1 //===- ScopDetection.cpp - Detect Scops -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Detect the maximal Scops of a function.
10 //
11 // A static control part (Scop) is a subgraph of the control flow graph (CFG)
12 // that only has statically known control flow and can therefore be described
13 // within the polyhedral model.
14 //
15 // Every Scop fulfills these restrictions:
16 //
17 // * It is a single entry single exit region
18 //
19 // * Only affine linear bounds in the loops
20 //
21 // Every natural loop in a Scop must have a number of loop iterations that can
22 // be described as an affine linear function in surrounding loop iterators or
23 // parameters. (A parameter is a scalar that does not change its value during
24 // execution of the Scop).
25 //
26 // * Only comparisons of affine linear expressions in conditions
27 //
28 // * All loops and conditions perfectly nested
29 //
30 // The control flow needs to be structured such that it could be written using
31 // just 'for' and 'if' statements, without the need for any 'goto', 'break' or
32 // 'continue'.
33 //
34 // * Side effect free functions call
35 //
36 // Function calls and intrinsics that do not have side effects (readnone)
37 // or memory intrinsics (memset, memcpy, memmove) are allowed.
38 //
39 // The Scop detection finds the largest Scops by checking if the largest
40 // region is a Scop. If this is not the case, its canonical subregions are
41 // checked until a region is a Scop. It is now tried to extend this Scop by
42 // creating a larger non canonical region.
43 //
44 //===----------------------------------------------------------------------===//
45
46 #include "polly/ScopDetection.h"
47 #include "polly/LinkAllPasses.h"
48 #include "polly/Options.h"
49 #include "polly/ScopDetectionDiagnostic.h"
50 #include "polly/Support/SCEVValidator.h"
51 #include "polly/Support/ScopHelper.h"
52 #include "polly/Support/ScopLocation.h"
53 #include "llvm/ADT/SmallPtrSet.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AliasAnalysis.h"
56 #include "llvm/Analysis/Loads.h"
57 #include "llvm/Analysis/LoopInfo.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/RegionInfo.h"
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/DiagnosticInfo.h"
66 #include "llvm/IR/DiagnosticPrinter.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/InstrTypes.h"
70 #include "llvm/IR/Instruction.h"
71 #include "llvm/IR/Instructions.h"
72 #include "llvm/IR/IntrinsicInst.h"
73 #include "llvm/IR/Metadata.h"
74 #include "llvm/IR/Module.h"
75 #include "llvm/IR/PassManager.h"
76 #include "llvm/IR/Value.h"
77 #include "llvm/InitializePasses.h"
78 #include "llvm/Pass.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include <cassert>
82
83 using namespace llvm;
84 using namespace polly;
85
86 #define DEBUG_TYPE "polly-detect"
87
88 // This option is set to a very high value, as analyzing such loops increases
89 // compile time on several cases. For experiments that enable this option,
90 // a value of around 40 has been working to avoid run-time regressions with
91 // Polly while still exposing interesting optimization opportunities.
92 static cl::opt<int> ProfitabilityMinPerLoopInstructions(
93 "polly-detect-profitability-min-per-loop-insts",
94 cl::desc("The minimal number of per-loop instructions before a single loop "
95 "region is considered profitable"),
96 cl::Hidden, cl::ValueRequired, cl::init(100000000), cl::cat(PollyCategory));
97
98 bool polly::PollyProcessUnprofitable;
99
100 static cl::opt<bool, true> XPollyProcessUnprofitable(
101 "polly-process-unprofitable",
102 cl::desc(
103 "Process scops that are unlikely to benefit from Polly optimizations."),
104 cl::location(PollyProcessUnprofitable), cl::init(false), cl::ZeroOrMore,
105 cl::cat(PollyCategory));
106
107 static cl::list<std::string> OnlyFunctions(
108 "polly-only-func",
109 cl::desc("Only run on functions that match a regex. "
110 "Multiple regexes can be comma separated. "
111 "Scop detection will run on all functions that match "
112 "ANY of the regexes provided."),
113 cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));
114
115 static cl::list<std::string> IgnoredFunctions(
116 "polly-ignore-func",
117 cl::desc("Ignore functions that match a regex. "
118 "Multiple regexes can be comma separated. "
119 "Scop detection will ignore all functions that match "
120 "ANY of the regexes provided."),
121 cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));
122
123 bool polly::PollyAllowFullFunction;
124
125 static cl::opt<bool, true>
126 XAllowFullFunction("polly-detect-full-functions",
127 cl::desc("Allow the detection of full functions"),
128 cl::location(polly::PollyAllowFullFunction),
129 cl::init(false), cl::cat(PollyCategory));
130
131 static cl::opt<std::string> OnlyRegion(
132 "polly-only-region",
133 cl::desc("Only run on certain regions (The provided identifier must "
134 "appear in the name of the region's entry block"),
135 cl::value_desc("identifier"), cl::ValueRequired, cl::init(""),
136 cl::cat(PollyCategory));
137
138 static cl::opt<bool>
139 IgnoreAliasing("polly-ignore-aliasing",
140 cl::desc("Ignore possible aliasing of the array bases"),
141 cl::Hidden, cl::init(false), cl::ZeroOrMore,
142 cl::cat(PollyCategory));
143
144 bool polly::PollyAllowUnsignedOperations;
145
146 static cl::opt<bool, true> XPollyAllowUnsignedOperations(
147 "polly-allow-unsigned-operations",
148 cl::desc("Allow unsigned operations such as comparisons or zero-extends."),
149 cl::location(PollyAllowUnsignedOperations), cl::Hidden, cl::ZeroOrMore,
150 cl::init(true), cl::cat(PollyCategory));
151
152 bool polly::PollyUseRuntimeAliasChecks;
153
154 static cl::opt<bool, true> XPollyUseRuntimeAliasChecks(
155 "polly-use-runtime-alias-checks",
156 cl::desc("Use runtime alias checks to resolve possible aliasing."),
157 cl::location(PollyUseRuntimeAliasChecks), cl::Hidden, cl::ZeroOrMore,
158 cl::init(true), cl::cat(PollyCategory));
159
160 static cl::opt<bool>
161 ReportLevel("polly-report",
162 cl::desc("Print information about the activities of Polly"),
163 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
164
165 static cl::opt<bool> AllowDifferentTypes(
166 "polly-allow-differing-element-types",
167 cl::desc("Allow different element types for array accesses"), cl::Hidden,
168 cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
169
170 static cl::opt<bool>
171 AllowNonAffine("polly-allow-nonaffine",
172 cl::desc("Allow non affine access functions in arrays"),
173 cl::Hidden, cl::init(false), cl::ZeroOrMore,
174 cl::cat(PollyCategory));
175
176 static cl::opt<bool>
177 AllowModrefCall("polly-allow-modref-calls",
178 cl::desc("Allow functions with known modref behavior"),
179 cl::Hidden, cl::init(false), cl::ZeroOrMore,
180 cl::cat(PollyCategory));
181
182 static cl::opt<bool> AllowNonAffineSubRegions(
183 "polly-allow-nonaffine-branches",
184 cl::desc("Allow non affine conditions for branches"), cl::Hidden,
185 cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
186
187 static cl::opt<bool>
188 AllowNonAffineSubLoops("polly-allow-nonaffine-loops",
189 cl::desc("Allow non affine conditions for loops"),
190 cl::Hidden, cl::init(false), cl::ZeroOrMore,
191 cl::cat(PollyCategory));
192
193 static cl::opt<bool, true>
194 TrackFailures("polly-detect-track-failures",
195 cl::desc("Track failure strings in detecting scop regions"),
196 cl::location(PollyTrackFailures), cl::Hidden, cl::ZeroOrMore,
197 cl::init(true), cl::cat(PollyCategory));
198
199 static cl::opt<bool> KeepGoing("polly-detect-keep-going",
200 cl::desc("Do not fail on the first error."),
201 cl::Hidden, cl::ZeroOrMore, cl::init(false),
202 cl::cat(PollyCategory));
203
204 static cl::opt<bool, true>
205 PollyDelinearizeX("polly-delinearize",
206 cl::desc("Delinearize array access functions"),
207 cl::location(PollyDelinearize), cl::Hidden,
208 cl::ZeroOrMore, cl::init(true), cl::cat(PollyCategory));
209
210 static cl::opt<bool>
211 VerifyScops("polly-detect-verify",
212 cl::desc("Verify the detected SCoPs after each transformation"),
213 cl::Hidden, cl::init(false), cl::ZeroOrMore,
214 cl::cat(PollyCategory));
215
216 bool polly::PollyInvariantLoadHoisting;
217
218 static cl::opt<bool, true> XPollyInvariantLoadHoisting(
219 "polly-invariant-load-hoisting", cl::desc("Hoist invariant loads."),
220 cl::location(PollyInvariantLoadHoisting), cl::Hidden, cl::ZeroOrMore,
221 cl::init(false), cl::cat(PollyCategory));
222
223 /// The minimal trip count under which loops are considered unprofitable.
224 static const unsigned MIN_LOOP_TRIP_COUNT = 8;
225
226 bool polly::PollyTrackFailures = false;
227 bool polly::PollyDelinearize = false;
228 StringRef polly::PollySkipFnAttr = "polly.skip.fn";
229
230 //===----------------------------------------------------------------------===//
231 // Statistics.
