1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86 specific subclass of TargetMachine.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86TargetMachine.h"
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "TargetInfo/X86TargetInfo.h"
16 #include "X86.h"
17 #include "X86CallLowering.h"
18 #include "X86LegalizerInfo.h"
19 #include "X86MacroFusion.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetObjectFile.h"
22 #include "X86TargetTransformInfo.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/CodeGen/ExecutionDomainFix.h"
30 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
33 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/CodeGen.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/TargetRegistry.h"
47 #include "llvm/Target/TargetLoweringObjectFile.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/Transforms/CFGuard.h"
50 #include <memory>
51 #include <string>
52 
53 using namespace llvm;
54 
55 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
56                                cl::desc("Enable the machine combiner pass"),
57                                cl::init(true), cl::Hidden);
58 
LLVMInitializeX86Target()59 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() {
60   // Register the target.
61   RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
62   RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
63 
64   PassRegistry &PR = *PassRegistry::getPassRegistry();
65   initializeGlobalISel(PR);
66   initializeWinEHStatePassPass(PR);
67   initializeFixupBWInstPassPass(PR);
68   initializeEvexToVexInstPassPass(PR);
69   initializeFixupLEAPassPass(PR);
70   initializeFPSPass(PR);
71   initializeX86FixupSetCCPassPass(PR);
72   initializeX86CallFrameOptimizationPass(PR);
73   initializeX86CmovConverterPassPass(PR);
74   initializeX86ExpandPseudoPass(PR);
75   initializeX86ExecutionDomainFixPass(PR);
76   initializeX86DomainReassignmentPass(PR);
77   initializeX86AvoidSFBPassPass(PR);
78   initializeX86AvoidTrailingCallPassPass(PR);
79   initializeX86SpeculativeLoadHardeningPassPass(PR);
80   initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR);
81   initializeX86FlagsCopyLoweringPassPass(PR);
82   initializeX86LoadValueInjectionLoadHardeningPassPass(PR);
83   initializeX86LoadValueInjectionRetHardeningPassPass(PR);
84   initializeX86OptimizeLEAPassPass(PR);
85   initializeX86PartialReductionPass(PR);
86 }
87 
createTLOF(const Triple & TT)88 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
89   if (TT.isOSBinFormatMachO()) {
90     if (TT.getArch() == Triple::x86_64)
91       return std::make_unique<X86_64MachoTargetObjectFile>();
92     return std::make_unique<TargetLoweringObjectFileMachO>();
93   }
94 
95   if (TT.isOSBinFormatCOFF())
96     return std::make_unique<TargetLoweringObjectFileCOFF>();
97   return std::make_unique<X86ELFTargetObjectFile>();
98 }
99 
computeDataLayout(const Triple & TT)100 static std::string computeDataLayout(const Triple &TT) {
101   // X86 is little endian
102   std::string Ret = "e";
103 
104   Ret += DataLayout::getManglingComponent(TT);
105   // X86 and x32 have 32 bit pointers.
106   if ((TT.isArch64Bit() &&
107        (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
108       !TT.isArch64Bit())
109     Ret += "-p:32:32";
110 
111   // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
112   Ret += "-p270:32:32-p271:32:32-p272:64:64";
113 
114   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
115   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
116     Ret += "-i64:64";
117   else if (TT.isOSIAMCU())
118     Ret += "-i64:32-f64:32";
119   else
120     Ret += "-f64:32:64";
121 
122   // Some ABIs align long double to 128 bits, others to 32.
123   if (TT.isOSNaCl() || TT.isOSIAMCU())
124     ; // No f80
125   else if (TT.isArch64Bit() || TT.isOSDarwin())
126     Ret += "-f80:128";
127   else
128     Ret += "-f80:32";
129 
130   if (TT.isOSIAMCU())
131     Ret += "-f128:32";
132 
133   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
134   if (TT.isArch64Bit())
135     Ret += "-n8:16:32:64";
136   else
137     Ret += "-n8:16:32";
138 
139   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
140   if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
141     Ret += "-a:0:32-S32";
142   else
143     Ret += "-S128";
144 
145   return Ret;
146 }
147 
getEffectiveRelocModel(const Triple & TT,bool JIT,Optional<Reloc::Model> RM)148 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
149                                            bool JIT,
150                                            Optional<Reloc::Model> RM) {
151   bool is64Bit = TT.getArch() == Triple::x86_64;
152   if (!RM.hasValue()) {
153     // JIT codegen should use static relocations by default, since it's
154     // typically executed in process and not relocatable.
