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
802     return false;
803   }
804 
805   if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
806     int RHSC = RHS->getSExtValue();
807     if (Op->getOpcode() == ISD::SUB)
808       RHSC = -RHSC;
809 
810     if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) {
811       return false;
812     }
813 
814     Base = Op->getOperand(0);
815     Offset = DAG.getConstant(RHSC, DL, MVT::i8);
816     AM = ISD::PRE_DEC;
817 
818     return true;
819   }
820 
821   return false;
822 }
823 
824 /// Returns true by value, base pointer and
825 /// offset pointer and addressing mode by reference if this node can be
826 /// combined with a load / store to form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const827 bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
828                                                    SDValue &Base,
829                                                    SDValue &Offset,
830                                                    ISD::MemIndexedMode &AM,
831                                                    SelectionDAG &DAG) const {
832   EVT VT;
833   SDLoc DL(N);
834 
835   if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
836     VT = LD->getMemoryVT();
837     if (LD->getExtensionType() != ISD::NON_EXTLOAD)
838       return false;
839   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
840     VT = ST->getMemoryVT();
841     if (AVR::isProgramMemoryAccess(ST)) {
842       return false;
843     }
844   } else {
845     return false;
846   }
847 
848   if (VT != MVT::i8 && VT != MVT::i16) {
849     return false;
850   }
851 
852   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
853     return false;
854   }
855 
856   if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
857     int RHSC = RHS->getSExtValue();
858     if (Op->getOpcode() == ISD::SUB)
859       RHSC = -RHSC;
860     if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) {
861       return false;
862     }
863 
864     Base = Op->getOperand(0);
865     Offset = DAG.getConstant(RHSC, DL, MVT::i8);
866     AM = ISD::POST_INC;
867 
868     return true;
869   }
870 
871   return false;
872 }
873 
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const874 bool AVRTargetLowering::isOffsetFoldingLegal(
875     const GlobalAddressSDNode *GA) const {
876   return true;
877 }
878 
879 //===----------------------------------------------------------------------===//
880 //             Formal Arguments Calling Convention Implementation
881 //===----------------------------------------------------------------------===//
882 
883 #include "AVRGenCallingConv.inc"
884 
885 /// Registers for calling conventions, ordered in reverse as required by ABI.
886 /// Both arrays must be of the same length.
887 static const MCPhysReg RegList8[] = {
888     AVR::R25, AVR::R24, AVR::R23, AVR::R22, AVR::R21, AVR::R20,
889     AVR::R19, AVR::R18, AVR::R17, AVR::R16, AVR::R15, AVR::R14,
890     AVR::R13, AVR::R12, AVR::R11, AVR::R10, AVR::R9,  AVR::R8};
891 static const MCPhysReg RegList16[] = {
892     AVR::R26R25, AVR::R25R24, AVR::R24R23, AVR::R23R22,
893     AVR::R22R21, AVR::R21R20, AVR::R20R19, AVR::R19R18,
894     AVR::R18R17, AVR::R17R16, AVR::R16R15, AVR::R15R14,
895     AVR::R14R13, AVR::R13R12, AVR::R12R11, AVR::R11R10,
896     AVR::R10R9,  AVR::R9R8};
897 
898 static_assert(array_lengthof(RegList8) == array_lengthof(RegList16),
899         "8-bit and 16-bit register arrays must be of equal length");
900 
901 /// Analyze incoming and outgoing function arguments. We need custom C++ code
902 /// to handle special constraints in the ABI.
903 /// In addition, all pieces of a certain argument have to be passed either
904 /// using registers or the stack but never mixing both.
905 template <typename ArgT>
906 static void
analyzeArguments(TargetLowering::CallLoweringInfo * CLI,const Function * F,const DataLayout * TD,const SmallVectorImpl<ArgT> & Args,SmallVectorImpl<CCValAssign> & ArgLocs,CCState & CCInfo)907 analyzeArguments(TargetLowering::CallLoweringInfo *CLI, const Function *F,
908                  const DataLayout *TD, const SmallVectorImpl<ArgT> &Args,
909                  SmallVectorImpl<CCValAssign> &ArgLocs, CCState &CCInfo) {
910   unsigned NumArgs = Args.size();
911   // This is the index of the last used register, in RegList*.
912   // -1 means R26 (R26 is never actually used in CC).
913   int RegLastIdx = -1;
914   // Once a value is passed to the stack it will always be used
915   bool UseStack = false;
916   for (unsigned i = 0; i != NumArgs;) {
917     MVT VT = Args[i].VT;
918     // We have to count the number of bytes for each function argument, that is
919     // those Args with the same OrigArgIndex. This is important in case the
920     // function takes an aggregate type.
921     // Current argument will be between [i..j).
922     unsigned ArgIndex = Args[i].OrigArgIndex;
923     unsigned TotalBytes = VT.getStoreSize();
924     unsigned j = i + 1;
925     for (; j != NumArgs; ++j) {
926       if (Args[j].OrigArgIndex != ArgIndex)
927         break;
928       TotalBytes += Args[j].VT.getStoreSize();
929     }
930     // Round up to even number of bytes.
