1 //===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that NVPTX uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "NVPTXISelLowering.h"
15 #include "MCTargetDesc/NVPTXBaseInfo.h"
16 #include "NVPTX.h"
17 #include "NVPTXSubtarget.h"
18 #include "NVPTXTargetMachine.h"
19 #include "NVPTXTargetObjectFile.h"
20 #include "NVPTXUtilities.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/CodeGen/TargetCallingConv.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/ValueTypes.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CodeGen.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <iterator>
59 #include <sstream>
60 #include <string>
61 #include <utility>
62 #include <vector>
63 
64 #define DEBUG_TYPE "nvptx-lower"
65 
66 using namespace llvm;
67 
68 static unsigned int uniqueCallSite = 0;
69 
70 static cl::opt<bool> sched4reg(
71     "nvptx-sched4reg",
72     cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
73 
74 static cl::opt<unsigned>
75 FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden,
76                     cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
77                              " 1: do it  2: do it aggressively"),
78                     cl::init(2));
79 
80 static cl::opt<int> UsePrecDivF32(
81     "nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden,
82     cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
83              " IEEE Compliant F32 div.rnd if available."),
84     cl::init(2));
85 
86 static cl::opt<bool> UsePrecSqrtF32(
87     "nvptx-prec-sqrtf32", cl::Hidden,
88     cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
89     cl::init(true));
90 
getDivF32Level() const91 int NVPTXTargetLowering::getDivF32Level() const {
92   if (UsePrecDivF32.getNumOccurrences() > 0) {
93     // If nvptx-prec-div32=N is used on the command-line, always honor it
94     return UsePrecDivF32;
95   } else {
96     // Otherwise, use div.approx if fast math is enabled
97     if (getTargetMachine().Options.UnsafeFPMath)
98       return 0;
99     else
100       return 2;
101   }
102 }
103 
usePrecSqrtF32() const104 bool NVPTXTargetLowering::usePrecSqrtF32() const {
105   if (UsePrecSqrtF32.getNumOccurrences() > 0) {
106     // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
107     return UsePrecSqrtF32;
108   } else {
109     // Otherwise, use sqrt.approx if fast math is enabled
110     return !getTargetMachine().Options.UnsafeFPMath;
111   }
112 }
113 
useF32FTZ(const MachineFunction & MF) const114 bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const {
115   return MF.getDenormalMode(APFloat::IEEEsingle()).Output ==
116          DenormalMode::PreserveSign;
117 }
118 
IsPTXVectorType(MVT VT)119 static bool IsPTXVectorType(MVT VT) {
120   switch (VT.SimpleTy) {
121   default:
122     return false;
123   case MVT::v2i1:
124   case MVT::v4i1:
125   case MVT::v2i8:
126   case MVT::v4i8:
127   case MVT::v2i16:
128   case MVT::v4i16:
129   case MVT::v2i32:
130   case MVT::v4i32:
131   case MVT::v2i64:
132   case MVT::v2f16:
133   case MVT::v4f16:
134   case MVT::v8f16: // <4 x f16x2>
135   case MVT::v2f32:
136   case MVT::v4f32:
137   case MVT::v2f64:
138     return true;
139   }
140 }
141 
142 /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
143 /// EVTs that compose it.  Unlike ComputeValueVTs, this will break apart vectors
144 /// into their primitive components.
145 /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
146 /// same number of types as the Ins/Outs arrays in LowerFormalArguments,
147 /// LowerCall, and LowerReturn.
ComputePTXValueVTs(const TargetLowering & TLI,const DataLayout & DL,Type * Ty,SmallVectorImpl<EVT> & ValueVTs,SmallVectorImpl<uint64_t> * Offsets=nullptr,uint64_t StartingOffset=0)148 static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
149                                Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
150                                SmallVectorImpl<uint64_t> *Offsets = nullptr,
151                                uint64_t StartingOffset = 0) {
152   SmallVector<EVT, 16> TempVTs;
153   SmallVector<uint64_t, 16> TempOffsets;
154 
155   // Special case for i128 - decompose to (i64, i64)
156   if (Ty->isIntegerTy(128)) {
157     ValueVTs.push_back(EVT(MVT::i64));
158     ValueVTs.push_back(EVT(MVT::i64));
159 
160     if (Offsets) {
161       Offsets->push_back(StartingOffset + 0);
162       Offsets->push_back(StartingOffset + 8);
163     }
164 
165     return;
166   }
167 
168   // Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs.
169   if (StructType *STy = dyn_cast<StructType>(Ty)) {
170     auto const *SL = DL.getStructLayout(STy);
171     auto ElementNum = 0;
172     for(auto *EI : STy->elements()) {
173       ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets,
174                          StartingOffset + SL->getElementOffset(ElementNum));
175       ++ElementNum;
176     }
177     return;
178   }
179 
180   ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
181   for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
182     EVT VT = TempVTs[i];
183     uint64_t Off = TempOffsets[i];
184     // Split vectors into individual elements, except for v2f16, which
185     // we will pass as a single scalar.
186     if (VT.isVector()) {
187       unsigned NumElts = VT.getVectorNumElements();
188       EVT EltVT = VT.getVectorElementType();
189       // Vectors with an even number of f16 elements will be passed to
190       // us as an array of v2f16 elements. We must match this so we
191       // stay in sync with Ins/Outs.
192       if (EltVT == MVT::f16 && NumElts % 2 == 0) {
193         EltVT = MVT::v2f16;
194         NumElts /= 2;
195       }
196       for (unsigned j = 0; j != NumElts; ++j) {
197         ValueVTs.push_back(EltVT);
198         if (Offsets)
199           Offsets->push_back(Off + j * EltVT.getStoreSize());
200       }
201     } else {
202       ValueVTs.push_back(VT);
203       if (Offsets)
204         Offsets->push_back(Off);
205     }
206   }
207 }
208 
209 // Check whether we can merge loads/stores of some of the pieces of a
210 // flattened function parameter or return value into a single vector
211 // load/store.
212 //
213 // The flattened parameter is represented as a list of EVTs and
214 // offsets, and the whole structure is aligned to ParamAlignment. This
215 // function determines whether we can load/store pieces of the
216 // parameter starting at index Idx using a single vectorized op of
217 // size AccessSize. If so, it returns the number of param pieces
218 // covered by the vector op. Otherwise, it returns 1.
CanMergeParamLoadStoresStartingAt(unsigned Idx,uint32_t AccessSize,const SmallVectorImpl<EVT> & ValueVTs,const SmallVectorImpl<uint64_t> & Offsets,Align ParamAlignment)219 static unsigned CanMergeParamLoadStoresStartingAt(
220     unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
221     const SmallVectorImpl<uint64_t> &Offsets, Align ParamAlignment) {
222 
223   // Can't vectorize if param alignment is not sufficient.
224   if (ParamAlignment < AccessSize)
225     return 1;
226   // Can't vectorize if offset is not aligned.
227   if (Offsets[Idx] & (AccessSize - 1))
228     return 1;
229 
230   EVT EltVT = ValueVTs[Idx];
231   unsigned EltSize = EltVT.getStoreSize();
232 
233   // Element is too large to vectorize.
234   if (EltSize >= AccessSize)
235     return 1;
236 
237   unsigned NumElts = AccessSize / EltSize;
238   // Can't vectorize if AccessBytes if not a multiple of EltSize.
239   if (AccessSize != EltSize * NumElts)
240     return 1;
241 
242   // We don't have enough elements to vectorize.
243   if (Idx + NumElts > ValueVTs.size())
244     return 1;
245 
246   // PTX ISA can only deal with 2- and 4-element vector ops.
247   if (NumElts != 4 && NumElts != 2)
248     return 1;
249 
250   for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
251     // Types do not match.
252     if (ValueVTs[j] != EltVT)
253       return 1;
254 
255     // Elements are not contiguous.
256     if (Offsets[j] - Offsets[j - 1] != EltSize)
257       return 1;
258   }
259   // OK. We can vectorize ValueVTs[i..i+NumElts)
260   return NumElts;
261 }
262 
263 // Flags for tracking per-element vectorization state of loads/stores
264 // of a flattened function parameter or return value.
265 enum ParamVectorizationFlags {
266   PVF_INNER = 0x0, // Middle elements of a vector.
267   PVF_FIRST = 0x1, // First element of the vector.
268   PVF_LAST = 0x2,  // Last element of the vector.
269   // Scalar is effectively a 1-element vector.
270   PVF_SCALAR = PVF_FIRST | PVF_LAST
271 };
272 
273 // Computes whether and how we can vectorize the loads/stores of a
274 // flattened function parameter or return value.
275 //
276 // The flattened parameter is represented as the list of ValueVTs and
277 // Offsets, and is aligned to ParamAlignment bytes. We return a vector
278 // of the same size as ValueVTs indicating how each piece should be
279 // loaded/stored (i.e. as a scalar, or as part of a vector
280 // load/store).
281 static SmallVector<ParamVectorizationFlags, 16>
VectorizePTXValueVTs(const SmallVectorImpl<EVT> & ValueVTs,const SmallVectorImpl<uint64_t> & Offsets,Align ParamAlignment)282 VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs,
283                      const SmallVectorImpl<uint64_t> &Offsets,
284                      Align ParamAlignment) {
285   // Set vector size to match ValueVTs and mark all elements as
286   // scalars by default.
287   SmallVector<ParamVectorizationFlags, 16> VectorInfo;
288   VectorInfo.assign(ValueVTs.size(), PVF_SCALAR);
289 
290   // Check what we can vectorize using 128/64/32-bit accesses.
291   for (int I = 0, E = ValueVTs.size(); I != E; ++I) {
292     // Skip elements we've already processed.
293     assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state.");
294     for (unsigned AccessSize : {16, 8, 4, 2}) {
295       unsigned NumElts = CanMergeParamLoadStoresStartingAt(
296           I, AccessSize, ValueVTs, Offsets, ParamAlignment);
297       // Mark vectorized elements.
298       switch (NumElts) {
299       default:
300         llvm_unreachable("Unexpected return value");
301       case 1:
302         // Can't vectorize using this size, try next smaller size.
303         continue;
304       case 2:
305         assert(I + 1 < E && "Not enough elements.");
306         VectorInfo[I] = PVF_FIRST;
307         VectorInfo[I + 1] = PVF_LAST;
308         I += 1;
309         break;
310       case 4:
311         assert(I + 3 < E && "Not enough elements.");
312         VectorInfo[I] = PVF_FIRST;
313         VectorInfo[I + 1] = PVF_INNER;
314         VectorInfo[I + 2] = PVF_INNER;
315         VectorInfo[I + 3] = PVF_LAST;
316         I += 3;
317         break;
318       }
319       // Break out of the inner loop because we've already succeeded
320       // using largest possible AccessSize.
321       break;
322     }
323   }
324   return VectorInfo;
325 }
326 
327 // NVPTXTargetLowering Constructor.
NVPTXTargetLowering(const NVPTXTargetMachine & TM,const NVPTXSubtarget & STI)328 NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
329                                          const NVPTXSubtarget &STI)
330     : TargetLowering(TM), nvTM(&TM), STI(STI) {
331   // always lower memset, memcpy, and memmove intrinsics to load/store
332   // instructions, rather
333   // then generating calls to memset, mempcy or memmove.
334   MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
335   MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
336   MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
337 
338   setBooleanContents(ZeroOrNegativeOneBooleanContent);
339   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
340 
341   // Jump is Expensive. Don't create extra control flow for 'and', 'or'
342   // condition branches.
343   setJumpIsExpensive(true);
344 
345   // Wide divides are _very_ slow. Try to reduce the width of the divide if
346   // possible.
347   addBypassSlowDiv(64, 32);
348 
349   // By default, use the Source scheduling
350   if (sched4reg)
351     setSchedulingPreference(Sched::RegPressure);
352   else
353     setSchedulingPreference(Sched::Source);
354 
355   auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
356                                     LegalizeAction NoF16Action) {
357     setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action);
358   };
359 
360   addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
361   addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
362   addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
363   addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
364   addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
365   addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
366   addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass);
367   addRegisterClass(MVT::v2f16, &NVPTX::Float16x2RegsRegClass);
368 
369   // Conversion to/from FP16/FP16x2 is always legal.
370   setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal);
371   setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal);
372   setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
373   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
374   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand);
375   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand);
376 
377   setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
378   setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
379 
380   // Operations not directly supported by NVPTX.
381   for (MVT VT : {MVT::f16, MVT::v2f16, MVT::f32, MVT::f64, MVT::i1, MVT::i8,
382                  MVT::i16, MVT::i32, MVT::i64}) {
383     setOperationAction(ISD::SELECT_CC, VT, Expand);
384     setOperationAction(ISD::BR_CC, VT, Expand);
385   }
386 
387   // Some SIGN_EXTEND_INREG can be done using cvt instruction.
388   // For others we will expand to a SHL/SRA pair.
389   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
390   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
391   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
392   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
393   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
394 
395   setOperationAction(ISD::SHL_PARTS, MVT::i32  , Custom);
396   setOperationAction(ISD::SRA_PARTS, MVT::i32  , Custom);
397   setOperationAction(ISD::SRL_PARTS, MVT::i32  , Custom);
398   setOperationAction(ISD::SHL_PARTS, MVT::i64  , Custom);
399   setOperationAction(ISD::SRA_PARTS, MVT::i64  , Custom);
400   setOperationAction(ISD::SRL_PARTS, MVT::i64  , Custom);
401 
402   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
403   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
404 
405   // TODO: we may consider expanding ROTL/ROTR on older GPUs.  Currently on GPUs
406   // that don't have h/w rotation we lower them to multi-instruction assembly.
407   // See ROT*_sw in NVPTXIntrInfo.td
408   setOperationAction(ISD::ROTL, MVT::i64, Legal);
409   setOperationAction(ISD::ROTR, MVT::i64, Legal);
410   setOperationAction(ISD::ROTL, MVT::i32, Legal);
411   setOperationAction(ISD::ROTR, MVT::i32, Legal);
412 
413   setOperationAction(ISD::ROTL, MVT::i16, Expand);
414   setOperationAction(ISD::ROTR, MVT::i16, Expand);
415   setOperationAction(ISD::ROTL, MVT::i8, Expand);
416   setOperationAction(ISD::ROTR, MVT::i8, Expand);
417   setOperationAction(ISD::BSWAP, MVT::i16, Expand);
418   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
419   setOperationAction(ISD::BSWAP, MVT::i64, Expand);
420 
421   // Indirect branch is not supported.
422   // This also disables Jump Table creation.
423   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
424   setOperationAction(ISD::BRIND, MVT::Other, Expand);
425 
426   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
427   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
428 
429   // We want to legalize constant related memmove and memcopy
430   // intrinsics.
431   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
432 
433   // Turn FP extload into load/fpextend
434   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
435   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
436   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
437   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
438   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
439   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
440   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
441   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
442   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
443   // Turn FP truncstore into trunc + store.
444   // FIXME: vector types should also be expanded
445   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
446   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
447   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
448 
449   // PTX does not support load / store predicate registers
450   setOperationAction(ISD::LOAD, MVT::i1, Custom);
451   setOperationAction(ISD::STORE, MVT::i1, Custom);
452 
453   for (MVT VT : MVT::integer_valuetypes()) {
454     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
455     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
456     setTruncStoreAction(VT, MVT::i1, Expand);
457   }
458 
459   // This is legal in NVPTX
460   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
461   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
462   setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
463 
464   // TRAP can be lowered to PTX trap
465   setOperationAction(ISD::TRAP, MVT::Other, Legal);
466 
467   // Register custom handling for vector loads/stores
468   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
469     if (IsPTXVectorType(VT)) {
470       setOperationAction(ISD::LOAD, VT, Custom);
471       setOperationAction(ISD::STORE, VT, Custom);
472       setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
473     }
474   }
475 
476   // Custom handling for i8 intrinsics
477   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
478 
479   for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) {
480     setOperationAction(ISD::ABS,  Ty, Legal);
481     setOperationAction(ISD::SMIN, Ty, Legal);
482     setOperationAction(ISD::SMAX, Ty, Legal);
483     setOperationAction(ISD::UMIN, Ty, Legal);
484     setOperationAction(ISD::UMAX, Ty, Legal);
485 
486     setOperationAction(ISD::CTPOP, Ty, Legal);
487     setOperationAction(ISD::CTLZ, Ty, Legal);
488   }
489 
490   setOperationAction(ISD::CTTZ, MVT::i16, Expand);
491   setOperationAction(ISD::CTTZ, MVT::i32, Expand);
492   setOperationAction(ISD::CTTZ, MVT::i64, Expand);
493 
494   // PTX does not directly support SELP of i1, so promote to i32 first
495   setOperationAction(ISD::SELECT, MVT::i1, Custom);
496 
497   // PTX cannot multiply two i64s in a single instruction.
498   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
499   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
500 
501   // We have some custom DAG combine patterns for these nodes
502   setTargetDAGCombine(ISD::ADD);
503   setTargetDAGCombine(ISD::AND);
504   setTargetDAGCombine(ISD::FADD);
505   setTargetDAGCombine(ISD::MUL);
506   setTargetDAGCombine(ISD::SHL);
507   setTargetDAGCombine(ISD::SREM);
508   setTargetDAGCombine(ISD::UREM);
509 
510   // setcc for f16x2 needs special handling to prevent legalizer's
511   // attempt to scalarize it due to v2i1 not being legal.
512   if (STI.allowFP16Math())
513     setTargetDAGCombine(ISD::SETCC);
514 
515   // Promote fp16 arithmetic if fp16 hardware isn't available or the
516   // user passed --nvptx-no-fp16-math. The flag is useful because,
517   // although sm_53+ GPUs have some sort of FP16 support in
518   // hardware, only sm_53 and sm_60 have full implementation. Others
519   // only have token amount of hardware and are likely to run faster
520   // by using fp32 units instead.
521   for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
522     setFP16OperationAction(Op, MVT::f16, Legal, Promote);
523     setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
524   }
525 
526   // There's no neg.f16 instruction. Expand to (0-x).
527   setOperationAction(ISD::FNEG, MVT::f16, Expand);
528   setOperationAction(ISD::FNEG, MVT::v2f16, Expand);
529 
530   // (would be) Library functions.
531 
532   // These map to conversion instructions for scalar FP types.
533   for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
534                          ISD::FTRUNC}) {
535     setOperationAction(Op, MVT::f16, Legal);
536     setOperationAction(Op, MVT::f32, Legal);
537     setOperationAction(Op, MVT::f64, Legal);
538     setOperationAction(Op, MVT::v2f16, Expand);
539   }
540 
541   setOperationAction(ISD::FROUND, MVT::f16, Promote);
542   setOperationAction(ISD::FROUND, MVT::v2f16, Expand);
543   setOperationAction(ISD::FROUND, MVT::f32, Custom);
544   setOperationAction(ISD::FROUND, MVT::f64, Custom);
545 
546 
547   // 'Expand' implements FCOPYSIGN without calling an external library.
548   setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
549   setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand);
550   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
551   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
552 
553   // These map to corresponding instructions for f32/f64. f16 must be
554   // promoted to f32. v2f16 is expanded to f16, which is then promoted
555   // to f32.
556   for (const auto &Op : {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS,
557                          ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM}) {
558     setOperationAction(Op, MVT::f16, Promote);
559     setOperationAction(Op, MVT::f32, Legal);
560     setOperationAction(Op, MVT::f64, Legal);
561     setOperationAction(Op, MVT::v2f16, Expand);
562   }
563   setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
564   setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
565   setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
566   setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
567 
568   // No FEXP2, FLOG2.  The PTX ex2 and log2 functions are always approximate.
569   // No FPOW or FREM in PTX.