232
233 STATISTIC(NumScopRegions, "Number of scops");
234 STATISTIC(NumLoopsInScop, "Number of loops in scops");
235 STATISTIC(NumScopsDepthZero, "Number of scops with maximal loop depth 0");
236 STATISTIC(NumScopsDepthOne, "Number of scops with maximal loop depth 1");
237 STATISTIC(NumScopsDepthTwo, "Number of scops with maximal loop depth 2");
238 STATISTIC(NumScopsDepthThree, "Number of scops with maximal loop depth 3");
239 STATISTIC(NumScopsDepthFour, "Number of scops with maximal loop depth 4");
240 STATISTIC(NumScopsDepthFive, "Number of scops with maximal loop depth 5");
241 STATISTIC(NumScopsDepthLarger,
242 "Number of scops with maximal loop depth 6 and larger");
243 STATISTIC(NumProfScopRegions, "Number of scops (profitable scops only)");
244 STATISTIC(NumLoopsInProfScop,
245 "Number of loops in scops (profitable scops only)");
246 STATISTIC(NumLoopsOverall, "Number of total loops");
247 STATISTIC(NumProfScopsDepthZero,
248 "Number of scops with maximal loop depth 0 (profitable scops only)");
249 STATISTIC(NumProfScopsDepthOne,
250 "Number of scops with maximal loop depth 1 (profitable scops only)");
251 STATISTIC(NumProfScopsDepthTwo,
252 "Number of scops with maximal loop depth 2 (profitable scops only)");
253 STATISTIC(NumProfScopsDepthThree,
254 "Number of scops with maximal loop depth 3 (profitable scops only)");
255 STATISTIC(NumProfScopsDepthFour,
256 "Number of scops with maximal loop depth 4 (profitable scops only)");
257 STATISTIC(NumProfScopsDepthFive,
258 "Number of scops with maximal loop depth 5 (profitable scops only)");
259 STATISTIC(NumProfScopsDepthLarger,
260 "Number of scops with maximal loop depth 6 and larger "
261 "(profitable scops only)");
262 STATISTIC(MaxNumLoopsInScop, "Maximal number of loops in scops");
263 STATISTIC(MaxNumLoopsInProfScop,
264 "Maximal number of loops in scops (profitable scops only)");
265
266 static void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
267 bool OnlyProfitable);
268
269 namespace {
270
271 class DiagnosticScopFound : public DiagnosticInfo {
272 private:
273 static int PluginDiagnosticKind;
274
275 Function &F;
276 std::string FileName;
277 unsigned EntryLine, ExitLine;
278
279 public:
DiagnosticScopFound(Function & F,std::string FileName,unsigned EntryLine,unsigned ExitLine)280 DiagnosticScopFound(Function &F, std::string FileName, unsigned EntryLine,
281 unsigned ExitLine)
282 : DiagnosticInfo(PluginDiagnosticKind, DS_Note), F(F), FileName(FileName),
283 EntryLine(EntryLine), ExitLine(ExitLine) {}
284
285 void print(DiagnosticPrinter &DP) const override;
286
classof(const DiagnosticInfo * DI)287 static bool classof(const DiagnosticInfo *DI) {
288 return DI->getKind() == PluginDiagnosticKind;
289 }
290 };
291 } // namespace
292
293 int DiagnosticScopFound::PluginDiagnosticKind =
294 getNextAvailablePluginDiagnosticKind();
295
print(DiagnosticPrinter & DP) const296 void DiagnosticScopFound::print(DiagnosticPrinter &DP) const {
297 DP << "Polly detected an optimizable loop region (scop) in function '" << F
298 << "'\n";
299
300 if (FileName.empty()) {
301 DP << "Scop location is unknown. Compile with debug info "
302 "(-g) to get more precise information. ";
303 return;
304 }
305
306 DP << FileName << ":" << EntryLine << ": Start of scop\n";
307 DP << FileName << ":" << ExitLine << ": End of scop";
308 }
309
310 /// Check if a string matches any regex in a list of regexes.
311 /// @param Str the input string to match against.
312 /// @param RegexList a list of strings that are regular expressions.
doesStringMatchAnyRegex(StringRef Str,const cl::list<std::string> & RegexList)313 static bool doesStringMatchAnyRegex(StringRef Str,
314 const cl::list<std::string> &RegexList) {
315 for (auto RegexStr : RegexList) {
316 Regex R(RegexStr);
317
318 std::string Err;
319 if (!R.isValid(Err))
320 report_fatal_error("invalid regex given as input to polly: " + Err, true);
321
322 if (R.match(Str))
323 return true;
324 }
325 return false;
326 }
327 //===----------------------------------------------------------------------===//
328 // ScopDetection.
329
ScopDetection(Function & F,const DominatorTree & DT,ScalarEvolution & SE,LoopInfo & LI,RegionInfo & RI,AliasAnalysis & AA,OptimizationRemarkEmitter & ORE)330 ScopDetection::ScopDetection(Function &F, const DominatorTree &DT,
331 ScalarEvolution &SE, LoopInfo &LI, RegionInfo &RI,
332 AliasAnalysis &AA, OptimizationRemarkEmitter &ORE)
333 : DT(DT), SE(SE), LI(LI), RI(RI), AA(AA), ORE(ORE) {
334 if (!PollyProcessUnprofitable && LI.empty())
335 return;
336
337 Region *TopRegion = RI.getTopLevelRegion();
338
339 if (!OnlyFunctions.empty() &&
340 !doesStringMatchAnyRegex(F.getName(), OnlyFunctions))
341 return;
342
343 if (doesStringMatchAnyRegex(F.getName(), IgnoredFunctions))
344 return;
345
346 if (!isValidFunction(F))
347 return;
348
349 findScops(*TopRegion);
350
351 NumScopRegions += ValidRegions.size();
352
353 // Prune non-profitable regions.
354 for (auto &DIt : DetectionContextMap) {
355 auto &DC = DIt.getSecond();
356 if (DC.Log.hasErrors())
357 continue;
358 if (!ValidRegions.count(&DC.CurRegion))
359 continue;
360 LoopStats Stats = countBeneficialLoops(&DC.CurRegion, SE, LI, 0);
361 updateLoopCountStatistic(Stats, false /* OnlyProfitable */);
362 if (isProfitableRegion(DC)) {
363 updateLoopCountStatistic(Stats, true /* OnlyProfitable */);
364 continue;
365 }
366
367 ValidRegions.remove(&DC.CurRegion);
368 }
369
370 NumProfScopRegions += ValidRegions.size();
371 NumLoopsOverall += countBeneficialLoops(TopRegion, SE, LI, 0).NumLoops;
372
373 // Only makes sense when we tracked errors.
374 if (PollyTrackFailures)
375 emitMissedRemarks(F);
376
377 if (ReportLevel)
378 printLocations(F);
379
380 assert(ValidRegions.size() <= DetectionContextMap.size() &&
381 "Cached more results than valid regions");
382 }
383
384 template <class RR, typename... Args>
invalid(DetectionContext & Context,bool Assert,Args &&...Arguments) const385 inline bool ScopDetection::invalid(DetectionContext &Context, bool Assert,
386 Args &&...Arguments) const {
387 if (!Context.Verifying) {
388 RejectLog &Log = Context.Log;
389 std::shared_ptr<RR> RejectReason = std::make_shared<RR>(Arguments...);
390
391 if (PollyTrackFailures)
392 Log.report(RejectReason);
393
394 LLVM_DEBUG(dbgs() << RejectReason->getMessage());
395 LLVM_DEBUG(dbgs() << "\n");
396 } else {
397 assert(!Assert && "Verification of detected scop failed");
398 }
399
400 return false;
401 }
402
isMaxRegionInScop(const Region & R,bool Verify) const403 bool ScopDetection::isMaxRegionInScop(const Region &R, bool Verify) const {
404 if (!ValidRegions.count(&R))
405 return false;
406
407 if (Verify) {
408 DetectionContextMap.erase(getBBPairForRegion(&R));
409 const auto &It = DetectionContextMap.insert(std::make_pair(
410 getBBPairForRegion(&R),
411 DetectionContext(const_cast<Region &>(R), AA, false /*verifying*/)));
412 DetectionContext &Context = It.first->second;
413 return isValidRegion(Context);
414 }
415
416 return true;
417 }
418
regionIsInvalidBecause(const Region * R) const419 std::string ScopDetection::regionIsInvalidBecause(const Region *R) const {
420 // Get the first error we found. Even in keep-going mode, this is the first
421 // reason that caused the candidate to be rejected.
422 auto *Log = lookupRejectionLog(R);
423
424 // This can happen when we marked a region invalid, but didn't track
425 // an error for it.
426 if (!Log || !Log->hasErrors())
427 return "";
428
429 RejectReasonPtr RR = *Log->begin();
430 return RR->getMessage();
431 }
432
addOverApproximatedRegion(Region * AR,DetectionContext & Context) const433 bool ScopDetection::addOverApproximatedRegion(Region *AR,
434 DetectionContext &Context) const {
435 // If we already know about Ar we can exit.
436 if (!Context.NonAffineSubRegionSet.insert(AR))
437 return true;
438
439 // All loops in the region have to be overapproximated too if there
440 // are accesses that depend on the iteration count.
441
442 for (BasicBlock *BB : AR->blocks()) {
443 Loop *L = LI.getLoopFor(BB);
444 if (AR->contains(L))
445 Context.BoxedLoopsSet.insert(L);
446 }
447
448 return (AllowNonAffineSubLoops || Context.BoxedLoopsSet.empty());
449 }
450
onlyValidRequiredInvariantLoads(InvariantLoadsSetTy & RequiredILS,DetectionContext & Context) const451 bool ScopDetection::onlyValidRequiredInvariantLoads(
452 InvariantLoadsSetTy &RequiredILS, DetectionContext &Context) const {
453 Region &CurRegion = Context.CurRegion;
454 const DataLayout &DL = CurRegion.getEntry()->getModule()->getDataLayout();
455
456 if (!PollyInvariantLoadHoisting && !RequiredILS.empty())
457 return false;
458
459 for (LoadInst *Load : RequiredILS) {
460 // If we already know a load has been accepted as required invariant, we
461 // already run the validation below once and consequently don't need to
462 // run it again. Hence, we return early. For certain test cases (e.g.,
463 // COSMO this avoids us spending 50% of scop-detection time in this
464 // very function (and its children).