155     if (JIT)
156       return Reloc::Static;
157 
158     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
159     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
160     // use static relocation model by default.
161     if (TT.isOSDarwin()) {
162       if (is64Bit)
163         return Reloc::PIC_;
164       return Reloc::DynamicNoPIC;
165     }
166     if (TT.isOSWindows() && is64Bit)
167       return Reloc::PIC_;
168     return Reloc::Static;
169   }
170 
171   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
172   // is defined as a model for code which may be used in static or dynamic
173   // executables but not necessarily a shared library. On X86-32 we just
174   // compile in -static mode, in x86-64 we use PIC.
175   if (*RM == Reloc::DynamicNoPIC) {
176     if (is64Bit)
177       return Reloc::PIC_;
178     if (!TT.isOSDarwin())
179       return Reloc::Static;
180   }
181 
182   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
183   // the Mach-O file format doesn't support it.
184   if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
185     return Reloc::PIC_;
186 
187   return *RM;
188 }
189 
getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,bool JIT,bool Is64Bit)190 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,
191                                                  bool JIT, bool Is64Bit) {
192   if (CM) {
193     if (*CM == CodeModel::Tiny)
194       report_fatal_error("Target does not support the tiny CodeModel", false);
195     return *CM;
196   }
197   if (JIT)
198     return Is64Bit ? CodeModel::Large : CodeModel::Small;
199   return CodeModel::Small;
200 }
201 
202 /// Create an X86 target.
203 ///
X86TargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool JIT)204 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
205                                    StringRef CPU, StringRef FS,
206                                    const TargetOptions &Options,
207                                    Optional<Reloc::Model> RM,
208                                    Optional<CodeModel::Model> CM,
209                                    CodeGenOpt::Level OL, bool JIT)
210     : LLVMTargetMachine(
211           T, computeDataLayout(TT), TT, CPU, FS, Options,
212           getEffectiveRelocModel(TT, JIT, RM),
213           getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
214           OL),
215       TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) {
216   // On PS4, the "return address" of a 'noreturn' call must still be within
217   // the calling function, and TrapUnreachable is an easy way to get that.
218   if (TT.isPS4() || TT.isOSBinFormatMachO()) {
219     this->Options.TrapUnreachable = true;
220     this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
221   }
222 
223   setMachineOutliner(true);
224 
225   // x86 supports the debug entry values.
226   setSupportsDebugEntryValues(true);
227 
228   initAsmInfo();
229 }
230 
231 X86TargetMachine::~X86TargetMachine() = default;
232 
233 const X86Subtarget *
getSubtargetImpl(const Function & F) const234 X86TargetMachine::getSubtargetImpl(const Function &F) const {
235   Attribute CPUAttr = F.getFnAttribute("target-cpu");
236   Attribute TuneAttr = F.getFnAttribute("tune-cpu");
237   Attribute FSAttr = F.getFnAttribute("target-features");
238 
239   StringRef CPU =
240       CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU;
241   StringRef TuneCPU =
242       TuneAttr.isValid() ? TuneAttr.getValueAsString() : (StringRef)CPU;
243   StringRef FS =
244       FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS;
245 
246   SmallString<512> Key;
247   // The additions here are ordered so that the definitely short strings are
248   // added first so we won't exceed the small size. We append the
249   // much longer FS string at the end so that we only heap allocate at most
250   // one time.
251 
252   // Extract prefer-vector-width attribute.
