1 /*
2 ** 2018 May 08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 */
13 #include "sqliteInt.h"
14 
15 #ifndef SQLITE_OMIT_WINDOWFUNC
16 
17 /*
18 ** SELECT REWRITING
19 **
20 **   Any SELECT statement that contains one or more window functions in
21 **   either the select list or ORDER BY clause (the only two places window
22 **   functions may be used) is transformed by function sqlite3WindowRewrite()
23 **   in order to support window function processing. For example, with the
24 **   schema:
25 **
26 **     CREATE TABLE t1(a, b, c, d, e, f, g);
27 **
28 **   the statement:
29 **
30 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
31 **
32 **   is transformed to:
33 **
34 **     SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
35 **         SELECT a, e, c, d, b FROM t1 ORDER BY c, d
36 **     ) ORDER BY e;
37 **
38 **   The flattening optimization is disabled when processing this transformed
39 **   SELECT statement. This allows the implementation of the window function
40 **   (in this case max()) to process rows sorted in order of (c, d), which
41 **   makes things easier for obvious reasons. More generally:
42 **
43 **     * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
44 **       the sub-query.
45 **
46 **     * ORDER BY, LIMIT and OFFSET remain part of the parent query.
47 **
48 **     * Terminals from each of the expression trees that make up the
49 **       select-list and ORDER BY expressions in the parent query are
50 **       selected by the sub-query. For the purposes of the transformation,
51 **       terminals are column references and aggregate functions.
52 **
53 **   If there is more than one window function in the SELECT that uses
54 **   the same window declaration (the OVER bit), then a single scan may
55 **   be used to process more than one window function. For example:
56 **
57 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
58 **            min(e) OVER (PARTITION BY c ORDER BY d)
59 **     FROM t1;
60 **
61 **   is transformed in the same way as the example above. However:
62 **
63 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d),
64 **            min(e) OVER (PARTITION BY a ORDER BY b)
65 **     FROM t1;
66 **
67 **   Must be transformed to:
68 **
69 **     SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
70 **         SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
71 **           SELECT a, e, c, d, b FROM t1 ORDER BY a, b
72 **         ) ORDER BY c, d
73 **     ) ORDER BY e;
74 **
75 **   so that both min() and max() may process rows in the order defined by
76 **   their respective window declarations.
77 **
78 ** INTERFACE WITH SELECT.C
79 **
80 **   When processing the rewritten SELECT statement, code in select.c calls
81 **   sqlite3WhereBegin() to begin iterating through the results of the
82 **   sub-query, which is always implemented as a co-routine. It then calls
83 **   sqlite3WindowCodeStep() to process rows and finish the scan by calling
84 **   sqlite3WhereEnd().
85 **
86 **   sqlite3WindowCodeStep() generates VM code so that, for each row returned
87 **   by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
88 **   When the sub-routine is invoked:
89 **
90 **     * The results of all window-functions for the row are stored
91 **       in the associated Window.regResult registers.
92 **
93 **     * The required terminal values are stored in the current row of
94 **       temp table Window.iEphCsr.
95 **
96 **   In some cases, depending on the window frame and the specific window
97 **   functions invoked, sqlite3WindowCodeStep() caches each entire partition
98 **   in a temp table before returning any rows. In other cases it does not.
99 **   This detail is encapsulated within this file, the code generated by
100 **   select.c is the same in either case.
101 **
102 ** BUILT-IN WINDOW FUNCTIONS
103 **
104 **   This implementation features the following built-in window functions:
105 **
106 **     row_number()
107 **     rank()
108 **     dense_rank()
109 **     percent_rank()
110 **     cume_dist()
111 **     ntile(N)
112 **     lead(expr [, offset [, default]])
113 **     lag(expr [, offset [, default]])
114 **     first_value(expr)
115 **     last_value(expr)
116 **     nth_value(expr, N)
117 **
118 **   These are the same built-in window functions supported by Postgres.
119 **   Although the behaviour of aggregate window functions (functions that
120 **   can be used as either aggregates or window funtions) allows them to
121 **   be implemented using an API, built-in window functions are much more
122 **   esoteric. Additionally, some window functions (e.g. nth_value())
123 **   may only be implemented by caching the entire partition in memory.
124 **   As such, some built-in window functions use the same API as aggregate
125 **   window functions and some are implemented directly using VDBE
126 **   instructions. Additionally, for those functions that use the API, the
127 **   window frame is sometimes modified before the SELECT statement is
128 **   rewritten. For example, regardless of the specified window frame, the
129 **   row_number() function always uses:
130 **
131 **     ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
132 **
133 **   See sqlite3WindowUpdate() for details.
134 **
135 **   As well as some of the built-in window functions, aggregate window
136 **   functions min() and max() are implemented using VDBE instructions if
137 **   the start of the window frame is declared as anything other than
138 **   UNBOUNDED PRECEDING.
139 */
140 
141 /*
142 ** Implementation of built-in window function row_number(). Assumes that the
143 ** window frame has been coerced to:
144 **
145 **   ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
146 */
row_numberStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)147 static void row_numberStepFunc(
148   sqlite3_context *pCtx,
149   int nArg,
150   sqlite3_value **apArg
151 ){
152   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
153   if( p ) (*p)++;
154   UNUSED_PARAMETER(nArg);
155   UNUSED_PARAMETER(apArg);
156 }
row_numberValueFunc(sqlite3_context * pCtx)157 static void row_numberValueFunc(sqlite3_context *pCtx){
158   i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
159   sqlite3_result_int64(pCtx, (p ? *p : 0));
160 }
161 
162 /*
163 ** Context object type used by rank(), dense_rank(), percent_rank() and
164 ** cume_dist().
165 */
166 struct CallCount {
167   i64 nValue;
168   i64 nStep;
169   i64 nTotal;
170 };
171 
172 /*
173 ** Implementation of built-in window function dense_rank(). Assumes that
174 ** the window frame has been set to:
175 **
176 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
177 */
dense_rankStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)178 static void dense_rankStepFunc(
179   sqlite3_context *pCtx,
180   int nArg,
181   sqlite3_value **apArg
182 ){
183   struct CallCount *p;
184   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
185   if( p ) p->nStep = 1;
186   UNUSED_PARAMETER(nArg);
187   UNUSED_PARAMETER(apArg);
188 }
dense_rankValueFunc(sqlite3_context * pCtx)189 static void dense_rankValueFunc(sqlite3_context *pCtx){
190   struct CallCount *p;
191   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
192   if( p ){
193     if( p->nStep ){
194       p->nValue++;
195       p->nStep = 0;
196     }
197     sqlite3_result_int64(pCtx, p->nValue);
198   }
199 }
200 
201 /*
202 ** Implementation of built-in window function nth_value(). This
203 ** implementation is used in "slow mode" only - when the EXCLUDE clause
204 ** is not set to the default value "NO OTHERS".
205 */
206 struct NthValueCtx {
207   i64 nStep;
208   sqlite3_value *pValue;
209 };
nth_valueStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)210 static void nth_valueStepFunc(
211   sqlite3_context *pCtx,
212   int nArg,
213   sqlite3_value **apArg
214 ){
215   struct NthValueCtx *p;
216   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
217   if( p ){
218     i64 iVal;
219     switch( sqlite3_value_numeric_type(apArg[1]) ){
220       case SQLITE_INTEGER:
221         iVal = sqlite3_value_int64(apArg[1]);
222         break;
223       case SQLITE_FLOAT: {
224         double fVal = sqlite3_value_double(apArg[1]);
225         if( ((i64)fVal)!=fVal ) goto error_out;
226         iVal = (i64)fVal;
227         break;
228       }
229       default:
230         goto error_out;
231     }
232     if( iVal<=0 ) goto error_out;
233 
234     p->nStep++;
235     if( iVal==p->nStep ){
236       p->pValue = sqlite3_value_dup(apArg[0]);
237       if( !p->pValue ){
238         sqlite3_result_error_nomem(pCtx);
239       }
240     }
241   }
242   UNUSED_PARAMETER(nArg);
243   UNUSED_PARAMETER(apArg);
244   return;
245 
246  error_out:
247   sqlite3_result_error(
248       pCtx, "second argument to nth_value must be a positive integer", -1
249   );
250 }
nth_valueFinalizeFunc(sqlite3_context * pCtx)251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){
252   struct NthValueCtx *p;
253   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0);
254   if( p && p->pValue ){
255     sqlite3_result_value(pCtx, p->pValue);
256     sqlite3_value_free(p->pValue);
257     p->pValue = 0;
258   }
259 }
260 #define nth_valueInvFunc noopStepFunc
261 #define nth_valueValueFunc noopValueFunc
262 
first_valueStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)263 static void first_valueStepFunc(
264   sqlite3_context *pCtx,
265   int nArg,
266   sqlite3_value **apArg
267 ){
268   struct NthValueCtx *p;
269   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
270   if( p && p->pValue==0 ){
271     p->pValue = sqlite3_value_dup(apArg[0]);
272     if( !p->pValue ){
273       sqlite3_result_error_nomem(pCtx);
274     }
275   }
276   UNUSED_PARAMETER(nArg);
277   UNUSED_PARAMETER(apArg);
278 }
first_valueFinalizeFunc(sqlite3_context * pCtx)279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){
280   struct NthValueCtx *p;
281   p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
282   if( p && p->pValue ){
283     sqlite3_result_value(pCtx, p->pValue);
284     sqlite3_value_free(p->pValue);
285     p->pValue = 0;
286   }
287 }
288 #define first_valueInvFunc noopStepFunc
289 #define first_valueValueFunc noopValueFunc
290 
291 /*
292 ** Implementation of built-in window function rank(). Assumes that
293 ** the window frame has been set to:
294 **
295 **   RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
296 */
rankStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)297 static void rankStepFunc(
298   sqlite3_context *pCtx,
299   int nArg,
300   sqlite3_value **apArg
301 ){
302   struct CallCount *p;
303   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
304   if( p ){
305     p->nStep++;
306     if( p->nValue==0 ){
307       p->nValue = p->nStep;
308     }
309   }
310   UNUSED_PARAMETER(nArg);
311   UNUSED_PARAMETER(apArg);
312 }
rankValueFunc(sqlite3_context * pCtx)313 static void rankValueFunc(sqlite3_context *pCtx){
314   struct CallCount *p;
315   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
316   if( p ){
317     sqlite3_result_int64(pCtx, p->nValue);
318     p->nValue = 0;
319   }
320 }
321 
322 /*
323 ** Implementation of built-in window function percent_rank(). Assumes that
324 ** the window frame has been set to:
325 **
326 **   GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
327 */
percent_rankStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)328 static void percent_rankStepFunc(
329   sqlite3_context *pCtx,
330   int nArg,
331   sqlite3_value **apArg
332 ){
333   struct CallCount *p;
334   UNUSED_PARAMETER(nArg); assert( nArg==0 );
335   UNUSED_PARAMETER(apArg);
336   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
337   if( p ){
338     p->nTotal++;
339   }
340 }
percent_rankInvFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)341 static void percent_rankInvFunc(
342   sqlite3_context *pCtx,
343   int nArg,
344   sqlite3_value **apArg
345 ){
346   struct CallCount *p;
347   UNUSED_PARAMETER(nArg); assert( nArg==0 );
348   UNUSED_PARAMETER(apArg);
349   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
350   p->nStep++;
351 }
percent_rankValueFunc(sqlite3_context * pCtx)352 static void percent_rankValueFunc(sqlite3_context *pCtx){
353   struct CallCount *p;
354   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
355   if( p ){
356     p->nValue = p->nStep;
357     if( p->nTotal>1 ){
358       double r = (double)p->nValue / (double)(p->nTotal-1);
359       sqlite3_result_double(pCtx, r);
360     }else{
361       sqlite3_result_double(pCtx, 0.0);
362     }
363   }
364 }
365 #define percent_rankFinalizeFunc percent_rankValueFunc
366 
367 /*
368 ** Implementation of built-in window function cume_dist(). Assumes that
369 ** the window frame has been set to:
370 **
371 **   GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING
372 */
cume_distStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)373 static void cume_distStepFunc(
374   sqlite3_context *pCtx,
375   int nArg,
376   sqlite3_value **apArg
377 ){
378   struct CallCount *p;
379   UNUSED_PARAMETER(nArg); assert( nArg==0 );
380   UNUSED_PARAMETER(apArg);
381   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
382   if( p ){
383     p->nTotal++;
384   }
385 }
cume_distInvFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)386 static void cume_distInvFunc(
387   sqlite3_context *pCtx,
388   int nArg,
389   sqlite3_value **apArg
390 ){
391   struct CallCount *p;
392   UNUSED_PARAMETER(nArg); assert( nArg==0 );
393   UNUSED_PARAMETER(apArg);
394   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
395   p->nStep++;
396 }
cume_distValueFunc(sqlite3_context * pCtx)397 static void cume_distValueFunc(sqlite3_context *pCtx){
398   struct CallCount *p;
399   p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0);
400   if( p ){
401     double r = (double)(p->nStep) / (double)(p->nTotal);
402     sqlite3_result_double(pCtx, r);
403   }
404 }
405 #define cume_distFinalizeFunc cume_distValueFunc
406 
407 /*
408 ** Context object for ntile() window function.
