1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31 //
32 // Tests for Google Test itself.  This verifies that the basic constructs of
33 // Google Test work.
34 
35 #include "gtest/gtest.h"
36 
37 // Verifies that the command line flag variables can be accessed
38 // in code once <gtest/gtest.h> has been #included.
39 // Do not move it after other #includes.
TEST(CommandLineFlagsTest,CanBeAccessedInCodeOnceGTestHIsIncluded)40 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
41   bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
42       || testing::GTEST_FLAG(break_on_failure)
43       || testing::GTEST_FLAG(catch_exceptions)
44       || testing::GTEST_FLAG(color) != "unknown"
45       || testing::GTEST_FLAG(filter) != "unknown"
46       || testing::GTEST_FLAG(list_tests)
47       || testing::GTEST_FLAG(output) != "unknown"
48       || testing::GTEST_FLAG(print_time)
49       || testing::GTEST_FLAG(random_seed)
50       || testing::GTEST_FLAG(repeat) > 0
51       || testing::GTEST_FLAG(show_internal_stack_frames)
52       || testing::GTEST_FLAG(shuffle)
53       || testing::GTEST_FLAG(stack_trace_depth) > 0
54       || testing::GTEST_FLAG(stream_result_to) != "unknown"
55       || testing::GTEST_FLAG(throw_on_failure);
56   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
57 }
58 
59 #include <limits.h>  // For INT_MAX.
60 #include <stdlib.h>
61 #include <string.h>
62 #include <time.h>
63 
64 #include <map>
65 #include <vector>
66 #include <ostream>
67 
68 #include "gtest/gtest-spi.h"
69 
70 // Indicates that this translation unit is part of Google Test's
71 // implementation.  It must come before gtest-internal-inl.h is
72 // included, or there will be a compiler error.  This trick is to
73 // prevent a user from accidentally including gtest-internal-inl.h in
74 // his code.
75 #define GTEST_IMPLEMENTATION_ 1
76 #include "src/gtest-internal-inl.h"
77 #undef GTEST_IMPLEMENTATION_
78 
79 namespace testing {
80 namespace internal {
81 
82 #if GTEST_CAN_STREAM_RESULTS_
83 
84 class StreamingListenerTest : public Test {
85  public:
86   class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
87    public:
88     // Sends a string to the socket.
Send(const string & message)89     virtual void Send(const string& message) { output_ += message; }
90 
91     string output_;
92   };
93 
StreamingListenerTest()94   StreamingListenerTest()
95       : fake_sock_writer_(new FakeSocketWriter),
96         streamer_(fake_sock_writer_),
97         test_info_obj_("FooTest", "Bar", NULL, NULL,
98                        CodeLocation(__FILE__, __LINE__), 0, NULL) {}
99 
100  protected:
output()101   string* output() { return &(fake_sock_writer_->output_); }
102 
103   FakeSocketWriter* const fake_sock_writer_;
104   StreamingListener streamer_;
105   UnitTest unit_test_;
106   TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
107 };
108 
TEST_F(StreamingListenerTest,OnTestProgramEnd)109 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
110   *output() = "";
111   streamer_.OnTestProgramEnd(unit_test_);
112   EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
113 }
114 
TEST_F(StreamingListenerTest,OnTestIterationEnd)115 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
116   *output() = "";
117   streamer_.OnTestIterationEnd(unit_test_, 42);
118   EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
119 }
120 
TEST_F(StreamingListenerTest,OnTestCaseStart)121 TEST_F(StreamingListenerTest, OnTestCaseStart) {
122   *output() = "";
123   streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", NULL, NULL));
124   EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
125 }
126 
TEST_F(StreamingListenerTest,OnTestCaseEnd)127 TEST_F(StreamingListenerTest, OnTestCaseEnd) {
128   *output() = "";
129   streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", NULL, NULL));
130   EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
131 }
132 
TEST_F(StreamingListenerTest,OnTestStart)133 TEST_F(StreamingListenerTest, OnTestStart) {
134   *output() = "";
135   streamer_.OnTestStart(test_info_obj_);
136   EXPECT_EQ("event=TestStart&name=Bar\n", *output());
137 }
138 
TEST_F(StreamingListenerTest,OnTestEnd)139 TEST_F(StreamingListenerTest, OnTestEnd) {
140   *output() = "";
141   streamer_.OnTestEnd(test_info_obj_);
142   EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
143 }
144 
TEST_F(StreamingListenerTest,OnTestPartResult)145 TEST_F(StreamingListenerTest, OnTestPartResult) {
146   *output() = "";
147   streamer_.OnTestPartResult(TestPartResult(
148       TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
149 
150   // Meta characters in the failure message should be properly escaped.
151   EXPECT_EQ(
152       "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
153       *output());
154 }
155 
156 #endif  // GTEST_CAN_STREAM_RESULTS_
157 
158 // Provides access to otherwise private parts of the TestEventListeners class
159 // that are needed to test it.
160 class TestEventListenersAccessor {
161  public:
GetRepeater(TestEventListeners * listeners)162   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
163     return listeners->repeater();
164   }
165 
SetDefaultResultPrinter(TestEventListeners * listeners,TestEventListener * listener)166   static void SetDefaultResultPrinter(TestEventListeners* listeners,
167                                       TestEventListener* listener) {
168     listeners->SetDefaultResultPrinter(listener);
169   }
SetDefaultXmlGenerator(TestEventListeners * listeners,TestEventListener * listener)170   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
171                                      TestEventListener* listener) {
172     listeners->SetDefaultXmlGenerator(listener);
173   }
174 
EventForwardingEnabled(const TestEventListeners & listeners)175   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
176     return listeners.EventForwardingEnabled();
177   }
178 
SuppressEventForwarding(TestEventListeners * listeners)179   static void SuppressEventForwarding(TestEventListeners* listeners) {
180     listeners->SuppressEventForwarding();
181   }
182 };
183 
184 class UnitTestRecordPropertyTestHelper : public Test {
185  protected:
UnitTestRecordPropertyTestHelper()186   UnitTestRecordPropertyTestHelper() {}
187 
188   // Forwards to UnitTest::RecordProperty() to bypass access controls.
UnitTestRecordProperty(const char * key,const std::string & value)189   void UnitTestRecordProperty(const char* key, const std::string& value) {
190     unit_test_.RecordProperty(key, value);
191   }
192 
193   UnitTest unit_test_;
194 };
195 
196 }  // namespace internal
197 }  // namespace testing
198 
199 using testing::AssertionFailure;
200 using testing::AssertionResult;
201 using testing::AssertionSuccess;
202 using testing::DoubleLE;
203 using testing::EmptyTestEventListener;
204 using testing::Environment;
205 using testing::FloatLE;
206 using testing::GTEST_FLAG(also_run_disabled_tests);
207 using testing::GTEST_FLAG(break_on_failure);
208 using testing::GTEST_FLAG(catch_exceptions);
209 using testing::GTEST_FLAG(color);
210 using testing::GTEST_FLAG(death_test_use_fork);
211 using testing::GTEST_FLAG(filter);
212 using testing::GTEST_FLAG(list_tests);
213 using testing::GTEST_FLAG(output);
214 using testing::GTEST_FLAG(print_time);
215 using testing::GTEST_FLAG(random_seed);
216 using testing::GTEST_FLAG(repeat);
217 using testing::GTEST_FLAG(show_internal_stack_frames);
218 using testing::GTEST_FLAG(shuffle);
219 using testing::GTEST_FLAG(stack_trace_depth);
220 using testing::GTEST_FLAG(stream_result_to);
221 using testing::GTEST_FLAG(throw_on_failure);
222 using testing::IsNotSubstring;
223 using testing::IsSubstring;
224 using testing::Message;
225 using testing::ScopedFakeTestPartResultReporter;
226 using testing::StaticAssertTypeEq;
227 using testing::Test;
228 using testing::TestCase;
229 using testing::TestEventListeners;
230 using testing::TestInfo;
231 using testing::TestPartResult;
232 using testing::TestPartResultArray;
233 using testing::TestProperty;
234 using testing::TestResult;
235 using testing::TimeInMillis;
236 using testing::UnitTest;
237 using testing::internal::AddReference;
238 using testing::internal::AlwaysFalse;
239 using testing::internal::AlwaysTrue;
240 using testing::internal::AppendUserMessage;
241 using testing::internal::ArrayAwareFind;
242 using testing::internal::ArrayEq;
243 using testing::internal::CodePointToUtf8;
244 using testing::internal::CompileAssertTypesEqual;
245 using testing::internal::CopyArray;
246 using testing::internal::CountIf;
247 using testing::internal::EqFailure;
248 using testing::internal::FloatingPoint;
249 using testing::internal::ForEach;
250 using testing::internal::FormatEpochTimeInMillisAsIso8601;
251 using testing::internal::FormatTimeInMillisAsSeconds;
252 using testing::internal::GTestFlagSaver;
253 using testing::internal::GetCurrentOsStackTraceExceptTop;
254 using testing::internal::GetElementOr;
255 using testing::internal::GetNextRandomSeed;
256 using testing::internal::GetRandomSeedFromFlag;
257 using testing::internal::GetTestTypeId;
258 using testing::internal::GetTimeInMillis;
259 using testing::internal::GetTypeId;
260 using testing::internal::GetUnitTestImpl;
261 using testing::internal::ImplicitlyConvertible;
262 using testing::internal::Int32;
263 using testing::internal::Int32FromEnvOrDie;
264 using testing::internal::IsAProtocolMessage;
265 using testing::internal::IsContainer;
266 using testing::internal::IsContainerTest;
267 using testing::internal::IsNotContainer;
268 using testing::internal::NativeArray;
269 using testing::internal::ParseInt32Flag;
270 using testing::internal::RelationToSourceCopy;
271 using testing::internal::RelationToSourceReference;
272 using testing::internal::RemoveConst;
273 using testing::internal::RemoveReference;
274 using testing::internal::ShouldRunTestOnShard;
275 using testing::internal::ShouldShard;
276 using testing::internal::ShouldUseColor;
277 using testing::internal::Shuffle;
278 using testing::internal::ShuffleRange;
279 using testing::internal::SkipPrefix;
280 using testing::internal::StreamableToString;
281 using testing::internal::String;
282 using testing::internal::TestEventListenersAccessor;
283 using testing::internal::TestResultAccessor;
284 using testing::internal::UInt32;
285 using testing::internal::WideStringToUtf8;
286 using testing::internal::edit_distance::CalculateOptimalEdits;
287 using testing::internal::edit_distance::CreateUnifiedDiff;
288 using testing::internal::edit_distance::EditType;
289 using testing::internal::kMaxRandomSeed;
290 using testing::internal::kTestTypeIdInGoogleTest;
291 using testing::kMaxStackTraceDepth;
292 
293 #if GTEST_HAS_STREAM_REDIRECTION
294 using testing::internal::CaptureStdout;
295 using testing::internal::GetCapturedStdout;
296 #endif
297 
298 #if GTEST_IS_THREADSAFE
299 using testing::internal::ThreadWithParam;
300 #endif
301 
302 class TestingVector : public std::vector<int> {
303 };
304 
operator <<(::std::ostream & os,const TestingVector & vector)305 ::std::ostream& operator<<(::std::ostream& os,
306                            const TestingVector& vector) {
307   os << "{ ";
308   for (size_t i = 0; i < vector.size(); i++) {
309     os << vector[i] << " ";
310   }
311   os << "}";
312   return os;
313 }
314 
315 // This line tests that we can define tests in an unnamed namespace.
316 namespace {
317 
TEST(GetRandomSeedFromFlagTest,HandlesZero)318 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
319   const int seed = GetRandomSeedFromFlag(0);
320   EXPECT_LE(1, seed);
321   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
322 }
323 
TEST(GetRandomSeedFromFlagTest,PreservesValidSeed)324 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
325   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
326   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
327   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
328   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
329             GetRandomSeedFromFlag(kMaxRandomSeed));
330 }
331 
TEST(GetRandomSeedFromFlagTest,NormalizesInvalidSeed)332 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
333   const int seed1 = GetRandomSeedFromFlag(-1);
334   EXPECT_LE(1, seed1);
335   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
336 
337   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
338   EXPECT_LE(1, seed2);
339   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
340 }
341 
TEST(GetNextRandomSeedTest,WorksForValidInput)342 TEST(GetNextRandomSeedTest, WorksForValidInput) {
343   EXPECT_EQ(2, GetNextRandomSeed(1));
344   EXPECT_EQ(3, GetNextRandomSeed(2));
345   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
346             GetNextRandomSeed(kMaxRandomSeed - 1));
347   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
348 
349   // We deliberately don't test GetNextRandomSeed() with invalid
350   // inputs, as that requires death tests, which are expensive.  This
351   // is fine as GetNextRandomSeed() is internal and has a
352   // straightforward definition.
353 }
354 
ClearCurrentTestPartResults()355 static void ClearCurrentTestPartResults() {
356   TestResultAccessor::ClearTestPartResults(
357       GetUnitTestImpl()->current_test_result());
358 }
359 
360 // Tests GetTypeId.
361 
TEST(GetTypeIdTest,ReturnsSameValueForSameType)362 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
363   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
364   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
365 }
366 
367 class SubClassOfTest : public Test {};
368 class AnotherSubClassOfTest : public Test {};
369 
TEST(GetTypeIdTest,ReturnsDifferentValuesForDifferentTypes)370 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
371   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
372   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
373   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
374   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
375   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
376   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
377 }
378 
379 // Verifies that GetTestTypeId() returns the same value, no matter it
380 // is called from inside Google Test or outside of it.
TEST(GetTestTypeIdTest,ReturnsTheSameValueInsideOrOutsideOfGoogleTest)381 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
382   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
383 }
384 
385 // Tests FormatTimeInMillisAsSeconds().
386 
TEST(FormatTimeInMillisAsSecondsTest,FormatsZero)387 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
388   EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
389 }
390 
TEST(FormatTimeInMillisAsSecondsTest,FormatsPositiveNumber)391 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
392   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
393   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
394   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
395   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
396   EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
397 }
398 
TEST(FormatTimeInMillisAsSecondsTest,FormatsNegativeNumber)399 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
400   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
401   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
402   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
403   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
404   EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
405 }
406 
407 // Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
408 // for particular dates below was verified in Python using
409 // datetime.datetime.fromutctimestamp(<timetamp>/1000).
410 
411 // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
412 // have to set up a particular timezone to obtain predictable results.
413 class FormatEpochTimeInMillisAsIso8601Test : public Test {
414  public:
415   // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
416   // 32 bits, even when 64-bit integer types are available.  We have to
417   // force the constants to have a 64-bit type here.
418   static const TimeInMillis kMillisPerSec = 1000;
419 
420  private:
SetUp()421   virtual void SetUp() {
422     saved_tz_ = NULL;
423 
424     GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* getenv, strdup: deprecated */)
425     if (getenv("TZ"))
426       saved_tz_ = strdup(getenv("TZ"));
427     GTEST_DISABLE_MSC_WARNINGS_POP_()
428 
429     // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
430     // cannot use the local time zone because the function's output depends
431     // on the time zone.
432     SetTimeZone("UTC+00");
433   }
434 
TearDown()435   virtual void TearDown() {
436     SetTimeZone(saved_tz_);
437     free(const_cast<char*>(saved_tz_));
438     saved_tz_ = NULL;
439   }
440 
SetTimeZone(const char * time_zone)441   static void SetTimeZone(const char* time_zone) {
442     // tzset() distinguishes between the TZ variable being present and empty
443     // and not being present, so we have to consider the case of time_zone
444     // being NULL.
445 #if _MSC_VER
446     // ...Unless it's MSVC, whose standard library's _putenv doesn't
447     // distinguish between an empty and a missing variable.
448     const std::string env_var =
449         std::string("TZ=") + (time_zone ? time_zone : "");
450     _putenv(env_var.c_str());
451     GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
452     tzset();
453     GTEST_DISABLE_MSC_WARNINGS_POP_()
454 #else
455     if (time_zone) {
456       setenv(("TZ"), time_zone, 1);
457     } else {
458       unsetenv("TZ");
459     }
460     tzset();
461 #endif
462   }
463 
464   const char* saved_tz_;
465 };
466 
467 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
468 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsTwoDigitSegments)469 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
470   EXPECT_EQ("2011-10-31T18:52:42",
471             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
472 }
473 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,MillisecondsDoNotAffectResult)474 TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) {
475   EXPECT_EQ(
476       "2011-10-31T18:52:42",
477       FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
478 }
479 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsLeadingZeroes)480 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
481   EXPECT_EQ("2011-09-03T05:07:02",
482             FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
483 }
484 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,Prints24HourTime)485 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
486   EXPECT_EQ("2011-09-28T17:08:22",
487             FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
488 }
489 
TEST_F(FormatEpochTimeInMillisAsIso8601Test,PrintsEpochStart)490 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
491   EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0));
492 }
493 
494 #if GTEST_CAN_COMPARE_NULL
495 
496 # ifdef __BORLANDC__
497 // Silences warnings: "Condition is always true", "Unreachable code"
498 #  pragma option push -w-ccc -w-rch
499 # endif
500 
501 // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
502 // pointer literal.
TEST(NullLiteralTest,IsTrueForNullLiterals)503 TEST(NullLiteralTest, IsTrueForNullLiterals) {
504   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
505   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
506   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
507   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
508 }
509 
510 // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
511 // pointer literal.
TEST(NullLiteralTest,IsFalseForNonNullLiterals)512 TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
513   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
514   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
515   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
516   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
517 }
518 
519 # ifdef __BORLANDC__
520 // Restores warnings after previous "#pragma option push" suppressed them.
521 #  pragma option pop
522 # endif
523 
524 #endif  // GTEST_CAN_COMPARE_NULL
525 //
526 // Tests CodePointToUtf8().
527 
528 // Tests that the NUL character L'\0' is encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeNul)529 TEST(CodePointToUtf8Test, CanEncodeNul) {
530   EXPECT_EQ("", CodePointToUtf8(L'\0'));
531 }
532 
533 // Tests that ASCII characters are encoded correctly.
TEST(CodePointToUtf8Test,CanEncodeAscii)534 TEST(CodePointToUtf8Test, CanEncodeAscii) {
535   EXPECT_EQ("a", CodePointToUtf8(L'a'));
536   EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
537   EXPECT_EQ("&", CodePointToUtf8(L'&'));
538   EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
539 }
540 
541 // Tests that Unicode code-points that have 8 to 11 bits are encoded
542 // as 110xxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode8To11Bits)543 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
544   // 000 1101 0011 => 110-00011 10-010011
545   EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
546 
547   // 101 0111 0110 => 110-10101 10-110110
548   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
549   // in wide strings and wide chars. In order to accomodate them, we have to
550   // introduce such character constants as integers.
551   EXPECT_EQ("\xD5\xB6",
552             CodePointToUtf8(static_cast<wchar_t>(0x576)));
553 }
554 
555 // Tests that Unicode code-points that have 12 to 16 bits are encoded
556 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode12To16Bits)557 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
558   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
559   EXPECT_EQ("\xE0\xA3\x93",
560             CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
561 
562   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
563   EXPECT_EQ("\xEC\x9D\x8D",
564             CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
565 }
566 
567 #if !GTEST_WIDE_STRING_USES_UTF16_
568 // Tests in this group require a wchar_t to hold > 16 bits, and thus
569 // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
570 // 16-bit wide. This code may not compile on those systems.
571 
572 // Tests that Unicode code-points that have 17 to 21 bits are encoded
573 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test,CanEncode17To21Bits)574 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
575   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
576   EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
577 
578   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
579   EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
580 
581   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
582   EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
583 }
584 
585 // Tests that encoding an invalid code-point generates the expected result.
TEST(CodePointToUtf8Test,CanEncodeInvalidCodePoint)586 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
587   EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
588 }
589 
590 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
591 
592 // Tests WideStringToUtf8().
593 
594 // Tests that the NUL character L'\0' is encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeNul)595 TEST(WideStringToUtf8Test, CanEncodeNul) {
596   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
597   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
598 }
599 
600 // Tests that ASCII strings are encoded correctly.
TEST(WideStringToUtf8Test,CanEncodeAscii)601 TEST(WideStringToUtf8Test, CanEncodeAscii) {
602   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
603   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
604   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
605   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
606 }
607 
608 // Tests that Unicode code-points that have 8 to 11 bits are encoded
609 // as 110xxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode8To11Bits)610 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
611   // 000 1101 0011 => 110-00011 10-010011
612   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
613   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
614 
615   // 101 0111 0110 => 110-10101 10-110110
616   const wchar_t s[] = { 0x576, '\0' };
617   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
618   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
619 }
620 
621 // Tests that Unicode code-points that have 12 to 16 bits are encoded
622 // as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(WideStringToUtf8Test,CanEncode12To16Bits)623 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
624   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
625   const wchar_t s1[] = { 0x8D3, '\0' };
626   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
627   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
628 
629   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
630   const wchar_t s2[] = { 0xC74D, '\0' };
631   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
632   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
633 }
634 
635 // Tests that the conversion stops when the function encounters \0 character.
TEST(WideStringToUtf8Test,StopsOnNulCharacter)636 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
637   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
638 }
639 
640 // Tests that the conversion stops when the function reaches the limit
641 // specified by the 'length' parameter.
TEST(WideStringToUtf8Test,StopsWhenLengthLimitReached)642 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
643   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
644 }
645 
646 #if !GTEST_WIDE_STRING_USES_UTF16_
647 // Tests that Unicode code-points that have 17 to 21 bits are encoded
648 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
649 // on the systems using UTF-16 encoding.
TEST(WideStringToUtf8Test,CanEncode17To21Bits)650 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
651   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
652   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
653   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
654 
655   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
656   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
657   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
658 }
659 
660 // Tests that encoding an invalid code-point generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidCodePoint)661 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
662   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
663                WideStringToUtf8(L"\xABCDFF", -1).c_str());
664 }
665 #else  // !GTEST_WIDE_STRING_USES_UTF16_
666 // Tests that surrogate pairs are encoded correctly on the systems using
667 // UTF-16 encoding in the wide strings.
TEST(WideStringToUtf8Test,CanEncodeValidUtf16SUrrogatePairs)668 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
669   const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
670   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
671 }
672 
673 // Tests that encoding an invalid UTF-16 surrogate pair
674 // generates the expected result.
TEST(WideStringToUtf8Test,CanEncodeInvalidUtf16SurrogatePair)675 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
676   // Leading surrogate is at the end of the string.
677   const wchar_t s1[] = { 0xD800, '\0' };
678   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
679   // Leading surrogate is not followed by the trailing surrogate.
680   const wchar_t s2[] = { 0xD800, 'M', '\0' };
681   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
682   // Trailing surrogate appearas without a leading surrogate.
683   const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
684   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
685 }
686 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
687 
688 // Tests that codepoint concatenation works correctly.
689 #if !GTEST_WIDE_STRING_USES_UTF16_
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)690 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
691   const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
692   EXPECT_STREQ(
693       "\xF4\x88\x98\xB4"
694           "\xEC\x9D\x8D"
695           "\n"
696           "\xD5\xB6"
697           "\xE0\xA3\x93"
698           "\xF4\x88\x98\xB4",
699       WideStringToUtf8(s, -1).c_str());
700 }
701 #else
TEST(WideStringToUtf8Test,ConcatenatesCodepointsCorrectly)702 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
703   const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
704   EXPECT_STREQ(
705       "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
706       WideStringToUtf8(s, -1).c_str());
707 }
708 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
709 
710 // Tests the Random class.
711 
TEST(RandomDeathTest,GeneratesCrashesOnInvalidRange)712 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
713   testing::internal::Random random(42);
714   EXPECT_DEATH_IF_SUPPORTED(
715       random.Generate(0),
716       "Cannot generate a number in the range \\[0, 0\\)");
717   EXPECT_DEATH_IF_SUPPORTED(
718       random.Generate(testing::internal::Random::kMaxRange + 1),
719       "Generation of a number in \\[0, 2147483649\\) was requested, "
720       "but this can only generate numbers in \\[0, 2147483648\\)");
721 }
722 
TEST(RandomTest,GeneratesNumbersWithinRange)723 TEST(RandomTest, GeneratesNumbersWithinRange) {
724   const UInt32 kRange = 10000;
725   testing::internal::Random random(12345);
726   for (int i = 0; i < 10; i++) {
727     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
728   }
729 
730   testing::internal::Random random2(testing::internal::Random::kMaxRange);
731   for (int i = 0; i < 10; i++) {
732     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
733   }
734 }
735 
TEST(RandomTest,RepeatsWhenReseeded)736 TEST(RandomTest, RepeatsWhenReseeded) {
737   const int kSeed = 123;
738   const int kArraySize = 10;
739   const UInt32 kRange = 10000;
740   UInt32 values[kArraySize];
741 
742   testing::internal::Random random(kSeed);
743   for (int i = 0; i < kArraySize; i++) {
744     values[i] = random.Generate(kRange);
745   }
746 
747   random.Reseed(kSeed);
748   for (int i = 0; i < kArraySize; i++) {
749     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
750   }
751 }
752 
753 // Tests STL container utilities.
754 
755 // Tests CountIf().
756 
IsPositive(int n)757 static bool IsPositive(int n) { return n > 0; }
758 
TEST(ContainerUtilityTest,CountIf)759 TEST(ContainerUtilityTest, CountIf) {
760   std::vector<int> v;
761   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
762 
763   v.push_back(-1);
764   v.push_back(0);
765   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
766 
767   v.push_back(2);
768   v.push_back(-10);
769   v.push_back(10);
770   EXPECT_EQ(2, CountIf(v, IsPositive));
771 }
772 
773 // Tests ForEach().
774 
775 static int g_sum = 0;
Accumulate(int n)776 static void Accumulate(int n) { g_sum += n; }
777 
TEST(ContainerUtilityTest,ForEach)778 TEST(ContainerUtilityTest, ForEach) {
779   std::vector<int> v;
780   g_sum = 0;
781   ForEach(v, Accumulate);
782   EXPECT_EQ(0, g_sum);  // Works for an empty container;
783 
784   g_sum = 0;
785   v.push_back(1);
786   ForEach(v, Accumulate);
787   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
788 
789   g_sum = 0;
790   v.push_back(20);
791   v.push_back(300);
792   ForEach(v, Accumulate);
793   EXPECT_EQ(321, g_sum);
794 }
795 
796 // Tests GetElementOr().
TEST(ContainerUtilityTest,GetElementOr)797 TEST(ContainerUtilityTest, GetElementOr) {
798   std::vector<char> a;
799   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
800 
801   a.push_back('a');
802   a.push_back('b');
803   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
804   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
805   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
806   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
807 }
808 
TEST(ContainerUtilityDeathTest,ShuffleRange)809 TEST(ContainerUtilityDeathTest, ShuffleRange) {
810   std::vector<int> a;
811   a.push_back(0);
812   a.push_back(1);
813   a.push_back(2);
814   testing::internal::Random random(1);
815 
816   EXPECT_DEATH_IF_SUPPORTED(
817       ShuffleRange(&random, -1, 1, &a),
818       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
819   EXPECT_DEATH_IF_SUPPORTED(
820       ShuffleRange(&random, 4, 4, &a),
821       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
822   EXPECT_DEATH_IF_SUPPORTED(
823       ShuffleRange(&random, 3, 2, &a),
824       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
825   EXPECT_DEATH_IF_SUPPORTED(
826       ShuffleRange(&random, 3, 4, &a),
827       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
828 }
829 
830 class VectorShuffleTest : public Test {
831  protected:
832   static const int kVectorSize = 20;
833 
VectorShuffleTest()834   VectorShuffleTest() : random_(1) {
835     for (int i = 0; i < kVectorSize; i++) {
836       vector_.push_back(i);
837     }
838   }
839 
VectorIsCorrupt(const TestingVector & vector)840   static bool VectorIsCorrupt(const TestingVector& vector) {
841     if (kVectorSize != static_cast<int>(vector.size())) {
842       return true;
843     }
844 
845     bool found_in_vector[kVectorSize] = { false };
846     for (size_t i = 0; i < vector.size(); i++) {
847       const int e = vector[i];
848       if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
849         return true;
850       }
851       found_in_vector[e] = true;
852     }
853 
854     // Vector size is correct, elements' range is correct, no
855     // duplicate elements.  Therefore no corruption has occurred.
856     return false;
857   }
858 
VectorIsNotCorrupt(const TestingVector & vector)859   static bool VectorIsNotCorrupt(const TestingVector& vector) {
860     return !VectorIsCorrupt(vector);
861   }
862 
RangeIsShuffled(const TestingVector & vector,int begin,int end)863   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
864     for (int i = begin; i < end; i++) {
865       if (i != vector[i]) {
866         return true;
867       }
868     }
869     return false;
870   }
871 
RangeIsUnshuffled(const TestingVector & vector,int begin,int end)872   static bool RangeIsUnshuffled(
873       const TestingVector& vector, int begin, int end) {
874     return !RangeIsShuffled(vector, begin, end);
875   }
876 
VectorIsShuffled(const TestingVector & vector)877   static bool VectorIsShuffled(const TestingVector& vector) {
878     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
879   }
880 
VectorIsUnshuffled(const TestingVector & vector)881   static bool VectorIsUnshuffled(const TestingVector& vector) {
882     return !VectorIsShuffled(vector);
883   }
884 
885   testing::internal::Random random_;
886   TestingVector vector_;
887 };  // class VectorShuffleTest
888 
889 const int VectorShuffleTest::kVectorSize;
890 
TEST_F(VectorShuffleTest,HandlesEmptyRange)891 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
892   // Tests an empty range at the beginning...
893   ShuffleRange(&random_, 0, 0, &vector_);
894   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
895   ASSERT_PRED1(VectorIsUnshuffled, vector_);
896 
897   // ...in the middle...
898   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
899   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
900   ASSERT_PRED1(VectorIsUnshuffled, vector_);
901 
902   // ...at the end...
903   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
904   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
905   ASSERT_PRED1(VectorIsUnshuffled, vector_);
906 
907   // ...and past the end.
908   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
909   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
910   ASSERT_PRED1(VectorIsUnshuffled, vector_);
911 }
912 
TEST_F(VectorShuffleTest,HandlesRangeOfSizeOne)913 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
914   // Tests a size one range at the beginning...
915   ShuffleRange(&random_, 0, 1, &vector_);
916   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
917   ASSERT_PRED1(VectorIsUnshuffled, vector_);
918 
919   // ...in the middle...
920   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
921   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
922   ASSERT_PRED1(VectorIsUnshuffled, vector_);
923 
924   // ...and at the end.
925   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
926   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
927   ASSERT_PRED1(VectorIsUnshuffled, vector_);
928 }
929 
930 // Because we use our own random number generator and a fixed seed,
931 // we can guarantee that the following "random" tests will succeed.
932 
TEST_F(VectorShuffleTest,ShufflesEntireVector)933 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
934   Shuffle(&random_, &vector_);
935   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
936   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
937 
938   // Tests the first and last elements in particular to ensure that
939   // there are no off-by-one problems in our shuffle algorithm.
940   EXPECT_NE(0, vector_[0]);
941   EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
942 }
943 
TEST_F(VectorShuffleTest,ShufflesStartOfVector)944 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
945   const int kRangeSize = kVectorSize/2;
946 
947   ShuffleRange(&random_, 0, kRangeSize, &vector_);
948 
949   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
950   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
951   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
952 }
953 
TEST_F(VectorShuffleTest,ShufflesEndOfVector)954 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
955   const int kRangeSize = kVectorSize / 2;
956   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
957 
958   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
959   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
960   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
961 }
962 
TEST_F(VectorShuffleTest,ShufflesMiddleOfVector)963 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
964   int kRangeSize = kVectorSize/3;
965   ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
966 
967   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
968   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
969   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
970   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
971 }
972 
TEST_F(VectorShuffleTest,ShufflesRepeatably)973 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
974   TestingVector vector2;
975   for (int i = 0; i < kVectorSize; i++) {
976     vector2.push_back(i);
977   }
978 
979   random_.Reseed(1234);
980   Shuffle(&random_, &vector_);
981   random_.Reseed(1234);
982   Shuffle(&random_, &vector2);
983 
984   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
985   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
986 
987   for (int i = 0; i < kVectorSize; i++) {
988     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
989   }
990 }
991 
992 // Tests the size of the AssertHelper class.
993 
TEST(AssertHelperTest,AssertHelperIsSmall)994 TEST(AssertHelperTest, AssertHelperIsSmall) {
995   // To avoid breaking clients that use lots of assertions in one
996   // function, we cannot grow the size of AssertHelper.
997   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
998 }
999 
1000 // Tests String::EndsWithCaseInsensitive().
TEST(StringTest,EndsWithCaseInsensitive)1001 TEST(StringTest, EndsWithCaseInsensitive) {
1002   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
1003   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
1004   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
1005   EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
1006 
1007   EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
1008   EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
1009   EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
1010 }
1011 
1012 // C++Builder's preprocessor is buggy; it fails to expand macros that
1013 // appear in macro parameters after wide char literals.  Provide an alias
1014 // for NULL as a workaround.