253   unsigned PreferVectorWidthOverride = 0;
254   Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width");
255   if (PreferVecWidthAttr.isValid()) {
256     StringRef Val = PreferVecWidthAttr.getValueAsString();
257     unsigned Width;
258     if (!Val.getAsInteger(0, Width)) {
259       Key += "prefer-vector-width=";
260       Key += Val;
261       PreferVectorWidthOverride = Width;
262     }
263   }
264 
265   // Extract min-legal-vector-width attribute.
266   unsigned RequiredVectorWidth = UINT32_MAX;
267   Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width");
268   if (MinLegalVecWidthAttr.isValid()) {
269     StringRef Val = MinLegalVecWidthAttr.getValueAsString();
270     unsigned Width;
271     if (!Val.getAsInteger(0, Width)) {
272       Key += "min-legal-vector-width=";
273       Key += Val;
274       RequiredVectorWidth = Width;
275     }
276   }
277 
278   // Add CPU to the Key.
279   Key += CPU;
280 
281   // Add tune CPU to the Key.
282   Key += "tune=";
283   Key += TuneCPU;
284 
285   // Keep track of the start of the feature portion of the string.
286   unsigned FSStart = Key.size();
287 
288   // FIXME: This is related to the code below to reset the target options,
289   // we need to know whether or not the soft float flag is set on the
290   // function before we can generate a subtarget. We also need to use
291   // it as a key for the subtarget since that can be the only difference
292   // between two functions.
293   bool SoftFloat =
294       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
295   // If the soft float attribute is set on the function turn on the soft float
296   // subtarget feature.
297   if (SoftFloat)
298     Key += FS.empty() ? "+soft-float" : "+soft-float,";
299 
300   Key += FS;
301 
302   // We may have added +soft-float to the features so move the StringRef to
303   // point to the full string in the Key.
304   FS = Key.substr(FSStart);
305 
306   auto &I = SubtargetMap[Key];
307   if (!I) {
308     // This needs to be done before we create a new subtarget since any
309     // creation will depend on the TM and the code generation flags on the
310     // function that reside in TargetOptions.
311     resetTargetOptions(F);
312     I = std::make_unique<X86Subtarget>(
313         TargetTriple, CPU, TuneCPU, FS, *this,
314         MaybeAlign(Options.StackAlignmentOverride), PreferVectorWidthOverride,
315         RequiredVectorWidth);
316   }
317   return I.get();
318 }
319 
isNoopAddrSpaceCast(unsigned SrcAS,unsigned DestAS) const320 bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
321                                            unsigned DestAS) const {
322   assert(SrcAS != DestAS && "Expected different address spaces!");
323   if (getPointerSize(SrcAS) != getPointerSize(DestAS))
324     return false;
325   return SrcAS < 256 && DestAS < 256;
326 }
327 
328 //===----------------------------------------------------------------------===//
329 // X86 TTI query.
330 //===----------------------------------------------------------------------===//
331 
332 TargetTransformInfo
getTargetTransformInfo(const Function & F)333 X86TargetMachine::getTargetTransformInfo(const Function &F) {
334   return TargetTransformInfo(X86TTIImpl(this, F));
335 }
336 
337 //===----------------------------------------------------------------------===//
338 // Pass Pipeline Configuration
339 //===----------------------------------------------------------------------===//
340 
341 namespace {
342 
343 /// X86 Code Generator Pass Configuration Options.
