1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/utils/SkRandom.h"
9 #include "src/core/SkGeometry.h"
10 #include "src/core/SkPointPriv.h"
11 #include "tests/Test.h"
12 
13 #include <array>
14 #include <numeric>
15 
nearly_equal(const SkPoint & a,const SkPoint & b)16 static bool nearly_equal(const SkPoint& a, const SkPoint& b) {
17     return SkScalarNearlyEqual(a.fX, b.fX) && SkScalarNearlyEqual(a.fY, b.fY);
18 }
19 
testChopCubic(skiatest::Reporter * reporter)20 static void testChopCubic(skiatest::Reporter* reporter) {
21     /*
22         Inspired by this test, which used to assert that the tValues had dups
23 
24         <path stroke="#202020" d="M0,0 C0,0 1,1 2190,5130 C2190,5070 2220,5010 2205,4980" />
25      */
26     const SkPoint src[] = {
27         { SkIntToScalar(2190), SkIntToScalar(5130) },
28         { SkIntToScalar(2190), SkIntToScalar(5070) },
29         { SkIntToScalar(2220), SkIntToScalar(5010) },
30         { SkIntToScalar(2205), SkIntToScalar(4980) },
31     };
32     SkPoint dst[13];
33     SkScalar tValues[3];
34     // make sure we don't assert internally
35     int count = SkChopCubicAtMaxCurvature(src, dst, tValues);
36     if (false) { // avoid bit rot, suppress warning
37         REPORTER_ASSERT(reporter, count);
38     }
39     // Make sure src and dst can be the same pointer.
40     SkPoint pts[7];
41     for (int i = 0; i < 7; ++i) {
42         pts[i].set(i, i);
43     }
44     SkChopCubicAt(pts, pts, .5f);
45     for (int i = 0; i < 7; ++i) {
46         REPORTER_ASSERT(reporter, pts[i].fX == pts[i].fY);
47         REPORTER_ASSERT(reporter, pts[i].fX == i * .5f);
48     }
49 
50     static const float chopTs[] = {
51         0, 3/83.f, 3/79.f, 3/73.f, 3/71.f, 3/67.f, 3/61.f, 3/59.f, 3/53.f, 3/47.f, 3/43.f, 3/41.f,
52         3/37.f, 3/31.f, 3/29.f, 3/23.f, 3/19.f, 3/17.f, 3/13.f, 3/11.f, 3/7.f, 3/5.f, 1,
53     };
54     float ones[] = {1,1,1,1,1};
55 
56     // Ensure an odd number of T values so we exercise the single chop code at the end of
57     // SkChopCubicAt form multiple T.
58     static_assert(SK_ARRAY_COUNT(chopTs) % 2 == 1);
59     static_assert(SK_ARRAY_COUNT(ones) % 2 == 1);
60 
61     SkRandom rand;
62     for (int iterIdx = 0; iterIdx < 5; ++iterIdx) {
63         SkPoint pts[4] = {{rand.nextF(), rand.nextF()}, {rand.nextF(), rand.nextF()},
64                           {rand.nextF(), rand.nextF()}, {rand.nextF(), rand.nextF()}};
65 
66         SkPoint allChops[4 + SK_ARRAY_COUNT(chopTs)*3];
67         SkChopCubicAt(pts, allChops, chopTs, SK_ARRAY_COUNT(chopTs));
68         int i = 3;
69         for (float chopT : chopTs) {
70             // Ensure we chop at approximately the correct points when we chop an entire list.
71             SkPoint expectedPt;
72             SkEvalCubicAt(pts, chopT, &expectedPt, nullptr, nullptr);
73             REPORTER_ASSERT(reporter, SkScalarNearlyEqual(allChops[i].x(), expectedPt.x()));
74             REPORTER_ASSERT(reporter, SkScalarNearlyEqual(allChops[i].y(), expectedPt.y()));
75             if (chopT == 0) {
76                 REPORTER_ASSERT(reporter, allChops[i] == pts[0]);
77             }
78             if (chopT == 1) {
79                 REPORTER_ASSERT(reporter, allChops[i] == pts[3]);
80             }
81             i += 3;
82 
83             // Ensure the middle is exactly degenerate when we chop at two equal points.
84             SkPoint localChops[10];
85             SkChopCubicAt(pts, localChops, chopT, chopT);
86             REPORTER_ASSERT(reporter, localChops[3] == localChops[4]);
87             REPORTER_ASSERT(reporter, localChops[3] == localChops[5]);
88             REPORTER_ASSERT(reporter, localChops[3] == localChops[6]);
89             if (chopT == 0) {
90                 // Also ensure the first curve is exactly p0 when we chop at T=0.