1015 static const wchar_t* const kNull = NULL;
1016 
1017 // Tests String::CaseInsensitiveWideCStringEquals
TEST(StringTest,CaseInsensitiveWideCStringEquals)1018 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
1019   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
1020   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
1021   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
1022   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
1023   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
1024   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
1025   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
1026   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
1027 }
1028 
1029 #if GTEST_OS_WINDOWS
1030 
1031 // Tests String::ShowWideCString().
TEST(StringTest,ShowWideCString)1032 TEST(StringTest, ShowWideCString) {
1033   EXPECT_STREQ("(null)",
1034                String::ShowWideCString(NULL).c_str());
1035   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
1036   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
1037 }
1038 
1039 # if GTEST_OS_WINDOWS_MOBILE
TEST(StringTest,AnsiAndUtf16Null)1040 TEST(StringTest, AnsiAndUtf16Null) {
1041   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
1042   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
1043 }
1044 
TEST(StringTest,AnsiAndUtf16ConvertBasic)1045 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
1046   const char* ansi = String::Utf16ToAnsi(L"str");
1047   EXPECT_STREQ("str", ansi);
1048   delete [] ansi;
1049   const WCHAR* utf16 = String::AnsiToUtf16("str");
1050   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
1051   delete [] utf16;
1052 }
1053 
TEST(StringTest,AnsiAndUtf16ConvertPathChars)1054 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
1055   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
1056   EXPECT_STREQ(".:\\ \"*?", ansi);
1057   delete [] ansi;
1058   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
1059   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
1060   delete [] utf16;
1061 }
1062 # endif  // GTEST_OS_WINDOWS_MOBILE
1063 
1064 #endif  // GTEST_OS_WINDOWS
1065 
1066 // Tests TestProperty construction.
TEST(TestPropertyTest,StringValue)1067 TEST(TestPropertyTest, StringValue) {
1068   TestProperty property("key", "1");
1069   EXPECT_STREQ("key", property.key());
1070   EXPECT_STREQ("1", property.value());
1071 }
1072 
1073 // Tests TestProperty replacing a value.
TEST(TestPropertyTest,ReplaceStringValue)1074 TEST(TestPropertyTest, ReplaceStringValue) {
1075   TestProperty property("key", "1");
1076   EXPECT_STREQ("1", property.value());
1077   property.SetValue("2");
1078   EXPECT_STREQ("2", property.value());
1079 }
1080 
1081 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
1082 // functions (i.e. their definitions cannot be inlined at the call
1083 // sites), or C++Builder won't compile the code.
AddFatalFailure()1084 static void AddFatalFailure() {
1085   FAIL() << "Expected fatal failure.";
1086 }
1087 
AddNonfatalFailure()1088 static void AddNonfatalFailure() {
1089   ADD_FAILURE() << "Expected non-fatal failure.";
1090 }
1091 
1092 class ScopedFakeTestPartResultReporterTest : public Test {
1093  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
1094   enum FailureMode {
1095     FATAL_FAILURE,
1096     NONFATAL_FAILURE
1097   };
AddFailure(FailureMode failure)1098   static void AddFailure(FailureMode failure) {
1099     if (failure == FATAL_FAILURE) {
1100       AddFatalFailure();
1101     } else {
1102       AddNonfatalFailure();
1103     }
1104   }
1105 };
1106 
1107 // Tests that ScopedFakeTestPartResultReporter intercepts test
1108 // failures.
TEST_F(ScopedFakeTestPartResultReporterTest,InterceptsTestFailures)1109 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
1110   TestPartResultArray results;
1111   {
1112     ScopedFakeTestPartResultReporter reporter(
1113         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
1114         &results);
1115     AddFailure(NONFATAL_FAILURE);
1116     AddFailure(FATAL_FAILURE);
1117   }
1118 
1119   EXPECT_EQ(2, results.size());
1120   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1121   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1122 }
1123 
TEST_F(ScopedFakeTestPartResultReporterTest,DeprecatedConstructor)1124 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
1125   TestPartResultArray results;
1126   {
1127     // Tests, that the deprecated constructor still works.
1128     ScopedFakeTestPartResultReporter reporter(&results);
1129     AddFailure(NONFATAL_FAILURE);
1130   }
1131   EXPECT_EQ(1, results.size());
1132 }
1133 
1134 #if GTEST_IS_THREADSAFE
1135 
1136 class ScopedFakeTestPartResultReporterWithThreadsTest
1137   : public ScopedFakeTestPartResultReporterTest {
1138  protected:
AddFailureInOtherThread(FailureMode failure)1139   static void AddFailureInOtherThread(FailureMode failure) {
1140     ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
1141     thread.Join();
1142   }
1143 };
1144 
TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,InterceptsTestFailuresInAllThreads)1145 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
1146        InterceptsTestFailuresInAllThreads) {
1147   TestPartResultArray results;
1148   {
1149     ScopedFakeTestPartResultReporter reporter(
1150         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
1151     AddFailure(NONFATAL_FAILURE);
1152     AddFailure(FATAL_FAILURE);
1153     AddFailureInOtherThread(NONFATAL_FAILURE);
1154     AddFailureInOtherThread(FATAL_FAILURE);
1155   }
1156 
1157   EXPECT_EQ(4, results.size());
1158   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
1159   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
1160   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
1161   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
1162 }
1163 
1164 #endif  // GTEST_IS_THREADSAFE
1165 
1166 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
1167 // work even if the failure is generated in a called function rather than
1168 // the current context.
1169 
1170 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
1171 
TEST_F(ExpectFatalFailureTest,CatchesFatalFaliure)1172 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
1173   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
1174 }
1175 
1176 #if GTEST_HAS_GLOBAL_STRING
TEST_F(ExpectFatalFailureTest,AcceptsStringObject)1177 TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
1178   EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
1179 }
1180 #endif
1181 
TEST_F(ExpectFatalFailureTest,AcceptsStdStringObject)1182 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
1183   EXPECT_FATAL_FAILURE(AddFatalFailure(),
1184                        ::std::string("Expected fatal failure."));
1185 }
1186 
TEST_F(ExpectFatalFailureTest,CatchesFatalFailureOnAllThreads)1187 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
1188   // We have another test below to verify that the macro catches fatal
1189   // failures generated on another thread.
1190   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
1191                                       "Expected fatal failure.");
1192 }
1193 
1194 #ifdef __BORLANDC__
1195 // Silences warnings: "Condition is always true"
1196 # pragma option push -w-ccc
1197 #endif
1198 
1199 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
1200 // function even when the statement in it contains ASSERT_*.
1201 
NonVoidFunction()1202 int NonVoidFunction() {
1203   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1204   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1205   return 0;
1206 }
1207 
TEST_F(ExpectFatalFailureTest,CanBeUsedInNonVoidFunction)1208 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
1209   NonVoidFunction();
1210 }
1211 
1212 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
1213 // current function even though 'statement' generates a fatal failure.
1214 
DoesNotAbortHelper(bool * aborted)1215 void DoesNotAbortHelper(bool* aborted) {
1216   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
1217   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
1218 
1219   *aborted = false;
1220 }
1221 
1222 #ifdef __BORLANDC__
1223 // Restores warnings after previous "#pragma option push" suppressed them.
1224 # pragma option pop
1225 #endif
1226 
TEST_F(ExpectFatalFailureTest,DoesNotAbort)1227 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
1228   bool aborted = true;
1229   DoesNotAbortHelper(&aborted);
1230   EXPECT_FALSE(aborted);
1231 }
1232 
1233 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1234 // statement that contains a macro which expands to code containing an
1235 // unprotected comma.
1236 
1237 static int global_var = 0;
1238 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
1239 
TEST_F(ExpectFatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1240 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1241 #ifndef __BORLANDC__
1242   // ICE's in C++Builder.
1243   EXPECT_FATAL_FAILURE({
1244     GTEST_USE_UNPROTECTED_COMMA_;
1245     AddFatalFailure();
1246   }, "");
1247 #endif
1248 
1249   EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
1250     GTEST_USE_UNPROTECTED_COMMA_;
1251     AddFatalFailure();
1252   }, "");
1253 }
1254 
1255 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
1256 
1257 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
1258 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailure)1259 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
1260   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1261                           "Expected non-fatal failure.");
1262 }
1263 
1264 #if GTEST_HAS_GLOBAL_STRING
TEST_F(ExpectNonfatalFailureTest,AcceptsStringObject)1265 TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
1266   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1267                           ::string("Expected non-fatal failure."));
1268 }
1269 #endif
1270 
TEST_F(ExpectNonfatalFailureTest,AcceptsStdStringObject)1271 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
1272   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
1273                           ::std::string("Expected non-fatal failure."));
1274 }
1275 
TEST_F(ExpectNonfatalFailureTest,CatchesNonfatalFailureOnAllThreads)1276 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
1277   // We have another test below to verify that the macro catches
1278   // non-fatal failures generated on another thread.
1279   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
1280                                          "Expected non-fatal failure.");
1281 }
1282 
1283 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
1284 // statement that contains a macro which expands to code containing an
1285 // unprotected comma.
TEST_F(ExpectNonfatalFailureTest,AcceptsMacroThatExpandsToUnprotectedComma)1286 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
1287   EXPECT_NONFATAL_FAILURE({
1288     GTEST_USE_UNPROTECTED_COMMA_;
1289     AddNonfatalFailure();
1290   }, "");
1291 
1292   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
1293     GTEST_USE_UNPROTECTED_COMMA_;
1294     AddNonfatalFailure();
1295   }, "");
1296 }
1297 
1298 #if GTEST_IS_THREADSAFE
1299 
1300 typedef ScopedFakeTestPartResultReporterWithThreadsTest
1301     ExpectFailureWithThreadsTest;
1302 
TEST_F(ExpectFailureWithThreadsTest,ExpectFatalFailureOnAllThreads)1303 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
1304   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
1305                                       "Expected fatal failure.");
1306 }
1307 
TEST_F(ExpectFailureWithThreadsTest,ExpectNonFatalFailureOnAllThreads)1308 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
1309   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
1310       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
1311 }
1312 
1313 #endif  // GTEST_IS_THREADSAFE
1314 
1315 // Tests the TestProperty class.
1316 
TEST(TestPropertyTest,ConstructorWorks)1317 TEST(TestPropertyTest, ConstructorWorks) {
1318   const TestProperty property("key", "value");
1319   EXPECT_STREQ("key", property.key());
1320   EXPECT_STREQ("value", property.value());
1321 }
1322 
TEST(TestPropertyTest,SetValue)1323 TEST(TestPropertyTest, SetValue) {
1324   TestProperty property("key", "value_1");
1325   EXPECT_STREQ("key", property.key());
1326   property.SetValue("value_2");
1327   EXPECT_STREQ("key", property.key());
1328   EXPECT_STREQ("value_2", property.value());
1329 }
1330 
1331 // Tests the TestResult class
1332 
1333 // The test fixture for testing TestResult.
1334 class TestResultTest : public Test {
1335  protected:
1336   typedef std::vector<TestPartResult> TPRVector;
1337 
1338   // We make use of 2 TestPartResult objects,
1339   TestPartResult * pr1, * pr2;
1340 
1341   // ... and 3 TestResult objects.
1342   TestResult * r0, * r1, * r2;
1343 
SetUp()1344   virtual void SetUp() {
1345     // pr1 is for success.
1346     pr1 = new TestPartResult(TestPartResult::kSuccess,
1347                              "foo/bar.cc",
1348                              10,
1349                              "Success!");
1350 
1351     // pr2 is for fatal failure.
1352     pr2 = new TestPartResult(TestPartResult::kFatalFailure,
1353                              "foo/bar.cc",
1354                              -1,  // This line number means "unknown"
1355                              "Failure!");
1356 
1357     // Creates the TestResult objects.
1358     r0 = new TestResult();
1359     r1 = new TestResult();
1360     r2 = new TestResult();
1361 
1362     // In order to test TestResult, we need to modify its internal
1363     // state, in particular the TestPartResult vector it holds.
1364     // test_part_results() returns a const reference to this vector.
1365     // We cast it to a non-const object s.t. it can be modified (yes,
1366     // this is a hack).
1367     TPRVector* results1 = const_cast<TPRVector*>(
1368         &TestResultAccessor::test_part_results(*r1));
1369     TPRVector* results2 = const_cast<TPRVector*>(
1370         &TestResultAccessor::test_part_results(*r2));
1371 
1372     // r0 is an empty TestResult.
1373 
1374     // r1 contains a single SUCCESS TestPartResult.
1375     results1->push_back(*pr1);
1376 
1377     // r2 contains a SUCCESS, and a FAILURE.
1378     results2->push_back(*pr1);
1379     results2->push_back(*pr2);
1380   }
1381 
TearDown()1382   virtual void TearDown() {
1383     delete pr1;
1384     delete pr2;
1385 
1386     delete r0;
1387     delete r1;
1388     delete r2;
1389   }
1390 
1391   // Helper that compares two two TestPartResults.
CompareTestPartResult(const TestPartResult & expected,const TestPartResult & actual)1392   static void CompareTestPartResult(const TestPartResult& expected,
1393                                     const TestPartResult& actual) {
1394     EXPECT_EQ(expected.type(), actual.type());
1395     EXPECT_STREQ(expected.file_name(), actual.file_name());
1396     EXPECT_EQ(expected.line_number(), actual.line_number());
1397     EXPECT_STREQ(expected.summary(), actual.summary());
1398     EXPECT_STREQ(expected.message(), actual.message());
1399     EXPECT_EQ(expected.passed(), actual.passed());
1400     EXPECT_EQ(expected.failed(), actual.failed());
1401     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
1402     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
1403   }
1404 };
1405 
1406 // Tests TestResult::total_part_count().
TEST_F(TestResultTest,total_part_count)1407 TEST_F(TestResultTest, total_part_count) {
1408   ASSERT_EQ(0, r0->total_part_count());
1409   ASSERT_EQ(1, r1->total_part_count());
1410   ASSERT_EQ(2, r2->total_part_count());
1411 }
1412 
1413 // Tests TestResult::Passed().
TEST_F(TestResultTest,Passed)1414 TEST_F(TestResultTest, Passed) {
1415   ASSERT_TRUE(r0->Passed());
1416   ASSERT_TRUE(r1->Passed());
1417   ASSERT_FALSE(r2->Passed());
1418 }
1419 
1420 // Tests TestResult::Failed().
TEST_F(TestResultTest,Failed)1421 TEST_F(TestResultTest, Failed) {
1422   ASSERT_FALSE(r0->Failed());
1423   ASSERT_FALSE(r1->Failed());
1424   ASSERT_TRUE(r2->Failed());
1425 }
1426 
1427 // Tests TestResult::GetTestPartResult().
1428 
1429 typedef TestResultTest TestResultDeathTest;
1430 
TEST_F(TestResultDeathTest,GetTestPartResult)1431 TEST_F(TestResultDeathTest, GetTestPartResult) {
1432   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
1433   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
1434   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
1435   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
1436 }
1437 
1438 // Tests TestResult has no properties when none are added.
TEST(TestResultPropertyTest,NoPropertiesFoundWhenNoneAreAdded)1439 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
1440   TestResult test_result;
1441   ASSERT_EQ(0, test_result.test_property_count());
1442 }
1443 
1444 // Tests TestResult has the expected property when added.
TEST(TestResultPropertyTest,OnePropertyFoundWhenAdded)1445 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
1446   TestResult test_result;
1447   TestProperty property("key_1", "1");
1448   TestResultAccessor::RecordProperty(&test_result, "testcase", property);
1449   ASSERT_EQ(1, test_result.test_property_count());
1450   const TestProperty& actual_property = test_result.GetTestProperty(0);
1451   EXPECT_STREQ("key_1", actual_property.key());
1452   EXPECT_STREQ("1", actual_property.value());
1453 }
1454 
1455 // Tests TestResult has multiple properties when added.
TEST(TestResultPropertyTest,MultiplePropertiesFoundWhenAdded)1456 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
1457   TestResult test_result;
1458   TestProperty property_1("key_1", "1");
1459   TestProperty property_2("key_2", "2");
1460   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1461   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1462   ASSERT_EQ(2, test_result.test_property_count());
1463   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1464   EXPECT_STREQ("key_1", actual_property_1.key());
1465   EXPECT_STREQ("1", actual_property_1.value());
1466 
1467   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1468   EXPECT_STREQ("key_2", actual_property_2.key());
1469   EXPECT_STREQ("2", actual_property_2.value());
1470 }
1471 
1472 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST(TestResultPropertyTest,OverridesValuesForDuplicateKeys)1473 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
1474   TestResult test_result;
1475   TestProperty property_1_1("key_1", "1");
1476   TestProperty property_2_1("key_2", "2");
1477   TestProperty property_1_2("key_1", "12");
1478   TestProperty property_2_2("key_2", "22");
1479   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
1480   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
1481   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
1482   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
1483 
1484   ASSERT_EQ(2, test_result.test_property_count());
1485   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
1486   EXPECT_STREQ("key_1", actual_property_1.key());
1487   EXPECT_STREQ("12", actual_property_1.value());
1488 
1489   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
1490   EXPECT_STREQ("key_2", actual_property_2.key());
1491   EXPECT_STREQ("22", actual_property_2.value());
1492 }
1493 
1494 // Tests TestResult::GetTestProperty().
TEST(TestResultPropertyTest,GetTestProperty)1495 TEST(TestResultPropertyTest, GetTestProperty) {
1496   TestResult test_result;
1497   TestProperty property_1("key_1", "1");
1498   TestProperty property_2("key_2", "2");
1499   TestProperty property_3("key_3", "3");
1500   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
1501   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
1502   TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
1503 
1504   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
1505   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
1506   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
1507 
1508   EXPECT_STREQ("key_1", fetched_property_1.key());
1509   EXPECT_STREQ("1", fetched_property_1.value());
1510 
1511   EXPECT_STREQ("key_2", fetched_property_2.key());
1512   EXPECT_STREQ("2", fetched_property_2.value());
1513 
1514   EXPECT_STREQ("key_3", fetched_property_3.key());
1515   EXPECT_STREQ("3", fetched_property_3.value());
1516 
1517   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
1518   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
1519 }
1520 
1521 // Tests the Test class.
1522 //
1523 // It's difficult to test every public method of this class (we are
1524 // already stretching the limit of Google Test by using it to test itself!).
1525 // Fortunately, we don't have to do that, as we are already testing
1526 // the functionalities of the Test class extensively by using Google Test
1527 // alone.
1528 //
1529 // Therefore, this section only contains one test.
1530 
1531 // Tests that GTestFlagSaver works on Windows and Mac.
1532 
1533 class GTestFlagSaverTest : public Test {
1534  protected:
1535   // Saves the Google Test flags such that we can restore them later, and
1536   // then sets them to their default values.  This will be called
1537   // before the first test in this test case is run.
SetUpTestCase()1538   static void SetUpTestCase() {
1539     saver_ = new GTestFlagSaver;
1540 
1541     GTEST_FLAG(also_run_disabled_tests) = false;
1542     GTEST_FLAG(break_on_failure) = false;
1543     GTEST_FLAG(catch_exceptions) = false;
1544     GTEST_FLAG(death_test_use_fork) = false;
1545     GTEST_FLAG(color) = "auto";
1546     GTEST_FLAG(filter) = "";
1547     GTEST_FLAG(list_tests) = false;
1548     GTEST_FLAG(output) = "";
1549     GTEST_FLAG(print_time) = true;
1550     GTEST_FLAG(random_seed) = 0;
1551     GTEST_FLAG(repeat) = 1;
1552     GTEST_FLAG(shuffle) = false;
1553     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
1554     GTEST_FLAG(stream_result_to) = "";
1555     GTEST_FLAG(throw_on_failure) = false;
1556   }
1557 
1558   // Restores the Google Test flags that the tests have modified.  This will
1559   // be called after the last test in this test case is run.
TearDownTestCase()1560   static void TearDownTestCase() {
1561     delete saver_;
1562     saver_ = NULL;
1563   }
1564 
1565   // Verifies that the Google Test flags have their default values, and then
1566   // modifies each of them.
VerifyAndModifyFlags()1567   void VerifyAndModifyFlags() {
1568     EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
1569     EXPECT_FALSE(GTEST_FLAG(break_on_failure));
1570     EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
1571     EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
1572     EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
1573     EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
1574     EXPECT_FALSE(GTEST_FLAG(list_tests));
1575     EXPECT_STREQ("", GTEST_FLAG(output).c_str());
1576     EXPECT_TRUE(GTEST_FLAG(print_time));
1577     EXPECT_EQ(0, GTEST_FLAG(random_seed));
1578     EXPECT_EQ(1, GTEST_FLAG(repeat));
1579     EXPECT_FALSE(GTEST_FLAG(shuffle));
1580     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
1581     EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
1582     EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
1583 
1584     GTEST_FLAG(also_run_disabled_tests) = true;
1585     GTEST_FLAG(break_on_failure) = true;
1586     GTEST_FLAG(catch_exceptions) = true;
1587     GTEST_FLAG(color) = "no";
1588     GTEST_FLAG(death_test_use_fork) = true;
1589     GTEST_FLAG(filter) = "abc";
1590     GTEST_FLAG(list_tests) = true;
1591     GTEST_FLAG(output) = "xml:foo.xml";
1592     GTEST_FLAG(print_time) = false;
1593     GTEST_FLAG(random_seed) = 1;
1594     GTEST_FLAG(repeat) = 100;
1595     GTEST_FLAG(shuffle) = true;
1596     GTEST_FLAG(stack_trace_depth) = 1;
1597     GTEST_FLAG(stream_result_to) = "localhost:1234";
1598     GTEST_FLAG(throw_on_failure) = true;
1599   }
1600 
1601  private:
1602   // For saving Google Test flags during this test case.
1603   static GTestFlagSaver* saver_;
1604 };
1605 
1606 GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
1607 
1608 // Google Test doesn't guarantee the order of tests.  The following two
1609 // tests are designed to work regardless of their order.
1610 
1611 // Modifies the Google Test flags in the test body.
TEST_F(GTestFlagSaverTest,ModifyGTestFlags)1612 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
1613   VerifyAndModifyFlags();
1614 }
1615 
1616 // Verifies that the Google Test flags in the body of the previous test were
1617 // restored to their original values.
TEST_F(GTestFlagSaverTest,VerifyGTestFlags)1618 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
1619   VerifyAndModifyFlags();
1620 }
1621 
1622 // Sets an environment variable with the given name to the given
1623 // value.  If the value argument is "", unsets the environment
1624 // variable.  The caller must ensure that both arguments are not NULL.
SetEnv(const char * name,const char * value)1625 static void SetEnv(const char* name, const char* value) {
1626 #if GTEST_OS_WINDOWS_MOBILE
1627   // Environment variables are not supported on Windows CE.
1628   return;
1629 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
1630   // C++Builder's putenv only stores a pointer to its parameter; we have to
1631   // ensure that the string remains valid as long as it might be needed.
1632   // We use an std::map to do so.
1633   static std::map<std::string, std::string*> added_env;
1634 
1635   // Because putenv stores a pointer to the string buffer, we can't delete the
1636   // previous string (if present) until after it's replaced.
1637   std::string *prev_env = NULL;
1638   if (added_env.find(name) != added_env.end()) {
1639     prev_env = added_env[name];
1640   }
1641   added_env[name] = new std::string(
1642       (Message() << name << "=" << value).GetString());
1643 
1644   // The standard signature of putenv accepts a 'char*' argument. Other
1645   // implementations, like C++Builder's, accept a 'const char*'.
1646   // We cast away the 'const' since that would work for both variants.
1647   putenv(const_cast<char*>(added_env[name]->c_str()));
1648   delete prev_env;
1649 #elif GTEST_OS_WINDOWS  // If we are on Windows proper.
1650   _putenv((Message() << name << "=" << value).GetString().c_str());
1651 #else
1652   if (*value == '\0') {
1653     unsetenv(name);
1654   } else {
1655     setenv(name, value, 1);
1656   }
1657 #endif  // GTEST_OS_WINDOWS_MOBILE
1658 }
1659 
1660 #if !GTEST_OS_WINDOWS_MOBILE
1661 // Environment variables are not supported on Windows CE.
1662 
1663 using testing::internal::Int32FromGTestEnv;
1664 
1665 // Tests Int32FromGTestEnv().
1666 
1667 // Tests that Int32FromGTestEnv() returns the default value when the
1668 // environment variable is not set.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenVariableIsNotSet)1669 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
1670   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
1671   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
1672 }
1673 
1674 # if !defined(GTEST_GET_INT32_FROM_ENV_)
1675 
1676 // Tests that Int32FromGTestEnv() returns the default value when the
1677 // environment variable overflows as an Int32.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueOverflows)1678 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
1679   printf("(expecting 2 warnings)\n");
1680 
1681   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
1682   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
1683 
1684   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
1685   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
1686 }
1687 
1688 // Tests that Int32FromGTestEnv() returns the default value when the
1689 // environment variable does not represent a valid decimal integer.
TEST(Int32FromGTestEnvTest,ReturnsDefaultWhenValueIsInvalid)1690 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
1691   printf("(expecting 2 warnings)\n");
1692 
1693   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
1694   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
1695 
1696   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
1697   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
1698 }
1699 
1700 # endif  // !defined(GTEST_GET_INT32_FROM_ENV_)
1701 
1702 // Tests that Int32FromGTestEnv() parses and returns the value of the
1703 // environment variable when it represents a valid decimal integer in
1704 // the range of an Int32.
TEST(Int32FromGTestEnvTest,ParsesAndReturnsValidValue)1705 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
1706   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
1707   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
1708 
1709   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
1710   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
1711 }
1712 #endif  // !GTEST_OS_WINDOWS_MOBILE
1713 
1714 // Tests ParseInt32Flag().
1715 
1716 // Tests that ParseInt32Flag() returns false and doesn't change the
1717 // output value when the flag has wrong format
TEST(ParseInt32FlagTest,ReturnsFalseForInvalidFlag)1718 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
1719   Int32 value = 123;
1720   EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
1721   EXPECT_EQ(123, value);
1722 
1723   EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
1724   EXPECT_EQ(123, value);
1725 }
1726 
1727 // Tests that ParseInt32Flag() returns false and doesn't change the
1728 // output value when the flag overflows as an Int32.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueOverflows)1729 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
1730   printf("(expecting 2 warnings)\n");
1731 
1732   Int32 value = 123;
1733   EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
1734   EXPECT_EQ(123, value);
1735 
1736   EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
1737   EXPECT_EQ(123, value);
1738 }
1739 
1740 // Tests that ParseInt32Flag() returns false and doesn't change the
1741 // output value when the flag does not represent a valid decimal
1742 // integer.
TEST(ParseInt32FlagTest,ReturnsDefaultWhenValueIsInvalid)1743 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
1744   printf("(expecting 2 warnings)\n");
1745 
1746   Int32 value = 123;
1747   EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
1748   EXPECT_EQ(123, value);
1749 
1750   EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
1751   EXPECT_EQ(123, value);
1752 }
1753 
1754 // Tests that ParseInt32Flag() parses the value of the flag and
1755 // returns true when the flag represents a valid decimal integer in
1756 // the range of an Int32.
TEST(ParseInt32FlagTest,ParsesAndReturnsValidValue)1757 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
1758   Int32 value = 123;
1759   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
1760   EXPECT_EQ(456, value);
1761 
1762   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
1763                              "abc", &value));
1764   EXPECT_EQ(-789, value);
1765 }
1766 
1767 // Tests that Int32FromEnvOrDie() parses the value of the var or
1768 // returns the correct default.
1769 // Environment variables are not supported on Windows CE.
1770 #if !GTEST_OS_WINDOWS_MOBILE
TEST(Int32FromEnvOrDieTest,ParsesAndReturnsValidValue)1771 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
1772   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1773   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
1774   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1775   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
1776   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
1777 }
1778 #endif  // !GTEST_OS_WINDOWS_MOBILE
1779 
1780 // Tests that Int32FromEnvOrDie() aborts with an error message
1781 // if the variable is not an Int32.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnFailure)1782 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
1783   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
1784   EXPECT_DEATH_IF_SUPPORTED(
1785       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1786       ".*");
1787 }
1788 
1789 // Tests that Int32FromEnvOrDie() aborts with an error message
1790 // if the variable cannot be represnted by an Int32.
TEST(Int32FromEnvOrDieDeathTest,AbortsOnInt32Overflow)1791 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
1792   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
1793   EXPECT_DEATH_IF_SUPPORTED(
1794       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
1795       ".*");
1796 }
1797 
1798 // Tests that ShouldRunTestOnShard() selects all tests
1799 // where there is 1 shard.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereIsOneShard)1800 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
1801   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
1802   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
1803   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
1804   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
1805   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
1806 }
1807 
1808 class ShouldShardTest : public testing::Test {
1809  protected:
SetUp()1810   virtual void SetUp() {
1811     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
1812     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
1813   }
1814 
TearDown()1815   virtual void TearDown() {
1816     SetEnv(index_var_, "");
1817     SetEnv(total_var_, "");
1818   }
1819 
1820   const char* index_var_;
1821   const char* total_var_;
1822 };
1823 
1824 // Tests that sharding is disabled if neither of the environment variables
1825 // are set.
TEST_F(ShouldShardTest,ReturnsFalseWhenNeitherEnvVarIsSet)1826 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
1827   SetEnv(index_var_, "");
1828   SetEnv(total_var_, "");
1829 
1830   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1831   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1832 }
1833 
1834 // Tests that sharding is not enabled if total_shards  == 1.
TEST_F(ShouldShardTest,ReturnsFalseWhenTotalShardIsOne)1835 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
1836   SetEnv(index_var_, "0");
1837   SetEnv(total_var_, "1");
1838   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
1839   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1840 }
1841 
1842 // Tests that sharding is enabled if total_shards > 1 and
1843 // we are not in a death test subprocess.
1844 // Environment variables are not supported on Windows CE.
1845 #if !GTEST_OS_WINDOWS_MOBILE
TEST_F(ShouldShardTest,WorksWhenShardEnvVarsAreValid)1846 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
1847   SetEnv(index_var_, "4");
1848   SetEnv(total_var_, "22");
1849   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1850   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1851 
1852   SetEnv(index_var_, "8");
1853   SetEnv(total_var_, "9");
1854   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1855   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1856 
1857   SetEnv(index_var_, "0");
1858   SetEnv(total_var_, "9");
1859   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
1860   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
1861 }
1862 #endif  // !GTEST_OS_WINDOWS_MOBILE
1863 
1864 // Tests that we exit in error if the sharding values are not valid.
1865 
1866 typedef ShouldShardTest ShouldShardDeathTest;
1867 
TEST_F(ShouldShardDeathTest,AbortsWhenShardingEnvVarsAreInvalid)1868 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
1869   SetEnv(index_var_, "4");
1870   SetEnv(total_var_, "4");
1871   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1872 
1873   SetEnv(index_var_, "4");
1874   SetEnv(total_var_, "-2");
1875   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1876 
1877   SetEnv(index_var_, "5");
1878   SetEnv(total_var_, "");
1879   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1880 
1881   SetEnv(index_var_, "");
1882   SetEnv(total_var_, "5");
1883   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
1884 }
1885 
1886 // Tests that ShouldRunTestOnShard is a partition when 5
1887 // shards are used.
TEST(ShouldRunTestOnShardTest,IsPartitionWhenThereAreFiveShards)1888 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
1889   // Choose an arbitrary number of tests and shards.
1890   const int num_tests = 17;
1891   const int num_shards = 5;
1892 
1893   // Check partitioning: each test should be on exactly 1 shard.
1894   for (int test_id = 0; test_id < num_tests; test_id++) {
1895     int prev_selected_shard_index = -1;
1896     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1897       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
1898         if (prev_selected_shard_index < 0) {
1899           prev_selected_shard_index = shard_index;
1900         } else {
1901           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
1902             << shard_index << " are both selected to run test " << test_id;
1903         }
1904       }
1905     }
1906   }
1907 
1908   // Check balance: This is not required by the sharding protocol, but is a
1909   // desirable property for performance.
1910   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
1911     int num_tests_on_shard = 0;
1912     for (int test_id = 0; test_id < num_tests; test_id++) {
1913       num_tests_on_shard +=
1914         ShouldRunTestOnShard(num_shards, shard_index, test_id);
1915     }
1916     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
1917   }
1918 }
1919 
1920 // For the same reason we are not explicitly testing everything in the
1921 // Test class, there are no separate tests for the following classes
1922 // (except for some trivial cases):
1923 //
1924 //   TestCase, UnitTest, UnitTestResultPrinter.