344 class X86PassConfig : public TargetPassConfig {
345 public:
X86PassConfig(X86TargetMachine & TM,PassManagerBase & PM)346   X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
347     : TargetPassConfig(TM, PM) {}
348 
getX86TargetMachine() const349   X86TargetMachine &getX86TargetMachine() const {
350     return getTM<X86TargetMachine>();
351   }
352 
353   ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext * C) const354   createMachineScheduler(MachineSchedContext *C) const override {
355     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
356     DAG->addMutation(createX86MacroFusionDAGMutation());
357     return DAG;
358   }
359 
360   ScheduleDAGInstrs *
createPostMachineScheduler(MachineSchedContext * C) const361   createPostMachineScheduler(MachineSchedContext *C) const override {
362     ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
363     DAG->addMutation(createX86MacroFusionDAGMutation());
364     return DAG;
365   }
366 
367   void addIRPasses() override;
368   bool addInstSelector() override;
369   bool addIRTranslator() override;
370   bool addLegalizeMachineIR() override;
371   bool addRegBankSelect() override;
372   bool addGlobalInstructionSelect() override;
373   bool addILPOpts() override;
374   bool addPreISel() override;
375   void addMachineSSAOptimization() override;
376   void addPreRegAlloc() override;
377   void addPostRegAlloc() override;
378   void addPreEmitPass() override;
379   void addPreEmitPass2() override;
380   void addPreSched2() override;
381 
382   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
383 };
384 
385 class X86ExecutionDomainFix : public ExecutionDomainFix {
386 public:
387   static char ID;
X86ExecutionDomainFix()388   X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
getPassName() const389   StringRef getPassName() const override {
390     return "X86 Execution Dependency Fix";
391   }
392 };
393 char X86ExecutionDomainFix::ID;
394 
395 } // end anonymous namespace
396 
397 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
398   "X86 Execution Domain Fix", false, false)
INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)399 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
400 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
401   "X86 Execution Domain Fix", false, false)
402 
403 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
404   return new X86PassConfig(*this, PM);
405 }
406 
addIRPasses()407 void X86PassConfig::addIRPasses() {
408   addPass(createAtomicExpandPass());
409 
410   TargetPassConfig::addIRPasses();
411 
412   if (TM->getOptLevel() != CodeGenOpt::None) {
413     addPass(createInterleavedAccessPass());
414     addPass(createX86PartialReductionPass());
415   }
416 
417   // Add passes that handle indirect branch removal and insertion of a retpoline
418   // thunk. These will be a no-op unless a function subtarget has the retpoline
419   // feature enabled.
420   addPass(createIndirectBrExpandPass());
421 
422   // Add Control Flow Guard checks.
423   const Triple &TT = TM->getTargetTriple();
424   if (TT.isOSWindows()) {
425     if (TT.getArch() == Triple::x86_64) {
426       addPass(createCFGuardDispatchPass());
427     } else {
428       addPass(createCFGuardCheckPass());
429     }
430   }
431 }
432 
addInstSelector()433 bool X86PassConfig::addInstSelector() {
434   // Install an instruction selector.
435   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
436 
437   // For ELF, cleanup any local-dynamic TLS accesses.
438   if (TM->getTargetTriple().isOSBinFormatELF() &&
439       getOptLevel() != CodeGenOpt::None)
440     addPass(createCleanupLocalDynamicTLSPass());
441 
442   addPass(createX86GlobalBaseRegPass());
443   return false;
444 }
445 
addIRTranslator()446 bool X86PassConfig::addIRTranslator() {
447   addPass(new IRTranslator(getOptLevel()));
448   return false;
449 }
450 
addLegalizeMachineIR()451 bool X86PassConfig::addLegalizeMachineIR() {
452   addPass(new Legalizer());
453   return false;
454 }
455 
addRegBankSelect()456 bool X86PassConfig::addRegBankSelect() {
457   addPass(new RegBankSelect());
458   return false;
459 }
460 
addGlobalInstructionSelect()461 bool X86PassConfig::addGlobalInstructionSelect() {
462   addPass(new InstructionSelect());
463   return false;
464 }
465 
addILPOpts()466 bool X86PassConfig::addILPOpts() {
467   addPass(&EarlyIfConverterID);
468   if (EnableMachineCombinerPass)
469     addPass(&MachineCombinerID);
470   addPass(createX86CmovConverterPass());
471   return true;
472 }
473 
addPreISel()474 bool X86PassConfig::addPreISel() {
475   // Only add this pass for 32-bit x86 Windows.
