1 /*
2 ** 2018 May 08
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 */
13 #include "sqliteInt.h"
14
15 #ifndef SQLITE_OMIT_WINDOWFUNC
16
17 /*
18 ** SELECT REWRITING
19 **
20 ** Any SELECT statement that contains one or more window functions in
21 ** either the select list or ORDER BY clause (the only two places window
22 ** functions may be used) is transformed by function sqlite3WindowRewrite()
23 ** in order to support window function processing. For example, with the
24 ** schema:
25 **
26 ** CREATE TABLE t1(a, b, c, d, e, f, g);
27 **
28 ** the statement:
29 **
30 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
31 **
32 ** is transformed to:
33 **
34 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
35 ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d
36 ** ) ORDER BY e;
37 **
38 ** The flattening optimization is disabled when processing this transformed
39 ** SELECT statement. This allows the implementation of the window function
40 ** (in this case max()) to process rows sorted in order of (c, d), which
41 ** makes things easier for obvious reasons. More generally:
42 **
43 ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
44 ** the sub-query.
45 **
46 ** * ORDER BY, LIMIT and OFFSET remain part of the parent query.
47 **
48 ** * Terminals from each of the expression trees that make up the
49 ** select-list and ORDER BY expressions in the parent query are
50 ** selected by the sub-query. For the purposes of the transformation,
51 ** terminals are column references and aggregate functions.
52 **
53 ** If there is more than one window function in the SELECT that uses
54 ** the same window declaration (the OVER bit), then a single scan may
55 ** be used to process more than one window function. For example:
56 **
57 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d),
58 ** min(e) OVER (PARTITION BY c ORDER BY d)
59 ** FROM t1;
60 **
61 ** is transformed in the same way as the example above. However:
62 **
63 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d),
64 ** min(e) OVER (PARTITION BY a ORDER BY b)
65 ** FROM t1;
66 **
67 ** Must be transformed to:
68 **
69 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
70 ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
71 ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b
72 ** ) ORDER BY c, d
73 ** ) ORDER BY e;
74 **
75 ** so that both min() and max() may process rows in the order defined by
76 ** their respective window declarations.
77 **
78 ** INTERFACE WITH SELECT.C
79 **
80 ** When processing the rewritten SELECT statement, code in select.c calls
81 ** sqlite3WhereBegin() to begin iterating through the results of the
82 ** sub-query, which is always implemented as a co-routine. It then calls
83 ** sqlite3WindowCodeStep() to process rows and finish the scan by calling
84 ** sqlite3WhereEnd().
85 **
86 ** sqlite3WindowCodeStep() generates VM code so that, for each row returned
87 ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
88 ** When the sub-routine is invoked:
89 **
90 ** * The results of all window-functions for the row are stored
91 ** in the associated Window.regResult registers.
92 **
93 ** * The required terminal values are stored in the current row of
94 ** temp table Window.iEphCsr.
95 **
96 ** In some cases, depending on the window frame and the specific window
97 ** functions invoked, sqlite3WindowCodeStep() caches each entire partition
98 ** in a temp table before returning any rows. In other cases it does not.
99 ** This detail is encapsulated within this file, the code generated by
100 ** select.c is the same in either case.
101 **
102 ** BUILT-IN WINDOW FUNCTIONS
103 **
104 ** This implementation features the following built-in window functions:
105 **
106 ** row_number()
107 ** rank()
108 ** dense_rank()
109 ** percent_rank()
110 ** cume_dist()
111 ** ntile(N)
112 ** lead(expr [, offset [, default]])
113 ** lag(expr [, offset [, default]])
114 ** first_value(expr)
115 ** last_value(expr)
116 ** nth_value(expr, N)
117 **
118 ** These are the same built-in window functions supported by Postgres.
119 ** Although the behaviour of aggregate window functions (functions that
120 ** can be used as either aggregates or window funtions) allows them to
121 ** be implemented using an API, built-in window functions are much more
122 ** esoteric. Additionally, some window functions (e.g. nth_value())
123 ** may only be implemented by caching the entire partition in memory.
124 ** As such, some built-in window functions use the same API as aggregate
125 ** window functions and some are implemented directly using VDBE
126 ** instructions. Additionally, for those functions that use the API, the
127 ** window frame is sometimes modified before the SELECT statement is
128 ** rewritten. For example, regardless of the specified window frame, the
129 ** row_number() function always uses:
130 **
131 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
132 **
133 ** See sqlite3WindowUpdate() for details.
134 **
135 ** As well as some of the built-in window functions, aggregate window
136 ** functions min() and max() are implemented using VDBE instructions if
137 ** the start of the window frame is declared as anything other than
138 ** UNBOUNDED PRECEDING.
139 */
140
141 /*
142 ** Implementation of built-in window function row_number(). Assumes that the
143 ** window frame has been coerced to:
144 **
145 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
146 */
row_numberStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)147 static void row_numberStepFunc(
148 sqlite3_context *pCtx,
149 int nArg,
150 sqlite3_value **apArg
151 ){
152 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
153 if( p ) (*p)++;
154 UNUSED_PARAMETER(nArg);
155 UNUSED_PARAMETER(apArg);
156 }
row_numberValueFunc(sqlite3_context * pCtx)157 static void row_numberValueFunc(sqlite3_context *pCtx){
158 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
159 sqlite3_result_int64(pCtx, (p ? *p : 0));
160 }
161
162 /*
163 ** Context object type used by rank(), dense_rank(), percent_rank() and
164 ** cume_dist().
165 */
166 struct CallCount {
167 i64 nValue;
168 i64 nStep;
169 i64 nTotal;
170 };
171
172 /*
173 ** Implementation of built-in window function dense_rank(). Assumes that
174 ** the window frame has been set to:
175 **
176 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
177 */
dense_rankStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)178 static void dense_rankStepFunc(
179 sqlite3_context *pCtx,
180 int nArg,
181 sqlite3_value **apArg
182 ){
183 struct CallCount *p;
184 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
185 if( p ) p->nStep = 1;
186 UNUSED_PARAMETER(nArg);
187 UNUSED_PARAMETER(apArg);
188 }
dense_rankValueFunc(sqlite3_context * pCtx)189 static void dense_rankValueFunc(sqlite3_context *pCtx){
190 struct CallCount *p;
191 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
192 if( p ){
193 if( p->nStep ){
194 p->nValue++;
195 p->nStep = 0;
196 }
197 sqlite3_result_int64(pCtx, p->nValue);
198 }
199 }
200
201 /*
202 ** Implementation of built-in window function nth_value(). This
203 ** implementation is used in "slow mode" only - when the EXCLUDE clause
204 ** is not set to the default value "NO OTHERS".
205 */
206 struct NthValueCtx {
207 i64 nStep;
208 sqlite3_value *pValue;
209 };
nth_valueStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)210 static void nth_valueStepFunc(
211 sqlite3_context *pCtx,
212 int nArg,
213 sqlite3_value **apArg
214 ){
215 struct NthValueCtx *p;
216 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
217 if( p ){
218 i64 iVal;
219 switch( sqlite3_value_numeric_type(apArg[1]) ){
220 case SQLITE_INTEGER:
221 iVal = sqlite3_value_int64(apArg[1]);
222 break;
223 case SQLITE_FLOAT: {
224 double fVal = sqlite3_value_double(apArg[1]);
225 if( ((i64)fVal)!=fVal ) goto error_out;
226 iVal = (i64)fVal;
227 break;
228 }
229 default:
230 goto error_out;
231 }
232 if( iVal<=0 ) goto error_out;
233
234 p->nStep++;
235 if( iVal==p->nStep ){
236 p->pValue = sqlite3_value_dup(apArg[0]);
237 if( !p->pValue ){
238 sqlite3_result_error_nomem(pCtx);
239 }
240 }
241 }
242 UNUSED_PARAMETER(nArg);
243 UNUSED_PARAMETER(apArg);
244 return;
245
246 error_out:
247 sqlite3_result_error(
248 pCtx, "second argument to nth_value must be a positive integer", -1
249 );
250 }
nth_valueFinalizeFunc(sqlite3_context * pCtx)251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){
252 struct NthValueCtx *p;
253 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0);
254 if( p && p->pValue ){
255 sqlite3_result_value(pCtx, p->pValue);
256 sqlite3_value_free(p->pValue);
257 p->pValue = 0;
258 }
259 }
260 #define nth_valueInvFunc noopStepFunc
261 #define nth_valueValueFunc noopValueFunc
262
first_valueStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)263 static void first_valueStepFunc(
264 sqlite3_context *pCtx,
265 int nArg,
266 sqlite3_value **apArg
267 ){
268 struct NthValueCtx *p;
269 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
270 if( p && p->pValue==0 ){
271 p->pValue = sqlite3_value_dup(apArg[0]);
272 if( !p->pValue ){
273 sqlite3_result_error_nomem(pCtx);
274 }
275 }
276 UNUSED_PARAMETER(nArg);
277 UNUSED_PARAMETER(apArg);
278 }
first_valueFinalizeFunc(sqlite3_context * pCtx)279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){
280 struct NthValueCtx *p;
281 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
282 if( p && p->pValue ){
283 sqlite3_result_value(pCtx, p->pValue);
284 sqlite3_value_free(p->pValue);
285 p->pValue = 0;
286 }
287 }
288 #define first_valueInvFunc noopStepFunc
289 #define first_valueValueFunc noopValueFunc
290
291 /*
292 ** Implementation of built-in window function rank(). Assumes that
293 ** the window frame has been set to:
294 **
295 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
296 */
rankStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)297 static void rankStepFunc(
298 sqlite3_context *pCtx,
299 int nArg,
300 sqlite3_value **apArg
301 ){
302 struct CallCount *p;
303 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
304 if( p ){
305 p->nStep++;
306 if( p->nValue==0 ){
307 p->nValue = p->nStep;
308 }
309 }
310 UNUSED_PARAMETER(nArg);
311 UNUSED_PARAMETER(apArg);
312 }
rankValueFunc(sqlite3_context * pCtx)313 static void rankValueFunc(sqlite3_context *pCtx){
314 struct CallCount *p;
315 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
316 if( p ){
317 sqlite3_result_int64(pCtx, p->nValue);
318 p->nValue = 0;
319 }
320 }
321
322 /*
323 ** Implementation of built-in window function percent_rank(). Assumes that
324 ** the window frame has been set to:
325 **
326 ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
327 */
percent_rankStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)328 static void percent_rankStepFunc(
329 sqlite3_context *pCtx,
330 int nArg,
331 sqlite3_value **apArg
332 ){
333 struct CallCount *p;
334 UNUSED_PARAMETER(nArg); assert( nArg==0 );
335 UNUSED_PARAMETER(apArg);
336 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
337 if( p ){
338 p->nTotal++;
339 }
340 }
percent_rankInvFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)341 static void percent_rankInvFunc(
342 sqlite3_context *pCtx,
343 int nArg,
344 sqlite3_value **apArg
345 ){
346 struct CallCount *p;
347 UNUSED_PARAMETER(nArg); assert( nArg==0 );
348 UNUSED_PARAMETER(apArg);
349 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
350 p->nStep++;
351 }
percent_rankValueFunc(sqlite3_context * pCtx)352 static void percent_rankValueFunc(sqlite3_context *pCtx){
353 struct CallCount *p;
354 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
355 if( p ){
356 p->nValue = p->nStep;
357 if( p->nTotal>1 ){
358 double r = (double)p->nValue / (double)(p->nTotal-1);
359 sqlite3_result_double(pCtx, r);
360 }else{
361 sqlite3_result_double(pCtx, 0.0);
362 }
363 }
364 }
365 #define percent_rankFinalizeFunc percent_rankValueFunc
366
367 /*
368 ** Implementation of built-in window function cume_dist(). Assumes that
369 ** the window frame has been set to:
370 **
371 ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING
372 */
cume_distStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)373 static void cume_distStepFunc(
374 sqlite3_context *pCtx,
375 int nArg,
376 sqlite3_value **apArg
377 ){
378 struct CallCount *p;
379 UNUSED_PARAMETER(nArg); assert( nArg==0 );
380 UNUSED_PARAMETER(apArg);
381 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
382 if( p ){
383 p->nTotal++;
384 }
385 }
cume_distInvFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)386 static void cume_distInvFunc(
387 sqlite3_context *pCtx,
388 int nArg,
389 sqlite3_value **apArg
390 ){
391 struct CallCount *p;
392 UNUSED_PARAMETER(nArg); assert( nArg==0 );
393 UNUSED_PARAMETER(apArg);
394 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
395 p->nStep++;
396 }
cume_distValueFunc(sqlite3_context * pCtx)397 static void cume_distValueFunc(sqlite3_context *pCtx){
398 struct CallCount *p;
399 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0);
400 if( p ){
401 double r = (double)(p->nStep) / (double)(p->nTotal);
402 sqlite3_result_double(pCtx, r);
403 }
404 }
405 #define cume_distFinalizeFunc cume_distValueFunc
406
407 /*
408 ** Context object for ntile() window function.