1925 //
1926 // Similarly, there are no separate tests for the following macros:
1927 //
1928 //   TEST, TEST_F, RUN_ALL_TESTS
1929 
TEST(UnitTestTest,CanGetOriginalWorkingDir)1930 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
1931   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
1932   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
1933 }
1934 
TEST(UnitTestTest,ReturnsPlausibleTimestamp)1935 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
1936   EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
1937   EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
1938 }
1939 
1940 // When a property using a reserved key is supplied to this function, it
1941 // tests that a non-fatal failure is added, a fatal failure is not added,
1942 // and that the property is not recorded.
ExpectNonFatalFailureRecordingPropertyWithReservedKey(const TestResult & test_result,const char * key)1943 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1944     const TestResult& test_result, const char* key) {
1945   EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
1946   ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key
1947                                                   << "' recorded unexpectedly.";
1948 }
1949 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(const char * key)1950 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
1951     const char* key) {
1952   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
1953   ASSERT_TRUE(test_info != NULL);
1954   ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
1955                                                         key);
1956 }
1957 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(const char * key)1958 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1959     const char* key) {
1960   const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
1961   ASSERT_TRUE(test_case != NULL);
1962   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1963       test_case->ad_hoc_test_result(), key);
1964 }
1965 
ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(const char * key)1966 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
1967     const char* key) {
1968   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
1969       UnitTest::GetInstance()->ad_hoc_test_result(), key);
1970 }
1971 
1972 // Tests that property recording functions in UnitTest outside of tests
1973 // functions correcly.  Creating a separate instance of UnitTest ensures it
1974 // is in a state similar to the UnitTest's singleton's between tests.
1975 class UnitTestRecordPropertyTest :
1976     public testing::internal::UnitTestRecordPropertyTestHelper {
1977  public:
SetUpTestCase()1978   static void SetUpTestCase() {
1979     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1980         "disabled");
1981     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1982         "errors");
1983     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1984         "failures");
1985     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1986         "name");
1987     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1988         "tests");
1989     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
1990         "time");
1991 
1992     Test::RecordProperty("test_case_key_1", "1");
1993     const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
1994     ASSERT_TRUE(test_case != NULL);
1995 
1996     ASSERT_EQ(1, test_case->ad_hoc_test_result().test_property_count());
1997     EXPECT_STREQ("test_case_key_1",
1998                  test_case->ad_hoc_test_result().GetTestProperty(0).key());
1999     EXPECT_STREQ("1",
2000                  test_case->ad_hoc_test_result().GetTestProperty(0).value());
2001   }
2002 };
2003 
2004 // Tests TestResult has the expected property when added.
TEST_F(UnitTestRecordPropertyTest,OnePropertyFoundWhenAdded)2005 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
2006   UnitTestRecordProperty("key_1", "1");
2007 
2008   ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
2009 
2010   EXPECT_STREQ("key_1",
2011                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2012   EXPECT_STREQ("1",
2013                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2014 }
2015 
2016 // Tests TestResult has multiple properties when added.
TEST_F(UnitTestRecordPropertyTest,MultiplePropertiesFoundWhenAdded)2017 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
2018   UnitTestRecordProperty("key_1", "1");
2019   UnitTestRecordProperty("key_2", "2");
2020 
2021   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2022 
2023   EXPECT_STREQ("key_1",
2024                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2025   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2026 
2027   EXPECT_STREQ("key_2",
2028                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2029   EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2030 }
2031 
2032 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
TEST_F(UnitTestRecordPropertyTest,OverridesValuesForDuplicateKeys)2033 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
2034   UnitTestRecordProperty("key_1", "1");
2035   UnitTestRecordProperty("key_2", "2");
2036   UnitTestRecordProperty("key_1", "12");
2037   UnitTestRecordProperty("key_2", "22");
2038 
2039   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
2040 
2041   EXPECT_STREQ("key_1",
2042                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
2043   EXPECT_STREQ("12",
2044                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
2045 
2046   EXPECT_STREQ("key_2",
2047                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
2048   EXPECT_STREQ("22",
2049                unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
2050 }
2051 
TEST_F(UnitTestRecordPropertyTest,AddFailureInsideTestsWhenUsingTestCaseReservedKeys)2052 TEST_F(UnitTestRecordPropertyTest,
2053        AddFailureInsideTestsWhenUsingTestCaseReservedKeys) {
2054   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2055       "name");
2056   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2057       "value_param");
2058   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2059       "type_param");
2060   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2061       "status");
2062   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2063       "time");
2064   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
2065       "classname");
2066 }
2067 
TEST_F(UnitTestRecordPropertyTest,AddRecordWithReservedKeysGeneratesCorrectPropertyList)2068 TEST_F(UnitTestRecordPropertyTest,
2069        AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
2070   EXPECT_NONFATAL_FAILURE(
2071       Test::RecordProperty("name", "1"),
2072       "'classname', 'name', 'status', 'time', 'type_param', and 'value_param'"
2073       " are reserved");
2074 }
2075 
2076 class UnitTestRecordPropertyTestEnvironment : public Environment {
2077  public:
TearDown()2078   virtual void TearDown() {
2079     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2080         "tests");
2081     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2082         "failures");
2083     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2084         "disabled");
2085     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2086         "errors");
2087     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2088         "name");
2089     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2090         "timestamp");
2091     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2092         "time");
2093     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
2094         "random_seed");
2095   }
2096 };
2097 
2098 // This will test property recording outside of any test or test case.
2099 static Environment* record_property_env =
2100     AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
2101 
2102 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
2103 // of various arities.  They do not attempt to be exhaustive.  Rather,
2104 // view them as smoke tests that can be easily reviewed and verified.
2105 // A more complete set of tests for predicate assertions can be found
2106 // in gtest_pred_impl_unittest.cc.
2107 
2108 // First, some predicates and predicate-formatters needed by the tests.
2109 
2110 // Returns true iff the argument is an even number.
IsEven(int n)2111 bool IsEven(int n) {
2112   return (n % 2) == 0;
2113 }
2114 
2115 // A functor that returns true iff the argument is an even number.
2116 struct IsEvenFunctor {
operator ()__anon8255b6560111::IsEvenFunctor2117   bool operator()(int n) { return IsEven(n); }
2118 };
2119 
2120 // A predicate-formatter function that asserts the argument is an even
2121 // number.
AssertIsEven(const char * expr,int n)2122 AssertionResult AssertIsEven(const char* expr, int n) {
2123   if (IsEven(n)) {
2124     return AssertionSuccess();
2125   }
2126 
2127   Message msg;
2128   msg << expr << " evaluates to " << n << ", which is not even.";
2129   return AssertionFailure(msg);
2130 }
2131 
2132 // A predicate function that returns AssertionResult for use in
2133 // EXPECT/ASSERT_TRUE/FALSE.
ResultIsEven(int n)2134 AssertionResult ResultIsEven(int n) {
2135   if (IsEven(n))
2136     return AssertionSuccess() << n << " is even";
2137   else
2138     return AssertionFailure() << n << " is odd";
2139 }
2140 
2141 // A predicate function that returns AssertionResult but gives no
2142 // explanation why it succeeds. Needed for testing that
2143 // EXPECT/ASSERT_FALSE handles such functions correctly.
ResultIsEvenNoExplanation(int n)2144 AssertionResult ResultIsEvenNoExplanation(int n) {
2145   if (IsEven(n))
2146     return AssertionSuccess();
2147   else
2148     return AssertionFailure() << n << " is odd";
2149 }
2150 
2151 // A predicate-formatter functor that asserts the argument is an even
2152 // number.
2153 struct AssertIsEvenFunctor {
operator ()__anon8255b6560111::AssertIsEvenFunctor2154   AssertionResult operator()(const char* expr, int n) {
2155     return AssertIsEven(expr, n);
2156   }
2157 };
2158 
2159 // Returns true iff the sum of the arguments is an even number.
SumIsEven2(int n1,int n2)2160 bool SumIsEven2(int n1, int n2) {
2161   return IsEven(n1 + n2);
2162 }
2163 
2164 // A functor that returns true iff the sum of the arguments is an even
2165 // number.
2166 struct SumIsEven3Functor {
operator ()__anon8255b6560111::SumIsEven3Functor2167   bool operator()(int n1, int n2, int n3) {
2168     return IsEven(n1 + n2 + n3);
2169   }
2170 };
2171 
2172 // A predicate-formatter function that asserts the sum of the
2173 // arguments is an even number.
AssertSumIsEven4(const char * e1,const char * e2,const char * e3,const char * e4,int n1,int n2,int n3,int n4)2174 AssertionResult AssertSumIsEven4(
2175     const char* e1, const char* e2, const char* e3, const char* e4,
2176     int n1, int n2, int n3, int n4) {
2177   const int sum = n1 + n2 + n3 + n4;
2178   if (IsEven(sum)) {
2179     return AssertionSuccess();
2180   }
2181 
2182   Message msg;
2183   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
2184       << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
2185       << ") evaluates to " << sum << ", which is not even.";
2186   return AssertionFailure(msg);
2187 }
2188 
2189 // A predicate-formatter functor that asserts the sum of the arguments
2190 // is an even number.
2191 struct AssertSumIsEven5Functor {
operator ()__anon8255b6560111::AssertSumIsEven5Functor2192   AssertionResult operator()(
2193       const char* e1, const char* e2, const char* e3, const char* e4,
2194       const char* e5, int n1, int n2, int n3, int n4, int n5) {
2195     const int sum = n1 + n2 + n3 + n4 + n5;
2196     if (IsEven(sum)) {
2197       return AssertionSuccess();
2198     }
2199 
2200     Message msg;
2201     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
2202         << " ("
2203         << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
2204         << ") evaluates to " << sum << ", which is not even.";
2205     return AssertionFailure(msg);
2206   }
2207 };
2208 
2209 
2210 // Tests unary predicate assertions.
2211 
2212 // Tests unary predicate assertions that don't use a custom formatter.
TEST(Pred1Test,WithoutFormat)2213 TEST(Pred1Test, WithoutFormat) {
2214   // Success cases.
2215   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
2216   ASSERT_PRED1(IsEven, 4);
2217 
2218   // Failure cases.
2219   EXPECT_NONFATAL_FAILURE({  // NOLINT
2220     EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
2221   }, "This failure is expected.");
2222   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
2223                        "evaluates to false");
2224 }
2225 
2226 // Tests unary predicate assertions that use a custom formatter.
TEST(Pred1Test,WithFormat)2227 TEST(Pred1Test, WithFormat) {
2228   // Success cases.
2229   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
2230   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
2231     << "This failure is UNEXPECTED!";
2232 
2233   // Failure cases.
2234   const int n = 5;
2235   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
2236                           "n evaluates to 5, which is not even.");
2237   EXPECT_FATAL_FAILURE({  // NOLINT
2238     ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
2239   }, "This failure is expected.");
2240 }
2241 
2242 // Tests that unary predicate assertions evaluates their arguments
2243 // exactly once.
TEST(Pred1Test,SingleEvaluationOnFailure)2244 TEST(Pred1Test, SingleEvaluationOnFailure) {
2245   // A success case.
2246   static int n = 0;
2247   EXPECT_PRED1(IsEven, n++);
2248   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
2249 
2250   // A failure case.
2251   EXPECT_FATAL_FAILURE({  // NOLINT
2252     ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
2253         << "This failure is expected.";
2254   }, "This failure is expected.");
2255   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
2256 }
2257 
2258 
2259 // Tests predicate assertions whose arity is >= 2.
2260 
2261 // Tests predicate assertions that don't use a custom formatter.
TEST(PredTest,WithoutFormat)2262 TEST(PredTest, WithoutFormat) {
2263   // Success cases.
2264   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
2265   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
2266 
2267   // Failure cases.
2268   const int n1 = 1;
2269   const int n2 = 2;
2270   EXPECT_NONFATAL_FAILURE({  // NOLINT
2271     EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
2272   }, "This failure is expected.");
2273   EXPECT_FATAL_FAILURE({  // NOLINT
2274     ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
2275   }, "evaluates to false");
2276 }
2277 
2278 // Tests predicate assertions that use a custom formatter.
TEST(PredTest,WithFormat)2279 TEST(PredTest, WithFormat) {
2280   // Success cases.
2281   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
2282     "This failure is UNEXPECTED!";
2283   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
2284 
2285   // Failure cases.
2286   const int n1 = 1;
2287   const int n2 = 2;
2288   const int n3 = 4;
2289   const int n4 = 6;
2290   EXPECT_NONFATAL_FAILURE({  // NOLINT
2291     EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
2292   }, "evaluates to 13, which is not even.");
2293   EXPECT_FATAL_FAILURE({  // NOLINT
2294     ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
2295         << "This failure is expected.";
2296   }, "This failure is expected.");
2297 }
2298 
2299 // Tests that predicate assertions evaluates their arguments
2300 // exactly once.
TEST(PredTest,SingleEvaluationOnFailure)2301 TEST(PredTest, SingleEvaluationOnFailure) {
2302   // A success case.
2303   int n1 = 0;
2304   int n2 = 0;
2305   EXPECT_PRED2(SumIsEven2, n1++, n2++);
2306   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2307   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2308 
2309   // Another success case.
2310   n1 = n2 = 0;
2311   int n3 = 0;
2312   int n4 = 0;
2313   int n5 = 0;
2314   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
2315                       n1++, n2++, n3++, n4++, n5++)
2316                         << "This failure is UNEXPECTED!";
2317   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2318   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2319   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2320   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2321   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
2322 
2323   // A failure case.
2324   n1 = n2 = n3 = 0;
2325   EXPECT_NONFATAL_FAILURE({  // NOLINT
2326     EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
2327         << "This failure is expected.";
2328   }, "This failure is expected.");
2329   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2330   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2331   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2332 
2333   // Another failure case.
2334   n1 = n2 = n3 = n4 = 0;
2335   EXPECT_NONFATAL_FAILURE({  // NOLINT
2336     EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
2337   }, "evaluates to 1, which is not even.");
2338   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
2339   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
2340   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
2341   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
2342 }
2343 
2344 
2345 // Some helper functions for testing using overloaded/template
2346 // functions with ASSERT_PREDn and EXPECT_PREDn.
2347 
IsPositive(double x)2348 bool IsPositive(double x) {
2349   return x > 0;
2350 }
2351 
2352 template <typename T>
IsNegative(T x)2353 bool IsNegative(T x) {
2354   return x < 0;
2355 }
2356 
2357 template <typename T1, typename T2>
GreaterThan(T1 x1,T2 x2)2358 bool GreaterThan(T1 x1, T2 x2) {
2359   return x1 > x2;
2360 }
2361 
2362 // Tests that overloaded functions can be used in *_PRED* as long as
2363 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsOverloadedFunction)2364 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
2365   // C++Builder requires C-style casts rather than static_cast.
2366   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
2367   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
2368 }
2369 
2370 // Tests that template functions can be used in *_PRED* as long as
2371 // their types are explicitly specified.
TEST(PredicateAssertionTest,AcceptsTemplateFunction)2372 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
2373   EXPECT_PRED1(IsNegative<int>, -5);
2374   // Makes sure that we can handle templates with more than one
2375   // parameter.
2376   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
2377 }
2378 
2379 
2380 // Some helper functions for testing using overloaded/template
2381 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
2382 
IsPositiveFormat(const char *,int n)2383 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
2384   return n > 0 ? AssertionSuccess() :
2385       AssertionFailure(Message() << "Failure");
2386 }
2387 
IsPositiveFormat(const char *,double x)2388 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
2389   return x > 0 ? AssertionSuccess() :
2390       AssertionFailure(Message() << "Failure");
2391 }
2392 
2393 template <typename T>
IsNegativeFormat(const char *,T x)2394 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
2395   return x < 0 ? AssertionSuccess() :
2396       AssertionFailure(Message() << "Failure");
2397 }
2398 
2399 template <typename T1, typename T2>
EqualsFormat(const char *,const char *,const T1 & x1,const T2 & x2)2400 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
2401                              const T1& x1, const T2& x2) {
2402   return x1 == x2 ? AssertionSuccess() :
2403       AssertionFailure(Message() << "Failure");
2404 }
2405 
2406 // Tests that overloaded functions can be used in *_PRED_FORMAT*
2407 // without explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsOverloadedFunction)2408 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
2409   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
2410   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
2411 }
2412 
2413 // Tests that template functions can be used in *_PRED_FORMAT* without
2414 // explicitly specifying their types.
TEST(PredicateFormatAssertionTest,AcceptsTemplateFunction)2415 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
2416   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
2417   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
2418 }
2419 
2420 
2421 // Tests string assertions.
2422 
2423 // Tests ASSERT_STREQ with non-NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ)2424 TEST(StringAssertionTest, ASSERT_STREQ) {
2425   const char * const p1 = "good";
2426   ASSERT_STREQ(p1, p1);
2427 
2428   // Let p2 have the same content as p1, but be at a different address.
2429   const char p2[] = "good";
2430   ASSERT_STREQ(p1, p2);
2431 
2432   EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
2433                        "Expected: \"bad\"");
2434 }
2435 
2436 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null)2437 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
2438   ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
2439   EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
2440                        "non-null");
2441 }
2442 
2443 // Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest,ASSERT_STREQ_Null2)2444 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
2445   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
2446                        "non-null");
2447 }
2448 
2449 // Tests ASSERT_STRNE.
TEST(StringAssertionTest,ASSERT_STRNE)2450 TEST(StringAssertionTest, ASSERT_STRNE) {
2451   ASSERT_STRNE("hi", "Hi");
2452   ASSERT_STRNE("Hi", NULL);
2453   ASSERT_STRNE(NULL, "Hi");
2454   ASSERT_STRNE("", NULL);
2455   ASSERT_STRNE(NULL, "");
2456   ASSERT_STRNE("", "Hi");
2457   ASSERT_STRNE("Hi", "");
2458   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
2459                        "\"Hi\" vs \"Hi\"");
2460 }
2461 
2462 // Tests ASSERT_STRCASEEQ.
TEST(StringAssertionTest,ASSERT_STRCASEEQ)2463 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
2464   ASSERT_STRCASEEQ("hi", "Hi");
2465   ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
2466 
2467   ASSERT_STRCASEEQ("", "");
2468   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
2469                        "(ignoring case)");
2470 }
2471 
2472 // Tests ASSERT_STRCASENE.
TEST(StringAssertionTest,ASSERT_STRCASENE)2473 TEST(StringAssertionTest, ASSERT_STRCASENE) {
2474   ASSERT_STRCASENE("hi1", "Hi2");
2475   ASSERT_STRCASENE("Hi", NULL);
2476   ASSERT_STRCASENE(NULL, "Hi");
2477   ASSERT_STRCASENE("", NULL);
2478   ASSERT_STRCASENE(NULL, "");
2479   ASSERT_STRCASENE("", "Hi");
2480   ASSERT_STRCASENE("Hi", "");
2481   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
2482                        "(ignoring case)");
2483 }
2484 
2485 // Tests *_STREQ on wide strings.
TEST(StringAssertionTest,STREQ_Wide)2486 TEST(StringAssertionTest, STREQ_Wide) {
2487   // NULL strings.
2488   ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
2489 
2490   // Empty strings.
2491   ASSERT_STREQ(L"", L"");
2492 
2493   // Non-null vs NULL.
2494   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
2495                           "non-null");
2496 
2497   // Equal strings.
2498   EXPECT_STREQ(L"Hi", L"Hi");
2499 
2500   // Unequal strings.
2501   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
2502                           "Abc");
2503 
2504   // Strings containing wide characters.
2505   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
2506                           "abc");
2507 
2508   // The streaming variation.
2509   EXPECT_NONFATAL_FAILURE({  // NOLINT
2510     EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
2511   }, "Expected failure");
2512 }
2513 
2514 // Tests *_STRNE on wide strings.
TEST(StringAssertionTest,STRNE_Wide)2515 TEST(StringAssertionTest, STRNE_Wide) {
2516   // NULL strings.
2517   EXPECT_NONFATAL_FAILURE({  // NOLINT
2518     EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
2519   }, "");
2520 
2521   // Empty strings.
2522   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
2523                           "L\"\"");
2524 
2525   // Non-null vs NULL.
2526   ASSERT_STRNE(L"non-null", NULL);
2527 
2528   // Equal strings.
2529   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
2530                           "L\"Hi\"");
2531 
2532   // Unequal strings.
2533   EXPECT_STRNE(L"abc", L"Abc");
2534 
2535   // Strings containing wide characters.
2536   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
2537                           "abc");
2538 
2539   // The streaming variation.
2540   ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
2541 }
2542 
2543 // Tests for ::testing::IsSubstring().
2544 
2545 // Tests that IsSubstring() returns the correct result when the input
2546 // argument type is const char*.
TEST(IsSubstringTest,ReturnsCorrectResultForCString)2547 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
2548   EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
2549   EXPECT_FALSE(IsSubstring("", "", "b", NULL));
2550   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
2551 
2552   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
2553   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
2554 }
2555 
2556 // Tests that IsSubstring() returns the correct result when the input
2557 // argument type is const wchar_t*.
TEST(IsSubstringTest,ReturnsCorrectResultForWideCString)2558 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
2559   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
2560   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
2561   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
2562 
2563   EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
2564   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
2565 }
2566 
2567 // Tests that IsSubstring() generates the correct message when the input
2568 // argument type is const char*.
TEST(IsSubstringTest,GeneratesCorrectMessageForCString)2569 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
2570   EXPECT_STREQ("Value of: needle_expr\n"
2571                "  Actual: \"needle\"\n"
2572                "Expected: a substring of haystack_expr\n"
2573                "Which is: \"haystack\"",
2574                IsSubstring("needle_expr", "haystack_expr",
2575                            "needle", "haystack").failure_message());
2576 }
2577 
2578 // Tests that IsSubstring returns the correct result when the input
2579 // argument type is ::std::string.
TEST(IsSubstringTest,ReturnsCorrectResultsForStdString)2580 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
2581   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
2582   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
2583 }
2584 
2585 #if GTEST_HAS_STD_WSTRING
2586 // Tests that IsSubstring returns the correct result when the input
2587 // argument type is ::std::wstring.
TEST(IsSubstringTest,ReturnsCorrectResultForStdWstring)2588 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
2589   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2590   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2591 }
2592 
2593 // Tests that IsSubstring() generates the correct message when the input
2594 // argument type is ::std::wstring.
TEST(IsSubstringTest,GeneratesCorrectMessageForWstring)2595 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
2596   EXPECT_STREQ("Value of: needle_expr\n"
2597                "  Actual: L\"needle\"\n"
2598                "Expected: a substring of haystack_expr\n"
2599                "Which is: L\"haystack\"",
2600                IsSubstring(
2601                    "needle_expr", "haystack_expr",
2602                    ::std::wstring(L"needle"), L"haystack").failure_message());
2603 }
2604 
2605 #endif  // GTEST_HAS_STD_WSTRING
2606 
2607 // Tests for ::testing::IsNotSubstring().
2608 
2609 // Tests that IsNotSubstring() returns the correct result when the input
2610 // argument type is const char*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForCString)2611 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
2612   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
2613   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
2614 }
2615 
2616 // Tests that IsNotSubstring() returns the correct result when the input
2617 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,ReturnsCorrectResultForWideCString)2618 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
2619   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
2620   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
2621 }
2622 
2623 // Tests that IsNotSubstring() generates the correct message when the input
2624 // argument type is const wchar_t*.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForWideCString)2625 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
2626   EXPECT_STREQ("Value of: needle_expr\n"
2627                "  Actual: L\"needle\"\n"
2628                "Expected: not a substring of haystack_expr\n"
2629                "Which is: L\"two needles\"",
2630                IsNotSubstring(
2631                    "needle_expr", "haystack_expr",
2632                    L"needle", L"two needles").failure_message());
2633 }
2634 
2635 // Tests that IsNotSubstring returns the correct result when the input
2636 // argument type is ::std::string.
TEST(IsNotSubstringTest,ReturnsCorrectResultsForStdString)2637 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
2638   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
2639   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
2640 }
2641 
2642 // Tests that IsNotSubstring() generates the correct message when the input
2643 // argument type is ::std::string.
TEST(IsNotSubstringTest,GeneratesCorrectMessageForStdString)2644 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
2645   EXPECT_STREQ("Value of: needle_expr\n"
2646                "  Actual: \"needle\"\n"
2647                "Expected: not a substring of haystack_expr\n"
2648                "Which is: \"two needles\"",
2649                IsNotSubstring(
2650                    "needle_expr", "haystack_expr",
2651                    ::std::string("needle"), "two needles").failure_message());
2652 }
2653 
2654 #if GTEST_HAS_STD_WSTRING
2655 
2656 // Tests that IsNotSubstring returns the correct result when the input
2657 // argument type is ::std::wstring.
TEST(IsNotSubstringTest,ReturnsCorrectResultForStdWstring)2658 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
2659   EXPECT_FALSE(
2660       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
2661   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
2662 }
2663 
2664 #endif  // GTEST_HAS_STD_WSTRING
2665 
2666 // Tests floating-point assertions.
2667 
2668 template <typename RawType>
2669 class FloatingPointTest : public Test {
2670  protected:
2671   // Pre-calculated numbers to be used by the tests.
2672   struct TestValues {
2673     RawType close_to_positive_zero;
2674     RawType close_to_negative_zero;
2675     RawType further_from_negative_zero;
2676 
2677     RawType close_to_one;
2678     RawType further_from_one;
2679 
2680     RawType infinity;
2681     RawType close_to_infinity;
2682     RawType further_from_infinity;
2683 
2684     RawType nan1;
2685     RawType nan2;
2686   };
2687 
2688   typedef typename testing::internal::FloatingPoint<RawType> Floating;
2689   typedef typename Floating::Bits Bits;
2690 
SetUp()2691   virtual void SetUp() {
2692     const size_t max_ulps = Floating::kMaxUlps;
2693 
2694     // The bits that represent 0.0.
2695     const Bits zero_bits = Floating(0).bits();
2696 
2697     // Makes some numbers close to 0.0.
2698     values_.close_to_positive_zero = Floating::ReinterpretBits(
2699         zero_bits + max_ulps/2);
2700     values_.close_to_negative_zero = -Floating::ReinterpretBits(
2701         zero_bits + max_ulps - max_ulps/2);
2702     values_.further_from_negative_zero = -Floating::ReinterpretBits(
2703         zero_bits + max_ulps + 1 - max_ulps/2);
2704 
2705     // The bits that represent 1.0.
2706     const Bits one_bits = Floating(1).bits();
2707 
2708     // Makes some numbers close to 1.0.
2709     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
2710     values_.further_from_one = Floating::ReinterpretBits(
2711         one_bits + max_ulps + 1);
2712 
2713     // +infinity.
2714     values_.infinity = Floating::Infinity();
2715 
2716     // The bits that represent +infinity.
2717     const Bits infinity_bits = Floating(values_.infinity).bits();
2718 
2719     // Makes some numbers close to infinity.
2720     values_.close_to_infinity = Floating::ReinterpretBits(
2721         infinity_bits - max_ulps);
2722     values_.further_from_infinity = Floating::ReinterpretBits(
2723         infinity_bits - max_ulps - 1);
2724 
2725     // Makes some NAN's.  Sets the most significant bit of the fraction so that
2726     // our NaN's are quiet; trying to process a signaling NaN would raise an
2727     // exception if our environment enables floating point exceptions.
2728     values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
2729         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
2730     values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
2731         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
2732   }
2733 
TestSize()2734   void TestSize() {
2735     EXPECT_EQ(sizeof(RawType), sizeof(Bits));
2736   }
2737 
2738   static TestValues values_;
2739 };
2740 
2741 template <typename RawType>
2742 typename FloatingPointTest<RawType>::TestValues
2743     FloatingPointTest<RawType>::values_;
2744 
2745 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
2746 typedef FloatingPointTest<float> FloatTest;
2747 
2748 // Tests that the size of Float::Bits matches the size of float.
TEST_F(FloatTest,Size)2749 TEST_F(FloatTest, Size) {
2750   TestSize();
2751 }
2752 
2753 // Tests comparing with +0 and -0.
TEST_F(FloatTest,Zeros)2754 TEST_F(FloatTest, Zeros) {
2755   EXPECT_FLOAT_EQ(0.0, -0.0);
2756   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
2757                           "1.0");
2758   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
2759                        "1.5");
2760 }
2761 
2762 // Tests comparing numbers close to 0.
2763 //
2764 // This ensures that *_FLOAT_EQ handles the sign correctly and no
2765 // overflow occurs when comparing numbers whose absolute value is very
2766 // small.
TEST_F(FloatTest,AlmostZeros)2767 TEST_F(FloatTest, AlmostZeros) {
2768   // In C++Builder, names within local classes (such as used by
2769   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2770   // scoping class.  Use a static local alias as a workaround.
2771   // We use the assignment syntax since some compilers, like Sun Studio,
2772   // don't allow initializing references using construction syntax
2773   // (parentheses).
2774   static const FloatTest::TestValues& v = this->values_;
2775 
2776   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
2777   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
2778   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2779 
2780   EXPECT_FATAL_FAILURE({  // NOLINT
2781     ASSERT_FLOAT_EQ(v.close_to_positive_zero,
2782                     v.further_from_negative_zero);
2783   }, "v.further_from_negative_zero");
2784 }
2785 
2786 // Tests comparing numbers close to each other.
TEST_F(FloatTest,SmallDiff)2787 TEST_F(FloatTest, SmallDiff) {
2788   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
2789   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
2790                           "values_.further_from_one");
2791 }
2792 
2793 // Tests comparing numbers far apart.
TEST_F(FloatTest,LargeDiff)2794 TEST_F(FloatTest, LargeDiff) {
2795   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
2796                           "3.0");
2797 }
2798 
2799 // Tests comparing with infinity.
2800 //
2801 // This ensures that no overflow occurs when comparing numbers whose
2802 // absolute value is very large.
TEST_F(FloatTest,Infinity)2803 TEST_F(FloatTest, Infinity) {
2804   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
2805   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
2806 #if !GTEST_OS_SYMBIAN
2807   // Nokia's STLport crashes if we try to output infinity or NaN.
2808   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
2809                           "-values_.infinity");
2810 
2811   // This is interesting as the representations of infinity and nan1
2812   // are only 1 DLP apart.
2813   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
2814                           "values_.nan1");
2815 #endif  // !GTEST_OS_SYMBIAN
2816 }
2817 
2818 // Tests that comparing with NAN always returns false.
TEST_F(FloatTest,NaN)2819 TEST_F(FloatTest, NaN) {
2820 #if !GTEST_OS_SYMBIAN
2821 // Nokia's STLport crashes if we try to output infinity or NaN.
2822 
2823   // In C++Builder, names within local classes (such as used by
2824   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2825   // scoping class.  Use a static local alias as a workaround.
2826   // We use the assignment syntax since some compilers, like Sun Studio,
2827   // don't allow initializing references using construction syntax
2828   // (parentheses).
2829   static const FloatTest::TestValues& v = this->values_;
2830 
2831   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
2832                           "v.nan1");
2833   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
2834                           "v.nan2");
2835   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
2836                           "v.nan1");
2837 
2838   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
2839                        "v.infinity");
2840 #endif  // !GTEST_OS_SYMBIAN
2841 }
2842 
2843 // Tests that *_FLOAT_EQ are reflexive.
TEST_F(FloatTest,Reflexive)2844 TEST_F(FloatTest, Reflexive) {
2845   EXPECT_FLOAT_EQ(0.0, 0.0);
2846   EXPECT_FLOAT_EQ(1.0, 1.0);
2847   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
2848 }
2849 
2850 // Tests that *_FLOAT_EQ are commutative.
TEST_F(FloatTest,Commutative)2851 TEST_F(FloatTest, Commutative) {
2852   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
2853   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
2854 
2855   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
2856   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
2857                           "1.0");
2858 }
2859 
2860 // Tests EXPECT_NEAR.
TEST_F(FloatTest,EXPECT_NEAR)2861 TEST_F(FloatTest, EXPECT_NEAR) {
2862   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
2863   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
2864   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
2865                           "The difference between 1.0f and 1.5f is 0.5, "
2866                           "which exceeds 0.25f");
2867   // To work around a bug in gcc 2.95.0, there is intentionally no
2868   // space after the first comma in the previous line.
2869 }
2870 
2871 // Tests ASSERT_NEAR.
TEST_F(FloatTest,ASSERT_NEAR)2872 TEST_F(FloatTest, ASSERT_NEAR) {
2873   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
2874   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
2875   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
2876                        "The difference between 1.0f and 1.5f is 0.5, "
2877                        "which exceeds 0.25f");
2878   // To work around a bug in gcc 2.95.0, there is intentionally no
2879   // space after the first comma in the previous line.
2880 }
2881 
2882 // Tests the cases where FloatLE() should succeed.
TEST_F(FloatTest,FloatLESucceeds)2883 TEST_F(FloatTest, FloatLESucceeds) {
2884   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
2885   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
2886 
2887   // or when val1 is greater than, but almost equals to, val2.
2888   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
2889 }
2890 
2891 // Tests the cases where FloatLE() should fail.