409 */
410 struct NtileCtx {
411   i64 nTotal;                     /* Total rows in partition */
412   i64 nParam;                     /* Parameter passed to ntile(N) */
413   i64 iRow;                       /* Current row */
414 };
415 
416 /*
417 ** Implementation of ntile(). This assumes that the window frame has
418 ** been coerced to:
419 **
420 **   ROWS CURRENT ROW AND UNBOUNDED FOLLOWING
421 */
ntileStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)422 static void ntileStepFunc(
423   sqlite3_context *pCtx,
424   int nArg,
425   sqlite3_value **apArg
426 ){
427   struct NtileCtx *p;
428   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
429   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
430   if( p ){
431     if( p->nTotal==0 ){
432       p->nParam = sqlite3_value_int64(apArg[0]);
433       if( p->nParam<=0 ){
434         sqlite3_result_error(
435             pCtx, "argument of ntile must be a positive integer", -1
436         );
437       }
438     }
439     p->nTotal++;
440   }
441 }
ntileInvFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)442 static void ntileInvFunc(
443   sqlite3_context *pCtx,
444   int nArg,
445   sqlite3_value **apArg
446 ){
447   struct NtileCtx *p;
448   assert( nArg==1 ); UNUSED_PARAMETER(nArg);
449   UNUSED_PARAMETER(apArg);
450   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
451   p->iRow++;
452 }
ntileValueFunc(sqlite3_context * pCtx)453 static void ntileValueFunc(sqlite3_context *pCtx){
454   struct NtileCtx *p;
455   p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
456   if( p && p->nParam>0 ){
457     int nSize = (p->nTotal / p->nParam);
458     if( nSize==0 ){
459       sqlite3_result_int64(pCtx, p->iRow+1);
460     }else{
461       i64 nLarge = p->nTotal - p->nParam*nSize;
462       i64 iSmall = nLarge*(nSize+1);
463       i64 iRow = p->iRow;
464 
465       assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
466 
467       if( iRow<iSmall ){
468         sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
469       }else{
470         sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
471       }
472     }
473   }
474 }
475 #define ntileFinalizeFunc ntileValueFunc
476 
477 /*
478 ** Context object for last_value() window function.
479 */
480 struct LastValueCtx {
481   sqlite3_value *pVal;
482   int nVal;
483 };
484 
485 /*
486 ** Implementation of last_value().
487 */
last_valueStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)488 static void last_valueStepFunc(
489   sqlite3_context *pCtx,
490   int nArg,
491   sqlite3_value **apArg
492 ){
493   struct LastValueCtx *p;
494   UNUSED_PARAMETER(nArg);
495   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
496   if( p ){
497     sqlite3_value_free(p->pVal);
498     p->pVal = sqlite3_value_dup(apArg[0]);
499     if( p->pVal==0 ){
500       sqlite3_result_error_nomem(pCtx);
501     }else{
502       p->nVal++;
503     }
504   }
505 }
last_valueInvFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)506 static void last_valueInvFunc(
507   sqlite3_context *pCtx,
508   int nArg,
509   sqlite3_value **apArg
510 ){
511   struct LastValueCtx *p;
512   UNUSED_PARAMETER(nArg);
513   UNUSED_PARAMETER(apArg);
514   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
515   if( ALWAYS(p) ){
516     p->nVal--;
517     if( p->nVal==0 ){
518       sqlite3_value_free(p->pVal);
519       p->pVal = 0;
520     }
521   }
522 }
last_valueValueFunc(sqlite3_context * pCtx)523 static void last_valueValueFunc(sqlite3_context *pCtx){
524   struct LastValueCtx *p;
525   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0);
526   if( p && p->pVal ){
527     sqlite3_result_value(pCtx, p->pVal);
528   }
529 }
last_valueFinalizeFunc(sqlite3_context * pCtx)530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){
531   struct LastValueCtx *p;
532   p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
533   if( p && p->pVal ){
534     sqlite3_result_value(pCtx, p->pVal);
535     sqlite3_value_free(p->pVal);
536     p->pVal = 0;
537   }
538 }
539 
540 /*
541 ** Static names for the built-in window function names.  These static
542 ** names are used, rather than string literals, so that FuncDef objects
543 ** can be associated with a particular window function by direct
544 ** comparison of the zName pointer.  Example:
545 **
546 **       if( pFuncDef->zName==row_valueName ){ ... }
547 */
548 static const char row_numberName[] =   "row_number";
549 static const char dense_rankName[] =   "dense_rank";
550 static const char rankName[] =         "rank";
551 static const char percent_rankName[] = "percent_rank";
552 static const char cume_distName[] =    "cume_dist";
553 static const char ntileName[] =        "ntile";
554 static const char last_valueName[] =   "last_value";
555 static const char nth_valueName[] =    "nth_value";
556 static const char first_valueName[] =  "first_value";
557 static const char leadName[] =         "lead";
558 static const char lagName[] =          "lag";
559 
560 /*
561 ** No-op implementations of xStep() and xFinalize().  Used as place-holders
562 ** for built-in window functions that never call those interfaces.
563 **
564 ** The noopValueFunc() is called but is expected to do nothing.  The
565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to
566 ** let the test coverage routine know not to expect this function to be
567 ** invoked.
568 */
noopStepFunc(sqlite3_context * p,int n,sqlite3_value ** a)569 static void noopStepFunc(    /*NO_TEST*/
570   sqlite3_context *p,        /*NO_TEST*/
571   int n,                     /*NO_TEST*/
572   sqlite3_value **a          /*NO_TEST*/
573 ){                           /*NO_TEST*/
574   UNUSED_PARAMETER(p);       /*NO_TEST*/
575   UNUSED_PARAMETER(n);       /*NO_TEST*/
576   UNUSED_PARAMETER(a);       /*NO_TEST*/
577   assert(0);                 /*NO_TEST*/
578 }                            /*NO_TEST*/
noopValueFunc(sqlite3_context * p)579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
580 
581 /* Window functions that use all window interfaces: xStep, xFinal,
582 ** xValue, and xInverse */
583 #define WINDOWFUNCALL(name,nArg,extra) {                                   \
584   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
585   name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc,               \
586   name ## InvFunc, name ## Name, {0}                                       \
587 }
588 
589 /* Window functions that are implemented using bytecode and thus have
590 ** no-op routines for their methods */
591 #define WINDOWFUNCNOOP(name,nArg,extra) {                                  \
592   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
593   noopStepFunc, noopValueFunc, noopValueFunc,                              \
594   noopStepFunc, name ## Name, {0}                                          \
595 }
596 
597 /* Window functions that use all window interfaces: xStep, the
598 ** same routine for xFinalize and xValue and which never call
599 ** xInverse. */
600 #define WINDOWFUNCX(name,nArg,extra) {                                     \
601   nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0,                      \
602   name ## StepFunc, name ## ValueFunc, name ## ValueFunc,                  \
603   noopStepFunc, name ## Name, {0}                                          \
604 }
605 
606 
607 /*
608 ** Register those built-in window functions that are not also aggregates.
609 */
sqlite3WindowFunctions(void)610 void sqlite3WindowFunctions(void){
611   static FuncDef aWindowFuncs[] = {
612     WINDOWFUNCX(row_number, 0, 0),
613     WINDOWFUNCX(dense_rank, 0, 0),
614     WINDOWFUNCX(rank, 0, 0),
615     WINDOWFUNCALL(percent_rank, 0, 0),
616     WINDOWFUNCALL(cume_dist, 0, 0),
617     WINDOWFUNCALL(ntile, 1, 0),
618     WINDOWFUNCALL(last_value, 1, 0),
619     WINDOWFUNCALL(nth_value, 2, 0),
620     WINDOWFUNCALL(first_value, 1, 0),
621     WINDOWFUNCNOOP(lead, 1, 0),
622     WINDOWFUNCNOOP(lead, 2, 0),
623     WINDOWFUNCNOOP(lead, 3, 0),
624     WINDOWFUNCNOOP(lag, 1, 0),
625     WINDOWFUNCNOOP(lag, 2, 0),
626     WINDOWFUNCNOOP(lag, 3, 0),
627   };
628   sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
629 }
630 
windowFind(Parse * pParse,Window * pList,const char * zName)631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){
632   Window *p;
633   for(p=pList; p; p=p->pNextWin){
634     if( sqlite3StrICmp(p->zName, zName)==0 ) break;
635   }
636   if( p==0 ){
637     sqlite3ErrorMsg(pParse, "no such window: %s", zName);
638   }
639   return p;
640 }
641 
642 /*
643 ** This function is called immediately after resolving the function name
644 ** for a window function within a SELECT statement. Argument pList is a
645 ** linked list of WINDOW definitions for the current SELECT statement.
646 ** Argument pFunc is the function definition just resolved and pWin
647 ** is the Window object representing the associated OVER clause. This
648 ** function updates the contents of pWin as follows:
649 **
650 **   * If the OVER clause refered to a named window (as in "max(x) OVER win"),
651 **     search list pList for a matching WINDOW definition, and update pWin
652 **     accordingly. If no such WINDOW clause can be found, leave an error
653 **     in pParse.
654 **
655 **   * If the function is a built-in window function that requires the
656 **     window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
657 **     of this file), pWin is updated here.
658 */
sqlite3WindowUpdate(Parse * pParse,Window * pList,Window * pWin,FuncDef * pFunc)659 void sqlite3WindowUpdate(
660   Parse *pParse,
661   Window *pList,                  /* List of named windows for this SELECT */
662   Window *pWin,                   /* Window frame to update */
663   FuncDef *pFunc                  /* Window function definition */
664 ){
665   if( pWin->zName && pWin->eFrmType==0 ){
666     Window *p = windowFind(pParse, pList, pWin->zName);
667     if( p==0 ) return;
668     pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
669     pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
670     pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
671     pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
672     pWin->eStart = p->eStart;
673     pWin->eEnd = p->eEnd;
674     pWin->eFrmType = p->eFrmType;
675     pWin->eExclude = p->eExclude;
676   }else{
677     sqlite3WindowChain(pParse, pWin, pList);
678   }
679   if( (pWin->eFrmType==TK_RANGE)
680    && (pWin->pStart || pWin->pEnd)
681    && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1)
682   ){
683     sqlite3ErrorMsg(pParse,
684       "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression"
685     );
686   }else
687   if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
688     sqlite3 *db = pParse->db;
689     if( pWin->pFilter ){
690       sqlite3ErrorMsg(pParse,
691           "FILTER clause may only be used with aggregate window functions"
692       );
693     }else{
694       struct WindowUpdate {
695         const char *zFunc;
696         int eFrmType;
697         int eStart;
698         int eEnd;
699       } aUp[] = {
700         { row_numberName,   TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
701         { dense_rankName,   TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
702         { rankName,         TK_RANGE,  TK_UNBOUNDED, TK_CURRENT },
703         { percent_rankName, TK_GROUPS, TK_CURRENT,   TK_UNBOUNDED },
704         { cume_distName,    TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED },
705         { ntileName,        TK_ROWS,   TK_CURRENT,   TK_UNBOUNDED },
706         { leadName,         TK_ROWS,   TK_UNBOUNDED, TK_UNBOUNDED },
707         { lagName,          TK_ROWS,   TK_UNBOUNDED, TK_CURRENT },
708       };
709       int i;
710       for(i=0; i<ArraySize(aUp); i++){
711         if( pFunc->zName==aUp[i].zFunc ){
712           sqlite3ExprDelete(db, pWin->pStart);
713           sqlite3ExprDelete(db, pWin->pEnd);
714           pWin->pEnd = pWin->pStart = 0;
715           pWin->eFrmType = aUp[i].eFrmType;
716           pWin->eStart = aUp[i].eStart;
717           pWin->eEnd = aUp[i].eEnd;
718           pWin->eExclude = 0;
719           if( pWin->eStart==TK_FOLLOWING ){
720             pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1");
721           }
722           break;
723         }
724       }
725     }
726   }
727   pWin->pFunc = pFunc;
728 }
729 
730 /*
731 ** Context object passed through sqlite3WalkExprList() to
732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList().
733 */
734 typedef struct WindowRewrite WindowRewrite;
735 struct WindowRewrite {
736   Window *pWin;
737   SrcList *pSrc;
738   ExprList *pSub;
739   Table *pTab;
740   Select *pSubSelect;             /* Current sub-select, if any */
741 };
742 
743 /*
744 ** Callback function used by selectWindowRewriteEList(). If necessary,
745 ** this function appends to the output expression-list and updates
746 ** expression (*ppExpr) in place.