570 
571   // Now deduce the information based on the above mentioned
572   // actions
573   computeRegisterProperties(STI.getRegisterInfo());
574 }
575 
getTargetNodeName(unsigned Opcode) const576 const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
577   switch ((NVPTXISD::NodeType)Opcode) {
578   case NVPTXISD::FIRST_NUMBER:
579     break;
580   case NVPTXISD::CALL:
581     return "NVPTXISD::CALL";
582   case NVPTXISD::RET_FLAG:
583     return "NVPTXISD::RET_FLAG";
584   case NVPTXISD::LOAD_PARAM:
585     return "NVPTXISD::LOAD_PARAM";
586   case NVPTXISD::Wrapper:
587     return "NVPTXISD::Wrapper";
588   case NVPTXISD::DeclareParam:
589     return "NVPTXISD::DeclareParam";
590   case NVPTXISD::DeclareScalarParam:
591     return "NVPTXISD::DeclareScalarParam";
592   case NVPTXISD::DeclareRet:
593     return "NVPTXISD::DeclareRet";
594   case NVPTXISD::DeclareScalarRet:
595     return "NVPTXISD::DeclareScalarRet";
596   case NVPTXISD::DeclareRetParam:
597     return "NVPTXISD::DeclareRetParam";
598   case NVPTXISD::PrintCall:
599     return "NVPTXISD::PrintCall";
600   case NVPTXISD::PrintConvergentCall:
601     return "NVPTXISD::PrintConvergentCall";
602   case NVPTXISD::PrintCallUni:
603     return "NVPTXISD::PrintCallUni";
604   case NVPTXISD::PrintConvergentCallUni:
605     return "NVPTXISD::PrintConvergentCallUni";
606   case NVPTXISD::LoadParam:
607     return "NVPTXISD::LoadParam";
608   case NVPTXISD::LoadParamV2:
609     return "NVPTXISD::LoadParamV2";
610   case NVPTXISD::LoadParamV4:
611     return "NVPTXISD::LoadParamV4";
612   case NVPTXISD::StoreParam:
613     return "NVPTXISD::StoreParam";
614   case NVPTXISD::StoreParamV2:
615     return "NVPTXISD::StoreParamV2";
616   case NVPTXISD::StoreParamV4:
617     return "NVPTXISD::StoreParamV4";
618   case NVPTXISD::StoreParamS32:
619     return "NVPTXISD::StoreParamS32";
620   case NVPTXISD::StoreParamU32:
621     return "NVPTXISD::StoreParamU32";
622   case NVPTXISD::CallArgBegin:
623     return "NVPTXISD::CallArgBegin";
624   case NVPTXISD::CallArg:
625     return "NVPTXISD::CallArg";
626   case NVPTXISD::LastCallArg:
627     return "NVPTXISD::LastCallArg";
628   case NVPTXISD::CallArgEnd:
629     return "NVPTXISD::CallArgEnd";
630   case NVPTXISD::CallVoid:
631     return "NVPTXISD::CallVoid";
632   case NVPTXISD::CallVal:
633     return "NVPTXISD::CallVal";
634   case NVPTXISD::CallSymbol:
635     return "NVPTXISD::CallSymbol";
636   case NVPTXISD::Prototype:
637     return "NVPTXISD::Prototype";
638   case NVPTXISD::MoveParam:
639     return "NVPTXISD::MoveParam";
640   case NVPTXISD::StoreRetval:
641     return "NVPTXISD::StoreRetval";
642   case NVPTXISD::StoreRetvalV2:
643     return "NVPTXISD::StoreRetvalV2";
644   case NVPTXISD::StoreRetvalV4:
645     return "NVPTXISD::StoreRetvalV4";
646   case NVPTXISD::PseudoUseParam:
647     return "NVPTXISD::PseudoUseParam";
648   case NVPTXISD::RETURN:
649     return "NVPTXISD::RETURN";
650   case NVPTXISD::CallSeqBegin:
651     return "NVPTXISD::CallSeqBegin";
652   case NVPTXISD::CallSeqEnd:
653     return "NVPTXISD::CallSeqEnd";
654   case NVPTXISD::CallPrototype:
655     return "NVPTXISD::CallPrototype";
656   case NVPTXISD::ProxyReg:
657     return "NVPTXISD::ProxyReg";
658   case NVPTXISD::LoadV2:
659     return "NVPTXISD::LoadV2";
660   case NVPTXISD::LoadV4:
661     return "NVPTXISD::LoadV4";
662   case NVPTXISD::LDGV2:
663     return "NVPTXISD::LDGV2";
664   case NVPTXISD::LDGV4:
665     return "NVPTXISD::LDGV4";
666   case NVPTXISD::LDUV2:
667     return "NVPTXISD::LDUV2";
668   case NVPTXISD::LDUV4:
669     return "NVPTXISD::LDUV4";
670   case NVPTXISD::StoreV2:
671     return "NVPTXISD::StoreV2";
672   case NVPTXISD::StoreV4:
673     return "NVPTXISD::StoreV4";
674   case NVPTXISD::FUN_SHFL_CLAMP:
675     return "NVPTXISD::FUN_SHFL_CLAMP";
676   case NVPTXISD::FUN_SHFR_CLAMP:
677     return "NVPTXISD::FUN_SHFR_CLAMP";
678   case NVPTXISD::IMAD:
679     return "NVPTXISD::IMAD";
680   case NVPTXISD::SETP_F16X2:
681     return "NVPTXISD::SETP_F16X2";
682   case NVPTXISD::Dummy:
683     return "NVPTXISD::Dummy";
684   case NVPTXISD::MUL_WIDE_SIGNED:
685     return "NVPTXISD::MUL_WIDE_SIGNED";
686   case NVPTXISD::MUL_WIDE_UNSIGNED:
687     return "NVPTXISD::MUL_WIDE_UNSIGNED";
688   case NVPTXISD::Tex1DFloatS32:        return "NVPTXISD::Tex1DFloatS32";
689   case NVPTXISD::Tex1DFloatFloat:      return "NVPTXISD::Tex1DFloatFloat";
690   case NVPTXISD::Tex1DFloatFloatLevel:
691     return "NVPTXISD::Tex1DFloatFloatLevel";
692   case NVPTXISD::Tex1DFloatFloatGrad:
693     return "NVPTXISD::Tex1DFloatFloatGrad";
694   case NVPTXISD::Tex1DS32S32:          return "NVPTXISD::Tex1DS32S32";
695   case NVPTXISD::Tex1DS32Float:        return "NVPTXISD::Tex1DS32Float";
696   case NVPTXISD::Tex1DS32FloatLevel:
697     return "NVPTXISD::Tex1DS32FloatLevel";
698   case NVPTXISD::Tex1DS32FloatGrad:
699     return "NVPTXISD::Tex1DS32FloatGrad";
700   case NVPTXISD::Tex1DU32S32:          return "NVPTXISD::Tex1DU32S32";
701   case NVPTXISD::Tex1DU32Float:        return "NVPTXISD::Tex1DU32Float";
702   case NVPTXISD::Tex1DU32FloatLevel:
703     return "NVPTXISD::Tex1DU32FloatLevel";
704   case NVPTXISD::Tex1DU32FloatGrad:
705     return "NVPTXISD::Tex1DU32FloatGrad";
706   case NVPTXISD::Tex1DArrayFloatS32:   return "NVPTXISD::Tex1DArrayFloatS32";
707   case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
708   case NVPTXISD::Tex1DArrayFloatFloatLevel:
709     return "NVPTXISD::Tex1DArrayFloatFloatLevel";
710   case NVPTXISD::Tex1DArrayFloatFloatGrad:
711     return "NVPTXISD::Tex1DArrayFloatFloatGrad";
712   case NVPTXISD::Tex1DArrayS32S32:     return "NVPTXISD::Tex1DArrayS32S32";
713   case NVPTXISD::Tex1DArrayS32Float:   return "NVPTXISD::Tex1DArrayS32Float";
714   case NVPTXISD::Tex1DArrayS32FloatLevel:
715     return "NVPTXISD::Tex1DArrayS32FloatLevel";
716   case NVPTXISD::Tex1DArrayS32FloatGrad:
717     return "NVPTXISD::Tex1DArrayS32FloatGrad";
718   case NVPTXISD::Tex1DArrayU32S32:     return "NVPTXISD::Tex1DArrayU32S32";
719   case NVPTXISD::Tex1DArrayU32Float:   return "NVPTXISD::Tex1DArrayU32Float";
720   case NVPTXISD::Tex1DArrayU32FloatLevel:
721     return "NVPTXISD::Tex1DArrayU32FloatLevel";
722   case NVPTXISD::Tex1DArrayU32FloatGrad:
723     return "NVPTXISD::Tex1DArrayU32FloatGrad";
724   case NVPTXISD::Tex2DFloatS32:        return "NVPTXISD::Tex2DFloatS32";
725   case NVPTXISD::Tex2DFloatFloat:      return "NVPTXISD::Tex2DFloatFloat";
726   case NVPTXISD::Tex2DFloatFloatLevel:
727     return "NVPTXISD::Tex2DFloatFloatLevel";
728   case NVPTXISD::Tex2DFloatFloatGrad:
729     return "NVPTXISD::Tex2DFloatFloatGrad";
730   case NVPTXISD::Tex2DS32S32:          return "NVPTXISD::Tex2DS32S32";
731   case NVPTXISD::Tex2DS32Float:        return "NVPTXISD::Tex2DS32Float";
732   case NVPTXISD::Tex2DS32FloatLevel:
733     return "NVPTXISD::Tex2DS32FloatLevel";
734   case NVPTXISD::Tex2DS32FloatGrad:
735     return "NVPTXISD::Tex2DS32FloatGrad";
736   case NVPTXISD::Tex2DU32S32:          return "NVPTXISD::Tex2DU32S32";
737   case NVPTXISD::Tex2DU32Float:        return "NVPTXISD::Tex2DU32Float";
738   case NVPTXISD::Tex2DU32FloatLevel:
739     return "NVPTXISD::Tex2DU32FloatLevel";
740   case NVPTXISD::Tex2DU32FloatGrad:
741     return "NVPTXISD::Tex2DU32FloatGrad";
742   case NVPTXISD::Tex2DArrayFloatS32:   return "NVPTXISD::Tex2DArrayFloatS32";
743   case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
744   case NVPTXISD::Tex2DArrayFloatFloatLevel:
745     return "NVPTXISD::Tex2DArrayFloatFloatLevel";
746   case NVPTXISD::Tex2DArrayFloatFloatGrad:
747     return "NVPTXISD::Tex2DArrayFloatFloatGrad";
748   case NVPTXISD::Tex2DArrayS32S32:     return "NVPTXISD::Tex2DArrayS32S32";
749   case NVPTXISD::Tex2DArrayS32Float:   return "NVPTXISD::Tex2DArrayS32Float";
750   case NVPTXISD::Tex2DArrayS32FloatLevel:
751     return "NVPTXISD::Tex2DArrayS32FloatLevel";
752   case NVPTXISD::Tex2DArrayS32FloatGrad:
753     return "NVPTXISD::Tex2DArrayS32FloatGrad";
754   case NVPTXISD::Tex2DArrayU32S32:     return "NVPTXISD::Tex2DArrayU32S32";
755   case NVPTXISD::Tex2DArrayU32Float:   return "NVPTXISD::Tex2DArrayU32Float";
756   case NVPTXISD::Tex2DArrayU32FloatLevel:
757     return "NVPTXISD::Tex2DArrayU32FloatLevel";
758   case NVPTXISD::Tex2DArrayU32FloatGrad:
759     return "NVPTXISD::Tex2DArrayU32FloatGrad";
760   case NVPTXISD::Tex3DFloatS32:        return "NVPTXISD::Tex3DFloatS32";
761   case NVPTXISD::Tex3DFloatFloat:      return "NVPTXISD::Tex3DFloatFloat";
762   case NVPTXISD::Tex3DFloatFloatLevel:
763     return "NVPTXISD::Tex3DFloatFloatLevel";
764   case NVPTXISD::Tex3DFloatFloatGrad:
765     return "NVPTXISD::Tex3DFloatFloatGrad";
766   case NVPTXISD::Tex3DS32S32:          return "NVPTXISD::Tex3DS32S32";
767   case NVPTXISD::Tex3DS32Float:        return "NVPTXISD::Tex3DS32Float";
768   case NVPTXISD::Tex3DS32FloatLevel:
769     return "NVPTXISD::Tex3DS32FloatLevel";
770   case NVPTXISD::Tex3DS32FloatGrad:
771     return "NVPTXISD::Tex3DS32FloatGrad";
772   case NVPTXISD::Tex3DU32S32:          return "NVPTXISD::Tex3DU32S32";
773   case NVPTXISD::Tex3DU32Float:        return "NVPTXISD::Tex3DU32Float";
774   case NVPTXISD::Tex3DU32FloatLevel:
775     return "NVPTXISD::Tex3DU32FloatLevel";
776   case NVPTXISD::Tex3DU32FloatGrad:
777     return "NVPTXISD::Tex3DU32FloatGrad";
778   case NVPTXISD::TexCubeFloatFloat:      return "NVPTXISD::TexCubeFloatFloat";
779   case NVPTXISD::TexCubeFloatFloatLevel:
780     return "NVPTXISD::TexCubeFloatFloatLevel";
781   case NVPTXISD::TexCubeS32Float:        return "NVPTXISD::TexCubeS32Float";
782   case NVPTXISD::TexCubeS32FloatLevel:
783     return "NVPTXISD::TexCubeS32FloatLevel";
784   case NVPTXISD::TexCubeU32Float:        return "NVPTXISD::TexCubeU32Float";
785   case NVPTXISD::TexCubeU32FloatLevel:
786     return "NVPTXISD::TexCubeU32FloatLevel";
787   case NVPTXISD::TexCubeArrayFloatFloat:
788     return "NVPTXISD::TexCubeArrayFloatFloat";
789   case NVPTXISD::TexCubeArrayFloatFloatLevel:
790     return "NVPTXISD::TexCubeArrayFloatFloatLevel";
791   case NVPTXISD::TexCubeArrayS32Float:
792     return "NVPTXISD::TexCubeArrayS32Float";
793   case NVPTXISD::TexCubeArrayS32FloatLevel:
794     return "NVPTXISD::TexCubeArrayS32FloatLevel";
795   case NVPTXISD::TexCubeArrayU32Float:
796     return "NVPTXISD::TexCubeArrayU32Float";
797   case NVPTXISD::TexCubeArrayU32FloatLevel:
798     return "NVPTXISD::TexCubeArrayU32FloatLevel";
799   case NVPTXISD::Tld4R2DFloatFloat:
800     return "NVPTXISD::Tld4R2DFloatFloat";
801   case NVPTXISD::Tld4G2DFloatFloat:
802     return "NVPTXISD::Tld4G2DFloatFloat";
803   case NVPTXISD::Tld4B2DFloatFloat:
804     return "NVPTXISD::Tld4B2DFloatFloat";
805   case NVPTXISD::Tld4A2DFloatFloat:
806     return "NVPTXISD::Tld4A2DFloatFloat";
807   case NVPTXISD::Tld4R2DS64Float:
808     return "NVPTXISD::Tld4R2DS64Float";
809   case NVPTXISD::Tld4G2DS64Float:
810     return "NVPTXISD::Tld4G2DS64Float";
811   case NVPTXISD::Tld4B2DS64Float:
812     return "NVPTXISD::Tld4B2DS64Float";
813   case NVPTXISD::Tld4A2DS64Float:
814     return "NVPTXISD::Tld4A2DS64Float";
815   case NVPTXISD::Tld4R2DU64Float:
816     return "NVPTXISD::Tld4R2DU64Float";
817   case NVPTXISD::Tld4G2DU64Float:
818     return "NVPTXISD::Tld4G2DU64Float";
819   case NVPTXISD::Tld4B2DU64Float:
820     return "NVPTXISD::Tld4B2DU64Float";
821   case NVPTXISD::Tld4A2DU64Float:
822     return "NVPTXISD::Tld4A2DU64Float";
823 
824   case NVPTXISD::TexUnified1DFloatS32:
825     return "NVPTXISD::TexUnified1DFloatS32";
826   case NVPTXISD::TexUnified1DFloatFloat:
827     return "NVPTXISD::TexUnified1DFloatFloat";
828   case NVPTXISD::TexUnified1DFloatFloatLevel:
829     return "NVPTXISD::TexUnified1DFloatFloatLevel";
830   case NVPTXISD::TexUnified1DFloatFloatGrad:
831     return "NVPTXISD::TexUnified1DFloatFloatGrad";
832   case NVPTXISD::TexUnified1DS32S32:
833     return "NVPTXISD::TexUnified1DS32S32";
834   case NVPTXISD::TexUnified1DS32Float:
835     return "NVPTXISD::TexUnified1DS32Float";
836   case NVPTXISD::TexUnified1DS32FloatLevel:
837     return "NVPTXISD::TexUnified1DS32FloatLevel";
838   case NVPTXISD::TexUnified1DS32FloatGrad:
839     return "NVPTXISD::TexUnified1DS32FloatGrad";
840   case NVPTXISD::TexUnified1DU32S32:
841     return "NVPTXISD::TexUnified1DU32S32";
842   case NVPTXISD::TexUnified1DU32Float:
843     return "NVPTXISD::TexUnified1DU32Float";
844   case NVPTXISD::TexUnified1DU32FloatLevel:
845     return "NVPTXISD::TexUnified1DU32FloatLevel";
846   case NVPTXISD::TexUnified1DU32FloatGrad:
847     return "NVPTXISD::TexUnified1DU32FloatGrad";
848   case NVPTXISD::TexUnified1DArrayFloatS32:
849     return "NVPTXISD::TexUnified1DArrayFloatS32";
850   case NVPTXISD::TexUnified1DArrayFloatFloat:
851     return "NVPTXISD::TexUnified1DArrayFloatFloat";
852   case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
853     return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
854   case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
855     return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
856   case NVPTXISD::TexUnified1DArrayS32S32:
857     return "NVPTXISD::TexUnified1DArrayS32S32";
858   case NVPTXISD::TexUnified1DArrayS32Float:
859     return "NVPTXISD::TexUnified1DArrayS32Float";
860   case NVPTXISD::TexUnified1DArrayS32FloatLevel:
861     return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
862   case NVPTXISD::TexUnified1DArrayS32FloatGrad:
863     return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
864   case NVPTXISD::TexUnified1DArrayU32S32:
865     return "NVPTXISD::TexUnified1DArrayU32S32";
866   case NVPTXISD::TexUnified1DArrayU32Float:
867     return "NVPTXISD::TexUnified1DArrayU32Float";
868   case NVPTXISD::TexUnified1DArrayU32FloatLevel:
869     return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
870   case NVPTXISD::TexUnified1DArrayU32FloatGrad:
871     return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
872   case NVPTXISD::TexUnified2DFloatS32:
873     return "NVPTXISD::TexUnified2DFloatS32";
874   case NVPTXISD::TexUnified2DFloatFloat:
875     return "NVPTXISD::TexUnified2DFloatFloat";
876   case NVPTXISD::TexUnified2DFloatFloatLevel:
877     return "NVPTXISD::TexUnified2DFloatFloatLevel";
878   case NVPTXISD::TexUnified2DFloatFloatGrad:
879     return "NVPTXISD::TexUnified2DFloatFloatGrad";
880   case NVPTXISD::TexUnified2DS32S32:
881     return "NVPTXISD::TexUnified2DS32S32";
882   case NVPTXISD::TexUnified2DS32Float:
883     return "NVPTXISD::TexUnified2DS32Float";
884   case NVPTXISD::TexUnified2DS32FloatLevel:
885     return "NVPTXISD::TexUnified2DS32FloatLevel";
886   case NVPTXISD::TexUnified2DS32FloatGrad:
887     return "NVPTXISD::TexUnified2DS32FloatGrad";
888   case NVPTXISD::TexUnified2DU32S32:
889     return "NVPTXISD::TexUnified2DU32S32";
890   case NVPTXISD::TexUnified2DU32Float:
891     return "NVPTXISD::TexUnified2DU32Float";
892   case NVPTXISD::TexUnified2DU32FloatLevel:
893     return "NVPTXISD::TexUnified2DU32FloatLevel";
894   case NVPTXISD::TexUnified2DU32FloatGrad:
895     return "NVPTXISD::TexUnified2DU32FloatGrad";
896   case NVPTXISD::TexUnified2DArrayFloatS32:
897     return "NVPTXISD::TexUnified2DArrayFloatS32";
898   case NVPTXISD::TexUnified2DArrayFloatFloat:
899     return "NVPTXISD::TexUnified2DArrayFloatFloat";
900   case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
901     return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
902   case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
903     return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
904   case NVPTXISD::TexUnified2DArrayS32S32:
905     return "NVPTXISD::TexUnified2DArrayS32S32";
906   case NVPTXISD::TexUnified2DArrayS32Float:
907     return "NVPTXISD::TexUnified2DArrayS32Float";
908   case NVPTXISD::TexUnified2DArrayS32FloatLevel:
909     return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
910   case NVPTXISD::TexUnified2DArrayS32FloatGrad:
911     return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
912   case NVPTXISD::TexUnified2DArrayU32S32:
913     return "NVPTXISD::TexUnified2DArrayU32S32";
914   case NVPTXISD::TexUnified2DArrayU32Float:
915     return "NVPTXISD::TexUnified2DArrayU32Float";
916   case NVPTXISD::TexUnified2DArrayU32FloatLevel:
917     return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
918   case NVPTXISD::TexUnified2DArrayU32FloatGrad:
919     return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
920   case NVPTXISD::TexUnified3DFloatS32:
921     return "NVPTXISD::TexUnified3DFloatS32";
922   case NVPTXISD::TexUnified3DFloatFloat:
923     return "NVPTXISD::TexUnified3DFloatFloat";
924   case NVPTXISD::TexUnified3DFloatFloatLevel:
925     return "NVPTXISD::TexUnified3DFloatFloatLevel";
926   case NVPTXISD::TexUnified3DFloatFloatGrad:
927     return "NVPTXISD::TexUnified3DFloatFloatGrad";
928   case NVPTXISD::TexUnified3DS32S32:
929     return "NVPTXISD::TexUnified3DS32S32";
930   case NVPTXISD::TexUnified3DS32Float:
931     return "NVPTXISD::TexUnified3DS32Float";
932   case NVPTXISD::TexUnified3DS32FloatLevel:
933     return "NVPTXISD::TexUnified3DS32FloatLevel";
934   case NVPTXISD::TexUnified3DS32FloatGrad:
935     return "NVPTXISD::TexUnified3DS32FloatGrad";
936   case NVPTXISD::TexUnified3DU32S32:
937     return "NVPTXISD::TexUnified3DU32S32";
938   case NVPTXISD::TexUnified3DU32Float:
939     return "NVPTXISD::TexUnified3DU32Float";
940   case NVPTXISD::TexUnified3DU32FloatLevel:
941     return "NVPTXISD::TexUnified3DU32FloatLevel";
942   case NVPTXISD::TexUnified3DU32FloatGrad:
943     return "NVPTXISD::TexUnified3DU32FloatGrad";
944   case NVPTXISD::TexUnifiedCubeFloatFloat:
945     return "NVPTXISD::TexUnifiedCubeFloatFloat";
946   case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
947     return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
948   case NVPTXISD::TexUnifiedCubeS32Float:
949     return "NVPTXISD::TexUnifiedCubeS32Float";
950   case NVPTXISD::TexUnifiedCubeS32FloatLevel:
951     return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
952   case NVPTXISD::TexUnifiedCubeU32Float:
953     return "NVPTXISD::TexUnifiedCubeU32Float";
954   case NVPTXISD::TexUnifiedCubeU32FloatLevel:
955     return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
956   case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
957     return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
958   case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
959     return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
960   case NVPTXISD::TexUnifiedCubeArrayS32Float:
961     return "NVPTXISD::TexUnifiedCubeArrayS32Float";
962   case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
963     return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
964   case NVPTXISD::TexUnifiedCubeArrayU32Float:
965     return "NVPTXISD::TexUnifiedCubeArrayU32Float";
966   case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
967     return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
968   case NVPTXISD::Tld4UnifiedR2DFloatFloat:
969     return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
970   case NVPTXISD::Tld4UnifiedG2DFloatFloat:
971     return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
972   case NVPTXISD::Tld4UnifiedB2DFloatFloat:
973     return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
974   case NVPTXISD::Tld4UnifiedA2DFloatFloat:
975     return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
976   case NVPTXISD::Tld4UnifiedR2DS64Float:
977     return "NVPTXISD::Tld4UnifiedR2DS64Float";
978   case NVPTXISD::Tld4UnifiedG2DS64Float:
979     return "NVPTXISD::Tld4UnifiedG2DS64Float";
980   case NVPTXISD::Tld4UnifiedB2DS64Float:
981     return "NVPTXISD::Tld4UnifiedB2DS64Float";
982   case NVPTXISD::Tld4UnifiedA2DS64Float:
983     return "NVPTXISD::Tld4UnifiedA2DS64Float";
984   case NVPTXISD::Tld4UnifiedR2DU64Float:
985     return "NVPTXISD::Tld4UnifiedR2DU64Float";
986   case NVPTXISD::Tld4UnifiedG2DU64Float:
987     return "NVPTXISD::Tld4UnifiedG2DU64Float";
988   case NVPTXISD::Tld4UnifiedB2DU64Float:
989     return "NVPTXISD::Tld4UnifiedB2DU64Float";
990   case NVPTXISD::Tld4UnifiedA2DU64Float:
991     return "NVPTXISD::Tld4UnifiedA2DU64Float";
992 
993   case NVPTXISD::Suld1DI8Clamp:          return "NVPTXISD::Suld1DI8Clamp";
994   case NVPTXISD::Suld1DI16Clamp:         return "NVPTXISD::Suld1DI16Clamp";
995   case NVPTXISD::Suld1DI32Clamp:         return "NVPTXISD::Suld1DI32Clamp";
996   case NVPTXISD::Suld1DI64Clamp:         return "NVPTXISD::Suld1DI64Clamp";
997   case NVPTXISD::Suld1DV2I8Clamp:        return "NVPTXISD::Suld1DV2I8Clamp";
998   case NVPTXISD::Suld1DV2I16Clamp:       return "NVPTXISD::Suld1DV2I16Clamp";
999   case NVPTXISD::Suld1DV2I32Clamp:       return "NVPTXISD::Suld1DV2I32Clamp";
1000   case NVPTXISD::Suld1DV2I64Clamp:       return "NVPTXISD::Suld1DV2I64Clamp";
1001   case NVPTXISD::Suld1DV4I8Clamp:        return "NVPTXISD::Suld1DV4I8Clamp";
1002   case NVPTXISD::Suld1DV4I16Clamp:       return "NVPTXISD::Suld1DV4I16Clamp";
1003   case NVPTXISD::Suld1DV4I32Clamp:       return "NVPTXISD::Suld1DV4I32Clamp";
1004 
1005   case NVPTXISD::Suld1DArrayI8Clamp:   return "NVPTXISD::Suld1DArrayI8Clamp";
1006   case NVPTXISD::Suld1DArrayI16Clamp:  return "NVPTXISD::Suld1DArrayI16Clamp";
1007   case NVPTXISD::Suld1DArrayI32Clamp:  return "NVPTXISD::Suld1DArrayI32Clamp";
1008   case NVPTXISD::Suld1DArrayI64Clamp:  return "NVPTXISD::Suld1DArrayI64Clamp";
1009   case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
1010   case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
1011   case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
1012   case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
1013   case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
1014   case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
1015   case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";
1016 
1017   case NVPTXISD::Suld2DI8Clamp:          return "NVPTXISD::Suld2DI8Clamp";
1018   case NVPTXISD::Suld2DI16Clamp:         return "NVPTXISD::Suld2DI16Clamp";
1019   case NVPTXISD::Suld2DI32Clamp:         return "NVPTXISD::Suld2DI32Clamp";
1020   case NVPTXISD::Suld2DI64Clamp:         return "NVPTXISD::Suld2DI64Clamp";
1021   case NVPTXISD::Suld2DV2I8Clamp:        return "NVPTXISD::Suld2DV2I8Clamp";
1022   case NVPTXISD::Suld2DV2I16Clamp:       return "NVPTXISD::Suld2DV2I16Clamp";
1023   case NVPTXISD::Suld2DV2I32Clamp:       return "NVPTXISD::Suld2DV2I32Clamp";
1024   case NVPTXISD::Suld2DV2I64Clamp:       return "NVPTXISD::Suld2DV2I64Clamp";
1025   case NVPTXISD::Suld2DV4I8Clamp:        return "NVPTXISD::Suld2DV4I8Clamp";
1026   case NVPTXISD::Suld2DV4I16Clamp:       return "NVPTXISD::Suld2DV4I16Clamp";
1027   case NVPTXISD::Suld2DV4I32Clamp:       return "NVPTXISD::Suld2DV4I32Clamp";
1028 
1029   case NVPTXISD::Suld2DArrayI8Clamp:   return "NVPTXISD::Suld2DArrayI8Clamp";
1030   case NVPTXISD::Suld2DArrayI16Clamp:  return "NVPTXISD::Suld2DArrayI16Clamp";
1031   case NVPTXISD::Suld2DArrayI32Clamp:  return "NVPTXISD::Suld2DArrayI32Clamp";
1032   case NVPTXISD::Suld2DArrayI64Clamp:  return "NVPTXISD::Suld2DArrayI64Clamp";
1033   case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
1034   case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
1035   case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
1036   case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
1037   case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
1038   case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
1039   case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";
1040 
1041   case NVPTXISD::Suld3DI8Clamp:          return "NVPTXISD::Suld3DI8Clamp";
1042   case NVPTXISD::Suld3DI16Clamp:         return "NVPTXISD::Suld3DI16Clamp";
1043   case NVPTXISD::Suld3DI32Clamp:         return "NVPTXISD::Suld3DI32Clamp";
1044   case NVPTXISD::Suld3DI64Clamp:         return "NVPTXISD::Suld3DI64Clamp";
1045   case NVPTXISD::Suld3DV2I8Clamp:        return "NVPTXISD::Suld3DV2I8Clamp";
1046   case NVPTXISD::Suld3DV2I16Clamp:       return "NVPTXISD::Suld3DV2I16Clamp";
1047   case NVPTXISD::Suld3DV2I32Clamp:       return "NVPTXISD::Suld3DV2I32Clamp";
1048   case NVPTXISD::Suld3DV2I64Clamp:       return "NVPTXISD::Suld3DV2I64Clamp";
1049   case NVPTXISD::Suld3DV4I8Clamp:        return "NVPTXISD::Suld3DV4I8Clamp";
1050   case NVPTXISD::Suld3DV4I16Clamp:       return "NVPTXISD::Suld3DV4I16Clamp";
1051   case NVPTXISD::Suld3DV4I32Clamp:       return "NVPTXISD::Suld3DV4I32Clamp";
1052 
1053   case NVPTXISD::Suld1DI8Trap:          return "NVPTXISD::Suld1DI8Trap";
1054   case NVPTXISD::Suld1DI16Trap:         return "NVPTXISD::Suld1DI16Trap";
1055   case NVPTXISD::Suld1DI32Trap:         return "NVPTXISD::Suld1DI32Trap";