TEST_F(FloatTest,FloatLEFails)2892 TEST_F(FloatTest, FloatLEFails) {
2893   // When val1 is greater than val2 by a large margin,
2894   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
2895                           "(2.0f) <= (1.0f)");
2896 
2897   // or by a small yet non-negligible margin,
2898   EXPECT_NONFATAL_FAILURE({  // NOLINT
2899     EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
2900   }, "(values_.further_from_one) <= (1.0f)");
2901 
2902 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2903   // Nokia's STLport crashes if we try to output infinity or NaN.
2904   // C++Builder gives bad results for ordered comparisons involving NaNs
2905   // due to compiler bugs.
2906   EXPECT_NONFATAL_FAILURE({  // NOLINT
2907     EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
2908   }, "(values_.nan1) <= (values_.infinity)");
2909   EXPECT_NONFATAL_FAILURE({  // NOLINT
2910     EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
2911   }, "(-values_.infinity) <= (values_.nan1)");
2912   EXPECT_FATAL_FAILURE({  // NOLINT
2913     ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
2914   }, "(values_.nan1) <= (values_.nan1)");
2915 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
2916 }
2917 
2918 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
2919 typedef FloatingPointTest<double> DoubleTest;
2920 
2921 // Tests that the size of Double::Bits matches the size of double.
TEST_F(DoubleTest,Size)2922 TEST_F(DoubleTest, Size) {
2923   TestSize();
2924 }
2925 
2926 // Tests comparing with +0 and -0.
TEST_F(DoubleTest,Zeros)2927 TEST_F(DoubleTest, Zeros) {
2928   EXPECT_DOUBLE_EQ(0.0, -0.0);
2929   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
2930                           "1.0");
2931   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
2932                        "1.0");
2933 }
2934 
2935 // Tests comparing numbers close to 0.
2936 //
2937 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
2938 // overflow occurs when comparing numbers whose absolute value is very
2939 // small.
TEST_F(DoubleTest,AlmostZeros)2940 TEST_F(DoubleTest, AlmostZeros) {
2941   // In C++Builder, names within local classes (such as used by
2942   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2943   // scoping class.  Use a static local alias as a workaround.
2944   // We use the assignment syntax since some compilers, like Sun Studio,
2945   // don't allow initializing references using construction syntax
2946   // (parentheses).
2947   static const DoubleTest::TestValues& v = this->values_;
2948 
2949   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
2950   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
2951   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
2952 
2953   EXPECT_FATAL_FAILURE({  // NOLINT
2954     ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
2955                      v.further_from_negative_zero);
2956   }, "v.further_from_negative_zero");
2957 }
2958 
2959 // Tests comparing numbers close to each other.
TEST_F(DoubleTest,SmallDiff)2960 TEST_F(DoubleTest, SmallDiff) {
2961   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
2962   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
2963                           "values_.further_from_one");
2964 }
2965 
2966 // Tests comparing numbers far apart.
TEST_F(DoubleTest,LargeDiff)2967 TEST_F(DoubleTest, LargeDiff) {
2968   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
2969                           "3.0");
2970 }
2971 
2972 // Tests comparing with infinity.
2973 //
2974 // This ensures that no overflow occurs when comparing numbers whose
2975 // absolute value is very large.
TEST_F(DoubleTest,Infinity)2976 TEST_F(DoubleTest, Infinity) {
2977   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
2978   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
2979 #if !GTEST_OS_SYMBIAN
2980   // Nokia's STLport crashes if we try to output infinity or NaN.
2981   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
2982                           "-values_.infinity");
2983 
2984   // This is interesting as the representations of infinity_ and nan1_
2985   // are only 1 DLP apart.
2986   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
2987                           "values_.nan1");
2988 #endif  // !GTEST_OS_SYMBIAN
2989 }
2990 
2991 // Tests that comparing with NAN always returns false.
TEST_F(DoubleTest,NaN)2992 TEST_F(DoubleTest, NaN) {
2993 #if !GTEST_OS_SYMBIAN
2994   // In C++Builder, names within local classes (such as used by
2995   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
2996   // scoping class.  Use a static local alias as a workaround.
2997   // We use the assignment syntax since some compilers, like Sun Studio,
2998   // don't allow initializing references using construction syntax
2999   // (parentheses).
3000   static const DoubleTest::TestValues& v = this->values_;
3001 
3002   // Nokia's STLport crashes if we try to output infinity or NaN.
3003   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
3004                           "v.nan1");
3005   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
3006   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
3007   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
3008                        "v.infinity");
3009 #endif  // !GTEST_OS_SYMBIAN
3010 }
3011 
3012 // Tests that *_DOUBLE_EQ are reflexive.
TEST_F(DoubleTest,Reflexive)3013 TEST_F(DoubleTest, Reflexive) {
3014   EXPECT_DOUBLE_EQ(0.0, 0.0);
3015   EXPECT_DOUBLE_EQ(1.0, 1.0);
3016 #if !GTEST_OS_SYMBIAN
3017   // Nokia's STLport crashes if we try to output infinity or NaN.
3018   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
3019 #endif  // !GTEST_OS_SYMBIAN
3020 }
3021 
3022 // Tests that *_DOUBLE_EQ are commutative.
TEST_F(DoubleTest,Commutative)3023 TEST_F(DoubleTest, Commutative) {
3024   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
3025   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
3026 
3027   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
3028   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
3029                           "1.0");
3030 }
3031 
3032 // Tests EXPECT_NEAR.
TEST_F(DoubleTest,EXPECT_NEAR)3033 TEST_F(DoubleTest, EXPECT_NEAR) {
3034   EXPECT_NEAR(-1.0, -1.1, 0.2);
3035   EXPECT_NEAR(2.0, 3.0, 1.0);
3036   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3037                           "The difference between 1.0 and 1.5 is 0.5, "
3038                           "which exceeds 0.25");
3039   // To work around a bug in gcc 2.95.0, there is intentionally no
3040   // space after the first comma in the previous statement.
3041 }
3042 
3043 // Tests ASSERT_NEAR.
TEST_F(DoubleTest,ASSERT_NEAR)3044 TEST_F(DoubleTest, ASSERT_NEAR) {
3045   ASSERT_NEAR(-1.0, -1.1, 0.2);
3046   ASSERT_NEAR(2.0, 3.0, 1.0);
3047   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
3048                        "The difference between 1.0 and 1.5 is 0.5, "
3049                        "which exceeds 0.25");
3050   // To work around a bug in gcc 2.95.0, there is intentionally no
3051   // space after the first comma in the previous statement.
3052 }
3053 
3054 // Tests the cases where DoubleLE() should succeed.
TEST_F(DoubleTest,DoubleLESucceeds)3055 TEST_F(DoubleTest, DoubleLESucceeds) {
3056   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
3057   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
3058 
3059   // or when val1 is greater than, but almost equals to, val2.
3060   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
3061 }
3062 
3063 // Tests the cases where DoubleLE() should fail.
TEST_F(DoubleTest,DoubleLEFails)3064 TEST_F(DoubleTest, DoubleLEFails) {
3065   // When val1 is greater than val2 by a large margin,
3066   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
3067                           "(2.0) <= (1.0)");
3068 
3069   // or by a small yet non-negligible margin,
3070   EXPECT_NONFATAL_FAILURE({  // NOLINT
3071     EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
3072   }, "(values_.further_from_one) <= (1.0)");
3073 
3074 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3075   // Nokia's STLport crashes if we try to output infinity or NaN.
3076   // C++Builder gives bad results for ordered comparisons involving NaNs
3077   // due to compiler bugs.
3078   EXPECT_NONFATAL_FAILURE({  // NOLINT
3079     EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
3080   }, "(values_.nan1) <= (values_.infinity)");
3081   EXPECT_NONFATAL_FAILURE({  // NOLINT
3082     EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
3083   }, " (-values_.infinity) <= (values_.nan1)");
3084   EXPECT_FATAL_FAILURE({  // NOLINT
3085     ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
3086   }, "(values_.nan1) <= (values_.nan1)");
3087 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
3088 }
3089 
3090 
3091 // Verifies that a test or test case whose name starts with DISABLED_ is
3092 // not run.
3093 
3094 // A test whose name starts with DISABLED_.
3095 // Should not run.
TEST(DisabledTest,DISABLED_TestShouldNotRun)3096 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
3097   FAIL() << "Unexpected failure: Disabled test should not be run.";
3098 }
3099 
3100 // A test whose name does not start with DISABLED_.
3101 // Should run.
TEST(DisabledTest,NotDISABLED_TestShouldRun)3102 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
3103   EXPECT_EQ(1, 1);
3104 }
3105 
3106 // A test case whose name starts with DISABLED_.
3107 // Should not run.
TEST(DISABLED_TestCase,TestShouldNotRun)3108 TEST(DISABLED_TestCase, TestShouldNotRun) {
3109   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3110 }
3111 
3112 // A test case and test whose names start with DISABLED_.
3113 // Should not run.
TEST(DISABLED_TestCase,DISABLED_TestShouldNotRun)3114 TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
3115   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
3116 }
3117 
3118 // Check that when all tests in a test case are disabled, SetupTestCase() and
3119 // TearDownTestCase() are not called.
3120 class DisabledTestsTest : public Test {
3121  protected:
SetUpTestCase()3122   static void SetUpTestCase() {
3123     FAIL() << "Unexpected failure: All tests disabled in test case. "
3124               "SetupTestCase() should not be called.";
3125   }
3126 
TearDownTestCase()3127   static void TearDownTestCase() {
3128     FAIL() << "Unexpected failure: All tests disabled in test case. "
3129               "TearDownTestCase() should not be called.";
3130   }
3131 };
3132 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_1)3133 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
3134   FAIL() << "Unexpected failure: Disabled test should not be run.";
3135 }
3136 
TEST_F(DisabledTestsTest,DISABLED_TestShouldNotRun_2)3137 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
3138   FAIL() << "Unexpected failure: Disabled test should not be run.";
3139 }
3140 
3141 // Tests that disabled typed tests aren't run.
3142 
3143 #if GTEST_HAS_TYPED_TEST
3144 
3145 template <typename T>
3146 class TypedTest : public Test {
3147 };
3148 
3149 typedef testing::Types<int, double> NumericTypes;
3150 TYPED_TEST_CASE(TypedTest, NumericTypes);
3151 
TYPED_TEST(TypedTest,DISABLED_ShouldNotRun)3152 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
3153   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3154 }
3155 
3156 template <typename T>
3157 class DISABLED_TypedTest : public Test {
3158 };
3159 
3160 TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
3161 
TYPED_TEST(DISABLED_TypedTest,ShouldNotRun)3162 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
3163   FAIL() << "Unexpected failure: Disabled typed test should not run.";
3164 }
3165 
3166 #endif  // GTEST_HAS_TYPED_TEST
3167 
3168 // Tests that disabled type-parameterized tests aren't run.
3169 
3170 #if GTEST_HAS_TYPED_TEST_P
3171 
3172 template <typename T>
3173 class TypedTestP : public Test {
3174 };
3175 
3176 TYPED_TEST_CASE_P(TypedTestP);
3177 
TYPED_TEST_P(TypedTestP,DISABLED_ShouldNotRun)3178 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
3179   FAIL() << "Unexpected failure: "
3180          << "Disabled type-parameterized test should not run.";
3181 }
3182 
3183 REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
3184 
3185 INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
3186 
3187 template <typename T>
3188 class DISABLED_TypedTestP : public Test {
3189 };
3190 
3191 TYPED_TEST_CASE_P(DISABLED_TypedTestP);
3192 
TYPED_TEST_P(DISABLED_TypedTestP,ShouldNotRun)3193 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
3194   FAIL() << "Unexpected failure: "
3195          << "Disabled type-parameterized test should not run.";
3196 }
3197 
3198 REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
3199 
3200 INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
3201 
3202 #endif  // GTEST_HAS_TYPED_TEST_P
3203 
3204 // Tests that assertion macros evaluate their arguments exactly once.
3205 
3206 class SingleEvaluationTest : public Test {
3207  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
3208   // This helper function is needed by the FailedASSERT_STREQ test
3209   // below.  It's public to work around C++Builder's bug with scoping local
3210   // classes.
CompareAndIncrementCharPtrs()3211   static void CompareAndIncrementCharPtrs() {
3212     ASSERT_STREQ(p1_++, p2_++);
3213   }
3214 
3215   // This helper function is needed by the FailedASSERT_NE test below.  It's
3216   // public to work around C++Builder's bug with scoping local classes.
CompareAndIncrementInts()3217   static void CompareAndIncrementInts() {
3218     ASSERT_NE(a_++, b_++);
3219   }
3220 
3221  protected:
SingleEvaluationTest()3222   SingleEvaluationTest() {
3223     p1_ = s1_;
3224     p2_ = s2_;
3225     a_ = 0;
3226     b_ = 0;
3227   }
3228 
3229   static const char* const s1_;
3230   static const char* const s2_;
3231   static const char* p1_;
3232   static const char* p2_;
3233 
3234   static int a_;
3235   static int b_;
3236 };
3237 
3238 const char* const SingleEvaluationTest::s1_ = "01234";
3239 const char* const SingleEvaluationTest::s2_ = "abcde";
3240 const char* SingleEvaluationTest::p1_;
3241 const char* SingleEvaluationTest::p2_;
3242 int SingleEvaluationTest::a_;
3243 int SingleEvaluationTest::b_;
3244 
3245 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
3246 // exactly once.
TEST_F(SingleEvaluationTest,FailedASSERT_STREQ)3247 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
3248   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
3249                        "p2_++");
3250   EXPECT_EQ(s1_ + 1, p1_);
3251   EXPECT_EQ(s2_ + 1, p2_);
3252 }
3253 
3254 // Tests that string assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ASSERT_STR)3255 TEST_F(SingleEvaluationTest, ASSERT_STR) {
3256   // successful EXPECT_STRNE
3257   EXPECT_STRNE(p1_++, p2_++);
3258   EXPECT_EQ(s1_ + 1, p1_);
3259   EXPECT_EQ(s2_ + 1, p2_);
3260 
3261   // failed EXPECT_STRCASEEQ
3262   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
3263                           "ignoring case");
3264   EXPECT_EQ(s1_ + 2, p1_);
3265   EXPECT_EQ(s2_ + 2, p2_);
3266 }
3267 
3268 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
3269 // once.
TEST_F(SingleEvaluationTest,FailedASSERT_NE)3270 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
3271   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
3272                        "(a_++) != (b_++)");
3273   EXPECT_EQ(1, a_);
3274   EXPECT_EQ(1, b_);
3275 }
3276 
3277 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,OtherCases)3278 TEST_F(SingleEvaluationTest, OtherCases) {
3279   // successful EXPECT_TRUE
3280   EXPECT_TRUE(0 == a_++);  // NOLINT
3281   EXPECT_EQ(1, a_);
3282 
3283   // failed EXPECT_TRUE
3284   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
3285   EXPECT_EQ(2, a_);
3286 
3287   // successful EXPECT_GT
3288   EXPECT_GT(a_++, b_++);
3289   EXPECT_EQ(3, a_);
3290   EXPECT_EQ(1, b_);
3291 
3292   // failed EXPECT_LT
3293   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
3294   EXPECT_EQ(4, a_);
3295   EXPECT_EQ(2, b_);
3296 
3297   // successful ASSERT_TRUE
3298   ASSERT_TRUE(0 < a_++);  // NOLINT
3299   EXPECT_EQ(5, a_);
3300 
3301   // successful ASSERT_GT
3302   ASSERT_GT(a_++, b_++);
3303   EXPECT_EQ(6, a_);
3304   EXPECT_EQ(3, b_);
3305 }
3306 
3307 #if GTEST_HAS_EXCEPTIONS
3308 
ThrowAnInteger()3309 void ThrowAnInteger() {
3310   throw 1;
3311 }
3312 
3313 // Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest,ExceptionTests)3314 TEST_F(SingleEvaluationTest, ExceptionTests) {
3315   // successful EXPECT_THROW
3316   EXPECT_THROW({  // NOLINT
3317     a_++;
3318     ThrowAnInteger();
3319   }, int);
3320   EXPECT_EQ(1, a_);
3321 
3322   // failed EXPECT_THROW, throws different
3323   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
3324     a_++;
3325     ThrowAnInteger();
3326   }, bool), "throws a different type");
3327   EXPECT_EQ(2, a_);
3328 
3329   // failed EXPECT_THROW, throws nothing
3330   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
3331   EXPECT_EQ(3, a_);
3332 
3333   // successful EXPECT_NO_THROW
3334   EXPECT_NO_THROW(a_++);
3335   EXPECT_EQ(4, a_);
3336 
3337   // failed EXPECT_NO_THROW
3338   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
3339     a_++;
3340     ThrowAnInteger();
3341   }), "it throws");
3342   EXPECT_EQ(5, a_);
3343 
3344   // successful EXPECT_ANY_THROW
3345   EXPECT_ANY_THROW({  // NOLINT
3346     a_++;
3347     ThrowAnInteger();
3348   });
3349   EXPECT_EQ(6, a_);
3350 
3351   // failed EXPECT_ANY_THROW
3352   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
3353   EXPECT_EQ(7, a_);
3354 }
3355 
3356 #endif  // GTEST_HAS_EXCEPTIONS
3357 
3358 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
3359 class NoFatalFailureTest : public Test {
3360  protected:
Succeeds()3361   void Succeeds() {}
FailsNonFatal()3362   void FailsNonFatal() {
3363     ADD_FAILURE() << "some non-fatal failure";
3364   }
Fails()3365   void Fails() {
3366     FAIL() << "some fatal failure";
3367   }
3368 
DoAssertNoFatalFailureOnFails()3369   void DoAssertNoFatalFailureOnFails() {
3370     ASSERT_NO_FATAL_FAILURE(Fails());
3371     ADD_FAILURE() << "shold not reach here.";
3372   }
3373 
DoExpectNoFatalFailureOnFails()3374   void DoExpectNoFatalFailureOnFails() {
3375     EXPECT_NO_FATAL_FAILURE(Fails());
3376     ADD_FAILURE() << "other failure";
3377   }
3378 };
3379 
TEST_F(NoFatalFailureTest,NoFailure)3380 TEST_F(NoFatalFailureTest, NoFailure) {
3381   EXPECT_NO_FATAL_FAILURE(Succeeds());
3382   ASSERT_NO_FATAL_FAILURE(Succeeds());
3383 }
3384 
TEST_F(NoFatalFailureTest,NonFatalIsNoFailure)3385 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
3386   EXPECT_NONFATAL_FAILURE(
3387       EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
3388       "some non-fatal failure");
3389   EXPECT_NONFATAL_FAILURE(
3390       ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
3391       "some non-fatal failure");
3392 }
3393 
TEST_F(NoFatalFailureTest,AssertNoFatalFailureOnFatalFailure)3394 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
3395   TestPartResultArray gtest_failures;
3396   {
3397     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3398     DoAssertNoFatalFailureOnFails();
3399   }
3400   ASSERT_EQ(2, gtest_failures.size());
3401   EXPECT_EQ(TestPartResult::kFatalFailure,
3402             gtest_failures.GetTestPartResult(0).type());
3403   EXPECT_EQ(TestPartResult::kFatalFailure,
3404             gtest_failures.GetTestPartResult(1).type());
3405   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3406                       gtest_failures.GetTestPartResult(0).message());
3407   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3408                       gtest_failures.GetTestPartResult(1).message());
3409 }
3410 
TEST_F(NoFatalFailureTest,ExpectNoFatalFailureOnFatalFailure)3411 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
3412   TestPartResultArray gtest_failures;
3413   {
3414     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3415     DoExpectNoFatalFailureOnFails();
3416   }
3417   ASSERT_EQ(3, gtest_failures.size());
3418   EXPECT_EQ(TestPartResult::kFatalFailure,
3419             gtest_failures.GetTestPartResult(0).type());
3420   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3421             gtest_failures.GetTestPartResult(1).type());
3422   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3423             gtest_failures.GetTestPartResult(2).type());
3424   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
3425                       gtest_failures.GetTestPartResult(0).message());
3426   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
3427                       gtest_failures.GetTestPartResult(1).message());
3428   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
3429                       gtest_failures.GetTestPartResult(2).message());
3430 }
3431 
TEST_F(NoFatalFailureTest,MessageIsStreamable)3432 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
3433   TestPartResultArray gtest_failures;
3434   {
3435     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
3436     EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
3437   }
3438   ASSERT_EQ(2, gtest_failures.size());
3439   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3440             gtest_failures.GetTestPartResult(0).type());
3441   EXPECT_EQ(TestPartResult::kNonFatalFailure,
3442             gtest_failures.GetTestPartResult(1).type());
3443   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
3444                       gtest_failures.GetTestPartResult(0).message());
3445   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
3446                       gtest_failures.GetTestPartResult(1).message());
3447 }
3448 
3449 // Tests non-string assertions.
3450 
EditsToString(const std::vector<EditType> & edits)3451 std::string EditsToString(const std::vector<EditType>& edits) {
3452   std::string out;
3453   for (size_t i = 0; i < edits.size(); ++i) {
3454     static const char kEdits[] = " +-/";
3455     out.append(1, kEdits[edits[i]]);
3456   }
3457   return out;
3458 }
3459 
CharsToIndices(const std::string & str)3460 std::vector<size_t> CharsToIndices(const std::string& str) {
3461   std::vector<size_t> out;
3462   for (size_t i = 0; i < str.size(); ++i) {
3463     out.push_back(str[i]);
3464   }
3465   return out;
3466 }
3467 
CharsToLines(const std::string & str)3468 std::vector<std::string> CharsToLines(const std::string& str) {
3469   std::vector<std::string> out;
3470   for (size_t i = 0; i < str.size(); ++i) {
3471     out.push_back(str.substr(i, 1));
3472   }
3473   return out;
3474 }
3475 
TEST(EditDistance,TestCases)3476 TEST(EditDistance, TestCases) {
3477   struct Case {
3478     int line;
3479     const char* left;
3480     const char* right;
3481     const char* expected_edits;
3482     const char* expected_diff;
3483   };
3484   static const Case kCases[] = {
3485       // No change.
3486       {__LINE__, "A", "A", " ", ""},
3487       {__LINE__, "ABCDE", "ABCDE", "     ", ""},
3488       // Simple adds.
3489       {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"},
3490       {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"},
3491       // Simple removes.
3492       {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"},
3493       {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"},
3494       // Simple replaces.
3495       {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"},
3496       {__LINE__, "ABCD", "abcd", "////",
3497        "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"},
3498       // Path finding.
3499       {__LINE__, "ABCDEFGH", "ABXEGH1", "  -/ -  +",
3500        "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"},
3501       {__LINE__, "AAAABCCCC", "ABABCDCDC", "- /   + / ",
3502        "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"},
3503       {__LINE__, "ABCDE", "BCDCD", "-   +/",
3504        "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"},
3505       {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++     --   ++",
3506        "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n"
3507        "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"},
3508       {}};
3509   for (const Case* c = kCases; c->left; ++c) {
3510     EXPECT_TRUE(c->expected_edits ==
3511                 EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
3512                                                     CharsToIndices(c->right))))
3513         << "Left <" << c->left << "> Right <" << c->right << "> Edits <"
3514         << EditsToString(CalculateOptimalEdits(
3515                CharsToIndices(c->left), CharsToIndices(c->right))) << ">";
3516     EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left),
3517                                                       CharsToLines(c->right)))
3518         << "Left <" << c->left << "> Right <" << c->right << "> Diff <"
3519         << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))
3520         << ">";
3521   }
3522 }
3523 
3524 // Tests EqFailure(), used for implementing *EQ* assertions.
TEST(AssertionTest,EqFailure)3525 TEST(AssertionTest, EqFailure) {
3526   const std::string foo_val("5"), bar_val("6");
3527   const std::string msg1(
3528       EqFailure("foo", "bar", foo_val, bar_val, false)
3529       .failure_message());
3530   EXPECT_STREQ(
3531       "Value of: bar\n"
3532       "  Actual: 6\n"
3533       "Expected: foo\n"
3534       "Which is: 5",
3535       msg1.c_str());
3536 
3537   const std::string msg2(
3538       EqFailure("foo", "6", foo_val, bar_val, false)
3539       .failure_message());
3540   EXPECT_STREQ(
3541       "Value of: 6\n"
3542       "Expected: foo\n"
3543       "Which is: 5",
3544       msg2.c_str());
3545 
3546   const std::string msg3(
3547       EqFailure("5", "bar", foo_val, bar_val, false)
3548       .failure_message());
3549   EXPECT_STREQ(
3550       "Value of: bar\n"
3551       "  Actual: 6\n"
3552       "Expected: 5",
3553       msg3.c_str());
3554 
3555   const std::string msg4(
3556       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
3557   EXPECT_STREQ(
3558       "Value of: 6\n"
3559       "Expected: 5",
3560       msg4.c_str());
3561 
3562   const std::string msg5(
3563       EqFailure("foo", "bar",
3564                 std::string("\"x\""), std::string("\"y\""),
3565                 true).failure_message());
3566   EXPECT_STREQ(
3567       "Value of: bar\n"
3568       "  Actual: \"y\"\n"
3569       "Expected: foo (ignoring case)\n"
3570       "Which is: \"x\"",
3571       msg5.c_str());
3572 }
3573 
TEST(AssertionTest,EqFailureWithDiff)3574 TEST(AssertionTest, EqFailureWithDiff) {
3575   const std::string left(
3576       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15");
3577   const std::string right(
3578       "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14");
3579   const std::string msg1(
3580       EqFailure("left", "right", left, right, false).failure_message());
3581   EXPECT_STREQ(
3582       "Value of: right\n"
3583       "  Actual: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n"
3584       "Expected: left\n"
3585       "Which is: "
3586       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n"
3587       "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n"
3588       "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n",
3589       msg1.c_str());
3590 }
3591 
3592 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
TEST(AssertionTest,AppendUserMessage)3593 TEST(AssertionTest, AppendUserMessage) {
3594   const std::string foo("foo");
3595 
3596   Message msg;
3597   EXPECT_STREQ("foo",
3598                AppendUserMessage(foo, msg).c_str());
3599 
3600   msg << "bar";
3601   EXPECT_STREQ("foo\nbar",
3602                AppendUserMessage(foo, msg).c_str());
3603 }
3604 
3605 #ifdef __BORLANDC__
3606 // Silences warnings: "Condition is always true", "Unreachable code"
3607 # pragma option push -w-ccc -w-rch
3608 #endif
3609 
3610 // Tests ASSERT_TRUE.
TEST(AssertionTest,ASSERT_TRUE)3611 TEST(AssertionTest, ASSERT_TRUE) {
3612   ASSERT_TRUE(2 > 1);  // NOLINT
3613   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
3614                        "2 < 1");
3615 }
3616 
3617 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertTrueWithAssertionResult)3618 TEST(AssertionTest, AssertTrueWithAssertionResult) {
3619   ASSERT_TRUE(ResultIsEven(2));
3620 #ifndef __BORLANDC__
3621   // ICE's in C++Builder.
3622   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
3623                        "Value of: ResultIsEven(3)\n"
3624                        "  Actual: false (3 is odd)\n"
3625                        "Expected: true");
3626 #endif
3627   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
3628   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
3629                        "Value of: ResultIsEvenNoExplanation(3)\n"
3630                        "  Actual: false (3 is odd)\n"
3631                        "Expected: true");
3632 }
3633 
3634 // Tests ASSERT_FALSE.
TEST(AssertionTest,ASSERT_FALSE)3635 TEST(AssertionTest, ASSERT_FALSE) {
3636   ASSERT_FALSE(2 < 1);  // NOLINT
3637   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
3638                        "Value of: 2 > 1\n"
3639                        "  Actual: true\n"
3640                        "Expected: false");
3641 }
3642 
3643 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
TEST(AssertionTest,AssertFalseWithAssertionResult)3644 TEST(AssertionTest, AssertFalseWithAssertionResult) {
3645   ASSERT_FALSE(ResultIsEven(3));
3646 #ifndef __BORLANDC__
3647   // ICE's in C++Builder.
3648   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
3649                        "Value of: ResultIsEven(2)\n"
3650                        "  Actual: true (2 is even)\n"
3651                        "Expected: false");
3652 #endif
3653   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
3654   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
3655                        "Value of: ResultIsEvenNoExplanation(2)\n"
3656                        "  Actual: true\n"
3657                        "Expected: false");
3658 }
3659 
3660 #ifdef __BORLANDC__
3661 // Restores warnings after previous "#pragma option push" supressed them
3662 # pragma option pop
3663 #endif
3664 
3665 // Tests using ASSERT_EQ on double values.  The purpose is to make
3666 // sure that the specialization we did for integer and anonymous enums
3667 // isn't used for double arguments.
TEST(ExpectTest,ASSERT_EQ_Double)3668 TEST(ExpectTest, ASSERT_EQ_Double) {
3669   // A success.
3670   ASSERT_EQ(5.6, 5.6);
3671 
3672   // A failure.
3673   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
3674                        "5.1");
3675 }
3676 
3677 // Tests ASSERT_EQ.
TEST(AssertionTest,ASSERT_EQ)3678 TEST(AssertionTest, ASSERT_EQ) {
3679   ASSERT_EQ(5, 2 + 3);
3680   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
3681                        "Value of: 2*3\n"
3682                        "  Actual: 6\n"
3683                        "Expected: 5");
3684 }
3685 
3686 // Tests ASSERT_EQ(NULL, pointer).
3687 #if GTEST_CAN_COMPARE_NULL
TEST(AssertionTest,ASSERT_EQ_NULL)3688 TEST(AssertionTest, ASSERT_EQ_NULL) {
3689   // A success.
3690   const char* p = NULL;
3691   // Some older GCC versions may issue a spurious waring in this or the next
3692   // assertion statement. This warning should not be suppressed with
3693   // static_cast since the test verifies the ability to use bare NULL as the
3694   // expected parameter to the macro.
3695   ASSERT_EQ(NULL, p);
3696 
3697   // A failure.
3698   static int n = 0;
3699   EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
3700                        "Value of: &n\n");
3701 }
3702 #endif  // GTEST_CAN_COMPARE_NULL
3703 
3704 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
3705 // treated as a null pointer by the compiler, we need to make sure
3706 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
3707 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,ASSERT_EQ_0)3708 TEST(ExpectTest, ASSERT_EQ_0) {
3709   int n = 0;
3710 
3711   // A success.
3712   ASSERT_EQ(0, n);
3713 
3714   // A failure.
3715   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
3716                        "Expected: 0");
3717 }
3718 
3719 // Tests ASSERT_NE.
TEST(AssertionTest,ASSERT_NE)3720 TEST(AssertionTest, ASSERT_NE) {
3721   ASSERT_NE(6, 7);
3722   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
3723                        "Expected: ('a') != ('a'), "
3724                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
3725 }
3726 
3727 // Tests ASSERT_LE.
TEST(AssertionTest,ASSERT_LE)3728 TEST(AssertionTest, ASSERT_LE) {
3729   ASSERT_LE(2, 3);
3730   ASSERT_LE(2, 2);
3731   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
3732                        "Expected: (2) <= (0), actual: 2 vs 0");
3733 }
3734 
3735 // Tests ASSERT_LT.
TEST(AssertionTest,ASSERT_LT)3736 TEST(AssertionTest, ASSERT_LT) {
3737   ASSERT_LT(2, 3);
3738   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
3739                        "Expected: (2) < (2), actual: 2 vs 2");
3740 }
3741 
3742 // Tests ASSERT_GE.
TEST(AssertionTest,ASSERT_GE)3743 TEST(AssertionTest, ASSERT_GE) {
3744   ASSERT_GE(2, 1);
3745   ASSERT_GE(2, 2);
3746   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
3747                        "Expected: (2) >= (3), actual: 2 vs 3");
3748 }
3749 
3750 // Tests ASSERT_GT.
TEST(AssertionTest,ASSERT_GT)3751 TEST(AssertionTest, ASSERT_GT) {
3752   ASSERT_GT(2, 1);
3753   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
3754                        "Expected: (2) > (2), actual: 2 vs 2");
3755 }
3756 
3757 #if GTEST_HAS_EXCEPTIONS
3758 
ThrowNothing()3759 void ThrowNothing() {}
3760 
3761 // Tests ASSERT_THROW.
TEST(AssertionTest,ASSERT_THROW)3762 TEST(AssertionTest, ASSERT_THROW) {
3763   ASSERT_THROW(ThrowAnInteger(), int);
3764 
3765 # ifndef __BORLANDC__
3766 
3767   // ICE's in C++Builder 2007 and 2009.
3768   EXPECT_FATAL_FAILURE(
3769       ASSERT_THROW(ThrowAnInteger(), bool),
3770       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
3771       "  Actual: it throws a different type.");
3772 # endif
3773 
3774   EXPECT_FATAL_FAILURE(
3775       ASSERT_THROW(ThrowNothing(), bool),
3776       "Expected: ThrowNothing() throws an exception of type bool.\n"
3777       "  Actual: it throws nothing.");
3778 }
3779 
3780 // Tests ASSERT_NO_THROW.