91                 REPORTER_ASSERT(reporter, localChops[0] == pts[0]);
92                 REPORTER_ASSERT(reporter, localChops[1] == pts[0]);
93                 REPORTER_ASSERT(reporter, localChops[2] == pts[0]);
94                 REPORTER_ASSERT(reporter, localChops[3] == pts[0]);
95             }
96             if (chopT == 1) {
97                 // Also ensure the last curve is exactly p3 when we chop at T=1.
98                 REPORTER_ASSERT(reporter, localChops[6] == pts[3]);
99                 REPORTER_ASSERT(reporter, localChops[7] == pts[3]);
100                 REPORTER_ASSERT(reporter, localChops[8] == pts[3]);
101                 REPORTER_ASSERT(reporter, localChops[9] == pts[3]);
102             }
103         }
104 
105         // Now test what happens when SkChopCubicAt does 0/0 and gets NaN values.
106         SkPoint oneChops[4 + SK_ARRAY_COUNT(ones)*3];
107         SkChopCubicAt(pts, oneChops, ones, SK_ARRAY_COUNT(ones));
108         REPORTER_ASSERT(reporter, oneChops[0] == pts[0]);
109         REPORTER_ASSERT(reporter, oneChops[1] == pts[1]);
110         REPORTER_ASSERT(reporter, oneChops[2] == pts[2]);
111         for (size_t i = 3; i < SK_ARRAY_COUNT(oneChops); ++i) {
112             REPORTER_ASSERT(reporter, oneChops[i] == pts[3]);
113         }
114     }
115 }
116 
check_pairs(skiatest::Reporter * reporter,int index,SkScalar t,const char name[],SkScalar x0,SkScalar y0,SkScalar x1,SkScalar y1)117 static void check_pairs(skiatest::Reporter* reporter, int index, SkScalar t, const char name[],
118                         SkScalar x0, SkScalar y0, SkScalar x1, SkScalar y1) {
119     bool eq = SkScalarNearlyEqual(x0, x1) && SkScalarNearlyEqual(y0, y1);
120     if (!eq) {
121         SkDebugf("%s [%d %g] p0 [%10.8f %10.8f] p1 [%10.8f %10.8f]\n",
122                  name, index, t, x0, y0, x1, y1);
123         REPORTER_ASSERT(reporter, eq);
124     }
125 }
126 
test_evalquadat(skiatest::Reporter * reporter)127 static void test_evalquadat(skiatest::Reporter* reporter) {
128     SkRandom rand;
129     for (int i = 0; i < 1000; ++i) {
130         SkPoint pts[3];
131         for (int j = 0; j < 3; ++j) {
132             pts[j].set(rand.nextSScalar1() * 100, rand.nextSScalar1() * 100);
133         }
134         const SkScalar dt = SK_Scalar1 / 128;
135         SkScalar t = dt;
136         for (int j = 1; j < 128; ++j) {
137             SkPoint r0;
138             SkEvalQuadAt(pts, t, &r0);
139             SkPoint r1 = SkEvalQuadAt(pts, t);
140             check_pairs(reporter, i, t, "quad-pos", r0.fX, r0.fY, r1.fX, r1.fY);
141 
142             SkVector v0;
143             SkEvalQuadAt(pts, t, nullptr, &v0);
144             SkVector v1 = SkEvalQuadTangentAt(pts, t);
145             check_pairs(reporter, i, t, "quad-tan", v0.fX, v0.fY, v1.fX, v1.fY);
146 
147             t += dt;
148         }
149     }
150 }
151 
test_conic_eval_pos(skiatest::Reporter * reporter,const SkConic & conic,SkScalar t)152 static void test_conic_eval_pos(skiatest::Reporter* reporter, const SkConic& conic, SkScalar t) {
153     SkPoint p0, p1;
154     conic.evalAt(t, &p0, nullptr);
155     p1 = conic.evalAt(t);
156     check_pairs(reporter, 0, t, "conic-pos", p0.fX, p0.fY, p1.fX, p1.fY);
157 }
158 
test_conic_eval_tan(skiatest::Reporter * reporter,const SkConic & conic,SkScalar t)159 static void test_conic_eval_tan(skiatest::Reporter* reporter, const SkConic& conic, SkScalar t) {
160     SkVector v0, v1;
161     conic.evalAt(t, nullptr, &v0);