1056   case NVPTXISD::Suld1DI64Trap:         return "NVPTXISD::Suld1DI64Trap";
1057   case NVPTXISD::Suld1DV2I8Trap:        return "NVPTXISD::Suld1DV2I8Trap";
1058   case NVPTXISD::Suld1DV2I16Trap:       return "NVPTXISD::Suld1DV2I16Trap";
1059   case NVPTXISD::Suld1DV2I32Trap:       return "NVPTXISD::Suld1DV2I32Trap";
1060   case NVPTXISD::Suld1DV2I64Trap:       return "NVPTXISD::Suld1DV2I64Trap";
1061   case NVPTXISD::Suld1DV4I8Trap:        return "NVPTXISD::Suld1DV4I8Trap";
1062   case NVPTXISD::Suld1DV4I16Trap:       return "NVPTXISD::Suld1DV4I16Trap";
1063   case NVPTXISD::Suld1DV4I32Trap:       return "NVPTXISD::Suld1DV4I32Trap";
1064 
1065   case NVPTXISD::Suld1DArrayI8Trap:     return "NVPTXISD::Suld1DArrayI8Trap";
1066   case NVPTXISD::Suld1DArrayI16Trap:    return "NVPTXISD::Suld1DArrayI16Trap";
1067   case NVPTXISD::Suld1DArrayI32Trap:    return "NVPTXISD::Suld1DArrayI32Trap";
1068   case NVPTXISD::Suld1DArrayI64Trap:    return "NVPTXISD::Suld1DArrayI64Trap";
1069   case NVPTXISD::Suld1DArrayV2I8Trap:   return "NVPTXISD::Suld1DArrayV2I8Trap";
1070   case NVPTXISD::Suld1DArrayV2I16Trap:  return "NVPTXISD::Suld1DArrayV2I16Trap";
1071   case NVPTXISD::Suld1DArrayV2I32Trap:  return "NVPTXISD::Suld1DArrayV2I32Trap";
1072   case NVPTXISD::Suld1DArrayV2I64Trap:  return "NVPTXISD::Suld1DArrayV2I64Trap";
1073   case NVPTXISD::Suld1DArrayV4I8Trap:   return "NVPTXISD::Suld1DArrayV4I8Trap";
1074   case NVPTXISD::Suld1DArrayV4I16Trap:  return "NVPTXISD::Suld1DArrayV4I16Trap";
1075   case NVPTXISD::Suld1DArrayV4I32Trap:  return "NVPTXISD::Suld1DArrayV4I32Trap";
1076 
1077   case NVPTXISD::Suld2DI8Trap:          return "NVPTXISD::Suld2DI8Trap";
1078   case NVPTXISD::Suld2DI16Trap:         return "NVPTXISD::Suld2DI16Trap";
1079   case NVPTXISD::Suld2DI32Trap:         return "NVPTXISD::Suld2DI32Trap";
1080   case NVPTXISD::Suld2DI64Trap:         return "NVPTXISD::Suld2DI64Trap";
1081   case NVPTXISD::Suld2DV2I8Trap:        return "NVPTXISD::Suld2DV2I8Trap";
1082   case NVPTXISD::Suld2DV2I16Trap:       return "NVPTXISD::Suld2DV2I16Trap";
1083   case NVPTXISD::Suld2DV2I32Trap:       return "NVPTXISD::Suld2DV2I32Trap";
1084   case NVPTXISD::Suld2DV2I64Trap:       return "NVPTXISD::Suld2DV2I64Trap";
1085   case NVPTXISD::Suld2DV4I8Trap:        return "NVPTXISD::Suld2DV4I8Trap";
1086   case NVPTXISD::Suld2DV4I16Trap:       return "NVPTXISD::Suld2DV4I16Trap";
1087   case NVPTXISD::Suld2DV4I32Trap:       return "NVPTXISD::Suld2DV4I32Trap";
1088 
1089   case NVPTXISD::Suld2DArrayI8Trap:     return "NVPTXISD::Suld2DArrayI8Trap";
1090   case NVPTXISD::Suld2DArrayI16Trap:    return "NVPTXISD::Suld2DArrayI16Trap";
1091   case NVPTXISD::Suld2DArrayI32Trap:    return "NVPTXISD::Suld2DArrayI32Trap";
1092   case NVPTXISD::Suld2DArrayI64Trap:    return "NVPTXISD::Suld2DArrayI64Trap";
1093   case NVPTXISD::Suld2DArrayV2I8Trap:   return "NVPTXISD::Suld2DArrayV2I8Trap";
1094   case NVPTXISD::Suld2DArrayV2I16Trap:  return "NVPTXISD::Suld2DArrayV2I16Trap";
1095   case NVPTXISD::Suld2DArrayV2I32Trap:  return "NVPTXISD::Suld2DArrayV2I32Trap";
1096   case NVPTXISD::Suld2DArrayV2I64Trap:  return "NVPTXISD::Suld2DArrayV2I64Trap";
1097   case NVPTXISD::Suld2DArrayV4I8Trap:   return "NVPTXISD::Suld2DArrayV4I8Trap";
1098   case NVPTXISD::Suld2DArrayV4I16Trap:  return "NVPTXISD::Suld2DArrayV4I16Trap";
1099   case NVPTXISD::Suld2DArrayV4I32Trap:  return "NVPTXISD::Suld2DArrayV4I32Trap";
1100 
1101   case NVPTXISD::Suld3DI8Trap:          return "NVPTXISD::Suld3DI8Trap";
1102   case NVPTXISD::Suld3DI16Trap:         return "NVPTXISD::Suld3DI16Trap";
1103   case NVPTXISD::Suld3DI32Trap:         return "NVPTXISD::Suld3DI32Trap";
1104   case NVPTXISD::Suld3DI64Trap:         return "NVPTXISD::Suld3DI64Trap";
1105   case NVPTXISD::Suld3DV2I8Trap:        return "NVPTXISD::Suld3DV2I8Trap";
1106   case NVPTXISD::Suld3DV2I16Trap:       return "NVPTXISD::Suld3DV2I16Trap";
1107   case NVPTXISD::Suld3DV2I32Trap:       return "NVPTXISD::Suld3DV2I32Trap";
1108   case NVPTXISD::Suld3DV2I64Trap:       return "NVPTXISD::Suld3DV2I64Trap";
1109   case NVPTXISD::Suld3DV4I8Trap:        return "NVPTXISD::Suld3DV4I8Trap";
1110   case NVPTXISD::Suld3DV4I16Trap:       return "NVPTXISD::Suld3DV4I16Trap";
1111   case NVPTXISD::Suld3DV4I32Trap:       return "NVPTXISD::Suld3DV4I32Trap";
1112 
1113   case NVPTXISD::Suld1DI8Zero:          return "NVPTXISD::Suld1DI8Zero";
1114   case NVPTXISD::Suld1DI16Zero:         return "NVPTXISD::Suld1DI16Zero";
1115   case NVPTXISD::Suld1DI32Zero:         return "NVPTXISD::Suld1DI32Zero";
1116   case NVPTXISD::Suld1DI64Zero:         return "NVPTXISD::Suld1DI64Zero";
1117   case NVPTXISD::Suld1DV2I8Zero:        return "NVPTXISD::Suld1DV2I8Zero";
1118   case NVPTXISD::Suld1DV2I16Zero:       return "NVPTXISD::Suld1DV2I16Zero";
1119   case NVPTXISD::Suld1DV2I32Zero:       return "NVPTXISD::Suld1DV2I32Zero";
1120   case NVPTXISD::Suld1DV2I64Zero:       return "NVPTXISD::Suld1DV2I64Zero";
1121   case NVPTXISD::Suld1DV4I8Zero:        return "NVPTXISD::Suld1DV4I8Zero";
1122   case NVPTXISD::Suld1DV4I16Zero:       return "NVPTXISD::Suld1DV4I16Zero";
1123   case NVPTXISD::Suld1DV4I32Zero:       return "NVPTXISD::Suld1DV4I32Zero";
1124 
1125   case NVPTXISD::Suld1DArrayI8Zero:     return "NVPTXISD::Suld1DArrayI8Zero";
1126   case NVPTXISD::Suld1DArrayI16Zero:    return "NVPTXISD::Suld1DArrayI16Zero";
1127   case NVPTXISD::Suld1DArrayI32Zero:    return "NVPTXISD::Suld1DArrayI32Zero";
1128   case NVPTXISD::Suld1DArrayI64Zero:    return "NVPTXISD::Suld1DArrayI64Zero";
1129   case NVPTXISD::Suld1DArrayV2I8Zero:   return "NVPTXISD::Suld1DArrayV2I8Zero";
1130   case NVPTXISD::Suld1DArrayV2I16Zero:  return "NVPTXISD::Suld1DArrayV2I16Zero";
1131   case NVPTXISD::Suld1DArrayV2I32Zero:  return "NVPTXISD::Suld1DArrayV2I32Zero";
1132   case NVPTXISD::Suld1DArrayV2I64Zero:  return "NVPTXISD::Suld1DArrayV2I64Zero";
1133   case NVPTXISD::Suld1DArrayV4I8Zero:   return "NVPTXISD::Suld1DArrayV4I8Zero";
1134   case NVPTXISD::Suld1DArrayV4I16Zero:  return "NVPTXISD::Suld1DArrayV4I16Zero";
1135   case NVPTXISD::Suld1DArrayV4I32Zero:  return "NVPTXISD::Suld1DArrayV4I32Zero";
1136 
1137   case NVPTXISD::Suld2DI8Zero:          return "NVPTXISD::Suld2DI8Zero";
1138   case NVPTXISD::Suld2DI16Zero:         return "NVPTXISD::Suld2DI16Zero";
1139   case NVPTXISD::Suld2DI32Zero:         return "NVPTXISD::Suld2DI32Zero";
1140   case NVPTXISD::Suld2DI64Zero:         return "NVPTXISD::Suld2DI64Zero";
1141   case NVPTXISD::Suld2DV2I8Zero:        return "NVPTXISD::Suld2DV2I8Zero";
1142   case NVPTXISD::Suld2DV2I16Zero:       return "NVPTXISD::Suld2DV2I16Zero";
1143   case NVPTXISD::Suld2DV2I32Zero:       return "NVPTXISD::Suld2DV2I32Zero";
1144   case NVPTXISD::Suld2DV2I64Zero:       return "NVPTXISD::Suld2DV2I64Zero";
1145   case NVPTXISD::Suld2DV4I8Zero:        return "NVPTXISD::Suld2DV4I8Zero";
1146   case NVPTXISD::Suld2DV4I16Zero:       return "NVPTXISD::Suld2DV4I16Zero";
1147   case NVPTXISD::Suld2DV4I32Zero:       return "NVPTXISD::Suld2DV4I32Zero";
1148 
1149   case NVPTXISD::Suld2DArrayI8Zero:     return "NVPTXISD::Suld2DArrayI8Zero";
1150   case NVPTXISD::Suld2DArrayI16Zero:    return "NVPTXISD::Suld2DArrayI16Zero";
1151   case NVPTXISD::Suld2DArrayI32Zero:    return "NVPTXISD::Suld2DArrayI32Zero";
1152   case NVPTXISD::Suld2DArrayI64Zero:    return "NVPTXISD::Suld2DArrayI64Zero";
1153   case NVPTXISD::Suld2DArrayV2I8Zero:   return "NVPTXISD::Suld2DArrayV2I8Zero";
1154   case NVPTXISD::Suld2DArrayV2I16Zero:  return "NVPTXISD::Suld2DArrayV2I16Zero";
1155   case NVPTXISD::Suld2DArrayV2I32Zero:  return "NVPTXISD::Suld2DArrayV2I32Zero";
1156   case NVPTXISD::Suld2DArrayV2I64Zero:  return "NVPTXISD::Suld2DArrayV2I64Zero";
1157   case NVPTXISD::Suld2DArrayV4I8Zero:   return "NVPTXISD::Suld2DArrayV4I8Zero";
1158   case NVPTXISD::Suld2DArrayV4I16Zero:  return "NVPTXISD::Suld2DArrayV4I16Zero";
1159   case NVPTXISD::Suld2DArrayV4I32Zero:  return "NVPTXISD::Suld2DArrayV4I32Zero";
1160 
1161   case NVPTXISD::Suld3DI8Zero:          return "NVPTXISD::Suld3DI8Zero";
1162   case NVPTXISD::Suld3DI16Zero:         return "NVPTXISD::Suld3DI16Zero";
1163   case NVPTXISD::Suld3DI32Zero:         return "NVPTXISD::Suld3DI32Zero";
1164   case NVPTXISD::Suld3DI64Zero:         return "NVPTXISD::Suld3DI64Zero";
1165   case NVPTXISD::Suld3DV2I8Zero:        return "NVPTXISD::Suld3DV2I8Zero";
1166   case NVPTXISD::Suld3DV2I16Zero:       return "NVPTXISD::Suld3DV2I16Zero";
1167   case NVPTXISD::Suld3DV2I32Zero:       return "NVPTXISD::Suld3DV2I32Zero";
1168   case NVPTXISD::Suld3DV2I64Zero:       return "NVPTXISD::Suld3DV2I64Zero";
1169   case NVPTXISD::Suld3DV4I8Zero:        return "NVPTXISD::Suld3DV4I8Zero";
1170   case NVPTXISD::Suld3DV4I16Zero:       return "NVPTXISD::Suld3DV4I16Zero";
1171   case NVPTXISD::Suld3DV4I32Zero:       return "NVPTXISD::Suld3DV4I32Zero";
1172   }
1173   return nullptr;
1174 }
1175 
1176 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT) const1177 NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const {
1178   if (VT.getVectorNumElements() != 1 && VT.getScalarType() == MVT::i1)
1179     return TypeSplitVector;
1180   if (VT == MVT::v2f16)
1181     return TypeLegal;
1182   return TargetLoweringBase::getPreferredVectorAction(VT);
1183 }
1184 
getSqrtEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & ExtraSteps,bool & UseOneConst,bool Reciprocal) const1185 SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
1186                                              int Enabled, int &ExtraSteps,
1187                                              bool &UseOneConst,
1188                                              bool Reciprocal) const {
1189   if (!(Enabled == ReciprocalEstimate::Enabled ||
1190         (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32())))
1191     return SDValue();
1192 
1193   if (ExtraSteps == ReciprocalEstimate::Unspecified)
1194     ExtraSteps = 0;
1195 
1196   SDLoc DL(Operand);
1197   EVT VT = Operand.getValueType();
1198   bool Ftz = useF32FTZ(DAG.getMachineFunction());
1199 
1200   auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
1201     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
1202                        DAG.getConstant(IID, DL, MVT::i32), Operand);
1203   };
1204 
1205   // The sqrt and rsqrt refinement processes assume we always start out with an
1206   // approximation of the rsqrt.  Therefore, if we're going to do any refinement
1207   // (i.e. ExtraSteps > 0), we must return an rsqrt.  But if we're *not* doing
1208   // any refinement, we must return a regular sqrt.
1209   if (Reciprocal || ExtraSteps > 0) {
1210     if (VT == MVT::f32)
1211       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1212                                    : Intrinsic::nvvm_rsqrt_approx_f);
1213     else if (VT == MVT::f64)
1214       return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1215     else
1216       return SDValue();
1217   } else {
1218     if (VT == MVT::f32)
1219       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1220                                    : Intrinsic::nvvm_sqrt_approx_f);
1221     else {
1222       // There's no sqrt.approx.f64 instruction, so we emit
1223       // reciprocal(rsqrt(x)).  This is faster than
1224       // select(x == 0, 0, x * rsqrt(x)).  (In fact, it's faster than plain
1225       // x * rsqrt(x).)
1226       return DAG.getNode(
1227           ISD::INTRINSIC_WO_CHAIN, DL, VT,
1228           DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
1229           MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1230     }
1231   }
1232 }
1233 
1234 SDValue
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const1235 NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
1236   SDLoc dl(Op);
1237   const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op);
1238   auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace());
1239   Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT);
1240   return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
1241 }
1242 
getPrototype(const DataLayout & DL,Type * retTy,const ArgListTy & Args,const SmallVectorImpl<ISD::OutputArg> & Outs,MaybeAlign retAlignment,const CallBase & CB) const1243 std::string NVPTXTargetLowering::getPrototype(
1244     const DataLayout &DL, Type *retTy, const ArgListTy &Args,
1245     const SmallVectorImpl<ISD::OutputArg> &Outs, MaybeAlign retAlignment,
1246     const CallBase &CB) const {
1247   auto PtrVT = getPointerTy(DL);
1248 
1249   bool isABI = (STI.getSmVersion() >= 20);
1250   assert(isABI && "Non-ABI compilation is not supported");
1251   if (!isABI)
1252     return "";
1253 
1254   std::stringstream O;
1255   O << "prototype_" << uniqueCallSite << " : .callprototype ";
1256 
1257   if (retTy->getTypeID() == Type::VoidTyID) {
1258     O << "()";
1259   } else {
1260     O << "(";
1261     if (retTy->isFloatingPointTy() || (retTy->isIntegerTy() && !retTy->isIntegerTy(128))) {
1262       unsigned size = 0;
1263       if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
1264         size = ITy->getBitWidth();
1265       } else {
1266         assert(retTy->isFloatingPointTy() &&
1267                "Floating point type expected here");
1268         size = retTy->getPrimitiveSizeInBits();
1269       }
1270       // PTX ABI requires all scalar return values to be at least 32
1271       // bits in size.  fp16 normally uses .b16 as its storage type in
1272       // PTX, so its size must be adjusted here, too.
1273       if (size < 32)
1274         size = 32;
1275 
1276       O << ".param .b" << size << " _";
1277     } else if (isa<PointerType>(retTy)) {
1278       O << ".param .b" << PtrVT.getSizeInBits() << " _";
1279     } else if (retTy->isAggregateType() || retTy->isVectorTy() ||
1280                retTy->isIntegerTy(128)) {
1281       O << ".param .align " << (retAlignment ? retAlignment->value() : 0)
1282         << " .b8 _[" << DL.getTypeAllocSize(retTy) << "]";
1283     } else {
1284       llvm_unreachable("Unknown return type");
1285     }
1286     O << ") ";
1287   }
1288   O << "_ (";
1289 
1290   bool first = true;
1291 
1292   unsigned OIdx = 0;
1293   for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1294     Type *Ty = Args[i].Ty;
1295     if (!first) {
1296       O << ", ";
1297     }
1298     first = false;
1299 
1300     if (!Outs[OIdx].Flags.isByVal()) {
1301       if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1302         unsigned align = 0;
1303         const CallInst *CallI = cast<CallInst>(&CB);
1304         // +1 because index 0 is reserved for return type alignment
1305         if (!getAlign(*CallI, i + 1, align))
1306           align = DL.getABITypeAlignment(Ty);
1307         unsigned sz = DL.getTypeAllocSize(Ty);
1308         O << ".param .align " << align << " .b8 ";
1309         O << "_";
1310         O << "[" << sz << "]";
1311         // update the index for Outs
1312         SmallVector<EVT, 16> vtparts;
1313         ComputeValueVTs(*this, DL, Ty, vtparts);
1314         if (unsigned len = vtparts.size())
1315           OIdx += len - 1;
1316         continue;
1317       }
1318       // i8 types in IR will be i16 types in SDAG
1319       assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
1320               (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
1321              "type mismatch between callee prototype and arguments");
1322       // scalar type
1323       unsigned sz = 0;
1324       if (isa<IntegerType>(Ty)) {
1325         sz = cast<IntegerType>(Ty)->getBitWidth();
1326         if (sz < 32)
1327           sz = 32;
1328       } else if (isa<PointerType>(Ty)) {
1329         sz = PtrVT.getSizeInBits();
1330       } else if (Ty->isHalfTy())
1331         // PTX ABI requires all scalar parameters to be at least 32
1332         // bits in size.  fp16 normally uses .b16 as its storage type
1333         // in PTX, so its size must be adjusted here, too.
1334         sz = 32;
1335       else
1336         sz = Ty->getPrimitiveSizeInBits();
1337       O << ".param .b" << sz << " ";
1338       O << "_";
1339       continue;
1340     }
1341     auto *PTy = dyn_cast<PointerType>(Ty);
1342     assert(PTy && "Param with byval attribute should be a pointer type");
1343     Type *ETy = PTy->getElementType();
1344 
1345     Align align = Outs[OIdx].Flags.getNonZeroByValAlign();
1346     unsigned sz = DL.getTypeAllocSize(ETy);
1347     O << ".param .align " << align.value() << " .b8 ";
1348     O << "_";
1349     O << "[" << sz << "]";
1350   }
1351   O << ");";
1352   return O.str();
1353 }
1354 
getArgumentAlignment(SDValue Callee,const CallBase * CB,Type * Ty,unsigned Idx,const DataLayout & DL) const1355 Align NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
1356                                                 const CallBase *CB, Type *Ty,
1357                                                 unsigned Idx,
1358                                                 const DataLayout &DL) const {
1359   if (!CB) {
1360     // CallSite is zero, fallback to ABI type alignment
1361     return DL.getABITypeAlign(Ty);
1362   }
1363 
1364   unsigned Alignment = 0;
1365   const Function *DirectCallee = CB->getCalledFunction();
1366 
1367   if (!DirectCallee) {
1368     // We don't have a direct function symbol, but that may be because of
1369     // constant cast instructions in the call.
1370 
1371     // With bitcast'd call targets, the instruction will be the call
1372     if (const auto *CI = dyn_cast<CallInst>(CB)) {
1373       // Check if we have call alignment metadata
1374       if (getAlign(*CI, Idx, Alignment))
1375         return Align(Alignment);
1376 
1377       const Value *CalleeV = CI->getCalledOperand();
1378       // Ignore any bitcast instructions
1379       while (isa<ConstantExpr>(CalleeV)) {
1380         const ConstantExpr *CE = cast<ConstantExpr>(CalleeV);
1381         if (!CE->isCast())
1382           break;
1383         // Look through the bitcast
1384         CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0);
1385       }
1386 
1387       // We have now looked past all of the bitcasts.  Do we finally have a
1388       // Function?
1389       if (const auto *CalleeF = dyn_cast<Function>(CalleeV))
1390         DirectCallee = CalleeF;
1391     }
1392   }
1393 
1394   // Check for function alignment information if we found that the
1395   // ultimate target is a Function
1396   if (DirectCallee)
1397     if (getAlign(*DirectCallee, Idx, Alignment))
1398       return Align(Alignment);
1399 
1400   // Call is indirect or alignment information is not available, fall back to
1401   // the ABI type alignment
1402   return DL.getABITypeAlign(Ty);
1403 }
1404 
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1405 SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1406                                        SmallVectorImpl<SDValue> &InVals) const {
1407   SelectionDAG &DAG = CLI.DAG;
1408   SDLoc dl = CLI.DL;
1409   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1410   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1411   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1412   SDValue Chain = CLI.Chain;
1413   SDValue Callee = CLI.Callee;
1414   bool &isTailCall = CLI.IsTailCall;
1415   ArgListTy &Args = CLI.getArgs();
1416   Type *RetTy = CLI.RetTy;
1417   const CallBase *CB = CLI.CB;
1418   const DataLayout &DL = DAG.getDataLayout();
1419 
1420   bool isABI = (STI.getSmVersion() >= 20);
1421   assert(isABI && "Non-ABI compilation is not supported");
1422   if (!isABI)
1423     return Chain;
1424 
1425   SDValue tempChain = Chain;
1426   Chain = DAG.getCALLSEQ_START(Chain, uniqueCallSite, 0, dl);
1427   SDValue InFlag = Chain.getValue(1);
1428 
1429   unsigned paramCount = 0;
1430   // Args.size() and Outs.size() need not match.
1431   // Outs.size() will be larger
1432   //   * if there is an aggregate argument with multiple fields (each field
1433   //     showing up separately in Outs)
1434   //   * if there is a vector argument with more than typical vector-length
1435   //     elements (generally if more than 4) where each vector element is
1436   //     individually present in Outs.
1437   // So a different index should be used for indexing into Outs/OutVals.
1438   // See similar issue in LowerFormalArguments.
1439   unsigned OIdx = 0;
1440   // Declare the .params or .reg need to pass values
1441   // to the function
1442   for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1443     EVT VT = Outs[OIdx].VT;
1444     Type *Ty = Args[i].Ty;
1445 
1446     if (!Outs[OIdx].Flags.isByVal()) {
1447       SmallVector<EVT, 16> VTs;
1448       SmallVector<uint64_t, 16> Offsets;
1449       ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets);
1450       Align ArgAlign = getArgumentAlignment(Callee, CB, Ty, paramCount + 1, DL);
1451       unsigned AllocSize = DL.getTypeAllocSize(Ty);
1452       SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1453       bool NeedAlign; // Does argument declaration specify alignment?
1454       if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1455         // declare .param .align <align> .b8 .param<n>[<size>];
1456         SDValue DeclareParamOps[] = {
1457             Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32),
1458             DAG.getConstant(paramCount, dl, MVT::i32),
1459             DAG.getConstant(AllocSize, dl, MVT::i32), InFlag};
1460         Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1461                             DeclareParamOps);
1462         NeedAlign = true;
1463       } else {
1464         // declare .param .b<size> .param<n>;
1465         if ((VT.isInteger() || VT.isFloatingPoint()) && AllocSize < 4) {
1466           // PTX ABI requires integral types to be at least 32 bits in
1467           // size. FP16 is loaded/stored using i16, so it's handled
1468           // here as well.
1469           AllocSize = 4;
1470         }
1471         SDValue DeclareScalarParamOps[] = {
1472             Chain, DAG.getConstant(paramCount, dl, MVT::i32),
1473             DAG.getConstant(AllocSize * 8, dl, MVT::i32),
1474             DAG.getConstant(0, dl, MVT::i32), InFlag};
1475         Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
1476                             DeclareScalarParamOps);
1477         NeedAlign = false;
1478       }
1479       InFlag = Chain.getValue(1);
1480 
1481       // PTX Interoperability Guide 3.3(A): [Integer] Values shorter
1482       // than 32-bits are sign extended or zero extended, depending on
1483       // whether they are signed or unsigned types. This case applies
1484       // only to scalar parameters and not to aggregate values.
1485       bool ExtendIntegerParam =
1486           Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32;
1487 
1488       auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign);
1489       SmallVector<SDValue, 6> StoreOperands;
1490       for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1491         // New store.
1492         if (VectorInfo[j] & PVF_FIRST) {
1493           assert(StoreOperands.empty() && "Unfinished preceding store.");
1494           StoreOperands.push_back(Chain);
1495           StoreOperands.push_back(DAG.getConstant(paramCount, dl, MVT::i32));
1496           StoreOperands.push_back(DAG.getConstant(Offsets[j], dl, MVT::i32));
1497         }
1498 
1499         EVT EltVT = VTs[j];
1500         SDValue StVal = OutVals[OIdx];
1501         if (ExtendIntegerParam) {
1502           assert(VTs.size() == 1 && "Scalar can't have multiple parts.");
1503           // zext/sext to i32
1504           StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
1505                                                         : ISD::ZERO_EXTEND,
1506                               dl, MVT::i32, StVal);
1507         } else if (EltVT.getSizeInBits() < 16) {
1508           // Use 16-bit registers for small stores as it's the
1509           // smallest general purpose register size supported by NVPTX.
1510           StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
1511         }
1512 
1513         // Record the value to store.
1514         StoreOperands.push_back(StVal);
1515 
1516         if (VectorInfo[j] & PVF_LAST) {
1517           unsigned NumElts = StoreOperands.size() - 3;
1518           NVPTXISD::NodeType Op;
1519           switch (NumElts) {
1520           case 1:
1521             Op = NVPTXISD::StoreParam;
1522             break;
1523           case 2:
1524             Op = NVPTXISD::StoreParamV2;
1525             break;
1526           case 4:
1527             Op = NVPTXISD::StoreParamV4;
1528             break;
1529           default:
1530             llvm_unreachable("Invalid vector info.");
1531           }
1532 
1533           StoreOperands.push_back(InFlag);
1534 
1535           // Adjust type of the store op if we've extended the scalar
1536           // return value.