747 */
selectWindowRewriteExprCb(Walker * pWalker,Expr * pExpr)748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
749   struct WindowRewrite *p = pWalker->u.pRewrite;
750   Parse *pParse = pWalker->pParse;
751   assert( p!=0 );
752   assert( p->pWin!=0 );
753 
754   /* If this function is being called from within a scalar sub-select
755   ** that used by the SELECT statement being processed, only process
756   ** TK_COLUMN expressions that refer to it (the outer SELECT). Do
757   ** not process aggregates or window functions at all, as they belong
758   ** to the scalar sub-select.  */
759   if( p->pSubSelect ){
760     if( pExpr->op!=TK_COLUMN ){
761       return WRC_Continue;
762     }else{
763       int nSrc = p->pSrc->nSrc;
764       int i;
765       for(i=0; i<nSrc; i++){
766         if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
767       }
768       if( i==nSrc ) return WRC_Continue;
769     }
770   }
771 
772   switch( pExpr->op ){
773 
774     case TK_FUNCTION:
775       if( !ExprHasProperty(pExpr, EP_WinFunc) ){
776         break;
777       }else{
778         Window *pWin;
779         for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
780           if( pExpr->y.pWin==pWin ){
781             assert( pWin->pOwner==pExpr );
782             return WRC_Prune;
783           }
784         }
785       }
786       /* no break */ deliberate_fall_through
787 
788     case TK_AGG_FUNCTION:
789     case TK_COLUMN: {
790       int iCol = -1;
791       if( p->pSub ){
792         int i;
793         for(i=0; i<p->pSub->nExpr; i++){
794           if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){
795             iCol = i;
796             break;
797           }
798         }
799       }
800       if( iCol<0 ){
801         Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
802         if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION;
803         p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
804       }
805       if( p->pSub ){
806         int f = pExpr->flags & EP_Collate;
807         assert( ExprHasProperty(pExpr, EP_Static)==0 );
808         ExprSetProperty(pExpr, EP_Static);
809         sqlite3ExprDelete(pParse->db, pExpr);
810         ExprClearProperty(pExpr, EP_Static);
811         memset(pExpr, 0, sizeof(Expr));
812 
813         pExpr->op = TK_COLUMN;
814         pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol);
815         pExpr->iTable = p->pWin->iEphCsr;
816         pExpr->y.pTab = p->pTab;
817         pExpr->flags = f;
818       }
819       if( pParse->db->mallocFailed ) return WRC_Abort;
820       break;
821     }
822 
823     default: /* no-op */
824       break;
825   }
826 
827   return WRC_Continue;
828 }
selectWindowRewriteSelectCb(Walker * pWalker,Select * pSelect)829 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
830   struct WindowRewrite *p = pWalker->u.pRewrite;
831   Select *pSave = p->pSubSelect;
832   if( pSave==pSelect ){
833     return WRC_Continue;
834   }else{
835     p->pSubSelect = pSelect;
836     sqlite3WalkSelect(pWalker, pSelect);
837     p->pSubSelect = pSave;
838   }
839   return WRC_Prune;
840 }
841 
842 
843 /*
844 ** Iterate through each expression in expression-list pEList. For each:
845 **
846 **   * TK_COLUMN,
847 **   * aggregate function, or
848 **   * window function with a Window object that is not a member of the
849 **     Window list passed as the second argument (pWin).
850 **
851 ** Append the node to output expression-list (*ppSub). And replace it
852 ** with a TK_COLUMN that reads the (N-1)th element of table
853 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
854 ** appending the new one.
855 */
selectWindowRewriteEList(Parse * pParse,Window * pWin,SrcList * pSrc,ExprList * pEList,Table * pTab,ExprList ** ppSub)856 static void selectWindowRewriteEList(
857   Parse *pParse,
858   Window *pWin,
859   SrcList *pSrc,
860   ExprList *pEList,               /* Rewrite expressions in this list */
861   Table *pTab,
862   ExprList **ppSub                /* IN/OUT: Sub-select expression-list */
863 ){
864   Walker sWalker;
865   WindowRewrite sRewrite;
866 
867   assert( pWin!=0 );
868   memset(&sWalker, 0, sizeof(Walker));
869   memset(&sRewrite, 0, sizeof(WindowRewrite));
870 
871   sRewrite.pSub = *ppSub;
872   sRewrite.pWin = pWin;
873   sRewrite.pSrc = pSrc;
874   sRewrite.pTab = pTab;
875 
876   sWalker.pParse = pParse;
877   sWalker.xExprCallback = selectWindowRewriteExprCb;
878   sWalker.xSelectCallback = selectWindowRewriteSelectCb;
879   sWalker.u.pRewrite = &sRewrite;
880 
881   (void)sqlite3WalkExprList(&sWalker, pEList);
882 
883   *ppSub = sRewrite.pSub;
884 }
885 
886 /*
887 ** Append a copy of each expression in expression-list pAppend to
888 ** expression list pList. Return a pointer to the result list.
889 */
exprListAppendList(Parse * pParse,ExprList * pList,ExprList * pAppend,int bIntToNull)890 static ExprList *exprListAppendList(
891   Parse *pParse,          /* Parsing context */
892   ExprList *pList,        /* List to which to append. Might be NULL */
893   ExprList *pAppend,      /* List of values to append. Might be NULL */
894   int bIntToNull
895 ){
896   if( pAppend ){
897     int i;
898     int nInit = pList ? pList->nExpr : 0;
899     for(i=0; i<pAppend->nExpr; i++){
900       Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0);
901       assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) );
902       if( bIntToNull && pDup ){
903         int iDummy;
904         Expr *pSub;
905         for(pSub=pDup; ExprHasProperty(pSub, EP_Skip); pSub=pSub->pLeft){
906           assert( pSub );
907         }
908         if( sqlite3ExprIsInteger(pSub, &iDummy) ){
909           pSub->op = TK_NULL;
910           pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse);
911           pSub->u.zToken = 0;
912         }
913       }
914       pList = sqlite3ExprListAppend(pParse, pList, pDup);
915       if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags;
916     }
917   }
918   return pList;
919 }
920 
921 /*
922 ** When rewriting a query, if the new subquery in the FROM clause
923 ** contains TK_AGG_FUNCTION nodes that refer to an outer query,
924 ** then we have to increase the Expr->op2 values of those nodes
925 ** due to the extra subquery layer that was added.
926 **
927 ** See also the incrAggDepth() routine in resolve.c
928 */
sqlite3WindowExtraAggFuncDepth(Walker * pWalker,Expr * pExpr)929 static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){
930   if( pExpr->op==TK_AGG_FUNCTION
931    && pExpr->op2>=pWalker->walkerDepth
932   ){
933     pExpr->op2++;
934   }
935   return WRC_Continue;
936 }
937 
938 /*
939 ** If the SELECT statement passed as the second argument does not invoke
940 ** any SQL window functions, this function is a no-op. Otherwise, it
941 ** rewrites the SELECT statement so that window function xStep functions
942 ** are invoked in the correct order as described under "SELECT REWRITING"
943 ** at the top of this file.
944 */
sqlite3WindowRewrite(Parse * pParse,Select * p)945 int sqlite3WindowRewrite(Parse *pParse, Select *p){
946   int rc = SQLITE_OK;
947   if( p->pWin && p->pPrior==0 && (p->selFlags & SF_WinRewrite)==0 ){
948     Vdbe *v = sqlite3GetVdbe(pParse);
949     sqlite3 *db = pParse->db;
950     Select *pSub = 0;             /* The subquery */
951     SrcList *pSrc = p->pSrc;
952     Expr *pWhere = p->pWhere;
953     ExprList *pGroupBy = p->pGroupBy;
954     Expr *pHaving = p->pHaving;
955     ExprList *pSort = 0;
956 
957     ExprList *pSublist = 0;       /* Expression list for sub-query */
958     Window *pMWin = p->pWin;      /* Main window object */
959     Window *pWin;                 /* Window object iterator */
960     Table *pTab;
961     Walker w;
962 
963     u32 selFlags = p->selFlags;
964 
965     pTab = sqlite3DbMallocZero(db, sizeof(Table));
966     if( pTab==0 ){
967       return sqlite3ErrorToParser(db, SQLITE_NOMEM);
968     }
969     sqlite3AggInfoPersistWalkerInit(&w, pParse);
970     sqlite3WalkSelect(&w, p);
971 
972     p->pSrc = 0;
973     p->pWhere = 0;
974     p->pGroupBy = 0;
975     p->pHaving = 0;
976     p->selFlags &= ~SF_Aggregate;
977     p->selFlags |= SF_WinRewrite;
978 
979     /* Create the ORDER BY clause for the sub-select. This is the concatenation
980     ** of the window PARTITION and ORDER BY clauses. Then, if this makes it
981     ** redundant, remove the ORDER BY from the parent SELECT.  */
982     pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1);
983     pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1);
984     if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){
985       int nSave = pSort->nExpr;
986       pSort->nExpr = p->pOrderBy->nExpr;
987       if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
988         sqlite3ExprListDelete(db, p->pOrderBy);
989         p->pOrderBy = 0;
990       }
991       pSort->nExpr = nSave;
992     }
993 
994     /* Assign a cursor number for the ephemeral table used to buffer rows.
995     ** The OpenEphemeral instruction is coded later, after it is known how
996     ** many columns the table will have.  */
997     pMWin->iEphCsr = pParse->nTab++;
998     pParse->nTab += 3;
999 
1000     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist);
1001     selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist);
1002     pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
1003 
1004     /* Append the PARTITION BY and ORDER BY expressions to the to the
1005     ** sub-select expression list. They are required to figure out where
1006     ** boundaries for partitions and sets of peer rows lie.  */
1007     pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0);
1008     pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);
1009 
1010     /* Append the arguments passed to each window function to the
1011     ** sub-select expression list. Also allocate two registers for each
1012     ** window function - one for the accumulator, another for interim
1013     ** results.  */
1014     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1015       ExprList *pArgs = pWin->pOwner->x.pList;
1016       if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){
1017         selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist);
1018         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1019         pWin->bExprArgs = 1;
1020       }else{
1021         pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1022         pSublist = exprListAppendList(pParse, pSublist, pArgs, 0);
1023       }
1024       if( pWin->pFilter ){
1025         Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
1026         pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
1027       }
1028       pWin->regAccum = ++pParse->nMem;
1029       pWin->regResult = ++pParse->nMem;
1030       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1031     }
1032 
1033     /* If there is no ORDER BY or PARTITION BY clause, and the window
1034     ** function accepts zero arguments, and there are no other columns
1035     ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
1036     ** that pSublist is still NULL here. Add a constant expression here to
1037     ** keep everything legal in this case.
1038     */
1039     if( pSublist==0 ){
1040       pSublist = sqlite3ExprListAppend(pParse, 0,
1041         sqlite3Expr(db, TK_INTEGER, "0")
1042       );
1043     }
1044 
1045     pSub = sqlite3SelectNew(
1046         pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
1047     );
1048     SELECTTRACE(1,pParse,pSub,
1049        ("New window-function subquery in FROM clause of (%u/%p)\n",
1050        p->selId, p));
1051     p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1052     if( p->pSrc ){
1053       Table *pTab2;
1054       p->pSrc->a[0].pSelect = pSub;
1055       sqlite3SrcListAssignCursors(pParse, p->pSrc);
1056       pSub->selFlags |= SF_Expanded;
1057       pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE);
1058       pSub->selFlags |= (selFlags & SF_Aggregate);
1059       if( pTab2==0 ){
1060         /* Might actually be some other kind of error, but in that case
1061         ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get
1062         ** the correct error message regardless. */
1063         rc = SQLITE_NOMEM;
1064       }else{
1065         memcpy(pTab, pTab2, sizeof(Table));
1066         pTab->tabFlags |= TF_Ephemeral;
1067         p->pSrc->a[0].pTab = pTab;
1068         pTab = pTab2;
1069         memset(&w, 0, sizeof(w));
1070         w.xExprCallback = sqlite3WindowExtraAggFuncDepth;
1071         w.xSelectCallback = sqlite3WalkerDepthIncrease;
1072         w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
1073         sqlite3WalkSelect(&w, pSub);
1074       }
1075     }else{
1076       sqlite3SelectDelete(db, pSub);
1077     }
1078     if( db->mallocFailed ) rc = SQLITE_NOMEM;
1079     sqlite3DbFree(db, pTab);
1080   }
1081 
1082   if( rc ){
1083     if( pParse->nErr==0 ){
1084       assert( pParse->db->mallocFailed );
1085       sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM);
1086     }
1087   }
1088   return rc;
1089 }
1090 
1091 /*
1092 ** Unlink the Window object from the Select to which it is attached,
1093 ** if it is attached.
1094 */
sqlite3WindowUnlinkFromSelect(Window * p)1095 void sqlite3WindowUnlinkFromSelect(Window *p){
1096   if( p->ppThis ){
1097     *p->ppThis = p->pNextWin;
1098     if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis;
1099     p->ppThis = 0;
1100   }
1101 }
1102 
1103 /*
1104 ** Free the Window object passed as the second argument.
1105 */
sqlite3WindowDelete(sqlite3 * db,Window * p)1106 void sqlite3WindowDelete(sqlite3 *db, Window *p){
1107   if( p ){
1108     sqlite3WindowUnlinkFromSelect(p);
1109     sqlite3ExprDelete(db, p->pFilter);
1110     sqlite3ExprListDelete(db, p->pPartition);
1111     sqlite3ExprListDelete(db, p->pOrderBy);
1112     sqlite3ExprDelete(db, p->pEnd);
1113     sqlite3ExprDelete(db, p->pStart);
1114     sqlite3DbFree(db, p->zName);
1115     sqlite3DbFree(db, p->zBase);
1116     sqlite3DbFree(db, p);
1117   }
1118 }
1119 
1120 /*
1121 ** Free the linked list of Window objects starting at the second argument.
1122 */
sqlite3WindowListDelete(sqlite3 * db,Window * p)1123 void sqlite3WindowListDelete(sqlite3 *db, Window *p){
1124   while( p ){
1125     Window *pNext = p->pNextWin;
1126     sqlite3WindowDelete(db, p);
1127     p = pNext;
1128   }
1129 }
1130 
1131 /*
1132 ** The argument expression is an PRECEDING or FOLLOWING offset.  The
1133 ** value should be a non-negative integer.  If the value is not a
1134 ** constant, change it to NULL.  The fact that it is then a non-negative
1135 ** integer will be caught later.  But it is important not to leave
1136 ** variable values in the expression tree.
1137 */
sqlite3WindowOffsetExpr(Parse * pParse,Expr * pExpr)1138 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
1139   if( 0==sqlite3ExprIsConstant(pExpr) ){
1140     if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr);
1141     sqlite3ExprDelete(pParse->db, pExpr);
1142     pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
1143   }
1144   return pExpr;
1145 }
1146 
1147 /*
1148 ** Allocate and return a new Window object describing a Window Definition.