409 */
410 struct NtileCtx {
411 i64 nTotal; /* Total rows in partition */
412 i64 nParam; /* Parameter passed to ntile(N) */
413 i64 iRow; /* Current row */
414 };
415
416 /*
417 ** Implementation of ntile(). This assumes that the window frame has
418 ** been coerced to:
419 **
420 ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING
421 */
ntileStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)422 static void ntileStepFunc(
423 sqlite3_context *pCtx,
424 int nArg,
425 sqlite3_value **apArg
426 ){
427 struct NtileCtx *p;
428 assert( nArg==1 ); UNUSED_PARAMETER(nArg);
429 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
430 if( p ){
431 if( p->nTotal==0 ){
432 p->nParam = sqlite3_value_int64(apArg[0]);
433 if( p->nParam<=0 ){
434 sqlite3_result_error(
435 pCtx, "argument of ntile must be a positive integer", -1
436 );
437 }
438 }
439 p->nTotal++;
440 }
441 }
ntileInvFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)442 static void ntileInvFunc(
443 sqlite3_context *pCtx,
444 int nArg,
445 sqlite3_value **apArg
446 ){
447 struct NtileCtx *p;
448 assert( nArg==1 ); UNUSED_PARAMETER(nArg);
449 UNUSED_PARAMETER(apArg);
450 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
451 p->iRow++;
452 }
ntileValueFunc(sqlite3_context * pCtx)453 static void ntileValueFunc(sqlite3_context *pCtx){
454 struct NtileCtx *p;
455 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
456 if( p && p->nParam>0 ){
457 int nSize = (p->nTotal / p->nParam);
458 if( nSize==0 ){
459 sqlite3_result_int64(pCtx, p->iRow+1);
460 }else{
461 i64 nLarge = p->nTotal - p->nParam*nSize;
462 i64 iSmall = nLarge*(nSize+1);
463 i64 iRow = p->iRow;
464
465 assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
466
467 if( iRow<iSmall ){
468 sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
469 }else{
470 sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
471 }
472 }
473 }
474 }
475 #define ntileFinalizeFunc ntileValueFunc
476
477 /*
478 ** Context object for last_value() window function.
479 */
480 struct LastValueCtx {
481 sqlite3_value *pVal;
482 int nVal;
483 };
484
485 /*
486 ** Implementation of last_value().
487 */
last_valueStepFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)488 static void last_valueStepFunc(
489 sqlite3_context *pCtx,
490 int nArg,
491 sqlite3_value **apArg
492 ){
493 struct LastValueCtx *p;
494 UNUSED_PARAMETER(nArg);
495 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
496 if( p ){
497 sqlite3_value_free(p->pVal);
498 p->pVal = sqlite3_value_dup(apArg[0]);
499 if( p->pVal==0 ){
500 sqlite3_result_error_nomem(pCtx);
501 }else{
502 p->nVal++;
503 }
504 }
505 }
last_valueInvFunc(sqlite3_context * pCtx,int nArg,sqlite3_value ** apArg)506 static void last_valueInvFunc(
507 sqlite3_context *pCtx,
508 int nArg,
509 sqlite3_value **apArg
510 ){
511 struct LastValueCtx *p;
512 UNUSED_PARAMETER(nArg);
513 UNUSED_PARAMETER(apArg);
514 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
515 if( ALWAYS(p) ){
516 p->nVal--;
517 if( p->nVal==0 ){
518 sqlite3_value_free(p->pVal);
519 p->pVal = 0;
520 }
521 }
522 }
last_valueValueFunc(sqlite3_context * pCtx)523 static void last_valueValueFunc(sqlite3_context *pCtx){
524 struct LastValueCtx *p;
525 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0);
526 if( p && p->pVal ){
527 sqlite3_result_value(pCtx, p->pVal);
528 }
529 }
last_valueFinalizeFunc(sqlite3_context * pCtx)530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){
531 struct LastValueCtx *p;
532 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
533 if( p && p->pVal ){
534 sqlite3_result_value(pCtx, p->pVal);
535 sqlite3_value_free(p->pVal);
536 p->pVal = 0;
537 }
538 }
539
540 /*
541 ** Static names for the built-in window function names. These static
542 ** names are used, rather than string literals, so that FuncDef objects
543 ** can be associated with a particular window function by direct
544 ** comparison of the zName pointer. Example:
545 **
546 ** if( pFuncDef->zName==row_valueName ){ ... }
547 */
548 static const char row_numberName[] = "row_number";
549 static const char dense_rankName[] = "dense_rank";
550 static const char rankName[] = "rank";
551 static const char percent_rankName[] = "percent_rank";
552 static const char cume_distName[] = "cume_dist";
553 static const char ntileName[] = "ntile";
554 static const char last_valueName[] = "last_value";
555 static const char nth_valueName[] = "nth_value";
556 static const char first_valueName[] = "first_value";
557 static const char leadName[] = "lead";
558 static const char lagName[] = "lag";
559
560 /*
561 ** No-op implementations of xStep() and xFinalize(). Used as place-holders
562 ** for built-in window functions that never call those interfaces.
563 **
564 ** The noopValueFunc() is called but is expected to do nothing. The
565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to
566 ** let the test coverage routine know not to expect this function to be
567 ** invoked.
568 */
noopStepFunc(sqlite3_context * p,int n,sqlite3_value ** a)569 static void noopStepFunc( /*NO_TEST*/
570 sqlite3_context *p, /*NO_TEST*/
571 int n, /*NO_TEST*/
572 sqlite3_value **a /*NO_TEST*/
573 ){ /*NO_TEST*/
574 UNUSED_PARAMETER(p); /*NO_TEST*/
575 UNUSED_PARAMETER(n); /*NO_TEST*/
576 UNUSED_PARAMETER(a); /*NO_TEST*/
577 assert(0); /*NO_TEST*/
578 } /*NO_TEST*/
noopValueFunc(sqlite3_context * p)579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
580
581 /* Window functions that use all window interfaces: xStep, xFinal,
582 ** xValue, and xInverse */
583 #define WINDOWFUNCALL(name,nArg,extra) { \
584 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \
585 name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \
586 name ## InvFunc, name ## Name, {0} \
587 }
588
589 /* Window functions that are implemented using bytecode and thus have
590 ** no-op routines for their methods */
591 #define WINDOWFUNCNOOP(name,nArg,extra) { \
592 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \
593 noopStepFunc, noopValueFunc, noopValueFunc, \
594 noopStepFunc, name ## Name, {0} \
595 }
596
597 /* Window functions that use all window interfaces: xStep, the
598 ** same routine for xFinalize and xValue and which never call
599 ** xInverse. */
600 #define WINDOWFUNCX(name,nArg,extra) { \
601 nArg, (SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \
602 name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \
603 noopStepFunc, name ## Name, {0} \
604 }
605
606
607 /*
608 ** Register those built-in window functions that are not also aggregates.
609 */
sqlite3WindowFunctions(void)610 void sqlite3WindowFunctions(void){
611 static FuncDef aWindowFuncs[] = {
612 WINDOWFUNCX(row_number, 0, 0),
613 WINDOWFUNCX(dense_rank, 0, 0),
614 WINDOWFUNCX(rank, 0, 0),
615 WINDOWFUNCALL(percent_rank, 0, 0),
616 WINDOWFUNCALL(cume_dist, 0, 0),
617 WINDOWFUNCALL(ntile, 1, 0),
618 WINDOWFUNCALL(last_value, 1, 0),
619 WINDOWFUNCALL(nth_value, 2, 0),
620 WINDOWFUNCALL(first_value, 1, 0),
621 WINDOWFUNCNOOP(lead, 1, 0),
622 WINDOWFUNCNOOP(lead, 2, 0),
623 WINDOWFUNCNOOP(lead, 3, 0),
624 WINDOWFUNCNOOP(lag, 1, 0),
625 WINDOWFUNCNOOP(lag, 2, 0),
626 WINDOWFUNCNOOP(lag, 3, 0),
627 };
628 sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
629 }
630
windowFind(Parse * pParse,Window * pList,const char * zName)631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){
632 Window *p;
633 for(p=pList; p; p=p->pNextWin){
634 if( sqlite3StrICmp(p->zName, zName)==0 ) break;
635 }
636 if( p==0 ){
637 sqlite3ErrorMsg(pParse, "no such window: %s", zName);
638 }
639 return p;
640 }
641
642 /*
643 ** This function is called immediately after resolving the function name
644 ** for a window function within a SELECT statement. Argument pList is a
645 ** linked list of WINDOW definitions for the current SELECT statement.
646 ** Argument pFunc is the function definition just resolved and pWin
647 ** is the Window object representing the associated OVER clause. This
648 ** function updates the contents of pWin as follows:
649 **
650 ** * If the OVER clause refered to a named window (as in "max(x) OVER win"),
651 ** search list pList for a matching WINDOW definition, and update pWin
652 ** accordingly. If no such WINDOW clause can be found, leave an error
653 ** in pParse.
654 **
655 ** * If the function is a built-in window function that requires the
656 ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
657 ** of this file), pWin is updated here.
658 */
sqlite3WindowUpdate(Parse * pParse,Window * pList,Window * pWin,FuncDef * pFunc)659 void sqlite3WindowUpdate(
660 Parse *pParse,
661 Window *pList, /* List of named windows for this SELECT */
662 Window *pWin, /* Window frame to update */
663 FuncDef *pFunc /* Window function definition */
664 ){
665 if( pWin->zName && pWin->eFrmType==0 ){
666 Window *p = windowFind(pParse, pList, pWin->zName);
667 if( p==0 ) return;
668 pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
669 pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
670 pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
671 pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
672 pWin->eStart = p->eStart;
673 pWin->eEnd = p->eEnd;
674 pWin->eFrmType = p->eFrmType;
675 pWin->eExclude = p->eExclude;
676 }else{
677 sqlite3WindowChain(pParse, pWin, pList);
678 }
679 if( (pWin->eFrmType==TK_RANGE)
680 && (pWin->pStart || pWin->pEnd)
681 && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1)
682 ){
683 sqlite3ErrorMsg(pParse,
684 "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression"
685 );
686 }else
687 if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
688 sqlite3 *db = pParse->db;
689 if( pWin->pFilter ){
690 sqlite3ErrorMsg(pParse,
691 "FILTER clause may only be used with aggregate window functions"
692 );
693 }else{
694 struct WindowUpdate {
695 const char *zFunc;
696 int eFrmType;
697 int eStart;
698 int eEnd;
699 } aUp[] = {
700 { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT },
701 { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT },
702 { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT },
703 { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED },
704 { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED },
705 { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED },
706 { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED },
707 { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT },
708 };
709 int i;
710 for(i=0; i<ArraySize(aUp); i++){
711 if( pFunc->zName==aUp[i].zFunc ){
712 sqlite3ExprDelete(db, pWin->pStart);
713 sqlite3ExprDelete(db, pWin->pEnd);
714 pWin->pEnd = pWin->pStart = 0;
715 pWin->eFrmType = aUp[i].eFrmType;
716 pWin->eStart = aUp[i].eStart;
717 pWin->eEnd = aUp[i].eEnd;
718 pWin->eExclude = 0;
719 if( pWin->eStart==TK_FOLLOWING ){
720 pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1");
721 }
722 break;
723 }
724 }
725 }
726 }
727 pWin->pFunc = pFunc;
728 }
729
730 /*
731 ** Context object passed through sqlite3WalkExprList() to
732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList().
733 */
734 typedef struct WindowRewrite WindowRewrite;
735 struct WindowRewrite {
736 Window *pWin;
737 SrcList *pSrc;
738 ExprList *pSub;
739 Table *pTab;
740 Select *pSubSelect; /* Current sub-select, if any */
741 };
742
743 /*
744 ** Callback function used by selectWindowRewriteEList(). If necessary,
745 ** this function appends to the output expression-list and updates
746 ** expression (*ppExpr) in place.
747 */
selectWindowRewriteExprCb(Walker * pWalker,Expr * pExpr)748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
749 struct WindowRewrite *p = pWalker->u.pRewrite;
750 Parse *pParse = pWalker->pParse;
751 assert( p!=0 );
752 assert( p->pWin!=0 );
753
754 /* If this function is being called from within a scalar sub-select
755 ** that used by the SELECT statement being processed, only process
756 ** TK_COLUMN expressions that refer to it (the outer SELECT). Do
757 ** not process aggregates or window functions at all, as they belong
758 ** to the scalar sub-select. */
759 if( p->pSubSelect ){
760 if( pExpr->op!=TK_COLUMN ){
761 return WRC_Continue;
762 }else{
763 int nSrc = p->pSrc->nSrc;
764 int i;
765 for(i=0; i<nSrc; i++){
766 if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
767 }
768 if( i==nSrc ) return WRC_Continue;
769 }
770 }
771
772 switch( pExpr->op ){
773
774 case TK_FUNCTION:
775 if( !ExprHasProperty(pExpr, EP_WinFunc) ){
776 break;
777 }else{
778 Window *pWin;
779 for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
780 if( pExpr->y.pWin==pWin ){
781 assert( pWin->pOwner==pExpr );
782 return WRC_Prune;
783 }
784 }
785 }
786 /* no break */ deliberate_fall_through
787
788 case TK_AGG_FUNCTION:
789 case TK_COLUMN: {
790 int iCol = -1;
791 if( p->pSub ){
792 int i;
793 for(i=0; i<p->pSub->nExpr; i++){
794 if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){
795 iCol = i;
796 break;
797 }
798 }
799 }
800 if( iCol<0 ){
801 Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
802 if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION;
803 p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
804 }
805 if( p->pSub ){
806 int f = pExpr->flags & EP_Collate;
807 assert( ExprHasProperty(pExpr, EP_Static)==0 );
808 ExprSetProperty(pExpr, EP_Static);
809 sqlite3ExprDelete(pParse->db, pExpr);
810 ExprClearProperty(pExpr, EP_Static);
811 memset(pExpr, 0, sizeof(Expr));
812
813 pExpr->op = TK_COLUMN;
814 pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol);
815 pExpr->iTable = p->pWin->iEphCsr;
816 pExpr->y.pTab = p->pTab;
817 pExpr->flags = f;
818 }
819 if( pParse->db->mallocFailed ) return WRC_Abort;
820 break;
821 }
822
823 default: /* no-op */
824 break;
825 }
826
827 return WRC_Continue;
828 }
selectWindowRewriteSelectCb(Walker * pWalker,Select * pSelect)829 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
830 struct WindowRewrite *p = pWalker->u.pRewrite;
831 Select *pSave = p->pSubSelect;
832 if( pSave==pSelect ){
833 return WRC_Continue;
834 }else{
835 p->pSubSelect = pSelect;
836 sqlite3WalkSelect(pWalker, pSelect);
837 p->pSubSelect = pSave;
838 }
839 return WRC_Prune;
840 }
841
842
843 /*
844 ** Iterate through each expression in expression-list pEList. For each:
845 **
846 ** * TK_COLUMN,
847 ** * aggregate function, or
848 ** * window function with a Window object that is not a member of the
849 ** Window list passed as the second argument (pWin).