TEST(AssertionTest,ASSERT_NO_THROW)3781 TEST(AssertionTest, ASSERT_NO_THROW) {
3782   ASSERT_NO_THROW(ThrowNothing());
3783   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
3784                        "Expected: ThrowAnInteger() doesn't throw an exception."
3785                        "\n  Actual: it throws.");
3786 }
3787 
3788 // Tests ASSERT_ANY_THROW.
TEST(AssertionTest,ASSERT_ANY_THROW)3789 TEST(AssertionTest, ASSERT_ANY_THROW) {
3790   ASSERT_ANY_THROW(ThrowAnInteger());
3791   EXPECT_FATAL_FAILURE(
3792       ASSERT_ANY_THROW(ThrowNothing()),
3793       "Expected: ThrowNothing() throws an exception.\n"
3794       "  Actual: it doesn't.");
3795 }
3796 
3797 #endif  // GTEST_HAS_EXCEPTIONS
3798 
3799 // Makes sure we deal with the precedence of <<.  This test should
3800 // compile.
TEST(AssertionTest,AssertPrecedence)3801 TEST(AssertionTest, AssertPrecedence) {
3802   ASSERT_EQ(1 < 2, true);
3803   bool false_value = false;
3804   ASSERT_EQ(true && false_value, false);
3805 }
3806 
3807 // A subroutine used by the following test.
TestEq1(int x)3808 void TestEq1(int x) {
3809   ASSERT_EQ(1, x);
3810 }
3811 
3812 // Tests calling a test subroutine that's not part of a fixture.
TEST(AssertionTest,NonFixtureSubroutine)3813 TEST(AssertionTest, NonFixtureSubroutine) {
3814   EXPECT_FATAL_FAILURE(TestEq1(2),
3815                        "Value of: x");
3816 }
3817 
3818 // An uncopyable class.
3819 class Uncopyable {
3820  public:
Uncopyable(int a_value)3821   explicit Uncopyable(int a_value) : value_(a_value) {}
3822 
value() const3823   int value() const { return value_; }
operator ==(const Uncopyable & rhs) const3824   bool operator==(const Uncopyable& rhs) const {
3825     return value() == rhs.value();
3826   }
3827  private:
3828   // This constructor deliberately has no implementation, as we don't
3829   // want this class to be copyable.
3830   Uncopyable(const Uncopyable&);  // NOLINT
3831 
3832   int value_;
3833 };
3834 
operator <<(::std::ostream & os,const Uncopyable & value)3835 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
3836   return os << value.value();
3837 }
3838 
3839 
IsPositiveUncopyable(const Uncopyable & x)3840 bool IsPositiveUncopyable(const Uncopyable& x) {
3841   return x.value() > 0;
3842 }
3843 
3844 // A subroutine used by the following test.
TestAssertNonPositive()3845 void TestAssertNonPositive() {
3846   Uncopyable y(-1);
3847   ASSERT_PRED1(IsPositiveUncopyable, y);
3848 }
3849 // A subroutine used by the following test.
TestAssertEqualsUncopyable()3850 void TestAssertEqualsUncopyable() {
3851   Uncopyable x(5);
3852   Uncopyable y(-1);
3853   ASSERT_EQ(x, y);
3854 }
3855 
3856 // Tests that uncopyable objects can be used in assertions.
TEST(AssertionTest,AssertWorksWithUncopyableObject)3857 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
3858   Uncopyable x(5);
3859   ASSERT_PRED1(IsPositiveUncopyable, x);
3860   ASSERT_EQ(x, x);
3861   EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
3862     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3863   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
3864     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
3865 }
3866 
3867 // Tests that uncopyable objects can be used in expects.
TEST(AssertionTest,ExpectWorksWithUncopyableObject)3868 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
3869   Uncopyable x(5);
3870   EXPECT_PRED1(IsPositiveUncopyable, x);
3871   Uncopyable y(-1);
3872   EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
3873     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
3874   EXPECT_EQ(x, x);
3875   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
3876     "Value of: y\n  Actual: -1\nExpected: x\nWhich is: 5");
3877 }
3878 
3879 enum NamedEnum {
3880   kE1 = 0,
3881   kE2 = 1
3882 };
3883 
TEST(AssertionTest,NamedEnum)3884 TEST(AssertionTest, NamedEnum) {
3885   EXPECT_EQ(kE1, kE1);
3886   EXPECT_LT(kE1, kE2);
3887   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
3888   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1");
3889 }
3890 
3891 // The version of gcc used in XCode 2.2 has a bug and doesn't allow
3892 // anonymous enums in assertions.  Therefore the following test is not
3893 // done on Mac.
3894 // Sun Studio and HP aCC also reject this code.
3895 #if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
3896 
3897 // Tests using assertions with anonymous enums.
3898 enum {
3899   kCaseA = -1,
3900 
3901 # if GTEST_OS_LINUX
3902 
3903   // We want to test the case where the size of the anonymous enum is
3904   // larger than sizeof(int), to make sure our implementation of the
3905   // assertions doesn't truncate the enums.  However, MSVC
3906   // (incorrectly) doesn't allow an enum value to exceed the range of
3907   // an int, so this has to be conditionally compiled.
3908   //
3909   // On Linux, kCaseB and kCaseA have the same value when truncated to
3910   // int size.  We want to test whether this will confuse the
3911   // assertions.
3912   kCaseB = testing::internal::kMaxBiggestInt,
3913 
3914 # else
3915 
3916   kCaseB = INT_MAX,
3917 
3918 # endif  // GTEST_OS_LINUX
3919 
3920   kCaseC = 42
3921 };
3922 
TEST(AssertionTest,AnonymousEnum)3923 TEST(AssertionTest, AnonymousEnum) {
3924 # if GTEST_OS_LINUX
3925 
3926   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
3927 
3928 # endif  // GTEST_OS_LINUX
3929 
3930   EXPECT_EQ(kCaseA, kCaseA);
3931   EXPECT_NE(kCaseA, kCaseB);
3932   EXPECT_LT(kCaseA, kCaseB);
3933   EXPECT_LE(kCaseA, kCaseB);
3934   EXPECT_GT(kCaseB, kCaseA);
3935   EXPECT_GE(kCaseA, kCaseA);
3936   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
3937                           "(kCaseA) >= (kCaseB)");
3938   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
3939                           "-1 vs 42");
3940 
3941   ASSERT_EQ(kCaseA, kCaseA);
3942   ASSERT_NE(kCaseA, kCaseB);
3943   ASSERT_LT(kCaseA, kCaseB);
3944   ASSERT_LE(kCaseA, kCaseB);
3945   ASSERT_GT(kCaseB, kCaseA);
3946   ASSERT_GE(kCaseA, kCaseA);
3947 
3948 # ifndef __BORLANDC__
3949 
3950   // ICE's in C++Builder.
3951   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
3952                        "Value of: kCaseB");
3953   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3954                        "Actual: 42");
3955 # endif
3956 
3957   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
3958                        "Which is: -1");
3959 }
3960 
3961 #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
3962 
3963 #if GTEST_OS_WINDOWS
3964 
UnexpectedHRESULTFailure()3965 static HRESULT UnexpectedHRESULTFailure() {
3966   return E_UNEXPECTED;
3967 }
3968 
OkHRESULTSuccess()3969 static HRESULT OkHRESULTSuccess() {
3970   return S_OK;
3971 }
3972 
FalseHRESULTSuccess()3973 static HRESULT FalseHRESULTSuccess() {
3974   return S_FALSE;
3975 }
3976 
3977 // HRESULT assertion tests test both zero and non-zero
3978 // success codes as well as failure message for each.
3979 //
3980 // Windows CE doesn't support message texts.
TEST(HRESULTAssertionTest,EXPECT_HRESULT_SUCCEEDED)3981 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
3982   EXPECT_HRESULT_SUCCEEDED(S_OK);
3983   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
3984 
3985   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3986     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3987     "  Actual: 0x8000FFFF");
3988 }
3989 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_SUCCEEDED)3990 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
3991   ASSERT_HRESULT_SUCCEEDED(S_OK);
3992   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
3993 
3994   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
3995     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
3996     "  Actual: 0x8000FFFF");
3997 }
3998 
TEST(HRESULTAssertionTest,EXPECT_HRESULT_FAILED)3999 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
4000   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
4001 
4002   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
4003     "Expected: (OkHRESULTSuccess()) fails.\n"
4004     "  Actual: 0x0");
4005   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
4006     "Expected: (FalseHRESULTSuccess()) fails.\n"
4007     "  Actual: 0x1");
4008 }
4009 
TEST(HRESULTAssertionTest,ASSERT_HRESULT_FAILED)4010 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
4011   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
4012 
4013 # ifndef __BORLANDC__
4014 
4015   // ICE's in C++Builder 2007 and 2009.
4016   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
4017     "Expected: (OkHRESULTSuccess()) fails.\n"
4018     "  Actual: 0x0");
4019 # endif
4020 
4021   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
4022     "Expected: (FalseHRESULTSuccess()) fails.\n"
4023     "  Actual: 0x1");
4024 }
4025 
4026 // Tests that streaming to the HRESULT macros works.
TEST(HRESULTAssertionTest,Streaming)4027 TEST(HRESULTAssertionTest, Streaming) {
4028   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4029   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
4030   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4031   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
4032 
4033   EXPECT_NONFATAL_FAILURE(
4034       EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
4035       "expected failure");
4036 
4037 # ifndef __BORLANDC__
4038 
4039   // ICE's in C++Builder 2007 and 2009.
4040   EXPECT_FATAL_FAILURE(
4041       ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
4042       "expected failure");
4043 # endif
4044 
4045   EXPECT_NONFATAL_FAILURE(
4046       EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
4047       "expected failure");
4048 
4049   EXPECT_FATAL_FAILURE(
4050       ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
4051       "expected failure");
4052 }
4053 
4054 #endif  // GTEST_OS_WINDOWS
4055 
4056 #ifdef __BORLANDC__
4057 // Silences warnings: "Condition is always true", "Unreachable code"
4058 # pragma option push -w-ccc -w-rch
4059 #endif
4060 
4061 // Tests that the assertion macros behave like single statements.
TEST(AssertionSyntaxTest,BasicAssertionsBehavesLikeSingleStatement)4062 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
4063   if (AlwaysFalse())
4064     ASSERT_TRUE(false) << "This should never be executed; "
4065                           "It's a compilation test only.";
4066 
4067   if (AlwaysTrue())
4068     EXPECT_FALSE(false);
4069   else
4070     ;  // NOLINT
4071 
4072   if (AlwaysFalse())
4073     ASSERT_LT(1, 3);
4074 
4075   if (AlwaysFalse())
4076     ;  // NOLINT
4077   else
4078     EXPECT_GT(3, 2) << "";
4079 }
4080 
4081 #if GTEST_HAS_EXCEPTIONS
4082 // Tests that the compiler will not complain about unreachable code in the
4083 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
TEST(ExpectThrowTest,DoesNotGenerateUnreachableCodeWarning)4084 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
4085   int n = 0;
4086 
4087   EXPECT_THROW(throw 1, int);
4088   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
4089   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
4090   EXPECT_NO_THROW(n++);
4091   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
4092   EXPECT_ANY_THROW(throw 1);
4093   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
4094 }
4095 
TEST(AssertionSyntaxTest,ExceptionAssertionsBehavesLikeSingleStatement)4096 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
4097   if (AlwaysFalse())
4098     EXPECT_THROW(ThrowNothing(), bool);
4099 
4100   if (AlwaysTrue())
4101     EXPECT_THROW(ThrowAnInteger(), int);
4102   else
4103     ;  // NOLINT
4104 
4105   if (AlwaysFalse())
4106     EXPECT_NO_THROW(ThrowAnInteger());
4107 
4108   if (AlwaysTrue())
4109     EXPECT_NO_THROW(ThrowNothing());
4110   else
4111     ;  // NOLINT
4112 
4113   if (AlwaysFalse())
4114     EXPECT_ANY_THROW(ThrowNothing());
4115 
4116   if (AlwaysTrue())
4117     EXPECT_ANY_THROW(ThrowAnInteger());
4118   else
4119     ;  // NOLINT
4120 }
4121 #endif  // GTEST_HAS_EXCEPTIONS
4122 
TEST(AssertionSyntaxTest,NoFatalFailureAssertionsBehavesLikeSingleStatement)4123 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
4124   if (AlwaysFalse())
4125     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
4126                                     << "It's a compilation test only.";
4127   else
4128     ;  // NOLINT
4129 
4130   if (AlwaysFalse())
4131     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
4132   else
4133     ;  // NOLINT
4134 
4135   if (AlwaysTrue())
4136     EXPECT_NO_FATAL_FAILURE(SUCCEED());
4137   else
4138     ;  // NOLINT
4139 
4140   if (AlwaysFalse())
4141     ;  // NOLINT
4142   else
4143     ASSERT_NO_FATAL_FAILURE(SUCCEED());
4144 }
4145 
4146 // Tests that the assertion macros work well with switch statements.
TEST(AssertionSyntaxTest,WorksWithSwitch)4147 TEST(AssertionSyntaxTest, WorksWithSwitch) {
4148   switch (0) {
4149     case 1:
4150       break;
4151     default:
4152       ASSERT_TRUE(true);
4153   }
4154 
4155   switch (0)
4156     case 0:
4157       EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
4158 
4159   // Binary assertions are implemented using a different code path
4160   // than the Boolean assertions.  Hence we test them separately.
4161   switch (0) {
4162     case 1:
4163     default:
4164       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
4165   }
4166 
4167   switch (0)
4168     case 0:
4169       EXPECT_NE(1, 2);
4170 }
4171 
4172 #if GTEST_HAS_EXCEPTIONS
4173 
ThrowAString()4174 void ThrowAString() {
4175     throw "std::string";
4176 }
4177 
4178 // Test that the exception assertion macros compile and work with const
4179 // type qualifier.
TEST(AssertionSyntaxTest,WorksWithConst)4180 TEST(AssertionSyntaxTest, WorksWithConst) {
4181     ASSERT_THROW(ThrowAString(), const char*);
4182 
4183     EXPECT_THROW(ThrowAString(), const char*);
4184 }
4185 
4186 #endif  // GTEST_HAS_EXCEPTIONS
4187 
4188 }  // namespace
4189 
4190 namespace testing {
4191 
4192 // Tests that Google Test tracks SUCCEED*.
TEST(SuccessfulAssertionTest,SUCCEED)4193 TEST(SuccessfulAssertionTest, SUCCEED) {
4194   SUCCEED();
4195   SUCCEED() << "OK";
4196   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
4197 }
4198 
4199 // Tests that Google Test doesn't track successful EXPECT_*.
TEST(SuccessfulAssertionTest,EXPECT)4200 TEST(SuccessfulAssertionTest, EXPECT) {
4201   EXPECT_TRUE(true);
4202   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4203 }
4204 
4205 // Tests that Google Test doesn't track successful EXPECT_STR*.
TEST(SuccessfulAssertionTest,EXPECT_STR)4206 TEST(SuccessfulAssertionTest, EXPECT_STR) {
4207   EXPECT_STREQ("", "");
4208   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4209 }
4210 
4211 // Tests that Google Test doesn't track successful ASSERT_*.
TEST(SuccessfulAssertionTest,ASSERT)4212 TEST(SuccessfulAssertionTest, ASSERT) {
4213   ASSERT_TRUE(true);
4214   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4215 }
4216 
4217 // Tests that Google Test doesn't track successful ASSERT_STR*.
TEST(SuccessfulAssertionTest,ASSERT_STR)4218 TEST(SuccessfulAssertionTest, ASSERT_STR) {
4219   ASSERT_STREQ("", "");
4220   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
4221 }
4222 
4223 }  // namespace testing
4224 
4225 namespace {
4226 
4227 // Tests the message streaming variation of assertions.
4228 
TEST(AssertionWithMessageTest,EXPECT)4229 TEST(AssertionWithMessageTest, EXPECT) {
4230   EXPECT_EQ(1, 1) << "This should succeed.";
4231   EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
4232                           "Expected failure #1");
4233   EXPECT_LE(1, 2) << "This should succeed.";
4234   EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
4235                           "Expected failure #2.");
4236   EXPECT_GE(1, 0) << "This should succeed.";
4237   EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
4238                           "Expected failure #3.");
4239 
4240   EXPECT_STREQ("1", "1") << "This should succeed.";
4241   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
4242                           "Expected failure #4.");
4243   EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
4244   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
4245                           "Expected failure #5.");
4246 
4247   EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
4248   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
4249                           "Expected failure #6.");
4250   EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
4251 }
4252 
TEST(AssertionWithMessageTest,ASSERT)4253 TEST(AssertionWithMessageTest, ASSERT) {
4254   ASSERT_EQ(1, 1) << "This should succeed.";
4255   ASSERT_NE(1, 2) << "This should succeed.";
4256   ASSERT_LE(1, 2) << "This should succeed.";
4257   ASSERT_LT(1, 2) << "This should succeed.";
4258   ASSERT_GE(1, 0) << "This should succeed.";
4259   EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
4260                        "Expected failure.");
4261 }
4262 
TEST(AssertionWithMessageTest,ASSERT_STR)4263 TEST(AssertionWithMessageTest, ASSERT_STR) {
4264   ASSERT_STREQ("1", "1") << "This should succeed.";
4265   ASSERT_STRNE("1", "2") << "This should succeed.";
4266   ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
4267   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
4268                        "Expected failure.");
4269 }
4270 
TEST(AssertionWithMessageTest,ASSERT_FLOATING)4271 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
4272   ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
4273   ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
4274   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.",  // NOLINT
4275                        "Expect failure.");
4276   // To work around a bug in gcc 2.95.0, there is intentionally no
4277   // space after the first comma in the previous statement.
4278 }
4279 
4280 // Tests using ASSERT_FALSE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_FALSE)4281 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
4282   ASSERT_FALSE(false) << "This shouldn't fail.";
4283   EXPECT_FATAL_FAILURE({  // NOLINT
4284     ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
4285                        << " evaluates to " << true;
4286   }, "Expected failure");
4287 }
4288 
4289 // Tests using FAIL with a streamed message.
TEST(AssertionWithMessageTest,FAIL)4290 TEST(AssertionWithMessageTest, FAIL) {
4291   EXPECT_FATAL_FAILURE(FAIL() << 0,
4292                        "0");
4293 }
4294 
4295 // Tests using SUCCEED with a streamed message.
TEST(AssertionWithMessageTest,SUCCEED)4296 TEST(AssertionWithMessageTest, SUCCEED) {
4297   SUCCEED() << "Success == " << 1;
4298 }
4299 
4300 // Tests using ASSERT_TRUE with a streamed message.
TEST(AssertionWithMessageTest,ASSERT_TRUE)4301 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
4302   ASSERT_TRUE(true) << "This should succeed.";
4303   ASSERT_TRUE(true) << true;
4304   EXPECT_FATAL_FAILURE({  // NOLINT
4305     ASSERT_TRUE(false) << static_cast<const char *>(NULL)
4306                        << static_cast<char *>(NULL);
4307   }, "(null)(null)");
4308 }
4309 
4310 #if GTEST_OS_WINDOWS
4311 // Tests using wide strings in assertion messages.
TEST(AssertionWithMessageTest,WideStringMessage)4312 TEST(AssertionWithMessageTest, WideStringMessage) {
4313   EXPECT_NONFATAL_FAILURE({  // NOLINT
4314     EXPECT_TRUE(false) << L"This failure is expected.\x8119";
4315   }, "This failure is expected.");
4316   EXPECT_FATAL_FAILURE({  // NOLINT
4317     ASSERT_EQ(1, 2) << "This failure is "
4318                     << L"expected too.\x8120";
4319   }, "This failure is expected too.");
4320 }
4321 #endif  // GTEST_OS_WINDOWS
4322 
4323 // Tests EXPECT_TRUE.
TEST(ExpectTest,EXPECT_TRUE)4324 TEST(ExpectTest, EXPECT_TRUE) {
4325   EXPECT_TRUE(true) << "Intentional success";
4326   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
4327                           "Intentional failure #1.");
4328   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
4329                           "Intentional failure #2.");
4330   EXPECT_TRUE(2 > 1);  // NOLINT
4331   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
4332                           "Value of: 2 < 1\n"
4333                           "  Actual: false\n"
4334                           "Expected: true");
4335   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
4336                           "2 > 3");
4337 }
4338 
4339 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectTrueWithAssertionResult)4340 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
4341   EXPECT_TRUE(ResultIsEven(2));
4342   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
4343                           "Value of: ResultIsEven(3)\n"
4344                           "  Actual: false (3 is odd)\n"
4345                           "Expected: true");
4346   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
4347   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
4348                           "Value of: ResultIsEvenNoExplanation(3)\n"
4349                           "  Actual: false (3 is odd)\n"
4350                           "Expected: true");
4351 }
4352 
4353 // Tests EXPECT_FALSE with a streamed message.
TEST(ExpectTest,EXPECT_FALSE)4354 TEST(ExpectTest, EXPECT_FALSE) {
4355   EXPECT_FALSE(2 < 1);  // NOLINT
4356   EXPECT_FALSE(false) << "Intentional success";
4357   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
4358                           "Intentional failure #1.");
4359   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
4360                           "Intentional failure #2.");
4361   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
4362                           "Value of: 2 > 1\n"
4363                           "  Actual: true\n"
4364                           "Expected: false");
4365   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
4366                           "2 < 3");
4367 }
4368 
4369 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
TEST(ExpectTest,ExpectFalseWithAssertionResult)4370 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
4371   EXPECT_FALSE(ResultIsEven(3));
4372   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
4373                           "Value of: ResultIsEven(2)\n"
4374                           "  Actual: true (2 is even)\n"
4375                           "Expected: false");
4376   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
4377   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
4378                           "Value of: ResultIsEvenNoExplanation(2)\n"
4379                           "  Actual: true\n"
4380                           "Expected: false");
4381 }
4382 
4383 #ifdef __BORLANDC__
4384 // Restores warnings after previous "#pragma option push" supressed them
4385 # pragma option pop
4386 #endif
4387 
4388 // Tests EXPECT_EQ.
TEST(ExpectTest,EXPECT_EQ)4389 TEST(ExpectTest, EXPECT_EQ) {
4390   EXPECT_EQ(5, 2 + 3);
4391   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
4392                           "Value of: 2*3\n"
4393                           "  Actual: 6\n"
4394                           "Expected: 5");
4395   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
4396                           "2 - 3");
4397 }
4398 
4399 // Tests using EXPECT_EQ on double values.  The purpose is to make
4400 // sure that the specialization we did for integer and anonymous enums
4401 // isn't used for double arguments.
TEST(ExpectTest,EXPECT_EQ_Double)4402 TEST(ExpectTest, EXPECT_EQ_Double) {
4403   // A success.
4404   EXPECT_EQ(5.6, 5.6);
4405 
4406   // A failure.
4407   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
4408                           "5.1");
4409 }
4410 
4411 #if GTEST_CAN_COMPARE_NULL
4412 // Tests EXPECT_EQ(NULL, pointer).
TEST(ExpectTest,EXPECT_EQ_NULL)4413 TEST(ExpectTest, EXPECT_EQ_NULL) {
4414   // A success.
4415   const char* p = NULL;
4416   // Some older GCC versions may issue a spurious warning in this or the next
4417   // assertion statement. This warning should not be suppressed with
4418   // static_cast since the test verifies the ability to use bare NULL as the
4419   // expected parameter to the macro.
4420   EXPECT_EQ(NULL, p);
4421 
4422   // A failure.
4423   int n = 0;
4424   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
4425                           "Value of: &n\n");
4426 }
4427 #endif  // GTEST_CAN_COMPARE_NULL
4428 
4429 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
4430 // treated as a null pointer by the compiler, we need to make sure
4431 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
4432 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest,EXPECT_EQ_0)4433 TEST(ExpectTest, EXPECT_EQ_0) {
4434   int n = 0;
4435 
4436   // A success.
4437   EXPECT_EQ(0, n);
4438 
4439   // A failure.
4440   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
4441                           "Expected: 0");
4442 }
4443 
4444 // Tests EXPECT_NE.
TEST(ExpectTest,EXPECT_NE)4445 TEST(ExpectTest, EXPECT_NE) {
4446   EXPECT_NE(6, 7);
4447 
4448   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
4449                           "Expected: ('a') != ('a'), "
4450                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
4451   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
4452                           "2");
4453   char* const p0 = NULL;
4454   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
4455                           "p0");
4456   // Only way to get the Nokia compiler to compile the cast
4457   // is to have a separate void* variable first. Putting
4458   // the two casts on the same line doesn't work, neither does
4459   // a direct C-style to char*.
4460   void* pv1 = (void*)0x1234;  // NOLINT
4461   char* const p1 = reinterpret_cast<char*>(pv1);
4462   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
4463                           "p1");
4464 }
4465 
4466 // Tests EXPECT_LE.
TEST(ExpectTest,EXPECT_LE)4467 TEST(ExpectTest, EXPECT_LE) {
4468   EXPECT_LE(2, 3);
4469   EXPECT_LE(2, 2);
4470   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
4471                           "Expected: (2) <= (0), actual: 2 vs 0");
4472   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
4473                           "(1.1) <= (0.9)");
4474 }
4475 
4476 // Tests EXPECT_LT.
TEST(ExpectTest,EXPECT_LT)4477 TEST(ExpectTest, EXPECT_LT) {
4478   EXPECT_LT(2, 3);
4479   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
4480                           "Expected: (2) < (2), actual: 2 vs 2");
4481   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
4482                           "(2) < (1)");
4483 }
4484 
4485 // Tests EXPECT_GE.
TEST(ExpectTest,EXPECT_GE)4486 TEST(ExpectTest, EXPECT_GE) {
4487   EXPECT_GE(2, 1);
4488   EXPECT_GE(2, 2);
4489   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
4490                           "Expected: (2) >= (3), actual: 2 vs 3");
4491   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
4492                           "(0.9) >= (1.1)");
4493 }
4494 
4495 // Tests EXPECT_GT.
TEST(ExpectTest,EXPECT_GT)4496 TEST(ExpectTest, EXPECT_GT) {
4497   EXPECT_GT(2, 1);
4498   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
4499                           "Expected: (2) > (2), actual: 2 vs 2");
4500   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
4501                           "(2) > (3)");
4502 }
4503 
4504 #if GTEST_HAS_EXCEPTIONS
4505 
4506 // Tests EXPECT_THROW.
TEST(ExpectTest,EXPECT_THROW)4507 TEST(ExpectTest, EXPECT_THROW) {
4508   EXPECT_THROW(ThrowAnInteger(), int);
4509   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
4510                           "Expected: ThrowAnInteger() throws an exception of "
4511                           "type bool.\n  Actual: it throws a different type.");
4512   EXPECT_NONFATAL_FAILURE(
4513       EXPECT_THROW(ThrowNothing(), bool),
4514       "Expected: ThrowNothing() throws an exception of type bool.\n"
4515       "  Actual: it throws nothing.");
4516 }
4517 
4518 // Tests EXPECT_NO_THROW.
TEST(ExpectTest,EXPECT_NO_THROW)4519 TEST(ExpectTest, EXPECT_NO_THROW) {
4520   EXPECT_NO_THROW(ThrowNothing());
4521   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
4522                           "Expected: ThrowAnInteger() doesn't throw an "
4523                           "exception.\n  Actual: it throws.");
4524 }
4525 
4526 // Tests EXPECT_ANY_THROW.
TEST(ExpectTest,EXPECT_ANY_THROW)4527 TEST(ExpectTest, EXPECT_ANY_THROW) {
4528   EXPECT_ANY_THROW(ThrowAnInteger());
4529   EXPECT_NONFATAL_FAILURE(
4530       EXPECT_ANY_THROW(ThrowNothing()),
4531       "Expected: ThrowNothing() throws an exception.\n"
4532       "  Actual: it doesn't.");
4533 }
4534 
4535 #endif  // GTEST_HAS_EXCEPTIONS
4536 
4537 // Make sure we deal with the precedence of <<.
TEST(ExpectTest,ExpectPrecedence)4538 TEST(ExpectTest, ExpectPrecedence) {
4539   EXPECT_EQ(1 < 2, true);
4540   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
4541                           "Value of: true && false");
4542 }
4543 
4544 
4545 // Tests the StreamableToString() function.
4546 
4547 // Tests using StreamableToString() on a scalar.
TEST(StreamableToStringTest,Scalar)4548 TEST(StreamableToStringTest, Scalar) {
4549   EXPECT_STREQ("5", StreamableToString(5).c_str());
4550 }
4551 
4552 // Tests using StreamableToString() on a non-char pointer.
TEST(StreamableToStringTest,Pointer)4553 TEST(StreamableToStringTest, Pointer) {
4554   int n = 0;
4555   int* p = &n;
4556   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
4557 }
4558 
4559 // Tests using StreamableToString() on a NULL non-char pointer.
TEST(StreamableToStringTest,NullPointer)4560 TEST(StreamableToStringTest, NullPointer) {
4561   int* p = NULL;
4562   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4563 }
4564 
4565 // Tests using StreamableToString() on a C string.
TEST(StreamableToStringTest,CString)4566 TEST(StreamableToStringTest, CString) {
4567   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
4568 }
4569 
4570 // Tests using StreamableToString() on a NULL C string.
TEST(StreamableToStringTest,NullCString)4571 TEST(StreamableToStringTest, NullCString) {
4572   char* p = NULL;
4573   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
4574 }
4575 
4576 // Tests using streamable values as assertion messages.
4577 
4578 // Tests using std::string as an assertion message.
TEST(StreamableTest,string)4579 TEST(StreamableTest, string) {
4580   static const std::string str(
4581       "This failure message is a std::string, and is expected.");
4582   EXPECT_FATAL_FAILURE(FAIL() << str,
4583                        str.c_str());
4584 }
4585 
4586 // Tests that we can output strings containing embedded NULs.
4587 // Limited to Linux because we can only do this with std::string's.
TEST(StreamableTest,stringWithEmbeddedNUL)4588 TEST(StreamableTest, stringWithEmbeddedNUL) {
4589   static const char char_array_with_nul[] =
4590       "Here's a NUL\0 and some more string";
4591   static const std::string string_with_nul(char_array_with_nul,
4592                                            sizeof(char_array_with_nul)
4593                                            - 1);  // drops the trailing NUL
4594   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
4595                        "Here's a NUL\\0 and some more string");
4596 }
4597 
4598 // Tests that we can output a NUL char.
TEST(StreamableTest,NULChar)4599 TEST(StreamableTest, NULChar) {
4600   EXPECT_FATAL_FAILURE({  // NOLINT
4601     FAIL() << "A NUL" << '\0' << " and some more string";
4602   }, "A NUL\\0 and some more string");
4603 }
4604 
4605 // Tests using int as an assertion message.
TEST(StreamableTest,int)4606 TEST(StreamableTest, int) {
4607   EXPECT_FATAL_FAILURE(FAIL() << 900913,
4608                        "900913");
4609 }
4610 
4611 // Tests using NULL char pointer as an assertion message.
4612 //
4613 // In MSVC, streaming a NULL char * causes access violation.  Google Test
4614 // implemented a workaround (substituting "(null)" for NULL).  This
4615 // tests whether the workaround works.
TEST(StreamableTest,NullCharPtr)4616 TEST(StreamableTest, NullCharPtr) {
4617   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
4618                        "(null)");
4619 }
4620 
4621 // Tests that basic IO manipulators (endl, ends, and flush) can be
4622 // streamed to testing::Message.
TEST(StreamableTest,BasicIoManip)4623 TEST(StreamableTest, BasicIoManip) {
4624   EXPECT_FATAL_FAILURE({  // NOLINT
4625     FAIL() << "Line 1." << std::endl
4626            << "A NUL char " << std::ends << std::flush << " in line 2.";
4627   }, "Line 1.\nA NUL char \\0 in line 2.");
4628 }
4629 
4630 // Tests the macros that haven't been covered so far.
4631 
AddFailureHelper(bool * aborted)4632 void AddFailureHelper(bool* aborted) {
4633   *aborted = true;
4634   ADD_FAILURE() << "Intentional failure.";
4635   *aborted = false;
4636 }
4637 
4638 // Tests ADD_FAILURE.
TEST(MacroTest,ADD_FAILURE)4639 TEST(MacroTest, ADD_FAILURE) {
4640   bool aborted = true;
4641   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
4642                           "Intentional failure.");
4643   EXPECT_FALSE(aborted);
4644 }
4645 
4646 // Tests ADD_FAILURE_AT.
TEST(MacroTest,ADD_FAILURE_AT)4647 TEST(MacroTest, ADD_FAILURE_AT) {
4648   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
4649   // the failure message contains the user-streamed part.
4650   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
4651 
4652   // Verifies that the user-streamed part is optional.
4653   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
4654 
4655   // Unfortunately, we cannot verify that the failure message contains
4656   // the right file path and line number the same way, as
4657   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
4658   // line number.  Instead, we do that in gtest_output_test_.cc.