1149 */
sqlite3WindowAlloc(Parse * pParse,int eType,int eStart,Expr * pStart,int eEnd,Expr * pEnd,u8 eExclude)1150 Window *sqlite3WindowAlloc(
1151   Parse *pParse,    /* Parsing context */
1152   int eType,        /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */
1153   int eStart,       /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
1154   Expr *pStart,     /* Start window size if TK_PRECEDING or FOLLOWING */
1155   int eEnd,         /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
1156   Expr *pEnd,       /* End window size if TK_FOLLOWING or PRECEDING */
1157   u8 eExclude       /* EXCLUDE clause */
1158 ){
1159   Window *pWin = 0;
1160   int bImplicitFrame = 0;
1161 
1162   /* Parser assures the following: */
1163   assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS );
1164   assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
1165            || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
1166   assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
1167            || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
1168   assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
1169   assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
1170 
1171   if( eType==0 ){
1172     bImplicitFrame = 1;
1173     eType = TK_RANGE;
1174   }
1175 
1176   /* Additionally, the
1177   ** starting boundary type may not occur earlier in the following list than
1178   ** the ending boundary type:
1179   **
1180   **   UNBOUNDED PRECEDING
1181   **   <expr> PRECEDING
1182   **   CURRENT ROW
1183   **   <expr> FOLLOWING
1184   **   UNBOUNDED FOLLOWING
1185   **
1186   ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
1187   ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
1188   ** frame boundary.
1189   */
1190   if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
1191    || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
1192   ){
1193     sqlite3ErrorMsg(pParse, "unsupported frame specification");
1194     goto windowAllocErr;
1195   }
1196 
1197   pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1198   if( pWin==0 ) goto windowAllocErr;
1199   pWin->eFrmType = eType;
1200   pWin->eStart = eStart;
1201   pWin->eEnd = eEnd;
1202   if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){
1203     eExclude = TK_NO;
1204   }
1205   pWin->eExclude = eExclude;
1206   pWin->bImplicitFrame = bImplicitFrame;
1207   pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
1208   pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
1209   return pWin;
1210 
1211 windowAllocErr:
1212   sqlite3ExprDelete(pParse->db, pEnd);
1213   sqlite3ExprDelete(pParse->db, pStart);
1214   return 0;
1215 }
1216 
1217 /*
1218 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window
1219 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the
1220 ** equivalent nul-terminated string.
1221 */
sqlite3WindowAssemble(Parse * pParse,Window * pWin,ExprList * pPartition,ExprList * pOrderBy,Token * pBase)1222 Window *sqlite3WindowAssemble(
1223   Parse *pParse,
1224   Window *pWin,
1225   ExprList *pPartition,
1226   ExprList *pOrderBy,
1227   Token *pBase
1228 ){
1229   if( pWin ){
1230     pWin->pPartition = pPartition;
1231     pWin->pOrderBy = pOrderBy;
1232     if( pBase ){
1233       pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n);
1234     }
1235   }else{
1236     sqlite3ExprListDelete(pParse->db, pPartition);
1237     sqlite3ExprListDelete(pParse->db, pOrderBy);
1238   }
1239   return pWin;
1240 }
1241 
1242 /*
1243 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase
1244 ** is the base window. Earlier windows from the same WINDOW clause are
1245 ** stored in the linked list starting at pWin->pNextWin. This function
1246 ** either updates *pWin according to the base specification, or else
1247 ** leaves an error in pParse.
1248 */
sqlite3WindowChain(Parse * pParse,Window * pWin,Window * pList)1249 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){
1250   if( pWin->zBase ){
1251     sqlite3 *db = pParse->db;
1252     Window *pExist = windowFind(pParse, pList, pWin->zBase);
1253     if( pExist ){
1254       const char *zErr = 0;
1255       /* Check for errors */
1256       if( pWin->pPartition ){
1257         zErr = "PARTITION clause";
1258       }else if( pExist->pOrderBy && pWin->pOrderBy ){
1259         zErr = "ORDER BY clause";
1260       }else if( pExist->bImplicitFrame==0 ){
1261         zErr = "frame specification";
1262       }
1263       if( zErr ){
1264         sqlite3ErrorMsg(pParse,
1265             "cannot override %s of window: %s", zErr, pWin->zBase
1266         );
1267       }else{
1268         pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0);
1269         if( pExist->pOrderBy ){
1270           assert( pWin->pOrderBy==0 );
1271           pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0);
1272         }
1273         sqlite3DbFree(db, pWin->zBase);
1274         pWin->zBase = 0;
1275       }
1276     }
1277   }
1278 }
1279 
1280 /*
1281 ** Attach window object pWin to expression p.
1282 */
sqlite3WindowAttach(Parse * pParse,Expr * p,Window * pWin)1283 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
1284   if( p ){
1285     assert( p->op==TK_FUNCTION );
1286     assert( pWin );
1287     p->y.pWin = pWin;
1288     ExprSetProperty(p, EP_WinFunc);
1289     pWin->pOwner = p;
1290     if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){
1291       sqlite3ErrorMsg(pParse,
1292           "DISTINCT is not supported for window functions"
1293       );
1294     }
1295   }else{
1296     sqlite3WindowDelete(pParse->db, pWin);
1297   }
1298 }
1299 
1300 /*
1301 ** Possibly link window pWin into the list at pSel->pWin (window functions
1302 ** to be processed as part of SELECT statement pSel). The window is linked
1303 ** in if either (a) there are no other windows already linked to this
1304 ** SELECT, or (b) the windows already linked use a compatible window frame.
1305 */
sqlite3WindowLink(Select * pSel,Window * pWin)1306 void sqlite3WindowLink(Select *pSel, Window *pWin){
1307   if( pSel!=0
1308    && (0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0))
1309   ){
1310     pWin->pNextWin = pSel->pWin;
1311     if( pSel->pWin ){
1312       pSel->pWin->ppThis = &pWin->pNextWin;
1313     }
1314     pSel->pWin = pWin;
1315     pWin->ppThis = &pSel->pWin;
1316   }
1317 }
1318 
1319 /*
1320 ** Return 0 if the two window objects are identical, 1 if they are
1321 ** different, or 2 if it cannot be determined if the objects are identical
1322 ** or not. Identical window objects can be processed in a single scan.
1323 */
sqlite3WindowCompare(Parse * pParse,Window * p1,Window * p2,int bFilter)1324 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){
1325   int res;
1326   if( NEVER(p1==0) || NEVER(p2==0) ) return 1;
1327   if( p1->eFrmType!=p2->eFrmType ) return 1;
1328   if( p1->eStart!=p2->eStart ) return 1;
1329   if( p1->eEnd!=p2->eEnd ) return 1;
1330   if( p1->eExclude!=p2->eExclude ) return 1;
1331   if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
1332   if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
1333   if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){
1334     return res;
1335   }
1336   if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){
1337     return res;
1338   }
1339   if( bFilter ){
1340     if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){
1341       return res;
1342     }
1343   }
1344   return 0;
1345 }
1346 
1347 
1348 /*
1349 ** This is called by code in select.c before it calls sqlite3WhereBegin()
1350 ** to begin iterating through the sub-query results. It is used to allocate
1351 ** and initialize registers and cursors used by sqlite3WindowCodeStep().
1352 */
sqlite3WindowCodeInit(Parse * pParse,Select * pSelect)1353 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){
1354   int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr;
1355   Window *pMWin = pSelect->pWin;
1356   Window *pWin;
1357   Vdbe *v = sqlite3GetVdbe(pParse);
1358 
1359   sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr);
1360   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr);
1361   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr);
1362   sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr);
1363 
1364   /* Allocate registers to use for PARTITION BY values, if any. Initialize
1365   ** said registers to NULL.  */
1366   if( pMWin->pPartition ){
1367     int nExpr = pMWin->pPartition->nExpr;
1368     pMWin->regPart = pParse->nMem+1;
1369     pParse->nMem += nExpr;
1370     sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1);
1371   }
1372 
1373   pMWin->regOne = ++pParse->nMem;
1374   sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne);
1375 
1376   if( pMWin->eExclude ){
1377     pMWin->regStartRowid = ++pParse->nMem;
1378     pMWin->regEndRowid = ++pParse->nMem;
1379     pMWin->csrApp = pParse->nTab++;
1380     sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
1381     sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
1382     sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr);
1383     return;
1384   }
1385 
1386   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1387     FuncDef *p = pWin->pFunc;
1388     if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
1389       /* The inline versions of min() and max() require a single ephemeral
1390       ** table and 3 registers. The registers are used as follows:
1391       **
1392       **   regApp+0: slot to copy min()/max() argument to for MakeRecord
1393       **   regApp+1: integer value used to ensure keys are unique
1394       **   regApp+2: output of MakeRecord
1395       */
1396       ExprList *pList = pWin->pOwner->x.pList;
1397       KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
1398       pWin->csrApp = pParse->nTab++;
1399       pWin->regApp = pParse->nMem+1;
1400       pParse->nMem += 3;
1401       if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){
1402         assert( pKeyInfo->aSortFlags[0]==0 );
1403         pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC;
1404       }
1405       sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
1406       sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1407       sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1408     }
1409     else if( p->zName==nth_valueName || p->zName==first_valueName ){
1410       /* Allocate two registers at pWin->regApp. These will be used to
1411       ** store the start and end index of the current frame.  */
1412       pWin->regApp = pParse->nMem+1;
1413       pWin->csrApp = pParse->nTab++;
1414       pParse->nMem += 2;
1415       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1416     }
1417     else if( p->zName==leadName || p->zName==lagName ){
1418       pWin->csrApp = pParse->nTab++;
1419       sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1420     }
1421   }
1422 }
1423 
1424 #define WINDOW_STARTING_INT  0
1425 #define WINDOW_ENDING_INT    1
1426 #define WINDOW_NTH_VALUE_INT 2
1427 #define WINDOW_STARTING_NUM  3
1428 #define WINDOW_ENDING_NUM    4
1429 
1430 /*
1431 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
1432 ** value of the second argument to nth_value() (eCond==2) has just been
1433 ** evaluated and the result left in register reg. This function generates VM
1434 ** code to check that the value is a non-negative integer and throws an
1435 ** exception if it is not.
1436 */
windowCheckValue(Parse * pParse,int reg,int eCond)1437 static void windowCheckValue(Parse *pParse, int reg, int eCond){
1438   static const char *azErr[] = {
1439     "frame starting offset must be a non-negative integer",
1440     "frame ending offset must be a non-negative integer",
1441     "second argument to nth_value must be a positive integer",
1442     "frame starting offset must be a non-negative number",
1443     "frame ending offset must be a non-negative number",
1444   };
1445   static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge };
1446   Vdbe *v = sqlite3GetVdbe(pParse);
1447   int regZero = sqlite3GetTempReg(pParse);
1448   assert( eCond>=0 && eCond<ArraySize(azErr) );
1449   sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
1450   if( eCond>=WINDOW_STARTING_NUM ){
1451     int regString = sqlite3GetTempReg(pParse);
1452     sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
1453     sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg);
1454     sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL);
1455     VdbeCoverage(v);
1456     assert( eCond==3 || eCond==4 );
1457     VdbeCoverageIf(v, eCond==3);
1458     VdbeCoverageIf(v, eCond==4);
1459   }else{
1460     sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
1461     VdbeCoverage(v);
1462     assert( eCond==0 || eCond==1 || eCond==2 );
1463     VdbeCoverageIf(v, eCond==0);
1464     VdbeCoverageIf(v, eCond==1);
1465     VdbeCoverageIf(v, eCond==2);
1466   }
1467   sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
1468   VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */
1469   VdbeCoverageNeverNullIf(v, eCond==1); /*   the OP_MustBeInt */
1470   VdbeCoverageNeverNullIf(v, eCond==2);
1471   VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */
1472   VdbeCoverageNeverNullIf(v, eCond==4); /*   the OP_Ge */
1473   sqlite3MayAbort(pParse);
1474   sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
1475   sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
1476   sqlite3ReleaseTempReg(pParse, regZero);
1477 }
1478 
1479 /*
1480 ** Return the number of arguments passed to the window-function associated
1481 ** with the object passed as the only argument to this function.
1482 */
windowArgCount(Window * pWin)1483 static int windowArgCount(Window *pWin){
1484   ExprList *pList = pWin->pOwner->x.pList;
1485   return (pList ? pList->nExpr : 0);
1486 }
1487 
1488 typedef struct WindowCodeArg WindowCodeArg;
1489 typedef struct WindowCsrAndReg WindowCsrAndReg;
1490 
1491 /*
1492 ** See comments above struct WindowCodeArg.
1493 */
1494 struct WindowCsrAndReg {
1495   int csr;                        /* Cursor number */
1496   int reg;                        /* First in array of peer values */
1497 };
1498 
1499 /*
1500 ** A single instance of this structure is allocated on the stack by
1501 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper
1502 ** routines. This is to reduce the number of arguments required by each
1503 ** helper function.
1504 **
1505 ** regArg:
1506 **   Each window function requires an accumulator register (just as an
1507 **   ordinary aggregate function does). This variable is set to the first
1508 **   in an array of accumulator registers - one for each window function
1509 **   in the WindowCodeArg.pMWin list.
1510 **
1511 ** eDelete:
1512 **   The window functions implementation sometimes caches the input rows
1513 **   that it processes in a temporary table. If it is not zero, this
1514 **   variable indicates when rows may be removed from the temp table (in
1515 **   order to reduce memory requirements - it would always be safe just
1516 **   to leave them there). Possible values for eDelete are:
1517 **
1518 **      WINDOW_RETURN_ROW:
1519 **        An input row can be discarded after it is returned to the caller.