162     v1 = conic.evalTangentAt(t);
163     check_pairs(reporter, 0, t, "conic-tan", v0.fX, v0.fY, v1.fX, v1.fY);
164 }
165 
test_conic(skiatest::Reporter * reporter)166 static void test_conic(skiatest::Reporter* reporter) {
167     SkRandom rand;
168     for (int i = 0; i < 1000; ++i) {
169         SkPoint pts[3];
170         for (int j = 0; j < 3; ++j) {
171             pts[j].set(rand.nextSScalar1() * 100, rand.nextSScalar1() * 100);
172         }
173         for (int k = 0; k < 10; ++k) {
174             SkScalar w = rand.nextUScalar1() * 2;
175             SkConic conic(pts, w);
176 
177             const SkScalar dt = SK_Scalar1 / 128;
178             SkScalar t = dt;
179             for (int j = 1; j < 128; ++j) {
180                 test_conic_eval_pos(reporter, conic, t);
181                 test_conic_eval_tan(reporter, conic, t);
182                 t += dt;
183             }
184         }
185     }
186 }
187 
test_quad_tangents(skiatest::Reporter * reporter)188 static void test_quad_tangents(skiatest::Reporter* reporter) {
189     SkPoint pts[] = {
190         {10, 20}, {10, 20}, {20, 30},
191         {10, 20}, {15, 25}, {20, 30},
192         {10, 20}, {20, 30}, {20, 30},
193     };
194     int count = (int) SK_ARRAY_COUNT(pts) / 3;
195     for (int index = 0; index < count; ++index) {
196         SkConic conic(&pts[index * 3], 0.707f);
197         SkVector start = SkEvalQuadTangentAt(&pts[index * 3], 0);
198         SkVector mid = SkEvalQuadTangentAt(&pts[index * 3], .5f);
199         SkVector end = SkEvalQuadTangentAt(&pts[index * 3], 1);
200         REPORTER_ASSERT(reporter, start.fX && start.fY);
201         REPORTER_ASSERT(reporter, mid.fX && mid.fY);
202         REPORTER_ASSERT(reporter, end.fX && end.fY);
203         REPORTER_ASSERT(reporter, SkScalarNearlyZero(start.cross(mid)));
204         REPORTER_ASSERT(reporter, SkScalarNearlyZero(mid.cross(end)));
205     }
206 }
207 
test_conic_tangents(skiatest::Reporter * reporter)208 static void test_conic_tangents(skiatest::Reporter* reporter) {
209     SkPoint pts[] = {
210         { 10, 20}, {10, 20}, {20, 30},
211         { 10, 20}, {15, 25}, {20, 30},
212         { 10, 20}, {20, 30}, {20, 30}
213     };
214     int count = (int) SK_ARRAY_COUNT(pts) / 3;
215     for (int index = 0; index < count; ++index) {
216         SkConic conic(&pts[index * 3], 0.707f);
217         SkVector start = conic.evalTangentAt(0);
218         SkVector mid = conic.evalTangentAt(.5f);
219         SkVector end = conic.evalTangentAt(1);
220         REPORTER_ASSERT(reporter, start.fX && start.fY);
221         REPORTER_ASSERT(reporter, mid.fX && mid.fY);
222         REPORTER_ASSERT(reporter, end.fX && end.fY);
223         REPORTER_ASSERT(reporter, SkScalarNearlyZero(start.cross(mid)));
224         REPORTER_ASSERT(reporter, SkScalarNearlyZero(mid.cross(end)));
225     }
226 }
227 
test_this_conic_to_quad(skiatest::Reporter * r,const SkPoint pts[3],SkScalar w)228 static void test_this_conic_to_quad(skiatest::Reporter* r, const SkPoint pts[3], SkScalar w) {
229     SkAutoConicToQuads quadder;
230     const SkPoint* qpts = quadder.computeQuads(pts, w, 0.25);
231     const int qcount = quadder.countQuads();
232     const int pcount = qcount * 2 + 1;
233 
234     REPORTER_ASSERT(r, SkPointPriv::AreFinite(qpts, pcount));
235 }
236 
237 /**
238  *  We need to ensure that when a conic is approximated by quads, that we always return finite
239  *  values in the quads.