1537           EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : VTs[j];
1538           MaybeAlign EltAlign;
1539           if (NeedAlign)
1540             EltAlign = commonAlignment(ArgAlign, Offsets[j]);
1541 
1542           Chain = DAG.getMemIntrinsicNode(
1543               Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands,
1544               TheStoreType, MachinePointerInfo(), EltAlign,
1545               MachineMemOperand::MOStore);
1546           InFlag = Chain.getValue(1);
1547 
1548           // Cleanup.
1549           StoreOperands.clear();
1550         }
1551         ++OIdx;
1552       }
1553       assert(StoreOperands.empty() && "Unfinished parameter store.");
1554       if (VTs.size() > 0)
1555         --OIdx;
1556       ++paramCount;
1557       continue;
1558     }
1559 
1560     // ByVal arguments
1561     SmallVector<EVT, 16> VTs;
1562     SmallVector<uint64_t, 16> Offsets;
1563     auto *PTy = dyn_cast<PointerType>(Args[i].Ty);
1564     assert(PTy && "Type of a byval parameter should be pointer");
1565     ComputePTXValueVTs(*this, DL, PTy->getElementType(), VTs, &Offsets, 0);
1566 
1567     // declare .param .align <align> .b8 .param<n>[<size>];
1568     unsigned sz = Outs[OIdx].Flags.getByValSize();
1569     SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1570     Align ArgAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
1571     // The ByValAlign in the Outs[OIdx].Flags is alway set at this point,
1572     // so we don't need to worry about natural alignment or not.
1573     // See TargetLowering::LowerCallTo().
1574 
1575     // Enforce minumum alignment of 4 to work around ptxas miscompile
1576     // for sm_50+. See corresponding alignment adjustment in
1577     // emitFunctionParamList() for details.
1578     if (ArgAlign < Align(4))
1579       ArgAlign = Align(4);
1580     SDValue DeclareParamOps[] = {
1581         Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32),
1582         DAG.getConstant(paramCount, dl, MVT::i32),
1583         DAG.getConstant(sz, dl, MVT::i32), InFlag};
1584     Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1585                         DeclareParamOps);
1586     InFlag = Chain.getValue(1);
1587     for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1588       EVT elemtype = VTs[j];
1589       int curOffset = Offsets[j];
1590       unsigned PartAlign = GreatestCommonDivisor64(ArgAlign.value(), curOffset);
1591       auto PtrVT = getPointerTy(DL);
1592       SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx],
1593                                     DAG.getConstant(curOffset, dl, PtrVT));
1594       SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
1595                                    MachinePointerInfo(), PartAlign);
1596       if (elemtype.getSizeInBits() < 16) {
1597         theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal);
1598       }
1599       SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1600       SDValue CopyParamOps[] = { Chain,
1601                                  DAG.getConstant(paramCount, dl, MVT::i32),
1602                                  DAG.getConstant(curOffset, dl, MVT::i32),
1603                                  theVal, InFlag };
1604       Chain = DAG.getMemIntrinsicNode(
1605           NVPTXISD::StoreParam, dl, CopyParamVTs, CopyParamOps, elemtype,
1606           MachinePointerInfo(), /* Align */ None, MachineMemOperand::MOStore);
1607 
1608       InFlag = Chain.getValue(1);
1609     }
1610     ++paramCount;
1611   }
1612 
1613   GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
1614   MaybeAlign retAlignment = None;
1615 
1616   // Handle Result
1617   if (Ins.size() > 0) {
1618     SmallVector<EVT, 16> resvtparts;
1619     ComputeValueVTs(*this, DL, RetTy, resvtparts);
1620 
1621     // Declare
1622     //  .param .align 16 .b8 retval0[<size-in-bytes>], or
1623     //  .param .b<size-in-bits> retval0
1624     unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy);
1625     // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for
1626     // these three types to match the logic in
1627     // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype.
1628     // Plus, this behavior is consistent with nvcc's.
1629     if (RetTy->isFloatingPointTy() || RetTy->isPointerTy() ||
1630         (RetTy->isIntegerTy() && !RetTy->isIntegerTy(128))) {
1631       // Scalar needs to be at least 32bit wide
1632       if (resultsz < 32)
1633         resultsz = 32;
1634       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1635       SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1636                                   DAG.getConstant(resultsz, dl, MVT::i32),
1637                                   DAG.getConstant(0, dl, MVT::i32), InFlag };
1638       Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
1639                           DeclareRetOps);
1640       InFlag = Chain.getValue(1);
1641     } else {
1642       retAlignment = getArgumentAlignment(Callee, CB, RetTy, 0, DL);
1643       assert(retAlignment && "retAlignment is guaranteed to be set");
1644       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1645       SDValue DeclareRetOps[] = {
1646           Chain, DAG.getConstant(retAlignment->value(), dl, MVT::i32),
1647           DAG.getConstant(resultsz / 8, dl, MVT::i32),
1648           DAG.getConstant(0, dl, MVT::i32), InFlag};
1649       Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
1650                           DeclareRetOps);
1651       InFlag = Chain.getValue(1);
1652     }
1653   }
1654 
1655   // Both indirect calls and libcalls have nullptr Func. In order to distinguish
1656   // between them we must rely on the call site value which is valid for
1657   // indirect calls but is always null for libcalls.
1658   bool isIndirectCall = !Func && CB;
1659 
1660   if (isa<ExternalSymbolSDNode>(Callee)) {
1661     Function* CalleeFunc = nullptr;
1662 
1663     // Try to find the callee in the current module.
1664     Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc);
1665     assert(CalleeFunc != nullptr && "Libcall callee must be set.");
1666 
1667     // Set the "libcall callee" attribute to indicate that the function
1668     // must always have a declaration.
1669     CalleeFunc->addFnAttr("nvptx-libcall-callee", "true");
1670   }
1671 
1672   if (isIndirectCall) {
1673     // This is indirect function call case : PTX requires a prototype of the
1674     // form
1675     // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
1676     // to be emitted, and the label has to used as the last arg of call
1677     // instruction.
1678     // The prototype is embedded in a string and put as the operand for a
1679     // CallPrototype SDNode which will print out to the value of the string.
1680     SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1681     std::string Proto = getPrototype(DL, RetTy, Args, Outs, retAlignment, *CB);
1682     const char *ProtoStr =
1683       nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str();
1684     SDValue ProtoOps[] = {
1685       Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag,
1686     };
1687     Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
1688     InFlag = Chain.getValue(1);
1689   }
1690   // Op to just print "call"
1691   SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1692   SDValue PrintCallOps[] = {
1693     Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag
1694   };
1695   // We model convergent calls as separate opcodes.
1696   unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni;
1697   if (CLI.IsConvergent)
1698     Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni
1699                                               : NVPTXISD::PrintConvergentCall;
1700   Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
1701   InFlag = Chain.getValue(1);
1702 
1703   // Ops to print out the function name
1704   SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1705   SDValue CallVoidOps[] = { Chain, Callee, InFlag };
1706   Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
1707   InFlag = Chain.getValue(1);
1708 
1709   // Ops to print out the param list
1710   SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1711   SDValue CallArgBeginOps[] = { Chain, InFlag };
1712   Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
1713                       CallArgBeginOps);
1714   InFlag = Chain.getValue(1);
1715 
1716   for (unsigned i = 0, e = paramCount; i != e; ++i) {
1717     unsigned opcode;
1718     if (i == (e - 1))
1719       opcode = NVPTXISD::LastCallArg;
1720     else
1721       opcode = NVPTXISD::CallArg;
1722     SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1723     SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1724                              DAG.getConstant(i, dl, MVT::i32), InFlag };
1725     Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
1726     InFlag = Chain.getValue(1);
1727   }
1728   SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1729   SDValue CallArgEndOps[] = { Chain,
1730                               DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32),
1731                               InFlag };
1732   Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
1733   InFlag = Chain.getValue(1);
1734 
1735   if (isIndirectCall) {
1736     SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1737     SDValue PrototypeOps[] = { Chain,
1738                                DAG.getConstant(uniqueCallSite, dl, MVT::i32),
1739                                InFlag };
1740     Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
1741     InFlag = Chain.getValue(1);
1742   }
1743 
1744   SmallVector<SDValue, 16> ProxyRegOps;
1745   SmallVector<Optional<MVT>, 16> ProxyRegTruncates;
1746 
1747   // Generate loads from param memory/moves from registers for result
1748   if (Ins.size() > 0) {
1749     SmallVector<EVT, 16> VTs;
1750     SmallVector<uint64_t, 16> Offsets;
1751     ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0);
1752     assert(VTs.size() == Ins.size() && "Bad value decomposition");
1753 
1754     Align RetAlign = getArgumentAlignment(Callee, CB, RetTy, 0, DL);
1755     auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
1756 
1757     SmallVector<EVT, 6> LoadVTs;
1758     int VecIdx = -1; // Index of the first element of the vector.
1759 
1760     // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
1761     // 32-bits are sign extended or zero extended, depending on whether
1762     // they are signed or unsigned types.
1763     bool ExtendIntegerRetVal =
1764         RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
1765 
1766     for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
1767       bool needTruncate = false;
1768       EVT TheLoadType = VTs[i];
1769       EVT EltType = Ins[i].VT;
1770       Align EltAlign = commonAlignment(RetAlign, Offsets[i]);
1771       if (ExtendIntegerRetVal) {
1772         TheLoadType = MVT::i32;
1773         EltType = MVT::i32;
1774         needTruncate = true;
1775       } else if (TheLoadType.getSizeInBits() < 16) {
1776         if (VTs[i].isInteger())
1777           needTruncate = true;
1778         EltType = MVT::i16;
1779       }
1780 
1781       // Record index of the very first element of the vector.
1782       if (VectorInfo[i] & PVF_FIRST) {
1783         assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list.");
1784         VecIdx = i;
1785       }
1786 
1787       LoadVTs.push_back(EltType);
1788 
1789       if (VectorInfo[i] & PVF_LAST) {
1790         unsigned NumElts = LoadVTs.size();
1791         LoadVTs.push_back(MVT::Other);
1792         LoadVTs.push_back(MVT::Glue);
1793         NVPTXISD::NodeType Op;
1794         switch (NumElts) {
1795         case 1:
1796           Op = NVPTXISD::LoadParam;
1797           break;
1798         case 2:
1799           Op = NVPTXISD::LoadParamV2;
1800           break;
1801         case 4:
1802           Op = NVPTXISD::LoadParamV4;
1803           break;
1804         default:
1805           llvm_unreachable("Invalid vector info.");
1806         }
1807 
1808         SDValue LoadOperands[] = {
1809             Chain, DAG.getConstant(1, dl, MVT::i32),
1810             DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InFlag};
1811         SDValue RetVal = DAG.getMemIntrinsicNode(
1812             Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType,
1813             MachinePointerInfo(), EltAlign,
1814             MachineMemOperand::MOLoad);
1815 
1816         for (unsigned j = 0; j < NumElts; ++j) {
1817           ProxyRegOps.push_back(RetVal.getValue(j));
1818 
1819           if (needTruncate)
1820             ProxyRegTruncates.push_back(Optional<MVT>(Ins[VecIdx + j].VT));
1821           else
1822             ProxyRegTruncates.push_back(Optional<MVT>());
1823         }
1824 
1825         Chain = RetVal.getValue(NumElts);
1826         InFlag = RetVal.getValue(NumElts + 1);
1827 
1828         // Cleanup
1829         VecIdx = -1;
1830         LoadVTs.clear();
1831       }
1832     }
1833   }
1834 
1835   Chain = DAG.getCALLSEQ_END(Chain,
1836                              DAG.getIntPtrConstant(uniqueCallSite, dl, true),
1837                              DAG.getIntPtrConstant(uniqueCallSite + 1, dl,
1838                                                    true),
1839                              InFlag, dl);
1840   InFlag = Chain.getValue(1);
1841   uniqueCallSite++;
1842 
1843   // Append ProxyReg instructions to the chain to make sure that `callseq_end`
1844   // will not get lost. Otherwise, during libcalls expansion, the nodes can become
1845   // dangling.
1846   for (unsigned i = 0; i < ProxyRegOps.size(); ++i) {
1847     SDValue Ret = DAG.getNode(
1848       NVPTXISD::ProxyReg, dl,
1849       DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue),
1850       { Chain, ProxyRegOps[i], InFlag }
1851     );
1852 
1853     Chain = Ret.getValue(1);
1854     InFlag = Ret.getValue(2);
1855 
1856     if (ProxyRegTruncates[i].hasValue()) {
1857       Ret = DAG.getNode(ISD::TRUNCATE, dl, ProxyRegTruncates[i].getValue(), Ret);
1858     }
1859 
1860     InVals.push_back(Ret);
1861   }
1862 
1863   // set isTailCall to false for now, until we figure out how to express
1864   // tail call optimization in PTX
1865   isTailCall = false;
1866   return Chain;
1867 }
1868 
1869 // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
1870 // (see LegalizeDAG.cpp). This is slow and uses local memory.
1871 // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
1872 SDValue
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG) const1873 NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
1874   SDNode *Node = Op.getNode();
1875   SDLoc dl(Node);
1876   SmallVector<SDValue, 8> Ops;
1877   unsigned NumOperands = Node->getNumOperands();
1878   for (unsigned i = 0; i < NumOperands; ++i) {
1879     SDValue SubOp = Node->getOperand(i);
1880     EVT VVT = SubOp.getNode()->getValueType(0);
1881     EVT EltVT = VVT.getVectorElementType();
1882     unsigned NumSubElem = VVT.getVectorNumElements();
1883     for (unsigned j = 0; j < NumSubElem; ++j) {
1884       Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
1885                                 DAG.getIntPtrConstant(j, dl)));
1886     }
1887   }
1888   return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
1889 }
1890 
1891 // We can init constant f16x2 with a single .b32 move.  Normally it
1892 // would get lowered as two constant loads and vector-packing move.
1893 //        mov.b16         %h1, 0x4000;
1894 //        mov.b16         %h2, 0x3C00;
1895 //        mov.b32         %hh2, {%h2, %h1};
1896 // Instead we want just a constant move:
1897 //        mov.b32         %hh2, 0x40003C00
1898 //
1899 // This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0
1900 // generates good SASS in both cases.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const1901 SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1902                                                SelectionDAG &DAG) const {
1903   //return Op;
1904   if (!(Op->getValueType(0) == MVT::v2f16 &&
1905         isa<ConstantFPSDNode>(Op->getOperand(0)) &&
1906         isa<ConstantFPSDNode>(Op->getOperand(1))))
1907     return Op;
1908 
1909   APInt E0 =
1910       cast<ConstantFPSDNode>(Op->getOperand(0))->getValueAPF().bitcastToAPInt();
1911   APInt E1 =
1912       cast<ConstantFPSDNode>(Op->getOperand(1))->getValueAPF().bitcastToAPInt();
1913   SDValue Const =
1914       DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32);
1915   return DAG.getNode(ISD::BITCAST, SDLoc(Op), MVT::v2f16, Const);
1916 }
1917 
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const1918 SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
1919                                                      SelectionDAG &DAG) const {
1920   SDValue Index = Op->getOperand(1);
1921   // Constant index will be matched by tablegen.
1922   if (isa<ConstantSDNode>(Index.getNode()))
1923     return Op;
1924 
1925   // Extract individual elements and select one of them.
1926   SDValue Vector = Op->getOperand(0);
1927   EVT VectorVT = Vector.getValueType();
1928   assert(VectorVT == MVT::v2f16 && "Unexpected vector type.");
1929   EVT EltVT = VectorVT.getVectorElementType();
1930 
1931   SDLoc dl(Op.getNode());
1932   SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1933                            DAG.getIntPtrConstant(0, dl));
1934   SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1935                            DAG.getIntPtrConstant(1, dl));
1936   return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
1937                          ISD::CondCode::SETEQ);
1938 }
1939 
1940 /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
1941 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
1942 ///    amount, or
1943 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
1944 ///    amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const1945 SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
1946                                                   SelectionDAG &DAG) const {
1947   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
1948   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
1949 
1950   EVT VT = Op.getValueType();
1951   unsigned VTBits = VT.getSizeInBits();
1952   SDLoc dl(Op);
1953   SDValue ShOpLo = Op.getOperand(0);
1954   SDValue ShOpHi = Op.getOperand(1);
1955   SDValue ShAmt  = Op.getOperand(2);
1956   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
1957 
1958   if (VTBits == 32 && STI.getSmVersion() >= 35) {
1959     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
1960     // {dHi, dLo} = {aHi, aLo} >> Amt
1961     //   dHi = aHi >> Amt
1962     //   dLo = shf.r.clamp aLo, aHi, Amt
1963 
1964     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1965     SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
1966                              ShAmt);
1967 
1968     SDValue Ops[2] = { Lo, Hi };
1969     return DAG.getMergeValues(Ops, dl);
1970   }
1971   else {
1972     // {dHi, dLo} = {aHi, aLo} >> Amt
1973     // - if (Amt>=size) then
1974     //      dLo = aHi >> (Amt-size)
1975     //      dHi = aHi >> Amt (this is either all 0 or all 1)
1976     //   else
1977     //      dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
1978     //      dHi = aHi >> Amt
1979 
1980     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1981                                    DAG.getConstant(VTBits, dl, MVT::i32),
1982                                    ShAmt);
1983     SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
1984     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1985                                      DAG.getConstant(VTBits, dl, MVT::i32));
1986     SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
1987     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
1988     SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
1989 
1990     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
1991                                DAG.getConstant(VTBits, dl, MVT::i32),
1992                                ISD::SETGE);
1993     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1994     SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
1995 
1996     SDValue Ops[2] = { Lo, Hi };
1997     return DAG.getMergeValues(Ops, dl);
1998   }
1999 }
2000 
2001 /// LowerShiftLeftParts - Lower SHL_PARTS, which
2002 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2003 ///    amount, or
2004 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2005 ///    amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const2006 SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
2007                                                  SelectionDAG &DAG) const {
2008   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2009   assert(Op.getOpcode() == ISD::SHL_PARTS);
2010 
2011   EVT VT = Op.getValueType();
2012   unsigned VTBits = VT.getSizeInBits();
2013   SDLoc dl(Op);
2014   SDValue ShOpLo = Op.getOperand(0);
2015   SDValue ShOpHi = Op.getOperand(1);
2016   SDValue ShAmt  = Op.getOperand(2);
2017 
2018   if (VTBits == 32 && STI.getSmVersion() >= 35) {
2019     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2020     // {dHi, dLo} = {aHi, aLo} << Amt
2021     //   dHi = shf.l.clamp aLo, aHi, Amt
2022     //   dLo = aLo << Amt
2023 
2024     SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
2025                              ShAmt);
2026     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2027 
2028     SDValue Ops[2] = { Lo, Hi };
2029     return DAG.getMergeValues(Ops, dl);
2030   }
2031   else {
2032     // {dHi, dLo} = {aHi, aLo} << Amt
2033     // - if (Amt>=size) then
2034     //      dLo = aLo << Amt (all 0)
2035     //      dLo = aLo << (Amt-size)
2036     //   else
2037     //      dLo = aLo << Amt
2038     //      dHi = (aHi << Amt) | (aLo >> (size-Amt))
2039 
2040     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2041                                    DAG.getConstant(VTBits, dl, MVT::i32),
2042                                    ShAmt);
2043     SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2044     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2045                                      DAG.getConstant(VTBits, dl, MVT::i32));
2046     SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2047     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2048     SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2049 
2050     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2051                                DAG.getConstant(VTBits, dl, MVT::i32),
2052                                ISD::SETGE);
2053     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2054     SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2055 
2056     SDValue Ops[2] = { Lo, Hi };
2057     return DAG.getMergeValues(Ops, dl);
2058   }
2059 }
2060 
LowerFROUND(SDValue Op,SelectionDAG & DAG) const2061 SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2062   EVT VT = Op.getValueType();
2063 
2064   if (VT == MVT::f32)
2065     return LowerFROUND32(Op, DAG);
2066 
2067   if (VT == MVT::f64)
2068     return LowerFROUND64(Op, DAG);
2069 
2070   llvm_unreachable("unhandled type");
2071 }
2072 
2073 // This is the the rounding method used in CUDA libdevice in C like code:
2074 // float roundf(float A)
2075 // {
2076 //   float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f));
2077 //   RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2078 //   return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2079 // }
LowerFROUND32(SDValue Op,SelectionDAG & DAG) const2080 SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op,
2081                                            SelectionDAG &DAG) const {
2082   SDLoc SL(Op);
2083   SDValue A = Op.getOperand(0);
2084   EVT VT = Op.getValueType();
2085 
2086   SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2087 
2088   // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f))
2089   SDValue Bitcast  = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A);
2090   const int SignBitMask = 0x80000000;
2091   SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast,
2092                              DAG.getConstant(SignBitMask, SL, MVT::i32));
2093   const int PointFiveInBits = 0x3F000000;
2094   SDValue PointFiveWithSignRaw =
2095       DAG.getNode(ISD::OR, SL, MVT::i32, Sign,
2096                   DAG.getConstant(PointFiveInBits, SL, MVT::i32));
2097   SDValue PointFiveWithSign =
2098       DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw);
2099   SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign);
2100   SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2101 
2102   // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2103   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2104   SDValue IsLarge =
2105       DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT),
2106                    ISD::SETOGT);
2107   RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2108 
2109   // return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2110   SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2111                                 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2112   SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A);
2113   return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA);
2114 }
2115 
2116 // The implementation of round(double) is similar to that of round(float) in
2117 // that they both separate the value range into three regions and use a method
2118 // specific to the region to round the values. However, round(double) first
2119 // calculates the round of the absolute value and then adds the sign back while
2120 // round(float) directly rounds the value with sign.
LowerFROUND64(SDValue Op,SelectionDAG & DAG) const2121 SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op,
2122                                            SelectionDAG &DAG) const {
2123   SDLoc SL(Op);
2124   SDValue A = Op.getOperand(0);
2125   EVT VT = Op.getValueType();
2126 
2127   SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2128 
2129   // double RoundedA = (double) (int) (abs(A) + 0.5f);
2130   SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA,
2131                                   DAG.getConstantFP(0.5, SL, VT));
2132   SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2133 
2134   // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA;
2135   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2136   SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2137                                 DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2138   RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall,
2139                          DAG.getConstantFP(0, SL, VT),
2140                          RoundedA);
2141 
2142   // Add sign to rounded_A
2143   RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A);
2144   DAG.getNode(ISD::FTRUNC, SL, VT, A);
2145 
2146   // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA;
2147   SDValue IsLarge =
2148       DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT),
2149                    ISD::SETOGT);
2150   return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2151 }
2152 
2153 
2154 
2155 SDValue
LowerOperation(SDValue Op,SelectionDAG & DAG) const2156 NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2157   switch (Op.getOpcode()) {
2158   case ISD::RETURNADDR:
2159     return SDValue();
2160   case ISD::FRAMEADDR:
2161     return SDValue();
2162   case ISD::GlobalAddress:
2163     return LowerGlobalAddress(Op, DAG);
2164   case ISD::INTRINSIC_W_CHAIN:
2165     return Op;
2166   case ISD::BUILD_VECTOR:
2167     return LowerBUILD_VECTOR(Op, DAG);
2168   case ISD::EXTRACT_SUBVECTOR:
2169     return Op;
2170   case ISD::EXTRACT_VECTOR_ELT:
2171     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2172   case ISD::CONCAT_VECTORS:
2173     return LowerCONCAT_VECTORS(Op, DAG);
2174   case ISD::STORE:
2175     return LowerSTORE(Op, DAG);
2176   case ISD::LOAD:
2177     return LowerLOAD(Op, DAG);
2178   case ISD::SHL_PARTS:
2179     return LowerShiftLeftParts(Op, DAG);
2180   case ISD::SRA_PARTS:
2181   case ISD::SRL_PARTS:
2182     return LowerShiftRightParts(Op, DAG);
2183   case ISD::SELECT:
2184     return LowerSelect(Op, DAG);
2185   case ISD::FROUND:
2186     return LowerFROUND(Op, DAG);
2187   default:
2188     llvm_unreachable("Custom lowering not defined for operation");
2189   }
2190 }
2191 
LowerSelect(SDValue Op,SelectionDAG & DAG) const2192 SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
2193   SDValue Op0 = Op->getOperand(0);
2194   SDValue Op1 = Op->getOperand(1);
2195   SDValue Op2 = Op->getOperand(2);
2196   SDLoc DL(Op.getNode());
2197 
2198   assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
2199 
2200   Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
2201   Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
2202   SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
2203   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
2204 
2205   return Trunc;
2206 }
2207 
LowerLOAD(SDValue Op,SelectionDAG & DAG) const2208 SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2209   if (Op.getValueType() == MVT::i1)
2210     return LowerLOADi1(Op, DAG);
2211 
2212   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2213   // loads and have to handle it here.
2214   if (Op.getValueType() == MVT::v2f16) {
2215     LoadSDNode *Load = cast<LoadSDNode>(Op);
2216     EVT MemVT = Load->getMemoryVT();
2217     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2218                                         MemVT, *Load->getMemOperand())) {
2219       SDValue Ops[2];
2220       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
2221       return DAG.getMergeValues(Ops, SDLoc(Op));
2222     }
2223   }
2224 
2225   return SDValue();
2226 }
2227 
2228 // v = ld i1* addr
2229 //   =>
2230 // v1 = ld i8* addr (-> i16)
2231 // v = trunc i16 to i1
LowerLOADi1(SDValue Op,SelectionDAG & DAG) const2232 SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
2233   SDNode *Node = Op.getNode();
2234   LoadSDNode *LD = cast<LoadSDNode>(Node);
2235   SDLoc dl(Node);
2236   assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
2237   assert(Node->getValueType(0) == MVT::i1 &&
2238          "Custom lowering for i1 load only");
2239   SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
2240                               LD->getPointerInfo(), LD->getAlignment(),
2241                               LD->getMemOperand()->getFlags());
2242   SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
2243   // The legalizer (the caller) is expecting two values from the legalized
2244   // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
2245   // in LegalizeDAG.cpp which also uses MergeValues.