1520 **
1521 **      WINDOW_AGGINVERSE:
1522 **        An input row can be discarded after the window functions xInverse()
1523 **        callbacks have been invoked in it.
1524 **
1525 **      WINDOW_AGGSTEP:
1526 **        An input row can be discarded after the window functions xStep()
1527 **        callbacks have been invoked in it.
1528 **
1529 ** start,current,end
1530 **   Consider a window-frame similar to the following:
1531 **
1532 **     (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
1533 **
1534 **   The windows functions implmentation caches the input rows in a temp
1535 **   table, sorted by "a, b" (it actually populates the cache lazily, and
1536 **   aggressively removes rows once they are no longer required, but that's
1537 **   a mere detail). It keeps three cursors open on the temp table. One
1538 **   (current) that points to the next row to return to the query engine
1539 **   once its window function values have been calculated. Another (end)
1540 **   points to the next row to call the xStep() method of each window function
1541 **   on (so that it is 2 groups ahead of current). And a third (start) that
1542 **   points to the next row to call the xInverse() method of each window
1543 **   function on.
1544 **
1545 **   Each cursor (start, current and end) consists of a VDBE cursor
1546 **   (WindowCsrAndReg.csr) and an array of registers (starting at
1547 **   WindowCodeArg.reg) that always contains a copy of the peer values
1548 **   read from the corresponding cursor.
1549 **
1550 **   Depending on the window-frame in question, all three cursors may not
1551 **   be required. In this case both WindowCodeArg.csr and reg are set to
1552 **   0.
1553 */
1554 struct WindowCodeArg {
1555   Parse *pParse;             /* Parse context */
1556   Window *pMWin;             /* First in list of functions being processed */
1557   Vdbe *pVdbe;               /* VDBE object */
1558   int addrGosub;             /* OP_Gosub to this address to return one row */
1559   int regGosub;              /* Register used with OP_Gosub(addrGosub) */
1560   int regArg;                /* First in array of accumulator registers */
1561   int eDelete;               /* See above */
1562 
1563   WindowCsrAndReg start;
1564   WindowCsrAndReg current;
1565   WindowCsrAndReg end;
1566 };
1567 
1568 /*
1569 ** Generate VM code to read the window frames peer values from cursor csr into
1570 ** an array of registers starting at reg.
1571 */
windowReadPeerValues(WindowCodeArg * p,int csr,int reg)1572 static void windowReadPeerValues(
1573   WindowCodeArg *p,
1574   int csr,
1575   int reg
1576 ){
1577   Window *pMWin = p->pMWin;
1578   ExprList *pOrderBy = pMWin->pOrderBy;
1579   if( pOrderBy ){
1580     Vdbe *v = sqlite3GetVdbe(p->pParse);
1581     ExprList *pPart = pMWin->pPartition;
1582     int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
1583     int i;
1584     for(i=0; i<pOrderBy->nExpr; i++){
1585       sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i);
1586     }
1587   }
1588 }
1589 
1590 /*
1591 ** Generate VM code to invoke either xStep() (if bInverse is 0) or
1592 ** xInverse (if bInverse is non-zero) for each window function in the
1593 ** linked list starting at pMWin. Or, for built-in window functions
1594 ** that do not use the standard function API, generate the required
1595 ** inline VM code.
1596 **
1597 ** If argument csr is greater than or equal to 0, then argument reg is
1598 ** the first register in an array of registers guaranteed to be large
1599 ** enough to hold the array of arguments for each function. In this case
1600 ** the arguments are extracted from the current row of csr into the
1601 ** array of registers before invoking OP_AggStep or OP_AggInverse
1602 **
1603 ** Or, if csr is less than zero, then the array of registers at reg is
1604 ** already populated with all columns from the current row of the sub-query.
1605 **
1606 ** If argument regPartSize is non-zero, then it is a register containing the
1607 ** number of rows in the current partition.
1608 */
windowAggStep(WindowCodeArg * p,Window * pMWin,int csr,int bInverse,int reg)1609 static void windowAggStep(
1610   WindowCodeArg *p,
1611   Window *pMWin,                  /* Linked list of window functions */
1612   int csr,                        /* Read arguments from this cursor */
1613   int bInverse,                   /* True to invoke xInverse instead of xStep */
1614   int reg                         /* Array of registers */
1615 ){
1616   Parse *pParse = p->pParse;
1617   Vdbe *v = sqlite3GetVdbe(pParse);
1618   Window *pWin;
1619   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1620     FuncDef *pFunc = pWin->pFunc;
1621     int regArg;
1622     int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin);
1623     int i;
1624 
1625     assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );
1626 
1627     /* All OVER clauses in the same window function aggregate step must
1628     ** be the same. */
1629     assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 );
1630 
1631     for(i=0; i<nArg; i++){
1632       if( i!=1 || pFunc->zName!=nth_valueName ){
1633         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
1634       }else{
1635         sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i);
1636       }
1637     }
1638     regArg = reg;
1639 
1640     if( pMWin->regStartRowid==0
1641      && (pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1642      && (pWin->eStart!=TK_UNBOUNDED)
1643     ){
1644       int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
1645       VdbeCoverage(v);
1646       if( bInverse==0 ){
1647         sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
1648         sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
1649         sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
1650         sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
1651       }else{
1652         sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
1653         VdbeCoverageNeverTaken(v);
1654         sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
1655         sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1656       }
1657       sqlite3VdbeJumpHere(v, addrIsNull);
1658     }else if( pWin->regApp ){
1659       assert( pFunc->zName==nth_valueName
1660            || pFunc->zName==first_valueName
1661       );
1662       assert( bInverse==0 || bInverse==1 );
1663       sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
1664     }else if( pFunc->xSFunc!=noopStepFunc ){
1665       int addrIf = 0;
1666       if( pWin->pFilter ){
1667         int regTmp;
1668         assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr );
1669         assert( pWin->bExprArgs || nArg  ||pWin->pOwner->x.pList==0 );
1670         regTmp = sqlite3GetTempReg(pParse);
1671         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
1672         addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
1673         VdbeCoverage(v);
1674         sqlite3ReleaseTempReg(pParse, regTmp);
1675       }
1676 
1677       if( pWin->bExprArgs ){
1678         int iStart = sqlite3VdbeCurrentAddr(v);
1679         VdbeOp *pOp, *pEnd;
1680 
1681         nArg = pWin->pOwner->x.pList->nExpr;
1682         regArg = sqlite3GetTempRange(pParse, nArg);
1683         sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0);
1684 
1685         pEnd = sqlite3VdbeGetOp(v, -1);
1686         for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){
1687           if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){
1688             pOp->p1 = csr;
1689           }
1690         }
1691       }
1692       if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
1693         CollSeq *pColl;
1694         assert( nArg>0 );
1695         pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
1696         sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
1697       }
1698       sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
1699                         bInverse, regArg, pWin->regAccum);
1700       sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
1701       sqlite3VdbeChangeP5(v, (u8)nArg);
1702       if( pWin->bExprArgs ){
1703         sqlite3ReleaseTempRange(pParse, regArg, nArg);
1704       }
1705       if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
1706     }
1707   }
1708 }
1709 
1710 /*
1711 ** Values that may be passed as the second argument to windowCodeOp().
1712 */
1713 #define WINDOW_RETURN_ROW 1
1714 #define WINDOW_AGGINVERSE 2
1715 #define WINDOW_AGGSTEP    3
1716 
1717 /*
1718 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize()
1719 ** (bFin==1) for each window function in the linked list starting at
1720 ** pMWin. Or, for built-in window-functions that do not use the standard
1721 ** API, generate the equivalent VM code.
1722 */
windowAggFinal(WindowCodeArg * p,int bFin)1723 static void windowAggFinal(WindowCodeArg *p, int bFin){
1724   Parse *pParse = p->pParse;
1725   Window *pMWin = p->pMWin;
1726   Vdbe *v = sqlite3GetVdbe(pParse);
1727   Window *pWin;
1728 
1729   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1730     if( pMWin->regStartRowid==0
1731      && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1732      && (pWin->eStart!=TK_UNBOUNDED)
1733     ){
1734       sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1735       sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
1736       VdbeCoverage(v);
1737       sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
1738       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1739     }else if( pWin->regApp ){
1740       assert( pMWin->regStartRowid==0 );
1741     }else{
1742       int nArg = windowArgCount(pWin);
1743       if( bFin ){
1744         sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg);
1745         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1746         sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
1747         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1748       }else{
1749         sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult);
1750         sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1751       }
1752     }
1753   }
1754 }
1755 
1756 /*
1757 ** Generate code to calculate the current values of all window functions in the
1758 ** p->pMWin list by doing a full scan of the current window frame. Store the
1759 ** results in the Window.regResult registers, ready to return the upper
1760 ** layer.
1761 */
windowFullScan(WindowCodeArg * p)1762 static void windowFullScan(WindowCodeArg *p){
1763   Window *pWin;
1764   Parse *pParse = p->pParse;
1765   Window *pMWin = p->pMWin;
1766   Vdbe *v = p->pVdbe;
1767 
1768   int regCRowid = 0;              /* Current rowid value */
1769   int regCPeer = 0;               /* Current peer values */
1770   int regRowid = 0;               /* AggStep rowid value */
1771   int regPeer = 0;                /* AggStep peer values */
1772 
1773   int nPeer;
1774   int lblNext;
1775   int lblBrk;
1776   int addrNext;
1777   int csr;
1778 
1779   VdbeModuleComment((v, "windowFullScan begin"));
1780 
1781   assert( pMWin!=0 );
1782   csr = pMWin->csrApp;
1783   nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
1784 
1785   lblNext = sqlite3VdbeMakeLabel(pParse);
1786   lblBrk = sqlite3VdbeMakeLabel(pParse);
1787 
1788   regCRowid = sqlite3GetTempReg(pParse);
1789   regRowid = sqlite3GetTempReg(pParse);
1790   if( nPeer ){
1791     regCPeer = sqlite3GetTempRange(pParse, nPeer);
1792     regPeer = sqlite3GetTempRange(pParse, nPeer);
1793   }
1794 
1795   sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid);
1796   windowReadPeerValues(p, pMWin->iEphCsr, regCPeer);
1797 
1798   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1799     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1800   }
1801 
1802   sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid);
1803   VdbeCoverage(v);
1804   addrNext = sqlite3VdbeCurrentAddr(v);
1805   sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid);
1806   sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid);
1807   VdbeCoverageNeverNull(v);
1808 
1809   if( pMWin->eExclude==TK_CURRENT ){
1810     sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid);
1811     VdbeCoverageNeverNull(v);
1812   }else if( pMWin->eExclude!=TK_NO ){
1813     int addr;
1814     int addrEq = 0;
1815     KeyInfo *pKeyInfo = 0;
1816 
1817     if( pMWin->pOrderBy ){
1818       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0);
1819     }
1820     if( pMWin->eExclude==TK_TIES ){
1821       addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid);
1822       VdbeCoverageNeverNull(v);
1823     }
1824     if( pKeyInfo ){
1825       windowReadPeerValues(p, csr, regPeer);
1826       sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer);
1827       sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1828       addr = sqlite3VdbeCurrentAddr(v)+1;
1829       sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr);
1830       VdbeCoverageEqNe(v);
1831     }else{
1832       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext);
1833     }
1834     if( addrEq ) sqlite3VdbeJumpHere(v, addrEq);
1835   }
1836 
1837   windowAggStep(p, pMWin, csr, 0, p->regArg);
1838 
1839   sqlite3VdbeResolveLabel(v, lblNext);
1840   sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext);
1841   VdbeCoverage(v);
1842   sqlite3VdbeJumpHere(v, addrNext-1);
1843   sqlite3VdbeJumpHere(v, addrNext+1);
1844   sqlite3ReleaseTempReg(pParse, regRowid);
1845   sqlite3ReleaseTempReg(pParse, regCRowid);
1846   if( nPeer ){
1847     sqlite3ReleaseTempRange(pParse, regPeer, nPeer);
1848     sqlite3ReleaseTempRange(pParse, regCPeer, nPeer);
1849   }
1850 
1851   windowAggFinal(p, 1);
1852   VdbeModuleComment((v, "windowFullScan end"));
1853 }
1854 
1855 /*
1856 ** Invoke the sub-routine at regGosub (generated by code in select.c) to
1857 ** return the current row of Window.iEphCsr. If all window functions are
1858 ** aggregate window functions that use the standard API, a single
1859 ** OP_Gosub instruction is all that this routine generates. Extra VM code
1860 ** for per-row processing is only generated for the following built-in window
1861 ** functions:
1862 **
1863 **   nth_value()
1864 **   first_value()
1865 **   lag()
1866 **   lead()
1867 */
windowReturnOneRow(WindowCodeArg * p)1868 static void windowReturnOneRow(WindowCodeArg *p){
1869   Window *pMWin = p->pMWin;
1870   Vdbe *v = p->pVdbe;
1871 
1872   if( pMWin->regStartRowid ){
1873     windowFullScan(p);
1874   }else{
1875     Parse *pParse = p->pParse;
1876     Window *pWin;
1877 
1878     for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1879       FuncDef *pFunc = pWin->pFunc;
1880       if( pFunc->zName==nth_valueName
1881        || pFunc->zName==first_valueName
1882       ){
1883         int csr = pWin->csrApp;
1884         int lbl = sqlite3VdbeMakeLabel(pParse);
1885         int tmpReg = sqlite3GetTempReg(pParse);
1886         sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1887 
1888         if( pFunc->zName==nth_valueName ){
1889           sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg);
1890           windowCheckValue(pParse, tmpReg, 2);
1891         }else{
1892           sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
1893         }
1894         sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
1895         sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
1896         VdbeCoverageNeverNull(v);
1897         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
1898         VdbeCoverageNeverTaken(v);
1899         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1900         sqlite3VdbeResolveLabel(v, lbl);
1901         sqlite3ReleaseTempReg(pParse, tmpReg);
1902       }
1903       else if( pFunc->zName==leadName || pFunc->zName==lagName ){
1904         int nArg = pWin->pOwner->x.pList->nExpr;
1905         int csr = pWin->csrApp;
1906         int lbl = sqlite3VdbeMakeLabel(pParse);
1907         int tmpReg = sqlite3GetTempReg(pParse);
1908         int iEph = pMWin->iEphCsr;
1909 
1910         if( nArg<3 ){
1911           sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1912         }else{
1913           sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult);
1914         }
1915         sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
1916         if( nArg<2 ){
1917           int val = (pFunc->zName==leadName ? 1 : -1);
1918           sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
1919         }else{
1920           int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
1921           int tmpReg2 = sqlite3GetTempReg(pParse);
1922           sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
1923           sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
1924           sqlite3ReleaseTempReg(pParse, tmpReg2);
1925         }
1926 
1927         sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
1928         VdbeCoverage(v);
1929         sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1930         sqlite3VdbeResolveLabel(v, lbl);
1931         sqlite3ReleaseTempReg(pParse, tmpReg);
1932       }
1933     }
1934   }
1935   sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub);
1936 }
1937 
1938 /*
1939 ** Generate code to set the accumulator register for each window function
1940 ** in the linked list passed as the second argument to NULL. And perform
1941 ** any equivalent initialization required by any built-in window functions
1942 ** in the list.