931     TotalBytes = alignTo(TotalBytes, 2);
932     // Skip zero sized arguments
933     if (TotalBytes == 0)
934       continue;
935     // The index of the first register to be used
936     unsigned RegIdx = RegLastIdx + TotalBytes;
937     RegLastIdx = RegIdx;
938     // If there are not enough registers, use the stack
939     if (RegIdx >= array_lengthof(RegList8)) {
940       UseStack = true;
941     }
942     for (; i != j; ++i) {
943       MVT VT = Args[i].VT;
944 
945       if (UseStack) {
946         auto evt = EVT(VT).getTypeForEVT(CCInfo.getContext());
947         unsigned Offset = CCInfo.AllocateStack(TD->getTypeAllocSize(evt),
948                                                TD->getABITypeAlign(evt));
949         CCInfo.addLoc(
950             CCValAssign::getMem(i, VT, Offset, VT, CCValAssign::Full));
951       } else {
952         unsigned Reg;
953         if (VT == MVT::i8) {
954           Reg = CCInfo.AllocateReg(RegList8[RegIdx]);
955         } else if (VT == MVT::i16) {
956           Reg = CCInfo.AllocateReg(RegList16[RegIdx]);
957         } else {
958           llvm_unreachable(
959               "calling convention can only manage i8 and i16 types");
960         }
961         assert(Reg && "register not available in calling convention");
962         CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full));
963         // Registers inside a particular argument are sorted in increasing order
964         // (remember the array is reversed).
965         RegIdx -= VT.getStoreSize();
966       }
967     }
968   }
969 }
970 
971 /// Count the total number of bytes needed to pass or return these arguments.
972 template <typename ArgT>
getTotalArgumentsSizeInBytes(const SmallVectorImpl<ArgT> & Args)973 static unsigned getTotalArgumentsSizeInBytes(const SmallVectorImpl<ArgT> &Args) {
974   unsigned TotalBytes = 0;
975 
976   for (const ArgT& Arg : Args) {
977     TotalBytes += Arg.VT.getStoreSize();
978   }
979   return TotalBytes;
980 }
981 
982 /// Analyze incoming and outgoing value of returning from a function.
983 /// The algorithm is similar to analyzeArguments, but there can only be
984 /// one value, possibly an aggregate, and it is limited to 8 bytes.
985 template <typename ArgT>
analyzeReturnValues(const SmallVectorImpl<ArgT> & Args,CCState & CCInfo)986 static void analyzeReturnValues(const SmallVectorImpl<ArgT> &Args,
987                                 CCState &CCInfo) {
988   unsigned NumArgs = Args.size();
989   unsigned TotalBytes = getTotalArgumentsSizeInBytes(Args);
990   // CanLowerReturn() guarantees this assertion.
991   assert(TotalBytes <= 8 && "return values greater than 8 bytes cannot be lowered");
992 
993   // GCC-ABI says that the size is rounded up to the next even number,
994   // but actually once it is more than 4 it will always round up to 8.
995   if (TotalBytes > 4) {
996     TotalBytes = 8;
997   } else {
998     TotalBytes = alignTo(TotalBytes, 2);
999   }
1000 
1001   // The index of the first register to use.
1002   int RegIdx = TotalBytes - 1;
1003   for (unsigned i = 0; i != NumArgs; ++i) {
1004     MVT VT = Args[i].VT;
1005     unsigned Reg;
1006     if (VT == MVT::i8) {
1007       Reg = CCInfo.AllocateReg(RegList8[RegIdx]);
1008     } else if (VT == MVT::i16) {
1009       Reg = CCInfo.AllocateReg(RegList16[RegIdx]);
1010     } else {
1011       llvm_unreachable("calling convention can only manage i8 and i16 types");
1012     }
1013     assert(Reg && "register not available in calling convention");
1014     CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full));
1015     // Registers sort in increasing order
1016     RegIdx -= VT.getStoreSize();
1017   }
1018 }
1019 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1020 SDValue AVRTargetLowering::LowerFormalArguments(
1021     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1022     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1023     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1024   MachineFunction &MF = DAG.getMachineFunction();
1025   MachineFrameInfo &MFI = MF.getFrameInfo();
1026   auto DL = DAG.getDataLayout();
1027 
1028   // Assign locations to all of the incoming arguments.
1029   SmallVector<CCValAssign, 16> ArgLocs;
1030   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1031                  *DAG.getContext());
1032 
1033   // Variadic functions do not need all the analysis below.
1034   if (isVarArg) {
1035     CCInfo.AnalyzeFormalArguments(Ins, ArgCC_AVR_Vararg);
1036   } else {
1037     analyzeArguments(nullptr, &MF.getFunction(), &DL, Ins, ArgLocs, CCInfo);
1038   }
1039 
1040   SDValue ArgValue;
1041   for (CCValAssign &VA : ArgLocs) {
1042 
1043     // Arguments stored on registers.
1044     if (VA.isRegLoc()) {
1045       EVT RegVT = VA.getLocVT();
1046       const TargetRegisterClass *RC;
1047       if (RegVT == MVT::i8) {
1048         RC = &AVR::GPR8RegClass;
1049       } else if (RegVT == MVT::i16) {
1050         RC = &AVR::DREGSRegClass;
1051       } else {
1052         llvm_unreachable("Unknown argument type!");
1053       }
1054 
1055       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1056       ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1057 
1058       // :NOTE: Clang should not promote any i8 into i16 but for safety the
1059       // following code will handle zexts or sexts generated by other
1060       // front ends. Otherwise:
1061       // If this is an 8 bit value, it is really passed promoted
1062       // to 16 bits. Insert an assert[sz]ext to capture this, then
1063       // truncate to the right size.
1064       switch (VA.getLocInfo()) {
1065       default:
1066         llvm_unreachable("Unknown loc info!");
1067       case CCValAssign::Full:
1068         break;
1069       case CCValAssign::BCvt:
1070         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1071         break;
1072       case CCValAssign::SExt:
1073         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1074                                DAG.getValueType(VA.getValVT()));
1075         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1076         break;
1077       case CCValAssign::ZExt:
1078         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1079                                DAG.getValueType(VA.getValVT()));
1080         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1081         break;
1082       }
1083 
1084       InVals.push_back(ArgValue);
1085     } else {
1086       // Sanity check.