240  *
241  *  Inspired by crbug_627414
242  */
test_conic_to_quads(skiatest::Reporter * reporter)243 static void test_conic_to_quads(skiatest::Reporter* reporter) {
244     const SkPoint triples[] = {
245         { 0, 0 }, { 1, 0 }, { 1, 1 },
246         { 0, 0 }, { 3.58732e-43f, 2.72084f }, { 3.00392f, 3.00392f },
247         { 0, 0 }, { 100000, 0 }, { 100000, 100000 },
248         { 0, 0 }, { 1e30f, 0 }, { 1e30f, 1e30f },
249     };
250     const int N = sizeof(triples) / sizeof(SkPoint);
251 
252     for (int i = 0; i < N; i += 3) {
253         const SkPoint* pts = &triples[i];
254 
255         SkScalar w = 1e30f;
256         do {
257             w *= 2;
258             test_this_conic_to_quad(reporter, pts, w);
259         } while (SkScalarIsFinite(w));
260         test_this_conic_to_quad(reporter, pts, SK_ScalarNaN);
261     }
262 }
263 
test_cubic_tangents(skiatest::Reporter * reporter)264 static void test_cubic_tangents(skiatest::Reporter* reporter) {
265     SkPoint pts[] = {
266         { 10, 20}, {10, 20}, {20, 30}, {30, 40},
267         { 10, 20}, {15, 25}, {20, 30}, {30, 40},
268         { 10, 20}, {20, 30}, {30, 40}, {30, 40},
269     };
270     int count = (int) SK_ARRAY_COUNT(pts) / 4;
271     for (int index = 0; index < count; ++index) {
272         SkConic conic(&pts[index * 3], 0.707f);
273         SkVector start, mid, end;
274         SkEvalCubicAt(&pts[index * 4], 0, nullptr, &start, nullptr);
275         SkEvalCubicAt(&pts[index * 4], .5f, nullptr, &mid, nullptr);
276         SkEvalCubicAt(&pts[index * 4], 1, nullptr, &end, nullptr);
277         REPORTER_ASSERT(reporter, start.fX && start.fY);
278         REPORTER_ASSERT(reporter, mid.fX && mid.fY);
279         REPORTER_ASSERT(reporter, end.fX && end.fY);
280         REPORTER_ASSERT(reporter, SkScalarNearlyZero(start.cross(mid)));
281         REPORTER_ASSERT(reporter, SkScalarNearlyZero(mid.cross(end)));
282     }
283 }
284 
check_cubic_type(skiatest::Reporter * reporter,const std::array<SkPoint,4> & bezierPoints,SkCubicType expectedType,bool undefined=false)285 static void check_cubic_type(skiatest::Reporter* reporter,
286                              const std::array<SkPoint, 4>& bezierPoints, SkCubicType expectedType,
287                              bool undefined = false) {
288     // Classify the cubic even if the results will be undefined: check for crashes and asserts.
289     SkCubicType actualType = SkClassifyCubic(bezierPoints.data());
290     if (!undefined) {
291         REPORTER_ASSERT(reporter, actualType == expectedType);
292     }
293 }
294 
check_cubic_around_rect(skiatest::Reporter * reporter,float x1,float y1,float x2,float y2,bool undefined=false)295 static void check_cubic_around_rect(skiatest::Reporter* reporter,
296                                     float x1, float y1, float x2, float y2,
297                                     bool undefined = false) {
298     static constexpr SkCubicType expectations[24] = {
299         SkCubicType::kLoop,
300         SkCubicType::kCuspAtInfinity,
301         SkCubicType::kLocalCusp,
302         SkCubicType::kLocalCusp,
303         SkCubicType::kCuspAtInfinity,
304         SkCubicType::kLoop,
305         SkCubicType::kCuspAtInfinity,
306         SkCubicType::kLoop,
307         SkCubicType::kCuspAtInfinity,
308         SkCubicType::kLoop,
309         SkCubicType::kLocalCusp,
310         SkCubicType::kLocalCusp,
311         SkCubicType::kLocalCusp,
312         SkCubicType::kLocalCusp,
313         SkCubicType::kLoop,
314         SkCubicType::kCuspAtInfinity,
315         SkCubicType::kLoop,
316         SkCubicType::kCuspAtInfinity,
317         SkCubicType::kLoop,
318         SkCubicType::kCuspAtInfinity,
319         SkCubicType::kLocalCusp,
320         SkCubicType::kLocalCusp,
321         SkCubicType::kCuspAtInfinity,
322         SkCubicType::kLoop,
323     };
324     SkPoint points[] = {{x1, y1}, {x2, y1}, {x2, y2}, {x1, y2}};
325     std::array<SkPoint, 4> bezier;
326     for (int i=0; i < 4; ++i) {
327         bezier[0] = points[i];
328         for (int j=0; j < 3; ++j) {
329             int jidx = (j < i) ? j : j+1;
330             bezier[1] = points[jidx];
331             for (int k=0, kidx=0; k < 2; ++k, ++kidx) {