1943 */
windowInitAccum(Parse * pParse,Window * pMWin)1944 static int windowInitAccum(Parse *pParse, Window *pMWin){
1945   Vdbe *v = sqlite3GetVdbe(pParse);
1946   int regArg;
1947   int nArg = 0;
1948   Window *pWin;
1949   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1950     FuncDef *pFunc = pWin->pFunc;
1951     assert( pWin->regAccum );
1952     sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1953     nArg = MAX(nArg, windowArgCount(pWin));
1954     if( pMWin->regStartRowid==0 ){
1955       if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){
1956         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
1957         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1958       }
1959 
1960       if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
1961         assert( pWin->eStart!=TK_UNBOUNDED );
1962         sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
1963         sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1964       }
1965     }
1966   }
1967   regArg = pParse->nMem+1;
1968   pParse->nMem += nArg;
1969   return regArg;
1970 }
1971 
1972 /*
1973 ** Return true if the current frame should be cached in the ephemeral table,
1974 ** even if there are no xInverse() calls required.
1975 */
windowCacheFrame(Window * pMWin)1976 static int windowCacheFrame(Window *pMWin){
1977   Window *pWin;
1978   if( pMWin->regStartRowid ) return 1;
1979   for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1980     FuncDef *pFunc = pWin->pFunc;
1981     if( (pFunc->zName==nth_valueName)
1982      || (pFunc->zName==first_valueName)
1983      || (pFunc->zName==leadName)
1984      || (pFunc->zName==lagName)
1985     ){
1986       return 1;
1987     }
1988   }
1989   return 0;
1990 }
1991 
1992 /*
1993 ** regOld and regNew are each the first register in an array of size
1994 ** pOrderBy->nExpr. This function generates code to compare the two
1995 ** arrays of registers using the collation sequences and other comparison
1996 ** parameters specified by pOrderBy.
1997 **
1998 ** If the two arrays are not equal, the contents of regNew is copied to
1999 ** regOld and control falls through. Otherwise, if the contents of the arrays
2000 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned.
2001 */
windowIfNewPeer(Parse * pParse,ExprList * pOrderBy,int regNew,int regOld,int addr)2002 static void windowIfNewPeer(
2003   Parse *pParse,
2004   ExprList *pOrderBy,
2005   int regNew,                     /* First in array of new values */
2006   int regOld,                     /* First in array of old values */
2007   int addr                        /* Jump here */
2008 ){
2009   Vdbe *v = sqlite3GetVdbe(pParse);
2010   if( pOrderBy ){
2011     int nVal = pOrderBy->nExpr;
2012     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
2013     sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal);
2014     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2015     sqlite3VdbeAddOp3(v, OP_Jump,
2016       sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1
2017     );
2018     VdbeCoverageEqNe(v);
2019     sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1);
2020   }else{
2021     sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2022   }
2023 }
2024 
2025 /*
2026 ** This function is called as part of generating VM programs for RANGE
2027 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for
2028 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates
2029 ** code equivalent to:
2030 **
2031 **   if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl;
2032 **
2033 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the
2034 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively.
2035 **
2036 ** If the sort-order for the ORDER BY term in the window is DESC, then the
2037 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is
2038 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=",
2039 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op
2040 ** is OP_Ge, the generated code is equivalent to:
2041 **
2042 **   if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl;
2043 **
2044 ** A special type of arithmetic is used such that if csr1.peerVal is not
2045 ** a numeric type (real or integer), then the result of the addition addition
2046 ** or subtraction is a a copy of csr1.peerVal.
2047 */
windowCodeRangeTest(WindowCodeArg * p,int op,int csr1,int regVal,int csr2,int lbl)2048 static void windowCodeRangeTest(
2049   WindowCodeArg *p,
2050   int op,                         /* OP_Ge, OP_Gt, or OP_Le */
2051   int csr1,                       /* Cursor number for cursor 1 */
2052   int regVal,                     /* Register containing non-negative number */
2053   int csr2,                       /* Cursor number for cursor 2 */
2054   int lbl                         /* Jump destination if condition is true */
2055 ){
2056   Parse *pParse = p->pParse;
2057   Vdbe *v = sqlite3GetVdbe(pParse);
2058   ExprList *pOrderBy = p->pMWin->pOrderBy;  /* ORDER BY clause for window */
2059   int reg1 = sqlite3GetTempReg(pParse);     /* Reg. for csr1.peerVal+regVal */
2060   int reg2 = sqlite3GetTempReg(pParse);     /* Reg. for csr2.peerVal */
2061   int regString = ++pParse->nMem;           /* Reg. for constant value '' */
2062   int arith = OP_Add;                       /* OP_Add or OP_Subtract */
2063   int addrGe;                               /* Jump destination */
2064 
2065   assert( op==OP_Ge || op==OP_Gt || op==OP_Le );
2066   assert( pOrderBy && pOrderBy->nExpr==1 );
2067   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){
2068     switch( op ){
2069       case OP_Ge: op = OP_Le; break;
2070       case OP_Gt: op = OP_Lt; break;
2071       default: assert( op==OP_Le ); op = OP_Ge; break;
2072     }
2073     arith = OP_Subtract;
2074   }
2075 
2076   /* Read the peer-value from each cursor into a register */
2077   windowReadPeerValues(p, csr1, reg1);
2078   windowReadPeerValues(p, csr2, reg2);
2079 
2080   VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl",
2081       reg1, (arith==OP_Add ? "+" : "-"), regVal,
2082       ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2
2083   ));
2084 
2085   /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1).
2086   ** This block adds (or subtracts for DESC) the numeric value in regVal
2087   ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob),
2088   ** then leave reg1 as it is. In pseudo-code, this is implemented as:
2089   **
2090   **   if( reg1>='' ) goto addrGe;
2091   **   reg1 = reg1 +/- regVal
2092   **   addrGe:
2093   **
2094   ** Since all strings and blobs are greater-than-or-equal-to an empty string,
2095   ** the add/subtract is skipped for these, as required. If reg1 is a NULL,
2096   ** then the arithmetic is performed, but since adding or subtracting from
2097   ** NULL is always NULL anyway, this case is handled as required too.  */
2098   sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
2099   addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1);
2100   VdbeCoverage(v);
2101   sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1);
2102   sqlite3VdbeJumpHere(v, addrGe);
2103 
2104   /* If the BIGNULL flag is set for the ORDER BY, then it is required to
2105   ** consider NULL values to be larger than all other values, instead of
2106   ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this
2107   ** (and adding that capability causes a performance regression), so
2108   ** instead if the BIGNULL flag is set then cases where either reg1 or
2109   ** reg2 are NULL are handled separately in the following block. The code
2110   ** generated is equivalent to:
2111   **
2112   **   if( reg1 IS NULL ){
2113   **     if( op==OP_Ge ) goto lbl;
2114   **     if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl;
2115   **     if( op==OP_Le && reg2 IS NULL ) goto lbl;
2116   **   }else if( reg2 IS NULL ){
2117   **     if( op==OP_Le ) goto lbl;
2118   **   }
2119   **
2120   ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is
2121   ** not taken, control jumps over the comparison operator coded below this
2122   ** block.  */
2123   if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){
2124     /* This block runs if reg1 contains a NULL. */
2125     int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v);
2126     switch( op ){
2127       case OP_Ge:
2128         sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl);
2129         break;
2130       case OP_Gt:
2131         sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl);
2132         VdbeCoverage(v);
2133         break;
2134       case OP_Le:
2135         sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl);
2136         VdbeCoverage(v);
2137         break;
2138       default: assert( op==OP_Lt ); /* no-op */ break;
2139     }
2140     sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
2141 
2142     /* This block runs if reg1 is not NULL, but reg2 is. */
2143     sqlite3VdbeJumpHere(v, addr);
2144     sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v);
2145     if( op==OP_Gt || op==OP_Ge ){
2146       sqlite3VdbeChangeP2(v, -1, sqlite3VdbeCurrentAddr(v)+1);
2147     }
2148   }
2149 
2150   /* Compare registers reg2 and reg1, taking the jump if required. Note that
2151   ** control skips over this test if the BIGNULL flag is set and either
2152   ** reg1 or reg2 contain a NULL value.  */
2153   sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2154   sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
2155 
2156   assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le );
2157   testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge);
2158   testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt);
2159   testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le);
2160   testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt);
2161   sqlite3ReleaseTempReg(pParse, reg1);
2162   sqlite3ReleaseTempReg(pParse, reg2);
2163 
2164   VdbeModuleComment((v, "CodeRangeTest: end"));
2165 }
2166 
2167 /*
2168 ** Helper function for sqlite3WindowCodeStep(). Each call to this function
2169 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE
2170 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for
2171 ** details.
2172 */
windowCodeOp(WindowCodeArg * p,int op,int regCountdown,int jumpOnEof)2173 static int windowCodeOp(
2174  WindowCodeArg *p,                /* Context object */
2175  int op,                          /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */
2176  int regCountdown,                /* Register for OP_IfPos countdown */
2177  int jumpOnEof                    /* Jump here if stepped cursor reaches EOF */
2178 ){
2179   int csr, reg;
2180   Parse *pParse = p->pParse;
2181   Window *pMWin = p->pMWin;
2182   int ret = 0;
2183   Vdbe *v = p->pVdbe;
2184   int addrContinue = 0;
2185   int bPeer = (pMWin->eFrmType!=TK_ROWS);
2186 
2187   int lblDone = sqlite3VdbeMakeLabel(pParse);
2188   int addrNextRange = 0;
2189 
2190   /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame
2191   ** starts with UNBOUNDED PRECEDING. */
2192   if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){
2193     assert( regCountdown==0 && jumpOnEof==0 );
2194     return 0;
2195   }
2196 
2197   if( regCountdown>0 ){
2198     if( pMWin->eFrmType==TK_RANGE ){
2199       addrNextRange = sqlite3VdbeCurrentAddr(v);
2200       assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP );
2201       if( op==WINDOW_AGGINVERSE ){
2202         if( pMWin->eStart==TK_FOLLOWING ){
2203           windowCodeRangeTest(
2204               p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone
2205           );
2206         }else{
2207           windowCodeRangeTest(
2208               p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone
2209           );
2210         }
2211       }else{
2212         windowCodeRangeTest(
2213             p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone
2214         );
2215       }
2216     }else{
2217       sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1);
2218       VdbeCoverage(v);
2219     }
2220   }
2221 
2222   if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){
2223     windowAggFinal(p, 0);
2224   }
2225   addrContinue = sqlite3VdbeCurrentAddr(v);
2226 
2227   /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or
2228   ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the
2229   ** start cursor does not advance past the end cursor within the
2230   ** temporary table. It otherwise might, if (a>b).  */
2231   if( pMWin->eStart==pMWin->eEnd && regCountdown
2232    && pMWin->eFrmType==TK_RANGE && op==WINDOW_AGGINVERSE
2233   ){
2234     int regRowid1 = sqlite3GetTempReg(pParse);
2235     int regRowid2 = sqlite3GetTempReg(pParse);
2236     sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1);
2237     sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2);
2238     sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1);
2239     VdbeCoverage(v);
2240     sqlite3ReleaseTempReg(pParse, regRowid1);
2241     sqlite3ReleaseTempReg(pParse, regRowid2);
2242     assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING );
2243   }
2244 
2245   switch( op ){
2246     case WINDOW_RETURN_ROW:
2247       csr = p->current.csr;
2248       reg = p->current.reg;
2249       windowReturnOneRow(p);
2250       break;
2251 
2252     case WINDOW_AGGINVERSE:
2253       csr = p->start.csr;
2254       reg = p->start.reg;
2255       if( pMWin->regStartRowid ){
2256         assert( pMWin->regEndRowid );
2257         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1);
2258       }else{
2259         windowAggStep(p, pMWin, csr, 1, p->regArg);
2260       }
2261       break;
2262 
2263     default:
2264       assert( op==WINDOW_AGGSTEP );
2265       csr = p->end.csr;
2266       reg = p->end.reg;
2267       if( pMWin->regStartRowid ){
2268         assert( pMWin->regEndRowid );
2269         sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1);
2270       }else{
2271         windowAggStep(p, pMWin, csr, 0, p->regArg);
2272       }
2273       break;
2274   }
2275 
2276   if( op==p->eDelete ){
2277     sqlite3VdbeAddOp1(v, OP_Delete, csr);
2278     sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
2279   }
2280 
2281   if( jumpOnEof ){
2282     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2);
2283     VdbeCoverage(v);
2284     ret = sqlite3VdbeAddOp0(v, OP_Goto);
2285   }else{
2286     sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer);
2287     VdbeCoverage(v);
2288     if( bPeer ){
2289       sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone);
2290     }
2291   }
2292 
2293   if( bPeer ){
2294     int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
2295     int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0);
2296     windowReadPeerValues(p, csr, regTmp);
2297     windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue);
2298     sqlite3ReleaseTempRange(pParse, regTmp, nReg);
2299   }
2300 
2301   if( addrNextRange ){
2302     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange);
2303   }
2304   sqlite3VdbeResolveLabel(v, lblDone);
2305   return ret;
2306 }
2307 
2308 
2309 /*
2310 ** Allocate and return a duplicate of the Window object indicated by the
2311 ** third argument. Set the Window.pOwner field of the new object to
2312 ** pOwner.