1087       assert(VA.isMemLoc());
1088 
1089       EVT LocVT = VA.getLocVT();
1090 
1091       // Create the frame index object for this incoming parameter.
1092       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1093                                      VA.getLocMemOffset(), true);
1094 
1095       // Create the SelectionDAG nodes corresponding to a load
1096       // from this parameter.
1097       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL));
1098       InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN,
1099                                    MachinePointerInfo::getFixedStack(MF, FI)));
1100     }
1101   }
1102 
1103   // If the function takes variable number of arguments, make a frame index for
1104   // the start of the first vararg value... for expansion of llvm.va_start.
1105   if (isVarArg) {
1106     unsigned StackSize = CCInfo.getNextStackOffset();
1107     AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1108 
1109     AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true));
1110   }
1111 
1112   return Chain;
1113 }
1114 
1115 //===----------------------------------------------------------------------===//
1116 //                  Call Calling Convention Implementation
1117 //===----------------------------------------------------------------------===//
1118 
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1119 SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1120                                      SmallVectorImpl<SDValue> &InVals) const {
1121   SelectionDAG &DAG = CLI.DAG;
1122   SDLoc &DL = CLI.DL;
1123   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1124   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1125   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1126   SDValue Chain = CLI.Chain;
1127   SDValue Callee = CLI.Callee;
1128   bool &isTailCall = CLI.IsTailCall;
1129   CallingConv::ID CallConv = CLI.CallConv;
1130   bool isVarArg = CLI.IsVarArg;
1131 
1132   MachineFunction &MF = DAG.getMachineFunction();
1133 
1134   // AVR does not yet support tail call optimization.
1135   isTailCall = false;
1136 
1137   // Analyze operands of the call, assigning locations to each operand.
1138   SmallVector<CCValAssign, 16> ArgLocs;
1139   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1140                  *DAG.getContext());
1141 
1142   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1143   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1144   // node so that legalize doesn't hack it.
1145   const Function *F = nullptr;
1146   if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1147     const GlobalValue *GV = G->getGlobal();
1148 
1149     F = cast<Function>(GV);
1150     Callee =
1151         DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout()));
1152   } else if (const ExternalSymbolSDNode *ES =
1153                  dyn_cast<ExternalSymbolSDNode>(Callee)) {
1154     Callee = DAG.getTargetExternalSymbol(ES->getSymbol(),
1155                                          getPointerTy(DAG.getDataLayout()));
1156   }
1157 
1158   // Variadic functions do not need all the analysis below.
1159   if (isVarArg) {
1160     CCInfo.AnalyzeCallOperands(Outs, ArgCC_AVR_Vararg);
1161   } else {
1162     analyzeArguments(&CLI, F, &DAG.getDataLayout(), Outs, ArgLocs, CCInfo);
1163   }
1164 
1165   // Get a count of how many bytes are to be pushed on the stack.
1166   unsigned NumBytes = CCInfo.getNextStackOffset();
1167 
1168   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1169 
1170   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1171 
1172   // First, walk the register assignments, inserting copies.
1173   unsigned AI, AE;
1174   bool HasStackArgs = false;
1175   for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) {
1176     CCValAssign &VA = ArgLocs[AI];
1177     EVT RegVT = VA.getLocVT();
1178     SDValue Arg = OutVals[AI];
1179 
1180     // Promote the value if needed. With Clang this should not happen.
1181     switch (VA.getLocInfo()) {
1182     default:
1183       llvm_unreachable("Unknown loc info!");
1184     case CCValAssign::Full:
1185       break;
1186     case CCValAssign::SExt:
1187       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
1188       break;
1189     case CCValAssign::ZExt:
1190       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
1191       break;
1192     case CCValAssign::AExt:
1193       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
1194       break;
1195     case CCValAssign::BCvt:
1196       Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg);
1197       break;
1198     }
1199 
1200     // Stop when we encounter a stack argument, we need to process them
1201     // in reverse order in the loop below.
1202     if (VA.isMemLoc()) {
1203       HasStackArgs = true;
1204       break;
1205     }
1206 
1207     // Arguments that can be passed on registers must be kept in the RegsToPass
1208     // vector.
1209     RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1210   }
1211 
1212   // Second, stack arguments have to walked in reverse order by inserting
1213   // chained stores, this ensures their order is not changed by the scheduler
1214   // and that the push instruction sequence generated is correct, otherwise they
1215   // can be freely intermixed.
1216   if (HasStackArgs) {
1217     for (AE = AI, AI = ArgLocs.size(); AI != AE; --AI) {
1218       unsigned Loc = AI - 1;
1219       CCValAssign &VA = ArgLocs[Loc];
1220       SDValue Arg = OutVals[Loc];
1221 
1222       assert(VA.isMemLoc());
1223 
1224       // SP points to one stack slot further so add one to adjust it.
1225       SDValue PtrOff = DAG.getNode(
1226           ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
1227           DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())),
1228           DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL));
1229 
1230       Chain =
1231           DAG.getStore(Chain, DL, Arg, PtrOff,
1232                        MachinePointerInfo::getStack(MF, VA.getLocMemOffset()));
1233     }
1234   }
1235 
1236   // Build a sequence of copy-to-reg nodes chained together with token chain and
1237   // flag operands which copy the outgoing args into registers.  The InFlag in
1238   // necessary since all emited instructions must be stuck together.