332                 for (int n = 0; n < 2; ++n) {
333                     kidx = (kidx == i || kidx == jidx) ? kidx+1 : kidx;
334                 }
335                 bezier[2] = points[kidx];
336                 for (int l = 0; l < 4; ++l) {
337                     if (l != i && l != jidx && l != kidx) {
338                         bezier[3] = points[l];
339                         break;
340                     }
341                 }
342                 check_cubic_type(reporter, bezier, expectations[i*6 + j*2 + k], undefined);
343             }
344         }
345     }
346     for (int i=0; i < 4; ++i) {
347         bezier[0] = points[i];
348         for (int j=0; j < 3; ++j) {
349             int jidx = (j < i) ? j : j+1;
350             bezier[1] = points[jidx];
351             bezier[2] = points[jidx];
352             for (int k=0, kidx=0; k < 2; ++k, ++kidx) {
353                 for (int n = 0; n < 2; ++n) {
354                     kidx = (kidx == i || kidx == jidx) ? kidx+1 : kidx;
355                 }
356                 bezier[3] = points[kidx];
357                 check_cubic_type(reporter, bezier, SkCubicType::kSerpentine, undefined);
358             }
359         }
360     }
361 }
362 
363 static std::array<SkPoint, 4> kSerpentines[] = {
364     {{{149.325f, 107.705f}, {149.325f, 103.783f}, {151.638f, 100.127f}, {156.263f, 96.736f}}},
365     {{{225.694f, 223.15f}, {209.831f, 224.837f}, {195.994f, 230.237f}, {184.181f, 239.35f}}},
366     {{{4.873f, 5.581f}, {5.083f, 5.2783f}, {5.182f, 4.8593f}, {5.177f, 4.3242f}}},
367     {{{285.625f, 499.687f}, {411.625f, 808.188f}, {1064.62f, 135.688f}, {1042.63f, 585.187f}}}
368 };
369 
370 static std::array<SkPoint, 4> kLoops[] = {
371     {{{635.625f, 614.687f}, {171.625f, 236.188f}, {1064.62f, 135.688f}, {516.625f, 570.187f}}},
372     {{{653.050f, 725.049f}, {663.000f, 176.000f}, {1189.000f, 508.000f}, {288.050f, 564.950f}}},
373     {{{631.050f, 478.049f}, {730.000f, 302.000f}, {870.000f, 350.000f}, {905.050f, 528.950f}}},
374     {{{631.050f, 478.0499f}, {221.000f, 230.000f}, {1265.000f, 451.000f}, {905.050f, 528.950f}}}
375 };
376 
377 static std::array<SkPoint, 4> kLinearCubics[] = {
378     {{{0, 0}, {0, 1}, {0, 2}, {0, 3}}},  // 0-degree flat line.
379     {{{0, 0}, {1, 0}, {1, 0}, {0, 0}}},  // 180-degree flat line
380     {{{0, 1}, {0, 0}, {0, 2}, {0, 3}}},  // 180-degree flat line
381     {{{0, 1}, {0, 0}, {0, 3}, {0, 2}}},  // 360-degree flat line
382     {{{0, 0}, {2, 0}, {1, 0}, {64, 0}}},  // 360-degree flat line
383     {{{1, 0}, {0, 0}, {3, 0}, {-64, 0}}}  // 360-degree flat line
384 };
385 
test_classify_cubic(skiatest::Reporter * reporter)386 static void test_classify_cubic(skiatest::Reporter* reporter) {
387     for (const auto& serp : kSerpentines) {
388         check_cubic_type(reporter, serp, SkCubicType::kSerpentine);
389     }
390     for (const auto& loop : kLoops) {
391         check_cubic_type(reporter, loop, SkCubicType::kLoop);
392     }
393     for (const auto& loop : kLinearCubics) {
394         check_cubic_type(reporter, loop, SkCubicType::kLineOrPoint);
395     }
396     check_cubic_around_rect(reporter, 0, 0, 1, 1);
397     check_cubic_around_rect(reporter,
398                             -std::numeric_limits<float>::max(),
399                             -std::numeric_limits<float>::max(),
400                             +std::numeric_limits<float>::max(),
401                             +std::numeric_limits<float>::max());
402     check_cubic_around_rect(reporter, 1, 1,
403                             +std::numeric_limits<float>::min(),
404                             +std::numeric_limits<float>::max());
405     check_cubic_around_rect(reporter,
406                             -std::numeric_limits<float>::min(),
407                             -std::numeric_limits<float>::min(),
408                             +std::numeric_limits<float>::min(),
409                             +std::numeric_limits<float>::min());
410     check_cubic_around_rect(reporter, +1, -std::numeric_limits<float>::min(), -1, -1);
411     check_cubic_around_rect(reporter,
412                             -std::numeric_limits<float>::infinity(),