4659 }
4660 
4661 // Tests FAIL.
TEST(MacroTest,FAIL)4662 TEST(MacroTest, FAIL) {
4663   EXPECT_FATAL_FAILURE(FAIL(),
4664                        "Failed");
4665   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
4666                        "Intentional failure.");
4667 }
4668 
4669 // Tests SUCCEED
TEST(MacroTest,SUCCEED)4670 TEST(MacroTest, SUCCEED) {
4671   SUCCEED();
4672   SUCCEED() << "Explicit success.";
4673 }
4674 
4675 // Tests for EXPECT_EQ() and ASSERT_EQ().
4676 //
4677 // These tests fail *intentionally*, s.t. the failure messages can be
4678 // generated and tested.
4679 //
4680 // We have different tests for different argument types.
4681 
4682 // Tests using bool values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Bool)4683 TEST(EqAssertionTest, Bool) {
4684   EXPECT_EQ(true,  true);
4685   EXPECT_FATAL_FAILURE({
4686       bool false_value = false;
4687       ASSERT_EQ(false_value, true);
4688     }, "Value of: true");
4689 }
4690 
4691 // Tests using int values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Int)4692 TEST(EqAssertionTest, Int) {
4693   ASSERT_EQ(32, 32);
4694   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
4695                           "33");
4696 }
4697 
4698 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Time_T)4699 TEST(EqAssertionTest, Time_T) {
4700   EXPECT_EQ(static_cast<time_t>(0),
4701             static_cast<time_t>(0));
4702   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
4703                                  static_cast<time_t>(1234)),
4704                        "1234");
4705 }
4706 
4707 // Tests using char values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,Char)4708 TEST(EqAssertionTest, Char) {
4709   ASSERT_EQ('z', 'z');
4710   const char ch = 'b';
4711   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
4712                           "ch");
4713   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
4714                           "ch");
4715 }
4716 
4717 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideChar)4718 TEST(EqAssertionTest, WideChar) {
4719   EXPECT_EQ(L'b', L'b');
4720 
4721   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
4722                           "Value of: L'x'\n"
4723                           "  Actual: L'x' (120, 0x78)\n"
4724                           "Expected: L'\0'\n"
4725                           "Which is: L'\0' (0, 0x0)");
4726 
4727   static wchar_t wchar;
4728   wchar = L'b';
4729   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
4730                           "wchar");
4731   wchar = 0x8119;
4732   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
4733                        "Value of: wchar");
4734 }
4735 
4736 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdString)4737 TEST(EqAssertionTest, StdString) {
4738   // Compares a const char* to an std::string that has identical
4739   // content.
4740   ASSERT_EQ("Test", ::std::string("Test"));
4741 
4742   // Compares two identical std::strings.
4743   static const ::std::string str1("A * in the middle");
4744   static const ::std::string str2(str1);
4745   EXPECT_EQ(str1, str2);
4746 
4747   // Compares a const char* to an std::string that has different
4748   // content
4749   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
4750                           "\"test\"");
4751 
4752   // Compares an std::string to a char* that has different content.
4753   char* const p1 = const_cast<char*>("foo");
4754   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
4755                           "p1");
4756 
4757   // Compares two std::strings that have different contents, one of
4758   // which having a NUL character in the middle.  This should fail.
4759   static ::std::string str3(str1);
4760   str3.at(2) = '\0';
4761   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
4762                        "Value of: str3\n"
4763                        "  Actual: \"A \\0 in the middle\"");
4764 }
4765 
4766 #if GTEST_HAS_STD_WSTRING
4767 
4768 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,StdWideString)4769 TEST(EqAssertionTest, StdWideString) {
4770   // Compares two identical std::wstrings.
4771   const ::std::wstring wstr1(L"A * in the middle");
4772   const ::std::wstring wstr2(wstr1);
4773   ASSERT_EQ(wstr1, wstr2);
4774 
4775   // Compares an std::wstring to a const wchar_t* that has identical
4776   // content.
4777   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4778   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
4779 
4780   // Compares an std::wstring to a const wchar_t* that has different
4781   // content.
4782   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4783   EXPECT_NONFATAL_FAILURE({  // NOLINT
4784     EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
4785   }, "kTestX8120");
4786 
4787   // Compares two std::wstrings that have different contents, one of
4788   // which having a NUL character in the middle.
4789   ::std::wstring wstr3(wstr1);
4790   wstr3.at(2) = L'\0';
4791   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
4792                           "wstr3");
4793 
4794   // Compares a wchar_t* to an std::wstring that has different
4795   // content.
4796   EXPECT_FATAL_FAILURE({  // NOLINT
4797     ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
4798   }, "");
4799 }
4800 
4801 #endif  // GTEST_HAS_STD_WSTRING
4802 
4803 #if GTEST_HAS_GLOBAL_STRING
4804 // Tests using ::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,GlobalString)4805 TEST(EqAssertionTest, GlobalString) {
4806   // Compares a const char* to a ::string that has identical content.
4807   EXPECT_EQ("Test", ::string("Test"));
4808 
4809   // Compares two identical ::strings.
4810   const ::string str1("A * in the middle");
4811   const ::string str2(str1);
4812   ASSERT_EQ(str1, str2);
4813 
4814   // Compares a ::string to a const char* that has different content.
4815   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
4816                           "test");
4817 
4818   // Compares two ::strings that have different contents, one of which
4819   // having a NUL character in the middle.
4820   ::string str3(str1);
4821   str3.at(2) = '\0';
4822   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
4823                           "str3");
4824 
4825   // Compares a ::string to a char* that has different content.
4826   EXPECT_FATAL_FAILURE({  // NOLINT
4827     ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
4828   }, "");
4829 }
4830 
4831 #endif  // GTEST_HAS_GLOBAL_STRING
4832 
4833 #if GTEST_HAS_GLOBAL_WSTRING
4834 
4835 // Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,GlobalWideString)4836 TEST(EqAssertionTest, GlobalWideString) {
4837   // Compares two identical ::wstrings.
4838   static const ::wstring wstr1(L"A * in the middle");
4839   static const ::wstring wstr2(wstr1);
4840   EXPECT_EQ(wstr1, wstr2);
4841 
4842   // Compares a const wchar_t* to a ::wstring that has identical content.
4843   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
4844   ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
4845 
4846   // Compares a const wchar_t* to a ::wstring that has different
4847   // content.
4848   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
4849   EXPECT_NONFATAL_FAILURE({  // NOLINT
4850     EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
4851   }, "Test\\x8119");
4852 
4853   // Compares a wchar_t* to a ::wstring that has different content.
4854   wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
4855   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
4856                           "bar");
4857 
4858   // Compares two ::wstrings that have different contents, one of which
4859   // having a NUL character in the middle.
4860   static ::wstring wstr3;
4861   wstr3 = wstr1;
4862   wstr3.at(2) = L'\0';
4863   EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
4864                        "wstr3");
4865 }
4866 
4867 #endif  // GTEST_HAS_GLOBAL_WSTRING
4868 
4869 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,CharPointer)4870 TEST(EqAssertionTest, CharPointer) {
4871   char* const p0 = NULL;
4872   // Only way to get the Nokia compiler to compile the cast
4873   // is to have a separate void* variable first. Putting
4874   // the two casts on the same line doesn't work, neither does
4875   // a direct C-style to char*.
4876   void* pv1 = (void*)0x1234;  // NOLINT
4877   void* pv2 = (void*)0xABC0;  // NOLINT
4878   char* const p1 = reinterpret_cast<char*>(pv1);
4879   char* const p2 = reinterpret_cast<char*>(pv2);
4880   ASSERT_EQ(p1, p1);
4881 
4882   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4883                           "Value of: p2");
4884   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4885                           "p2");
4886   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
4887                                  reinterpret_cast<char*>(0xABC0)),
4888                        "ABC0");
4889 }
4890 
4891 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,WideCharPointer)4892 TEST(EqAssertionTest, WideCharPointer) {
4893   wchar_t* const p0 = NULL;
4894   // Only way to get the Nokia compiler to compile the cast
4895   // is to have a separate void* variable first. Putting
4896   // the two casts on the same line doesn't work, neither does
4897   // a direct C-style to char*.
4898   void* pv1 = (void*)0x1234;  // NOLINT
4899   void* pv2 = (void*)0xABC0;  // NOLINT
4900   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
4901   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
4902   EXPECT_EQ(p0, p0);
4903 
4904   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
4905                           "Value of: p2");
4906   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
4907                           "p2");
4908   void* pv3 = (void*)0x1234;  // NOLINT
4909   void* pv4 = (void*)0xABC0;  // NOLINT
4910   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
4911   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
4912   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
4913                           "p4");
4914 }
4915 
4916 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest,OtherPointer)4917 TEST(EqAssertionTest, OtherPointer) {
4918   ASSERT_EQ(static_cast<const int*>(NULL),
4919             static_cast<const int*>(NULL));
4920   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
4921                                  reinterpret_cast<const int*>(0x1234)),
4922                        "0x1234");
4923 }
4924 
4925 // A class that supports binary comparison operators but not streaming.
4926 class UnprintableChar {
4927  public:
UnprintableChar(char ch)4928   explicit UnprintableChar(char ch) : char_(ch) {}
4929 
operator ==(const UnprintableChar & rhs) const4930   bool operator==(const UnprintableChar& rhs) const {
4931     return char_ == rhs.char_;
4932   }
operator !=(const UnprintableChar & rhs) const4933   bool operator!=(const UnprintableChar& rhs) const {
4934     return char_ != rhs.char_;
4935   }
operator <(const UnprintableChar & rhs) const4936   bool operator<(const UnprintableChar& rhs) const {
4937     return char_ < rhs.char_;
4938   }
operator <=(const UnprintableChar & rhs) const4939   bool operator<=(const UnprintableChar& rhs) const {
4940     return char_ <= rhs.char_;
4941   }
operator >(const UnprintableChar & rhs) const4942   bool operator>(const UnprintableChar& rhs) const {
4943     return char_ > rhs.char_;
4944   }
operator >=(const UnprintableChar & rhs) const4945   bool operator>=(const UnprintableChar& rhs) const {
4946     return char_ >= rhs.char_;
4947   }
4948 
4949  private:
4950   char char_;
4951 };
4952 
4953 // Tests that ASSERT_EQ() and friends don't require the arguments to
4954 // be printable.
TEST(ComparisonAssertionTest,AcceptsUnprintableArgs)4955 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
4956   const UnprintableChar x('x'), y('y');
4957   ASSERT_EQ(x, x);
4958   EXPECT_NE(x, y);
4959   ASSERT_LT(x, y);
4960   EXPECT_LE(x, y);
4961   ASSERT_GT(y, x);
4962   EXPECT_GE(x, x);
4963 
4964   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
4965   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
4966   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
4967   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
4968   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
4969 
4970   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
4971   // variables, so we have to write UnprintableChar('x') instead of x.
4972 #ifndef __BORLANDC__
4973   // ICE's in C++Builder.
4974   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
4975                        "1-byte object <78>");
4976   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4977                        "1-byte object <78>");
4978 #endif
4979   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
4980                        "1-byte object <79>");
4981   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4982                        "1-byte object <78>");
4983   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
4984                        "1-byte object <79>");
4985 }
4986 
4987 // Tests the FRIEND_TEST macro.
4988 
4989 // This class has a private member we want to test.  We will test it
4990 // both in a TEST and in a TEST_F.
4991 class Foo {
4992  public:
Foo()4993   Foo() {}
4994 
4995  private:
Bar() const4996   int Bar() const { return 1; }
4997 
4998   // Declares the friend tests that can access the private member
4999   // Bar().
5000   FRIEND_TEST(FRIEND_TEST_Test, TEST);
5001   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
5002 };
5003 
5004 // Tests that the FRIEND_TEST declaration allows a TEST to access a
5005 // class's private members.  This should compile.
TEST(FRIEND_TEST_Test,TEST)5006 TEST(FRIEND_TEST_Test, TEST) {
5007   ASSERT_EQ(1, Foo().Bar());
5008 }
5009 
5010 // The fixture needed to test using FRIEND_TEST with TEST_F.
5011 class FRIEND_TEST_Test2 : public Test {
5012  protected:
5013   Foo foo;
5014 };
5015 
5016 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
5017 // class's private members.  This should compile.
TEST_F(FRIEND_TEST_Test2,TEST_F)5018 TEST_F(FRIEND_TEST_Test2, TEST_F) {
5019   ASSERT_EQ(1, foo.Bar());
5020 }
5021 
5022 // Tests the life cycle of Test objects.
5023 
5024 // The test fixture for testing the life cycle of Test objects.
5025 //
5026 // This class counts the number of live test objects that uses this
5027 // fixture.
5028 class TestLifeCycleTest : public Test {
5029  protected:
5030   // Constructor.  Increments the number of test objects that uses
5031   // this fixture.
TestLifeCycleTest()5032   TestLifeCycleTest() { count_++; }
5033 
5034   // Destructor.  Decrements the number of test objects that uses this
5035   // fixture.
~TestLifeCycleTest()5036   ~TestLifeCycleTest() { count_--; }
5037 
5038   // Returns the number of live test objects that uses this fixture.
count() const5039   int count() const { return count_; }
5040 
5041  private:
5042   static int count_;
5043 };
5044 
5045 int TestLifeCycleTest::count_ = 0;
5046 
5047 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test1)5048 TEST_F(TestLifeCycleTest, Test1) {
5049   // There should be only one test object in this test case that's
5050   // currently alive.
5051   ASSERT_EQ(1, count());
5052 }
5053 
5054 // Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest,Test2)5055 TEST_F(TestLifeCycleTest, Test2) {
5056   // After Test1 is done and Test2 is started, there should still be
5057   // only one live test object, as the object for Test1 should've been
5058   // deleted.
5059   ASSERT_EQ(1, count());
5060 }
5061 
5062 }  // namespace
5063 
5064 // Tests that the copy constructor works when it is NOT optimized away by
5065 // the compiler.
TEST(AssertionResultTest,CopyConstructorWorksWhenNotOptimied)5066 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
5067   // Checks that the copy constructor doesn't try to dereference NULL pointers
5068   // in the source object.
5069   AssertionResult r1 = AssertionSuccess();
5070   AssertionResult r2 = r1;
5071   // The following line is added to prevent the compiler from optimizing
5072   // away the constructor call.
5073   r1 << "abc";
5074 
5075   AssertionResult r3 = r1;
5076   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
5077   EXPECT_STREQ("abc", r1.message());
5078 }
5079 
5080 // Tests that AssertionSuccess and AssertionFailure construct
5081 // AssertionResult objects as expected.
TEST(AssertionResultTest,ConstructionWorks)5082 TEST(AssertionResultTest, ConstructionWorks) {
5083   AssertionResult r1 = AssertionSuccess();
5084   EXPECT_TRUE(r1);
5085   EXPECT_STREQ("", r1.message());
5086 
5087   AssertionResult r2 = AssertionSuccess() << "abc";
5088   EXPECT_TRUE(r2);
5089   EXPECT_STREQ("abc", r2.message());
5090 
5091   AssertionResult r3 = AssertionFailure();
5092   EXPECT_FALSE(r3);
5093   EXPECT_STREQ("", r3.message());
5094 
5095   AssertionResult r4 = AssertionFailure() << "def";
5096   EXPECT_FALSE(r4);
5097   EXPECT_STREQ("def", r4.message());
5098 
5099   AssertionResult r5 = AssertionFailure(Message() << "ghi");
5100   EXPECT_FALSE(r5);
5101   EXPECT_STREQ("ghi", r5.message());
5102 }
5103 
5104 // Tests that the negation flips the predicate result but keeps the message.
TEST(AssertionResultTest,NegationWorks)5105 TEST(AssertionResultTest, NegationWorks) {
5106   AssertionResult r1 = AssertionSuccess() << "abc";
5107   EXPECT_FALSE(!r1);
5108   EXPECT_STREQ("abc", (!r1).message());
5109 
5110   AssertionResult r2 = AssertionFailure() << "def";
5111   EXPECT_TRUE(!r2);
5112   EXPECT_STREQ("def", (!r2).message());
5113 }
5114 
TEST(AssertionResultTest,StreamingWorks)5115 TEST(AssertionResultTest, StreamingWorks) {
5116   AssertionResult r = AssertionSuccess();
5117   r << "abc" << 'd' << 0 << true;
5118   EXPECT_STREQ("abcd0true", r.message());
5119 }
5120 
TEST(AssertionResultTest,CanStreamOstreamManipulators)5121 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
5122   AssertionResult r = AssertionSuccess();
5123   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
5124   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
5125 }
5126 
5127 // The next test uses explicit conversion operators -- a C++11 feature.
5128 #if GTEST_LANG_CXX11
5129 
TEST(AssertionResultTest,ConstructibleFromContextuallyConvertibleToBool)5130 TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) {
5131   struct ExplicitlyConvertibleToBool {
5132     explicit operator bool() const { return value; }
5133     bool value;
5134   };
5135   ExplicitlyConvertibleToBool v1 = {false};
5136   ExplicitlyConvertibleToBool v2 = {true};
5137   EXPECT_FALSE(v1);
5138   EXPECT_TRUE(v2);
5139 }
5140 
5141 #endif  // GTEST_LANG_CXX11
5142 
5143 struct ConvertibleToAssertionResult {
operator AssertionResultConvertibleToAssertionResult5144   operator AssertionResult() const { return AssertionResult(true); }
5145 };
5146 
TEST(AssertionResultTest,ConstructibleFromImplicitlyConvertible)5147 TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) {
5148   ConvertibleToAssertionResult obj;
5149   EXPECT_TRUE(obj);
5150 }
5151 
5152 // Tests streaming a user type whose definition and operator << are
5153 // both in the global namespace.
5154 class Base {
5155  public:
Base(int an_x)5156   explicit Base(int an_x) : x_(an_x) {}
x() const5157   int x() const { return x_; }
5158  private:
5159   int x_;
5160 };
operator <<(std::ostream & os,const Base & val)5161 std::ostream& operator<<(std::ostream& os,
5162                          const Base& val) {
5163   return os << val.x();
5164 }
operator <<(std::ostream & os,const Base * pointer)5165 std::ostream& operator<<(std::ostream& os,
5166                          const Base* pointer) {
5167   return os << "(" << pointer->x() << ")";
5168 }
5169 
TEST(MessageTest,CanStreamUserTypeInGlobalNameSpace)5170 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
5171   Message msg;
5172   Base a(1);
5173 
5174   msg << a << &a;  // Uses ::operator<<.
5175   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5176 }
5177 
5178 // Tests streaming a user type whose definition and operator<< are
5179 // both in an unnamed namespace.
5180 namespace {
5181 class MyTypeInUnnamedNameSpace : public Base {
5182  public:
MyTypeInUnnamedNameSpace(int an_x)5183   explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
5184 };
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace & val)5185 std::ostream& operator<<(std::ostream& os,
5186                          const MyTypeInUnnamedNameSpace& val) {
5187   return os << val.x();
5188 }
operator <<(std::ostream & os,const MyTypeInUnnamedNameSpace * pointer)5189 std::ostream& operator<<(std::ostream& os,
5190                          const MyTypeInUnnamedNameSpace* pointer) {
5191   return os << "(" << pointer->x() << ")";
5192 }
5193 }  // namespace
5194 
TEST(MessageTest,CanStreamUserTypeInUnnamedNameSpace)5195 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
5196   Message msg;
5197   MyTypeInUnnamedNameSpace a(1);
5198 
5199   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
5200   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5201 }
5202 
5203 // Tests streaming a user type whose definition and operator<< are
5204 // both in a user namespace.
5205 namespace namespace1 {
5206 class MyTypeInNameSpace1 : public Base {
5207  public:
MyTypeInNameSpace1(int an_x)5208   explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
5209 };
operator <<(std::ostream & os,const MyTypeInNameSpace1 & val)5210 std::ostream& operator<<(std::ostream& os,
5211                          const MyTypeInNameSpace1& val) {
5212   return os << val.x();
5213 }
operator <<(std::ostream & os,const MyTypeInNameSpace1 * pointer)5214 std::ostream& operator<<(std::ostream& os,
5215                          const MyTypeInNameSpace1* pointer) {
5216   return os << "(" << pointer->x() << ")";
5217 }
5218 }  // namespace namespace1
5219 
TEST(MessageTest,CanStreamUserTypeInUserNameSpace)5220 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
5221   Message msg;
5222   namespace1::MyTypeInNameSpace1 a(1);
5223 
5224   msg << a << &a;  // Uses namespace1::operator<<.
5225   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5226 }
5227 
5228 // Tests streaming a user type whose definition is in a user namespace
5229 // but whose operator<< is in the global namespace.
5230 namespace namespace2 {
5231 class MyTypeInNameSpace2 : public ::Base {
5232  public:
MyTypeInNameSpace2(int an_x)5233   explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
5234 };
5235 }  // namespace namespace2
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 & val)5236 std::ostream& operator<<(std::ostream& os,
5237                          const namespace2::MyTypeInNameSpace2& val) {
5238   return os << val.x();
5239 }
operator <<(std::ostream & os,const namespace2::MyTypeInNameSpace2 * pointer)5240 std::ostream& operator<<(std::ostream& os,
5241                          const namespace2::MyTypeInNameSpace2* pointer) {
5242   return os << "(" << pointer->x() << ")";
5243 }
5244 
TEST(MessageTest,CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal)5245 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
5246   Message msg;
5247   namespace2::MyTypeInNameSpace2 a(1);
5248 
5249   msg << a << &a;  // Uses ::operator<<.
5250   EXPECT_STREQ("1(1)", msg.GetString().c_str());
5251 }
5252 
5253 // Tests streaming NULL pointers to testing::Message.
TEST(MessageTest,NullPointers)5254 TEST(MessageTest, NullPointers) {
5255   Message msg;
5256   char* const p1 = NULL;
5257   unsigned char* const p2 = NULL;
5258   int* p3 = NULL;
5259   double* p4 = NULL;
5260   bool* p5 = NULL;
5261   Message* p6 = NULL;
5262 
5263   msg << p1 << p2 << p3 << p4 << p5 << p6;
5264   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
5265                msg.GetString().c_str());
5266 }
5267 
5268 // Tests streaming wide strings to testing::Message.
TEST(MessageTest,WideStrings)5269 TEST(MessageTest, WideStrings) {
5270   // Streams a NULL of type const wchar_t*.
5271   const wchar_t* const_wstr = NULL;
5272   EXPECT_STREQ("(null)",
5273                (Message() << const_wstr).GetString().c_str());
5274 
5275   // Streams a NULL of type wchar_t*.
5276   wchar_t* wstr = NULL;
5277   EXPECT_STREQ("(null)",
5278                (Message() << wstr).GetString().c_str());
5279 
5280   // Streams a non-NULL of type const wchar_t*.
5281   const_wstr = L"abc\x8119";
5282   EXPECT_STREQ("abc\xe8\x84\x99",
5283                (Message() << const_wstr).GetString().c_str());
5284 
5285   // Streams a non-NULL of type wchar_t*.
5286   wstr = const_cast<wchar_t*>(const_wstr);
5287   EXPECT_STREQ("abc\xe8\x84\x99",
5288                (Message() << wstr).GetString().c_str());
5289 }
5290 
5291 
5292 // This line tests that we can define tests in the testing namespace.
5293 namespace testing {
5294 
5295 // Tests the TestInfo class.
5296 
5297 class TestInfoTest : public Test {
5298  protected:
GetTestInfo(const char * test_name)5299   static const TestInfo* GetTestInfo(const char* test_name) {
5300     const TestCase* const test_case = GetUnitTestImpl()->
5301         GetTestCase("TestInfoTest", "", NULL, NULL);
5302 
5303     for (int i = 0; i < test_case->total_test_count(); ++i) {
5304       const TestInfo* const test_info = test_case->GetTestInfo(i);
5305       if (strcmp(test_name, test_info->name()) == 0)
5306         return test_info;
5307     }
5308     return NULL;
5309   }
5310 
GetTestResult(const TestInfo * test_info)5311   static const TestResult* GetTestResult(
5312       const TestInfo* test_info) {
5313     return test_info->result();
5314   }
5315 };
5316 
5317 // Tests TestInfo::test_case_name() and TestInfo::name().
TEST_F(TestInfoTest,Names)5318 TEST_F(TestInfoTest, Names) {
5319   const TestInfo* const test_info = GetTestInfo("Names");
5320 
5321   ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
5322   ASSERT_STREQ("Names", test_info->name());
5323 }
5324 
5325 // Tests TestInfo::result().
TEST_F(TestInfoTest,result)5326 TEST_F(TestInfoTest, result) {
5327   const TestInfo* const test_info = GetTestInfo("result");
5328 
5329   // Initially, there is no TestPartResult for this test.
5330   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5331 
5332   // After the previous assertion, there is still none.
5333   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
5334 }
5335 
5336 #define VERIFY_CODE_LOCATION \
5337   const int expected_line = __LINE__ - 1; \
5338   const TestInfo* const test_info = GetUnitTestImpl()->current_test_info(); \
5339   ASSERT_TRUE(test_info); \
5340   EXPECT_STREQ(__FILE__, test_info->file()); \
5341   EXPECT_EQ(expected_line, test_info->line())
5342 
TEST(CodeLocationForTEST,Verify)5343 TEST(CodeLocationForTEST, Verify) {
5344   VERIFY_CODE_LOCATION;
5345 }
5346 
5347 class CodeLocationForTESTF : public Test {
5348 };
5349 
TEST_F(CodeLocationForTESTF,Verify)5350 TEST_F(CodeLocationForTESTF, Verify) {
5351   VERIFY_CODE_LOCATION;
5352 }
5353 
5354 class CodeLocationForTESTP : public TestWithParam<int> {
5355 };
5356 
TEST_P(CodeLocationForTESTP,Verify)5357 TEST_P(CodeLocationForTESTP, Verify) {
5358   VERIFY_CODE_LOCATION;
5359 }
5360 
5361 INSTANTIATE_TEST_CASE_P(, CodeLocationForTESTP, Values(0));
5362 
5363 template <typename T>
5364 class CodeLocationForTYPEDTEST : public Test {
5365 };
5366 
5367 TYPED_TEST_CASE(CodeLocationForTYPEDTEST, int);
5368 
TYPED_TEST(CodeLocationForTYPEDTEST,Verify)5369 TYPED_TEST(CodeLocationForTYPEDTEST, Verify) {
5370   VERIFY_CODE_LOCATION;
5371 }
5372 
5373 template <typename T>
5374 class CodeLocationForTYPEDTESTP : public Test {
5375 };
5376 
5377 TYPED_TEST_CASE_P(CodeLocationForTYPEDTESTP);
5378 
TYPED_TEST_P(CodeLocationForTYPEDTESTP,Verify)5379 TYPED_TEST_P(CodeLocationForTYPEDTESTP, Verify) {
5380   VERIFY_CODE_LOCATION;
5381 }
5382 
5383 REGISTER_TYPED_TEST_CASE_P(CodeLocationForTYPEDTESTP, Verify);
5384 
5385 INSTANTIATE_TYPED_TEST_CASE_P(My, CodeLocationForTYPEDTESTP, int);
5386 
5387 #undef VERIFY_CODE_LOCATION
5388 
5389 // Tests setting up and tearing down a test case.
5390 
5391 class SetUpTestCaseTest : public Test {
5392  protected:
5393   // This will be called once before the first test in this test case
5394   // is run.
SetUpTestCase()5395   static void SetUpTestCase() {
5396     printf("Setting up the test case . . .\n");
5397 
5398     // Initializes some shared resource.  In this simple example, we
5399     // just create a C string.  More complex stuff can be done if
5400     // desired.
5401     shared_resource_ = "123";
5402 
5403     // Increments the number of test cases that have been set up.
5404     counter_++;
5405 
5406     // SetUpTestCase() should be called only once.
5407     EXPECT_EQ(1, counter_);
5408   }
5409 
5410   // This will be called once after the last test in this test case is
5411   // run.
TearDownTestCase()5412   static void TearDownTestCase() {
5413     printf("Tearing down the test case . . .\n");
5414 
5415     // Decrements the number of test cases that have been set up.
5416     counter_--;
5417 
5418     // TearDownTestCase() should be called only once.
5419     EXPECT_EQ(0, counter_);
5420 
5421     // Cleans up the shared resource.
5422     shared_resource_ = NULL;
5423   }
5424 
5425   // This will be called before each test in this test case.
SetUp()5426   virtual void SetUp() {
5427     // SetUpTestCase() should be called only once, so counter_ should
5428     // always be 1.
5429     EXPECT_EQ(1, counter_);
5430   }
5431 
5432   // Number of test cases that have been set up.
5433   static int counter_;
5434 
5435   // Some resource to be shared by all tests in this test case.
5436   static const char* shared_resource_;
5437 };
5438 
5439 int SetUpTestCaseTest::counter_ = 0;
5440 const char* SetUpTestCaseTest::shared_resource_ = NULL;
5441 
5442 // A test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test1)5443 TEST_F(SetUpTestCaseTest, Test1) {
5444   EXPECT_STRNE(NULL, shared_resource_);
5445 }
5446 
5447 // Another test that uses the shared resource.
TEST_F(SetUpTestCaseTest,Test2)5448 TEST_F(SetUpTestCaseTest, Test2) {
5449   EXPECT_STREQ("123", shared_resource_);
5450 }
5451 
5452 // The InitGoogleTestTest test case tests testing::InitGoogleTest().
5453 
5454 // The Flags struct stores a copy of all Google Test flags.
5455 struct Flags {
5456   // Constructs a Flags struct where each flag has its default value.
Flagstesting::Flags5457   Flags() : also_run_disabled_tests(false),
5458             break_on_failure(false),
5459             catch_exceptions(false),
5460             death_test_use_fork(false),
5461             filter(""),
5462             list_tests(false),
5463             output(""),
5464             print_time(true),
5465             random_seed(0),
5466             repeat(1),
5467             shuffle(false),
5468             stack_trace_depth(kMaxStackTraceDepth),
5469             stream_result_to(""),
5470             throw_on_failure(false) {}
5471 
5472   // Factory methods.
5473 
5474   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
5475   // the given value.
AlsoRunDisabledTeststesting::Flags5476   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
5477     Flags flags;
5478     flags.also_run_disabled_tests = also_run_disabled_tests;
5479     return flags;
5480   }
5481 
5482   // Creates a Flags struct where the gtest_break_on_failure flag has
5483   // the given value.
BreakOnFailuretesting::Flags5484   static Flags BreakOnFailure(bool break_on_failure) {
5485     Flags flags;
5486     flags.break_on_failure = break_on_failure;
5487     return flags;
5488   }
5489 
5490   // Creates a Flags struct where the gtest_catch_exceptions flag has
5491   // the given value.
CatchExceptionstesting::Flags5492   static Flags CatchExceptions(bool catch_exceptions) {
5493     Flags flags;
5494     flags.catch_exceptions = catch_exceptions;
5495     return flags;
5496   }
5497 
5498   // Creates a Flags struct where the gtest_death_test_use_fork flag has
5499   // the given value.
DeathTestUseForktesting::Flags5500   static Flags DeathTestUseFork(bool death_test_use_fork) {
5501     Flags flags;
5502     flags.death_test_use_fork = death_test_use_fork;
5503     return flags;
5504   }
5505 
5506   // Creates a Flags struct where the gtest_filter flag has the given
5507   // value.
Filtertesting::Flags5508   static Flags Filter(const char* filter) {
5509     Flags flags;
5510     flags.filter = filter;
5511     return flags;
5512   }
5513 
5514   // Creates a Flags struct where the gtest_list_tests flag has the
5515   // given value.
ListTeststesting::Flags5516   static Flags ListTests(bool list_tests) {
5517     Flags flags;
5518     flags.list_tests = list_tests;
5519     return flags;
5520   }
5521 
5522   // Creates a Flags struct where the gtest_output flag has the given
5523   // value.
Outputtesting::Flags5524   static Flags Output(const char* output) {
5525     Flags flags;
5526     flags.output = output;
5527     return flags;
5528   }
5529 
5530   // Creates a Flags struct where the gtest_print_time flag has the given
5531   // value.
PrintTimetesting::Flags5532   static Flags PrintTime(bool print_time) {
5533     Flags flags;
5534     flags.print_time = print_time;
5535     return flags;
5536   }
5537 
5538   // Creates a Flags struct where the gtest_random_seed flag has
5539   // the given value.
RandomSeedtesting::Flags5540   static Flags RandomSeed(Int32 random_seed) {
5541     Flags flags;
5542     flags.random_seed = random_seed;
5543     return flags;
5544   }
5545 
5546   // Creates a Flags struct where the gtest_repeat flag has the given
5547   // value.
Repeattesting::Flags5548   static Flags Repeat(Int32 repeat) {
5549     Flags flags;
5550     flags.repeat = repeat;
5551     return flags;
5552   }
5553 
5554   // Creates a Flags struct where the gtest_shuffle flag has
5555   // the given value.