850 **
851 ** Append the node to output expression-list (*ppSub). And replace it
852 ** with a TK_COLUMN that reads the (N-1)th element of table
853 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
854 ** appending the new one.
855 */
selectWindowRewriteEList(Parse * pParse,Window * pWin,SrcList * pSrc,ExprList * pEList,Table * pTab,ExprList ** ppSub)856 static void selectWindowRewriteEList(
857 Parse *pParse,
858 Window *pWin,
859 SrcList *pSrc,
860 ExprList *pEList, /* Rewrite expressions in this list */
861 Table *pTab,
862 ExprList **ppSub /* IN/OUT: Sub-select expression-list */
863 ){
864 Walker sWalker;
865 WindowRewrite sRewrite;
866
867 assert( pWin!=0 );
868 memset(&sWalker, 0, sizeof(Walker));
869 memset(&sRewrite, 0, sizeof(WindowRewrite));
870
871 sRewrite.pSub = *ppSub;
872 sRewrite.pWin = pWin;
873 sRewrite.pSrc = pSrc;
874 sRewrite.pTab = pTab;
875
876 sWalker.pParse = pParse;
877 sWalker.xExprCallback = selectWindowRewriteExprCb;
878 sWalker.xSelectCallback = selectWindowRewriteSelectCb;
879 sWalker.u.pRewrite = &sRewrite;
880
881 (void)sqlite3WalkExprList(&sWalker, pEList);
882
883 *ppSub = sRewrite.pSub;
884 }
885
886 /*
887 ** Append a copy of each expression in expression-list pAppend to
888 ** expression list pList. Return a pointer to the result list.
889 */
exprListAppendList(Parse * pParse,ExprList * pList,ExprList * pAppend,int bIntToNull)890 static ExprList *exprListAppendList(
891 Parse *pParse, /* Parsing context */
892 ExprList *pList, /* List to which to append. Might be NULL */
893 ExprList *pAppend, /* List of values to append. Might be NULL */
894 int bIntToNull
895 ){
896 if( pAppend ){
897 int i;
898 int nInit = pList ? pList->nExpr : 0;
899 for(i=0; i<pAppend->nExpr; i++){
900 Expr *pDup = sqlite3ExprDup(pParse->db, pAppend->a[i].pExpr, 0);
901 assert( pDup==0 || !ExprHasProperty(pDup, EP_MemToken) );
902 if( bIntToNull && pDup ){
903 int iDummy;
904 Expr *pSub;
905 for(pSub=pDup; ExprHasProperty(pSub, EP_Skip); pSub=pSub->pLeft){
906 assert( pSub );
907 }
908 if( sqlite3ExprIsInteger(pSub, &iDummy) ){
909 pSub->op = TK_NULL;
910 pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse);
911 pSub->u.zToken = 0;
912 }
913 }
914 pList = sqlite3ExprListAppend(pParse, pList, pDup);
915 if( pList ) pList->a[nInit+i].sortFlags = pAppend->a[i].sortFlags;
916 }
917 }
918 return pList;
919 }
920
921 /*
922 ** When rewriting a query, if the new subquery in the FROM clause
923 ** contains TK_AGG_FUNCTION nodes that refer to an outer query,
924 ** then we have to increase the Expr->op2 values of those nodes
925 ** due to the extra subquery layer that was added.
926 **
927 ** See also the incrAggDepth() routine in resolve.c
928 */
sqlite3WindowExtraAggFuncDepth(Walker * pWalker,Expr * pExpr)929 static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){
930 if( pExpr->op==TK_AGG_FUNCTION
931 && pExpr->op2>=pWalker->walkerDepth
932 ){
933 pExpr->op2++;
934 }
935 return WRC_Continue;
936 }
937
938 /*
939 ** If the SELECT statement passed as the second argument does not invoke
940 ** any SQL window functions, this function is a no-op. Otherwise, it
941 ** rewrites the SELECT statement so that window function xStep functions
942 ** are invoked in the correct order as described under "SELECT REWRITING"
943 ** at the top of this file.
944 */
sqlite3WindowRewrite(Parse * pParse,Select * p)945 int sqlite3WindowRewrite(Parse *pParse, Select *p){
946 int rc = SQLITE_OK;
947 if( p->pWin && p->pPrior==0 && (p->selFlags & SF_WinRewrite)==0 ){
948 Vdbe *v = sqlite3GetVdbe(pParse);
949 sqlite3 *db = pParse->db;
950 Select *pSub = 0; /* The subquery */
951 SrcList *pSrc = p->pSrc;
952 Expr *pWhere = p->pWhere;
953 ExprList *pGroupBy = p->pGroupBy;
954 Expr *pHaving = p->pHaving;
955 ExprList *pSort = 0;
956
957 ExprList *pSublist = 0; /* Expression list for sub-query */
958 Window *pMWin = p->pWin; /* Main window object */
959 Window *pWin; /* Window object iterator */
960 Table *pTab;
961 Walker w;
962
963 u32 selFlags = p->selFlags;
964
965 pTab = sqlite3DbMallocZero(db, sizeof(Table));
966 if( pTab==0 ){
967 return sqlite3ErrorToParser(db, SQLITE_NOMEM);
968 }
969 sqlite3AggInfoPersistWalkerInit(&w, pParse);
970 sqlite3WalkSelect(&w, p);
971
972 p->pSrc = 0;
973 p->pWhere = 0;
974 p->pGroupBy = 0;
975 p->pHaving = 0;
976 p->selFlags &= ~SF_Aggregate;
977 p->selFlags |= SF_WinRewrite;
978
979 /* Create the ORDER BY clause for the sub-select. This is the concatenation
980 ** of the window PARTITION and ORDER BY clauses. Then, if this makes it
981 ** redundant, remove the ORDER BY from the parent SELECT. */
982 pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1);
983 pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1);
984 if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){
985 int nSave = pSort->nExpr;
986 pSort->nExpr = p->pOrderBy->nExpr;
987 if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
988 sqlite3ExprListDelete(db, p->pOrderBy);
989 p->pOrderBy = 0;
990 }
991 pSort->nExpr = nSave;
992 }
993
994 /* Assign a cursor number for the ephemeral table used to buffer rows.
995 ** The OpenEphemeral instruction is coded later, after it is known how
996 ** many columns the table will have. */
997 pMWin->iEphCsr = pParse->nTab++;
998 pParse->nTab += 3;
999
1000 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist);
1001 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist);
1002 pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
1003
1004 /* Append the PARTITION BY and ORDER BY expressions to the to the
1005 ** sub-select expression list. They are required to figure out where
1006 ** boundaries for partitions and sets of peer rows lie. */
1007 pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0);
1008 pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);
1009
1010 /* Append the arguments passed to each window function to the
1011 ** sub-select expression list. Also allocate two registers for each
1012 ** window function - one for the accumulator, another for interim
1013 ** results. */
1014 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1015 ExprList *pArgs = pWin->pOwner->x.pList;
1016 if( pWin->pFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){
1017 selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist);
1018 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1019 pWin->bExprArgs = 1;
1020 }else{
1021 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1022 pSublist = exprListAppendList(pParse, pSublist, pArgs, 0);
1023 }
1024 if( pWin->pFilter ){
1025 Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
1026 pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
1027 }
1028 pWin->regAccum = ++pParse->nMem;
1029 pWin->regResult = ++pParse->nMem;
1030 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1031 }
1032
1033 /* If there is no ORDER BY or PARTITION BY clause, and the window
1034 ** function accepts zero arguments, and there are no other columns
1035 ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
1036 ** that pSublist is still NULL here. Add a constant expression here to
1037 ** keep everything legal in this case.
1038 */
1039 if( pSublist==0 ){
1040 pSublist = sqlite3ExprListAppend(pParse, 0,
1041 sqlite3Expr(db, TK_INTEGER, "0")
1042 );
1043 }
1044
1045 pSub = sqlite3SelectNew(
1046 pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
1047 );
1048 SELECTTRACE(1,pParse,pSub,
1049 ("New window-function subquery in FROM clause of (%u/%p)\n",
1050 p->selId, p));
1051 p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1052 if( p->pSrc ){
1053 Table *pTab2;
1054 p->pSrc->a[0].pSelect = pSub;
1055 sqlite3SrcListAssignCursors(pParse, p->pSrc);
1056 pSub->selFlags |= SF_Expanded;
1057 pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE);
1058 pSub->selFlags |= (selFlags & SF_Aggregate);
1059 if( pTab2==0 ){
1060 /* Might actually be some other kind of error, but in that case
1061 ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get
1062 ** the correct error message regardless. */
1063 rc = SQLITE_NOMEM;
1064 }else{
1065 memcpy(pTab, pTab2, sizeof(Table));
1066 pTab->tabFlags |= TF_Ephemeral;
1067 p->pSrc->a[0].pTab = pTab;
1068 pTab = pTab2;
1069 memset(&w, 0, sizeof(w));
1070 w.xExprCallback = sqlite3WindowExtraAggFuncDepth;
1071 w.xSelectCallback = sqlite3WalkerDepthIncrease;
1072 w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
1073 sqlite3WalkSelect(&w, pSub);
1074 }
1075 }else{
1076 sqlite3SelectDelete(db, pSub);
1077 }
1078 if( db->mallocFailed ) rc = SQLITE_NOMEM;
1079 sqlite3DbFree(db, pTab);
1080 }
1081
1082 if( rc ){
1083 if( pParse->nErr==0 ){
1084 assert( pParse->db->mallocFailed );
1085 sqlite3ErrorToParser(pParse->db, SQLITE_NOMEM);
1086 }
1087 }
1088 return rc;
1089 }
1090
1091 /*
1092 ** Unlink the Window object from the Select to which it is attached,
1093 ** if it is attached.
1094 */
sqlite3WindowUnlinkFromSelect(Window * p)1095 void sqlite3WindowUnlinkFromSelect(Window *p){
1096 if( p->ppThis ){
1097 *p->ppThis = p->pNextWin;
1098 if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis;
1099 p->ppThis = 0;
1100 }
1101 }
1102
1103 /*
1104 ** Free the Window object passed as the second argument.
1105 */
sqlite3WindowDelete(sqlite3 * db,Window * p)1106 void sqlite3WindowDelete(sqlite3 *db, Window *p){
1107 if( p ){
1108 sqlite3WindowUnlinkFromSelect(p);
1109 sqlite3ExprDelete(db, p->pFilter);
1110 sqlite3ExprListDelete(db, p->pPartition);
1111 sqlite3ExprListDelete(db, p->pOrderBy);
1112 sqlite3ExprDelete(db, p->pEnd);
1113 sqlite3ExprDelete(db, p->pStart);
1114 sqlite3DbFree(db, p->zName);
1115 sqlite3DbFree(db, p->zBase);
1116 sqlite3DbFree(db, p);
1117 }
1118 }
1119
1120 /*
1121 ** Free the linked list of Window objects starting at the second argument.
1122 */
sqlite3WindowListDelete(sqlite3 * db,Window * p)1123 void sqlite3WindowListDelete(sqlite3 *db, Window *p){
1124 while( p ){
1125 Window *pNext = p->pNextWin;
1126 sqlite3WindowDelete(db, p);
1127 p = pNext;
1128 }
1129 }
1130
1131 /*
1132 ** The argument expression is an PRECEDING or FOLLOWING offset. The
1133 ** value should be a non-negative integer. If the value is not a
1134 ** constant, change it to NULL. The fact that it is then a non-negative
1135 ** integer will be caught later. But it is important not to leave
1136 ** variable values in the expression tree.
1137 */
sqlite3WindowOffsetExpr(Parse * pParse,Expr * pExpr)1138 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
1139 if( 0==sqlite3ExprIsConstant(pExpr) ){
1140 if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr);
1141 sqlite3ExprDelete(pParse->db, pExpr);
1142 pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
1143 }
1144 return pExpr;
1145 }
1146
1147 /*
1148 ** Allocate and return a new Window object describing a Window Definition.