476   const Triple &TT = TM->getTargetTriple();
477   if (TT.isOSWindows() && TT.getArch() == Triple::x86)
478     addPass(createX86WinEHStatePass());
479   return true;
480 }
481 
addPreRegAlloc()482 void X86PassConfig::addPreRegAlloc() {
483   if (getOptLevel() != CodeGenOpt::None) {
484     addPass(&LiveRangeShrinkID);
485     addPass(createX86FixupSetCC());
486     addPass(createX86OptimizeLEAs());
487     addPass(createX86CallFrameOptimization());
488     addPass(createX86AvoidStoreForwardingBlocks());
489   }
490 
491   addPass(createX86SpeculativeLoadHardeningPass());
492   addPass(createX86FlagsCopyLoweringPass());
493   addPass(createX86WinAllocaExpander());
494 }
addMachineSSAOptimization()495 void X86PassConfig::addMachineSSAOptimization() {
496   addPass(createX86DomainReassignmentPass());
497   TargetPassConfig::addMachineSSAOptimization();
498 }
499 
addPostRegAlloc()500 void X86PassConfig::addPostRegAlloc() {
501   addPass(createX86FloatingPointStackifierPass());
502   // When -O0 is enabled, the Load Value Injection Hardening pass will fall back
503   // to using the Speculative Execution Side Effect Suppression pass for
504   // mitigation. This is to prevent slow downs due to
505   // analyses needed by the LVIHardening pass when compiling at -O0.
506   if (getOptLevel() != CodeGenOpt::None)
507     addPass(createX86LoadValueInjectionLoadHardeningPass());
508 }
509 
addPreSched2()510 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
511 
addPreEmitPass()512 void X86PassConfig::addPreEmitPass() {
513   if (getOptLevel() != CodeGenOpt::None) {
514     addPass(new X86ExecutionDomainFix());
515     addPass(createBreakFalseDeps());
516   }
517 
518   addPass(createX86IndirectBranchTrackingPass());
519 
520   addPass(createX86IssueVZeroUpperPass());
521 
522   if (getOptLevel() != CodeGenOpt::None) {
523     addPass(createX86FixupBWInsts());
524     addPass(createX86PadShortFunctions());
525     addPass(createX86FixupLEAs());
526   }
527   addPass(createX86EvexToVexInsts());
528   addPass(createX86DiscriminateMemOpsPass());
529   addPass(createX86InsertPrefetchPass());
530   addPass(createX86InsertX87waitPass());
531 }
532 
addPreEmitPass2()533 void X86PassConfig::addPreEmitPass2() {
534   const Triple &TT = TM->getTargetTriple();
535   const MCAsmInfo *MAI = TM->getMCAsmInfo();
536 
537   // The X86 Speculative Execution Pass must run after all control
538   // flow graph modifying passes. As a result it was listed to run right before
539   // the X86 Retpoline Thunks pass. The reason it must run after control flow
540   // graph modifications is that the model of LFENCE in LLVM has to be updated
541   // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the
542   // placement of this pass was hand checked to ensure that the subsequent
543   // passes don't move the code around the LFENCEs in a way that will hurt the
544   // correctness of this pass. This placement has been shown to work based on
545   // hand inspection of the codegen output.
546   addPass(createX86SpeculativeExecutionSideEffectSuppression());
547   addPass(createX86IndirectThunksPass());
548 
549   // Insert extra int3 instructions after trailing call instructions to avoid
550   // issues in the unwinder.
551   if (TT.isOSWindows() && TT.getArch() == Triple::x86_64)
552     addPass(createX86AvoidTrailingCallPass());
553 
554   // Verify basic block incoming and outgoing cfa offset and register values and
555   // correct CFA calculation rule where needed by inserting appropriate CFI
556   // instructions.
557   if (!TT.isOSDarwin() &&
558       (!TT.isOSWindows() ||
559        MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
560     addPass(createCFIInstrInserter());
561   // Identify valid longjmp targets for Windows Control Flow Guard.
562   if (TT.isOSWindows())
563     addPass(createCFGuardLongjmpPass());
564   addPass(createX86LoadValueInjectionRetHardeningPass());
565 }
566 
getCSEConfig() const567 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
568   return getStandardCSEConfigForOpt(TM->getOptLevel());
569 }
570