2246   SDValue Ops[] = { result, LD->getChain() };
2247   return DAG.getMergeValues(Ops, dl);
2248 }
2249 
LowerSTORE(SDValue Op,SelectionDAG & DAG) const2250 SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2251   StoreSDNode *Store = cast<StoreSDNode>(Op);
2252   EVT VT = Store->getMemoryVT();
2253 
2254   if (VT == MVT::i1)
2255     return LowerSTOREi1(Op, DAG);
2256 
2257   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2258   // stores and have to handle it here.
2259   if (VT == MVT::v2f16 &&
2260       !allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2261                                       VT, *Store->getMemOperand()))
2262     return expandUnalignedStore(Store, DAG);
2263 
2264   if (VT.isVector())
2265     return LowerSTOREVector(Op, DAG);
2266 
2267   return SDValue();
2268 }
2269 
2270 SDValue
LowerSTOREVector(SDValue Op,SelectionDAG & DAG) const2271 NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
2272   SDNode *N = Op.getNode();
2273   SDValue Val = N->getOperand(1);
2274   SDLoc DL(N);
2275   EVT ValVT = Val.getValueType();
2276 
2277   if (ValVT.isVector()) {
2278     // We only handle "native" vector sizes for now, e.g. <4 x double> is not
2279     // legal.  We can (and should) split that into 2 stores of <2 x double> here
2280     // but I'm leaving that as a TODO for now.
2281     if (!ValVT.isSimple())
2282       return SDValue();
2283     switch (ValVT.getSimpleVT().SimpleTy) {
2284     default:
2285       return SDValue();
2286     case MVT::v2i8:
2287     case MVT::v2i16:
2288     case MVT::v2i32:
2289     case MVT::v2i64:
2290     case MVT::v2f16:
2291     case MVT::v2f32:
2292     case MVT::v2f64:
2293     case MVT::v4i8:
2294     case MVT::v4i16:
2295     case MVT::v4i32:
2296     case MVT::v4f16:
2297     case MVT::v4f32:
2298     case MVT::v8f16: // <4 x f16x2>
2299       // This is a "native" vector type
2300       break;
2301     }
2302 
2303     MemSDNode *MemSD = cast<MemSDNode>(N);
2304     const DataLayout &TD = DAG.getDataLayout();
2305 
2306     Align Alignment = MemSD->getAlign();
2307     Align PrefAlign =
2308         TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext()));
2309     if (Alignment < PrefAlign) {
2310       // This store is not sufficiently aligned, so bail out and let this vector
2311       // store be scalarized.  Note that we may still be able to emit smaller
2312       // vector stores.  For example, if we are storing a <4 x float> with an
2313       // alignment of 8, this check will fail but the legalizer will try again
2314       // with 2 x <2 x float>, which will succeed with an alignment of 8.
2315       return SDValue();
2316     }
2317 
2318     unsigned Opcode = 0;
2319     EVT EltVT = ValVT.getVectorElementType();
2320     unsigned NumElts = ValVT.getVectorNumElements();
2321 
2322     // Since StoreV2 is a target node, we cannot rely on DAG type legalization.
2323     // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
2324     // stored type to i16 and propagate the "real" type as the memory type.
2325     bool NeedExt = false;
2326     if (EltVT.getSizeInBits() < 16)
2327       NeedExt = true;
2328 
2329     bool StoreF16x2 = false;
2330     switch (NumElts) {
2331     default:
2332       return SDValue();
2333     case 2:
2334       Opcode = NVPTXISD::StoreV2;
2335       break;
2336     case 4:
2337       Opcode = NVPTXISD::StoreV4;
2338       break;
2339     case 8:
2340       // v8f16 is a special case. PTX doesn't have st.v8.f16
2341       // instruction. Instead, we split the vector into v2f16 chunks and
2342       // store them with st.v4.b32.
2343       assert(EltVT == MVT::f16 && "Wrong type for the vector.");
2344       Opcode = NVPTXISD::StoreV4;
2345       StoreF16x2 = true;
2346       break;
2347     }
2348 
2349     SmallVector<SDValue, 8> Ops;
2350 
2351     // First is the chain
2352     Ops.push_back(N->getOperand(0));
2353 
2354     if (StoreF16x2) {
2355       // Combine f16,f16 -> v2f16
2356       NumElts /= 2;
2357       for (unsigned i = 0; i < NumElts; ++i) {
2358         SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2359                                  DAG.getIntPtrConstant(i * 2, DL));
2360         SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2361                                  DAG.getIntPtrConstant(i * 2 + 1, DL));
2362         SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f16, E0, E1);
2363         Ops.push_back(V2);
2364       }
2365     } else {
2366       // Then the split values
2367       for (unsigned i = 0; i < NumElts; ++i) {
2368         SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2369                                      DAG.getIntPtrConstant(i, DL));
2370         if (NeedExt)
2371           ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
2372         Ops.push_back(ExtVal);
2373       }
2374     }
2375 
2376     // Then any remaining arguments
2377     Ops.append(N->op_begin() + 2, N->op_end());
2378 
2379     SDValue NewSt =
2380         DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
2381                                 MemSD->getMemoryVT(), MemSD->getMemOperand());
2382 
2383     // return DCI.CombineTo(N, NewSt, true);
2384     return NewSt;
2385   }
2386 
2387   return SDValue();
2388 }
2389 
2390 // st i1 v, addr
2391 //    =>
2392 // v1 = zxt v to i16
2393 // st.u8 i16, addr
LowerSTOREi1(SDValue Op,SelectionDAG & DAG) const2394 SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
2395   SDNode *Node = Op.getNode();
2396   SDLoc dl(Node);
2397   StoreSDNode *ST = cast<StoreSDNode>(Node);
2398   SDValue Tmp1 = ST->getChain();
2399   SDValue Tmp2 = ST->getBasePtr();
2400   SDValue Tmp3 = ST->getValue();
2401   assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
2402   Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
2403   SDValue Result =
2404       DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
2405                         ST->getAlignment(), ST->getMemOperand()->getFlags());
2406   return Result;
2407 }
2408 
2409 SDValue
getParamSymbol(SelectionDAG & DAG,int idx,EVT v) const2410 NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
2411   std::string ParamSym;
2412   raw_string_ostream ParamStr(ParamSym);
2413 
2414   ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx;
2415   ParamStr.flush();
2416 
2417   std::string *SavedStr =
2418     nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str());
2419   return DAG.getTargetExternalSymbol(SavedStr->c_str(), v);
2420 }
2421 
2422 // Check to see if the kernel argument is image*_t or sampler_t
2423 
isImageOrSamplerVal(const Value * arg,const Module * context)2424 static bool isImageOrSamplerVal(const Value *arg, const Module *context) {
2425   static const char *const specialTypes[] = { "struct._image2d_t",
2426                                               "struct._image3d_t",
2427                                               "struct._sampler_t" };
2428 
2429   Type *Ty = arg->getType();
2430   auto *PTy = dyn_cast<PointerType>(Ty);
2431 
2432   if (!PTy)
2433     return false;
2434 
2435   if (!context)
2436     return false;
2437 
2438   auto *STy = dyn_cast<StructType>(PTy->getElementType());
2439   if (!STy || STy->isLiteral())
2440     return false;
2441 
2442   return llvm::is_contained(specialTypes, STy->getName());
2443 }
2444 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2445 SDValue NVPTXTargetLowering::LowerFormalArguments(
2446     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2447     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2448     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2449   MachineFunction &MF = DAG.getMachineFunction();
2450   const DataLayout &DL = DAG.getDataLayout();
2451   auto PtrVT = getPointerTy(DAG.getDataLayout());
2452 
2453   const Function *F = &MF.getFunction();
2454   const AttributeList &PAL = F->getAttributes();
2455   const TargetLowering *TLI = STI.getTargetLowering();
2456 
2457   SDValue Root = DAG.getRoot();
2458   std::vector<SDValue> OutChains;
2459 
2460   bool isABI = (STI.getSmVersion() >= 20);
2461   assert(isABI && "Non-ABI compilation is not supported");
2462   if (!isABI)
2463     return Chain;
2464 
2465   std::vector<Type *> argTypes;
2466   std::vector<const Argument *> theArgs;
2467   for (const Argument &I : F->args()) {
2468     theArgs.push_back(&I);
2469     argTypes.push_back(I.getType());
2470   }
2471   // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
2472   // Ins.size() will be larger
2473   //   * if there is an aggregate argument with multiple fields (each field
2474   //     showing up separately in Ins)
2475   //   * if there is a vector argument with more than typical vector-length
2476   //     elements (generally if more than 4) where each vector element is
2477   //     individually present in Ins.
2478   // So a different index should be used for indexing into Ins.
2479   // See similar issue in LowerCall.
2480   unsigned InsIdx = 0;
2481 
2482   int idx = 0;
2483   for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
2484     Type *Ty = argTypes[i];
2485 
2486     // If the kernel argument is image*_t or sampler_t, convert it to
2487     // a i32 constant holding the parameter position. This can later
2488     // matched in the AsmPrinter to output the correct mangled name.
2489     if (isImageOrSamplerVal(
2490             theArgs[i],
2491             (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent()
2492                                      : nullptr))) {
2493       assert(isKernelFunction(*F) &&
2494              "Only kernels can have image/sampler params");
2495       InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32));
2496       continue;
2497     }
2498 
2499     if (theArgs[i]->use_empty()) {
2500       // argument is dead
2501       if (Ty->isAggregateType() || Ty->isIntegerTy(128)) {
2502         SmallVector<EVT, 16> vtparts;
2503 
2504         ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
2505         assert(vtparts.size() > 0 && "empty aggregate type not expected");
2506         for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
2507              ++parti) {
2508           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2509           ++InsIdx;
2510         }
2511         if (vtparts.size() > 0)
2512           --InsIdx;
2513         continue;
2514       }
2515       if (Ty->isVectorTy()) {
2516         EVT ObjectVT = getValueType(DL, Ty);
2517         unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
2518         for (unsigned parti = 0; parti < NumRegs; ++parti) {
2519           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2520           ++InsIdx;
2521         }
2522         if (NumRegs > 0)
2523           --InsIdx;
2524         continue;
2525       }
2526       InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2527       continue;
2528     }
2529 
2530     // In the following cases, assign a node order of "idx+1"
2531     // to newly created nodes. The SDNodes for params have to
2532     // appear in the same order as their order of appearance
2533     // in the original function. "idx+1" holds that order.
2534     if (!PAL.hasParamAttribute(i, Attribute::ByVal)) {
2535       bool aggregateIsPacked = false;
2536       if (StructType *STy = dyn_cast<StructType>(Ty))
2537         aggregateIsPacked = STy->isPacked();
2538 
2539       SmallVector<EVT, 16> VTs;
2540       SmallVector<uint64_t, 16> Offsets;
2541       ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0);
2542       assert(VTs.size() > 0 && "Unexpected empty type.");
2543       auto VectorInfo =
2544           VectorizePTXValueVTs(VTs, Offsets, DL.getABITypeAlign(Ty));
2545 
2546       SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2547       int VecIdx = -1; // Index of the first element of the current vector.
2548       for (unsigned parti = 0, parte = VTs.size(); parti != parte; ++parti) {
2549         if (VectorInfo[parti] & PVF_FIRST) {
2550           assert(VecIdx == -1 && "Orphaned vector.");
2551           VecIdx = parti;
2552         }
2553 
2554         // That's the last element of this store op.
2555         if (VectorInfo[parti] & PVF_LAST) {
2556           unsigned NumElts = parti - VecIdx + 1;
2557           EVT EltVT = VTs[parti];
2558           // i1 is loaded/stored as i8.
2559           EVT LoadVT = EltVT;
2560           if (EltVT == MVT::i1)
2561             LoadVT = MVT::i8;
2562           else if (EltVT == MVT::v2f16)
2563             // getLoad needs a vector type, but it can't handle
2564             // vectors which contain v2f16 elements. So we must load
2565             // using i32 here and then bitcast back.
2566             LoadVT = MVT::i32;
2567 
2568           EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts);
2569           SDValue VecAddr =
2570               DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
2571                           DAG.getConstant(Offsets[VecIdx], dl, PtrVT));
2572           Value *srcValue = Constant::getNullValue(PointerType::get(
2573               EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM));
2574           SDValue P =
2575               DAG.getLoad(VecVT, dl, Root, VecAddr,
2576                           MachinePointerInfo(srcValue), aggregateIsPacked,
2577                           MachineMemOperand::MODereferenceable |
2578                               MachineMemOperand::MOInvariant);
2579           if (P.getNode())
2580             P.getNode()->setIROrder(idx + 1);
2581           for (unsigned j = 0; j < NumElts; ++j) {
2582             SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P,
2583                                       DAG.getIntPtrConstant(j, dl));
2584             // We've loaded i1 as an i8 and now must truncate it back to i1
2585             if (EltVT == MVT::i1)
2586               Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt);
2587             // v2f16 was loaded as an i32. Now we must bitcast it back.
2588             else if (EltVT == MVT::v2f16)
2589               Elt = DAG.getNode(ISD::BITCAST, dl, MVT::v2f16, Elt);
2590             // Extend the element if necessary (e.g. an i8 is loaded
2591             // into an i16 register)
2592             if (Ins[InsIdx].VT.isInteger() &&
2593                 Ins[InsIdx].VT.getFixedSizeInBits() >
2594                     LoadVT.getFixedSizeInBits()) {
2595               unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
2596                                                            : ISD::ZERO_EXTEND;
2597               Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt);
2598             }
2599             InVals.push_back(Elt);
2600           }
2601 
2602           // Reset vector tracking state.
2603           VecIdx = -1;
2604         }
2605         ++InsIdx;
2606       }
2607       if (VTs.size() > 0)
2608         --InsIdx;
2609       continue;
2610     }
2611 
2612     // Param has ByVal attribute
2613     // Return MoveParam(param symbol).
2614     // Ideally, the param symbol can be returned directly,
2615     // but when SDNode builder decides to use it in a CopyToReg(),
2616     // machine instruction fails because TargetExternalSymbol
2617     // (not lowered) is target dependent, and CopyToReg assumes
2618     // the source is lowered.
2619     EVT ObjectVT = getValueType(DL, Ty);
2620     assert(ObjectVT == Ins[InsIdx].VT &&
2621            "Ins type did not match function type");
2622     SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2623     SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
2624     if (p.getNode())
2625       p.getNode()->setIROrder(idx + 1);
2626     InVals.push_back(p);
2627   }
2628 
2629   // Clang will check explicit VarArg and issue error if any. However, Clang
2630   // will let code with
2631   // implicit var arg like f() pass. See bug 617733.
2632   // We treat this case as if the arg list is empty.
2633   // if (F.isVarArg()) {
2634   // assert(0 && "VarArg not supported yet!");
2635   //}
2636 
2637   if (!OutChains.empty())
2638     DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
2639 
2640   return Chain;
2641 }
2642 
2643 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const2644 NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2645                                  bool isVarArg,
2646                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2647                                  const SmallVectorImpl<SDValue> &OutVals,
2648                                  const SDLoc &dl, SelectionDAG &DAG) const {
2649   MachineFunction &MF = DAG.getMachineFunction();
2650   Type *RetTy = MF.getFunction().getReturnType();
2651 
2652   bool isABI = (STI.getSmVersion() >= 20);
2653   assert(isABI && "Non-ABI compilation is not supported");
2654   if (!isABI)
2655     return Chain;
2656 
2657   const DataLayout DL = DAG.getDataLayout();
2658   SmallVector<EVT, 16> VTs;
2659   SmallVector<uint64_t, 16> Offsets;
2660   ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets);
2661   assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
2662 
2663   auto VectorInfo = VectorizePTXValueVTs(
2664       VTs, Offsets, RetTy->isSized() ? DL.getABITypeAlign(RetTy) : Align(1));
2665 
2666   // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
2667   // 32-bits are sign extended or zero extended, depending on whether
2668   // they are signed or unsigned types.
2669   bool ExtendIntegerRetVal =
2670       RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
2671 
2672   SmallVector<SDValue, 6> StoreOperands;
2673   for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2674     // New load/store. Record chain and offset operands.
2675     if (VectorInfo[i] & PVF_FIRST) {
2676       assert(StoreOperands.empty() && "Orphaned operand list.");
2677       StoreOperands.push_back(Chain);
2678       StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32));
2679     }
2680 
2681     SDValue RetVal = OutVals[i];
2682     if (ExtendIntegerRetVal) {
2683       RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND
2684                                                   : ISD::ZERO_EXTEND,
2685                            dl, MVT::i32, RetVal);
2686     } else if (RetVal.getValueSizeInBits() < 16) {
2687       // Use 16-bit registers for small load-stores as it's the
2688       // smallest general purpose register size supported by NVPTX.
2689       RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal);
2690     }
2691 
2692     // Record the value to return.
2693     StoreOperands.push_back(RetVal);
2694 
2695     // That's the last element of this store op.
2696     if (VectorInfo[i] & PVF_LAST) {
2697       NVPTXISD::NodeType Op;
2698       unsigned NumElts = StoreOperands.size() - 2;
2699       switch (NumElts) {
2700       case 1:
2701         Op = NVPTXISD::StoreRetval;
2702         break;
2703       case 2:
2704         Op = NVPTXISD::StoreRetvalV2;
2705         break;
2706       case 4:
2707         Op = NVPTXISD::StoreRetvalV4;
2708         break;
2709       default:
2710         llvm_unreachable("Invalid vector info.");
2711       }
2712 
2713       // Adjust type of load/store op if we've extended the scalar
2714       // return value.
2715       EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
2716       Chain = DAG.getMemIntrinsicNode(
2717           Op, dl, DAG.getVTList(MVT::Other), StoreOperands, TheStoreType,
2718           MachinePointerInfo(), Align(1), MachineMemOperand::MOStore);
2719       // Cleanup vector state.
2720       StoreOperands.clear();
2721     }
2722   }
2723 
2724   return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
2725 }
2726 
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const2727 void NVPTXTargetLowering::LowerAsmOperandForConstraint(
2728     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2729     SelectionDAG &DAG) const {
2730   if (Constraint.length() > 1)
2731     return;
2732   else
2733     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2734 }
2735 
getOpcForTextureInstr(unsigned Intrinsic)2736 static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
2737   switch (Intrinsic) {
2738   default:
2739     return 0;
2740 
2741   case Intrinsic::nvvm_tex_1d_v4f32_s32:
2742     return NVPTXISD::Tex1DFloatS32;
2743   case Intrinsic::nvvm_tex_1d_v4f32_f32:
2744     return NVPTXISD::Tex1DFloatFloat;
2745   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
2746     return NVPTXISD::Tex1DFloatFloatLevel;
2747   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
2748     return NVPTXISD::Tex1DFloatFloatGrad;
2749   case Intrinsic::nvvm_tex_1d_v4s32_s32:
2750     return NVPTXISD::Tex1DS32S32;
2751   case Intrinsic::nvvm_tex_1d_v4s32_f32:
2752     return NVPTXISD::Tex1DS32Float;
2753   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
2754     return NVPTXISD::Tex1DS32FloatLevel;
2755   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
2756     return NVPTXISD::Tex1DS32FloatGrad;
2757   case Intrinsic::nvvm_tex_1d_v4u32_s32:
2758     return NVPTXISD::Tex1DU32S32;
2759   case Intrinsic::nvvm_tex_1d_v4u32_f32:
2760     return NVPTXISD::Tex1DU32Float;
2761   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
2762     return NVPTXISD::Tex1DU32FloatLevel;
2763   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
2764     return NVPTXISD::Tex1DU32FloatGrad;
2765 
2766   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
2767     return NVPTXISD::Tex1DArrayFloatS32;
2768   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
2769     return NVPTXISD::Tex1DArrayFloatFloat;
2770   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
2771     return NVPTXISD::Tex1DArrayFloatFloatLevel;
2772   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
2773     return NVPTXISD::Tex1DArrayFloatFloatGrad;
2774   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
2775     return NVPTXISD::Tex1DArrayS32S32;
2776   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
2777     return NVPTXISD::Tex1DArrayS32Float;
2778   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
2779     return NVPTXISD::Tex1DArrayS32FloatLevel;
2780   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
2781     return NVPTXISD::Tex1DArrayS32FloatGrad;
2782   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
2783     return NVPTXISD::Tex1DArrayU32S32;
2784   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
2785     return NVPTXISD::Tex1DArrayU32Float;
2786   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
2787     return NVPTXISD::Tex1DArrayU32FloatLevel;
2788   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
2789     return NVPTXISD::Tex1DArrayU32FloatGrad;
2790 
2791   case Intrinsic::nvvm_tex_2d_v4f32_s32:
2792     return NVPTXISD::Tex2DFloatS32;
2793   case Intrinsic::nvvm_tex_2d_v4f32_f32:
2794     return NVPTXISD::Tex2DFloatFloat;
2795   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
2796     return NVPTXISD::Tex2DFloatFloatLevel;
2797   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
2798     return NVPTXISD::Tex2DFloatFloatGrad;
2799   case Intrinsic::nvvm_tex_2d_v4s32_s32:
2800     return NVPTXISD::Tex2DS32S32;
2801   case Intrinsic::nvvm_tex_2d_v4s32_f32:
2802     return NVPTXISD::Tex2DS32Float;
2803   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
2804     return NVPTXISD::Tex2DS32FloatLevel;
2805   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
2806     return NVPTXISD::Tex2DS32FloatGrad;
2807   case Intrinsic::nvvm_tex_2d_v4u32_s32:
2808     return NVPTXISD::Tex2DU32S32;
2809   case Intrinsic::nvvm_tex_2d_v4u32_f32:
2810     return NVPTXISD::Tex2DU32Float;
2811   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
2812     return NVPTXISD::Tex2DU32FloatLevel;
2813   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
2814     return NVPTXISD::Tex2DU32FloatGrad;
2815 
2816   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
2817     return NVPTXISD::Tex2DArrayFloatS32;
2818   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
2819     return NVPTXISD::Tex2DArrayFloatFloat;
2820   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
2821     return NVPTXISD::Tex2DArrayFloatFloatLevel;
2822   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
2823     return NVPTXISD::Tex2DArrayFloatFloatGrad;
2824   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
2825     return NVPTXISD::Tex2DArrayS32S32;
2826   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
2827     return NVPTXISD::Tex2DArrayS32Float;
2828   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
2829     return NVPTXISD::Tex2DArrayS32FloatLevel;
2830   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
2831     return NVPTXISD::Tex2DArrayS32FloatGrad;
2832   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
2833     return NVPTXISD::Tex2DArrayU32S32;
2834   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
2835     return NVPTXISD::Tex2DArrayU32Float;
2836   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
2837     return NVPTXISD::Tex2DArrayU32FloatLevel;
2838   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
2839     return NVPTXISD::Tex2DArrayU32FloatGrad;
2840 
2841   case Intrinsic::nvvm_tex_3d_v4f32_s32:
2842     return NVPTXISD::Tex3DFloatS32;
2843   case Intrinsic::nvvm_tex_3d_v4f32_f32:
2844     return NVPTXISD::Tex3DFloatFloat;
2845   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
2846     return NVPTXISD::Tex3DFloatFloatLevel;
2847   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
2848     return NVPTXISD::Tex3DFloatFloatGrad;
2849   case Intrinsic::nvvm_tex_3d_v4s32_s32:
2850     return NVPTXISD::Tex3DS32S32;
2851   case Intrinsic::nvvm_tex_3d_v4s32_f32:
2852     return NVPTXISD::Tex3DS32Float;
2853   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
2854     return NVPTXISD::Tex3DS32FloatLevel;
2855   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
2856     return NVPTXISD::Tex3DS32FloatGrad;
2857   case Intrinsic::nvvm_tex_3d_v4u32_s32:
2858     return NVPTXISD::Tex3DU32S32;
2859   case Intrinsic::nvvm_tex_3d_v4u32_f32:
2860     return NVPTXISD::Tex3DU32Float;
2861   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
2862     return NVPTXISD::Tex3DU32FloatLevel;
2863   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
2864     return NVPTXISD::Tex3DU32FloatGrad;
2865 
2866   case Intrinsic::nvvm_tex_cube_v4f32_f32:
2867     return NVPTXISD::TexCubeFloatFloat;
2868   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
2869     return NVPTXISD::TexCubeFloatFloatLevel;
2870   case Intrinsic::nvvm_tex_cube_v4s32_f32:
2871     return NVPTXISD::TexCubeS32Float;
2872   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
2873     return NVPTXISD::TexCubeS32FloatLevel;
2874   case Intrinsic::nvvm_tex_cube_v4u32_f32:
2875     return NVPTXISD::TexCubeU32Float;
2876   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
2877     return NVPTXISD::TexCubeU32FloatLevel;
2878 
2879   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
2880     return NVPTXISD::TexCubeArrayFloatFloat;
2881   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
2882     return NVPTXISD::TexCubeArrayFloatFloatLevel;
2883   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
2884     return NVPTXISD::TexCubeArrayS32Float;
2885   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
2886     return NVPTXISD::TexCubeArrayS32FloatLevel;
2887   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
2888     return NVPTXISD::TexCubeArrayU32Float;
2889   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
2890     return NVPTXISD::TexCubeArrayU32FloatLevel;
2891 
2892   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
2893     return NVPTXISD::Tld4R2DFloatFloat;
2894   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
2895     return NVPTXISD::Tld4G2DFloatFloat;