465 if (Context.RequiredILS.count(Load))
466 continue;
467 if (!isHoistableLoad(Load, CurRegion, LI, SE, DT, Context.RequiredILS))
468 return false;
469
470 for (auto NonAffineRegion : Context.NonAffineSubRegionSet) {
471 if (isSafeToLoadUnconditionally(Load->getPointerOperand(),
472 Load->getType(), Load->getAlign(), DL))
473 continue;
474
475 if (NonAffineRegion->contains(Load) &&
476 Load->getParent() != NonAffineRegion->getEntry())
477 return false;
478 }
479 }
480
481 Context.RequiredILS.insert(RequiredILS.begin(), RequiredILS.end());
482
483 return true;
484 }
485
involvesMultiplePtrs(const SCEV * S0,const SCEV * S1,Loop * Scope) const486 bool ScopDetection::involvesMultiplePtrs(const SCEV *S0, const SCEV *S1,
487 Loop *Scope) const {
488 SetVector<Value *> Values;
489 findValues(S0, SE, Values);
490 if (S1)
491 findValues(S1, SE, Values);
492
493 SmallPtrSet<Value *, 8> PtrVals;
494 for (auto *V : Values) {
495 if (auto *P2I = dyn_cast<PtrToIntInst>(V))
496 V = P2I->getOperand(0);
497
498 if (!V->getType()->isPointerTy())
499 continue;
500
501 auto *PtrSCEV = SE.getSCEVAtScope(V, Scope);
502 if (isa<SCEVConstant>(PtrSCEV))
503 continue;
504
505 auto *BasePtr = dyn_cast<SCEVUnknown>(SE.getPointerBase(PtrSCEV));
506 if (!BasePtr)
507 return true;
508
509 auto *BasePtrVal = BasePtr->getValue();
510 if (PtrVals.insert(BasePtrVal).second) {
511 for (auto *PtrVal : PtrVals)
512 if (PtrVal != BasePtrVal && !AA.isNoAlias(PtrVal, BasePtrVal))
513 return true;
514 }
515 }
516
517 return false;
518 }
519
isAffine(const SCEV * S,Loop * Scope,DetectionContext & Context) const520 bool ScopDetection::isAffine(const SCEV *S, Loop *Scope,
521 DetectionContext &Context) const {
522 InvariantLoadsSetTy AccessILS;
523 if (!isAffineExpr(&Context.CurRegion, Scope, S, SE, &AccessILS))
524 return false;
525
526 if (!onlyValidRequiredInvariantLoads(AccessILS, Context))
527 return false;
528
529 return true;
530 }
531
isValidSwitch(BasicBlock & BB,SwitchInst * SI,Value * Condition,bool IsLoopBranch,DetectionContext & Context) const532 bool ScopDetection::isValidSwitch(BasicBlock &BB, SwitchInst *SI,
533 Value *Condition, bool IsLoopBranch,
534 DetectionContext &Context) const {
535 Loop *L = LI.getLoopFor(&BB);
536 const SCEV *ConditionSCEV = SE.getSCEVAtScope(Condition, L);
537
538 if (IsLoopBranch && L->isLoopLatch(&BB))
539 return false;
540
541 // Check for invalid usage of different pointers in one expression.
542 if (involvesMultiplePtrs(ConditionSCEV, nullptr, L))
543 return false;
544
545 if (isAffine(ConditionSCEV, L, Context))
546 return true;
547
548 if (AllowNonAffineSubRegions &&
549 addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
550 return true;
551
552 return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB,
553 ConditionSCEV, ConditionSCEV, SI);
554 }
555
isValidBranch(BasicBlock & BB,BranchInst * BI,Value * Condition,bool IsLoopBranch,DetectionContext & Context) const556 bool ScopDetection::isValidBranch(BasicBlock &BB, BranchInst *BI,
557 Value *Condition, bool IsLoopBranch,
558 DetectionContext &Context) const {
559 // Constant integer conditions are always affine.
560 if (isa<ConstantInt>(Condition))
561 return true;
562
563 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) {
564 auto Opcode = BinOp->getOpcode();
565 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
566 Value *Op0 = BinOp->getOperand(0);
567 Value *Op1 = BinOp->getOperand(1);
568 return isValidBranch(BB, BI, Op0, IsLoopBranch, Context) &&
569 isValidBranch(BB, BI, Op1, IsLoopBranch, Context);
570 }
571 }
572
573 if (auto PHI = dyn_cast<PHINode>(Condition)) {
574 auto *Unique = dyn_cast_or_null<ConstantInt>(
575 getUniqueNonErrorValue(PHI, &Context.CurRegion, LI, DT));
576 if (Unique && (Unique->isZero() || Unique->isOne()))
577 return true;
578 }
579
580 if (auto Load = dyn_cast<LoadInst>(Condition))
581 if (!IsLoopBranch && Context.CurRegion.contains(Load)) {
582 Context.RequiredILS.insert(Load);
583 return true;
584 }
585
586 // Non constant conditions of branches need to be ICmpInst.
587 if (!isa<ICmpInst>(Condition)) {
588 if (!IsLoopBranch && AllowNonAffineSubRegions &&
589 addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
590 return true;
591 return invalid<ReportInvalidCond>(Context, /*Assert=*/true, BI, &BB);
592 }
593
594 ICmpInst *ICmp = cast<ICmpInst>(Condition);
595
596 // Are both operands of the ICmp affine?
597 if (isa<UndefValue>(ICmp->getOperand(0)) ||
598 isa<UndefValue>(ICmp->getOperand(1)))
599 return invalid<ReportUndefOperand>(Context, /*Assert=*/true, &BB, ICmp);
600
601 Loop *L = LI.getLoopFor(&BB);
602 const SCEV *LHS = SE.getSCEVAtScope(ICmp->getOperand(0), L);
603 const SCEV *RHS = SE.getSCEVAtScope(ICmp->getOperand(1), L);
604
605 LHS = tryForwardThroughPHI(LHS, Context.CurRegion, SE, LI, DT);
606 RHS = tryForwardThroughPHI(RHS, Context.CurRegion, SE, LI, DT);
607
608 // If unsigned operations are not allowed try to approximate the region.
609 if (ICmp->isUnsigned() && !PollyAllowUnsignedOperations)
610 return !IsLoopBranch && AllowNonAffineSubRegions &&
611 addOverApproximatedRegion(RI.getRegionFor(&BB), Context);
612
613 // Check for invalid usage of different pointers in one expression.
614 if (ICmp->isEquality() && involvesMultiplePtrs(LHS, nullptr, L) &&
615 involvesMultiplePtrs(RHS, nullptr, L))
616 return false;
617
618 // Check for invalid usage of different pointers in a relational comparison.
619 if (ICmp->isRelational() && involvesMultiplePtrs(LHS, RHS, L))
620 return false;
621
622 if (isAffine(LHS, L, Context) && isAffine(RHS, L, Context))
623 return true;
624
625 if (!IsLoopBranch && AllowNonAffineSubRegions &&
626 addOverApproximatedRegion(RI.getRegionFor(&BB), Context))
627 return true;
628
629 if (IsLoopBranch)
630 return false;
631
632 return invalid<ReportNonAffBranch>(Context, /*Assert=*/true, &BB, LHS, RHS,
633 ICmp);
634 }
635
isValidCFG(BasicBlock & BB,bool IsLoopBranch,bool AllowUnreachable,DetectionContext & Context) const636 bool ScopDetection::isValidCFG(BasicBlock &BB, bool IsLoopBranch,
637 bool AllowUnreachable,
638 DetectionContext &Context) const {
639 Region &CurRegion = Context.CurRegion;
640
641 Instruction *TI = BB.getTerminator();
642
643 if (AllowUnreachable && isa<UnreachableInst>(TI))
644 return true;
645
646 // Return instructions are only valid if the region is the top level region.
647 if (isa<ReturnInst>(TI) && CurRegion.isTopLevelRegion())
648 return true;
649
650 Value *Condition = getConditionFromTerminator(TI);
651
652 if (!Condition)
653 return invalid<ReportInvalidTerminator>(Context, /*Assert=*/true, &BB);
654
655 // UndefValue is not allowed as condition.
656 if (isa<UndefValue>(Condition))
657 return invalid<ReportUndefCond>(Context, /*Assert=*/true, TI, &BB);
658
659 if (BranchInst *BI = dyn_cast<BranchInst>(TI))
660 return isValidBranch(BB, BI, Condition, IsLoopBranch, Context);
661
662 SwitchInst *SI = dyn_cast<SwitchInst>(TI);
663 assert(SI && "Terminator was neither branch nor switch");
664
665 return isValidSwitch(BB, SI, Condition, IsLoopBranch, Context);
666 }
667
isValidCallInst(CallInst & CI,DetectionContext & Context) const668 bool ScopDetection::isValidCallInst(CallInst &CI,
669 DetectionContext &Context) const {
670 if (CI.doesNotReturn())
671 return false;
672
673 if (CI.doesNotAccessMemory())
674 return true;
675
676 if (auto *II = dyn_cast<IntrinsicInst>(&CI))
677 if (isValidIntrinsicInst(*II, Context))
678 return true;
679
680 Function *CalledFunction = CI.getCalledFunction();
681
682 // Indirect calls are not supported.
683 if (CalledFunction == nullptr)
684 return false;
685
686 if (isDebugCall(&CI)) {
687 LLVM_DEBUG(dbgs() << "Allow call to debug function: "
688 << CalledFunction->getName() << '\n');
689 return true;
690 }
691
692 if (AllowModrefCall) {
693 switch (AA.getModRefBehavior(CalledFunction)) {
694 case FMRB_UnknownModRefBehavior:
695 return false;
696 case FMRB_DoesNotAccessMemory:
697 case FMRB_OnlyReadsMemory:
698 case FMRB_OnlyReadsInaccessibleMem:
699 case FMRB_OnlyReadsInaccessibleOrArgMem:
700 // Implicitly disable delinearization since we have an unknown
701 // accesses with an unknown access function.
702 Context.HasUnknownAccess = true;
703 // Explicitly use addUnknown so we don't put a loop-variant
704 // pointer into the alias set.
705 Context.AST.addUnknown(&CI);
706 return true;
707 case FMRB_OnlyReadsArgumentPointees:
708 case FMRB_OnlyAccessesArgumentPointees:
709 case FMRB_OnlyWritesArgumentPointees:
710 for (const auto &Arg : CI.arg_operands()) {
711 if (!Arg->getType()->isPointerTy())
712 continue;
713
714 // Bail if a pointer argument has a base address not known to
715 // ScalarEvolution. Note that a zero pointer is acceptable.
716 auto *ArgSCEV = SE.getSCEVAtScope(Arg, LI.getLoopFor(CI.getParent()));
717 if (ArgSCEV->isZero())
718 continue;
719
720 auto *BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(ArgSCEV));
721 if (!BP)
722 return false;
723
724 // Implicitly disable delinearization since we have an unknown
725 // accesses with an unknown access function.
726 Context.HasUnknownAccess = true;
727 }
728
729 // Explicitly use addUnknown so we don't put a loop-variant
730 // pointer into the alias set.
731 Context.AST.addUnknown(&CI);
732 return true;
733 case FMRB_OnlyWritesMemory:
734 case FMRB_OnlyWritesInaccessibleMem:
735 case FMRB_OnlyWritesInaccessibleOrArgMem:
736 case FMRB_OnlyAccessesInaccessibleMem:
737 case FMRB_OnlyAccessesInaccessibleOrArgMem:
738 return false;
739 }
740 }
741
742 return false;
743 }
744
isValidIntrinsicInst(IntrinsicInst & II,DetectionContext & Context) const745 bool ScopDetection::isValidIntrinsicInst(IntrinsicInst &II,
746 DetectionContext &Context) const {
747 if (isIgnoredIntrinsic(&II))
748 return true;
749
750 // The closest loop surrounding the call instruction.