1239   SDValue InFlag;
1240   for (auto Reg : RegsToPass) {
1241     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag);
1242     InFlag = Chain.getValue(1);
1243   }
1244 
1245   // Returns a chain & a flag for retval copy to use.
1246   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1247   SmallVector<SDValue, 8> Ops;
1248   Ops.push_back(Chain);
1249   Ops.push_back(Callee);
1250 
1251   // Add argument registers to the end of the list so that they are known live
1252   // into the call.
1253   for (auto Reg : RegsToPass) {
1254     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
1255   }
1256 
1257   // Add a register mask operand representing the call-preserved registers.
1258   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1259   const uint32_t *Mask =
1260       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
1261   assert(Mask && "Missing call preserved mask for calling convention");
1262   Ops.push_back(DAG.getRegisterMask(Mask));
1263 
1264   if (InFlag.getNode()) {
1265     Ops.push_back(InFlag);
1266   }
1267 
1268   Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops);
1269   InFlag = Chain.getValue(1);
1270 
1271   // Create the CALLSEQ_END node.
1272   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
1273                              DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
1274 
1275   if (!Ins.empty()) {
1276     InFlag = Chain.getValue(1);
1277   }
1278 
1279   // Handle result values, copying them out of physregs into vregs that we
1280   // return.
1281   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG,
1282                          InVals);
1283 }
1284 
1285 /// Lower the result values of a call into the
1286 /// appropriate copies out of appropriate physical registers.
1287 ///
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1288 SDValue AVRTargetLowering::LowerCallResult(
1289     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1290     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1291     SmallVectorImpl<SDValue> &InVals) const {
1292 
1293   // Assign locations to each value returned by this call.
1294   SmallVector<CCValAssign, 16> RVLocs;
1295   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1296                  *DAG.getContext());
1297 
1298   // Handle runtime calling convs.
1299   if (CallConv == CallingConv::AVR_BUILTIN) {
1300     CCInfo.AnalyzeCallResult(Ins, RetCC_AVR_BUILTIN);
1301   } else {
1302     analyzeReturnValues(Ins, CCInfo);
1303   }
1304 
1305   // Copy all of the result registers out of their specified physreg.
1306   for (CCValAssign const &RVLoc : RVLocs) {
1307     Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(),
1308                                InFlag)
1309                 .getValue(1);
1310     InFlag = Chain.getValue(2);
1311     InVals.push_back(Chain.getValue(0));
1312   }
1313 
1314   return Chain;
1315 }
1316 
1317 //===----------------------------------------------------------------------===//
1318 //               Return Value Calling Convention Implementation
1319 //===----------------------------------------------------------------------===//
1320 
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1321 bool AVRTargetLowering::CanLowerReturn(
1322     CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
1323     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
1324   if (CallConv == CallingConv::AVR_BUILTIN) {
1325     SmallVector<CCValAssign, 16> RVLocs;
1326     CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1327     return CCInfo.CheckReturn(Outs, RetCC_AVR_BUILTIN);
1328   }
1329 
1330   unsigned TotalBytes = getTotalArgumentsSizeInBytes(Outs);
1331   return TotalBytes <= 8;
1332 }
1333 
1334 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const1335 AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1336                                bool isVarArg,
1337                                const SmallVectorImpl<ISD::OutputArg> &Outs,
1338                                const SmallVectorImpl<SDValue> &OutVals,
1339                                const SDLoc &dl, SelectionDAG &DAG) const {
1340   // CCValAssign - represent the assignment of the return value to locations.
1341   SmallVector<CCValAssign, 16> RVLocs;
1342 
1343   // CCState - Info about the registers and stack slot.
1344   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1345                  *DAG.getContext());
1346 
1347   MachineFunction &MF = DAG.getMachineFunction();
1348 
1349   // Analyze return values.
1350   if (CallConv == CallingConv::AVR_BUILTIN) {
1351     CCInfo.AnalyzeReturn(Outs, RetCC_AVR_BUILTIN);
1352   } else {
1353     analyzeReturnValues(Outs, CCInfo);
1354   }
1355 
1356   SDValue Flag;
1357   SmallVector<SDValue, 4> RetOps(1, Chain);
1358   // Copy the result values into the output registers.
1359   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1360     CCValAssign &VA = RVLocs[i];
1361     assert(VA.isRegLoc() && "Can only return in registers!");
1362 
1363     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1364 
1365     // Guarantee that all emitted copies are stuck together with flags.
1366     Flag = Chain.getValue(1);
1367     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1368   }
1369 
1370   // Don't emit the ret/reti instruction when the naked attribute is present in
1371   // the function being compiled.
1372   if (MF.getFunction().getAttributes().hasAttribute(
1373           AttributeList::FunctionIndex, Attribute::Naked)) {
1374     return Chain;
1375   }
1376 
1377   const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1378 
1379   unsigned RetOpc =
1380     AFI->isInterruptOrSignalHandler()
1381         ? AVRISD::RETI_FLAG
1382         : AVRISD::RET_FLAG;