Shuffletesting::Flags5556   static Flags Shuffle(bool shuffle) {
5557     Flags flags;
5558     flags.shuffle = shuffle;
5559     return flags;
5560   }
5561 
5562   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
5563   // the given value.
StackTraceDepthtesting::Flags5564   static Flags StackTraceDepth(Int32 stack_trace_depth) {
5565     Flags flags;
5566     flags.stack_trace_depth = stack_trace_depth;
5567     return flags;
5568   }
5569 
5570   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
5571   // the given value.
StreamResultTotesting::Flags5572   static Flags StreamResultTo(const char* stream_result_to) {
5573     Flags flags;
5574     flags.stream_result_to = stream_result_to;
5575     return flags;
5576   }
5577 
5578   // Creates a Flags struct where the gtest_throw_on_failure flag has
5579   // the given value.
ThrowOnFailuretesting::Flags5580   static Flags ThrowOnFailure(bool throw_on_failure) {
5581     Flags flags;
5582     flags.throw_on_failure = throw_on_failure;
5583     return flags;
5584   }
5585 
5586   // These fields store the flag values.
5587   bool also_run_disabled_tests;
5588   bool break_on_failure;
5589   bool catch_exceptions;
5590   bool death_test_use_fork;
5591   const char* filter;
5592   bool list_tests;
5593   const char* output;
5594   bool print_time;
5595   Int32 random_seed;
5596   Int32 repeat;
5597   bool shuffle;
5598   Int32 stack_trace_depth;
5599   const char* stream_result_to;
5600   bool throw_on_failure;
5601 };
5602 
5603 // Fixture for testing InitGoogleTest().
5604 class InitGoogleTestTest : public Test {
5605  protected:
5606   // Clears the flags before each test.
SetUp()5607   virtual void SetUp() {
5608     GTEST_FLAG(also_run_disabled_tests) = false;
5609     GTEST_FLAG(break_on_failure) = false;
5610     GTEST_FLAG(catch_exceptions) = false;
5611     GTEST_FLAG(death_test_use_fork) = false;
5612     GTEST_FLAG(filter) = "";
5613     GTEST_FLAG(list_tests) = false;
5614     GTEST_FLAG(output) = "";
5615     GTEST_FLAG(print_time) = true;
5616     GTEST_FLAG(random_seed) = 0;
5617     GTEST_FLAG(repeat) = 1;
5618     GTEST_FLAG(shuffle) = false;
5619     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
5620     GTEST_FLAG(stream_result_to) = "";
5621     GTEST_FLAG(throw_on_failure) = false;
5622   }
5623 
5624   // Asserts that two narrow or wide string arrays are equal.
5625   template <typename CharType>
AssertStringArrayEq(size_t size1,CharType ** array1,size_t size2,CharType ** array2)5626   static void AssertStringArrayEq(size_t size1, CharType** array1,
5627                                   size_t size2, CharType** array2) {
5628     ASSERT_EQ(size1, size2) << " Array sizes different.";
5629 
5630     for (size_t i = 0; i != size1; i++) {
5631       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
5632     }
5633   }
5634 
5635   // Verifies that the flag values match the expected values.
CheckFlags(const Flags & expected)5636   static void CheckFlags(const Flags& expected) {
5637     EXPECT_EQ(expected.also_run_disabled_tests,
5638               GTEST_FLAG(also_run_disabled_tests));
5639     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
5640     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
5641     EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
5642     EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
5643     EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
5644     EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
5645     EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
5646     EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
5647     EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
5648     EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
5649     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
5650     EXPECT_STREQ(expected.stream_result_to,
5651                  GTEST_FLAG(stream_result_to).c_str());
5652     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
5653   }
5654 
5655   // Parses a command line (specified by argc1 and argv1), then
5656   // verifies that the flag values are expected and that the
5657   // recognized flags are removed from the command line.
5658   template <typename CharType>
TestParsingFlags(int argc1,const CharType ** argv1,int argc2,const CharType ** argv2,const Flags & expected,bool should_print_help)5659   static void TestParsingFlags(int argc1, const CharType** argv1,
5660                                int argc2, const CharType** argv2,
5661                                const Flags& expected, bool should_print_help) {
5662     const bool saved_help_flag = ::testing::internal::g_help_flag;
5663     ::testing::internal::g_help_flag = false;
5664 
5665 #if GTEST_HAS_STREAM_REDIRECTION
5666     CaptureStdout();
5667 #endif
5668 
5669     // Parses the command line.
5670     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
5671 
5672 #if GTEST_HAS_STREAM_REDIRECTION
5673     const std::string captured_stdout = GetCapturedStdout();
5674 #endif
5675 
5676     // Verifies the flag values.
5677     CheckFlags(expected);
5678 
5679     // Verifies that the recognized flags are removed from the command
5680     // line.
5681     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
5682 
5683     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
5684     // help message for the flags it recognizes.
5685     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
5686 
5687 #if GTEST_HAS_STREAM_REDIRECTION
5688     const char* const expected_help_fragment =
5689         "This program contains tests written using";
5690     if (should_print_help) {
5691       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
5692     } else {
5693       EXPECT_PRED_FORMAT2(IsNotSubstring,
5694                           expected_help_fragment, captured_stdout);
5695     }
5696 #endif  // GTEST_HAS_STREAM_REDIRECTION
5697 
5698     ::testing::internal::g_help_flag = saved_help_flag;
5699   }
5700 
5701   // This macro wraps TestParsingFlags s.t. the user doesn't need
5702   // to specify the array sizes.
5703 
5704 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
5705   TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
5706                    sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
5707                    expected, should_print_help)
5708 };
5709 
5710 // Tests parsing an empty command line.
TEST_F(InitGoogleTestTest,Empty)5711 TEST_F(InitGoogleTestTest, Empty) {
5712   const char* argv[] = {
5713     NULL
5714   };
5715 
5716   const char* argv2[] = {
5717     NULL
5718   };
5719 
5720   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5721 }
5722 
5723 // Tests parsing a command line that has no flag.
TEST_F(InitGoogleTestTest,NoFlag)5724 TEST_F(InitGoogleTestTest, NoFlag) {
5725   const char* argv[] = {
5726     "foo.exe",
5727     NULL
5728   };
5729 
5730   const char* argv2[] = {
5731     "foo.exe",
5732     NULL
5733   };
5734 
5735   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
5736 }
5737 
5738 // Tests parsing a bad --gtest_filter flag.
TEST_F(InitGoogleTestTest,FilterBad)5739 TEST_F(InitGoogleTestTest, FilterBad) {
5740   const char* argv[] = {
5741     "foo.exe",
5742     "--gtest_filter",
5743     NULL
5744   };
5745 
5746   const char* argv2[] = {
5747     "foo.exe",
5748     "--gtest_filter",
5749     NULL
5750   };
5751 
5752   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
5753 }
5754 
5755 // Tests parsing an empty --gtest_filter flag.
TEST_F(InitGoogleTestTest,FilterEmpty)5756 TEST_F(InitGoogleTestTest, FilterEmpty) {
5757   const char* argv[] = {
5758     "foo.exe",
5759     "--gtest_filter=",
5760     NULL
5761   };
5762 
5763   const char* argv2[] = {
5764     "foo.exe",
5765     NULL
5766   };
5767 
5768   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
5769 }
5770 
5771 // Tests parsing a non-empty --gtest_filter flag.
TEST_F(InitGoogleTestTest,FilterNonEmpty)5772 TEST_F(InitGoogleTestTest, FilterNonEmpty) {
5773   const char* argv[] = {
5774     "foo.exe",
5775     "--gtest_filter=abc",
5776     NULL
5777   };
5778 
5779   const char* argv2[] = {
5780     "foo.exe",
5781     NULL
5782   };
5783 
5784   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
5785 }
5786 
5787 // Tests parsing --gtest_break_on_failure.
TEST_F(InitGoogleTestTest,BreakOnFailureWithoutValue)5788 TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
5789   const char* argv[] = {
5790     "foo.exe",
5791     "--gtest_break_on_failure",
5792     NULL
5793 };
5794 
5795   const char* argv2[] = {
5796     "foo.exe",
5797     NULL
5798   };
5799 
5800   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5801 }
5802 
5803 // Tests parsing --gtest_break_on_failure=0.
TEST_F(InitGoogleTestTest,BreakOnFailureFalse_0)5804 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
5805   const char* argv[] = {
5806     "foo.exe",
5807     "--gtest_break_on_failure=0",
5808     NULL
5809   };
5810 
5811   const char* argv2[] = {
5812     "foo.exe",
5813     NULL
5814   };
5815 
5816   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5817 }
5818 
5819 // Tests parsing --gtest_break_on_failure=f.
TEST_F(InitGoogleTestTest,BreakOnFailureFalse_f)5820 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
5821   const char* argv[] = {
5822     "foo.exe",
5823     "--gtest_break_on_failure=f",
5824     NULL
5825   };
5826 
5827   const char* argv2[] = {
5828     "foo.exe",
5829     NULL
5830   };
5831 
5832   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5833 }
5834 
5835 // Tests parsing --gtest_break_on_failure=F.
TEST_F(InitGoogleTestTest,BreakOnFailureFalse_F)5836 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
5837   const char* argv[] = {
5838     "foo.exe",
5839     "--gtest_break_on_failure=F",
5840     NULL
5841   };
5842 
5843   const char* argv2[] = {
5844     "foo.exe",
5845     NULL
5846   };
5847 
5848   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
5849 }
5850 
5851 // Tests parsing a --gtest_break_on_failure flag that has a "true"
5852 // definition.
TEST_F(InitGoogleTestTest,BreakOnFailureTrue)5853 TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
5854   const char* argv[] = {
5855     "foo.exe",
5856     "--gtest_break_on_failure=1",
5857     NULL
5858   };
5859 
5860   const char* argv2[] = {
5861     "foo.exe",
5862     NULL
5863   };
5864 
5865   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
5866 }
5867 
5868 // Tests parsing --gtest_catch_exceptions.
TEST_F(InitGoogleTestTest,CatchExceptions)5869 TEST_F(InitGoogleTestTest, CatchExceptions) {
5870   const char* argv[] = {
5871     "foo.exe",
5872     "--gtest_catch_exceptions",
5873     NULL
5874   };
5875 
5876   const char* argv2[] = {
5877     "foo.exe",
5878     NULL
5879   };
5880 
5881   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
5882 }
5883 
5884 // Tests parsing --gtest_death_test_use_fork.
TEST_F(InitGoogleTestTest,DeathTestUseFork)5885 TEST_F(InitGoogleTestTest, DeathTestUseFork) {
5886   const char* argv[] = {
5887     "foo.exe",
5888     "--gtest_death_test_use_fork",
5889     NULL
5890   };
5891 
5892   const char* argv2[] = {
5893     "foo.exe",
5894     NULL
5895   };
5896 
5897   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
5898 }
5899 
5900 // Tests having the same flag twice with different values.  The
5901 // expected behavior is that the one coming last takes precedence.
TEST_F(InitGoogleTestTest,DuplicatedFlags)5902 TEST_F(InitGoogleTestTest, DuplicatedFlags) {
5903   const char* argv[] = {
5904     "foo.exe",
5905     "--gtest_filter=a",
5906     "--gtest_filter=b",
5907     NULL
5908   };
5909 
5910   const char* argv2[] = {
5911     "foo.exe",
5912     NULL
5913   };
5914 
5915   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
5916 }
5917 
5918 // Tests having an unrecognized flag on the command line.
TEST_F(InitGoogleTestTest,UnrecognizedFlag)5919 TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
5920   const char* argv[] = {
5921     "foo.exe",
5922     "--gtest_break_on_failure",
5923     "bar",  // Unrecognized by Google Test.
5924     "--gtest_filter=b",
5925     NULL
5926   };
5927 
5928   const char* argv2[] = {
5929     "foo.exe",
5930     "bar",
5931     NULL
5932   };
5933 
5934   Flags flags;
5935   flags.break_on_failure = true;
5936   flags.filter = "b";
5937   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
5938 }
5939 
5940 // Tests having a --gtest_list_tests flag
TEST_F(InitGoogleTestTest,ListTestsFlag)5941 TEST_F(InitGoogleTestTest, ListTestsFlag) {
5942     const char* argv[] = {
5943       "foo.exe",
5944       "--gtest_list_tests",
5945       NULL
5946     };
5947 
5948     const char* argv2[] = {
5949       "foo.exe",
5950       NULL
5951     };
5952 
5953     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5954 }
5955 
5956 // Tests having a --gtest_list_tests flag with a "true" value
TEST_F(InitGoogleTestTest,ListTestsTrue)5957 TEST_F(InitGoogleTestTest, ListTestsTrue) {
5958     const char* argv[] = {
5959       "foo.exe",
5960       "--gtest_list_tests=1",
5961       NULL
5962     };
5963 
5964     const char* argv2[] = {
5965       "foo.exe",
5966       NULL
5967     };
5968 
5969     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
5970 }
5971 
5972 // Tests having a --gtest_list_tests flag with a "false" value
TEST_F(InitGoogleTestTest,ListTestsFalse)5973 TEST_F(InitGoogleTestTest, ListTestsFalse) {
5974     const char* argv[] = {
5975       "foo.exe",
5976       "--gtest_list_tests=0",
5977       NULL
5978     };
5979 
5980     const char* argv2[] = {
5981       "foo.exe",
5982       NULL
5983     };
5984 
5985     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
5986 }
5987 
5988 // Tests parsing --gtest_list_tests=f.
TEST_F(InitGoogleTestTest,ListTestsFalse_f)5989 TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
5990   const char* argv[] = {
5991     "foo.exe",
5992     "--gtest_list_tests=f",
5993     NULL
5994   };
5995 
5996   const char* argv2[] = {
5997     "foo.exe",
5998     NULL
5999   };
6000 
6001   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
6002 }
6003 
6004 // Tests parsing --gtest_list_tests=F.
TEST_F(InitGoogleTestTest,ListTestsFalse_F)6005 TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
6006   const char* argv[] = {
6007     "foo.exe",
6008     "--gtest_list_tests=F",
6009     NULL
6010   };
6011 
6012   const char* argv2[] = {
6013     "foo.exe",
6014     NULL
6015   };
6016 
6017   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
6018 }
6019 
6020 // Tests parsing --gtest_output (invalid).
TEST_F(InitGoogleTestTest,OutputEmpty)6021 TEST_F(InitGoogleTestTest, OutputEmpty) {
6022   const char* argv[] = {
6023     "foo.exe",
6024     "--gtest_output",
6025     NULL
6026   };
6027 
6028   const char* argv2[] = {
6029     "foo.exe",
6030     "--gtest_output",
6031     NULL
6032   };
6033 
6034   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
6035 }
6036 
6037 // Tests parsing --gtest_output=xml
TEST_F(InitGoogleTestTest,OutputXml)6038 TEST_F(InitGoogleTestTest, OutputXml) {
6039   const char* argv[] = {
6040     "foo.exe",
6041     "--gtest_output=xml",
6042     NULL
6043   };
6044 
6045   const char* argv2[] = {
6046     "foo.exe",
6047     NULL
6048   };
6049 
6050   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
6051 }
6052 
6053 // Tests parsing --gtest_output=xml:file
TEST_F(InitGoogleTestTest,OutputXmlFile)6054 TEST_F(InitGoogleTestTest, OutputXmlFile) {
6055   const char* argv[] = {
6056     "foo.exe",
6057     "--gtest_output=xml:file",
6058     NULL
6059   };
6060 
6061   const char* argv2[] = {
6062     "foo.exe",
6063     NULL
6064   };
6065 
6066   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
6067 }
6068 
6069 // Tests parsing --gtest_output=xml:directory/path/
TEST_F(InitGoogleTestTest,OutputXmlDirectory)6070 TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
6071   const char* argv[] = {
6072     "foo.exe",
6073     "--gtest_output=xml:directory/path/",
6074     NULL
6075   };
6076 
6077   const char* argv2[] = {
6078     "foo.exe",
6079     NULL
6080   };
6081 
6082   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6083                             Flags::Output("xml:directory/path/"), false);
6084 }
6085 
6086 // Tests having a --gtest_print_time flag
TEST_F(InitGoogleTestTest,PrintTimeFlag)6087 TEST_F(InitGoogleTestTest, PrintTimeFlag) {
6088     const char* argv[] = {
6089       "foo.exe",
6090       "--gtest_print_time",
6091       NULL
6092     };
6093 
6094     const char* argv2[] = {
6095       "foo.exe",
6096       NULL
6097     };
6098 
6099     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6100 }
6101 
6102 // Tests having a --gtest_print_time flag with a "true" value
TEST_F(InitGoogleTestTest,PrintTimeTrue)6103 TEST_F(InitGoogleTestTest, PrintTimeTrue) {
6104     const char* argv[] = {
6105       "foo.exe",
6106       "--gtest_print_time=1",
6107       NULL
6108     };
6109 
6110     const char* argv2[] = {
6111       "foo.exe",
6112       NULL
6113     };
6114 
6115     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
6116 }
6117 
6118 // Tests having a --gtest_print_time flag with a "false" value
TEST_F(InitGoogleTestTest,PrintTimeFalse)6119 TEST_F(InitGoogleTestTest, PrintTimeFalse) {
6120     const char* argv[] = {
6121       "foo.exe",
6122       "--gtest_print_time=0",
6123       NULL
6124     };
6125 
6126     const char* argv2[] = {
6127       "foo.exe",
6128       NULL
6129     };
6130 
6131     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6132 }
6133 
6134 // Tests parsing --gtest_print_time=f.
TEST_F(InitGoogleTestTest,PrintTimeFalse_f)6135 TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
6136   const char* argv[] = {
6137     "foo.exe",
6138     "--gtest_print_time=f",
6139     NULL
6140   };
6141 
6142   const char* argv2[] = {
6143     "foo.exe",
6144     NULL
6145   };
6146 
6147   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6148 }
6149 
6150 // Tests parsing --gtest_print_time=F.
TEST_F(InitGoogleTestTest,PrintTimeFalse_F)6151 TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
6152   const char* argv[] = {
6153     "foo.exe",
6154     "--gtest_print_time=F",
6155     NULL
6156   };
6157 
6158   const char* argv2[] = {
6159     "foo.exe",
6160     NULL
6161   };
6162 
6163   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
6164 }
6165 
6166 // Tests parsing --gtest_random_seed=number
TEST_F(InitGoogleTestTest,RandomSeed)6167 TEST_F(InitGoogleTestTest, RandomSeed) {
6168   const char* argv[] = {
6169     "foo.exe",
6170     "--gtest_random_seed=1000",
6171     NULL
6172   };
6173 
6174   const char* argv2[] = {
6175     "foo.exe",
6176     NULL
6177   };
6178 
6179   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
6180 }
6181 
6182 // Tests parsing --gtest_repeat=number
TEST_F(InitGoogleTestTest,Repeat)6183 TEST_F(InitGoogleTestTest, Repeat) {
6184   const char* argv[] = {
6185     "foo.exe",
6186     "--gtest_repeat=1000",
6187     NULL
6188   };
6189 
6190   const char* argv2[] = {
6191     "foo.exe",
6192     NULL
6193   };
6194 
6195   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
6196 }
6197 
6198 // Tests having a --gtest_also_run_disabled_tests flag
TEST_F(InitGoogleTestTest,AlsoRunDisabledTestsFlag)6199 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
6200     const char* argv[] = {
6201       "foo.exe",
6202       "--gtest_also_run_disabled_tests",
6203       NULL
6204     };
6205 
6206     const char* argv2[] = {
6207       "foo.exe",
6208       NULL
6209     };
6210 
6211     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6212                               Flags::AlsoRunDisabledTests(true), false);
6213 }
6214 
6215 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
TEST_F(InitGoogleTestTest,AlsoRunDisabledTestsTrue)6216 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
6217     const char* argv[] = {
6218       "foo.exe",
6219       "--gtest_also_run_disabled_tests=1",
6220       NULL
6221     };
6222 
6223     const char* argv2[] = {
6224       "foo.exe",
6225       NULL
6226     };
6227 
6228     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6229                               Flags::AlsoRunDisabledTests(true), false);
6230 }
6231 
6232 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
TEST_F(InitGoogleTestTest,AlsoRunDisabledTestsFalse)6233 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
6234     const char* argv[] = {
6235       "foo.exe",
6236       "--gtest_also_run_disabled_tests=0",
6237       NULL
6238     };
6239 
6240     const char* argv2[] = {
6241       "foo.exe",
6242       NULL
6243     };
6244 
6245     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
6246                               Flags::AlsoRunDisabledTests(false), false);
6247 }
6248 
6249 // Tests parsing --gtest_shuffle.
TEST_F(InitGoogleTestTest,ShuffleWithoutValue)6250 TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
6251   const char* argv[] = {
6252     "foo.exe",
6253     "--gtest_shuffle",
6254     NULL
6255 };
6256 
6257   const char* argv2[] = {
6258     "foo.exe",
6259     NULL
6260   };
6261 
6262   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6263 }
6264 
6265 // Tests parsing --gtest_shuffle=0.
TEST_F(InitGoogleTestTest,ShuffleFalse_0)6266 TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
6267   const char* argv[] = {
6268     "foo.exe",
6269     "--gtest_shuffle=0",
6270     NULL
6271   };
6272 
6273   const char* argv2[] = {
6274     "foo.exe",
6275     NULL
6276   };
6277 
6278   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
6279 }
6280 
6281 // Tests parsing a --gtest_shuffle flag that has a "true"
6282 // definition.
TEST_F(InitGoogleTestTest,ShuffleTrue)6283 TEST_F(InitGoogleTestTest, ShuffleTrue) {
6284   const char* argv[] = {
6285     "foo.exe",
6286     "--gtest_shuffle=1",
6287     NULL
6288   };
6289 
6290   const char* argv2[] = {
6291     "foo.exe",
6292     NULL
6293   };
6294 
6295   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
6296 }
6297 
6298 // Tests parsing --gtest_stack_trace_depth=number.
TEST_F(InitGoogleTestTest,StackTraceDepth)6299 TEST_F(InitGoogleTestTest, StackTraceDepth) {
6300   const char* argv[] = {
6301     "foo.exe",
6302     "--gtest_stack_trace_depth=5",
6303     NULL
6304   };
6305 
6306   const char* argv2[] = {
6307     "foo.exe",
6308     NULL
6309   };
6310 
6311   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
6312 }
6313 
TEST_F(InitGoogleTestTest,StreamResultTo)6314 TEST_F(InitGoogleTestTest, StreamResultTo) {
6315   const char* argv[] = {
6316     "foo.exe",
6317     "--gtest_stream_result_to=localhost:1234",
6318     NULL
6319   };
6320 
6321   const char* argv2[] = {
6322     "foo.exe",
6323     NULL
6324   };
6325 
6326   GTEST_TEST_PARSING_FLAGS_(
6327       argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
6328 }
6329 
6330 // Tests parsing --gtest_throw_on_failure.
TEST_F(InitGoogleTestTest,ThrowOnFailureWithoutValue)6331 TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
6332   const char* argv[] = {
6333     "foo.exe",
6334     "--gtest_throw_on_failure",
6335     NULL
6336 };
6337 
6338   const char* argv2[] = {
6339     "foo.exe",
6340     NULL
6341   };
6342 
6343   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6344 }
6345 
6346 // Tests parsing --gtest_throw_on_failure=0.
TEST_F(InitGoogleTestTest,ThrowOnFailureFalse_0)6347 TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
6348   const char* argv[] = {
6349     "foo.exe",
6350     "--gtest_throw_on_failure=0",
6351     NULL
6352   };
6353 
6354   const char* argv2[] = {
6355     "foo.exe",
6356     NULL
6357   };
6358 
6359   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
6360 }
6361 
6362 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
6363 // definition.
TEST_F(InitGoogleTestTest,ThrowOnFailureTrue)6364 TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
6365   const char* argv[] = {
6366     "foo.exe",
6367     "--gtest_throw_on_failure=1",
6368     NULL
6369   };
6370 
6371   const char* argv2[] = {
6372     "foo.exe",
6373     NULL
6374   };
6375 
6376   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
6377 }
6378 
6379 #if GTEST_OS_WINDOWS
6380 // Tests parsing wide strings.
TEST_F(InitGoogleTestTest,WideStrings)6381 TEST_F(InitGoogleTestTest, WideStrings) {
6382   const wchar_t* argv[] = {
6383     L"foo.exe",
6384     L"--gtest_filter=Foo*",
6385     L"--gtest_list_tests=1",
6386     L"--gtest_break_on_failure",
6387     L"--non_gtest_flag",
6388     NULL
6389   };
6390 
6391   const wchar_t* argv2[] = {
6392     L"foo.exe",
6393     L"--non_gtest_flag",
6394     NULL
6395   };
6396 
6397   Flags expected_flags;
6398   expected_flags.break_on_failure = true;
6399   expected_flags.filter = "Foo*";
6400   expected_flags.list_tests = true;
6401 
6402   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6403 }
6404 # endif  // GTEST_OS_WINDOWS
6405 
6406 #if GTEST_USE_OWN_FLAGFILE_FLAG_
6407 class FlagfileTest : public InitGoogleTestTest {
6408  public:
SetUp()6409   virtual void SetUp() {
6410     InitGoogleTestTest::SetUp();
6411 
6412     testdata_path_.Set(internal::FilePath(
6413         internal::TempDir() + internal::GetCurrentExecutableName().string() +
6414         "_flagfile_test"));
6415     testing::internal::posix::RmDir(testdata_path_.c_str());
6416     EXPECT_TRUE(testdata_path_.CreateFolder());
6417   }
6418 
TearDown()6419   virtual void TearDown() {
6420     testing::internal::posix::RmDir(testdata_path_.c_str());
6421     InitGoogleTestTest::TearDown();
6422   }
6423 
CreateFlagfile(const char * contents)6424   internal::FilePath CreateFlagfile(const char* contents) {
6425     internal::FilePath file_path(internal::FilePath::GenerateUniqueFileName(
6426         testdata_path_, internal::FilePath("unique"), "txt"));
6427     FILE* f = testing::internal::posix::FOpen(file_path.c_str(), "w");
6428     fprintf(f, "%s", contents);
6429     fclose(f);
6430     return file_path;
6431   }
6432 
6433  private:
6434   internal::FilePath testdata_path_;
6435 };
6436 
6437 // Tests an empty flagfile.
TEST_F(FlagfileTest,Empty)6438 TEST_F(FlagfileTest, Empty) {
6439   internal::FilePath flagfile_path(CreateFlagfile(""));
6440   std::string flagfile_flag =
6441       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6442 
6443   const char* argv[] = {
6444     "foo.exe",
6445     flagfile_flag.c_str(),
6446     NULL
6447   };
6448 
6449   const char* argv2[] = {
6450     "foo.exe",
6451     NULL
6452   };
6453 
6454   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
6455 }
6456 
6457 // Tests passing a non-empty --gtest_filter flag via --gtest_flagfile.
TEST_F(FlagfileTest,FilterNonEmpty)6458 TEST_F(FlagfileTest, FilterNonEmpty) {
6459   internal::FilePath flagfile_path(CreateFlagfile(
6460       "--"  GTEST_FLAG_PREFIX_  "filter=abc"));
6461   std::string flagfile_flag =
6462       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6463 
6464   const char* argv[] = {
6465     "foo.exe",
6466     flagfile_flag.c_str(),
6467     NULL
6468   };
6469 
6470   const char* argv2[] = {
6471     "foo.exe",
6472     NULL
6473   };
6474 
6475   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
6476 }
6477 
6478 // Tests passing several flags via --gtest_flagfile.
TEST_F(FlagfileTest,SeveralFlags)6479 TEST_F(FlagfileTest, SeveralFlags) {
6480   internal::FilePath flagfile_path(CreateFlagfile(
6481       "--"  GTEST_FLAG_PREFIX_  "filter=abc\n"
6482       "--"  GTEST_FLAG_PREFIX_  "break_on_failure\n"
6483       "--"  GTEST_FLAG_PREFIX_  "list_tests"));
6484   std::string flagfile_flag =
6485       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
6486 
6487   const char* argv[] = {
6488     "foo.exe",
6489     flagfile_flag.c_str(),
6490     NULL
6491   };
6492 
6493   const char* argv2[] = {
6494     "foo.exe",
6495     NULL
6496   };
6497 
6498   Flags expected_flags;
6499   expected_flags.break_on_failure = true;
6500   expected_flags.filter = "abc";
6501   expected_flags.list_tests = true;
6502 
6503   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
6504 }
6505 #endif  // GTEST_USE_OWN_FLAGFILE_FLAG_
6506 
6507 // Tests current_test_info() in UnitTest.
6508 class CurrentTestInfoTest : public Test {
6509  protected:
6510   // Tests that current_test_info() returns NULL before the first test in
6511   // the test case is run.
SetUpTestCase()6512   static void SetUpTestCase() {
6513     // There should be no tests running at this point.
6514     const TestInfo* test_info =
6515       UnitTest::GetInstance()->current_test_info();
6516     EXPECT_TRUE(test_info == NULL)
6517         << "There should be no tests running at this point.";
6518   }
6519 
6520   // Tests that current_test_info() returns NULL after the last test in
6521   // the test case has run.
TearDownTestCase()6522   static void TearDownTestCase() {
6523     const TestInfo* test_info =
6524       UnitTest::GetInstance()->current_test_info();
6525     EXPECT_TRUE(test_info == NULL)
6526         << "There should be no tests running at this point.";
6527   }
6528 };
6529 
6530 // Tests that current_test_info() returns TestInfo for currently running
6531 // test by checking the expected test name against the actual one.
TEST_F(CurrentTestInfoTest,WorksForFirstTestInATestCase)6532 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
6533   const TestInfo* test_info =
6534     UnitTest::GetInstance()->current_test_info();
6535   ASSERT_TRUE(NULL != test_info)
6536       << "There is a test running so we should have a valid TestInfo.";
6537   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6538       << "Expected the name of the currently running test case.";
6539   EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
6540       << "Expected the name of the currently running test.";
6541 }
6542 
6543 // Tests that current_test_info() returns TestInfo for currently running
6544 // test by checking the expected test name against the actual one.  We
6545 // use this test to see that the TestInfo object actually changed from
6546 // the previous invocation.
TEST_F(CurrentTestInfoTest,WorksForSecondTestInATestCase)6547 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
6548   const TestInfo* test_info =
6549     UnitTest::GetInstance()->current_test_info();
6550   ASSERT_TRUE(NULL != test_info)
6551       << "There is a test running so we should have a valid TestInfo.";
6552   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
6553       << "Expected the name of the currently running test case.";
6554   EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
6555       << "Expected the name of the currently running test.";
6556 }
6557 
6558 }  // namespace testing
6559 
6560 // These two lines test that we can define tests in a namespace that
6561 // has the name "testing" and is nested in another namespace.
6562 namespace my_namespace {
6563 namespace testing {
6564 
6565 // Makes sure that TEST knows to use ::testing::Test instead of
6566 // ::my_namespace::testing::Test.
6567 class Test {};
6568 
6569 // Makes sure that an assertion knows to use ::testing::Message instead of
6570 // ::my_namespace::testing::Message.
6571 class Message {};
6572 
6573 // Makes sure that an assertion knows to use
6574 // ::testing::AssertionResult instead of
6575 // ::my_namespace::testing::AssertionResult.
6576 class AssertionResult {};
6577 
6578 // Tests that an assertion that should succeed works as expected.
TEST(NestedTestingNamespaceTest,Success)6579 TEST(NestedTestingNamespaceTest, Success) {
6580   EXPECT_EQ(1, 1) << "This shouldn't fail.";
6581 }
6582 
6583 // Tests that an assertion that should fail works as expected.
TEST(NestedTestingNamespaceTest,Failure)6584 TEST(NestedTestingNamespaceTest, Failure) {
6585   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
6586                        "This failure is expected.");
6587 }
6588 
6589 }  // namespace testing
6590 }  // namespace my_namespace
6591 
6592 // Tests that one can call superclass SetUp and TearDown methods--
6593 // that is, that they are not private.
6594 // No tests are based on this fixture; the test "passes" if it compiles
6595 // successfully.
6596 class ProtectedFixtureMethodsTest : public Test {
6597  protected:
SetUp()6598   virtual void SetUp() {
6599     Test::SetUp();
6600   }
TearDown()6601   virtual void TearDown() {
6602     Test::TearDown();
6603   }
6604 };
6605 
6606 // StreamingAssertionsTest tests the streaming versions of a representative
6607 // sample of assertions.