751 Loop *L = LI.getLoopFor(II.getParent());
752
753 // The access function and base pointer for memory intrinsics.
754 const SCEV *AF;
755 const SCEVUnknown *BP;
756
757 switch (II.getIntrinsicID()) {
758 // Memory intrinsics that can be represented are supported.
759 case Intrinsic::memmove:
760 case Intrinsic::memcpy:
761 AF = SE.getSCEVAtScope(cast<MemTransferInst>(II).getSource(), L);
762 if (!AF->isZero()) {
763 BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(AF));
764 // Bail if the source pointer is not valid.
765 if (!isValidAccess(&II, AF, BP, Context))
766 return false;
767 }
768 LLVM_FALLTHROUGH;
769 case Intrinsic::memset:
770 AF = SE.getSCEVAtScope(cast<MemIntrinsic>(II).getDest(), L);
771 if (!AF->isZero()) {
772 BP = dyn_cast<SCEVUnknown>(SE.getPointerBase(AF));
773 // Bail if the destination pointer is not valid.
774 if (!isValidAccess(&II, AF, BP, Context))
775 return false;
776 }
777
778 // Bail if the length is not affine.
779 if (!isAffine(SE.getSCEVAtScope(cast<MemIntrinsic>(II).getLength(), L), L,
780 Context))
781 return false;
782
783 return true;
784 default:
785 break;
786 }
787
788 return false;
789 }
790
isInvariant(Value & Val,const Region & Reg,DetectionContext & Ctx) const791 bool ScopDetection::isInvariant(Value &Val, const Region &Reg,
792 DetectionContext &Ctx) const {
793 // A reference to function argument or constant value is invariant.
794 if (isa<Argument>(Val) || isa<Constant>(Val))
795 return true;
796
797 Instruction *I = dyn_cast<Instruction>(&Val);
798 if (!I)
799 return false;
800
801 if (!Reg.contains(I))
802 return true;
803
804 // Loads within the SCoP may read arbitrary values, need to hoist them. If it
805 // is not hoistable, it will be rejected later, but here we assume it is and
806 // that makes the value invariant.
807 if (auto LI = dyn_cast<LoadInst>(I)) {
808 Ctx.RequiredILS.insert(LI);
809 return true;
810 }
811
812 return false;
813 }
814
815 namespace {
816
817 /// Remove smax of smax(0, size) expressions from a SCEV expression and
818 /// register the '...' components.
819 ///
820 /// Array access expressions as they are generated by GFortran contain smax(0,
821 /// size) expressions that confuse the 'normal' delinearization algorithm.
822 /// However, if we extract such expressions before the normal delinearization
823 /// takes place they can actually help to identify array size expressions in
824 /// Fortran accesses. For the subsequently following delinearization the smax(0,
825 /// size) component can be replaced by just 'size'. This is correct as we will
826 /// always add and verify the assumption that for all subscript expressions
827 /// 'exp' the inequality 0 <= exp < size holds. Hence, we will also verify
828 /// that 0 <= size, which means smax(0, size) == size.
829 class SCEVRemoveMax : public SCEVRewriteVisitor<SCEVRemoveMax> {
830 public:
SCEVRemoveMax(ScalarEvolution & SE,std::vector<const SCEV * > * Terms)831 SCEVRemoveMax(ScalarEvolution &SE, std::vector<const SCEV *> *Terms)
832 : SCEVRewriteVisitor(SE), Terms(Terms) {}
833
rewrite(const SCEV * Scev,ScalarEvolution & SE,std::vector<const SCEV * > * Terms=nullptr)834 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
835 std::vector<const SCEV *> *Terms = nullptr) {
836 SCEVRemoveMax Rewriter(SE, Terms);
837 return Rewriter.visit(Scev);
838 }
839
visitSMaxExpr(const SCEVSMaxExpr * Expr)840 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
841 if ((Expr->getNumOperands() == 2) && Expr->getOperand(0)->isZero()) {
842 auto Res = visit(Expr->getOperand(1));
843 if (Terms)
844 (*Terms).push_back(Res);
845 return Res;
846 }
847
848 return Expr;
849 }
850
851 private:
852 std::vector<const SCEV *> *Terms;
853 };
854 } // namespace
855
856 SmallVector<const SCEV *, 4>
getDelinearizationTerms(DetectionContext & Context,const SCEVUnknown * BasePointer) const857 ScopDetection::getDelinearizationTerms(DetectionContext &Context,
858 const SCEVUnknown *BasePointer) const {
859 SmallVector<const SCEV *, 4> Terms;
860 for (const auto &Pair : Context.Accesses[BasePointer]) {
861 std::vector<const SCEV *> MaxTerms;
862 SCEVRemoveMax::rewrite(Pair.second, SE, &MaxTerms);
863 if (!MaxTerms.empty()) {
864 Terms.insert(Terms.begin(), MaxTerms.begin(), MaxTerms.end());
865 continue;
866 }
867 // In case the outermost expression is a plain add, we check if any of its
868 // terms has the form 4 * %inst * %param * %param ..., aka a term that
869 // contains a product between a parameter and an instruction that is
870 // inside the scop. Such instructions, if allowed at all, are instructions
871 // SCEV can not represent, but Polly is still looking through. As a
872 // result, these instructions can depend on induction variables and are
873 // most likely no array sizes. However, terms that are multiplied with
874 // them are likely candidates for array sizes.
875 if (auto *AF = dyn_cast<SCEVAddExpr>(Pair.second)) {
876 for (auto Op : AF->operands()) {
877 if (auto *AF2 = dyn_cast<SCEVAddRecExpr>(Op))
878 SE.collectParametricTerms(AF2, Terms);
879 if (auto *AF2 = dyn_cast<SCEVMulExpr>(Op)) {
880 SmallVector<const SCEV *, 0> Operands;
881
882 for (auto *MulOp : AF2->operands()) {
883 if (auto *Const = dyn_cast<SCEVConstant>(MulOp))
884 Operands.push_back(Const);
885 if (auto *Unknown = dyn_cast<SCEVUnknown>(MulOp)) {
886 if (auto *Inst = dyn_cast<Instruction>(Unknown->getValue())) {
887 if (!Context.CurRegion.contains(Inst))
888 Operands.push_back(MulOp);
889
890 } else {
891 Operands.push_back(MulOp);
892 }
893 }
894 }
895 if (Operands.size())
896 Terms.push_back(SE.getMulExpr(Operands));
897 }
898 }
899 }
900 if (Terms.empty())
901 SE.collectParametricTerms(Pair.second, Terms);
902 }
903 return Terms;
904 }
905
hasValidArraySizes(DetectionContext & Context,SmallVectorImpl<const SCEV * > & Sizes,const SCEVUnknown * BasePointer,Loop * Scope) const906 bool ScopDetection::hasValidArraySizes(DetectionContext &Context,
907 SmallVectorImpl<const SCEV *> &Sizes,
908 const SCEVUnknown *BasePointer,
909 Loop *Scope) const {
910 // If no sizes were found, all sizes are trivially valid. We allow this case
911 // to make it possible to pass known-affine accesses to the delinearization to
912 // try to recover some interesting multi-dimensional accesses, but to still
913 // allow the already known to be affine access in case the delinearization
914 // fails. In such situations, the delinearization will just return a Sizes
915 // array of size zero.
916 if (Sizes.size() == 0)
917 return true;
918
919 Value *BaseValue = BasePointer->getValue();
920 Region &CurRegion = Context.CurRegion;
921 for (const SCEV *DelinearizedSize : Sizes) {
922 // Don't pass down the scope to isAfffine; array dimensions must be
923 // invariant across the entire scop.
924 if (!isAffine(DelinearizedSize, nullptr, Context)) {
925 Sizes.clear();
926 break;
927 }
928 if (auto *Unknown = dyn_cast<SCEVUnknown>(DelinearizedSize)) {
929 auto *V = dyn_cast<Value>(Unknown->getValue());
930 if (auto *Load = dyn_cast<LoadInst>(V)) {
931 if (Context.CurRegion.contains(Load) &&
932 isHoistableLoad(Load, CurRegion, LI, SE, DT, Context.RequiredILS))
933 Context.RequiredILS.insert(Load);
934 continue;
935 }
936 }
937 if (hasScalarDepsInsideRegion(DelinearizedSize, &CurRegion, Scope, false,
938 Context.RequiredILS))
939 return invalid<ReportNonAffineAccess>(
940 Context, /*Assert=*/true, DelinearizedSize,
941 Context.Accesses[BasePointer].front().first, BaseValue);
942 }
943
944 // No array shape derived.
945 if (Sizes.empty()) {
946 if (AllowNonAffine)
947 return true;
948
949 for (const auto &Pair : Context.Accesses[BasePointer]) {
950 const Instruction *Insn = Pair.first;
951 const SCEV *AF = Pair.second;
952
953 if (!isAffine(AF, Scope, Context)) {
954 invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Insn,
955 BaseValue);
956 if (!KeepGoing)
957 return false;
958 }
959 }
960 return false;
961 }
962 return true;
963 }
964
965 // We first store the resulting memory accesses in TempMemoryAccesses. Only
966 // if the access functions for all memory accesses have been successfully
967 // delinearized we continue. Otherwise, we either report a failure or, if
968 // non-affine accesses are allowed, we drop the information. In case the
969 // information is dropped the memory accesses need to be overapproximated
970 // when translated to a polyhedral representation.