1383 
1384   RetOps[0] = Chain; // Update chain.
1385 
1386   if (Flag.getNode()) {
1387     RetOps.push_back(Flag);
1388   }
1389 
1390   return DAG.getNode(RetOpc, dl, MVT::Other, RetOps);
1391 }
1392 
1393 //===----------------------------------------------------------------------===//
1394 //  Custom Inserters
1395 //===----------------------------------------------------------------------===//
1396 
insertShift(MachineInstr & MI,MachineBasicBlock * BB) const1397 MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI,
1398                                                   MachineBasicBlock *BB) const {
1399   unsigned Opc;
1400   const TargetRegisterClass *RC;
1401   bool HasRepeatedOperand = false;
1402   MachineFunction *F = BB->getParent();
1403   MachineRegisterInfo &RI = F->getRegInfo();
1404   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1405   DebugLoc dl = MI.getDebugLoc();
1406 
1407   switch (MI.getOpcode()) {
1408   default:
1409     llvm_unreachable("Invalid shift opcode!");
1410   case AVR::Lsl8:
1411     Opc = AVR::ADDRdRr; // LSL is an alias of ADD Rd, Rd
1412     RC = &AVR::GPR8RegClass;
1413     HasRepeatedOperand = true;
1414     break;
1415   case AVR::Lsl16:
1416     Opc = AVR::LSLWRd;
1417     RC = &AVR::DREGSRegClass;
1418     break;
1419   case AVR::Asr8:
1420     Opc = AVR::ASRRd;
1421     RC = &AVR::GPR8RegClass;
1422     break;
1423   case AVR::Asr16:
1424     Opc = AVR::ASRWRd;
1425     RC = &AVR::DREGSRegClass;
1426     break;
1427   case AVR::Lsr8:
1428     Opc = AVR::LSRRd;
1429     RC = &AVR::GPR8RegClass;
1430     break;
1431   case AVR::Lsr16:
1432     Opc = AVR::LSRWRd;
1433     RC = &AVR::DREGSRegClass;
1434     break;
1435   case AVR::Rol8:
1436     Opc = AVR::ROLBRd;
1437     RC = &AVR::GPR8RegClass;
1438     break;
1439   case AVR::Rol16:
1440     Opc = AVR::ROLWRd;
1441     RC = &AVR::DREGSRegClass;
1442     break;
1443   case AVR::Ror8:
1444     Opc = AVR::RORBRd;
1445     RC = &AVR::GPR8RegClass;
1446     break;
1447   case AVR::Ror16:
1448     Opc = AVR::RORWRd;
1449     RC = &AVR::DREGSRegClass;
1450     break;
1451   }
1452 
1453   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1454 
1455   MachineFunction::iterator I;
1456   for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I);
1457   if (I != F->end()) ++I;
1458 
1459   // Create loop block.
1460   MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1461   MachineBasicBlock *CheckBB = F->CreateMachineBasicBlock(LLVM_BB);
1462   MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1463 
1464   F->insert(I, LoopBB);
1465   F->insert(I, CheckBB);
1466   F->insert(I, RemBB);
1467 
1468   // Update machine-CFG edges by transferring all successors of the current
1469   // block to the block containing instructions after shift.
1470   RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1471                 BB->end());
1472   RemBB->transferSuccessorsAndUpdatePHIs(BB);
1473 
1474   // Add edges BB => LoopBB => CheckBB => RemBB, CheckBB => LoopBB.
1475   BB->addSuccessor(CheckBB);
1476   LoopBB->addSuccessor(CheckBB);
1477   CheckBB->addSuccessor(LoopBB);
1478   CheckBB->addSuccessor(RemBB);
1479 
1480   Register ShiftAmtReg = RI.createVirtualRegister(&AVR::GPR8RegClass);
1481   Register ShiftAmtReg2 = RI.createVirtualRegister(&AVR::GPR8RegClass);
1482   Register ShiftReg = RI.createVirtualRegister(RC);
1483   Register ShiftReg2 = RI.createVirtualRegister(RC);
1484   Register ShiftAmtSrcReg = MI.getOperand(2).getReg();
1485   Register SrcReg = MI.getOperand(1).getReg();
1486   Register DstReg = MI.getOperand(0).getReg();
1487 
1488   // BB:
1489   // rjmp CheckBB
1490   BuildMI(BB, dl, TII.get(AVR::RJMPk)).addMBB(CheckBB);
1491 
1492   // LoopBB:
1493   // ShiftReg2 = shift ShiftReg
1494   auto ShiftMI = BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg);
1495   if (HasRepeatedOperand)
1496     ShiftMI.addReg(ShiftReg);
1497 
1498   // CheckBB:
1499   // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1500   // ShiftAmt = phi [%N,      BB], [%ShiftAmt2, LoopBB]
1501   // DestReg  = phi [%SrcReg, BB], [%ShiftReg,  LoopBB]
1502   // ShiftAmt2 = ShiftAmt - 1;
1503   // if (ShiftAmt2 >= 0) goto LoopBB;
1504   BuildMI(CheckBB, dl, TII.get(AVR::PHI), ShiftReg)
1505       .addReg(SrcReg)
1506       .addMBB(BB)
1507       .addReg(ShiftReg2)
1508       .addMBB(LoopBB);
1509   BuildMI(CheckBB, dl, TII.get(AVR::PHI), ShiftAmtReg)
1510       .addReg(ShiftAmtSrcReg)
1511       .addMBB(BB)
1512       .addReg(ShiftAmtReg2)
1513       .addMBB(LoopBB);
1514   BuildMI(CheckBB, dl, TII.get(AVR::PHI), DstReg)
1515       .addReg(SrcReg)
1516       .addMBB(BB)
1517       .addReg(ShiftReg2)
1518       .addMBB(LoopBB);
1519 
1520   BuildMI(CheckBB, dl, TII.get(AVR::DECRd), ShiftAmtReg2)
1521       .addReg(ShiftAmtReg);
1522   BuildMI(CheckBB, dl, TII.get(AVR::BRPLk)).addMBB(LoopBB);
1523 
1524   MI.eraseFromParent(); // The pseudo instruction is gone now.
1525   return RemBB;
1526 }
1527 
isCopyMulResult(MachineBasicBlock::iterator const & I)1528 static bool isCopyMulResult(MachineBasicBlock::iterator const &I) {
1529   if (I->getOpcode() == AVR::COPY) {
1530     Register SrcReg = I->getOperand(1).getReg();
1531     return (SrcReg == AVR::R0 || SrcReg == AVR::R1);
1532   }
1533 
1534   return false;
1535 }
1536 
1537 // The mul instructions wreak havock on our zero_reg R1. We need to clear it
1538 // after the result has been evacuated. This is probably not the best way to do
1539 // it, but it works for now.