413                             -std::numeric_limits<float>::infinity(),
414                             +std::numeric_limits<float>::infinity(),
415                             +std::numeric_limits<float>::infinity(),
416                             true);
417     check_cubic_around_rect(reporter, 0, 0, 1, +std::numeric_limits<float>::infinity(), true);
418     check_cubic_around_rect(reporter,
419                             -std::numeric_limits<float>::quiet_NaN(),
420                             -std::numeric_limits<float>::quiet_NaN(),
421                             +std::numeric_limits<float>::quiet_NaN(),
422                             +std::numeric_limits<float>::quiet_NaN(),
423                             true);
424     check_cubic_around_rect(reporter, 0, 0, 1, +std::numeric_limits<float>::quiet_NaN(), true);
425 }
426 
427 static std::array<SkPoint, 4> kCusps[] = {
428     {{{0, 0}, {1, 1}, {1, 0}, {0, 1}}},
429     {{{0, 0}, {1, 1}, {0, 1}, {1, 0}}},
430     {{{0, 1}, {1, 0}, {0, 0}, {1, 1}}},
431     {{{0, 1}, {1, 0}, {1, 1}, {0, 0}}},
432 };
433 
test_cubic_cusps(skiatest::Reporter * reporter)434 static void test_cubic_cusps(skiatest::Reporter* reporter) {
435     std::array<SkPoint, 4> noCusps[] = {
436         {{{0, 0}, {1, 1}, {2, 2}, {3, 3}}},
437         {{{0, 0}, {1, 0}, {1, 1}, {0, 1}}},
438         {{{0, 0}, {1, 0}, {2, 1}, {2, 2}}},
439         {{{0, 0}, {1, 0}, {1, 1}, {2, 1}}},
440     };
441     for (auto noCusp : noCusps) {
442         REPORTER_ASSERT(reporter, SkFindCubicCusp(noCusp.data()) < 0);
443     }
444     for (auto cusp : kCusps) {
445         REPORTER_ASSERT(reporter, SkFindCubicCusp(cusp.data()) > 0);
446     }
447 }
448 
449 static SkMatrix kSkewMatrices[] = {
450     SkMatrix::MakeAll(1,0,0, 0,1,0, 0,0,1),
451     SkMatrix::MakeAll(1,-1,0, 1,1,0, 0,0,1),
452     SkMatrix::MakeAll(.889f,.553f,0, -.443f,.123f,0, 0,0,1),
453 };
454 
test_chop_quad_at_midtangent(skiatest::Reporter * reporter,const SkPoint pts[3])455 static void test_chop_quad_at_midtangent(skiatest::Reporter* reporter, const SkPoint pts[3]) {
456     constexpr float kTolerance = 1e-3f;
457     for (const SkMatrix& m : kSkewMatrices) {
458         SkPoint mapped[3];
459         m.mapPoints(mapped, pts, 3);
460         float fullRotation = SkMeasureQuadRotation(pts);
461         SkPoint chopped[5];
462         SkChopQuadAtMidTangent(pts, chopped);
463         float leftRotation = SkMeasureQuadRotation(chopped);
464         float rightRotation = SkMeasureQuadRotation(chopped+2);
465         REPORTER_ASSERT(reporter, SkScalarNearlyEqual(leftRotation, fullRotation/2, kTolerance));
466         REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rightRotation, fullRotation/2, kTolerance));
467     }
468 }
469 
test_chop_cubic_at_midtangent(skiatest::Reporter * reporter,const SkPoint pts[4],SkCubicType cubicType)470 static void test_chop_cubic_at_midtangent(skiatest::Reporter* reporter, const SkPoint pts[4],
471                                           SkCubicType cubicType) {
472     constexpr float kTolerance = 1e-3f;
473     int n = SK_ARRAY_COUNT(kSkewMatrices);
474     if (cubicType == SkCubicType::kLocalCusp || cubicType == SkCubicType::kLineOrPoint) {
475         // FP precision isn't always enough to get the exact correct T value of the mid-tangent on
476         // cusps and lines. Only test the identity matrix and the matrix with all 1's.
477         n = 2;
478     }
479     for (int i = 0; i < n; ++i) {
480         SkPoint mapped[4];
481         kSkewMatrices[i].mapPoints(mapped, pts, 4);
482         float fullRotation = SkMeasureNonInflectCubicRotation(mapped);
483         SkPoint chopped[7];
484         SkChopCubicAtMidTangent(mapped, chopped);
485         float leftRotation = SkMeasureNonInflectCubicRotation(chopped);
486         float rightRotation = SkMeasureNonInflectCubicRotation(chopped+3);
487         if (cubicType == SkCubicType::kLineOrPoint &&
488             (SkScalarNearlyEqual(fullRotation, 2*SK_ScalarPI, kTolerance) ||
489              SkScalarNearlyEqual(fullRotation, 0, kTolerance))) {
490             // 0- and 360-degree flat lines don't have single points of midtangent.