1149 */
sqlite3WindowAlloc(Parse * pParse,int eType,int eStart,Expr * pStart,int eEnd,Expr * pEnd,u8 eExclude)1150 Window *sqlite3WindowAlloc(
1151 Parse *pParse, /* Parsing context */
1152 int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */
1153 int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
1154 Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */
1155 int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
1156 Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */
1157 u8 eExclude /* EXCLUDE clause */
1158 ){
1159 Window *pWin = 0;
1160 int bImplicitFrame = 0;
1161
1162 /* Parser assures the following: */
1163 assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS );
1164 assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
1165 || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
1166 assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
1167 || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
1168 assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
1169 assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
1170
1171 if( eType==0 ){
1172 bImplicitFrame = 1;
1173 eType = TK_RANGE;
1174 }
1175
1176 /* Additionally, the
1177 ** starting boundary type may not occur earlier in the following list than
1178 ** the ending boundary type:
1179 **
1180 ** UNBOUNDED PRECEDING
1181 ** <expr> PRECEDING
1182 ** CURRENT ROW
1183 ** <expr> FOLLOWING
1184 ** UNBOUNDED FOLLOWING
1185 **
1186 ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
1187 ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
1188 ** frame boundary.
1189 */
1190 if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
1191 || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
1192 ){
1193 sqlite3ErrorMsg(pParse, "unsupported frame specification");
1194 goto windowAllocErr;
1195 }
1196
1197 pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1198 if( pWin==0 ) goto windowAllocErr;
1199 pWin->eFrmType = eType;
1200 pWin->eStart = eStart;
1201 pWin->eEnd = eEnd;
1202 if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){
1203 eExclude = TK_NO;
1204 }
1205 pWin->eExclude = eExclude;
1206 pWin->bImplicitFrame = bImplicitFrame;
1207 pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
1208 pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
1209 return pWin;
1210
1211 windowAllocErr:
1212 sqlite3ExprDelete(pParse->db, pEnd);
1213 sqlite3ExprDelete(pParse->db, pStart);
1214 return 0;
1215 }
1216
1217 /*
1218 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window
1219 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the
1220 ** equivalent nul-terminated string.
1221 */
sqlite3WindowAssemble(Parse * pParse,Window * pWin,ExprList * pPartition,ExprList * pOrderBy,Token * pBase)1222 Window *sqlite3WindowAssemble(
1223 Parse *pParse,
1224 Window *pWin,
1225 ExprList *pPartition,
1226 ExprList *pOrderBy,
1227 Token *pBase
1228 ){
1229 if( pWin ){
1230 pWin->pPartition = pPartition;
1231 pWin->pOrderBy = pOrderBy;
1232 if( pBase ){
1233 pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n);
1234 }
1235 }else{
1236 sqlite3ExprListDelete(pParse->db, pPartition);
1237 sqlite3ExprListDelete(pParse->db, pOrderBy);
1238 }
1239 return pWin;
1240 }
1241
1242 /*
1243 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase
1244 ** is the base window. Earlier windows from the same WINDOW clause are
1245 ** stored in the linked list starting at pWin->pNextWin. This function
1246 ** either updates *pWin according to the base specification, or else
1247 ** leaves an error in pParse.
1248 */
sqlite3WindowChain(Parse * pParse,Window * pWin,Window * pList)1249 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){
1250 if( pWin->zBase ){
1251 sqlite3 *db = pParse->db;
1252 Window *pExist = windowFind(pParse, pList, pWin->zBase);
1253 if( pExist ){
1254 const char *zErr = 0;
1255 /* Check for errors */
1256 if( pWin->pPartition ){
1257 zErr = "PARTITION clause";
1258 }else if( pExist->pOrderBy && pWin->pOrderBy ){
1259 zErr = "ORDER BY clause";
1260 }else if( pExist->bImplicitFrame==0 ){
1261 zErr = "frame specification";
1262 }
1263 if( zErr ){
1264 sqlite3ErrorMsg(pParse,
1265 "cannot override %s of window: %s", zErr, pWin->zBase
1266 );
1267 }else{
1268 pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0);
1269 if( pExist->pOrderBy ){
1270 assert( pWin->pOrderBy==0 );
1271 pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0);
1272 }
1273 sqlite3DbFree(db, pWin->zBase);
1274 pWin->zBase = 0;
1275 }
1276 }
1277 }
1278 }
1279
1280 /*
1281 ** Attach window object pWin to expression p.
1282 */
sqlite3WindowAttach(Parse * pParse,Expr * p,Window * pWin)1283 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
1284 if( p ){
1285 assert( p->op==TK_FUNCTION );
1286 assert( pWin );
1287 p->y.pWin = pWin;
1288 ExprSetProperty(p, EP_WinFunc);
1289 pWin->pOwner = p;
1290 if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){
1291 sqlite3ErrorMsg(pParse,
1292 "DISTINCT is not supported for window functions"
1293 );
1294 }
1295 }else{
1296 sqlite3WindowDelete(pParse->db, pWin);
1297 }
1298 }
1299
1300 /*
1301 ** Possibly link window pWin into the list at pSel->pWin (window functions
1302 ** to be processed as part of SELECT statement pSel). The window is linked
1303 ** in if either (a) there are no other windows already linked to this
1304 ** SELECT, or (b) the windows already linked use a compatible window frame.
1305 */
sqlite3WindowLink(Select * pSel,Window * pWin)1306 void sqlite3WindowLink(Select *pSel, Window *pWin){
1307 if( pSel!=0
1308 && (0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0))
1309 ){
1310 pWin->pNextWin = pSel->pWin;
1311 if( pSel->pWin ){
1312 pSel->pWin->ppThis = &pWin->pNextWin;
1313 }
1314 pSel->pWin = pWin;
1315 pWin->ppThis = &pSel->pWin;
1316 }
1317 }
1318
1319 /*
1320 ** Return 0 if the two window objects are identical, 1 if they are
1321 ** different, or 2 if it cannot be determined if the objects are identical
1322 ** or not. Identical window objects can be processed in a single scan.
1323 */
sqlite3WindowCompare(Parse * pParse,Window * p1,Window * p2,int bFilter)1324 int sqlite3WindowCompare(Parse *pParse, Window *p1, Window *p2, int bFilter){
1325 int res;
1326 if( NEVER(p1==0) || NEVER(p2==0) ) return 1;
1327 if( p1->eFrmType!=p2->eFrmType ) return 1;
1328 if( p1->eStart!=p2->eStart ) return 1;
1329 if( p1->eEnd!=p2->eEnd ) return 1;
1330 if( p1->eExclude!=p2->eExclude ) return 1;
1331 if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
1332 if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
1333 if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){
1334 return res;
1335 }
1336 if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){
1337 return res;
1338 }
1339 if( bFilter ){
1340 if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){
1341 return res;
1342 }
1343 }
1344 return 0;
1345 }
1346
1347
1348 /*
1349 ** This is called by code in select.c before it calls sqlite3WhereBegin()
1350 ** to begin iterating through the sub-query results. It is used to allocate
1351 ** and initialize registers and cursors used by sqlite3WindowCodeStep().
1352 */
sqlite3WindowCodeInit(Parse * pParse,Select * pSelect)1353 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){
1354 int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr;
1355 Window *pMWin = pSelect->pWin;
1356 Window *pWin;
1357 Vdbe *v = sqlite3GetVdbe(pParse);
1358
1359 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr);
1360 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr);
1361 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr);
1362 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr);
1363
1364 /* Allocate registers to use for PARTITION BY values, if any. Initialize
1365 ** said registers to NULL. */
1366 if( pMWin->pPartition ){
1367 int nExpr = pMWin->pPartition->nExpr;
1368 pMWin->regPart = pParse->nMem+1;
1369 pParse->nMem += nExpr;
1370 sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1);
1371 }
1372
1373 pMWin->regOne = ++pParse->nMem;
1374 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne);
1375
1376 if( pMWin->eExclude ){
1377 pMWin->regStartRowid = ++pParse->nMem;
1378 pMWin->regEndRowid = ++pParse->nMem;
1379 pMWin->csrApp = pParse->nTab++;
1380 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
1381 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
1382 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr);
1383 return;
1384 }
1385
1386 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1387 FuncDef *p = pWin->pFunc;
1388 if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
1389 /* The inline versions of min() and max() require a single ephemeral
1390 ** table and 3 registers. The registers are used as follows:
1391 **
1392 ** regApp+0: slot to copy min()/max() argument to for MakeRecord
1393 ** regApp+1: integer value used to ensure keys are unique
1394 ** regApp+2: output of MakeRecord
1395 */
1396 ExprList *pList = pWin->pOwner->x.pList;
1397 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
1398 pWin->csrApp = pParse->nTab++;
1399 pWin->regApp = pParse->nMem+1;
1400 pParse->nMem += 3;
1401 if( pKeyInfo && pWin->pFunc->zName[1]=='i' ){
1402 assert( pKeyInfo->aSortFlags[0]==0 );
1403 pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC;
1404 }
1405 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
1406 sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1407 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1408 }
1409 else if( p->zName==nth_valueName || p->zName==first_valueName ){
1410 /* Allocate two registers at pWin->regApp. These will be used to
1411 ** store the start and end index of the current frame. */
1412 pWin->regApp = pParse->nMem+1;
1413 pWin->csrApp = pParse->nTab++;
1414 pParse->nMem += 2;
1415 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1416 }
1417 else if( p->zName==leadName || p->zName==lagName ){
1418 pWin->csrApp = pParse->nTab++;
1419 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1420 }
1421 }
1422 }
1423
1424 #define WINDOW_STARTING_INT 0
1425 #define WINDOW_ENDING_INT 1
1426 #define WINDOW_NTH_VALUE_INT 2
1427 #define WINDOW_STARTING_NUM 3
1428 #define WINDOW_ENDING_NUM 4
1429
1430 /*
1431 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
1432 ** value of the second argument to nth_value() (eCond==2) has just been
1433 ** evaluated and the result left in register reg. This function generates VM
1434 ** code to check that the value is a non-negative integer and throws an
1435 ** exception if it is not.
1436 */
windowCheckValue(Parse * pParse,int reg,int eCond)1437 static void windowCheckValue(Parse *pParse, int reg, int eCond){
1438 static const char *azErr[] = {
1439 "frame starting offset must be a non-negative integer",
1440 "frame ending offset must be a non-negative integer",
1441 "second argument to nth_value must be a positive integer",
1442 "frame starting offset must be a non-negative number",
1443 "frame ending offset must be a non-negative number",
1444 };
1445 static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge };
1446 Vdbe *v = sqlite3GetVdbe(pParse);
1447 int regZero = sqlite3GetTempReg(pParse);
1448 assert( eCond>=0 && eCond<ArraySize(azErr) );
1449 sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
1450 if( eCond>=WINDOW_STARTING_NUM ){
1451 int regString = sqlite3GetTempReg(pParse);
1452 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
1453 sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg);
1454 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL);
1455 VdbeCoverage(v);
1456 assert( eCond==3 || eCond==4 );
1457 VdbeCoverageIf(v, eCond==3);
1458 VdbeCoverageIf(v, eCond==4);
1459 }else{
1460 sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
1461 VdbeCoverage(v);
1462 assert( eCond==0 || eCond==1 || eCond==2 );
1463 VdbeCoverageIf(v, eCond==0);
1464 VdbeCoverageIf(v, eCond==1);
1465 VdbeCoverageIf(v, eCond==2);
1466 }
1467 sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
1468 VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */
1469 VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */
1470 VdbeCoverageNeverNullIf(v, eCond==2);
1471 VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */
1472 VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */
1473 sqlite3MayAbort(pParse);
1474 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
1475 sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
1476 sqlite3ReleaseTempReg(pParse, regZero);
1477 }
1478
1479 /*
1480 ** Return the number of arguments passed to the window-function associated
1481 ** with the object passed as the only argument to this function.
1482 */
windowArgCount(Window * pWin)1483 static int windowArgCount(Window *pWin){
1484 ExprList *pList = pWin->pOwner->x.pList;
1485 return (pList ? pList->nExpr : 0);
1486 }
1487
1488 typedef struct WindowCodeArg WindowCodeArg;
1489 typedef struct WindowCsrAndReg WindowCsrAndReg;
1490
1491 /*
1492 ** See comments above struct WindowCodeArg.
1493 */
1494 struct WindowCsrAndReg {
1495 int csr; /* Cursor number */
1496 int reg; /* First in array of peer values */
1497 };
1498
1499 /*
1500 ** A single instance of this structure is allocated on the stack by
1501 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper
1502 ** routines. This is to reduce the number of arguments required by each
1503 ** helper function.
1504 **
1505 ** regArg:
1506 ** Each window function requires an accumulator register (just as an
1507 ** ordinary aggregate function does). This variable is set to the first
1508 ** in an array of accumulator registers - one for each window function
1509 ** in the WindowCodeArg.pMWin list.
1510 **
1511 ** eDelete:
1512 ** The window functions implementation sometimes caches the input rows
1513 ** that it processes in a temporary table. If it is not zero, this
1514 ** variable indicates when rows may be removed from the temp table (in
1515 ** order to reduce memory requirements - it would always be safe just
1516 ** to leave them there). Possible values for eDelete are:
1517 **
1518 ** WINDOW_RETURN_ROW:
1519 ** An input row can be discarded after it is returned to the caller.