2313 */
sqlite3WindowDup(sqlite3 * db,Expr * pOwner,Window * p)2314 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
2315   Window *pNew = 0;
2316   if( ALWAYS(p) ){
2317     pNew = sqlite3DbMallocZero(db, sizeof(Window));
2318     if( pNew ){
2319       pNew->zName = sqlite3DbStrDup(db, p->zName);
2320       pNew->zBase = sqlite3DbStrDup(db, p->zBase);
2321       pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
2322       pNew->pFunc = p->pFunc;
2323       pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
2324       pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
2325       pNew->eFrmType = p->eFrmType;
2326       pNew->eEnd = p->eEnd;
2327       pNew->eStart = p->eStart;
2328       pNew->eExclude = p->eExclude;
2329       pNew->regResult = p->regResult;
2330       pNew->regAccum = p->regAccum;
2331       pNew->iArgCol = p->iArgCol;
2332       pNew->iEphCsr = p->iEphCsr;
2333       pNew->bExprArgs = p->bExprArgs;
2334       pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
2335       pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
2336       pNew->pOwner = pOwner;
2337       pNew->bImplicitFrame = p->bImplicitFrame;
2338     }
2339   }
2340   return pNew;
2341 }
2342 
2343 /*
2344 ** Return a copy of the linked list of Window objects passed as the
2345 ** second argument.
2346 */
sqlite3WindowListDup(sqlite3 * db,Window * p)2347 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
2348   Window *pWin;
2349   Window *pRet = 0;
2350   Window **pp = &pRet;
2351 
2352   for(pWin=p; pWin; pWin=pWin->pNextWin){
2353     *pp = sqlite3WindowDup(db, 0, pWin);
2354     if( *pp==0 ) break;
2355     pp = &((*pp)->pNextWin);
2356   }
2357 
2358   return pRet;
2359 }
2360 
2361 /*
2362 ** Return true if it can be determined at compile time that expression
2363 ** pExpr evaluates to a value that, when cast to an integer, is greater
2364 ** than zero. False otherwise.
2365 **
2366 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed
2367 ** flag and returns zero.
2368 */
windowExprGtZero(Parse * pParse,Expr * pExpr)2369 static int windowExprGtZero(Parse *pParse, Expr *pExpr){
2370   int ret = 0;
2371   sqlite3 *db = pParse->db;
2372   sqlite3_value *pVal = 0;
2373   sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal);
2374   if( pVal && sqlite3_value_int(pVal)>0 ){
2375     ret = 1;
2376   }
2377   sqlite3ValueFree(pVal);
2378   return ret;
2379 }
2380 
2381 /*
2382 ** sqlite3WhereBegin() has already been called for the SELECT statement
2383 ** passed as the second argument when this function is invoked. It generates
2384 ** code to populate the Window.regResult register for each window function
2385 ** and invoke the sub-routine at instruction addrGosub once for each row.
2386 ** sqlite3WhereEnd() is always called before returning.
2387 **
2388 ** This function handles several different types of window frames, which
2389 ** require slightly different processing. The following pseudo code is
2390 ** used to implement window frames of the form:
2391 **
2392 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2393 **
2394 ** Other window frame types use variants of the following:
2395 **
2396 **     ... loop started by sqlite3WhereBegin() ...
2397 **       if( new partition ){
2398 **         Gosub flush
2399 **       }
2400 **       Insert new row into eph table.
2401 **
2402 **       if( first row of partition ){
2403 **         // Rewind three cursors, all open on the eph table.
2404 **         Rewind(csrEnd);
2405 **         Rewind(csrStart);
2406 **         Rewind(csrCurrent);
2407 **
2408 **         regEnd = <expr2>          // FOLLOWING expression
2409 **         regStart = <expr1>        // PRECEDING expression
2410 **       }else{
2411 **         // First time this branch is taken, the eph table contains two
2412 **         // rows. The first row in the partition, which all three cursors
2413 **         // currently point to, and the following row.
2414 **         AGGSTEP
2415 **         if( (regEnd--)<=0 ){
2416 **           RETURN_ROW
2417 **           if( (regStart--)<=0 ){
2418 **             AGGINVERSE
2419 **           }
2420 **         }
2421 **       }
2422 **     }
2423 **     flush:
2424 **       AGGSTEP
2425 **       while( 1 ){
2426 **         RETURN ROW
2427 **         if( csrCurrent is EOF ) break;
2428 **         if( (regStart--)<=0 ){
2429 **           AggInverse(csrStart)
2430 **           Next(csrStart)
2431 **         }
2432 **       }
2433 **
2434 ** The pseudo-code above uses the following shorthand:
2435 **
2436 **   AGGSTEP:    invoke the aggregate xStep() function for each window function
2437 **               with arguments read from the current row of cursor csrEnd, then
2438 **               step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()).
2439 **
2440 **   RETURN_ROW: return a row to the caller based on the contents of the
2441 **               current row of csrCurrent and the current state of all
2442 **               aggregates. Then step cursor csrCurrent forward one row.
2443 **
2444 **   AGGINVERSE: invoke the aggregate xInverse() function for each window
2445 **               functions with arguments read from the current row of cursor
2446 **               csrStart. Then step csrStart forward one row.
2447 **
2448 ** There are two other ROWS window frames that are handled significantly
2449 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING"
2450 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special
2451 ** cases because they change the order in which the three cursors (csrStart,
2452 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that
2453 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these
2454 ** three.
2455 **
2456 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2457 **
2458 **     ... loop started by sqlite3WhereBegin() ...
2459 **       if( new partition ){
2460 **         Gosub flush
2461 **       }
2462 **       Insert new row into eph table.
2463 **       if( first row of partition ){
2464 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2465 **         regEnd = <expr2>
2466 **         regStart = <expr1>
2467 **       }else{
2468 **         if( (regEnd--)<=0 ){
2469 **           AGGSTEP
2470 **         }
2471 **         RETURN_ROW
2472 **         if( (regStart--)<=0 ){
2473 **           AGGINVERSE
2474 **         }
2475 **       }
2476 **     }
2477 **     flush:
2478 **       if( (regEnd--)<=0 ){
2479 **         AGGSTEP
2480 **       }
2481 **       RETURN_ROW
2482 **
2483 **
2484 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2485 **
2486 **     ... loop started by sqlite3WhereBegin() ...
2487 **     if( new partition ){
2488 **       Gosub flush
2489 **     }
2490 **     Insert new row into eph table.
2491 **     if( first row of partition ){
2492 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2493 **       regEnd = <expr2>
2494 **       regStart = regEnd - <expr1>
2495 **     }else{
2496 **       AGGSTEP
2497 **       if( (regEnd--)<=0 ){
2498 **         RETURN_ROW
2499 **       }
2500 **       if( (regStart--)<=0 ){
2501 **         AGGINVERSE
2502 **       }
2503 **     }
2504 **   }
2505 **   flush:
2506 **     AGGSTEP
2507 **     while( 1 ){
2508 **       if( (regEnd--)<=0 ){
2509 **         RETURN_ROW
2510 **         if( eof ) break;
2511 **       }
2512 **       if( (regStart--)<=0 ){
2513 **         AGGINVERSE
2514 **         if( eof ) break
2515 **       }
2516 **     }
2517 **     while( !eof csrCurrent ){
2518 **       RETURN_ROW
2519 **     }
2520 **
2521 ** For the most part, the patterns above are adapted to support UNBOUNDED by
2522 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and
2523 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING".
2524 ** This is optimized of course - branches that will never be taken and
2525 ** conditions that are always true are omitted from the VM code. The only
2526 ** exceptional case is:
2527 **
2528 **   ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING
2529 **
2530 **     ... loop started by sqlite3WhereBegin() ...
2531 **     if( new partition ){
2532 **       Gosub flush
2533 **     }
2534 **     Insert new row into eph table.
2535 **     if( first row of partition ){
2536 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2537 **       regStart = <expr1>
2538 **     }else{
2539 **       AGGSTEP
2540 **     }
2541 **   }
2542 **   flush:
2543 **     AGGSTEP
2544 **     while( 1 ){
2545 **       if( (regStart--)<=0 ){
2546 **         AGGINVERSE
2547 **         if( eof ) break
2548 **       }
2549 **       RETURN_ROW
2550 **     }
2551 **     while( !eof csrCurrent ){
2552 **       RETURN_ROW
2553 **     }
2554 **
2555 ** Also requiring special handling are the cases:
2556 **
2557 **   ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2558 **   ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2559 **
2560 ** when (expr1 < expr2). This is detected at runtime, not by this function.
2561 ** To handle this case, the pseudo-code programs depicted above are modified
2562 ** slightly to be:
2563 **
2564 **     ... loop started by sqlite3WhereBegin() ...
2565 **     if( new partition ){
2566 **       Gosub flush
2567 **     }
2568 **     Insert new row into eph table.
2569 **     if( first row of partition ){
2570 **       Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2571 **       regEnd = <expr2>
2572 **       regStart = <expr1>
2573 **       if( regEnd < regStart ){
2574 **         RETURN_ROW
2575 **         delete eph table contents
2576 **         continue
2577 **       }
2578 **     ...
2579 **
2580 ** The new "continue" statement in the above jumps to the next iteration
2581 ** of the outer loop - the one started by sqlite3WhereBegin().
2582 **
2583 ** The various GROUPS cases are implemented using the same patterns as
2584 ** ROWS. The VM code is modified slightly so that:
2585 **
2586 **   1. The else branch in the main loop is only taken if the row just
2587 **      added to the ephemeral table is the start of a new group. In
2588 **      other words, it becomes:
2589 **
2590 **         ... loop started by sqlite3WhereBegin() ...
2591 **         if( new partition ){
2592 **           Gosub flush
2593 **         }
2594 **         Insert new row into eph table.
2595 **         if( first row of partition ){
2596 **           Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2597 **           regEnd = <expr2>
2598 **           regStart = <expr1>
2599 **         }else if( new group ){
2600 **           ...
2601 **         }
2602 **       }
2603 **
2604 **   2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or
2605 **      AGGINVERSE step processes the current row of the relevant cursor and
2606 **      all subsequent rows belonging to the same group.
2607 **
2608 ** RANGE window frames are a little different again. As for GROUPS, the
2609 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE
2610 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three
2611 ** basic cases:
2612 **
2613 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2614 **
2615 **     ... loop started by sqlite3WhereBegin() ...
2616 **       if( new partition ){
2617 **         Gosub flush
2618 **       }
2619 **       Insert new row into eph table.
2620 **       if( first row of partition ){
2621 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2622 **         regEnd = <expr2>
2623 **         regStart = <expr1>
2624 **       }else{
2625 **         AGGSTEP
2626 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2627 **           RETURN_ROW
2628 **           while( csrStart.key + regStart) < csrCurrent.key ){
2629 **             AGGINVERSE
2630 **           }
2631 **         }
2632 **       }
2633 **     }
2634 **     flush:
2635 **       AGGSTEP
2636 **       while( 1 ){
2637 **         RETURN ROW
2638 **         if( csrCurrent is EOF ) break;
2639 **           while( csrStart.key + regStart) < csrCurrent.key ){
2640 **             AGGINVERSE
2641 **           }
2642 **         }
2643 **       }
2644 **
2645 ** In the above notation, "csr.key" means the current value of the ORDER BY
2646 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING
2647 ** or <expr PRECEDING) read from cursor csr.
2648 **
2649 **   RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2650 **
2651 **     ... loop started by sqlite3WhereBegin() ...
2652 **       if( new partition ){
2653 **         Gosub flush
2654 **       }
2655 **       Insert new row into eph table.