2896   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
2897     return NVPTXISD::Tld4B2DFloatFloat;
2898   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
2899     return NVPTXISD::Tld4A2DFloatFloat;
2900   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
2901     return NVPTXISD::Tld4R2DS64Float;
2902   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
2903     return NVPTXISD::Tld4G2DS64Float;
2904   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
2905     return NVPTXISD::Tld4B2DS64Float;
2906   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
2907     return NVPTXISD::Tld4A2DS64Float;
2908   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
2909     return NVPTXISD::Tld4R2DU64Float;
2910   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
2911     return NVPTXISD::Tld4G2DU64Float;
2912   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
2913     return NVPTXISD::Tld4B2DU64Float;
2914   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
2915     return NVPTXISD::Tld4A2DU64Float;
2916 
2917   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
2918     return NVPTXISD::TexUnified1DFloatS32;
2919   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
2920     return NVPTXISD::TexUnified1DFloatFloat;
2921   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
2922     return NVPTXISD::TexUnified1DFloatFloatLevel;
2923   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
2924     return NVPTXISD::TexUnified1DFloatFloatGrad;
2925   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
2926     return NVPTXISD::TexUnified1DS32S32;
2927   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
2928     return NVPTXISD::TexUnified1DS32Float;
2929   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
2930     return NVPTXISD::TexUnified1DS32FloatLevel;
2931   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
2932     return NVPTXISD::TexUnified1DS32FloatGrad;
2933   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
2934     return NVPTXISD::TexUnified1DU32S32;
2935   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
2936     return NVPTXISD::TexUnified1DU32Float;
2937   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
2938     return NVPTXISD::TexUnified1DU32FloatLevel;
2939   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
2940     return NVPTXISD::TexUnified1DU32FloatGrad;
2941 
2942   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
2943     return NVPTXISD::TexUnified1DArrayFloatS32;
2944   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
2945     return NVPTXISD::TexUnified1DArrayFloatFloat;
2946   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
2947     return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
2948   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
2949     return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
2950   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
2951     return NVPTXISD::TexUnified1DArrayS32S32;
2952   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
2953     return NVPTXISD::TexUnified1DArrayS32Float;
2954   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
2955     return NVPTXISD::TexUnified1DArrayS32FloatLevel;
2956   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
2957     return NVPTXISD::TexUnified1DArrayS32FloatGrad;
2958   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
2959     return NVPTXISD::TexUnified1DArrayU32S32;
2960   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
2961     return NVPTXISD::TexUnified1DArrayU32Float;
2962   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
2963     return NVPTXISD::TexUnified1DArrayU32FloatLevel;
2964   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
2965     return NVPTXISD::TexUnified1DArrayU32FloatGrad;
2966 
2967   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
2968     return NVPTXISD::TexUnified2DFloatS32;
2969   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
2970     return NVPTXISD::TexUnified2DFloatFloat;
2971   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
2972     return NVPTXISD::TexUnified2DFloatFloatLevel;
2973   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
2974     return NVPTXISD::TexUnified2DFloatFloatGrad;
2975   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
2976     return NVPTXISD::TexUnified2DS32S32;
2977   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
2978     return NVPTXISD::TexUnified2DS32Float;
2979   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
2980     return NVPTXISD::TexUnified2DS32FloatLevel;
2981   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
2982     return NVPTXISD::TexUnified2DS32FloatGrad;
2983   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
2984     return NVPTXISD::TexUnified2DU32S32;
2985   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
2986     return NVPTXISD::TexUnified2DU32Float;
2987   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
2988     return NVPTXISD::TexUnified2DU32FloatLevel;
2989   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
2990     return NVPTXISD::TexUnified2DU32FloatGrad;
2991 
2992   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
2993     return NVPTXISD::TexUnified2DArrayFloatS32;
2994   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
2995     return NVPTXISD::TexUnified2DArrayFloatFloat;
2996   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
2997     return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
2998   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
2999     return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
3000   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3001     return NVPTXISD::TexUnified2DArrayS32S32;
3002   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3003     return NVPTXISD::TexUnified2DArrayS32Float;
3004   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3005     return NVPTXISD::TexUnified2DArrayS32FloatLevel;
3006   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3007     return NVPTXISD::TexUnified2DArrayS32FloatGrad;
3008   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3009     return NVPTXISD::TexUnified2DArrayU32S32;
3010   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3011     return NVPTXISD::TexUnified2DArrayU32Float;
3012   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3013     return NVPTXISD::TexUnified2DArrayU32FloatLevel;
3014   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3015     return NVPTXISD::TexUnified2DArrayU32FloatGrad;
3016 
3017   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3018     return NVPTXISD::TexUnified3DFloatS32;
3019   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3020     return NVPTXISD::TexUnified3DFloatFloat;
3021   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3022     return NVPTXISD::TexUnified3DFloatFloatLevel;
3023   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3024     return NVPTXISD::TexUnified3DFloatFloatGrad;
3025   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3026     return NVPTXISD::TexUnified3DS32S32;
3027   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3028     return NVPTXISD::TexUnified3DS32Float;
3029   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3030     return NVPTXISD::TexUnified3DS32FloatLevel;
3031   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3032     return NVPTXISD::TexUnified3DS32FloatGrad;
3033   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3034     return NVPTXISD::TexUnified3DU32S32;
3035   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3036     return NVPTXISD::TexUnified3DU32Float;
3037   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3038     return NVPTXISD::TexUnified3DU32FloatLevel;
3039   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3040     return NVPTXISD::TexUnified3DU32FloatGrad;
3041 
3042   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3043     return NVPTXISD::TexUnifiedCubeFloatFloat;
3044   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3045     return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
3046   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3047     return NVPTXISD::TexUnifiedCubeS32Float;
3048   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3049     return NVPTXISD::TexUnifiedCubeS32FloatLevel;
3050   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3051     return NVPTXISD::TexUnifiedCubeU32Float;
3052   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3053     return NVPTXISD::TexUnifiedCubeU32FloatLevel;
3054 
3055   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3056     return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
3057   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3058     return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
3059   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3060     return NVPTXISD::TexUnifiedCubeArrayS32Float;
3061   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3062     return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
3063   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3064     return NVPTXISD::TexUnifiedCubeArrayU32Float;
3065   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3066     return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
3067 
3068   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3069     return NVPTXISD::Tld4UnifiedR2DFloatFloat;
3070   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3071     return NVPTXISD::Tld4UnifiedG2DFloatFloat;
3072   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3073     return NVPTXISD::Tld4UnifiedB2DFloatFloat;
3074   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3075     return NVPTXISD::Tld4UnifiedA2DFloatFloat;
3076   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3077     return NVPTXISD::Tld4UnifiedR2DS64Float;
3078   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3079     return NVPTXISD::Tld4UnifiedG2DS64Float;
3080   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3081     return NVPTXISD::Tld4UnifiedB2DS64Float;
3082   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3083     return NVPTXISD::Tld4UnifiedA2DS64Float;
3084   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3085     return NVPTXISD::Tld4UnifiedR2DU64Float;
3086   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3087     return NVPTXISD::Tld4UnifiedG2DU64Float;
3088   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3089     return NVPTXISD::Tld4UnifiedB2DU64Float;
3090   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
3091     return NVPTXISD::Tld4UnifiedA2DU64Float;
3092   }
3093 }
3094 
getOpcForSurfaceInstr(unsigned Intrinsic)3095 static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
3096   switch (Intrinsic) {
3097   default:
3098     return 0;
3099   case Intrinsic::nvvm_suld_1d_i8_clamp:
3100     return NVPTXISD::Suld1DI8Clamp;
3101   case Intrinsic::nvvm_suld_1d_i16_clamp:
3102     return NVPTXISD::Suld1DI16Clamp;
3103   case Intrinsic::nvvm_suld_1d_i32_clamp:
3104     return NVPTXISD::Suld1DI32Clamp;
3105   case Intrinsic::nvvm_suld_1d_i64_clamp:
3106     return NVPTXISD::Suld1DI64Clamp;
3107   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3108     return NVPTXISD::Suld1DV2I8Clamp;
3109   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
3110     return NVPTXISD::Suld1DV2I16Clamp;
3111   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
3112     return NVPTXISD::Suld1DV2I32Clamp;
3113   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
3114     return NVPTXISD::Suld1DV2I64Clamp;
3115   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3116     return NVPTXISD::Suld1DV4I8Clamp;
3117   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
3118     return NVPTXISD::Suld1DV4I16Clamp;
3119   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
3120     return NVPTXISD::Suld1DV4I32Clamp;
3121   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3122     return NVPTXISD::Suld1DArrayI8Clamp;
3123   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
3124     return NVPTXISD::Suld1DArrayI16Clamp;
3125   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
3126     return NVPTXISD::Suld1DArrayI32Clamp;
3127   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
3128     return NVPTXISD::Suld1DArrayI64Clamp;
3129   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3130     return NVPTXISD::Suld1DArrayV2I8Clamp;
3131   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
3132     return NVPTXISD::Suld1DArrayV2I16Clamp;
3133   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
3134     return NVPTXISD::Suld1DArrayV2I32Clamp;
3135   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
3136     return NVPTXISD::Suld1DArrayV2I64Clamp;
3137   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3138     return NVPTXISD::Suld1DArrayV4I8Clamp;
3139   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
3140     return NVPTXISD::Suld1DArrayV4I16Clamp;
3141   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
3142     return NVPTXISD::Suld1DArrayV4I32Clamp;
3143   case Intrinsic::nvvm_suld_2d_i8_clamp:
3144     return NVPTXISD::Suld2DI8Clamp;
3145   case Intrinsic::nvvm_suld_2d_i16_clamp:
3146     return NVPTXISD::Suld2DI16Clamp;
3147   case Intrinsic::nvvm_suld_2d_i32_clamp:
3148     return NVPTXISD::Suld2DI32Clamp;
3149   case Intrinsic::nvvm_suld_2d_i64_clamp:
3150     return NVPTXISD::Suld2DI64Clamp;
3151   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3152     return NVPTXISD::Suld2DV2I8Clamp;
3153   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
3154     return NVPTXISD::Suld2DV2I16Clamp;
3155   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
3156     return NVPTXISD::Suld2DV2I32Clamp;
3157   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
3158     return NVPTXISD::Suld2DV2I64Clamp;
3159   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
3160     return NVPTXISD::Suld2DV4I8Clamp;
3161   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
3162     return NVPTXISD::Suld2DV4I16Clamp;
3163   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
3164     return NVPTXISD::Suld2DV4I32Clamp;
3165   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
3166     return NVPTXISD::Suld2DArrayI8Clamp;
3167   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
3168     return NVPTXISD::Suld2DArrayI16Clamp;
3169   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
3170     return NVPTXISD::Suld2DArrayI32Clamp;
3171   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
3172     return NVPTXISD::Suld2DArrayI64Clamp;
3173   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
3174     return NVPTXISD::Suld2DArrayV2I8Clamp;
3175   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
3176     return NVPTXISD::Suld2DArrayV2I16Clamp;
3177   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
3178     return NVPTXISD::Suld2DArrayV2I32Clamp;
3179   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
3180     return NVPTXISD::Suld2DArrayV2I64Clamp;
3181   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
3182     return NVPTXISD::Suld2DArrayV4I8Clamp;
3183   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
3184     return NVPTXISD::Suld2DArrayV4I16Clamp;
3185   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
3186     return NVPTXISD::Suld2DArrayV4I32Clamp;
3187   case Intrinsic::nvvm_suld_3d_i8_clamp:
3188     return NVPTXISD::Suld3DI8Clamp;
3189   case Intrinsic::nvvm_suld_3d_i16_clamp:
3190     return NVPTXISD::Suld3DI16Clamp;
3191   case Intrinsic::nvvm_suld_3d_i32_clamp:
3192     return NVPTXISD::Suld3DI32Clamp;
3193   case Intrinsic::nvvm_suld_3d_i64_clamp:
3194     return NVPTXISD::Suld3DI64Clamp;
3195   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
3196     return NVPTXISD::Suld3DV2I8Clamp;
3197   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
3198     return NVPTXISD::Suld3DV2I16Clamp;
3199   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3200     return NVPTXISD::Suld3DV2I32Clamp;
3201   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3202     return NVPTXISD::Suld3DV2I64Clamp;
3203   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3204     return NVPTXISD::Suld3DV4I8Clamp;
3205   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3206     return NVPTXISD::Suld3DV4I16Clamp;
3207   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3208     return NVPTXISD::Suld3DV4I32Clamp;
3209   case Intrinsic::nvvm_suld_1d_i8_trap:
3210     return NVPTXISD::Suld1DI8Trap;
3211   case Intrinsic::nvvm_suld_1d_i16_trap:
3212     return NVPTXISD::Suld1DI16Trap;
3213   case Intrinsic::nvvm_suld_1d_i32_trap:
3214     return NVPTXISD::Suld1DI32Trap;
3215   case Intrinsic::nvvm_suld_1d_i64_trap:
3216     return NVPTXISD::Suld1DI64Trap;
3217   case Intrinsic::nvvm_suld_1d_v2i8_trap:
3218     return NVPTXISD::Suld1DV2I8Trap;
3219   case Intrinsic::nvvm_suld_1d_v2i16_trap:
3220     return NVPTXISD::Suld1DV2I16Trap;
3221   case Intrinsic::nvvm_suld_1d_v2i32_trap:
3222     return NVPTXISD::Suld1DV2I32Trap;
3223   case Intrinsic::nvvm_suld_1d_v2i64_trap:
3224     return NVPTXISD::Suld1DV2I64Trap;
3225   case Intrinsic::nvvm_suld_1d_v4i8_trap:
3226     return NVPTXISD::Suld1DV4I8Trap;
3227   case Intrinsic::nvvm_suld_1d_v4i16_trap:
3228     return NVPTXISD::Suld1DV4I16Trap;
3229   case Intrinsic::nvvm_suld_1d_v4i32_trap:
3230     return NVPTXISD::Suld1DV4I32Trap;
3231   case Intrinsic::nvvm_suld_1d_array_i8_trap:
3232     return NVPTXISD::Suld1DArrayI8Trap;
3233   case Intrinsic::nvvm_suld_1d_array_i16_trap:
3234     return NVPTXISD::Suld1DArrayI16Trap;
3235   case Intrinsic::nvvm_suld_1d_array_i32_trap:
3236     return NVPTXISD::Suld1DArrayI32Trap;
3237   case Intrinsic::nvvm_suld_1d_array_i64_trap:
3238     return NVPTXISD::Suld1DArrayI64Trap;
3239   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3240     return NVPTXISD::Suld1DArrayV2I8Trap;
3241   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3242     return NVPTXISD::Suld1DArrayV2I16Trap;
3243   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3244     return NVPTXISD::Suld1DArrayV2I32Trap;
3245   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3246     return NVPTXISD::Suld1DArrayV2I64Trap;
3247   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3248     return NVPTXISD::Suld1DArrayV4I8Trap;
3249   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3250     return NVPTXISD::Suld1DArrayV4I16Trap;
3251   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3252     return NVPTXISD::Suld1DArrayV4I32Trap;
3253   case Intrinsic::nvvm_suld_2d_i8_trap:
3254     return NVPTXISD::Suld2DI8Trap;
3255   case Intrinsic::nvvm_suld_2d_i16_trap:
3256     return NVPTXISD::Suld2DI16Trap;
3257   case Intrinsic::nvvm_suld_2d_i32_trap:
3258     return NVPTXISD::Suld2DI32Trap;
3259   case Intrinsic::nvvm_suld_2d_i64_trap:
3260     return NVPTXISD::Suld2DI64Trap;
3261   case Intrinsic::nvvm_suld_2d_v2i8_trap:
3262     return NVPTXISD::Suld2DV2I8Trap;
3263   case Intrinsic::nvvm_suld_2d_v2i16_trap:
3264     return NVPTXISD::Suld2DV2I16Trap;
3265   case Intrinsic::nvvm_suld_2d_v2i32_trap:
3266     return NVPTXISD::Suld2DV2I32Trap;
3267   case Intrinsic::nvvm_suld_2d_v2i64_trap:
3268     return NVPTXISD::Suld2DV2I64Trap;
3269   case Intrinsic::nvvm_suld_2d_v4i8_trap:
3270     return NVPTXISD::Suld2DV4I8Trap;
3271   case Intrinsic::nvvm_suld_2d_v4i16_trap:
3272     return NVPTXISD::Suld2DV4I16Trap;
3273   case Intrinsic::nvvm_suld_2d_v4i32_trap:
3274     return NVPTXISD::Suld2DV4I32Trap;
3275   case Intrinsic::nvvm_suld_2d_array_i8_trap:
3276     return NVPTXISD::Suld2DArrayI8Trap;
3277   case Intrinsic::nvvm_suld_2d_array_i16_trap:
3278     return NVPTXISD::Suld2DArrayI16Trap;
3279   case Intrinsic::nvvm_suld_2d_array_i32_trap:
3280     return NVPTXISD::Suld2DArrayI32Trap;
3281   case Intrinsic::nvvm_suld_2d_array_i64_trap:
3282     return NVPTXISD::Suld2DArrayI64Trap;
3283   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3284     return NVPTXISD::Suld2DArrayV2I8Trap;
3285   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3286     return NVPTXISD::Suld2DArrayV2I16Trap;
3287   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3288     return NVPTXISD::Suld2DArrayV2I32Trap;
3289   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3290     return NVPTXISD::Suld2DArrayV2I64Trap;
3291   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3292     return NVPTXISD::Suld2DArrayV4I8Trap;
3293   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3294     return NVPTXISD::Suld2DArrayV4I16Trap;
3295   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3296     return NVPTXISD::Suld2DArrayV4I32Trap;
3297   case Intrinsic::nvvm_suld_3d_i8_trap:
3298     return NVPTXISD::Suld3DI8Trap;
3299   case Intrinsic::nvvm_suld_3d_i16_trap:
3300     return NVPTXISD::Suld3DI16Trap;
3301   case Intrinsic::nvvm_suld_3d_i32_trap:
3302     return NVPTXISD::Suld3DI32Trap;
3303   case Intrinsic::nvvm_suld_3d_i64_trap:
3304     return NVPTXISD::Suld3DI64Trap;
3305   case Intrinsic::nvvm_suld_3d_v2i8_trap:
3306     return NVPTXISD::Suld3DV2I8Trap;
3307   case Intrinsic::nvvm_suld_3d_v2i16_trap:
3308     return NVPTXISD::Suld3DV2I16Trap;
3309   case Intrinsic::nvvm_suld_3d_v2i32_trap:
3310     return NVPTXISD::Suld3DV2I32Trap;
3311   case Intrinsic::nvvm_suld_3d_v2i64_trap:
3312     return NVPTXISD::Suld3DV2I64Trap;
3313   case Intrinsic::nvvm_suld_3d_v4i8_trap:
3314     return NVPTXISD::Suld3DV4I8Trap;
3315   case Intrinsic::nvvm_suld_3d_v4i16_trap:
3316     return NVPTXISD::Suld3DV4I16Trap;
3317   case Intrinsic::nvvm_suld_3d_v4i32_trap:
3318     return NVPTXISD::Suld3DV4I32Trap;
3319   case Intrinsic::nvvm_suld_1d_i8_zero:
3320     return NVPTXISD::Suld1DI8Zero;
3321   case Intrinsic::nvvm_suld_1d_i16_zero:
3322     return NVPTXISD::Suld1DI16Zero;
3323   case Intrinsic::nvvm_suld_1d_i32_zero:
3324     return NVPTXISD::Suld1DI32Zero;
3325   case Intrinsic::nvvm_suld_1d_i64_zero:
3326     return NVPTXISD::Suld1DI64Zero;
3327   case Intrinsic::nvvm_suld_1d_v2i8_zero:
3328     return NVPTXISD::Suld1DV2I8Zero;
3329   case Intrinsic::nvvm_suld_1d_v2i16_zero:
3330     return NVPTXISD::Suld1DV2I16Zero;
3331   case Intrinsic::nvvm_suld_1d_v2i32_zero:
3332     return NVPTXISD::Suld1DV2I32Zero;
3333   case Intrinsic::nvvm_suld_1d_v2i64_zero:
3334     return NVPTXISD::Suld1DV2I64Zero;
3335   case Intrinsic::nvvm_suld_1d_v4i8_zero:
3336     return NVPTXISD::Suld1DV4I8Zero;
3337   case Intrinsic::nvvm_suld_1d_v4i16_zero:
3338     return NVPTXISD::Suld1DV4I16Zero;
3339   case Intrinsic::nvvm_suld_1d_v4i32_zero:
3340     return NVPTXISD::Suld1DV4I32Zero;
3341   case Intrinsic::nvvm_suld_1d_array_i8_zero:
3342     return NVPTXISD::Suld1DArrayI8Zero;
3343   case Intrinsic::nvvm_suld_1d_array_i16_zero:
3344     return NVPTXISD::Suld1DArrayI16Zero;
3345   case Intrinsic::nvvm_suld_1d_array_i32_zero:
3346     return NVPTXISD::Suld1DArrayI32Zero;
3347   case Intrinsic::nvvm_suld_1d_array_i64_zero:
3348     return NVPTXISD::Suld1DArrayI64Zero;
3349   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3350     return NVPTXISD::Suld1DArrayV2I8Zero;
3351   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3352     return NVPTXISD::Suld1DArrayV2I16Zero;
3353   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3354     return NVPTXISD::Suld1DArrayV2I32Zero;
3355   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3356     return NVPTXISD::Suld1DArrayV2I64Zero;
3357   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3358     return NVPTXISD::Suld1DArrayV4I8Zero;
3359   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3360     return NVPTXISD::Suld1DArrayV4I16Zero;
3361   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3362     return NVPTXISD::Suld1DArrayV4I32Zero;
3363   case Intrinsic::nvvm_suld_2d_i8_zero:
3364     return NVPTXISD::Suld2DI8Zero;
3365   case Intrinsic::nvvm_suld_2d_i16_zero:
3366     return NVPTXISD::Suld2DI16Zero;
3367   case Intrinsic::nvvm_suld_2d_i32_zero:
3368     return NVPTXISD::Suld2DI32Zero;
3369   case Intrinsic::nvvm_suld_2d_i64_zero:
3370     return NVPTXISD::Suld2DI64Zero;
3371   case Intrinsic::nvvm_suld_2d_v2i8_zero:
3372     return NVPTXISD::Suld2DV2I8Zero;
3373   case Intrinsic::nvvm_suld_2d_v2i16_zero:
3374     return NVPTXISD::Suld2DV2I16Zero;
3375   case Intrinsic::nvvm_suld_2d_v2i32_zero:
3376     return NVPTXISD::Suld2DV2I32Zero;
3377   case Intrinsic::nvvm_suld_2d_v2i64_zero:
3378     return NVPTXISD::Suld2DV2I64Zero;
3379   case Intrinsic::nvvm_suld_2d_v4i8_zero:
3380     return NVPTXISD::Suld2DV4I8Zero;
3381   case Intrinsic::nvvm_suld_2d_v4i16_zero:
3382     return NVPTXISD::Suld2DV4I16Zero;
3383   case Intrinsic::nvvm_suld_2d_v4i32_zero:
3384     return NVPTXISD::Suld2DV4I32Zero;
3385   case Intrinsic::nvvm_suld_2d_array_i8_zero:
3386     return NVPTXISD::Suld2DArrayI8Zero;
3387   case Intrinsic::nvvm_suld_2d_array_i16_zero:
3388     return NVPTXISD::Suld2DArrayI16Zero;
3389   case Intrinsic::nvvm_suld_2d_array_i32_zero:
3390     return NVPTXISD::Suld2DArrayI32Zero;
3391   case Intrinsic::nvvm_suld_2d_array_i64_zero:
3392     return NVPTXISD::Suld2DArrayI64Zero;
3393   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3394     return NVPTXISD::Suld2DArrayV2I8Zero;
3395   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3396     return NVPTXISD::Suld2DArrayV2I16Zero;
3397   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3398     return NVPTXISD::Suld2DArrayV2I32Zero;
3399   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3400     return NVPTXISD::Suld2DArrayV2I64Zero;
3401   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3402     return NVPTXISD::Suld2DArrayV4I8Zero;
3403   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3404     return NVPTXISD::Suld2DArrayV4I16Zero;
3405   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3406     return NVPTXISD::Suld2DArrayV4I32Zero;
3407   case Intrinsic::nvvm_suld_3d_i8_zero:
3408     return NVPTXISD::Suld3DI8Zero;
3409   case Intrinsic::nvvm_suld_3d_i16_zero:
3410     return NVPTXISD::Suld3DI16Zero;
3411   case Intrinsic::nvvm_suld_3d_i32_zero:
3412     return NVPTXISD::Suld3DI32Zero;
3413   case Intrinsic::nvvm_suld_3d_i64_zero:
3414     return NVPTXISD::Suld3DI64Zero;
3415   case Intrinsic::nvvm_suld_3d_v2i8_zero:
3416     return NVPTXISD::Suld3DV2I8Zero;
3417   case Intrinsic::nvvm_suld_3d_v2i16_zero:
3418     return NVPTXISD::Suld3DV2I16Zero;
3419   case Intrinsic::nvvm_suld_3d_v2i32_zero:
3420     return NVPTXISD::Suld3DV2I32Zero;
3421   case Intrinsic::nvvm_suld_3d_v2i64_zero:
3422     return NVPTXISD::Suld3DV2I64Zero;
3423   case Intrinsic::nvvm_suld_3d_v4i8_zero:
3424     return NVPTXISD::Suld3DV4I8Zero;
3425   case Intrinsic::nvvm_suld_3d_v4i16_zero:
3426     return NVPTXISD::Suld3DV4I16Zero;
3427   case Intrinsic::nvvm_suld_3d_v4i32_zero:
3428     return NVPTXISD::Suld3DV4I32Zero;
3429   }
3430 }
3431 
3432 // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
3433 // TgtMemIntrinsic
3434 // because we need the information that is only available in the "Value" type
3435 // of destination
3436 // pointer. In particular, the address space information.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const3437 bool NVPTXTargetLowering::getTgtMemIntrinsic(
3438     IntrinsicInfo &Info, const CallInst &I,
3439     MachineFunction &MF, unsigned Intrinsic) const {
3440   switch (Intrinsic) {
3441   default:
3442     return false;
3443   case Intrinsic::nvvm_match_all_sync_i32p:
3444   case Intrinsic::nvvm_match_all_sync_i64p:
3445     Info.opc = ISD::INTRINSIC_W_CHAIN;
3446     // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
3447     // in order to model data exchange with other threads, but perform no real
3448     // memory accesses.
3449     Info.memVT = MVT::i1;
3450 
3451     // Our result depends on both our and other thread's arguments.