computeAccessFunctions(DetectionContext & Context,const SCEVUnknown * BasePointer,std::shared_ptr<ArrayShape> Shape) const971 bool ScopDetection::computeAccessFunctions(
972 DetectionContext &Context, const SCEVUnknown *BasePointer,
973 std::shared_ptr<ArrayShape> Shape) const {
974 Value *BaseValue = BasePointer->getValue();
975 bool BasePtrHasNonAffine = false;
976 MapInsnToMemAcc TempMemoryAccesses;
977 for (const auto &Pair : Context.Accesses[BasePointer]) {
978 const Instruction *Insn = Pair.first;
979 auto *AF = Pair.second;
980 AF = SCEVRemoveMax::rewrite(AF, SE);
981 bool IsNonAffine = false;
982 TempMemoryAccesses.insert(std::make_pair(Insn, MemAcc(Insn, Shape)));
983 MemAcc *Acc = &TempMemoryAccesses.find(Insn)->second;
984 auto *Scope = LI.getLoopFor(Insn->getParent());
985
986 if (!AF) {
987 if (isAffine(Pair.second, Scope, Context))
988 Acc->DelinearizedSubscripts.push_back(Pair.second);
989 else
990 IsNonAffine = true;
991 } else {
992 if (Shape->DelinearizedSizes.size() == 0) {
993 Acc->DelinearizedSubscripts.push_back(AF);
994 } else {
995 SE.computeAccessFunctions(AF, Acc->DelinearizedSubscripts,
996 Shape->DelinearizedSizes);
997 if (Acc->DelinearizedSubscripts.size() == 0)
998 IsNonAffine = true;
999 }
1000 for (const SCEV *S : Acc->DelinearizedSubscripts)
1001 if (!isAffine(S, Scope, Context))
1002 IsNonAffine = true;
1003 }
1004
1005 // (Possibly) report non affine access
1006 if (IsNonAffine) {
1007 BasePtrHasNonAffine = true;
1008 if (!AllowNonAffine)
1009 invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, Pair.second,
1010 Insn, BaseValue);
1011 if (!KeepGoing && !AllowNonAffine)
1012 return false;
1013 }
1014 }
1015
1016 if (!BasePtrHasNonAffine)
1017 Context.InsnToMemAcc.insert(TempMemoryAccesses.begin(),
1018 TempMemoryAccesses.end());
1019
1020 return true;
1021 }
1022
hasBaseAffineAccesses(DetectionContext & Context,const SCEVUnknown * BasePointer,Loop * Scope) const1023 bool ScopDetection::hasBaseAffineAccesses(DetectionContext &Context,
1024 const SCEVUnknown *BasePointer,
1025 Loop *Scope) const {
1026 auto Shape = std::shared_ptr<ArrayShape>(new ArrayShape(BasePointer));
1027
1028 auto Terms = getDelinearizationTerms(Context, BasePointer);
1029
1030 SE.findArrayDimensions(Terms, Shape->DelinearizedSizes,
1031 Context.ElementSize[BasePointer]);
1032
1033 if (!hasValidArraySizes(Context, Shape->DelinearizedSizes, BasePointer,
1034 Scope))
1035 return false;
1036
1037 return computeAccessFunctions(Context, BasePointer, Shape);
1038 }
1039
hasAffineMemoryAccesses(DetectionContext & Context) const1040 bool ScopDetection::hasAffineMemoryAccesses(DetectionContext &Context) const {
1041 // TODO: If we have an unknown access and other non-affine accesses we do
1042 // not try to delinearize them for now.
1043 if (Context.HasUnknownAccess && !Context.NonAffineAccesses.empty())
1044 return AllowNonAffine;
1045
1046 for (auto &Pair : Context.NonAffineAccesses) {
1047 auto *BasePointer = Pair.first;
1048 auto *Scope = Pair.second;
1049 if (!hasBaseAffineAccesses(Context, BasePointer, Scope)) {
1050 if (KeepGoing)
1051 continue;
1052 else
1053 return false;
1054 }
1055 }
1056 return true;
1057 }
1058
isValidAccess(Instruction * Inst,const SCEV * AF,const SCEVUnknown * BP,DetectionContext & Context) const1059 bool ScopDetection::isValidAccess(Instruction *Inst, const SCEV *AF,
1060 const SCEVUnknown *BP,
1061 DetectionContext &Context) const {
1062
1063 if (!BP)
1064 return invalid<ReportNoBasePtr>(Context, /*Assert=*/true, Inst);
1065
1066 auto *BV = BP->getValue();
1067 if (isa<UndefValue>(BV))
1068 return invalid<ReportUndefBasePtr>(Context, /*Assert=*/true, Inst);
1069
1070 // FIXME: Think about allowing IntToPtrInst
1071 if (IntToPtrInst *Inst = dyn_cast<IntToPtrInst>(BV))
1072 return invalid<ReportIntToPtr>(Context, /*Assert=*/true, Inst);
1073
1074 // Check that the base address of the access is invariant in the current
1075 // region.
1076 if (!isInvariant(*BV, Context.CurRegion, Context))
1077 return invalid<ReportVariantBasePtr>(Context, /*Assert=*/true, BV, Inst);
1078
1079 AF = SE.getMinusSCEV(AF, BP);
1080
1081 const SCEV *Size;
1082 if (!isa<MemIntrinsic>(Inst)) {
1083 Size = SE.getElementSize(Inst);
1084 } else {
1085 auto *SizeTy =
1086 SE.getEffectiveSCEVType(PointerType::getInt8PtrTy(SE.getContext()));
1087 Size = SE.getConstant(SizeTy, 8);
1088 }
1089
1090 if (Context.ElementSize[BP]) {
1091 if (!AllowDifferentTypes && Context.ElementSize[BP] != Size)
1092 return invalid<ReportDifferentArrayElementSize>(Context, /*Assert=*/true,
1093 Inst, BV);
1094
1095 Context.ElementSize[BP] = SE.getSMinExpr(Size, Context.ElementSize[BP]);
1096 } else {
1097 Context.ElementSize[BP] = Size;
1098 }
1099
1100 bool IsVariantInNonAffineLoop = false;
1101 SetVector<const Loop *> Loops;
1102 findLoops(AF, Loops);
1103 for (const Loop *L : Loops)
1104 if (Context.BoxedLoopsSet.count(L))
1105 IsVariantInNonAffineLoop = true;
1106
1107 auto *Scope = LI.getLoopFor(Inst->getParent());
1108 bool IsAffine = !IsVariantInNonAffineLoop && isAffine(AF, Scope, Context);
1109 // Do not try to delinearize memory intrinsics and force them to be affine.
1110 if (isa<MemIntrinsic>(Inst) && !IsAffine) {
1111 return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
1112 BV);
1113 } else if (PollyDelinearize && !IsVariantInNonAffineLoop) {
1114 Context.Accesses[BP].push_back({Inst, AF});
1115
1116 if (!IsAffine || hasIVParams(AF))
1117 Context.NonAffineAccesses.insert(
1118 std::make_pair(BP, LI.getLoopFor(Inst->getParent())));
1119 } else if (!AllowNonAffine && !IsAffine) {
1120 return invalid<ReportNonAffineAccess>(Context, /*Assert=*/true, AF, Inst,
1121 BV);
1122 }
1123
1124 if (IgnoreAliasing)
1125 return true;
1126
1127 // Check if the base pointer of the memory access does alias with
1128 // any other pointer. This cannot be handled at the moment.
1129 AAMDNodes AATags;
1130 Inst->getAAMetadata(AATags);
1131 AliasSet &AS = Context.AST.getAliasSetFor(
1132 MemoryLocation(BP->getValue(), MemoryLocation::UnknownSize, AATags));
1133
1134 if (!AS.isMustAlias()) {
1135 if (PollyUseRuntimeAliasChecks) {
1136 bool CanBuildRunTimeCheck = true;
1137 // The run-time alias check places code that involves the base pointer at
1138 // the beginning of the SCoP. This breaks if the base pointer is defined
1139 // inside the scop. Hence, we can only create a run-time check if we are
1140 // sure the base pointer is not an instruction defined inside the scop.
1141 // However, we can ignore loads that will be hoisted.
1142
1143 InvariantLoadsSetTy VariantLS, InvariantLS;
1144 // In order to detect loads which are dependent on other invariant loads
1145 // as invariant, we use fixed-point iteration method here i.e we iterate
1146 // over the alias set for arbitrary number of times until it is safe to
1147 // assume that all the invariant loads have been detected
1148 while (1) {
1149 const unsigned int VariantSize = VariantLS.size(),
1150 InvariantSize = InvariantLS.size();
1151
1152 for (const auto &Ptr : AS) {
1153 Instruction *Inst = dyn_cast<Instruction>(Ptr.getValue());
1154 if (Inst && Context.CurRegion.contains(Inst)) {
1155 auto *Load = dyn_cast<LoadInst>(Inst);
1156 if (Load && InvariantLS.count(Load))
1157 continue;
1158 if (Load && isHoistableLoad(Load, Context.CurRegion, LI, SE, DT,
1159 InvariantLS)) {
1160 if (VariantLS.count(Load))
1161 VariantLS.remove(Load);
1162 Context.RequiredILS.insert(Load);
1163 InvariantLS.insert(Load);
1164 } else {
1165 CanBuildRunTimeCheck = false;
1166 VariantLS.insert(Load);
1167 }
1168 }
1169 }
1170
1171 if (InvariantSize == InvariantLS.size() &&
1172 VariantSize == VariantLS.size())
1173 break;
1174 }
1175
1176 if (CanBuildRunTimeCheck)
1177 return true;
1178 }
1179 return invalid<ReportAlias>(Context, /*Assert=*/true, Inst, AS);
1180 }
1181
1182 return true;
1183 }
1184
isValidMemoryAccess(MemAccInst Inst,DetectionContext & Context) const1185 bool ScopDetection::isValidMemoryAccess(MemAccInst Inst,
1186 DetectionContext &Context) const {
1187 Value *Ptr = Inst.getPointerOperand();
1188 Loop *L = LI.getLoopFor(Inst->getParent());
1189 const SCEV *AccessFunction = SE.getSCEVAtScope(Ptr, L);
1190 const SCEVUnknown *BasePointer;
1191
1192 BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
1193
1194 return isValidAccess(Inst, AccessFunction, BasePointer, Context);
1195 }
1196
isValidInstruction(Instruction & Inst,DetectionContext & Context) const1197 bool ScopDetection::isValidInstruction(Instruction &Inst,
1198 DetectionContext &Context) const {
1199 for (auto &Op : Inst.operands()) {
1200 auto *OpInst = dyn_cast<Instruction>(&Op);
1201
1202 if (!OpInst)
1203 continue;
1204
1205 if (isErrorBlock(*OpInst->getParent(), Context.CurRegion, LI, DT)) {
1206 auto *PHI = dyn_cast<PHINode>(OpInst);
1207 if (PHI) {
1208 for (User *U : PHI->users()) {
1209 auto *UI = dyn_cast<Instruction>(U);
1210 if (!UI || !UI->isTerminator())
1211 return false;
1212 }
1213 } else {
1214 return false;
1215 }
1216 }
1217 }
1218
1219 if (isa<LandingPadInst>(&Inst) || isa<ResumeInst>(&Inst))
1220 return false;
1221
1222 // We only check the call instruction but not invoke instruction.