1520 **
1521 ** WINDOW_AGGINVERSE:
1522 ** An input row can be discarded after the window functions xInverse()
1523 ** callbacks have been invoked in it.
1524 **
1525 ** WINDOW_AGGSTEP:
1526 ** An input row can be discarded after the window functions xStep()
1527 ** callbacks have been invoked in it.
1528 **
1529 ** start,current,end
1530 ** Consider a window-frame similar to the following:
1531 **
1532 ** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
1533 **
1534 ** The windows functions implmentation caches the input rows in a temp
1535 ** table, sorted by "a, b" (it actually populates the cache lazily, and
1536 ** aggressively removes rows once they are no longer required, but that's
1537 ** a mere detail). It keeps three cursors open on the temp table. One
1538 ** (current) that points to the next row to return to the query engine
1539 ** once its window function values have been calculated. Another (end)
1540 ** points to the next row to call the xStep() method of each window function
1541 ** on (so that it is 2 groups ahead of current). And a third (start) that
1542 ** points to the next row to call the xInverse() method of each window
1543 ** function on.
1544 **
1545 ** Each cursor (start, current and end) consists of a VDBE cursor
1546 ** (WindowCsrAndReg.csr) and an array of registers (starting at
1547 ** WindowCodeArg.reg) that always contains a copy of the peer values
1548 ** read from the corresponding cursor.
1549 **
1550 ** Depending on the window-frame in question, all three cursors may not
1551 ** be required. In this case both WindowCodeArg.csr and reg are set to
1552 ** 0.
1553 */
1554 struct WindowCodeArg {
1555 Parse *pParse; /* Parse context */
1556 Window *pMWin; /* First in list of functions being processed */
1557 Vdbe *pVdbe; /* VDBE object */
1558 int addrGosub; /* OP_Gosub to this address to return one row */
1559 int regGosub; /* Register used with OP_Gosub(addrGosub) */
1560 int regArg; /* First in array of accumulator registers */
1561 int eDelete; /* See above */
1562
1563 WindowCsrAndReg start;
1564 WindowCsrAndReg current;
1565 WindowCsrAndReg end;
1566 };
1567
1568 /*
1569 ** Generate VM code to read the window frames peer values from cursor csr into
1570 ** an array of registers starting at reg.
1571 */
windowReadPeerValues(WindowCodeArg * p,int csr,int reg)1572 static void windowReadPeerValues(
1573 WindowCodeArg *p,
1574 int csr,
1575 int reg
1576 ){
1577 Window *pMWin = p->pMWin;
1578 ExprList *pOrderBy = pMWin->pOrderBy;
1579 if( pOrderBy ){
1580 Vdbe *v = sqlite3GetVdbe(p->pParse);
1581 ExprList *pPart = pMWin->pPartition;
1582 int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
1583 int i;
1584 for(i=0; i<pOrderBy->nExpr; i++){
1585 sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i);
1586 }
1587 }
1588 }
1589
1590 /*
1591 ** Generate VM code to invoke either xStep() (if bInverse is 0) or
1592 ** xInverse (if bInverse is non-zero) for each window function in the
1593 ** linked list starting at pMWin. Or, for built-in window functions
1594 ** that do not use the standard function API, generate the required
1595 ** inline VM code.
1596 **
1597 ** If argument csr is greater than or equal to 0, then argument reg is
1598 ** the first register in an array of registers guaranteed to be large
1599 ** enough to hold the array of arguments for each function. In this case
1600 ** the arguments are extracted from the current row of csr into the
1601 ** array of registers before invoking OP_AggStep or OP_AggInverse
1602 **
1603 ** Or, if csr is less than zero, then the array of registers at reg is
1604 ** already populated with all columns from the current row of the sub-query.
1605 **
1606 ** If argument regPartSize is non-zero, then it is a register containing the
1607 ** number of rows in the current partition.
1608 */
windowAggStep(WindowCodeArg * p,Window * pMWin,int csr,int bInverse,int reg)1609 static void windowAggStep(
1610 WindowCodeArg *p,
1611 Window *pMWin, /* Linked list of window functions */
1612 int csr, /* Read arguments from this cursor */
1613 int bInverse, /* True to invoke xInverse instead of xStep */
1614 int reg /* Array of registers */
1615 ){
1616 Parse *pParse = p->pParse;
1617 Vdbe *v = sqlite3GetVdbe(pParse);
1618 Window *pWin;
1619 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1620 FuncDef *pFunc = pWin->pFunc;
1621 int regArg;
1622 int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin);
1623 int i;
1624
1625 assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );
1626
1627 /* All OVER clauses in the same window function aggregate step must
1628 ** be the same. */
1629 assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 );
1630
1631 for(i=0; i<nArg; i++){
1632 if( i!=1 || pFunc->zName!=nth_valueName ){
1633 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
1634 }else{
1635 sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i);
1636 }
1637 }
1638 regArg = reg;
1639
1640 if( pMWin->regStartRowid==0
1641 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1642 && (pWin->eStart!=TK_UNBOUNDED)
1643 ){
1644 int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
1645 VdbeCoverage(v);
1646 if( bInverse==0 ){
1647 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
1648 sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
1649 sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
1650 sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
1651 }else{
1652 sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
1653 VdbeCoverageNeverTaken(v);
1654 sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
1655 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1656 }
1657 sqlite3VdbeJumpHere(v, addrIsNull);
1658 }else if( pWin->regApp ){
1659 assert( pFunc->zName==nth_valueName
1660 || pFunc->zName==first_valueName
1661 );
1662 assert( bInverse==0 || bInverse==1 );
1663 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
1664 }else if( pFunc->xSFunc!=noopStepFunc ){
1665 int addrIf = 0;
1666 if( pWin->pFilter ){
1667 int regTmp;
1668 assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr );
1669 assert( pWin->bExprArgs || nArg ||pWin->pOwner->x.pList==0 );
1670 regTmp = sqlite3GetTempReg(pParse);
1671 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
1672 addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
1673 VdbeCoverage(v);
1674 sqlite3ReleaseTempReg(pParse, regTmp);
1675 }
1676
1677 if( pWin->bExprArgs ){
1678 int iStart = sqlite3VdbeCurrentAddr(v);
1679 VdbeOp *pOp, *pEnd;
1680
1681 nArg = pWin->pOwner->x.pList->nExpr;
1682 regArg = sqlite3GetTempRange(pParse, nArg);
1683 sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0);
1684
1685 pEnd = sqlite3VdbeGetOp(v, -1);
1686 for(pOp=sqlite3VdbeGetOp(v, iStart); pOp<=pEnd; pOp++){
1687 if( pOp->opcode==OP_Column && pOp->p1==pWin->iEphCsr ){
1688 pOp->p1 = csr;
1689 }
1690 }
1691 }
1692 if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
1693 CollSeq *pColl;
1694 assert( nArg>0 );
1695 pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
1696 sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
1697 }
1698 sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
1699 bInverse, regArg, pWin->regAccum);
1700 sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
1701 sqlite3VdbeChangeP5(v, (u8)nArg);
1702 if( pWin->bExprArgs ){
1703 sqlite3ReleaseTempRange(pParse, regArg, nArg);
1704 }
1705 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
1706 }
1707 }
1708 }
1709
1710 /*
1711 ** Values that may be passed as the second argument to windowCodeOp().
1712 */
1713 #define WINDOW_RETURN_ROW 1
1714 #define WINDOW_AGGINVERSE 2
1715 #define WINDOW_AGGSTEP 3
1716
1717 /*
1718 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize()
1719 ** (bFin==1) for each window function in the linked list starting at
1720 ** pMWin. Or, for built-in window-functions that do not use the standard
1721 ** API, generate the equivalent VM code.
1722 */
windowAggFinal(WindowCodeArg * p,int bFin)1723 static void windowAggFinal(WindowCodeArg *p, int bFin){
1724 Parse *pParse = p->pParse;
1725 Window *pMWin = p->pMWin;
1726 Vdbe *v = sqlite3GetVdbe(pParse);
1727 Window *pWin;
1728
1729 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1730 if( pMWin->regStartRowid==0
1731 && (pWin->pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1732 && (pWin->eStart!=TK_UNBOUNDED)
1733 ){
1734 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1735 sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
1736 VdbeCoverage(v);
1737 sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
1738 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1739 }else if( pWin->regApp ){
1740 assert( pMWin->regStartRowid==0 );
1741 }else{
1742 int nArg = windowArgCount(pWin);
1743 if( bFin ){
1744 sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg);
1745 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1746 sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
1747 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1748 }else{
1749 sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult);
1750 sqlite3VdbeAppendP4(v, pWin->pFunc, P4_FUNCDEF);
1751 }
1752 }
1753 }
1754 }
1755
1756 /*
1757 ** Generate code to calculate the current values of all window functions in the
1758 ** p->pMWin list by doing a full scan of the current window frame. Store the
1759 ** results in the Window.regResult registers, ready to return the upper
1760 ** layer.
1761 */
windowFullScan(WindowCodeArg * p)1762 static void windowFullScan(WindowCodeArg *p){
1763 Window *pWin;
1764 Parse *pParse = p->pParse;
1765 Window *pMWin = p->pMWin;
1766 Vdbe *v = p->pVdbe;
1767
1768 int regCRowid = 0; /* Current rowid value */
1769 int regCPeer = 0; /* Current peer values */
1770 int regRowid = 0; /* AggStep rowid value */
1771 int regPeer = 0; /* AggStep peer values */
1772
1773 int nPeer;
1774 int lblNext;
1775 int lblBrk;
1776 int addrNext;
1777 int csr;
1778
1779 VdbeModuleComment((v, "windowFullScan begin"));
1780
1781 assert( pMWin!=0 );
1782 csr = pMWin->csrApp;
1783 nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
1784
1785 lblNext = sqlite3VdbeMakeLabel(pParse);
1786 lblBrk = sqlite3VdbeMakeLabel(pParse);
1787
1788 regCRowid = sqlite3GetTempReg(pParse);
1789 regRowid = sqlite3GetTempReg(pParse);
1790 if( nPeer ){
1791 regCPeer = sqlite3GetTempRange(pParse, nPeer);
1792 regPeer = sqlite3GetTempRange(pParse, nPeer);
1793 }
1794
1795 sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid);
1796 windowReadPeerValues(p, pMWin->iEphCsr, regCPeer);
1797
1798 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1799 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1800 }
1801
1802 sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid);
1803 VdbeCoverage(v);
1804 addrNext = sqlite3VdbeCurrentAddr(v);
1805 sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid);
1806 sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid);
1807 VdbeCoverageNeverNull(v);
1808
1809 if( pMWin->eExclude==TK_CURRENT ){
1810 sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid);
1811 VdbeCoverageNeverNull(v);
1812 }else if( pMWin->eExclude!=TK_NO ){
1813 int addr;
1814 int addrEq = 0;
1815 KeyInfo *pKeyInfo = 0;
1816
1817 if( pMWin->pOrderBy ){
1818 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0);
1819 }
1820 if( pMWin->eExclude==TK_TIES ){
1821 addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid);
1822 VdbeCoverageNeverNull(v);
1823 }
1824 if( pKeyInfo ){
1825 windowReadPeerValues(p, csr, regPeer);
1826 sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer);
1827 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1828 addr = sqlite3VdbeCurrentAddr(v)+1;
1829 sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr);
1830 VdbeCoverageEqNe(v);
1831 }else{
1832 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext);
1833 }
1834 if( addrEq ) sqlite3VdbeJumpHere(v, addrEq);
1835 }
1836
1837 windowAggStep(p, pMWin, csr, 0, p->regArg);
1838
1839 sqlite3VdbeResolveLabel(v, lblNext);
1840 sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext);
1841 VdbeCoverage(v);
1842 sqlite3VdbeJumpHere(v, addrNext-1);
1843 sqlite3VdbeJumpHere(v, addrNext+1);
1844 sqlite3ReleaseTempReg(pParse, regRowid);
1845 sqlite3ReleaseTempReg(pParse, regCRowid);
1846 if( nPeer ){
1847 sqlite3ReleaseTempRange(pParse, regPeer, nPeer);
1848 sqlite3ReleaseTempRange(pParse, regCPeer, nPeer);
1849 }
1850
1851 windowAggFinal(p, 1);
1852 VdbeModuleComment((v, "windowFullScan end"));
1853 }
1854
1855 /*
1856 ** Invoke the sub-routine at regGosub (generated by code in select.c) to
1857 ** return the current row of Window.iEphCsr. If all window functions are
1858 ** aggregate window functions that use the standard API, a single
1859 ** OP_Gosub instruction is all that this routine generates. Extra VM code
1860 ** for per-row processing is only generated for the following built-in window
1861 ** functions:
1862 **
1863 ** nth_value()
1864 ** first_value()
1865 ** lag()
1866 ** lead()
1867 */
windowReturnOneRow(WindowCodeArg * p)1868 static void windowReturnOneRow(WindowCodeArg *p){
1869 Window *pMWin = p->pMWin;
1870 Vdbe *v = p->pVdbe;
1871
1872 if( pMWin->regStartRowid ){
1873 windowFullScan(p);
1874 }else{
1875 Parse *pParse = p->pParse;
1876 Window *pWin;
1877
1878 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1879 FuncDef *pFunc = pWin->pFunc;
1880 if( pFunc->zName==nth_valueName
1881 || pFunc->zName==first_valueName
1882 ){
1883 int csr = pWin->csrApp;
1884 int lbl = sqlite3VdbeMakeLabel(pParse);
1885 int tmpReg = sqlite3GetTempReg(pParse);
1886 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1887
1888 if( pFunc->zName==nth_valueName ){
1889 sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg);
1890 windowCheckValue(pParse, tmpReg, 2);
1891 }else{
1892 sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
1893 }
1894 sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
1895 sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
1896 VdbeCoverageNeverNull(v);
1897 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
1898 VdbeCoverageNeverTaken(v);
1899 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1900 sqlite3VdbeResolveLabel(v, lbl);
1901 sqlite3ReleaseTempReg(pParse, tmpReg);
1902 }
1903 else if( pFunc->zName==leadName || pFunc->zName==lagName ){
1904 int nArg = pWin->pOwner->x.pList->nExpr;
1905 int csr = pWin->csrApp;
1906 int lbl = sqlite3VdbeMakeLabel(pParse);
1907 int tmpReg = sqlite3GetTempReg(pParse);
1908 int iEph = pMWin->iEphCsr;
1909
1910 if( nArg<3 ){
1911 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1912 }else{
1913 sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult);
1914 }
1915 sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
1916 if( nArg<2 ){
1917 int val = (pFunc->zName==leadName ? 1 : -1);
1918 sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
1919 }else{
1920 int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
1921 int tmpReg2 = sqlite3GetTempReg(pParse);
1922 sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
1923 sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
1924 sqlite3ReleaseTempReg(pParse, tmpReg2);
1925 }
1926
1927 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
1928 VdbeCoverage(v);
1929 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1930 sqlite3VdbeResolveLabel(v, lbl);
1931 sqlite3ReleaseTempReg(pParse, tmpReg);
1932 }
1933 }
1934 }
1935 sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub);
1936 }
1937
1938 /*
1939 ** Generate code to set the accumulator register for each window function
1940 ** in the linked list passed as the second argument to NULL. And perform
1941 ** any equivalent initialization required by any built-in window functions
1942 ** in the list.