491             // (tangent == midtangent at every point on these curves except the cusp points.)
492             // Instead verify the promise from SkChopCubicAtMidTangent that neither side will rotate
493             // more than 180 degrees.
494             REPORTER_ASSERT(reporter, std::abs(leftRotation) - kTolerance <= SK_ScalarPI);
495             REPORTER_ASSERT(reporter, std::abs(rightRotation) - kTolerance <= SK_ScalarPI);
496             continue;
497         }
498         float expectedChoppedRotation = fullRotation/2;
499         if (cubicType == SkCubicType::kLocalCusp ||
500             (cubicType == SkCubicType::kLineOrPoint &&
501              SkScalarNearlyEqual(fullRotation, SK_ScalarPI, kTolerance))) {
502             // If we chop a cubic at a cusp, we lose 180 degrees of rotation.
503             expectedChoppedRotation = (fullRotation - SK_ScalarPI)/2;
504         }
505         REPORTER_ASSERT(reporter, SkScalarNearlyEqual(leftRotation, expectedChoppedRotation,
506                                                       kTolerance));
507         REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rightRotation, expectedChoppedRotation,
508                                                       kTolerance));
509     }
510 }
511 
512 static std::array<SkPoint, 3> kQuads[] = {
513     {{{10, 20}, {15, 35}, {30, 40}}},
514     {{{176.324f, 392.705f}, {719.325f, 205.782f}, {297.263f, 347.735f}}},
515     {{{652.050f, 602.049f}, {481.000f, 533.000f}, {288.050f, 564.950f}}},
516     {{{460.625f, 557.187f}, {707.121f, 209.688f}, {779.628f, 577.687f}}},
517     {{{359.050f, 578.049f}, {759.000f, 274.000f}, {288.050f, 564.950f}}}
518 };
519 
lerp(const SkPoint & a,const SkPoint & b,float t)520 SkPoint lerp(const SkPoint& a, const SkPoint& b, float t) {
521     return a * (1 - t) + b * t;
522 }
523 
test_measure_rotation(skiatest::Reporter * reporter)524 static void test_measure_rotation(skiatest::Reporter* reporter) {
525     static SkPoint kFlatCubic[4] = {{0, 0}, {0, 1}, {0, 2}, {0, 3}};
526     REPORTER_ASSERT(reporter, SkScalarNearlyZero(SkMeasureNonInflectCubicRotation(kFlatCubic)));
527 
528     static SkPoint kFlatCubic180_1[4] = {{0, 0}, {1, 0}, {3, 0}, {2, 0}};
529     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(kFlatCubic180_1),
530                                                   SK_ScalarPI));
531 
532     static SkPoint kFlatCubic180_2[4] = {{0, 1}, {0, 0}, {0, 2}, {0, 3}};
533     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(kFlatCubic180_2),
534                                                   SK_ScalarPI));
535 
536     static SkPoint kFlatCubic360[4] = {{0, 1}, {0, 0}, {0, 3}, {0, 2}};
537     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(kFlatCubic360),
538                                                   2*SK_ScalarPI));
539 
540     static SkPoint kSquare180[4] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}};
541     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(kSquare180),
542                                                   SK_ScalarPI));
543 
544     auto checkQuadRotation = [=](const SkPoint pts[3], float expectedRotation) {
545         float r = SkMeasureQuadRotation(pts);
546         REPORTER_ASSERT(reporter, SkScalarNearlyEqual(r, expectedRotation));
547 
548         SkPoint cubic1[4] = {pts[0], pts[0], pts[1], pts[2]};
549         REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(cubic1),
550                                                       expectedRotation));
551 
552         SkPoint cubic2[4] = {pts[0], pts[1], pts[1], pts[2]};
553         REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(cubic2),
554                                                       expectedRotation));
555 
556         SkPoint cubic3[4] = {pts[0], pts[1], pts[2], pts[2]};
557         REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SkMeasureNonInflectCubicRotation(cubic3),