1223 if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
1224 if (isValidCallInst(*CI, Context))
1225 return true;
1226
1227 return invalid<ReportFuncCall>(Context, /*Assert=*/true, &Inst);
1228 }
1229
1230 if (!Inst.mayReadOrWriteMemory()) {
1231 if (!isa<AllocaInst>(Inst))
1232 return true;
1233
1234 return invalid<ReportAlloca>(Context, /*Assert=*/true, &Inst);
1235 }
1236
1237 // Check the access function.
1238 if (auto MemInst = MemAccInst::dyn_cast(Inst)) {
1239 Context.hasStores |= isa<StoreInst>(MemInst);
1240 Context.hasLoads |= isa<LoadInst>(MemInst);
1241 if (!MemInst.isSimple())
1242 return invalid<ReportNonSimpleMemoryAccess>(Context, /*Assert=*/true,
1243 &Inst);
1244
1245 return isValidMemoryAccess(MemInst, Context);
1246 }
1247
1248 // We do not know this instruction, therefore we assume it is invalid.
1249 return invalid<ReportUnknownInst>(Context, /*Assert=*/true, &Inst);
1250 }
1251
1252 /// Check whether @p L has exiting blocks.
1253 ///
1254 /// @param L The loop of interest
1255 ///
1256 /// @return True if the loop has exiting blocks, false otherwise.
hasExitingBlocks(Loop * L)1257 static bool hasExitingBlocks(Loop *L) {
1258 SmallVector<BasicBlock *, 4> ExitingBlocks;
1259 L->getExitingBlocks(ExitingBlocks);
1260 return !ExitingBlocks.empty();
1261 }
1262
canUseISLTripCount(Loop * L,DetectionContext & Context) const1263 bool ScopDetection::canUseISLTripCount(Loop *L,
1264 DetectionContext &Context) const {
1265 // Ensure the loop has valid exiting blocks as well as latches, otherwise we
1266 // need to overapproximate it as a boxed loop.
1267 SmallVector<BasicBlock *, 4> LoopControlBlocks;
1268 L->getExitingBlocks(LoopControlBlocks);
1269 L->getLoopLatches(LoopControlBlocks);
1270 for (BasicBlock *ControlBB : LoopControlBlocks) {
1271 if (!isValidCFG(*ControlBB, true, false, Context))
1272 return false;
1273 }
1274
1275 // We can use ISL to compute the trip count of L.
1276 return true;
1277 }
1278
isValidLoop(Loop * L,DetectionContext & Context) const1279 bool ScopDetection::isValidLoop(Loop *L, DetectionContext &Context) const {
1280 // Loops that contain part but not all of the blocks of a region cannot be
1281 // handled by the schedule generation. Such loop constructs can happen
1282 // because a region can contain BBs that have no path to the exit block
1283 // (Infinite loops, UnreachableInst), but such blocks are never part of a
1284 // loop.
1285 //
1286 // _______________
1287 // | Loop Header | <-----------.
1288 // --------------- |
1289 // | |
1290 // _______________ ______________
1291 // | RegionEntry |-----> | RegionExit |----->
1292 // --------------- --------------
1293 // |
1294 // _______________
1295 // | EndlessLoop | <--.
1296 // --------------- |
1297 // | |
1298 // \------------/
1299 //
1300 // In the example above, the loop (LoopHeader,RegionEntry,RegionExit) is
1301 // neither entirely contained in the region RegionEntry->RegionExit
1302 // (containing RegionEntry,EndlessLoop) nor is the region entirely contained
1303 // in the loop.
1304 // The block EndlessLoop is contained in the region because Region::contains
1305 // tests whether it is not dominated by RegionExit. This is probably to not
1306 // having to query the PostdominatorTree. Instead of an endless loop, a dead
1307 // end can also be formed by an UnreachableInst. This case is already caught
1308 // by isErrorBlock(). We hence only have to reject endless loops here.
1309 if (!hasExitingBlocks(L))
1310 return invalid<ReportLoopHasNoExit>(Context, /*Assert=*/true, L);
1311
1312 // The algorithm for domain construction assumes that loops has only a single
1313 // exit block (and hence corresponds to a subregion). Note that we cannot use
1314 // L->getExitBlock() because it does not check whether all exiting edges point
1315 // to the same BB.
1316 SmallVector<BasicBlock *, 4> ExitBlocks;
1317 L->getExitBlocks(ExitBlocks);
1318 BasicBlock *TheExitBlock = ExitBlocks[0];
1319 for (BasicBlock *ExitBB : ExitBlocks) {
1320 if (TheExitBlock != ExitBB)
1321 return invalid<ReportLoopHasMultipleExits>(Context, /*Assert=*/true, L);
1322 }
1323
1324 if (canUseISLTripCount(L, Context))
1325 return true;
1326
1327 if (AllowNonAffineSubLoops && AllowNonAffineSubRegions) {
1328 Region *R = RI.getRegionFor(L->getHeader());
1329 while (R != &Context.CurRegion && !R->contains(L))
1330 R = R->getParent();
1331
1332 if (addOverApproximatedRegion(R, Context))
1333 return true;
1334 }
1335
1336 const SCEV *LoopCount = SE.getBackedgeTakenCount(L);
1337 return invalid<ReportLoopBound>(Context, /*Assert=*/true, L, LoopCount);
1338 }
1339
1340 /// Return the number of loops in @p L (incl. @p L) that have a trip
1341 /// count that is not known to be less than @MinProfitableTrips.
1342 ScopDetection::LoopStats
countBeneficialSubLoops(Loop * L,ScalarEvolution & SE,unsigned MinProfitableTrips)1343 ScopDetection::countBeneficialSubLoops(Loop *L, ScalarEvolution &SE,
1344 unsigned MinProfitableTrips) {
1345 auto *TripCount = SE.getBackedgeTakenCount(L);
1346
1347 int NumLoops = 1;
1348 int MaxLoopDepth = 1;
1349 if (MinProfitableTrips > 0)
1350 if (auto *TripCountC = dyn_cast<SCEVConstant>(TripCount))
1351 if (TripCountC->getType()->getScalarSizeInBits() <= 64)
1352 if (TripCountC->getValue()->getZExtValue() <= MinProfitableTrips)
1353 NumLoops -= 1;
1354
1355 for (auto &SubLoop : *L) {
1356 LoopStats Stats = countBeneficialSubLoops(SubLoop, SE, MinProfitableTrips);
1357 NumLoops += Stats.NumLoops;
1358 MaxLoopDepth = std::max(MaxLoopDepth, Stats.MaxDepth + 1);
1359 }
1360
1361 return {NumLoops, MaxLoopDepth};
1362 }
1363
1364 ScopDetection::LoopStats
countBeneficialLoops(Region * R,ScalarEvolution & SE,LoopInfo & LI,unsigned MinProfitableTrips)1365 ScopDetection::countBeneficialLoops(Region *R, ScalarEvolution &SE,
1366 LoopInfo &LI, unsigned MinProfitableTrips) {
1367 int LoopNum = 0;
1368 int MaxLoopDepth = 0;
1369
1370 auto L = LI.getLoopFor(R->getEntry());
1371
1372 // If L is fully contained in R, move to first loop surrounding R. Otherwise,
1373 // L is either nullptr or already surrounding R.
1374 if (L && R->contains(L)) {
1375 L = R->outermostLoopInRegion(L);
1376 L = L->getParentLoop();
1377 }
1378
1379 auto SubLoops =
1380 L ? L->getSubLoopsVector() : std::vector<Loop *>(LI.begin(), LI.end());
1381
1382 for (auto &SubLoop : SubLoops)
1383 if (R->contains(SubLoop)) {
1384 LoopStats Stats =
1385 countBeneficialSubLoops(SubLoop, SE, MinProfitableTrips);
1386 LoopNum += Stats.NumLoops;
1387 MaxLoopDepth = std::max(MaxLoopDepth, Stats.MaxDepth);
1388 }
1389
1390 return {LoopNum, MaxLoopDepth};
1391 }
1392
expandRegion(Region & R)1393 Region *ScopDetection::expandRegion(Region &R) {
1394 // Initial no valid region was found (greater than R)
1395 std::unique_ptr<Region> LastValidRegion;
1396 auto ExpandedRegion = std::unique_ptr<Region>(R.getExpandedRegion());
1397
1398 LLVM_DEBUG(dbgs() << "\tExpanding " << R.getNameStr() << "\n");
1399
1400 while (ExpandedRegion) {
1401 const auto &It = DetectionContextMap.insert(std::make_pair(
1402 getBBPairForRegion(ExpandedRegion.get()),
1403 DetectionContext(*ExpandedRegion, AA, false /*verifying*/)));
1404 DetectionContext &Context = It.first->second;
1405 LLVM_DEBUG(dbgs() << "\t\tTrying " << ExpandedRegion->getNameStr() << "\n");
1406 // Only expand when we did not collect errors.
1407
1408 if (!Context.Log.hasErrors()) {
1409 // If the exit is valid check all blocks
1410 // - if true, a valid region was found => store it + keep expanding
1411 // - if false, .tbd. => stop (should this really end the loop?)
1412 if (!allBlocksValid(Context) || Context.Log.hasErrors()) {
1413 removeCachedResults(*ExpandedRegion);
1414 DetectionContextMap.erase(It.first);
1415 break;
1416 }
1417
1418 // Store this region, because it is the greatest valid (encountered so
1419 // far).