1943 */
windowInitAccum(Parse * pParse,Window * pMWin)1944 static int windowInitAccum(Parse *pParse, Window *pMWin){
1945 Vdbe *v = sqlite3GetVdbe(pParse);
1946 int regArg;
1947 int nArg = 0;
1948 Window *pWin;
1949 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1950 FuncDef *pFunc = pWin->pFunc;
1951 assert( pWin->regAccum );
1952 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1953 nArg = MAX(nArg, windowArgCount(pWin));
1954 if( pMWin->regStartRowid==0 ){
1955 if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){
1956 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
1957 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1958 }
1959
1960 if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
1961 assert( pWin->eStart!=TK_UNBOUNDED );
1962 sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
1963 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1964 }
1965 }
1966 }
1967 regArg = pParse->nMem+1;
1968 pParse->nMem += nArg;
1969 return regArg;
1970 }
1971
1972 /*
1973 ** Return true if the current frame should be cached in the ephemeral table,
1974 ** even if there are no xInverse() calls required.
1975 */
windowCacheFrame(Window * pMWin)1976 static int windowCacheFrame(Window *pMWin){
1977 Window *pWin;
1978 if( pMWin->regStartRowid ) return 1;
1979 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1980 FuncDef *pFunc = pWin->pFunc;
1981 if( (pFunc->zName==nth_valueName)
1982 || (pFunc->zName==first_valueName)
1983 || (pFunc->zName==leadName)
1984 || (pFunc->zName==lagName)
1985 ){
1986 return 1;
1987 }
1988 }
1989 return 0;
1990 }
1991
1992 /*
1993 ** regOld and regNew are each the first register in an array of size
1994 ** pOrderBy->nExpr. This function generates code to compare the two
1995 ** arrays of registers using the collation sequences and other comparison
1996 ** parameters specified by pOrderBy.
1997 **
1998 ** If the two arrays are not equal, the contents of regNew is copied to
1999 ** regOld and control falls through. Otherwise, if the contents of the arrays
2000 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned.
2001 */
windowIfNewPeer(Parse * pParse,ExprList * pOrderBy,int regNew,int regOld,int addr)2002 static void windowIfNewPeer(
2003 Parse *pParse,
2004 ExprList *pOrderBy,
2005 int regNew, /* First in array of new values */
2006 int regOld, /* First in array of old values */
2007 int addr /* Jump here */
2008 ){
2009 Vdbe *v = sqlite3GetVdbe(pParse);
2010 if( pOrderBy ){
2011 int nVal = pOrderBy->nExpr;
2012 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
2013 sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal);
2014 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2015 sqlite3VdbeAddOp3(v, OP_Jump,
2016 sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1
2017 );
2018 VdbeCoverageEqNe(v);
2019 sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1);
2020 }else{
2021 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2022 }
2023 }
2024
2025 /*
2026 ** This function is called as part of generating VM programs for RANGE
2027 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for
2028 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates
2029 ** code equivalent to:
2030 **
2031 ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl;
2032 **
2033 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the
2034 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively.
2035 **
2036 ** If the sort-order for the ORDER BY term in the window is DESC, then the
2037 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is
2038 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=",
2039 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op
2040 ** is OP_Ge, the generated code is equivalent to:
2041 **
2042 ** if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl;
2043 **
2044 ** A special type of arithmetic is used such that if csr1.peerVal is not
2045 ** a numeric type (real or integer), then the result of the addition addition
2046 ** or subtraction is a a copy of csr1.peerVal.
2047 */
windowCodeRangeTest(WindowCodeArg * p,int op,int csr1,int regVal,int csr2,int lbl)2048 static void windowCodeRangeTest(
2049 WindowCodeArg *p,
2050 int op, /* OP_Ge, OP_Gt, or OP_Le */
2051 int csr1, /* Cursor number for cursor 1 */
2052 int regVal, /* Register containing non-negative number */
2053 int csr2, /* Cursor number for cursor 2 */
2054 int lbl /* Jump destination if condition is true */
2055 ){
2056 Parse *pParse = p->pParse;
2057 Vdbe *v = sqlite3GetVdbe(pParse);
2058 ExprList *pOrderBy = p->pMWin->pOrderBy; /* ORDER BY clause for window */
2059 int reg1 = sqlite3GetTempReg(pParse); /* Reg. for csr1.peerVal+regVal */
2060 int reg2 = sqlite3GetTempReg(pParse); /* Reg. for csr2.peerVal */
2061 int regString = ++pParse->nMem; /* Reg. for constant value '' */
2062 int arith = OP_Add; /* OP_Add or OP_Subtract */
2063 int addrGe; /* Jump destination */
2064
2065 assert( op==OP_Ge || op==OP_Gt || op==OP_Le );
2066 assert( pOrderBy && pOrderBy->nExpr==1 );
2067 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_DESC ){
2068 switch( op ){
2069 case OP_Ge: op = OP_Le; break;
2070 case OP_Gt: op = OP_Lt; break;
2071 default: assert( op==OP_Le ); op = OP_Ge; break;
2072 }
2073 arith = OP_Subtract;
2074 }
2075
2076 /* Read the peer-value from each cursor into a register */
2077 windowReadPeerValues(p, csr1, reg1);
2078 windowReadPeerValues(p, csr2, reg2);
2079
2080 VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl",
2081 reg1, (arith==OP_Add ? "+" : "-"), regVal,
2082 ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2
2083 ));
2084
2085 /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1).
2086 ** This block adds (or subtracts for DESC) the numeric value in regVal
2087 ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob),
2088 ** then leave reg1 as it is. In pseudo-code, this is implemented as:
2089 **
2090 ** if( reg1>='' ) goto addrGe;
2091 ** reg1 = reg1 +/- regVal
2092 ** addrGe:
2093 **
2094 ** Since all strings and blobs are greater-than-or-equal-to an empty string,
2095 ** the add/subtract is skipped for these, as required. If reg1 is a NULL,
2096 ** then the arithmetic is performed, but since adding or subtracting from
2097 ** NULL is always NULL anyway, this case is handled as required too. */
2098 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
2099 addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1);
2100 VdbeCoverage(v);
2101 sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1);
2102 sqlite3VdbeJumpHere(v, addrGe);
2103
2104 /* If the BIGNULL flag is set for the ORDER BY, then it is required to
2105 ** consider NULL values to be larger than all other values, instead of
2106 ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this
2107 ** (and adding that capability causes a performance regression), so
2108 ** instead if the BIGNULL flag is set then cases where either reg1 or
2109 ** reg2 are NULL are handled separately in the following block. The code
2110 ** generated is equivalent to:
2111 **
2112 ** if( reg1 IS NULL ){
2113 ** if( op==OP_Ge ) goto lbl;
2114 ** if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl;
2115 ** if( op==OP_Le && reg2 IS NULL ) goto lbl;
2116 ** }else if( reg2 IS NULL ){
2117 ** if( op==OP_Le ) goto lbl;
2118 ** }
2119 **
2120 ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is
2121 ** not taken, control jumps over the comparison operator coded below this
2122 ** block. */
2123 if( pOrderBy->a[0].sortFlags & KEYINFO_ORDER_BIGNULL ){
2124 /* This block runs if reg1 contains a NULL. */
2125 int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v);
2126 switch( op ){
2127 case OP_Ge:
2128 sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl);
2129 break;
2130 case OP_Gt:
2131 sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl);
2132 VdbeCoverage(v);
2133 break;
2134 case OP_Le:
2135 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl);
2136 VdbeCoverage(v);
2137 break;
2138 default: assert( op==OP_Lt ); /* no-op */ break;
2139 }
2140 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
2141
2142 /* This block runs if reg1 is not NULL, but reg2 is. */
2143 sqlite3VdbeJumpHere(v, addr);
2144 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl); VdbeCoverage(v);
2145 if( op==OP_Gt || op==OP_Ge ){
2146 sqlite3VdbeChangeP2(v, -1, sqlite3VdbeCurrentAddr(v)+1);
2147 }
2148 }
2149
2150 /* Compare registers reg2 and reg1, taking the jump if required. Note that
2151 ** control skips over this test if the BIGNULL flag is set and either
2152 ** reg1 or reg2 contain a NULL value. */
2153 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2154 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
2155
2156 assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le );
2157 testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge);
2158 testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt);
2159 testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le);
2160 testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt);
2161 sqlite3ReleaseTempReg(pParse, reg1);
2162 sqlite3ReleaseTempReg(pParse, reg2);
2163
2164 VdbeModuleComment((v, "CodeRangeTest: end"));
2165 }
2166
2167 /*
2168 ** Helper function for sqlite3WindowCodeStep(). Each call to this function
2169 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE
2170 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for
2171 ** details.
2172 */
windowCodeOp(WindowCodeArg * p,int op,int regCountdown,int jumpOnEof)2173 static int windowCodeOp(
2174 WindowCodeArg *p, /* Context object */
2175 int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */
2176 int regCountdown, /* Register for OP_IfPos countdown */
2177 int jumpOnEof /* Jump here if stepped cursor reaches EOF */
2178 ){
2179 int csr, reg;
2180 Parse *pParse = p->pParse;
2181 Window *pMWin = p->pMWin;
2182 int ret = 0;
2183 Vdbe *v = p->pVdbe;
2184 int addrContinue = 0;
2185 int bPeer = (pMWin->eFrmType!=TK_ROWS);
2186
2187 int lblDone = sqlite3VdbeMakeLabel(pParse);
2188 int addrNextRange = 0;
2189
2190 /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame
2191 ** starts with UNBOUNDED PRECEDING. */
2192 if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){
2193 assert( regCountdown==0 && jumpOnEof==0 );
2194 return 0;
2195 }
2196
2197 if( regCountdown>0 ){
2198 if( pMWin->eFrmType==TK_RANGE ){
2199 addrNextRange = sqlite3VdbeCurrentAddr(v);
2200 assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP );
2201 if( op==WINDOW_AGGINVERSE ){
2202 if( pMWin->eStart==TK_FOLLOWING ){
2203 windowCodeRangeTest(
2204 p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone
2205 );
2206 }else{
2207 windowCodeRangeTest(
2208 p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone
2209 );
2210 }
2211 }else{
2212 windowCodeRangeTest(
2213 p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone
2214 );
2215 }
2216 }else{
2217 sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1);
2218 VdbeCoverage(v);
2219 }
2220 }
2221
2222 if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){
2223 windowAggFinal(p, 0);
2224 }
2225 addrContinue = sqlite3VdbeCurrentAddr(v);
2226
2227 /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or
2228 ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the
2229 ** start cursor does not advance past the end cursor within the
2230 ** temporary table. It otherwise might, if (a>b). */
2231 if( pMWin->eStart==pMWin->eEnd && regCountdown
2232 && pMWin->eFrmType==TK_RANGE && op==WINDOW_AGGINVERSE
2233 ){
2234 int regRowid1 = sqlite3GetTempReg(pParse);
2235 int regRowid2 = sqlite3GetTempReg(pParse);
2236 sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1);
2237 sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2);
2238 sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1);
2239 VdbeCoverage(v);
2240 sqlite3ReleaseTempReg(pParse, regRowid1);
2241 sqlite3ReleaseTempReg(pParse, regRowid2);
2242 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING );
2243 }
2244
2245 switch( op ){
2246 case WINDOW_RETURN_ROW:
2247 csr = p->current.csr;
2248 reg = p->current.reg;
2249 windowReturnOneRow(p);
2250 break;
2251
2252 case WINDOW_AGGINVERSE:
2253 csr = p->start.csr;
2254 reg = p->start.reg;
2255 if( pMWin->regStartRowid ){
2256 assert( pMWin->regEndRowid );
2257 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1);
2258 }else{
2259 windowAggStep(p, pMWin, csr, 1, p->regArg);
2260 }
2261 break;
2262
2263 default:
2264 assert( op==WINDOW_AGGSTEP );
2265 csr = p->end.csr;
2266 reg = p->end.reg;
2267 if( pMWin->regStartRowid ){
2268 assert( pMWin->regEndRowid );
2269 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1);
2270 }else{
2271 windowAggStep(p, pMWin, csr, 0, p->regArg);
2272 }
2273 break;
2274 }
2275
2276 if( op==p->eDelete ){
2277 sqlite3VdbeAddOp1(v, OP_Delete, csr);
2278 sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
2279 }
2280
2281 if( jumpOnEof ){
2282 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2);
2283 VdbeCoverage(v);
2284 ret = sqlite3VdbeAddOp0(v, OP_Goto);
2285 }else{
2286 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer);
2287 VdbeCoverage(v);
2288 if( bPeer ){
2289 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone);
2290 }
2291 }
2292
2293 if( bPeer ){
2294 int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
2295 int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0);
2296 windowReadPeerValues(p, csr, regTmp);
2297 windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue);
2298 sqlite3ReleaseTempRange(pParse, regTmp, nReg);
2299 }
2300
2301 if( addrNextRange ){
2302 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange);
2303 }
2304 sqlite3VdbeResolveLabel(v, lblDone);
2305 return ret;
2306 }
2307
2308
2309 /*
2310 ** Allocate and return a duplicate of the Window object indicated by the
2311 ** third argument. Set the Window.pOwner field of the new object to
2312 ** pOwner.