558                                                       expectedRotation));
559     };
560 
561     static SkPoint kFlatQuad[4] = {{0, 0}, {0, 1}, {0, 2}};
562     checkQuadRotation(kFlatQuad, 0);
563 
564     static SkPoint kFlatQuad180_1[4] = {{1, 0}, {0, 0}, {2, 0}};
565     checkQuadRotation(kFlatQuad180_1, SK_ScalarPI);
566 
567     static SkPoint kFlatQuad180_2[4] = {{0, 0}, {0, 2}, {0, 1}};
568     checkQuadRotation(kFlatQuad180_2, SK_ScalarPI);
569 
570     static SkPoint kTri120[3] = {{0, 0}, {.5f, std::sqrt(3.f)/2}, {1, 0}};
571     checkQuadRotation(kTri120, 2*SK_ScalarPI/3);
572 }
573 
test_chop_at_midtangent(skiatest::Reporter * reporter)574 static void test_chop_at_midtangent(skiatest::Reporter* reporter) {
575     SkPoint chops[10];
576     for (const auto& serp : kSerpentines) {
577         REPORTER_ASSERT(reporter, SkClassifyCubic(serp.data()) == SkCubicType::kSerpentine);
578         int n = SkChopCubicAtInflections(serp.data(), chops);
579         for (int i = 0; i < n; ++i) {
580             test_chop_cubic_at_midtangent(reporter, chops + i*3, SkCubicType::kSerpentine);
581         }
582     }
583     for (const auto& loop : kLoops) {
584         REPORTER_ASSERT(reporter, SkClassifyCubic(loop.data()) == SkCubicType::kLoop);
585         test_chop_cubic_at_midtangent(reporter, loop.data(), SkCubicType::kLoop);
586     }
587     for (const auto& line : kLinearCubics) {
588         REPORTER_ASSERT(reporter, SkClassifyCubic(line.data()) == SkCubicType::kLineOrPoint);
589         test_chop_cubic_at_midtangent(reporter, line.data(), SkCubicType::kLineOrPoint);
590     }
591     for (const auto& cusp : kCusps) {
592         REPORTER_ASSERT(reporter, SkClassifyCubic(cusp.data()) == SkCubicType::kLocalCusp);
593         test_chop_cubic_at_midtangent(reporter, cusp.data(), SkCubicType::kLocalCusp);
594     }
595     for (const auto& quad : kQuads) {
596         test_chop_quad_at_midtangent(reporter, quad.data());
597         SkPoint asCubic[4] = {
598                 quad[0], lerp(quad[0], quad[1], 2/3.f), lerp(quad[1], quad[2], 1/3.f), quad[2]};
599         test_chop_cubic_at_midtangent(reporter, asCubic, SkCubicType::kQuadratic);
600     }
601 
602     static const SkPoint kExactQuad[4] = {{0,0}, {6,2}, {10,2}, {12,0}};
603     REPORTER_ASSERT(reporter, SkClassifyCubic(kExactQuad) == SkCubicType::kQuadratic);
604     test_chop_cubic_at_midtangent(reporter, kExactQuad, SkCubicType::kQuadratic);
605 
606     static const SkPoint kExactCuspAtInf[4] = {{0,0}, {1,0}, {0,1}, {1,1}};
607     REPORTER_ASSERT(reporter, SkClassifyCubic(kExactCuspAtInf) == SkCubicType::kCuspAtInfinity);
608     int n = SkChopCubicAtInflections(kExactCuspAtInf, chops);
609     for (int i = 0; i < n; ++i) {
610         test_chop_cubic_at_midtangent(reporter, chops + i*3, SkCubicType::kCuspAtInfinity);
611     }
612 }
613 
DEF_TEST(Geometry,reporter)614 DEF_TEST(Geometry, reporter) {
615     SkPoint pts[5];
616 
617     pts[0].set(0, 0);
618     pts[1].set(100, 50);
619     pts[2].set(0, 100);
620 
621     int count = SkChopQuadAtMaxCurvature(pts, pts);  // Ensure src and dst can be the same pointer.
622     REPORTER_ASSERT(reporter, count == 1 || count == 2);
623 
624     pts[0].set(0, 0);
625     pts[1].set(3, 0);
626     pts[2].set(3, 3);
627     SkConvertQuadToCubic(pts, pts);
628     const SkPoint cubic[] = {
629         { 0, 0, }, { 2, 0, }, { 3, 1, }, { 3, 3 },
630     };
631     for (int i = 0; i < 4; ++i) {
632         REPORTER_ASSERT(reporter, nearly_equal(cubic[i], pts[i]));
633     }
634 
635     testChopCubic(reporter);
636     test_evalquadat(reporter);
637     test_conic(reporter);
638     test_cubic_tangents(reporter);
639     test_quad_tangents(reporter);
640     test_conic_tangents(reporter);
641     test_conic_to_quads(reporter);
642     test_classify_cubic(reporter);
643     test_cubic_cusps(reporter);
644     test_measure_rotation(reporter);
645     test_chop_at_midtangent(reporter);
646 }
647