1420 if (LastValidRegion) {
1421 removeCachedResults(*LastValidRegion);
1422 DetectionContextMap.erase(getBBPairForRegion(LastValidRegion.get()));
1423 }
1424 LastValidRegion = std::move(ExpandedRegion);
1425
1426 // Create and test the next greater region (if any)
1427 ExpandedRegion =
1428 std::unique_ptr<Region>(LastValidRegion->getExpandedRegion());
1429
1430 } else {
1431 // Create and test the next greater region (if any)
1432 removeCachedResults(*ExpandedRegion);
1433 DetectionContextMap.erase(It.first);
1434 ExpandedRegion =
1435 std::unique_ptr<Region>(ExpandedRegion->getExpandedRegion());
1436 }
1437 }
1438
1439 LLVM_DEBUG({
1440 if (LastValidRegion)
1441 dbgs() << "\tto " << LastValidRegion->getNameStr() << "\n";
1442 else
1443 dbgs() << "\tExpanding " << R.getNameStr() << " failed\n";
1444 });
1445
1446 return LastValidRegion.release();
1447 }
1448
regionWithoutLoops(Region & R,LoopInfo & LI)1449 static bool regionWithoutLoops(Region &R, LoopInfo &LI) {
1450 for (const BasicBlock *BB : R.blocks())
1451 if (R.contains(LI.getLoopFor(BB)))
1452 return false;
1453
1454 return true;
1455 }
1456
removeCachedResultsRecursively(const Region & R)1457 void ScopDetection::removeCachedResultsRecursively(const Region &R) {
1458 for (auto &SubRegion : R) {
1459 if (ValidRegions.count(SubRegion.get())) {
1460 removeCachedResults(*SubRegion.get());
1461 } else
1462 removeCachedResultsRecursively(*SubRegion);
1463 }
1464 }
1465
removeCachedResults(const Region & R)1466 void ScopDetection::removeCachedResults(const Region &R) {
1467 ValidRegions.remove(&R);
1468 }
1469
findScops(Region & R)1470 void ScopDetection::findScops(Region &R) {
1471 const auto &It = DetectionContextMap.insert(std::make_pair(
1472 getBBPairForRegion(&R), DetectionContext(R, AA, false /*verifying*/)));
1473 DetectionContext &Context = It.first->second;
1474
1475 bool RegionIsValid = false;
1476 if (!PollyProcessUnprofitable && regionWithoutLoops(R, LI))
1477 invalid<ReportUnprofitable>(Context, /*Assert=*/true, &R);
1478 else
1479 RegionIsValid = isValidRegion(Context);
1480
1481 bool HasErrors = !RegionIsValid || Context.Log.size() > 0;
1482
1483 if (HasErrors) {
1484 removeCachedResults(R);
1485 } else {
1486 ValidRegions.insert(&R);
1487 return;
1488 }
1489
1490 for (auto &SubRegion : R)
1491 findScops(*SubRegion);
1492
1493 // Try to expand regions.
1494 //
1495 // As the region tree normally only contains canonical regions, non canonical
1496 // regions that form a Scop are not found. Therefore, those non canonical
1497 // regions are checked by expanding the canonical ones.
1498
1499 std::vector<Region *> ToExpand;
1500
1501 for (auto &SubRegion : R)
1502 ToExpand.push_back(SubRegion.get());
1503
1504 for (Region *CurrentRegion : ToExpand) {
1505 // Skip invalid regions. Regions may become invalid, if they are element of
1506 // an already expanded region.
1507 if (!ValidRegions.count(CurrentRegion))
1508 continue;
1509
1510 // Skip regions that had errors.
1511 bool HadErrors = lookupRejectionLog(CurrentRegion)->hasErrors();
1512 if (HadErrors)
1513 continue;
1514
1515 Region *ExpandedR = expandRegion(*CurrentRegion);
1516
1517 if (!ExpandedR)
1518 continue;
1519
1520 R.addSubRegion(ExpandedR, true);
1521 ValidRegions.insert(ExpandedR);
1522 removeCachedResults(*CurrentRegion);
1523 removeCachedResultsRecursively(*ExpandedR);
1524 }
1525 }
1526
allBlocksValid(DetectionContext & Context) const1527 bool ScopDetection::allBlocksValid(DetectionContext &Context) const {
1528 Region &CurRegion = Context.CurRegion;
1529
1530 for (const BasicBlock *BB : CurRegion.blocks()) {
1531 Loop *L = LI.getLoopFor(BB);
1532 if (L && L->getHeader() == BB) {
1533 if (CurRegion.contains(L)) {
1534 if (!isValidLoop(L, Context) && !KeepGoing)
1535 return false;
1536 } else {
1537 SmallVector<BasicBlock *, 1> Latches;
1538 L->getLoopLatches(Latches);
1539 for (BasicBlock *Latch : Latches)
1540 if (CurRegion.contains(Latch))
1541 return invalid<ReportLoopOnlySomeLatches>(Context, /*Assert=*/true,
1542 L);
1543 }
1544 }
1545 }
1546
1547 for (BasicBlock *BB : CurRegion.blocks()) {
1548 bool IsErrorBlock = isErrorBlock(*BB, CurRegion, LI, DT);
1549
1550 // Also check exception blocks (and possibly register them as non-affine
1551 // regions). Even though exception blocks are not modeled, we use them
1552 // to forward-propagate domain constraints during ScopInfo construction.
1553 if (!isValidCFG(*BB, false, IsErrorBlock, Context) && !KeepGoing)
1554 return false;
1555
1556 if (IsErrorBlock)
1557 continue;
1558
1559 for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ++I)
1560 if (!isValidInstruction(*I, Context) && !KeepGoing)
1561 return false;
1562 }
1563
1564 if (!hasAffineMemoryAccesses(Context))
1565 return false;
1566
1567 return true;
1568 }
1569
hasSufficientCompute(DetectionContext & Context,int NumLoops) const1570 bool ScopDetection::hasSufficientCompute(DetectionContext &Context,
1571 int NumLoops) const {
1572 int InstCount = 0;
1573
1574 if (NumLoops == 0)
1575 return false;
1576
1577 for (auto *BB : Context.CurRegion.blocks())
1578 if (Context.CurRegion.contains(LI.getLoopFor(BB)))
1579 InstCount += BB->size();
1580
1581 InstCount = InstCount / NumLoops;
1582
1583 return InstCount >= ProfitabilityMinPerLoopInstructions;
1584 }
1585
hasPossiblyDistributableLoop(DetectionContext & Context) const1586 bool ScopDetection::hasPossiblyDistributableLoop(
1587 DetectionContext &Context) const {
1588 for (auto *BB : Context.CurRegion.blocks()) {
1589 auto *L = LI.getLoopFor(BB);
1590 if (!Context.CurRegion.contains(L))
1591 continue;
1592 if (Context.BoxedLoopsSet.count(L))
1593 continue;
1594 unsigned StmtsWithStoresInLoops = 0;
1595 for (auto *LBB : L->blocks()) {
1596 bool MemStore = false;
1597 for (auto &I : *LBB)
1598 MemStore |= isa<StoreInst>(&I);
1599 StmtsWithStoresInLoops += MemStore;
1600 }
1601 return (StmtsWithStoresInLoops > 1);
1602 }
1603 return false;
1604 }
1605
isProfitableRegion(DetectionContext & Context) const1606 bool ScopDetection::isProfitableRegion(DetectionContext &Context) const {
1607 Region &CurRegion = Context.CurRegion;
1608
1609 if (PollyProcessUnprofitable)
1610 return true;
1611
1612 // We can probably not do a lot on scops that only write or only read
1613 // data.
1614 if (!Context.hasStores || !Context.hasLoads)
1615 return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);
1616
1617 int NumLoops =
1618 countBeneficialLoops(&CurRegion, SE, LI, MIN_LOOP_TRIP_COUNT).NumLoops;
1619 int NumAffineLoops = NumLoops - Context.BoxedLoopsSet.size();
1620
1621 // Scops with at least two loops may allow either loop fusion or tiling and
1622 // are consequently interesting to look at.
1623 if (NumAffineLoops >= 2)
1624 return true;
1625
1626 // A loop with multiple non-trivial blocks might be amendable to distribution.
1627 if (NumAffineLoops == 1 && hasPossiblyDistributableLoop(Context))
1628 return true;
1629
1630 // Scops that contain a loop with a non-trivial amount of computation per
1631 // loop-iteration are interesting as we may be able to parallelize such
1632 // loops. Individual loops that have only a small amount of computation
1633 // per-iteration are performance-wise very fragile as any change to the
1634 // loop induction variables may affect performance. To not cause spurious
1635 // performance regressions, we do not consider such loops.
1636 if (NumAffineLoops == 1 && hasSufficientCompute(Context, NumLoops))
1637 return true;
1638
1639 return invalid<ReportUnprofitable>(Context, /*Assert=*/true, &CurRegion);
1640 }
1641
isValidRegion(DetectionContext & Context) const1642 bool ScopDetection::isValidRegion(DetectionContext &Context) const {
1643 Region &CurRegion = Context.CurRegion;
1644
1645 LLVM_DEBUG(dbgs() << "Checking region: " << CurRegion.getNameStr() << "\n\t");
1646
1647 if (!PollyAllowFullFunction && CurRegion.isTopLevelRegion()) {
1648 LLVM_DEBUG(dbgs() << "Top level region is invalid\n");
1649 return false;
1650 }
1651
1652 DebugLoc DbgLoc;
1653 if (CurRegion.getExit() &&
1654 isa<UnreachableInst>(CurRegion.getExit()->getTerminator())) {
1655 LLVM_DEBUG(dbgs() << "Unreachable in exit\n");
1656 return invalid<ReportUnreachableInExit>(Context, /*Assert=*/true,
1657 CurRegion.getExit(), DbgLoc);
1658 }
1659
1660 if (!OnlyRegion.empty() &&
1661 !CurRegion.getEntry()->getName().count(OnlyRegion)) {
1662 LLVM_DEBUG({
1663 dbgs() << "Region entry does not match -polly-region-only";
1664 dbgs() << "\n";
1665 });
1666 return false;
1667 }
1668
1669 // SCoP cannot contain the entry block of the function, because we need
1670 // to insert alloca instruction there when translate scalar to array.
1671 if (!PollyAllowFullFunction &&
1672 CurRegion.getEntry() ==
1673 &(CurRegion.getEntry()->getParent()->getEntryBlock()))
1674 return invalid<ReportEntry>(Context, /*Assert=*/true, CurRegion.getEntry());
1675
1676 if (!allBlocksValid(Context))
1677 return false;
1678
1679 if (!isReducibleRegion(CurRegion, DbgLoc))
1680 return invalid<ReportIrreducibleRegion>(Context, /*Assert=*/true,
1681 &CurRegion, DbgLoc);
1682
1683 LLVM_DEBUG(dbgs() << "OK\n");
1684 return true;
1685 }
1686
markFunctionAsInvalid(Function * F)1687 void ScopDetection::markFunctionAsInvalid(Function *F) {
1688 F->addFnAttr(PollySkipFnAttr);
1689 }
1690
isValidFunction(Function & F)1691 bool ScopDetection::isValidFunction(Function &F) {
1692 return !F.hasFnAttribute(PollySkipFnAttr);
1693 }
1694
printLocations(Function & F)1695 void ScopDetection::printLocations(Function &F) {
1696 for (const Region *R : *this) {
1697 unsigned LineEntry, LineExit;
1698 std::string FileName;
1699
1700 getDebugLocation(R, LineEntry, LineExit, FileName);
1701 DiagnosticScopFound Diagnostic(F, FileName, LineEntry, LineExit);
1702 F.getContext().diagnose(Diagnostic);
1703 }
1704 }
1705
emitMissedRemarks(const Function & F)1706 void ScopDetection::emitMissedRemarks(const Function &F) {
1707 for (auto &DIt : DetectionContextMap) {
1708 auto &DC = DIt.getSecond();
1709 if (DC.Log.hasErrors())
1710 emitRejectionRemarks(DIt.getFirst(), DC.Log, ORE);
1711 }
1712 }
1713
isReducibleRegion(Region & R,DebugLoc & DbgLoc) const1714 bool ScopDetection::isReducibleRegion(Region &R, DebugLoc &DbgLoc) const {
1715 /// Enum for coloring BBs in Region.