insertMul(MachineInstr & MI,MachineBasicBlock * BB) const1540 MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI,
1541                                                 MachineBasicBlock *BB) const {
1542   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1543   MachineBasicBlock::iterator I(MI);
1544   ++I; // in any case insert *after* the mul instruction
1545   if (isCopyMulResult(I))
1546     ++I;
1547   if (isCopyMulResult(I))
1548     ++I;
1549   BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1)
1550       .addReg(AVR::R1)
1551       .addReg(AVR::R1);
1552   return BB;
1553 }
1554 
1555 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * MBB) const1556 AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1557                                                MachineBasicBlock *MBB) const {
1558   int Opc = MI.getOpcode();
1559 
1560   // Pseudo shift instructions with a non constant shift amount are expanded
1561   // into a loop.
1562   switch (Opc) {
1563   case AVR::Lsl8:
1564   case AVR::Lsl16:
1565   case AVR::Lsr8:
1566   case AVR::Lsr16:
1567   case AVR::Rol8:
1568   case AVR::Rol16:
1569   case AVR::Ror8:
1570   case AVR::Ror16:
1571   case AVR::Asr8:
1572   case AVR::Asr16:
1573     return insertShift(MI, MBB);
1574   case AVR::MULRdRr:
1575   case AVR::MULSRdRr:
1576     return insertMul(MI, MBB);
1577   }
1578 
1579   assert((Opc == AVR::Select16 || Opc == AVR::Select8) &&
1580          "Unexpected instr type to insert");
1581 
1582   const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent()
1583                                 ->getParent()
1584                                 ->getSubtarget()
1585                                 .getInstrInfo();
1586   DebugLoc dl = MI.getDebugLoc();
1587 
1588   // To "insert" a SELECT instruction, we insert the diamond
1589   // control-flow pattern. The incoming instruction knows the
1590   // destination vreg to set, the condition code register to branch
1591   // on, the true/false values to select between, and a branch opcode
1592   // to use.
1593 
1594   MachineFunction *MF = MBB->getParent();
1595   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1596   MachineBasicBlock *FallThrough = MBB->getFallThrough();
1597 
1598   // If the current basic block falls through to another basic block,
1599   // we must insert an unconditional branch to the fallthrough destination
1600   // if we are to insert basic blocks at the prior fallthrough point.
1601   if (FallThrough != nullptr) {
1602     BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(FallThrough);
1603   }
1604 
1605   MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1606   MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1607 
1608   MachineFunction::iterator I;
1609   for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I);
1610   if (I != MF->end()) ++I;
1611   MF->insert(I, trueMBB);
1612   MF->insert(I, falseMBB);
1613 
1614   // Transfer remaining instructions and all successors of the current
1615   // block to the block which will contain the Phi node for the
1616   // select.
1617   trueMBB->splice(trueMBB->begin(), MBB,
1618                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1619   trueMBB->transferSuccessorsAndUpdatePHIs(MBB);
1620 
1621   AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm();
1622   BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB);
1623   BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB);
1624   MBB->addSuccessor(falseMBB);
1625   MBB->addSuccessor(trueMBB);
1626 
1627   // Unconditionally flow back to the true block
1628   BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB);
1629   falseMBB->addSuccessor(trueMBB);
1630 
1631   // Set up the Phi node to determine where we came from
1632   BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg())
1633     .addReg(MI.getOperand(1).getReg())
1634     .addMBB(MBB)
1635     .addReg(MI.getOperand(2).getReg())
1636     .addMBB(falseMBB) ;
1637 
1638   MI.eraseFromParent(); // The pseudo instruction is gone now.
1639   return trueMBB;
1640 }
1641 
1642 //===----------------------------------------------------------------------===//
1643 //  Inline Asm Support
1644 //===----------------------------------------------------------------------===//
1645 
1646 AVRTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const1647 AVRTargetLowering::getConstraintType(StringRef Constraint) const {
1648   if (Constraint.size() == 1) {
1649     // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
1650     switch (Constraint[0]) {
1651     default:
1652       break;
1653     case 'a': // Simple upper registers
1654     case 'b': // Base pointer registers pairs
1655     case 'd': // Upper register
1656     case 'l': // Lower registers
1657     case 'e': // Pointer register pairs
1658     case 'q': // Stack pointer register
1659     case 'r': // Any register
1660     case 'w': // Special upper register pairs
1661       return C_RegisterClass;
1662     case 't': // Temporary register
1663     case 'x': case 'X': // Pointer register pair X
1664     case 'y': case 'Y': // Pointer register pair Y
1665     case 'z': case 'Z': // Pointer register pair Z
1666       return C_Register;
1667     case 'Q': // A memory address based on Y or Z pointer with displacement.