3452     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3453     return true;
3454   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
3455   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
3456   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
3457   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
3458   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
3459   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
3460   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
3461   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
3462   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
3463   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
3464   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
3465   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
3466   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
3467   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
3468   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
3469   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
3470   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
3471   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
3472   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
3473   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
3474   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
3475   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
3476   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
3477   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
3478     Info.opc = ISD::INTRINSIC_W_CHAIN;
3479     Info.memVT = MVT::v8f16;
3480     Info.ptrVal = I.getArgOperand(0);
3481     Info.offset = 0;
3482     Info.flags = MachineMemOperand::MOLoad;
3483     Info.align = Align(16);
3484     return true;
3485   }
3486   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
3487   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
3488   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
3489   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
3490   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
3491   case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
3492   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
3493   case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
3494   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
3495   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
3496   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
3497   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
3498   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
3499   case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
3500   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
3501   case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row: {
3502     Info.opc = ISD::INTRINSIC_W_CHAIN;
3503     Info.memVT = MVT::v2i32;
3504     Info.ptrVal = I.getArgOperand(0);
3505     Info.offset = 0;
3506     Info.flags = MachineMemOperand::MOLoad;
3507     Info.align = Align(8);
3508     return true;
3509   }
3510 
3511   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
3512   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
3513   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
3514   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
3515   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
3516   case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
3517   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
3518   case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
3519 
3520   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
3521   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
3522   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
3523   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
3524   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
3525   case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
3526   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
3527   case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row: {
3528     Info.opc = ISD::INTRINSIC_W_CHAIN;
3529     Info.memVT = MVT::v4i32;
3530     Info.ptrVal = I.getArgOperand(0);
3531     Info.offset = 0;
3532     Info.flags = MachineMemOperand::MOLoad;
3533     Info.align = Align(16);
3534     return true;
3535   }
3536 
3537   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
3538   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
3539   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
3540   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
3541   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
3542   case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
3543   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
3544   case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
3545 
3546   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
3547   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
3548   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
3549   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
3550   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
3551   case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
3552   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
3553   case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
3554   case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
3555   case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
3556   case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
3557   case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
3558   case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
3559   case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
3560   case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
3561   case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
3562   case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
3563   case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
3564   case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
3565   case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col: {
3566     Info.opc = ISD::INTRINSIC_W_CHAIN;
3567     Info.memVT = MVT::i32;
3568     Info.ptrVal = I.getArgOperand(0);
3569     Info.offset = 0;
3570     Info.flags = MachineMemOperand::MOLoad;
3571     Info.align = Align(4);
3572     return true;
3573   }
3574 
3575   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
3576   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
3577   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
3578   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
3579   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
3580   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
3581   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
3582   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
3583   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
3584   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
3585   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
3586   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
3587     Info.opc = ISD::INTRINSIC_W_CHAIN;
3588     Info.memVT = MVT::v4f16;
3589     Info.ptrVal = I.getArgOperand(0);
3590     Info.offset = 0;
3591     Info.flags = MachineMemOperand::MOLoad;
3592     Info.align = Align(16);
3593     return true;
3594   }
3595 
3596   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
3597   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
3598   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
3599   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
3600   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
3601   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
3602   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
3603   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
3604   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
3605   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
3606   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
3607   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride: {
3608     Info.opc = ISD::INTRINSIC_W_CHAIN;
3609     Info.memVT = MVT::v8f32;
3610     Info.ptrVal = I.getArgOperand(0);
3611     Info.offset = 0;
3612     Info.flags = MachineMemOperand::MOLoad;
3613     Info.align = Align(16);
3614     return true;
3615   }
3616 
3617   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
3618   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
3619   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
3620   case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
3621   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
3622   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
3623   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
3624   case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
3625   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
3626   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
3627   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
3628   case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
3629     Info.opc = ISD::INTRINSIC_W_CHAIN;
3630     Info.memVT = MVT::v8i32;
3631     Info.ptrVal = I.getArgOperand(0);
3632     Info.offset = 0;
3633     Info.flags = MachineMemOperand::MOLoad;
3634     Info.align = Align(16);
3635     return true;
3636   }
3637 
3638   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
3639   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
3640   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
3641   case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
3642   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
3643   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
3644   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
3645   case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride: {
3646     Info.opc = ISD::INTRINSIC_W_CHAIN;
3647     Info.memVT = MVT::v2i32;
3648     Info.ptrVal = I.getArgOperand(0);
3649     Info.offset = 0;
3650     Info.flags = MachineMemOperand::MOLoad;
3651     Info.align = Align(8);
3652     return true;
3653   }
3654 
3655   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
3656   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
3657   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
3658   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
3659   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
3660   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
3661   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
3662   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
3663   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
3664   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
3665   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
3666   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
3667     Info.opc = ISD::INTRINSIC_VOID;
3668     Info.memVT = MVT::v4f16;
3669     Info.ptrVal = I.getArgOperand(0);
3670     Info.offset = 0;
3671     Info.flags = MachineMemOperand::MOStore;
3672     Info.align = Align(16);
3673     return true;
3674   }
3675 
3676   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
3677   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
3678   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
3679   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
3680   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
3681   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
3682   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
3683   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
3684   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
3685   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
3686   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
3687   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride: {
3688     Info.opc = ISD::INTRINSIC_VOID;
3689     Info.memVT = MVT::v8f32;
3690     Info.ptrVal = I.getArgOperand(0);
3691     Info.offset = 0;
3692     Info.flags = MachineMemOperand::MOStore;
3693     Info.align = Align(16);
3694     return true;
3695   }
3696 
3697   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
3698   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
3699   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
3700   case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
3701   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
3702   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
3703   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
3704   case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
3705   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
3706   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
3707   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
3708   case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
3709     Info.opc = ISD::INTRINSIC_VOID;
3710     Info.memVT = MVT::v8i32;
3711     Info.ptrVal = I.getArgOperand(0);
3712     Info.offset = 0;
3713     Info.flags = MachineMemOperand::MOStore;
3714     Info.align = Align(16);
3715     return true;
3716   }
3717 
3718   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
3719   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
3720   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
3721   case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
3722   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
3723   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
3724   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
3725   case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: {
3726     Info.opc = ISD::INTRINSIC_VOID;
3727     Info.memVT = MVT::v2i32;
3728     Info.ptrVal = I.getArgOperand(0);
3729     Info.offset = 0;
3730     Info.flags = MachineMemOperand::MOStore;
3731     Info.align = Align(8);
3732     return true;
3733   }
3734 
3735   case Intrinsic::nvvm_atomic_load_inc_32:
3736   case Intrinsic::nvvm_atomic_load_dec_32:
3737 
3738   case Intrinsic::nvvm_atomic_add_gen_f_cta:
3739   case Intrinsic::nvvm_atomic_add_gen_f_sys:
3740   case Intrinsic::nvvm_atomic_add_gen_i_cta:
3741   case Intrinsic::nvvm_atomic_add_gen_i_sys:
3742   case Intrinsic::nvvm_atomic_and_gen_i_cta:
3743   case Intrinsic::nvvm_atomic_and_gen_i_sys:
3744   case Intrinsic::nvvm_atomic_cas_gen_i_cta:
3745   case Intrinsic::nvvm_atomic_cas_gen_i_sys:
3746   case Intrinsic::nvvm_atomic_dec_gen_i_cta:
3747   case Intrinsic::nvvm_atomic_dec_gen_i_sys:
3748   case Intrinsic::nvvm_atomic_inc_gen_i_cta:
3749   case Intrinsic::nvvm_atomic_inc_gen_i_sys:
3750   case Intrinsic::nvvm_atomic_max_gen_i_cta:
3751   case Intrinsic::nvvm_atomic_max_gen_i_sys:
3752   case Intrinsic::nvvm_atomic_min_gen_i_cta:
3753   case Intrinsic::nvvm_atomic_min_gen_i_sys:
3754   case Intrinsic::nvvm_atomic_or_gen_i_cta:
3755   case Intrinsic::nvvm_atomic_or_gen_i_sys:
3756   case Intrinsic::nvvm_atomic_exch_gen_i_cta:
3757   case Intrinsic::nvvm_atomic_exch_gen_i_sys:
3758   case Intrinsic::nvvm_atomic_xor_gen_i_cta:
3759   case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
3760     auto &DL = I.getModule()->getDataLayout();
3761     Info.opc = ISD::INTRINSIC_W_CHAIN;
3762     Info.memVT = getValueType(DL, I.getType());
3763     Info.ptrVal = I.getArgOperand(0);
3764     Info.offset = 0;
3765     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3766     Info.align.reset();
3767     return true;
3768   }
3769 
3770   case Intrinsic::nvvm_ldu_global_i:
3771   case Intrinsic::nvvm_ldu_global_f:
3772   case Intrinsic::nvvm_ldu_global_p: {
3773     auto &DL = I.getModule()->getDataLayout();
3774     Info.opc = ISD::INTRINSIC_W_CHAIN;
3775     if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
3776       Info.memVT = getValueType(DL, I.getType());
3777     else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
3778       Info.memVT = getPointerTy(DL);
3779     else
3780       Info.memVT = getValueType(DL, I.getType());
3781     Info.ptrVal = I.getArgOperand(0);
3782     Info.offset = 0;
3783     Info.flags = MachineMemOperand::MOLoad;
3784     Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
3785 
3786     return true;
3787   }
3788   case Intrinsic::nvvm_ldg_global_i:
3789   case Intrinsic::nvvm_ldg_global_f:
3790   case Intrinsic::nvvm_ldg_global_p: {
3791     auto &DL = I.getModule()->getDataLayout();
3792 
3793     Info.opc = ISD::INTRINSIC_W_CHAIN;
3794     if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
3795       Info.memVT = getValueType(DL, I.getType());
3796     else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
3797       Info.memVT = getPointerTy(DL);
3798     else
3799       Info.memVT = getValueType(DL, I.getType());
3800     Info.ptrVal = I.getArgOperand(0);
3801     Info.offset = 0;
3802     Info.flags = MachineMemOperand::MOLoad;
3803     Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
3804 
3805     return true;
3806   }
3807 
3808   case Intrinsic::nvvm_tex_1d_v4f32_s32:
3809   case Intrinsic::nvvm_tex_1d_v4f32_f32:
3810   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
3811   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
3812   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
3813   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
3814   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
3815   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
3816   case Intrinsic::nvvm_tex_2d_v4f32_s32:
3817   case Intrinsic::nvvm_tex_2d_v4f32_f32:
3818   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
3819   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
3820   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
3821   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
3822   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
3823   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
3824   case Intrinsic::nvvm_tex_3d_v4f32_s32:
3825   case Intrinsic::nvvm_tex_3d_v4f32_f32:
3826   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
3827   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
3828   case Intrinsic::nvvm_tex_cube_v4f32_f32:
3829   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
3830   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
3831   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
3832   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
3833   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
3834   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
3835   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
3836   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
3837   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
3838   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
3839   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
3840   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
3841   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
3842   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
3843   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
3844   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
3845   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
3846   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
3847   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
3848   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3849   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3850   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3851   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3852   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3853   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3854   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3855   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3856   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3857   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3858   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3859   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3860   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3861   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3862   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3863   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3864     Info.opc = getOpcForTextureInstr(Intrinsic);
3865     Info.memVT = MVT::v4f32;
3866     Info.ptrVal = nullptr;
3867     Info.offset = 0;
3868     Info.flags = MachineMemOperand::MOLoad;
3869     Info.align = Align(16);
3870     return true;
3871 
3872   case Intrinsic::nvvm_tex_1d_v4s32_s32:
3873   case Intrinsic::nvvm_tex_1d_v4s32_f32:
3874   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
3875   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
3876   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
3877   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
3878   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
3879   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
3880   case Intrinsic::nvvm_tex_2d_v4s32_s32:
3881   case Intrinsic::nvvm_tex_2d_v4s32_f32:
3882   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
3883   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
3884   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
3885   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
3886   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
3887   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
3888   case Intrinsic::nvvm_tex_3d_v4s32_s32:
3889   case Intrinsic::nvvm_tex_3d_v4s32_f32:
3890   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
3891   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
3892   case Intrinsic::nvvm_tex_cube_v4s32_f32:
3893   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
3894   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
3895   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
3896   case Intrinsic::nvvm_tex_cube_v4u32_f32:
3897   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
3898   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
3899   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
3900   case Intrinsic::nvvm_tex_1d_v4u32_s32:
3901   case Intrinsic::nvvm_tex_1d_v4u32_f32:
3902   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
3903   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
3904   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
3905   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
3906   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
3907   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
3908   case Intrinsic::nvvm_tex_2d_v4u32_s32:
3909   case Intrinsic::nvvm_tex_2d_v4u32_f32:
3910   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
3911   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
3912   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
3913   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
3914   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
3915   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
3916   case Intrinsic::nvvm_tex_3d_v4u32_s32:
3917   case Intrinsic::nvvm_tex_3d_v4u32_f32:
3918   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
3919   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
3920   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
3921   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
3922   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
3923   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
3924   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
3925   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
3926   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
3927   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
3928   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
3929   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
3930   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
3931   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
3932   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
3933   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
3934   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
3935   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
3936   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
3937   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
3938   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
3939   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
3940   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3941   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3942   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3943   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3944   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3945   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3946   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3947   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3948   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
3949   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
3950   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
3951   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
3952   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
3953   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
3954   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
3955   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
3956   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
3957   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
3958   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3959   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3960   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3961   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3962   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3963   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3964   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3965   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3966   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3967   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3968   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3969   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3970   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3971   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3972   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3973   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3974   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3975   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3976   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3977   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3978   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3979   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3980   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3981   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3982   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3983   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
3984     Info.opc = getOpcForTextureInstr(Intrinsic);
3985     Info.memVT = MVT::v4i32;
3986     Info.ptrVal = nullptr;
3987     Info.offset = 0;
3988     Info.flags = MachineMemOperand::MOLoad;
3989     Info.align = Align(16);
3990     return true;
3991 
3992   case Intrinsic::nvvm_suld_1d_i8_clamp:
3993   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3994   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3995   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3996   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3997   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3998   case Intrinsic::nvvm_suld_2d_i8_clamp:
3999   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
4000   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
4001   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
4002   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
4003   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
4004   case Intrinsic::nvvm_suld_3d_i8_clamp:
4005   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
4006   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
4007   case Intrinsic::nvvm_suld_1d_i8_trap:
4008   case Intrinsic::nvvm_suld_1d_v2i8_trap:
4009   case Intrinsic::nvvm_suld_1d_v4i8_trap:
4010   case Intrinsic::nvvm_suld_1d_array_i8_trap:
4011   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
4012   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
4013   case Intrinsic::nvvm_suld_2d_i8_trap:
4014   case Intrinsic::nvvm_suld_2d_v2i8_trap:
4015   case Intrinsic::nvvm_suld_2d_v4i8_trap:
4016   case Intrinsic::nvvm_suld_2d_array_i8_trap:
4017   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
4018   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
4019   case Intrinsic::nvvm_suld_3d_i8_trap:
4020   case Intrinsic::nvvm_suld_3d_v2i8_trap:
4021   case Intrinsic::nvvm_suld_3d_v4i8_trap:
4022   case Intrinsic::nvvm_suld_1d_i8_zero:
4023   case Intrinsic::nvvm_suld_1d_v2i8_zero:
4024   case Intrinsic::nvvm_suld_1d_v4i8_zero:
4025   case Intrinsic::nvvm_suld_1d_array_i8_zero:
4026   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
4027   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
4028   case Intrinsic::nvvm_suld_2d_i8_zero:
4029   case Intrinsic::nvvm_suld_2d_v2i8_zero:
4030   case Intrinsic::nvvm_suld_2d_v4i8_zero:
4031   case Intrinsic::nvvm_suld_2d_array_i8_zero:
4032   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
4033   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
4034   case Intrinsic::nvvm_suld_3d_i8_zero:
4035   case Intrinsic::nvvm_suld_3d_v2i8_zero:
4036   case Intrinsic::nvvm_suld_3d_v4i8_zero:
4037     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4038     Info.memVT = MVT::i8;
4039     Info.ptrVal = nullptr;
4040     Info.offset = 0;
4041     Info.flags = MachineMemOperand::MOLoad;
4042     Info.align = Align(16);
4043     return true;
4044 
4045   case Intrinsic::nvvm_suld_1d_i16_clamp:
4046   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
4047   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
4048   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
4049   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
4050   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
4051   case Intrinsic::nvvm_suld_2d_i16_clamp:
4052   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
4053   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
4054   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
4055   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
4056   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
4057   case Intrinsic::nvvm_suld_3d_i16_clamp:
4058   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
4059   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
4060   case Intrinsic::nvvm_suld_1d_i16_trap:
4061   case Intrinsic::nvvm_suld_1d_v2i16_trap:
4062   case Intrinsic::nvvm_suld_1d_v4i16_trap:
4063   case Intrinsic::nvvm_suld_1d_array_i16_trap:
4064   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
4065   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
4066   case Intrinsic::nvvm_suld_2d_i16_trap:
4067   case Intrinsic::nvvm_suld_2d_v2i16_trap:
4068   case Intrinsic::nvvm_suld_2d_v4i16_trap:
4069   case Intrinsic::nvvm_suld_2d_array_i16_trap:
4070   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
4071   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
4072   case Intrinsic::nvvm_suld_3d_i16_trap:
4073   case Intrinsic::nvvm_suld_3d_v2i16_trap:
4074   case Intrinsic::nvvm_suld_3d_v4i16_trap:
4075   case Intrinsic::nvvm_suld_1d_i16_zero:
4076   case Intrinsic::nvvm_suld_1d_v2i16_zero:
4077   case Intrinsic::nvvm_suld_1d_v4i16_zero:
4078   case Intrinsic::nvvm_suld_1d_array_i16_zero:
4079   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
4080   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
4081   case Intrinsic::nvvm_suld_2d_i16_zero:
4082   case Intrinsic::nvvm_suld_2d_v2i16_zero:
4083   case Intrinsic::nvvm_suld_2d_v4i16_zero:
4084   case Intrinsic::nvvm_suld_2d_array_i16_zero:
4085   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
4086   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
4087   case Intrinsic::nvvm_suld_3d_i16_zero:
4088   case Intrinsic::nvvm_suld_3d_v2i16_zero:
4089   case Intrinsic::nvvm_suld_3d_v4i16_zero:
4090     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4091     Info.memVT = MVT::i16;
4092     Info.ptrVal = nullptr;
4093     Info.offset = 0;
4094     Info.flags = MachineMemOperand::MOLoad;
4095     Info.align = Align(16);
4096     return true;
4097 
4098   case Intrinsic::nvvm_suld_1d_i32_clamp:
4099   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
4100   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
4101   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
4102   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
4103   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
4104   case Intrinsic::nvvm_suld_2d_i32_clamp:
4105   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
4106   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
4107   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
4108   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
4109   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
4110   case Intrinsic::nvvm_suld_3d_i32_clamp:
4111   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
4112   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
4113   case Intrinsic::nvvm_suld_1d_i32_trap:
4114   case Intrinsic::nvvm_suld_1d_v2i32_trap:
4115   case Intrinsic::nvvm_suld_1d_v4i32_trap:
4116   case Intrinsic::nvvm_suld_1d_array_i32_trap:
4117   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
4118   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
4119   case Intrinsic::nvvm_suld_2d_i32_trap:
4120   case Intrinsic::nvvm_suld_2d_v2i32_trap:
4121   case Intrinsic::nvvm_suld_2d_v4i32_trap:
4122   case Intrinsic::nvvm_suld_2d_array_i32_trap:
4123   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
4124   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
4125   case Intrinsic::nvvm_suld_3d_i32_trap:
4126   case Intrinsic::nvvm_suld_3d_v2i32_trap:
4127   case Intrinsic::nvvm_suld_3d_v4i32_trap:
4128   case Intrinsic::nvvm_suld_1d_i32_zero:
4129   case Intrinsic::nvvm_suld_1d_v2i32_zero:
4130   case Intrinsic::nvvm_suld_1d_v4i32_zero:
4131   case Intrinsic::nvvm_suld_1d_array_i32_zero:
4132   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
4133   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
4134   case Intrinsic::nvvm_suld_2d_i32_zero:
4135   case Intrinsic::nvvm_suld_2d_v2i32_zero:
4136   case Intrinsic::nvvm_suld_2d_v4i32_zero:
4137   case Intrinsic::nvvm_suld_2d_array_i32_zero:
4138   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
4139   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
4140   case Intrinsic::nvvm_suld_3d_i32_zero:
4141   case Intrinsic::nvvm_suld_3d_v2i32_zero:
4142   case Intrinsic::nvvm_suld_3d_v4i32_zero:
4143     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4144     Info.memVT = MVT::i32;
4145     Info.ptrVal = nullptr;
4146     Info.offset = 0;
4147     Info.flags = MachineMemOperand::MOLoad;
4148     Info.align = Align(16);
4149     return true;
4150 
4151   case Intrinsic::nvvm_suld_1d_i64_clamp:
4152   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
4153   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
4154   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
4155   case Intrinsic::nvvm_suld_2d_i64_clamp:
4156   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
4157   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
4158   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
4159   case Intrinsic::nvvm_suld_3d_i64_clamp:
4160   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
4161   case Intrinsic::nvvm_suld_1d_i64_trap:
4162   case Intrinsic::nvvm_suld_1d_v2i64_trap:
4163   case Intrinsic::nvvm_suld_1d_array_i64_trap:
4164   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
4165   case Intrinsic::nvvm_suld_2d_i64_trap:
4166   case Intrinsic::nvvm_suld_2d_v2i64_trap:
4167   case Intrinsic::nvvm_suld_2d_array_i64_trap:
4168   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
4169   case Intrinsic::nvvm_suld_3d_i64_trap:
4170   case Intrinsic::nvvm_suld_3d_v2i64_trap:
4171   case Intrinsic::nvvm_suld_1d_i64_zero:
4172   case Intrinsic::nvvm_suld_1d_v2i64_zero:
4173   case Intrinsic::nvvm_suld_1d_array_i64_zero:
4174   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
4175   case Intrinsic::nvvm_suld_2d_i64_zero:
4176   case Intrinsic::nvvm_suld_2d_v2i64_zero:
4177   case Intrinsic::nvvm_suld_2d_array_i64_zero:
4178   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
4179   case Intrinsic::nvvm_suld_3d_i64_zero:
4180   case Intrinsic::nvvm_suld_3d_v2i64_zero:
4181     Info.opc = getOpcForSurfaceInstr(Intrinsic);
4182     Info.memVT = MVT::i64;
4183     Info.ptrVal = nullptr;
4184     Info.offset = 0;
4185     Info.flags = MachineMemOperand::MOLoad;
4186     Info.align = Align(16);
4187     return true;
4188   }
4189   return false;
4190 }
4191 
4192 /// isLegalAddressingMode - Return true if the addressing mode represented
4193 /// by AM is legal for this target, for a load/store of the specified type.
4194 /// Used to guide target specific optimizations, like loop strength reduction
4195 /// (LoopStrengthReduce.cpp) and memory optimization for address mode
4196 /// (CodeGenPrepare.cpp)
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const4197 bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
4198                                                 const AddrMode &AM, Type *Ty,
4199                                                 unsigned AS, Instruction *I) const {
4200   // AddrMode - This represents an addressing mode of:
4201   //    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
4202   //
4203   // The legal address modes are
4204   // - [avar]
4205   // - [areg]
4206   // - [areg+immoff]
4207   // - [immAddr]
4208 
4209   if (AM.BaseGV) {
4210     return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
4211   }
4212 
4213   switch (AM.Scale) {
4214   case 0: // "r", "r+i" or "i" is allowed
4215     break;
4216   case 1:
4217     if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
4218       return false;
4219     // Otherwise we have r+i.
4220     break;
4221   default:
4222     // No scale > 1 is allowed
4223     return false;
4224   }
4225   return true;
4226 }
4227 
4228 //===----------------------------------------------------------------------===//
4229 //                         NVPTX Inline Assembly Support
4230 //===----------------------------------------------------------------------===//
4231 
4232 /// getConstraintType - Given a constraint letter, return the type of
4233 /// constraint it is for this target.
4234 NVPTXTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const4235 NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
4236   if (Constraint.size() == 1) {
4237     switch (Constraint[0]) {
4238     default:
4239       break;
4240     case 'b':
4241     case 'r':
4242     case 'h':
4243     case 'c':
4244     case 'l':
4245     case 'f':
4246     case 'd':
4247     case '0':
4248     case 'N':
4249       return C_RegisterClass;
4250     }
4251   }
4252   return TargetLowering::getConstraintType(Constraint);
4253 }
4254 
4255 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const4256 NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4257                                                   StringRef Constraint,
4258                                                   MVT VT) const {
4259   if (Constraint.size() == 1) {
4260     switch (Constraint[0]) {
4261     case 'b':
4262       return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
4263     case 'c':
4264       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4265     case 'h':
4266       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4267     case 'r':
4268       return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
4269     case 'l':
4270     case 'N':
4271       return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
4272     case 'f':
4273       return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
4274     case 'd':
4275       return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
4276     }
4277   }
4278   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4279 }
4280 
4281 //===----------------------------------------------------------------------===//
4282 //                         NVPTX DAG Combining
4283 //===----------------------------------------------------------------------===//
4284 
allowFMA(MachineFunction & MF,CodeGenOpt::Level OptLevel) const4285 bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
4286                                    CodeGenOpt::Level OptLevel) const {
4287   // Always honor command-line argument
4288   if (FMAContractLevelOpt.getNumOccurrences() > 0)
4289     return FMAContractLevelOpt > 0;
4290 
4291   // Do not contract if we're not optimizing the code.
4292   if (OptLevel == 0)
4293     return false;
4294 
4295   // Honor TargetOptions flags that explicitly say fusion is okay.
4296   if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast)
4297     return true;
4298 
4299   return allowUnsafeFPMath(MF);
4300 }
4301 
allowUnsafeFPMath(MachineFunction & MF) const4302 bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const {
4303   // Honor TargetOptions flags that explicitly say unsafe math is okay.
4304   if (MF.getTarget().Options.UnsafeFPMath)
4305     return true;
4306 
4307   // Allow unsafe math if unsafe-fp-math attribute explicitly says so.