2313 */
sqlite3WindowDup(sqlite3 * db,Expr * pOwner,Window * p)2314 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
2315 Window *pNew = 0;
2316 if( ALWAYS(p) ){
2317 pNew = sqlite3DbMallocZero(db, sizeof(Window));
2318 if( pNew ){
2319 pNew->zName = sqlite3DbStrDup(db, p->zName);
2320 pNew->zBase = sqlite3DbStrDup(db, p->zBase);
2321 pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
2322 pNew->pFunc = p->pFunc;
2323 pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
2324 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
2325 pNew->eFrmType = p->eFrmType;
2326 pNew->eEnd = p->eEnd;
2327 pNew->eStart = p->eStart;
2328 pNew->eExclude = p->eExclude;
2329 pNew->regResult = p->regResult;
2330 pNew->regAccum = p->regAccum;
2331 pNew->iArgCol = p->iArgCol;
2332 pNew->iEphCsr = p->iEphCsr;
2333 pNew->bExprArgs = p->bExprArgs;
2334 pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
2335 pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
2336 pNew->pOwner = pOwner;
2337 pNew->bImplicitFrame = p->bImplicitFrame;
2338 }
2339 }
2340 return pNew;
2341 }
2342
2343 /*
2344 ** Return a copy of the linked list of Window objects passed as the
2345 ** second argument.
2346 */
sqlite3WindowListDup(sqlite3 * db,Window * p)2347 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
2348 Window *pWin;
2349 Window *pRet = 0;
2350 Window **pp = &pRet;
2351
2352 for(pWin=p; pWin; pWin=pWin->pNextWin){
2353 *pp = sqlite3WindowDup(db, 0, pWin);
2354 if( *pp==0 ) break;
2355 pp = &((*pp)->pNextWin);
2356 }
2357
2358 return pRet;
2359 }
2360
2361 /*
2362 ** Return true if it can be determined at compile time that expression
2363 ** pExpr evaluates to a value that, when cast to an integer, is greater
2364 ** than zero. False otherwise.
2365 **
2366 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed
2367 ** flag and returns zero.
2368 */
windowExprGtZero(Parse * pParse,Expr * pExpr)2369 static int windowExprGtZero(Parse *pParse, Expr *pExpr){
2370 int ret = 0;
2371 sqlite3 *db = pParse->db;
2372 sqlite3_value *pVal = 0;
2373 sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal);
2374 if( pVal && sqlite3_value_int(pVal)>0 ){
2375 ret = 1;
2376 }
2377 sqlite3ValueFree(pVal);
2378 return ret;
2379 }
2380
2381 /*
2382 ** sqlite3WhereBegin() has already been called for the SELECT statement
2383 ** passed as the second argument when this function is invoked. It generates
2384 ** code to populate the Window.regResult register for each window function
2385 ** and invoke the sub-routine at instruction addrGosub once for each row.
2386 ** sqlite3WhereEnd() is always called before returning.
2387 **
2388 ** This function handles several different types of window frames, which
2389 ** require slightly different processing. The following pseudo code is
2390 ** used to implement window frames of the form:
2391 **
2392 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2393 **
2394 ** Other window frame types use variants of the following:
2395 **
2396 ** ... loop started by sqlite3WhereBegin() ...
2397 ** if( new partition ){
2398 ** Gosub flush
2399 ** }
2400 ** Insert new row into eph table.
2401 **
2402 ** if( first row of partition ){
2403 ** // Rewind three cursors, all open on the eph table.
2404 ** Rewind(csrEnd);
2405 ** Rewind(csrStart);
2406 ** Rewind(csrCurrent);
2407 **
2408 ** regEnd = <expr2> // FOLLOWING expression
2409 ** regStart = <expr1> // PRECEDING expression
2410 ** }else{
2411 ** // First time this branch is taken, the eph table contains two
2412 ** // rows. The first row in the partition, which all three cursors
2413 ** // currently point to, and the following row.
2414 ** AGGSTEP
2415 ** if( (regEnd--)<=0 ){
2416 ** RETURN_ROW
2417 ** if( (regStart--)<=0 ){
2418 ** AGGINVERSE
2419 ** }
2420 ** }
2421 ** }
2422 ** }
2423 ** flush:
2424 ** AGGSTEP
2425 ** while( 1 ){
2426 ** RETURN ROW
2427 ** if( csrCurrent is EOF ) break;
2428 ** if( (regStart--)<=0 ){
2429 ** AggInverse(csrStart)
2430 ** Next(csrStart)
2431 ** }
2432 ** }
2433 **
2434 ** The pseudo-code above uses the following shorthand:
2435 **
2436 ** AGGSTEP: invoke the aggregate xStep() function for each window function
2437 ** with arguments read from the current row of cursor csrEnd, then
2438 ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()).
2439 **
2440 ** RETURN_ROW: return a row to the caller based on the contents of the
2441 ** current row of csrCurrent and the current state of all
2442 ** aggregates. Then step cursor csrCurrent forward one row.
2443 **
2444 ** AGGINVERSE: invoke the aggregate xInverse() function for each window
2445 ** functions with arguments read from the current row of cursor
2446 ** csrStart. Then step csrStart forward one row.
2447 **
2448 ** There are two other ROWS window frames that are handled significantly
2449 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING"
2450 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special
2451 ** cases because they change the order in which the three cursors (csrStart,
2452 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that
2453 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these
2454 ** three.
2455 **
2456 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2457 **
2458 ** ... loop started by sqlite3WhereBegin() ...
2459 ** if( new partition ){
2460 ** Gosub flush
2461 ** }
2462 ** Insert new row into eph table.
2463 ** if( first row of partition ){
2464 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2465 ** regEnd = <expr2>
2466 ** regStart = <expr1>
2467 ** }else{
2468 ** if( (regEnd--)<=0 ){
2469 ** AGGSTEP
2470 ** }
2471 ** RETURN_ROW
2472 ** if( (regStart--)<=0 ){
2473 ** AGGINVERSE
2474 ** }
2475 ** }
2476 ** }
2477 ** flush:
2478 ** if( (regEnd--)<=0 ){
2479 ** AGGSTEP
2480 ** }
2481 ** RETURN_ROW
2482 **
2483 **
2484 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2485 **
2486 ** ... loop started by sqlite3WhereBegin() ...
2487 ** if( new partition ){
2488 ** Gosub flush
2489 ** }
2490 ** Insert new row into eph table.
2491 ** if( first row of partition ){
2492 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2493 ** regEnd = <expr2>
2494 ** regStart = regEnd - <expr1>
2495 ** }else{
2496 ** AGGSTEP
2497 ** if( (regEnd--)<=0 ){
2498 ** RETURN_ROW
2499 ** }
2500 ** if( (regStart--)<=0 ){
2501 ** AGGINVERSE
2502 ** }
2503 ** }
2504 ** }
2505 ** flush:
2506 ** AGGSTEP
2507 ** while( 1 ){
2508 ** if( (regEnd--)<=0 ){
2509 ** RETURN_ROW
2510 ** if( eof ) break;
2511 ** }
2512 ** if( (regStart--)<=0 ){
2513 ** AGGINVERSE
2514 ** if( eof ) break
2515 ** }
2516 ** }
2517 ** while( !eof csrCurrent ){
2518 ** RETURN_ROW
2519 ** }
2520 **
2521 ** For the most part, the patterns above are adapted to support UNBOUNDED by
2522 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and
2523 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING".
2524 ** This is optimized of course - branches that will never be taken and
2525 ** conditions that are always true are omitted from the VM code. The only
2526 ** exceptional case is:
2527 **
2528 ** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING
2529 **
2530 ** ... loop started by sqlite3WhereBegin() ...
2531 ** if( new partition ){
2532 ** Gosub flush
2533 ** }
2534 ** Insert new row into eph table.
2535 ** if( first row of partition ){
2536 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2537 ** regStart = <expr1>
2538 ** }else{
2539 ** AGGSTEP
2540 ** }
2541 ** }
2542 ** flush:
2543 ** AGGSTEP
2544 ** while( 1 ){
2545 ** if( (regStart--)<=0 ){
2546 ** AGGINVERSE
2547 ** if( eof ) break
2548 ** }
2549 ** RETURN_ROW
2550 ** }
2551 ** while( !eof csrCurrent ){
2552 ** RETURN_ROW
2553 ** }
2554 **
2555 ** Also requiring special handling are the cases:
2556 **
2557 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2558 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2559 **
2560 ** when (expr1 < expr2). This is detected at runtime, not by this function.
2561 ** To handle this case, the pseudo-code programs depicted above are modified
2562 ** slightly to be:
2563 **
2564 ** ... loop started by sqlite3WhereBegin() ...
2565 ** if( new partition ){
2566 ** Gosub flush
2567 ** }
2568 ** Insert new row into eph table.
2569 ** if( first row of partition ){
2570 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2571 ** regEnd = <expr2>
2572 ** regStart = <expr1>
2573 ** if( regEnd < regStart ){
2574 ** RETURN_ROW
2575 ** delete eph table contents
2576 ** continue
2577 ** }
2578 ** ...
2579 **
2580 ** The new "continue" statement in the above jumps to the next iteration
2581 ** of the outer loop - the one started by sqlite3WhereBegin().
2582 **
2583 ** The various GROUPS cases are implemented using the same patterns as
2584 ** ROWS. The VM code is modified slightly so that:
2585 **
2586 ** 1. The else branch in the main loop is only taken if the row just
2587 ** added to the ephemeral table is the start of a new group. In
2588 ** other words, it becomes:
2589 **
2590 ** ... loop started by sqlite3WhereBegin() ...
2591 ** if( new partition ){
2592 ** Gosub flush
2593 ** }
2594 ** Insert new row into eph table.
2595 ** if( first row of partition ){
2596 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2597 ** regEnd = <expr2>
2598 ** regStart = <expr1>
2599 ** }else if( new group ){
2600 ** ...
2601 ** }
2602 ** }
2603 **
2604 ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or
2605 ** AGGINVERSE step processes the current row of the relevant cursor and
2606 ** all subsequent rows belonging to the same group.
2607 **
2608 ** RANGE window frames are a little different again. As for GROUPS, the
2609 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE
2610 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three
2611 ** basic cases:
2612 **
2613 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2614 **
2615 ** ... loop started by sqlite3WhereBegin() ...
2616 ** if( new partition ){
2617 ** Gosub flush
2618 ** }
2619 ** Insert new row into eph table.
2620 ** if( first row of partition ){
2621 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2622 ** regEnd = <expr2>
2623 ** regStart = <expr1>
2624 ** }else{
2625 ** AGGSTEP
2626 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){
2627 ** RETURN_ROW
2628 ** while( csrStart.key + regStart) < csrCurrent.key ){
2629 ** AGGINVERSE
2630 ** }
2631 ** }
2632 ** }
2633 ** }
2634 ** flush:
2635 ** AGGSTEP
2636 ** while( 1 ){
2637 ** RETURN ROW
2638 ** if( csrCurrent is EOF ) break;
2639 ** while( csrStart.key + regStart) < csrCurrent.key ){
2640 ** AGGINVERSE
2641 ** }
2642 ** }
2643 ** }
2644 **
2645 ** In the above notation, "csr.key" means the current value of the ORDER BY
2646 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING
2647 ** or <expr PRECEDING) read from cursor csr.
2648 **
2649 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2650 **
2651 ** ... loop started by sqlite3WhereBegin() ...
2652 ** if( new partition ){
2653 ** Gosub flush
2654 ** }
2655 ** Insert new row into eph table.