1668       return C_Memory;
1669     case 'G': // Floating point constant
1670     case 'I': // 6-bit positive integer constant
1671     case 'J': // 6-bit negative integer constant
1672     case 'K': // Integer constant (Range: 2)
1673     case 'L': // Integer constant (Range: 0)
1674     case 'M': // 8-bit integer constant
1675     case 'N': // Integer constant (Range: -1)
1676     case 'O': // Integer constant (Range: 8, 16, 24)
1677     case 'P': // Integer constant (Range: 1)
1678     case 'R': // Integer constant (Range: -6 to 5)x
1679       return C_Immediate;
1680     }
1681   }
1682 
1683   return TargetLowering::getConstraintType(Constraint);
1684 }
1685 
1686 unsigned
getInlineAsmMemConstraint(StringRef ConstraintCode) const1687 AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
1688   // Not sure if this is actually the right thing to do, but we got to do
1689   // *something* [agnat]
1690   switch (ConstraintCode[0]) {
1691   case 'Q':
1692     return InlineAsm::Constraint_Q;
1693   }
1694   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1695 }
1696 
1697 AVRTargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const1698 AVRTargetLowering::getSingleConstraintMatchWeight(
1699     AsmOperandInfo &info, const char *constraint) const {
1700   ConstraintWeight weight = CW_Invalid;
1701   Value *CallOperandVal = info.CallOperandVal;
1702 
1703   // If we don't have a value, we can't do a match,
1704   // but allow it at the lowest weight.
1705   // (this behaviour has been copied from the ARM backend)
1706   if (!CallOperandVal) {
1707     return CW_Default;
1708   }
1709 
1710   // Look at the constraint type.
1711   switch (*constraint) {
1712   default:
1713     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1714     break;
1715   case 'd':
1716   case 'r':
1717   case 'l':
1718     weight = CW_Register;
1719     break;
1720   case 'a':
1721   case 'b':
1722   case 'e':
1723   case 'q':
1724   case 't':
1725   case 'w':
1726   case 'x': case 'X':
1727   case 'y': case 'Y':
1728   case 'z': case 'Z':
1729     weight = CW_SpecificReg;
1730     break;
1731   case 'G':
1732     if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) {
1733       if (C->isZero()) {
1734         weight = CW_Constant;
1735       }
1736     }
1737     break;
1738   case 'I':
1739     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1740       if (isUInt<6>(C->getZExtValue())) {
1741         weight = CW_Constant;
1742       }
1743     }
1744     break;
1745   case 'J':
1746     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1747       if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) {
1748         weight = CW_Constant;
1749       }
1750     }
1751     break;
1752   case 'K':
1753     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1754       if (C->getZExtValue() == 2) {
1755         weight = CW_Constant;
1756       }
1757     }
1758     break;
1759   case 'L':
1760     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1761       if (C->getZExtValue() == 0) {
1762         weight = CW_Constant;
1763       }
1764     }
1765     break;
1766   case 'M':
1767     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1768       if (isUInt<8>(C->getZExtValue())) {
1769         weight = CW_Constant;
1770       }
1771     }
1772     break;
1773   case 'N':
1774     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1775       if (C->getSExtValue() == -1) {
1776         weight = CW_Constant;
1777       }
1778     }
1779     break;
1780   case 'O':
1781     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1782       if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) ||
1783           (C->getZExtValue() == 24)) {
1784         weight = CW_Constant;
1785       }
1786     }
1787     break;
1788   case 'P':
1789     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1790       if (C->getZExtValue() == 1) {
1791         weight = CW_Constant;
1792       }
1793     }
1794     break;
1795   case 'R':
1796     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1797       if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) {
1798         weight = CW_Constant;
1799       }
1800     }
1801     break;
1802   case 'Q':
1803     weight = CW_Memory;
1804     break;
1805   }
1806 
1807   return weight;
1808 }
1809 
1810 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const1811 AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1812                                                 StringRef Constraint,
1813                                                 MVT VT) const {
1814   // We only support i8 and i16.
1815   //
1816   //:FIXME: remove this assert for now since it gets sometimes executed
1817   // assert((VT == MVT::i16 || VT == MVT::i8) && "Wrong operand type.");
1818 
1819   if (Constraint.size() == 1) {
1820     switch (Constraint[0]) {
1821     case 'a': // Simple upper registers r16..r23.
1822       return std::make_pair(0U, &AVR::LD8loRegClass);
1823     case 'b': // Base pointer registers: y, z.
1824       return std::make_pair(0U, &AVR::PTRDISPREGSRegClass);
1825     case 'd': // Upper registers r16..r31.
1826       return std::make_pair(0U, &AVR::LD8RegClass);
1827     case 'l': // Lower registers r0..r15.
1828       return std::make_pair(0U, &AVR::GPR8loRegClass);
1829     case 'e': // Pointer register pairs: x, y, z.
1830       return std::make_pair(0U, &AVR::PTRREGSRegClass);
1831     case 'q': // Stack pointer register: SPH:SPL.
1832       return std::make_pair(0U, &AVR::GPRSPRegClass);
1833     case 'r': // Any register: r0..r31.
1834       if (VT == MVT::i8)
1835         return std::make_pair(0U, &AVR::GPR8RegClass);
1836 
1837       assert(VT == MVT::i16 && "inline asm constraint too large");
1838       return std::make_pair(0U, &AVR::DREGSRegClass);
1839     case 't': // Temporary register: r0.
1840       return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass);
1841     case 'w': // Special upper register pairs: r24, r26, r28, r30.
1842       return std::make_pair(0U, &AVR::IWREGSRegClass);
1843     case 'x': // Pointer register pair X: r27:r26.
1844     case 'X':
1845       return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass);
1846     case 'y': // Pointer register pair Y: r29:r28.
1847     case 'Y':
1848       return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass);
1849     case 'z': // Pointer register pair Z: r31:r30.