2656 **       if( first row of partition ){
2657 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2658 **         regEnd = <expr2>
2659 **         regStart = <expr1>
2660 **       }else{
2661 **         while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2662 **           AGGSTEP
2663 **         }
2664 **         while( (csrStart.key + regStart) < csrCurrent.key ){
2665 **           AGGINVERSE
2666 **         }
2667 **         RETURN_ROW
2668 **       }
2669 **     }
2670 **     flush:
2671 **       while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2672 **         AGGSTEP
2673 **       }
2674 **       while( (csrStart.key + regStart) < csrCurrent.key ){
2675 **         AGGINVERSE
2676 **       }
2677 **       RETURN_ROW
2678 **
2679 **   RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2680 **
2681 **     ... loop started by sqlite3WhereBegin() ...
2682 **       if( new partition ){
2683 **         Gosub flush
2684 **       }
2685 **       Insert new row into eph table.
2686 **       if( first row of partition ){
2687 **         Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2688 **         regEnd = <expr2>
2689 **         regStart = <expr1>
2690 **       }else{
2691 **         AGGSTEP
2692 **         while( (csrCurrent.key + regEnd) < csrEnd.key ){
2693 **           while( (csrCurrent.key + regStart) > csrStart.key ){
2694 **             AGGINVERSE
2695 **           }
2696 **           RETURN_ROW
2697 **         }
2698 **       }
2699 **     }
2700 **     flush:
2701 **       AGGSTEP
2702 **       while( 1 ){
2703 **         while( (csrCurrent.key + regStart) > csrStart.key ){
2704 **           AGGINVERSE
2705 **           if( eof ) break "while( 1 )" loop.
2706 **         }
2707 **         RETURN_ROW
2708 **       }
2709 **       while( !eof csrCurrent ){
2710 **         RETURN_ROW
2711 **       }
2712 **
2713 ** The text above leaves out many details. Refer to the code and comments
2714 ** below for a more complete picture.
2715 */
sqlite3WindowCodeStep(Parse * pParse,Select * p,WhereInfo * pWInfo,int regGosub,int addrGosub)2716 void sqlite3WindowCodeStep(
2717   Parse *pParse,                  /* Parse context */
2718   Select *p,                      /* Rewritten SELECT statement */
2719   WhereInfo *pWInfo,              /* Context returned by sqlite3WhereBegin() */
2720   int regGosub,                   /* Register for OP_Gosub */
2721   int addrGosub                   /* OP_Gosub here to return each row */
2722 ){
2723   Window *pMWin = p->pWin;
2724   ExprList *pOrderBy = pMWin->pOrderBy;
2725   Vdbe *v = sqlite3GetVdbe(pParse);
2726   int csrWrite;                   /* Cursor used to write to eph. table */
2727   int csrInput = p->pSrc->a[0].iCursor;     /* Cursor of sub-select */
2728   int nInput = p->pSrc->a[0].pTab->nCol;    /* Number of cols returned by sub */
2729   int iInput;                               /* To iterate through sub cols */
2730   int addrNe;                     /* Address of OP_Ne */
2731   int addrGosubFlush = 0;         /* Address of OP_Gosub to flush: */
2732   int addrInteger = 0;            /* Address of OP_Integer */
2733   int addrEmpty;                  /* Address of OP_Rewind in flush: */
2734   int regNew;                     /* Array of registers holding new input row */
2735   int regRecord;                  /* regNew array in record form */
2736   int regRowid;                   /* Rowid for regRecord in eph table */
2737   int regNewPeer = 0;             /* Peer values for new row (part of regNew) */
2738   int regPeer = 0;                /* Peer values for current row */
2739   int regFlushPart = 0;           /* Register for "Gosub flush_partition" */
2740   WindowCodeArg s;                /* Context object for sub-routines */
2741   int lblWhereEnd;                /* Label just before sqlite3WhereEnd() code */
2742   int regStart = 0;               /* Value of <expr> PRECEDING */
2743   int regEnd = 0;                 /* Value of <expr> FOLLOWING */
2744 
2745   assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT
2746        || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED
2747   );
2748   assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT
2749        || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING
2750   );
2751   assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT
2752        || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES
2753        || pMWin->eExclude==TK_NO
2754   );
2755 
2756   lblWhereEnd = sqlite3VdbeMakeLabel(pParse);
2757 
2758   /* Fill in the context object */
2759   memset(&s, 0, sizeof(WindowCodeArg));
2760   s.pParse = pParse;
2761   s.pMWin = pMWin;
2762   s.pVdbe = v;
2763   s.regGosub = regGosub;
2764   s.addrGosub = addrGosub;
2765   s.current.csr = pMWin->iEphCsr;
2766   csrWrite = s.current.csr+1;
2767   s.start.csr = s.current.csr+2;
2768   s.end.csr = s.current.csr+3;
2769 
2770   /* Figure out when rows may be deleted from the ephemeral table. There
2771   ** are four options - they may never be deleted (eDelete==0), they may
2772   ** be deleted as soon as they are no longer part of the window frame
2773   ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row
2774   ** has been returned to the caller (WINDOW_RETURN_ROW), or they may
2775   ** be deleted after they enter the frame (WINDOW_AGGSTEP). */
2776   switch( pMWin->eStart ){
2777     case TK_FOLLOWING:
2778       if( pMWin->eFrmType!=TK_RANGE
2779        && windowExprGtZero(pParse, pMWin->pStart)
2780       ){
2781         s.eDelete = WINDOW_RETURN_ROW;
2782       }
2783       break;
2784     case TK_UNBOUNDED:
2785       if( windowCacheFrame(pMWin)==0 ){
2786         if( pMWin->eEnd==TK_PRECEDING ){
2787           if( pMWin->eFrmType!=TK_RANGE
2788            && windowExprGtZero(pParse, pMWin->pEnd)
2789           ){
2790             s.eDelete = WINDOW_AGGSTEP;
2791           }
2792         }else{
2793           s.eDelete = WINDOW_RETURN_ROW;
2794         }
2795       }
2796       break;
2797     default:
2798       s.eDelete = WINDOW_AGGINVERSE;
2799       break;
2800   }
2801 
2802   /* Allocate registers for the array of values from the sub-query, the
2803   ** samve values in record form, and the rowid used to insert said record
2804   ** into the ephemeral table.  */
2805   regNew = pParse->nMem+1;
2806   pParse->nMem += nInput;
2807   regRecord = ++pParse->nMem;
2808   regRowid = ++pParse->nMem;
2809 
2810   /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING"
2811   ** clause, allocate registers to store the results of evaluating each
2812   ** <expr>.  */
2813   if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){
2814     regStart = ++pParse->nMem;
2815   }
2816   if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){
2817     regEnd = ++pParse->nMem;
2818   }
2819 
2820   /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of
2821   ** registers to store copies of the ORDER BY expressions (peer values)
2822   ** for the main loop, and for each cursor (start, current and end). */
2823   if( pMWin->eFrmType!=TK_ROWS ){
2824     int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
2825     regNewPeer = regNew + pMWin->nBufferCol;
2826     if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr;
2827     regPeer = pParse->nMem+1;       pParse->nMem += nPeer;
2828     s.start.reg = pParse->nMem+1;   pParse->nMem += nPeer;
2829     s.current.reg = pParse->nMem+1; pParse->nMem += nPeer;
2830     s.end.reg = pParse->nMem+1;     pParse->nMem += nPeer;
2831   }
2832 
2833   /* Load the column values for the row returned by the sub-select
2834   ** into an array of registers starting at regNew. Assemble them into
2835   ** a record in register regRecord. */
2836   for(iInput=0; iInput<nInput; iInput++){
2837     sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput);
2838   }
2839   sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord);
2840 
2841   /* An input row has just been read into an array of registers starting
2842   ** at regNew. If the window has a PARTITION clause, this block generates
2843   ** VM code to check if the input row is the start of a new partition.
2844   ** If so, it does an OP_Gosub to an address to be filled in later. The
2845   ** address of the OP_Gosub is stored in local variable addrGosubFlush. */
2846   if( pMWin->pPartition ){
2847     int addr;
2848     ExprList *pPart = pMWin->pPartition;
2849     int nPart = pPart->nExpr;
2850     int regNewPart = regNew + pMWin->nBufferCol;
2851     KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
2852 
2853     regFlushPart = ++pParse->nMem;
2854     addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart);
2855     sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2856     sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
2857     VdbeCoverageEqNe(v);
2858     addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart);
2859     VdbeComment((v, "call flush_partition"));
2860     sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
2861   }
2862 
2863   /* Insert the new row into the ephemeral table */
2864   sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid);
2865   sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid);
2866   addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid);
2867   VdbeCoverageNeverNull(v);
2868 
2869   /* This block is run for the first row of each partition */
2870   s.regArg = windowInitAccum(pParse, pMWin);
2871 
2872   if( regStart ){
2873     sqlite3ExprCode(pParse, pMWin->pStart, regStart);
2874     windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0));
2875   }
2876   if( regEnd ){
2877     sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
2878     windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0));
2879   }
2880 
2881   if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){
2882     int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
2883     int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
2884     VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
2885     VdbeCoverageNeverNullIf(v, op==OP_Le); /*   values previously checked */
2886     windowAggFinal(&s, 0);
2887     sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2888     VdbeCoverageNeverTaken(v);
2889     windowReturnOneRow(&s);
2890     sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2891     sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2892     sqlite3VdbeJumpHere(v, addrGe);
2893   }
2894   if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){
2895     assert( pMWin->eEnd==TK_FOLLOWING );
2896     sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart);
2897   }
2898 
2899   if( pMWin->eStart!=TK_UNBOUNDED ){
2900     sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1);
2901     VdbeCoverageNeverTaken(v);
2902   }
2903   sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2904   VdbeCoverageNeverTaken(v);
2905   sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1);
2906   VdbeCoverageNeverTaken(v);
2907   if( regPeer && pOrderBy ){
2908     sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1);
2909     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1);
2910     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1);
2911     sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1);
2912   }
2913 
2914   sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2915 
2916   sqlite3VdbeJumpHere(v, addrNe);
2917 
2918   /* Beginning of the block executed for the second and subsequent rows. */
2919   if( regPeer ){
2920     windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd);
2921   }
2922   if( pMWin->eStart==TK_FOLLOWING ){
2923     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2924     if( pMWin->eEnd!=TK_UNBOUNDED ){
2925       if( pMWin->eFrmType==TK_RANGE ){
2926         int lbl = sqlite3VdbeMakeLabel(pParse);
2927         int addrNext = sqlite3VdbeCurrentAddr(v);
2928         windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2929         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2930         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2931         sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
2932         sqlite3VdbeResolveLabel(v, lbl);
2933       }else{
2934         windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0);
2935         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2936       }
2937     }
2938   }else
2939   if( pMWin->eEnd==TK_PRECEDING ){
2940     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2941     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2942     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2943     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2944     if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2945   }else{
2946     int addr = 0;
2947     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2948     if( pMWin->eEnd!=TK_UNBOUNDED ){
2949       if( pMWin->eFrmType==TK_RANGE ){
2950         int lbl = 0;
2951         addr = sqlite3VdbeCurrentAddr(v);
2952         if( regEnd ){
2953           lbl = sqlite3VdbeMakeLabel(pParse);
2954           windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2955         }
2956         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2957         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2958         if( regEnd ){
2959           sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2960           sqlite3VdbeResolveLabel(v, lbl);
2961         }
2962       }else{
2963         if( regEnd ){
2964           addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1);
2965           VdbeCoverage(v);
2966         }
2967         windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2968         windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2969         if( regEnd ) sqlite3VdbeJumpHere(v, addr);
2970       }
2971     }
2972   }
2973 
2974   /* End of the main input loop */
2975   sqlite3VdbeResolveLabel(v, lblWhereEnd);
2976   sqlite3WhereEnd(pWInfo);
2977 
2978   /* Fall through */
2979   if( pMWin->pPartition ){
2980     addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart);
2981     sqlite3VdbeJumpHere(v, addrGosubFlush);
2982   }
2983 
2984   addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite);
2985   VdbeCoverage(v);
2986   if( pMWin->eEnd==TK_PRECEDING ){
2987     int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2988     windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2989     if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2990     windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2991   }else if( pMWin->eStart==TK_FOLLOWING ){
2992     int addrStart;
2993     int addrBreak1;
2994     int addrBreak2;
2995     int addrBreak3;
2996     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2997     if( pMWin->eFrmType==TK_RANGE ){
2998       addrStart = sqlite3VdbeCurrentAddr(v);
2999       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
3000       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3001     }else
3002     if( pMWin->eEnd==TK_UNBOUNDED ){
3003       addrStart = sqlite3VdbeCurrentAddr(v);
3004       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1);
3005       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1);
3006     }else{
3007       assert( pMWin->eEnd==TK_FOLLOWING );
3008       addrStart = sqlite3VdbeCurrentAddr(v);
3009       addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1);
3010       addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
3011     }
3012     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3013     sqlite3VdbeJumpHere(v, addrBreak2);
3014     addrStart = sqlite3VdbeCurrentAddr(v);
3015     addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3016     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3017     sqlite3VdbeJumpHere(v, addrBreak1);
3018     sqlite3VdbeJumpHere(v, addrBreak3);
3019   }else{
3020     int addrBreak;
3021     int addrStart;
3022     windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
3023     addrStart = sqlite3VdbeCurrentAddr(v);
3024     addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3025     windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3026     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3027     sqlite3VdbeJumpHere(v, addrBreak);
3028   }
3029   sqlite3VdbeJumpHere(v, addrEmpty);
3030 
3031   sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
3032   if( pMWin->pPartition ){
3033     if( pMWin->regStartRowid ){
3034       sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
3035       sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
3036     }
3037     sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v));
3038     sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
3039   }
3040 }
3041 
3042 #endif /* SQLITE_OMIT_WINDOWFUNC */
3043