2656 ** if( first row of partition ){
2657 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2658 ** regEnd = <expr2>
2659 ** regStart = <expr1>
2660 ** }else{
2661 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2662 ** AGGSTEP
2663 ** }
2664 ** while( (csrStart.key + regStart) < csrCurrent.key ){
2665 ** AGGINVERSE
2666 ** }
2667 ** RETURN_ROW
2668 ** }
2669 ** }
2670 ** flush:
2671 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2672 ** AGGSTEP
2673 ** }
2674 ** while( (csrStart.key + regStart) < csrCurrent.key ){
2675 ** AGGINVERSE
2676 ** }
2677 ** RETURN_ROW
2678 **
2679 ** RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2680 **
2681 ** ... loop started by sqlite3WhereBegin() ...
2682 ** if( new partition ){
2683 ** Gosub flush
2684 ** }
2685 ** Insert new row into eph table.
2686 ** if( first row of partition ){
2687 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2688 ** regEnd = <expr2>
2689 ** regStart = <expr1>
2690 ** }else{
2691 ** AGGSTEP
2692 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){
2693 ** while( (csrCurrent.key + regStart) > csrStart.key ){
2694 ** AGGINVERSE
2695 ** }
2696 ** RETURN_ROW
2697 ** }
2698 ** }
2699 ** }
2700 ** flush:
2701 ** AGGSTEP
2702 ** while( 1 ){
2703 ** while( (csrCurrent.key + regStart) > csrStart.key ){
2704 ** AGGINVERSE
2705 ** if( eof ) break "while( 1 )" loop.
2706 ** }
2707 ** RETURN_ROW
2708 ** }
2709 ** while( !eof csrCurrent ){
2710 ** RETURN_ROW
2711 ** }
2712 **
2713 ** The text above leaves out many details. Refer to the code and comments
2714 ** below for a more complete picture.
2715 */
sqlite3WindowCodeStep(Parse * pParse,Select * p,WhereInfo * pWInfo,int regGosub,int addrGosub)2716 void sqlite3WindowCodeStep(
2717 Parse *pParse, /* Parse context */
2718 Select *p, /* Rewritten SELECT statement */
2719 WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */
2720 int regGosub, /* Register for OP_Gosub */
2721 int addrGosub /* OP_Gosub here to return each row */
2722 ){
2723 Window *pMWin = p->pWin;
2724 ExprList *pOrderBy = pMWin->pOrderBy;
2725 Vdbe *v = sqlite3GetVdbe(pParse);
2726 int csrWrite; /* Cursor used to write to eph. table */
2727 int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */
2728 int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */
2729 int iInput; /* To iterate through sub cols */
2730 int addrNe; /* Address of OP_Ne */
2731 int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */
2732 int addrInteger = 0; /* Address of OP_Integer */
2733 int addrEmpty; /* Address of OP_Rewind in flush: */
2734 int regNew; /* Array of registers holding new input row */
2735 int regRecord; /* regNew array in record form */
2736 int regRowid; /* Rowid for regRecord in eph table */
2737 int regNewPeer = 0; /* Peer values for new row (part of regNew) */
2738 int regPeer = 0; /* Peer values for current row */
2739 int regFlushPart = 0; /* Register for "Gosub flush_partition" */
2740 WindowCodeArg s; /* Context object for sub-routines */
2741 int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */
2742 int regStart = 0; /* Value of <expr> PRECEDING */
2743 int regEnd = 0; /* Value of <expr> FOLLOWING */
2744
2745 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT
2746 || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED
2747 );
2748 assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT
2749 || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING
2750 );
2751 assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT
2752 || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES
2753 || pMWin->eExclude==TK_NO
2754 );
2755
2756 lblWhereEnd = sqlite3VdbeMakeLabel(pParse);
2757
2758 /* Fill in the context object */
2759 memset(&s, 0, sizeof(WindowCodeArg));
2760 s.pParse = pParse;
2761 s.pMWin = pMWin;
2762 s.pVdbe = v;
2763 s.regGosub = regGosub;
2764 s.addrGosub = addrGosub;
2765 s.current.csr = pMWin->iEphCsr;
2766 csrWrite = s.current.csr+1;
2767 s.start.csr = s.current.csr+2;
2768 s.end.csr = s.current.csr+3;
2769
2770 /* Figure out when rows may be deleted from the ephemeral table. There
2771 ** are four options - they may never be deleted (eDelete==0), they may
2772 ** be deleted as soon as they are no longer part of the window frame
2773 ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row
2774 ** has been returned to the caller (WINDOW_RETURN_ROW), or they may
2775 ** be deleted after they enter the frame (WINDOW_AGGSTEP). */
2776 switch( pMWin->eStart ){
2777 case TK_FOLLOWING:
2778 if( pMWin->eFrmType!=TK_RANGE
2779 && windowExprGtZero(pParse, pMWin->pStart)
2780 ){
2781 s.eDelete = WINDOW_RETURN_ROW;
2782 }
2783 break;
2784 case TK_UNBOUNDED:
2785 if( windowCacheFrame(pMWin)==0 ){
2786 if( pMWin->eEnd==TK_PRECEDING ){
2787 if( pMWin->eFrmType!=TK_RANGE
2788 && windowExprGtZero(pParse, pMWin->pEnd)
2789 ){
2790 s.eDelete = WINDOW_AGGSTEP;
2791 }
2792 }else{
2793 s.eDelete = WINDOW_RETURN_ROW;
2794 }
2795 }
2796 break;
2797 default:
2798 s.eDelete = WINDOW_AGGINVERSE;
2799 break;
2800 }
2801
2802 /* Allocate registers for the array of values from the sub-query, the
2803 ** samve values in record form, and the rowid used to insert said record
2804 ** into the ephemeral table. */
2805 regNew = pParse->nMem+1;
2806 pParse->nMem += nInput;
2807 regRecord = ++pParse->nMem;
2808 regRowid = ++pParse->nMem;
2809
2810 /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING"
2811 ** clause, allocate registers to store the results of evaluating each
2812 ** <expr>. */
2813 if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){
2814 regStart = ++pParse->nMem;
2815 }
2816 if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){
2817 regEnd = ++pParse->nMem;
2818 }
2819
2820 /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of
2821 ** registers to store copies of the ORDER BY expressions (peer values)
2822 ** for the main loop, and for each cursor (start, current and end). */
2823 if( pMWin->eFrmType!=TK_ROWS ){
2824 int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
2825 regNewPeer = regNew + pMWin->nBufferCol;
2826 if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr;
2827 regPeer = pParse->nMem+1; pParse->nMem += nPeer;
2828 s.start.reg = pParse->nMem+1; pParse->nMem += nPeer;
2829 s.current.reg = pParse->nMem+1; pParse->nMem += nPeer;
2830 s.end.reg = pParse->nMem+1; pParse->nMem += nPeer;
2831 }
2832
2833 /* Load the column values for the row returned by the sub-select
2834 ** into an array of registers starting at regNew. Assemble them into
2835 ** a record in register regRecord. */
2836 for(iInput=0; iInput<nInput; iInput++){
2837 sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput);
2838 }
2839 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord);
2840
2841 /* An input row has just been read into an array of registers starting
2842 ** at regNew. If the window has a PARTITION clause, this block generates
2843 ** VM code to check if the input row is the start of a new partition.
2844 ** If so, it does an OP_Gosub to an address to be filled in later. The
2845 ** address of the OP_Gosub is stored in local variable addrGosubFlush. */
2846 if( pMWin->pPartition ){
2847 int addr;
2848 ExprList *pPart = pMWin->pPartition;
2849 int nPart = pPart->nExpr;
2850 int regNewPart = regNew + pMWin->nBufferCol;
2851 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
2852
2853 regFlushPart = ++pParse->nMem;
2854 addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart);
2855 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2856 sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
2857 VdbeCoverageEqNe(v);
2858 addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart);
2859 VdbeComment((v, "call flush_partition"));
2860 sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
2861 }
2862
2863 /* Insert the new row into the ephemeral table */
2864 sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, regRowid);
2865 sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, regRowid);
2866 addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, regRowid);
2867 VdbeCoverageNeverNull(v);
2868
2869 /* This block is run for the first row of each partition */
2870 s.regArg = windowInitAccum(pParse, pMWin);
2871
2872 if( regStart ){
2873 sqlite3ExprCode(pParse, pMWin->pStart, regStart);
2874 windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0));
2875 }
2876 if( regEnd ){
2877 sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
2878 windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0));
2879 }
2880
2881 if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){
2882 int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
2883 int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
2884 VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
2885 VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */
2886 windowAggFinal(&s, 0);
2887 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2888 VdbeCoverageNeverTaken(v);
2889 windowReturnOneRow(&s);
2890 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2891 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2892 sqlite3VdbeJumpHere(v, addrGe);
2893 }
2894 if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){
2895 assert( pMWin->eEnd==TK_FOLLOWING );
2896 sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart);
2897 }
2898
2899 if( pMWin->eStart!=TK_UNBOUNDED ){
2900 sqlite3VdbeAddOp2(v, OP_Rewind, s.start.csr, 1);
2901 VdbeCoverageNeverTaken(v);
2902 }
2903 sqlite3VdbeAddOp2(v, OP_Rewind, s.current.csr, 1);
2904 VdbeCoverageNeverTaken(v);
2905 sqlite3VdbeAddOp2(v, OP_Rewind, s.end.csr, 1);
2906 VdbeCoverageNeverTaken(v);
2907 if( regPeer && pOrderBy ){
2908 sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1);
2909 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1);
2910 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1);
2911 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1);
2912 }
2913
2914 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2915
2916 sqlite3VdbeJumpHere(v, addrNe);
2917
2918 /* Beginning of the block executed for the second and subsequent rows. */
2919 if( regPeer ){
2920 windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd);
2921 }
2922 if( pMWin->eStart==TK_FOLLOWING ){
2923 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2924 if( pMWin->eEnd!=TK_UNBOUNDED ){
2925 if( pMWin->eFrmType==TK_RANGE ){
2926 int lbl = sqlite3VdbeMakeLabel(pParse);
2927 int addrNext = sqlite3VdbeCurrentAddr(v);
2928 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2929 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2930 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2931 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
2932 sqlite3VdbeResolveLabel(v, lbl);
2933 }else{
2934 windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0);
2935 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2936 }
2937 }
2938 }else
2939 if( pMWin->eEnd==TK_PRECEDING ){
2940 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2941 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2942 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2943 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2944 if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2945 }else{
2946 int addr = 0;
2947 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2948 if( pMWin->eEnd!=TK_UNBOUNDED ){
2949 if( pMWin->eFrmType==TK_RANGE ){
2950 int lbl = 0;
2951 addr = sqlite3VdbeCurrentAddr(v);
2952 if( regEnd ){
2953 lbl = sqlite3VdbeMakeLabel(pParse);
2954 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2955 }
2956 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2957 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2958 if( regEnd ){
2959 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2960 sqlite3VdbeResolveLabel(v, lbl);
2961 }
2962 }else{
2963 if( regEnd ){
2964 addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1);
2965 VdbeCoverage(v);
2966 }
2967 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2968 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2969 if( regEnd ) sqlite3VdbeJumpHere(v, addr);
2970 }
2971 }
2972 }
2973
2974 /* End of the main input loop */
2975 sqlite3VdbeResolveLabel(v, lblWhereEnd);
2976 sqlite3WhereEnd(pWInfo);
2977
2978 /* Fall through */
2979 if( pMWin->pPartition ){
2980 addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart);
2981 sqlite3VdbeJumpHere(v, addrGosubFlush);
2982 }
2983
2984 addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite);
2985 VdbeCoverage(v);
2986 if( pMWin->eEnd==TK_PRECEDING ){
2987 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2988 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
2989 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2990 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2991 }else if( pMWin->eStart==TK_FOLLOWING ){
2992 int addrStart;
2993 int addrBreak1;
2994 int addrBreak2;
2995 int addrBreak3;
2996 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2997 if( pMWin->eFrmType==TK_RANGE ){
2998 addrStart = sqlite3VdbeCurrentAddr(v);
2999 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
3000 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3001 }else
3002 if( pMWin->eEnd==TK_UNBOUNDED ){
3003 addrStart = sqlite3VdbeCurrentAddr(v);
3004 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1);
3005 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1);
3006 }else{
3007 assert( pMWin->eEnd==TK_FOLLOWING );
3008 addrStart = sqlite3VdbeCurrentAddr(v);
3009 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1);
3010 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
3011 }
3012 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3013 sqlite3VdbeJumpHere(v, addrBreak2);
3014 addrStart = sqlite3VdbeCurrentAddr(v);
3015 addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3016 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3017 sqlite3VdbeJumpHere(v, addrBreak1);
3018 sqlite3VdbeJumpHere(v, addrBreak3);
3019 }else{
3020 int addrBreak;
3021 int addrStart;
3022 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
3023 addrStart = sqlite3VdbeCurrentAddr(v);
3024 addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3025 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3026 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3027 sqlite3VdbeJumpHere(v, addrBreak);
3028 }
3029 sqlite3VdbeJumpHere(v, addrEmpty);
3030
3031 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
3032 if( pMWin->pPartition ){
3033 if( pMWin->regStartRowid ){
3034 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
3035 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
3036 }
3037 sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v));
3038 sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
3039 }
3040 }
3041
3042 #endif /* SQLITE_OMIT_WINDOWFUNC */
3043