1850     case 'Z':
1851       return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass);
1852     default:
1853       break;
1854     }
1855   }
1856 
1857   return TargetLowering::getRegForInlineAsmConstraint(
1858       Subtarget.getRegisterInfo(), Constraint, VT);
1859 }
1860 
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const1861 void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1862                                                      std::string &Constraint,
1863                                                      std::vector<SDValue> &Ops,
1864                                                      SelectionDAG &DAG) const {
1865   SDValue Result(0, 0);
1866   SDLoc DL(Op);
1867   EVT Ty = Op.getValueType();
1868 
1869   // Currently only support length 1 constraints.
1870   if (Constraint.length() != 1) {
1871     return;
1872   }
1873 
1874   char ConstraintLetter = Constraint[0];
1875   switch (ConstraintLetter) {
1876   default:
1877     break;
1878   // Deal with integers first:
1879   case 'I':
1880   case 'J':
1881   case 'K':
1882   case 'L':
1883   case 'M':
1884   case 'N':
1885   case 'O':
1886   case 'P':
1887   case 'R': {
1888     const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1889     if (!C) {
1890       return;
1891     }
1892 
1893     int64_t CVal64 = C->getSExtValue();
1894     uint64_t CUVal64 = C->getZExtValue();
1895     switch (ConstraintLetter) {
1896     case 'I': // 0..63
1897       if (!isUInt<6>(CUVal64))
1898         return;
1899       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1900       break;
1901     case 'J': // -63..0
1902       if (CVal64 < -63 || CVal64 > 0)
1903         return;
1904       Result = DAG.getTargetConstant(CVal64, DL, Ty);
1905       break;
1906     case 'K': // 2
1907       if (CUVal64 != 2)
1908         return;
1909       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1910       break;
1911     case 'L': // 0
1912       if (CUVal64 != 0)
1913         return;
1914       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1915       break;
1916     case 'M': // 0..255
1917       if (!isUInt<8>(CUVal64))
1918         return;
1919       // i8 type may be printed as a negative number,
1920       // e.g. 254 would be printed as -2,
1921       // so we force it to i16 at least.
1922       if (Ty.getSimpleVT() == MVT::i8) {
1923         Ty = MVT::i16;
1924       }
1925       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1926       break;
1927     case 'N': // -1
1928       if (CVal64 != -1)
1929         return;
1930       Result = DAG.getTargetConstant(CVal64, DL, Ty);
1931       break;
1932     case 'O': // 8, 16, 24
1933       if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24)
1934         return;
1935       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1936       break;
1937     case 'P': // 1
1938       if (CUVal64 != 1)
1939         return;
1940       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1941       break;
1942     case 'R': // -6..5
1943       if (CVal64 < -6 || CVal64 > 5)
1944         return;
1945       Result = DAG.getTargetConstant(CVal64, DL, Ty);
1946       break;
1947     }
1948 
1949     break;
1950   }
1951   case 'G':
1952     const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op);
1953     if (!FC || !FC->isZero())
1954       return;
1955     // Soften float to i8 0
1956     Result = DAG.getTargetConstant(0, DL, MVT::i8);
1957     break;
1958   }
1959 
1960   if (Result.getNode()) {
1961     Ops.push_back(Result);
1962     return;
1963   }
1964 
1965   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1966 }
1967 
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const1968 Register AVRTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1969                                               const MachineFunction &MF) const {
1970   Register Reg;
1971 
1972   if (VT == LLT::scalar(8)) {
1973     Reg = StringSwitch<unsigned>(RegName)
1974       .Case("r0", AVR::R0).Case("r1", AVR::R1).Case("r2", AVR::R2)
1975       .Case("r3", AVR::R3).Case("r4", AVR::R4).Case("r5", AVR::R5)
1976       .Case("r6", AVR::R6).Case("r7", AVR::R7).Case("r8", AVR::R8)
1977       .Case("r9", AVR::R9).Case("r10", AVR::R10).Case("r11", AVR::R11)
1978       .Case("r12", AVR::R12).Case("r13", AVR::R13).Case("r14", AVR::R14)
1979       .Case("r15", AVR::R15).Case("r16", AVR::R16).Case("r17", AVR::R17)
1980       .Case("r18", AVR::R18).Case("r19", AVR::R19).Case("r20", AVR::R20)
1981       .Case("r21", AVR::R21).Case("r22", AVR::R22).Case("r23", AVR::R23)
1982       .Case("r24", AVR::R24).Case("r25", AVR::R25).Case("r26", AVR::R26)
1983       .Case("r27", AVR::R27).Case("r28", AVR::R28).Case("r29", AVR::R29)
1984       .Case("r30", AVR::R30).Case("r31", AVR::R31)
1985       .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
1986       .Default(0);
1987   } else {
1988     Reg = StringSwitch<unsigned>(RegName)
1989       .Case("r0", AVR::R1R0).Case("r2", AVR::R3R2)
1990       .Case("r4", AVR::R5R4).Case("r6", AVR::R7R6)
1991       .Case("r8", AVR::R9R8).Case("r10", AVR::R11R10)
1992       .Case("r12", AVR::R13R12).Case("r14", AVR::R15R14)
1993       .Case("r16", AVR::R17R16).Case("r18", AVR::R19R18)
1994       .Case("r20", AVR::R21R20).Case("r22", AVR::R23R22)
1995       .Case("r24", AVR::R25R24).Case("r26", AVR::R27R26)
1996       .Case("r28", AVR::R29R28).Case("r30", AVR::R31R30)
1997       .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
1998       .Default(0);
1999   }
2000 
2001   if (Reg)
2002     return Reg;
2003 
2004   report_fatal_error("Invalid register name global variable");
2005 }
2006 
2007 } // end of namespace llvm
2008