4308   const Function &F = MF.getFunction();
4309   if (F.hasFnAttribute("unsafe-fp-math")) {
4310     Attribute Attr = F.getFnAttribute("unsafe-fp-math");
4311     StringRef Val = Attr.getValueAsString();
4312     if (Val == "true")
4313       return true;
4314   }
4315 
4316   return false;
4317 }
4318 
4319 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4320 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
4321 /// called with the default operands, and if that fails, with commuted
4322 /// operands.
PerformADDCombineWithOperands(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const NVPTXSubtarget & Subtarget,CodeGenOpt::Level OptLevel)4323 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4324                                            TargetLowering::DAGCombinerInfo &DCI,
4325                                              const NVPTXSubtarget &Subtarget,
4326                                              CodeGenOpt::Level OptLevel) {
4327   SelectionDAG  &DAG = DCI.DAG;
4328   // Skip non-integer, non-scalar case
4329   EVT VT=N0.getValueType();
4330   if (VT.isVector())
4331     return SDValue();
4332 
4333   // fold (add (mul a, b), c) -> (mad a, b, c)
4334   //
4335   if (N0.getOpcode() == ISD::MUL) {
4336     assert (VT.isInteger());
4337     // For integer:
4338     // Since integer multiply-add costs the same as integer multiply
4339     // but is more costly than integer add, do the fusion only when
4340     // the mul is only used in the add.
4341     if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
4342         !N0.getNode()->hasOneUse())
4343       return SDValue();
4344 
4345     // Do the folding
4346     return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
4347                        N0.getOperand(0), N0.getOperand(1), N1);
4348   }
4349   else if (N0.getOpcode() == ISD::FMUL) {
4350     if (VT == MVT::f32 || VT == MVT::f64) {
4351       const auto *TLI = static_cast<const NVPTXTargetLowering *>(
4352           &DAG.getTargetLoweringInfo());
4353       if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
4354         return SDValue();
4355 
4356       // For floating point:
4357       // Do the fusion only when the mul has less than 5 uses and all
4358       // are add.
4359       // The heuristic is that if a use is not an add, then that use
4360       // cannot be fused into fma, therefore mul is still needed anyway.
4361       // If there are more than 4 uses, even if they are all add, fusing
4362       // them will increase register pressue.
4363       //
4364       int numUses = 0;
4365       int nonAddCount = 0;
4366       for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4367            UE = N0.getNode()->use_end();
4368            UI != UE; ++UI) {
4369         numUses++;
4370         SDNode *User = *UI;
4371         if (User->getOpcode() != ISD::FADD)
4372           ++nonAddCount;
4373       }
4374       if (numUses >= 5)
4375         return SDValue();
4376       if (nonAddCount) {
4377         int orderNo = N->getIROrder();
4378         int orderNo2 = N0.getNode()->getIROrder();
4379         // simple heuristics here for considering potential register
4380         // pressure, the logics here is that the differnce are used
4381         // to measure the distance between def and use, the longer distance
4382         // more likely cause register pressure.
4383         if (orderNo - orderNo2 < 500)
4384           return SDValue();
4385 
4386         // Now, check if at least one of the FMUL's operands is live beyond the node N,
4387         // which guarantees that the FMA will not increase register pressure at node N.
4388         bool opIsLive = false;
4389         const SDNode *left = N0.getOperand(0).getNode();
4390         const SDNode *right = N0.getOperand(1).getNode();
4391 
4392         if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
4393           opIsLive = true;
4394 
4395         if (!opIsLive)
4396           for (SDNode::use_iterator UI = left->use_begin(), UE = left->use_end(); UI != UE; ++UI) {
4397             SDNode *User = *UI;
4398             int orderNo3 = User->getIROrder();
4399             if (orderNo3 > orderNo) {
4400               opIsLive = true;
4401               break;
4402             }
4403           }
4404 
4405         if (!opIsLive)
4406           for (SDNode::use_iterator UI = right->use_begin(), UE = right->use_end(); UI != UE; ++UI) {
4407             SDNode *User = *UI;
4408             int orderNo3 = User->getIROrder();
4409             if (orderNo3 > orderNo) {
4410               opIsLive = true;
4411               break;
4412             }
4413           }
4414 
4415         if (!opIsLive)
4416           return SDValue();
4417       }
4418 
4419       return DAG.getNode(ISD::FMA, SDLoc(N), VT,
4420                          N0.getOperand(0), N0.getOperand(1), N1);
4421     }
4422   }
4423 
4424   return SDValue();
4425 }
4426 
4427 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4428 ///
PerformADDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const NVPTXSubtarget & Subtarget,CodeGenOpt::Level OptLevel)4429 static SDValue PerformADDCombine(SDNode *N,
4430                                  TargetLowering::DAGCombinerInfo &DCI,
4431                                  const NVPTXSubtarget &Subtarget,
4432                                  CodeGenOpt::Level OptLevel) {
4433   SDValue N0 = N->getOperand(0);
4434   SDValue N1 = N->getOperand(1);
4435 
4436   // First try with the default operand order.
4437   if (SDValue Result =
4438           PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel))
4439     return Result;
4440 
4441   // If that didn't work, try again with the operands commuted.
4442   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
4443 }
4444 
PerformANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)4445 static SDValue PerformANDCombine(SDNode *N,
4446                                  TargetLowering::DAGCombinerInfo &DCI) {
4447   // The type legalizer turns a vector load of i8 values into a zextload to i16
4448   // registers, optionally ANY_EXTENDs it (if target type is integer),
4449   // and ANDs off the high 8 bits. Since we turn this load into a
4450   // target-specific DAG node, the DAG combiner fails to eliminate these AND
4451   // nodes. Do that here.
4452   SDValue Val = N->getOperand(0);
4453   SDValue Mask = N->getOperand(1);
4454 
4455   if (isa<ConstantSDNode>(Val)) {
4456     std::swap(Val, Mask);
4457   }
4458 
4459   SDValue AExt;
4460   // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
4461   if (Val.getOpcode() == ISD::ANY_EXTEND) {
4462     AExt = Val;
4463     Val = Val->getOperand(0);
4464   }
4465 
4466   if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
4467     Val = Val->getOperand(0);
4468   }
4469 
4470   if (Val->getOpcode() == NVPTXISD::LoadV2 ||
4471       Val->getOpcode() == NVPTXISD::LoadV4) {
4472     ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
4473     if (!MaskCnst) {
4474       // Not an AND with a constant
4475       return SDValue();
4476     }
4477 
4478     uint64_t MaskVal = MaskCnst->getZExtValue();
4479     if (MaskVal != 0xff) {
4480       // Not an AND that chops off top 8 bits
4481       return SDValue();
4482     }
4483 
4484     MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
4485     if (!Mem) {
4486       // Not a MemSDNode?!?
4487       return SDValue();
4488     }
4489 
4490     EVT MemVT = Mem->getMemoryVT();
4491     if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
4492       // We only handle the i8 case
4493       return SDValue();
4494     }
4495 
4496     unsigned ExtType =
4497       cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
4498         getZExtValue();
4499     if (ExtType == ISD::SEXTLOAD) {
4500       // If for some reason the load is a sextload, the and is needed to zero
4501       // out the high 8 bits
4502       return SDValue();
4503     }
4504 
4505     bool AddTo = false;
4506     if (AExt.getNode() != nullptr) {
4507       // Re-insert the ext as a zext.
4508       Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
4509                             AExt.getValueType(), Val);
4510       AddTo = true;
4511     }
4512 
4513     // If we get here, the AND is unnecessary.  Just replace it with the load
4514     DCI.CombineTo(N, Val, AddTo);
4515   }
4516 
4517   return SDValue();
4518 }
4519 
PerformREMCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,CodeGenOpt::Level OptLevel)4520 static SDValue PerformREMCombine(SDNode *N,
4521                                  TargetLowering::DAGCombinerInfo &DCI,
4522                                  CodeGenOpt::Level OptLevel) {
4523   assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
4524 
4525   // Don't do anything at less than -O2.
4526   if (OptLevel < CodeGenOpt::Default)
4527     return SDValue();
4528 
4529   SelectionDAG &DAG = DCI.DAG;
4530   SDLoc DL(N);
4531   EVT VT = N->getValueType(0);
4532   bool IsSigned = N->getOpcode() == ISD::SREM;
4533   unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
4534 
4535   const SDValue &Num = N->getOperand(0);
4536   const SDValue &Den = N->getOperand(1);
4537 
4538   for (const SDNode *U : Num->uses()) {
4539     if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
4540         U->getOperand(1) == Den) {
4541       // Num % Den -> Num - (Num / Den) * Den
4542       return DAG.getNode(ISD::SUB, DL, VT, Num,
4543                          DAG.getNode(ISD::MUL, DL, VT,
4544                                      DAG.getNode(DivOpc, DL, VT, Num, Den),
4545                                      Den));
4546     }
4547   }
4548   return SDValue();
4549 }
4550 
4551 enum OperandSignedness {
4552   Signed = 0,
4553   Unsigned,
4554   Unknown
4555 };
4556 
4557 /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
4558 /// that can be demoted to \p OptSize bits without loss of information. The
4559 /// signedness of the operand, if determinable, is placed in \p S.
IsMulWideOperandDemotable(SDValue Op,unsigned OptSize,OperandSignedness & S)4560 static bool IsMulWideOperandDemotable(SDValue Op,
4561                                       unsigned OptSize,
4562                                       OperandSignedness &S) {
4563   S = Unknown;
4564 
4565   if (Op.getOpcode() == ISD::SIGN_EXTEND ||
4566       Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
4567     EVT OrigVT = Op.getOperand(0).getValueType();
4568     if (OrigVT.getFixedSizeInBits() <= OptSize) {
4569       S = Signed;
4570       return true;
4571     }
4572   } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
4573     EVT OrigVT = Op.getOperand(0).getValueType();
4574     if (OrigVT.getFixedSizeInBits() <= OptSize) {
4575       S = Unsigned;
4576       return true;
4577     }
4578   }
4579 
4580   return false;
4581 }
4582 
4583 /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
4584 /// be demoted to \p OptSize bits without loss of information. If the operands
4585 /// contain a constant, it should appear as the RHS operand. The signedness of
4586 /// the operands is placed in \p IsSigned.
AreMulWideOperandsDemotable(SDValue LHS,SDValue RHS,unsigned OptSize,bool & IsSigned)4587 static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
4588                                         unsigned OptSize,
4589                                         bool &IsSigned) {
4590   OperandSignedness LHSSign;
4591 
4592   // The LHS operand must be a demotable op
4593   if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
4594     return false;
4595 
4596   // We should have been able to determine the signedness from the LHS
4597   if (LHSSign == Unknown)
4598     return false;
4599 
4600   IsSigned = (LHSSign == Signed);
4601 
4602   // The RHS can be a demotable op or a constant
4603   if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
4604     const APInt &Val = CI->getAPIntValue();
4605     if (LHSSign == Unsigned) {
4606       return Val.isIntN(OptSize);
4607     } else {
4608       return Val.isSignedIntN(OptSize);
4609     }
4610   } else {
4611     OperandSignedness RHSSign;
4612     if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
4613       return false;
4614 
4615     return LHSSign == RHSSign;
4616   }
4617 }
4618 
4619 /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
4620 /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
4621 /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
4622 /// amount.
TryMULWIDECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)4623 static SDValue TryMULWIDECombine(SDNode *N,
4624                                  TargetLowering::DAGCombinerInfo &DCI) {
4625   EVT MulType = N->getValueType(0);
4626   if (MulType != MVT::i32 && MulType != MVT::i64) {
4627     return SDValue();
4628   }
4629 
4630   SDLoc DL(N);
4631   unsigned OptSize = MulType.getSizeInBits() >> 1;
4632   SDValue LHS = N->getOperand(0);
4633   SDValue RHS = N->getOperand(1);
4634 
4635   // Canonicalize the multiply so the constant (if any) is on the right
4636   if (N->getOpcode() == ISD::MUL) {
4637     if (isa<ConstantSDNode>(LHS)) {
4638       std::swap(LHS, RHS);
4639     }
4640   }
4641 
4642   // If we have a SHL, determine the actual multiply amount
4643   if (N->getOpcode() == ISD::SHL) {
4644     ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
4645     if (!ShlRHS) {
4646       return SDValue();
4647     }
4648 
4649     APInt ShiftAmt = ShlRHS->getAPIntValue();
4650     unsigned BitWidth = MulType.getSizeInBits();
4651     if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
4652       APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
4653       RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
4654     } else {
4655       return SDValue();
4656     }
4657   }
4658 
4659   bool Signed;
4660   // Verify that our operands are demotable
4661   if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
4662     return SDValue();
4663   }
4664 
4665   EVT DemotedVT;
4666   if (MulType == MVT::i32) {
4667     DemotedVT = MVT::i16;
4668   } else {
4669     DemotedVT = MVT::i32;
4670   }
4671 
4672   // Truncate the operands to the correct size. Note that these are just for
4673   // type consistency and will (likely) be eliminated in later phases.
4674   SDValue TruncLHS =
4675     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
4676   SDValue TruncRHS =
4677     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
4678 
4679   unsigned Opc;
4680   if (Signed) {
4681     Opc = NVPTXISD::MUL_WIDE_SIGNED;
4682   } else {
4683     Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
4684   }
4685 
4686   return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
4687 }
4688 
4689 /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
PerformMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,CodeGenOpt::Level OptLevel)4690 static SDValue PerformMULCombine(SDNode *N,
4691                                  TargetLowering::DAGCombinerInfo &DCI,
4692                                  CodeGenOpt::Level OptLevel) {
4693   if (OptLevel > 0) {
4694     // Try mul.wide combining at OptLevel > 0
4695     if (SDValue Ret = TryMULWIDECombine(N, DCI))
4696       return Ret;
4697   }
4698 
4699   return SDValue();
4700 }
4701 
4702 /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
PerformSHLCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,CodeGenOpt::Level OptLevel)4703 static SDValue PerformSHLCombine(SDNode *N,
4704                                  TargetLowering::DAGCombinerInfo &DCI,
4705                                  CodeGenOpt::Level OptLevel) {
4706   if (OptLevel > 0) {
4707     // Try mul.wide combining at OptLevel > 0
4708     if (SDValue Ret = TryMULWIDECombine(N, DCI))
4709       return Ret;
4710   }
4711 
4712   return SDValue();
4713 }
4714 
PerformSETCCCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)4715 static SDValue PerformSETCCCombine(SDNode *N,
4716                                    TargetLowering::DAGCombinerInfo &DCI) {
4717   EVT CCType = N->getValueType(0);
4718   SDValue A = N->getOperand(0);
4719   SDValue B = N->getOperand(1);
4720 
4721   if (CCType != MVT::v2i1 || A.getValueType() != MVT::v2f16)
4722     return SDValue();
4723 
4724   SDLoc DL(N);
4725   // setp.f16x2 returns two scalar predicates, which we need to
4726   // convert back to v2i1. The returned result will be scalarized by
4727   // the legalizer, but the comparison will remain a single vector
4728   // instruction.
4729   SDValue CCNode = DCI.DAG.getNode(NVPTXISD::SETP_F16X2, DL,
4730                                    DCI.DAG.getVTList(MVT::i1, MVT::i1),
4731                                    {A, B, N->getOperand(2)});
4732   return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
4733                          CCNode.getValue(1));
4734 }
4735 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const4736 SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
4737                                                DAGCombinerInfo &DCI) const {
4738   CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
4739   switch (N->getOpcode()) {
4740     default: break;
4741     case ISD::ADD:
4742     case ISD::FADD:
4743       return PerformADDCombine(N, DCI, STI, OptLevel);
4744     case ISD::MUL:
4745       return PerformMULCombine(N, DCI, OptLevel);
4746     case ISD::SHL:
4747       return PerformSHLCombine(N, DCI, OptLevel);
4748     case ISD::AND:
4749       return PerformANDCombine(N, DCI);
4750     case ISD::UREM:
4751     case ISD::SREM:
4752       return PerformREMCombine(N, DCI, OptLevel);
4753     case ISD::SETCC:
4754       return PerformSETCCCombine(N, DCI);
4755   }
4756   return SDValue();
4757 }
4758 
4759 /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
ReplaceLoadVector(SDNode * N,SelectionDAG & DAG,SmallVectorImpl<SDValue> & Results)4760 static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
4761                               SmallVectorImpl<SDValue> &Results) {
4762   EVT ResVT = N->getValueType(0);
4763   SDLoc DL(N);
4764 
4765   assert(ResVT.isVector() && "Vector load must have vector type");
4766 
4767   // We only handle "native" vector sizes for now, e.g. <4 x double> is not
4768   // legal.  We can (and should) split that into 2 loads of <2 x double> here
4769   // but I'm leaving that as a TODO for now.
4770   assert(ResVT.isSimple() && "Can only handle simple types");
4771   switch (ResVT.getSimpleVT().SimpleTy) {
4772   default:
4773     return;
4774   case MVT::v2i8:
4775   case MVT::v2i16:
4776   case MVT::v2i32:
4777   case MVT::v2i64:
4778   case MVT::v2f16:
4779   case MVT::v2f32:
4780   case MVT::v2f64:
4781   case MVT::v4i8:
4782   case MVT::v4i16:
4783   case MVT::v4i32:
4784   case MVT::v4f16:
4785   case MVT::v4f32:
4786   case MVT::v8f16: // <4 x f16x2>
4787     // This is a "native" vector type
4788     break;
4789   }
4790 
4791   LoadSDNode *LD = cast<LoadSDNode>(N);
4792 
4793   Align Alignment = LD->getAlign();
4794   auto &TD = DAG.getDataLayout();
4795   Align PrefAlign = TD.getPrefTypeAlign(ResVT.getTypeForEVT(*DAG.getContext()));
4796   if (Alignment < PrefAlign) {
4797     // This load is not sufficiently aligned, so bail out and let this vector
4798     // load be scalarized.  Note that we may still be able to emit smaller
4799     // vector loads.  For example, if we are loading a <4 x float> with an
4800     // alignment of 8, this check will fail but the legalizer will try again
4801     // with 2 x <2 x float>, which will succeed with an alignment of 8.
4802     return;
4803   }
4804 
4805   EVT EltVT = ResVT.getVectorElementType();
4806   unsigned NumElts = ResVT.getVectorNumElements();
4807 
4808   // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
4809   // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
4810   // loaded type to i16 and propagate the "real" type as the memory type.
4811   bool NeedTrunc = false;
4812   if (EltVT.getSizeInBits() < 16) {
4813     EltVT = MVT::i16;
4814     NeedTrunc = true;
4815   }
4816 
4817   unsigned Opcode = 0;
4818   SDVTList LdResVTs;
4819   bool LoadF16x2 = false;
4820 
4821   switch (NumElts) {
4822   default:
4823     return;
4824   case 2:
4825     Opcode = NVPTXISD::LoadV2;
4826     LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4827     break;
4828   case 4: {
4829     Opcode = NVPTXISD::LoadV4;
4830     EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4831     LdResVTs = DAG.getVTList(ListVTs);
4832     break;
4833   }
4834   case 8: {
4835     // v8f16 is a special case. PTX doesn't have ld.v8.f16
4836     // instruction. Instead, we split the vector into v2f16 chunks and
4837     // load them with ld.v4.b32.
4838     assert(EltVT == MVT::f16 && "Unsupported v8 vector type.");
4839     LoadF16x2 = true;
4840     Opcode = NVPTXISD::LoadV4;
4841     EVT ListVTs[] = {MVT::v2f16, MVT::v2f16, MVT::v2f16, MVT::v2f16,
4842                      MVT::Other};
4843     LdResVTs = DAG.getVTList(ListVTs);
4844     break;
4845   }
4846   }
4847 
4848   // Copy regular operands
4849   SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end());
4850 
4851   // The select routine does not have access to the LoadSDNode instance, so
4852   // pass along the extension information
4853   OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
4854 
4855   SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4856                                           LD->getMemoryVT(),
4857                                           LD->getMemOperand());
4858 
4859   SmallVector<SDValue, 8> ScalarRes;
4860   if (LoadF16x2) {
4861     // Split v2f16 subvectors back into individual elements.
4862     NumElts /= 2;
4863     for (unsigned i = 0; i < NumElts; ++i) {
4864       SDValue SubVector = NewLD.getValue(i);
4865       SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
4866                                DAG.getIntPtrConstant(0, DL));
4867       SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
4868                                DAG.getIntPtrConstant(1, DL));
4869       ScalarRes.push_back(E0);
4870       ScalarRes.push_back(E1);
4871     }
4872   } else {
4873     for (unsigned i = 0; i < NumElts; ++i) {
4874       SDValue Res = NewLD.getValue(i);
4875       if (NeedTrunc)
4876         Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4877       ScalarRes.push_back(Res);
4878     }
4879   }
4880 
4881   SDValue LoadChain = NewLD.getValue(NumElts);
4882 
4883   SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes);
4884 
4885   Results.push_back(BuildVec);
4886   Results.push_back(LoadChain);
4887 }
4888 
ReplaceINTRINSIC_W_CHAIN(SDNode * N,SelectionDAG & DAG,SmallVectorImpl<SDValue> & Results)4889 static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
4890                                      SmallVectorImpl<SDValue> &Results) {
4891   SDValue Chain = N->getOperand(0);
4892   SDValue Intrin = N->getOperand(1);
4893   SDLoc DL(N);
4894 
4895   // Get the intrinsic ID
4896   unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
4897   switch (IntrinNo) {
4898   default:
4899     return;
4900   case Intrinsic::nvvm_ldg_global_i:
4901   case Intrinsic::nvvm_ldg_global_f:
4902   case Intrinsic::nvvm_ldg_global_p:
4903   case Intrinsic::nvvm_ldu_global_i:
4904   case Intrinsic::nvvm_ldu_global_f:
4905   case Intrinsic::nvvm_ldu_global_p: {
4906     EVT ResVT = N->getValueType(0);
4907 
4908     if (ResVT.isVector()) {
4909       // Vector LDG/LDU
4910 
4911       unsigned NumElts = ResVT.getVectorNumElements();
4912       EVT EltVT = ResVT.getVectorElementType();
4913 
4914       // Since LDU/LDG are target nodes, we cannot rely on DAG type
4915       // legalization.
4916       // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
4917       // loaded type to i16 and propagate the "real" type as the memory type.
4918       bool NeedTrunc = false;
4919       if (EltVT.getSizeInBits() < 16) {
4920         EltVT = MVT::i16;
4921         NeedTrunc = true;
4922       }
4923 
4924       unsigned Opcode = 0;
4925       SDVTList LdResVTs;
4926 
4927       switch (NumElts) {
4928       default:
4929         return;
4930       case 2:
4931         switch (IntrinNo) {
4932         default:
4933           return;
4934         case Intrinsic::nvvm_ldg_global_i:
4935         case Intrinsic::nvvm_ldg_global_f:
4936         case Intrinsic::nvvm_ldg_global_p:
4937           Opcode = NVPTXISD::LDGV2;
4938           break;
4939         case Intrinsic::nvvm_ldu_global_i:
4940         case Intrinsic::nvvm_ldu_global_f:
4941         case Intrinsic::nvvm_ldu_global_p:
4942           Opcode = NVPTXISD::LDUV2;
4943           break;
4944         }
4945         LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4946         break;
4947       case 4: {
4948         switch (IntrinNo) {
4949         default:
4950           return;
4951         case Intrinsic::nvvm_ldg_global_i:
4952         case Intrinsic::nvvm_ldg_global_f:
4953         case Intrinsic::nvvm_ldg_global_p:
4954           Opcode = NVPTXISD::LDGV4;
4955           break;
4956         case Intrinsic::nvvm_ldu_global_i:
4957         case Intrinsic::nvvm_ldu_global_f:
4958         case Intrinsic::nvvm_ldu_global_p:
4959           Opcode = NVPTXISD::LDUV4;
4960           break;
4961         }
4962         EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4963         LdResVTs = DAG.getVTList(ListVTs);
4964         break;
4965       }
4966       }
4967 
4968       SmallVector<SDValue, 8> OtherOps;
4969 
4970       // Copy regular operands
4971 
4972       OtherOps.push_back(Chain); // Chain
4973                                  // Skip operand 1 (intrinsic ID)
4974       // Others
4975       OtherOps.append(N->op_begin() + 2, N->op_end());
4976 
4977       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
4978 
4979       SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4980                                               MemSD->getMemoryVT(),
4981                                               MemSD->getMemOperand());
4982 
4983       SmallVector<SDValue, 4> ScalarRes;
4984 
4985       for (unsigned i = 0; i < NumElts; ++i) {
4986         SDValue Res = NewLD.getValue(i);
4987         if (NeedTrunc)
4988           Res =
4989               DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4990         ScalarRes.push_back(Res);
4991       }
4992 
4993       SDValue LoadChain = NewLD.getValue(NumElts);
4994 
4995       SDValue BuildVec =
4996           DAG.getBuildVector(ResVT, DL, ScalarRes);
4997 
4998       Results.push_back(BuildVec);
4999       Results.push_back(LoadChain);
5000     } else {
5001       // i8 LDG/LDU
5002       assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
5003              "Custom handling of non-i8 ldu/ldg?");
5004 
5005       // Just copy all operands as-is
5006       SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
5007 
5008       // Force output to i16
5009       SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
5010 
5011       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
5012 
5013       // We make sure the memory type is i8, which will be used during isel
5014       // to select the proper instruction.
5015       SDValue NewLD =
5016           DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
5017                                   MVT::i8, MemSD->getMemOperand());
5018 
5019       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
5020                                     NewLD.getValue(0)));
5021       Results.push_back(NewLD.getValue(1));
5022     }
5023   }
5024   }
5025 }
5026 
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const5027 void NVPTXTargetLowering::ReplaceNodeResults(
5028     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
5029   switch (N->getOpcode()) {
5030   default:
5031     report_fatal_error("Unhandled custom legalization");
5032   case ISD::LOAD:
5033     ReplaceLoadVector(N, DAG, Results);
5034     return;
5035   case ISD::INTRINSIC_W_CHAIN:
5036     ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
5037     return;
5038   }
5039 }
5040 
5041 // Pin NVPTXTargetObjectFile's vtables to this file.
~NVPTXTargetObjectFile()5042 NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {}
5043 
SelectSectionForGlobal(const GlobalObject * GO,SectionKind Kind,const TargetMachine & TM) const5044 MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal(
5045     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
5046   return getDataSection();
5047 }
5048