1716 ///
1717 /// WHITE - Unvisited BB in DFS walk.
1718 /// GREY - BBs which are currently on the DFS stack for processing.
1719 /// BLACK - Visited and completely processed BB.
1720 enum Color { WHITE, GREY, BLACK };
1721
1722 BasicBlock *REntry = R.getEntry();
1723 BasicBlock *RExit = R.getExit();
1724 // Map to match the color of a BasicBlock during the DFS walk.
1725 DenseMap<const BasicBlock *, Color> BBColorMap;
1726 // Stack keeping track of current BB and index of next child to be processed.
1727 std::stack<std::pair<BasicBlock *, unsigned>> DFSStack;
1728
1729 unsigned AdjacentBlockIndex = 0;
1730 BasicBlock *CurrBB, *SuccBB;
1731 CurrBB = REntry;
1732
1733 // Initialize the map for all BB with WHITE color.
1734 for (auto *BB : R.blocks())
1735 BBColorMap[BB] = WHITE;
1736
1737 // Process the entry block of the Region.
1738 BBColorMap[CurrBB] = GREY;
1739 DFSStack.push(std::make_pair(CurrBB, 0));
1740
1741 while (!DFSStack.empty()) {
1742 // Get next BB on stack to be processed.
1743 CurrBB = DFSStack.top().first;
1744 AdjacentBlockIndex = DFSStack.top().second;
1745 DFSStack.pop();
1746
1747 // Loop to iterate over the successors of current BB.
1748 const Instruction *TInst = CurrBB->getTerminator();
1749 unsigned NSucc = TInst->getNumSuccessors();
1750 for (unsigned I = AdjacentBlockIndex; I < NSucc;
1751 ++I, ++AdjacentBlockIndex) {
1752 SuccBB = TInst->getSuccessor(I);
1753
1754 // Checks for region exit block and self-loops in BB.
1755 if (SuccBB == RExit || SuccBB == CurrBB)
1756 continue;
1757
1758 // WHITE indicates an unvisited BB in DFS walk.
1759 if (BBColorMap[SuccBB] == WHITE) {
1760 // Push the current BB and the index of the next child to be visited.
1761 DFSStack.push(std::make_pair(CurrBB, I + 1));
1762 // Push the next BB to be processed.
1763 DFSStack.push(std::make_pair(SuccBB, 0));
1764 // First time the BB is being processed.
1765 BBColorMap[SuccBB] = GREY;
1766 break;
1767 } else if (BBColorMap[SuccBB] == GREY) {
1768 // GREY indicates a loop in the control flow.
1769 // If the destination dominates the source, it is a natural loop
1770 // else, an irreducible control flow in the region is detected.
1771 if (!DT.dominates(SuccBB, CurrBB)) {
1772 // Get debug info of instruction which causes irregular control flow.
1773 DbgLoc = TInst->getDebugLoc();
1774 return false;
1775 }
1776 }
1777 }
1778
1779 // If all children of current BB have been processed,
1780 // then mark that BB as fully processed.
1781 if (AdjacentBlockIndex == NSucc)
1782 BBColorMap[CurrBB] = BLACK;
1783 }
1784
1785 return true;
1786 }
1787
updateLoopCountStatistic(ScopDetection::LoopStats Stats,bool OnlyProfitable)1788 static void updateLoopCountStatistic(ScopDetection::LoopStats Stats,
1789 bool OnlyProfitable) {
1790 if (!OnlyProfitable) {
1791 NumLoopsInScop += Stats.NumLoops;
1792 MaxNumLoopsInScop =
1793 std::max(MaxNumLoopsInScop.getValue(), (unsigned)Stats.NumLoops);
1794 if (Stats.MaxDepth == 0)
1795 NumScopsDepthZero++;
1796 else if (Stats.MaxDepth == 1)
1797 NumScopsDepthOne++;
1798 else if (Stats.MaxDepth == 2)
1799 NumScopsDepthTwo++;
1800 else if (Stats.MaxDepth == 3)
1801 NumScopsDepthThree++;
1802 else if (Stats.MaxDepth == 4)
1803 NumScopsDepthFour++;
1804 else if (Stats.MaxDepth == 5)
1805 NumScopsDepthFive++;
1806 else
1807 NumScopsDepthLarger++;
1808 } else {
1809 NumLoopsInProfScop += Stats.NumLoops;
1810 MaxNumLoopsInProfScop =
1811 std::max(MaxNumLoopsInProfScop.getValue(), (unsigned)Stats.NumLoops);
1812 if (Stats.MaxDepth == 0)
1813 NumProfScopsDepthZero++;
1814 else if (Stats.MaxDepth == 1)
1815 NumProfScopsDepthOne++;
1816 else if (Stats.MaxDepth == 2)
1817 NumProfScopsDepthTwo++;
1818 else if (Stats.MaxDepth == 3)
1819 NumProfScopsDepthThree++;
1820 else if (Stats.MaxDepth == 4)
1821 NumProfScopsDepthFour++;
1822 else if (Stats.MaxDepth == 5)
1823 NumProfScopsDepthFive++;
1824 else
1825 NumProfScopsDepthLarger++;
1826 }
1827 }
1828
1829 ScopDetection::DetectionContext *
getDetectionContext(const Region * R) const1830 ScopDetection::getDetectionContext(const Region *R) const {
1831 auto DCMIt = DetectionContextMap.find(getBBPairForRegion(R));
1832 if (DCMIt == DetectionContextMap.end())
1833 return nullptr;
1834 return &DCMIt->second;
1835 }
1836
lookupRejectionLog(const Region * R) const1837 const RejectLog *ScopDetection::lookupRejectionLog(const Region *R) const {
1838 const DetectionContext *DC = getDetectionContext(R);
1839 return DC ? &DC->Log : nullptr;
1840 }
1841
verifyRegion(const Region & R) const1842 void ScopDetection::verifyRegion(const Region &R) const {
1843 assert(isMaxRegionInScop(R) && "Expect R is a valid region.");
1844
1845 DetectionContext Context(const_cast<Region &>(R), AA, true /*verifying*/);
1846 isValidRegion(Context);
1847 }
1848
verifyAnalysis() const1849 void ScopDetection::verifyAnalysis() const {
1850 if (!VerifyScops)
1851 return;
1852
1853 for (const Region *R : ValidRegions)
1854 verifyRegion(*R);
1855 }
1856
runOnFunction(Function & F)1857 bool ScopDetectionWrapperPass::runOnFunction(Function &F) {
1858 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1859 auto &RI = getAnalysis<RegionInfoPass>().getRegionInfo();
1860 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1861 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1862 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1863 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1864 Result.reset(new ScopDetection(F, DT, SE, LI, RI, AA, ORE));
1865 return false;
1866 }
1867
getAnalysisUsage(AnalysisUsage & AU) const1868 void ScopDetectionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1869 AU.addRequired<LoopInfoWrapperPass>();
1870 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
1871 AU.addRequired<DominatorTreeWrapperPass>();
1872 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1873 // We also need AA and RegionInfo when we are verifying analysis.
1874 AU.addRequiredTransitive<AAResultsWrapperPass>();
1875 AU.addRequiredTransitive<RegionInfoPass>();
1876 AU.setPreservesAll();
1877 }
1878
print(raw_ostream & OS,const Module *) const1879 void ScopDetectionWrapperPass::print(raw_ostream &OS, const Module *) const {
1880 for (const Region *R : Result->ValidRegions)
1881 OS << "Valid Region for Scop: " << R->getNameStr() << '\n';
1882
1883 OS << "\n";
1884 }
1885
ScopDetectionWrapperPass()1886 ScopDetectionWrapperPass::ScopDetectionWrapperPass() : FunctionPass(ID) {
1887 // Disable runtime alias checks if we ignore aliasing all together.
1888 if (IgnoreAliasing)
1889 PollyUseRuntimeAliasChecks = false;
1890 }
1891
ScopAnalysis()1892 ScopAnalysis::ScopAnalysis() {
1893 // Disable runtime alias checks if we ignore aliasing all together.
1894 if (IgnoreAliasing)
1895 PollyUseRuntimeAliasChecks = false;
1896 }
1897
releaseMemory()1898 void ScopDetectionWrapperPass::releaseMemory() { Result.reset(); }
1899
1900 char ScopDetectionWrapperPass::ID;
1901
1902 AnalysisKey ScopAnalysis::Key;
1903
run(Function & F,FunctionAnalysisManager & FAM)1904 ScopDetection ScopAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
1905 auto &LI = FAM.getResult<LoopAnalysis>(F);
1906 auto &RI = FAM.getResult<RegionInfoAnalysis>(F);
1907 auto &AA = FAM.getResult<AAManager>(F);
1908 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
1909 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
1910 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1911 return {F, DT, SE, LI, RI, AA, ORE};
1912 }
1913
run(Function & F,FunctionAnalysisManager & FAM)1914 PreservedAnalyses ScopAnalysisPrinterPass::run(Function &F,
1915 FunctionAnalysisManager &FAM) {
1916 OS << "Detected Scops in Function " << F.getName() << "\n";
1917 auto &SD = FAM.getResult<ScopAnalysis>(F);
1918 for (const Region *R : SD.ValidRegions)
1919 OS << "Valid Region for Scop: " << R->getNameStr() << '\n';
1920
1921 OS << "\n";
1922 return PreservedAnalyses::all();
1923 }
1924
createScopDetectionWrapperPassPass()1925 Pass *polly::createScopDetectionWrapperPassPass() {
1926 return new ScopDetectionWrapperPass();
1927 }
1928
1929 INITIALIZE_PASS_BEGIN(ScopDetectionWrapperPass, "polly-detect",
1930 "Polly - Detect static control parts (SCoPs)", false,
1931 false);
1932 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass);
1933 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
1934 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
1935 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
1936 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
1937 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass);
1938 INITIALIZE_PASS_END(ScopDetectionWrapperPass, "polly-detect",
1939 "Polly - Detect static control parts (SCoPs)", false, false)
1940