TEST(StreamingAssertionsTest,Unconditional)6608 TEST(StreamingAssertionsTest, Unconditional) {
6609   SUCCEED() << "expected success";
6610   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
6611                           "expected failure");
6612   EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
6613                        "expected failure");
6614 }
6615 
6616 #ifdef __BORLANDC__
6617 // Silences warnings: "Condition is always true", "Unreachable code"
6618 # pragma option push -w-ccc -w-rch
6619 #endif
6620 
TEST(StreamingAssertionsTest,Truth)6621 TEST(StreamingAssertionsTest, Truth) {
6622   EXPECT_TRUE(true) << "unexpected failure";
6623   ASSERT_TRUE(true) << "unexpected failure";
6624   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
6625                           "expected failure");
6626   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
6627                        "expected failure");
6628 }
6629 
TEST(StreamingAssertionsTest,Truth2)6630 TEST(StreamingAssertionsTest, Truth2) {
6631   EXPECT_FALSE(false) << "unexpected failure";
6632   ASSERT_FALSE(false) << "unexpected failure";
6633   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
6634                           "expected failure");
6635   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
6636                        "expected failure");
6637 }
6638 
6639 #ifdef __BORLANDC__
6640 // Restores warnings after previous "#pragma option push" supressed them
6641 # pragma option pop
6642 #endif
6643 
TEST(StreamingAssertionsTest,IntegerEquals)6644 TEST(StreamingAssertionsTest, IntegerEquals) {
6645   EXPECT_EQ(1, 1) << "unexpected failure";
6646   ASSERT_EQ(1, 1) << "unexpected failure";
6647   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
6648                           "expected failure");
6649   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
6650                        "expected failure");
6651 }
6652 
TEST(StreamingAssertionsTest,IntegerLessThan)6653 TEST(StreamingAssertionsTest, IntegerLessThan) {
6654   EXPECT_LT(1, 2) << "unexpected failure";
6655   ASSERT_LT(1, 2) << "unexpected failure";
6656   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
6657                           "expected failure");
6658   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
6659                        "expected failure");
6660 }
6661 
TEST(StreamingAssertionsTest,StringsEqual)6662 TEST(StreamingAssertionsTest, StringsEqual) {
6663   EXPECT_STREQ("foo", "foo") << "unexpected failure";
6664   ASSERT_STREQ("foo", "foo") << "unexpected failure";
6665   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
6666                           "expected failure");
6667   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
6668                        "expected failure");
6669 }
6670 
TEST(StreamingAssertionsTest,StringsNotEqual)6671 TEST(StreamingAssertionsTest, StringsNotEqual) {
6672   EXPECT_STRNE("foo", "bar") << "unexpected failure";
6673   ASSERT_STRNE("foo", "bar") << "unexpected failure";
6674   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
6675                           "expected failure");
6676   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
6677                        "expected failure");
6678 }
6679 
TEST(StreamingAssertionsTest,StringsEqualIgnoringCase)6680 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
6681   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6682   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
6683   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
6684                           "expected failure");
6685   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
6686                        "expected failure");
6687 }
6688 
TEST(StreamingAssertionsTest,StringNotEqualIgnoringCase)6689 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
6690   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
6691   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
6692   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
6693                           "expected failure");
6694   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
6695                        "expected failure");
6696 }
6697 
TEST(StreamingAssertionsTest,FloatingPointEquals)6698 TEST(StreamingAssertionsTest, FloatingPointEquals) {
6699   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6700   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
6701   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6702                           "expected failure");
6703   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
6704                        "expected failure");
6705 }
6706 
6707 #if GTEST_HAS_EXCEPTIONS
6708 
TEST(StreamingAssertionsTest,Throw)6709 TEST(StreamingAssertionsTest, Throw) {
6710   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6711   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
6712   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
6713                           "expected failure", "expected failure");
6714   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
6715                        "expected failure", "expected failure");
6716 }
6717 
TEST(StreamingAssertionsTest,NoThrow)6718 TEST(StreamingAssertionsTest, NoThrow) {
6719   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
6720   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
6721   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
6722                           "expected failure", "expected failure");
6723   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
6724                        "expected failure", "expected failure");
6725 }
6726 
TEST(StreamingAssertionsTest,AnyThrow)6727 TEST(StreamingAssertionsTest, AnyThrow) {
6728   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6729   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
6730   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
6731                           "expected failure", "expected failure");
6732   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
6733                        "expected failure", "expected failure");
6734 }
6735 
6736 #endif  // GTEST_HAS_EXCEPTIONS
6737 
6738 // Tests that Google Test correctly decides whether to use colors in the output.
6739 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsYes)6740 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
6741   GTEST_FLAG(color) = "yes";
6742 
6743   SetEnv("TERM", "xterm");  // TERM supports colors.
6744   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6745   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6746 
6747   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6748   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6749   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6750 }
6751 
TEST(ColoredOutputTest,UsesColorsWhenGTestColorFlagIsAliasOfYes)6752 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
6753   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6754 
6755   GTEST_FLAG(color) = "True";
6756   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6757 
6758   GTEST_FLAG(color) = "t";
6759   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6760 
6761   GTEST_FLAG(color) = "1";
6762   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
6763 }
6764 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsNo)6765 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
6766   GTEST_FLAG(color) = "no";
6767 
6768   SetEnv("TERM", "xterm");  // TERM supports colors.
6769   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6770   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6771 
6772   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6773   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6774   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6775 }
6776 
TEST(ColoredOutputTest,UsesNoColorWhenGTestColorFlagIsInvalid)6777 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
6778   SetEnv("TERM", "xterm");  // TERM supports colors.
6779 
6780   GTEST_FLAG(color) = "F";
6781   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6782 
6783   GTEST_FLAG(color) = "0";
6784   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6785 
6786   GTEST_FLAG(color) = "unknown";
6787   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6788 }
6789 
TEST(ColoredOutputTest,UsesColorsWhenStdoutIsTty)6790 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
6791   GTEST_FLAG(color) = "auto";
6792 
6793   SetEnv("TERM", "xterm");  // TERM supports colors.
6794   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
6795   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
6796 }
6797 
TEST(ColoredOutputTest,UsesColorsWhenTermSupportsColors)6798 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
6799   GTEST_FLAG(color) = "auto";
6800 
6801 #if GTEST_OS_WINDOWS
6802   // On Windows, we ignore the TERM variable as it's usually not set.
6803 
6804   SetEnv("TERM", "dumb");
6805   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6806 
6807   SetEnv("TERM", "");
6808   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6809 
6810   SetEnv("TERM", "xterm");
6811   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6812 #else
6813   // On non-Windows platforms, we rely on TERM to determine if the
6814   // terminal supports colors.
6815 
6816   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
6817   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6818 
6819   SetEnv("TERM", "emacs");  // TERM doesn't support colors.
6820   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6821 
6822   SetEnv("TERM", "vt100");  // TERM doesn't support colors.
6823   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6824 
6825   SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
6826   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
6827 
6828   SetEnv("TERM", "xterm");  // TERM supports colors.
6829   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6830 
6831   SetEnv("TERM", "xterm-color");  // TERM supports colors.
6832   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6833 
6834   SetEnv("TERM", "xterm-256color");  // TERM supports colors.
6835   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6836 
6837   SetEnv("TERM", "screen");  // TERM supports colors.
6838   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6839 
6840   SetEnv("TERM", "screen-256color");  // TERM supports colors.
6841   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6842 
6843   SetEnv("TERM", "rxvt-unicode");  // TERM supports colors.
6844   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6845 
6846   SetEnv("TERM", "rxvt-unicode-256color");  // TERM supports colors.
6847   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6848 
6849   SetEnv("TERM", "linux");  // TERM supports colors.
6850   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6851 
6852   SetEnv("TERM", "cygwin");  // TERM supports colors.
6853   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
6854 #endif  // GTEST_OS_WINDOWS
6855 }
6856 
6857 // Verifies that StaticAssertTypeEq works in a namespace scope.
6858 
6859 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
6860 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
6861     StaticAssertTypeEq<const int, const int>();
6862 
6863 // Verifies that StaticAssertTypeEq works in a class.
6864 
6865 template <typename T>
6866 class StaticAssertTypeEqTestHelper {
6867  public:
StaticAssertTypeEqTestHelper()6868   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
6869 };
6870 
TEST(StaticAssertTypeEqTest,WorksInClass)6871 TEST(StaticAssertTypeEqTest, WorksInClass) {
6872   StaticAssertTypeEqTestHelper<bool>();
6873 }
6874 
6875 // Verifies that StaticAssertTypeEq works inside a function.
6876 
6877 typedef int IntAlias;
6878 
TEST(StaticAssertTypeEqTest,CompilesForEqualTypes)6879 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
6880   StaticAssertTypeEq<int, IntAlias>();
6881   StaticAssertTypeEq<int*, IntAlias*>();
6882 }
6883 
TEST(GetCurrentOsStackTraceExceptTopTest,ReturnsTheStackTrace)6884 TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
6885   testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
6886 
6887   // We don't have a stack walker in Google Test yet.
6888   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
6889   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
6890 }
6891 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsNoFailure)6892 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6893   EXPECT_FALSE(HasNonfatalFailure());
6894 }
6895 
FailFatally()6896 static void FailFatally() { FAIL(); }
6897 
TEST(HasNonfatalFailureTest,ReturnsFalseWhenThereIsOnlyFatalFailure)6898 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
6899   FailFatally();
6900   const bool has_nonfatal_failure = HasNonfatalFailure();
6901   ClearCurrentTestPartResults();
6902   EXPECT_FALSE(has_nonfatal_failure);
6903 }
6904 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6905 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6906   ADD_FAILURE();
6907   const bool has_nonfatal_failure = HasNonfatalFailure();
6908   ClearCurrentTestPartResults();
6909   EXPECT_TRUE(has_nonfatal_failure);
6910 }
6911 
TEST(HasNonfatalFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6912 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6913   FailFatally();
6914   ADD_FAILURE();
6915   const bool has_nonfatal_failure = HasNonfatalFailure();
6916   ClearCurrentTestPartResults();
6917   EXPECT_TRUE(has_nonfatal_failure);
6918 }
6919 
6920 // A wrapper for calling HasNonfatalFailure outside of a test body.
HasNonfatalFailureHelper()6921 static bool HasNonfatalFailureHelper() {
6922   return testing::Test::HasNonfatalFailure();
6923 }
6924 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody)6925 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
6926   EXPECT_FALSE(HasNonfatalFailureHelper());
6927 }
6928 
TEST(HasNonfatalFailureTest,WorksOutsideOfTestBody2)6929 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
6930   ADD_FAILURE();
6931   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
6932   ClearCurrentTestPartResults();
6933   EXPECT_TRUE(has_nonfatal_failure);
6934 }
6935 
TEST(HasFailureTest,ReturnsFalseWhenThereIsNoFailure)6936 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
6937   EXPECT_FALSE(HasFailure());
6938 }
6939 
TEST(HasFailureTest,ReturnsTrueWhenThereIsFatalFailure)6940 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
6941   FailFatally();
6942   const bool has_failure = HasFailure();
6943   ClearCurrentTestPartResults();
6944   EXPECT_TRUE(has_failure);
6945 }
6946 
TEST(HasFailureTest,ReturnsTrueWhenThereIsNonfatalFailure)6947 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
6948   ADD_FAILURE();
6949   const bool has_failure = HasFailure();
6950   ClearCurrentTestPartResults();
6951   EXPECT_TRUE(has_failure);
6952 }
6953 
TEST(HasFailureTest,ReturnsTrueWhenThereAreFatalAndNonfatalFailures)6954 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
6955   FailFatally();
6956   ADD_FAILURE();
6957   const bool has_failure = HasFailure();
6958   ClearCurrentTestPartResults();
6959   EXPECT_TRUE(has_failure);
6960 }
6961 
6962 // A wrapper for calling HasFailure outside of a test body.
HasFailureHelper()6963 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
6964 
TEST(HasFailureTest,WorksOutsideOfTestBody)6965 TEST(HasFailureTest, WorksOutsideOfTestBody) {
6966   EXPECT_FALSE(HasFailureHelper());
6967 }
6968 
TEST(HasFailureTest,WorksOutsideOfTestBody2)6969 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
6970   ADD_FAILURE();
6971   const bool has_failure = HasFailureHelper();
6972   ClearCurrentTestPartResults();
6973   EXPECT_TRUE(has_failure);
6974 }
6975 
6976 class TestListener : public EmptyTestEventListener {
6977  public:
TestListener()6978   TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
TestListener(int * on_start_counter,bool * is_destroyed)6979   TestListener(int* on_start_counter, bool* is_destroyed)
6980       : on_start_counter_(on_start_counter),
6981         is_destroyed_(is_destroyed) {}
6982 
~TestListener()6983   virtual ~TestListener() {
6984     if (is_destroyed_)
6985       *is_destroyed_ = true;
6986   }
6987 
6988  protected:
OnTestProgramStart(const UnitTest &)6989   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
6990     if (on_start_counter_ != NULL)
6991       (*on_start_counter_)++;
6992   }
6993 
6994  private:
6995   int* on_start_counter_;
6996   bool* is_destroyed_;
6997 };
6998 
6999 // Tests the constructor.
TEST(TestEventListenersTest,ConstructionWorks)7000 TEST(TestEventListenersTest, ConstructionWorks) {
7001   TestEventListeners listeners;
7002 
7003   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL);
7004   EXPECT_TRUE(listeners.default_result_printer() == NULL);
7005   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
7006 }
7007 
7008 // Tests that the TestEventListeners destructor deletes all the listeners it
7009 // owns.
TEST(TestEventListenersTest,DestructionWorks)7010 TEST(TestEventListenersTest, DestructionWorks) {
7011   bool default_result_printer_is_destroyed = false;
7012   bool default_xml_printer_is_destroyed = false;
7013   bool extra_listener_is_destroyed = false;
7014   TestListener* default_result_printer = new TestListener(
7015       NULL, &default_result_printer_is_destroyed);
7016   TestListener* default_xml_printer = new TestListener(
7017       NULL, &default_xml_printer_is_destroyed);
7018   TestListener* extra_listener = new TestListener(
7019       NULL, &extra_listener_is_destroyed);
7020 
7021   {
7022     TestEventListeners listeners;
7023     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
7024                                                         default_result_printer);
7025     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
7026                                                        default_xml_printer);
7027     listeners.Append(extra_listener);
7028   }
7029   EXPECT_TRUE(default_result_printer_is_destroyed);
7030   EXPECT_TRUE(default_xml_printer_is_destroyed);
7031   EXPECT_TRUE(extra_listener_is_destroyed);
7032 }
7033 
7034 // Tests that a listener Append'ed to a TestEventListeners list starts
7035 // receiving events.
TEST(TestEventListenersTest,Append)7036 TEST(TestEventListenersTest, Append) {
7037   int on_start_counter = 0;
7038   bool is_destroyed = false;
7039   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7040   {
7041     TestEventListeners listeners;
7042     listeners.Append(listener);
7043     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7044         *UnitTest::GetInstance());
7045     EXPECT_EQ(1, on_start_counter);
7046   }
7047   EXPECT_TRUE(is_destroyed);
7048 }
7049 
7050 // Tests that listeners receive events in the order they were appended to
7051 // the list, except for *End requests, which must be received in the reverse
7052 // order.
7053 class SequenceTestingListener : public EmptyTestEventListener {
7054  public:
SequenceTestingListener(std::vector<std::string> * vector,const char * id)7055   SequenceTestingListener(std::vector<std::string>* vector, const char* id)
7056       : vector_(vector), id_(id) {}
7057 
7058  protected:
OnTestProgramStart(const UnitTest &)7059   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
7060     vector_->push_back(GetEventDescription("OnTestProgramStart"));
7061   }
7062 
OnTestProgramEnd(const UnitTest &)7063   virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
7064     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
7065   }
7066 
OnTestIterationStart(const UnitTest &,int)7067   virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
7068                                     int /*iteration*/) {
7069     vector_->push_back(GetEventDescription("OnTestIterationStart"));
7070   }
7071 
OnTestIterationEnd(const UnitTest &,int)7072   virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
7073                                   int /*iteration*/) {
7074     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
7075   }
7076 
7077  private:
GetEventDescription(const char * method)7078   std::string GetEventDescription(const char* method) {
7079     Message message;
7080     message << id_ << "." << method;
7081     return message.GetString();
7082   }
7083 
7084   std::vector<std::string>* vector_;
7085   const char* const id_;
7086 
7087   GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
7088 };
7089 
TEST(EventListenerTest,AppendKeepsOrder)7090 TEST(EventListenerTest, AppendKeepsOrder) {
7091   std::vector<std::string> vec;
7092   TestEventListeners listeners;
7093   listeners.Append(new SequenceTestingListener(&vec, "1st"));
7094   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
7095   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
7096 
7097   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7098       *UnitTest::GetInstance());
7099   ASSERT_EQ(3U, vec.size());
7100   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
7101   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
7102   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
7103 
7104   vec.clear();
7105   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
7106       *UnitTest::GetInstance());
7107   ASSERT_EQ(3U, vec.size());
7108   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
7109   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
7110   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
7111 
7112   vec.clear();
7113   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
7114       *UnitTest::GetInstance(), 0);
7115   ASSERT_EQ(3U, vec.size());
7116   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
7117   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
7118   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
7119 
7120   vec.clear();
7121   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
7122       *UnitTest::GetInstance(), 0);
7123   ASSERT_EQ(3U, vec.size());
7124   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
7125   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
7126   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
7127 }
7128 
7129 // Tests that a listener removed from a TestEventListeners list stops receiving
7130 // events and is not deleted when the list is destroyed.
TEST(TestEventListenersTest,Release)7131 TEST(TestEventListenersTest, Release) {
7132   int on_start_counter = 0;
7133   bool is_destroyed = false;
7134   // Although Append passes the ownership of this object to the list,
7135   // the following calls release it, and we need to delete it before the
7136   // test ends.
7137   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7138   {
7139     TestEventListeners listeners;
7140     listeners.Append(listener);
7141     EXPECT_EQ(listener, listeners.Release(listener));
7142     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7143         *UnitTest::GetInstance());
7144     EXPECT_TRUE(listeners.Release(listener) == NULL);
7145   }
7146   EXPECT_EQ(0, on_start_counter);
7147   EXPECT_FALSE(is_destroyed);
7148   delete listener;
7149 }
7150 
7151 // Tests that no events are forwarded when event forwarding is disabled.
TEST(EventListenerTest,SuppressEventForwarding)7152 TEST(EventListenerTest, SuppressEventForwarding) {
7153   int on_start_counter = 0;
7154   TestListener* listener = new TestListener(&on_start_counter, NULL);
7155 
7156   TestEventListeners listeners;
7157   listeners.Append(listener);
7158   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
7159   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
7160   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
7161   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7162       *UnitTest::GetInstance());
7163   EXPECT_EQ(0, on_start_counter);
7164 }
7165 
7166 // Tests that events generated by Google Test are not forwarded in
7167 // death test subprocesses.
TEST(EventListenerDeathTest,EventsNotForwardedInDeathTestSubprecesses)7168 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
7169   EXPECT_DEATH_IF_SUPPORTED({
7170       GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
7171           *GetUnitTestImpl()->listeners())) << "expected failure";},
7172       "expected failure");
7173 }
7174 
7175 // Tests that a listener installed via SetDefaultResultPrinter() starts
7176 // receiving events and is returned via default_result_printer() and that
7177 // the previous default_result_printer is removed from the list and deleted.
TEST(EventListenerTest,default_result_printer)7178 TEST(EventListenerTest, default_result_printer) {
7179   int on_start_counter = 0;
7180   bool is_destroyed = false;
7181   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7182 
7183   TestEventListeners listeners;
7184   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7185 
7186   EXPECT_EQ(listener, listeners.default_result_printer());
7187 
7188   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7189       *UnitTest::GetInstance());
7190 
7191   EXPECT_EQ(1, on_start_counter);
7192 
7193   // Replacing default_result_printer with something else should remove it
7194   // from the list and destroy it.
7195   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
7196 
7197   EXPECT_TRUE(listeners.default_result_printer() == NULL);
7198   EXPECT_TRUE(is_destroyed);
7199 
7200   // After broadcasting an event the counter is still the same, indicating
7201   // the listener is not in the list anymore.
7202   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7203       *UnitTest::GetInstance());
7204   EXPECT_EQ(1, on_start_counter);
7205 }
7206 
7207 // Tests that the default_result_printer listener stops receiving events
7208 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultResultPrinterWorks)7209 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
7210   int on_start_counter = 0;
7211   bool is_destroyed = false;
7212   // Although Append passes the ownership of this object to the list,
7213   // the following calls release it, and we need to delete it before the
7214   // test ends.
7215   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7216   {
7217     TestEventListeners listeners;
7218     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
7219 
7220     EXPECT_EQ(listener, listeners.Release(listener));
7221     EXPECT_TRUE(listeners.default_result_printer() == NULL);
7222     EXPECT_FALSE(is_destroyed);
7223 
7224     // Broadcasting events now should not affect default_result_printer.
7225     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7226         *UnitTest::GetInstance());
7227     EXPECT_EQ(0, on_start_counter);
7228   }
7229   // Destroying the list should not affect the listener now, too.
7230   EXPECT_FALSE(is_destroyed);
7231   delete listener;
7232 }
7233 
7234 // Tests that a listener installed via SetDefaultXmlGenerator() starts
7235 // receiving events and is returned via default_xml_generator() and that
7236 // the previous default_xml_generator is removed from the list and deleted.
TEST(EventListenerTest,default_xml_generator)7237 TEST(EventListenerTest, default_xml_generator) {
7238   int on_start_counter = 0;
7239   bool is_destroyed = false;
7240   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7241 
7242   TestEventListeners listeners;
7243   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7244 
7245   EXPECT_EQ(listener, listeners.default_xml_generator());
7246 
7247   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7248       *UnitTest::GetInstance());
7249 
7250   EXPECT_EQ(1, on_start_counter);
7251 
7252   // Replacing default_xml_generator with something else should remove it
7253   // from the list and destroy it.
7254   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
7255 
7256   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
7257   EXPECT_TRUE(is_destroyed);
7258 
7259   // After broadcasting an event the counter is still the same, indicating
7260   // the listener is not in the list anymore.
7261   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7262       *UnitTest::GetInstance());
7263   EXPECT_EQ(1, on_start_counter);
7264 }
7265 
7266 // Tests that the default_xml_generator listener stops receiving events
7267 // when removed via Release and that is not owned by the list anymore.
TEST(EventListenerTest,RemovingDefaultXmlGeneratorWorks)7268 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
7269   int on_start_counter = 0;
7270   bool is_destroyed = false;
7271   // Although Append passes the ownership of this object to the list,
7272   // the following calls release it, and we need to delete it before the
7273   // test ends.
7274   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
7275   {
7276     TestEventListeners listeners;
7277     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
7278 
7279     EXPECT_EQ(listener, listeners.Release(listener));
7280     EXPECT_TRUE(listeners.default_xml_generator() == NULL);
7281     EXPECT_FALSE(is_destroyed);
7282 
7283     // Broadcasting events now should not affect default_xml_generator.
7284     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
7285         *UnitTest::GetInstance());
7286     EXPECT_EQ(0, on_start_counter);
7287   }
7288   // Destroying the list should not affect the listener now, too.
7289   EXPECT_FALSE(is_destroyed);
7290   delete listener;
7291 }
7292 
7293 // Sanity tests to ensure that the alternative, verbose spellings of
7294 // some of the macros work.  We don't test them thoroughly as that
7295 // would be quite involved.  Since their implementations are
7296 // straightforward, and they are rarely used, we'll just rely on the
7297 // users to tell us when they are broken.
GTEST_TEST(AlternativeNameTest,Works)7298 GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
7299   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
7300 
7301   // GTEST_FAIL is the same as FAIL.
7302   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
7303                        "An expected failure");
7304 
7305   // GTEST_ASSERT_XY is the same as ASSERT_XY.
7306 
7307   GTEST_ASSERT_EQ(0, 0);
7308   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
7309                        "An expected failure");
7310   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
7311                        "An expected failure");
7312 
7313   GTEST_ASSERT_NE(0, 1);
7314   GTEST_ASSERT_NE(1, 0);
7315   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
7316                        "An expected failure");
7317 
7318   GTEST_ASSERT_LE(0, 0);
7319   GTEST_ASSERT_LE(0, 1);
7320   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
7321                        "An expected failure");
7322 
7323   GTEST_ASSERT_LT(0, 1);
7324   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
7325                        "An expected failure");
7326   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
7327                        "An expected failure");
7328 
7329   GTEST_ASSERT_GE(0, 0);
7330   GTEST_ASSERT_GE(1, 0);
7331   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
7332                        "An expected failure");
7333 
7334   GTEST_ASSERT_GT(1, 0);
7335   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
7336                        "An expected failure");
7337   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
7338                        "An expected failure");
7339 }
7340 
7341 // Tests for internal utilities necessary for implementation of the universal
7342 // printing.
7343 // TODO(vladl@google.com): Find a better home for them.
7344 
7345 class ConversionHelperBase {};
7346 class ConversionHelperDerived : public ConversionHelperBase {};
7347 
7348 // Tests that IsAProtocolMessage<T>::value is a compile-time constant.
TEST(IsAProtocolMessageTest,ValueIsCompileTimeConstant)7349 TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
7350   GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value,
7351                         const_true);
7352   GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
7353 }
7354 
7355 // Tests that IsAProtocolMessage<T>::value is true when T is
7356 // proto2::Message or a sub-class of it.
TEST(IsAProtocolMessageTest,ValueIsTrueWhenTypeIsAProtocolMessage)7357 TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
7358   EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
7359   EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
7360 }
7361 
7362 // Tests that IsAProtocolMessage<T>::value is false when T is neither
7363 // ProtocolMessage nor a sub-class of it.
TEST(IsAProtocolMessageTest,ValueIsFalseWhenTypeIsNotAProtocolMessage)7364 TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
7365   EXPECT_FALSE(IsAProtocolMessage<int>::value);
7366   EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value);
7367 }
7368 
7369 // Tests that CompileAssertTypesEqual compiles when the type arguments are
7370 // equal.
TEST(CompileAssertTypesEqual,CompilesWhenTypesAreEqual)7371 TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
7372   CompileAssertTypesEqual<void, void>();
7373   CompileAssertTypesEqual<int*, int*>();
7374 }
7375 
7376 // Tests that RemoveReference does not affect non-reference types.
TEST(RemoveReferenceTest,DoesNotAffectNonReferenceType)7377 TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
7378   CompileAssertTypesEqual<int, RemoveReference<int>::type>();
7379   CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
7380 }
7381 
7382 // Tests that RemoveReference removes reference from reference types.
TEST(RemoveReferenceTest,RemovesReference)7383 TEST(RemoveReferenceTest, RemovesReference) {
7384   CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
7385   CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
7386 }
7387 
7388 // Tests GTEST_REMOVE_REFERENCE_.
7389 
7390 template <typename T1, typename T2>
TestGTestRemoveReference()7391 void TestGTestRemoveReference() {
7392   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>();
7393 }
7394 
TEST(RemoveReferenceTest,MacroVersion)7395 TEST(RemoveReferenceTest, MacroVersion) {
7396   TestGTestRemoveReference<int, int>();
7397   TestGTestRemoveReference<const char, const char&>();
7398 }
7399 
7400 
7401 // Tests that RemoveConst does not affect non-const types.
TEST(RemoveConstTest,DoesNotAffectNonConstType)7402 TEST(RemoveConstTest, DoesNotAffectNonConstType) {
7403   CompileAssertTypesEqual<int, RemoveConst<int>::type>();
7404   CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
7405 }
7406 
7407 // Tests that RemoveConst removes const from const types.
TEST(RemoveConstTest,RemovesConst)7408 TEST(RemoveConstTest, RemovesConst) {
7409   CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
7410   CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
7411   CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
7412 }
7413 
7414 // Tests GTEST_REMOVE_CONST_.
7415 
7416 template <typename T1, typename T2>
TestGTestRemoveConst()7417 void TestGTestRemoveConst() {
7418   CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>();
7419 }
7420 
TEST(RemoveConstTest,MacroVersion)7421 TEST(RemoveConstTest, MacroVersion) {
7422   TestGTestRemoveConst<int, int>();
7423   TestGTestRemoveConst<double&, double&>();
7424   TestGTestRemoveConst<char, const char>();
7425 }
7426 
7427 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
7428 
7429 template <typename T1, typename T2>
TestGTestRemoveReferenceAndConst()7430 void TestGTestRemoveReferenceAndConst() {
7431   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>();
7432 }
7433 
TEST(RemoveReferenceToConstTest,Works)7434 TEST(RemoveReferenceToConstTest, Works) {
7435   TestGTestRemoveReferenceAndConst<int, int>();
7436   TestGTestRemoveReferenceAndConst<double, double&>();
7437   TestGTestRemoveReferenceAndConst<char, const char>();
7438   TestGTestRemoveReferenceAndConst<char, const char&>();
7439   TestGTestRemoveReferenceAndConst<const char*, const char*>();
7440 }
7441 
7442 // Tests that AddReference does not affect reference types.
TEST(AddReferenceTest,DoesNotAffectReferenceType)7443 TEST(AddReferenceTest, DoesNotAffectReferenceType) {
7444   CompileAssertTypesEqual<int&, AddReference<int&>::type>();
7445   CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
7446 }
7447 
7448 // Tests that AddReference adds reference to non-reference types.
TEST(AddReferenceTest,AddsReference)7449 TEST(AddReferenceTest, AddsReference) {
7450   CompileAssertTypesEqual<int&, AddReference<int>::type>();
7451   CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
7452 }
7453 
7454 // Tests GTEST_ADD_REFERENCE_.
7455 
7456 template <typename T1, typename T2>
TestGTestAddReference()7457 void TestGTestAddReference() {
7458   CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>();
7459 }
7460 
TEST(AddReferenceTest,MacroVersion)7461 TEST(AddReferenceTest, MacroVersion) {
7462   TestGTestAddReference<int&, int>();
7463   TestGTestAddReference<const char&, const char&>();
7464 }
7465 
7466 // Tests GTEST_REFERENCE_TO_CONST_.
7467 
7468 template <typename T1, typename T2>
TestGTestReferenceToConst()7469 void TestGTestReferenceToConst() {
7470   CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>();
7471 }
7472 
TEST(GTestReferenceToConstTest,Works)7473 TEST(GTestReferenceToConstTest, Works) {
7474   TestGTestReferenceToConst<const char&, char>();
7475   TestGTestReferenceToConst<const int&, const int>();
7476   TestGTestReferenceToConst<const double&, double>();
7477   TestGTestReferenceToConst<const std::string&, const std::string&>();
7478 }
7479 
7480 // Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
TEST(ImplicitlyConvertibleTest,ValueIsCompileTimeConstant)7481 TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
7482   GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true);
7483   GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value),
7484                         const_false);
7485 }
7486 
7487 // Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
7488 // be implicitly converted to T2.
TEST(ImplicitlyConvertibleTest,ValueIsTrueWhenConvertible)7489 TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
7490   EXPECT_TRUE((ImplicitlyConvertible<int, double>::value));
7491   EXPECT_TRUE((ImplicitlyConvertible<double, int>::value));
7492   EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value));
7493   EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value));
7494   EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&,
7495                                      const ConversionHelperBase&>::value));
7496   EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase,
7497                                      ConversionHelperBase>::value));
7498 }
7499 
7500 // Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
7501 // cannot be implicitly converted to T2.
TEST(ImplicitlyConvertibleTest,ValueIsFalseWhenNotConvertible)7502 TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
7503   EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value));
7504   EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value));
7505   EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value));
7506   EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&,
7507                                       ConversionHelperDerived&>::value));
7508 }
7509 
7510 // Tests IsContainerTest.
7511 
7512 class NonContainer {};
7513 
TEST(IsContainerTestTest,WorksForNonContainer)7514 TEST(IsContainerTestTest, WorksForNonContainer) {
7515   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
7516   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
7517   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
7518 }
7519 
TEST(IsContainerTestTest,WorksForContainer)7520 TEST(IsContainerTestTest, WorksForContainer) {
7521   EXPECT_EQ(sizeof(IsContainer),
7522             sizeof(IsContainerTest<std::vector<bool> >(0)));
7523   EXPECT_EQ(sizeof(IsContainer),
7524             sizeof(IsContainerTest<std::map<int, double> >(0)));
7525 }
7526 
7527 // Tests ArrayEq().
7528 
TEST(ArrayEqTest,WorksForDegeneratedArrays)7529 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
7530   EXPECT_TRUE(ArrayEq(5, 5L));
7531   EXPECT_FALSE(ArrayEq('a', 0));
7532 }
7533 
TEST(ArrayEqTest,WorksForOneDimensionalArrays)7534 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
7535   // Note that a and b are distinct but compatible types.
7536   const int a[] = { 0, 1 };
7537   long b[] = { 0, 1 };
7538   EXPECT_TRUE(ArrayEq(a, b));
7539   EXPECT_TRUE(ArrayEq(a, 2, b));
7540 
7541   b[0] = 2;
7542   EXPECT_FALSE(ArrayEq(a, b));
7543   EXPECT_FALSE(ArrayEq(a, 1, b));
7544 }
7545 
TEST(ArrayEqTest,WorksForTwoDimensionalArrays)7546 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
7547   const char a[][3] = { "hi", "lo" };
7548   const char b[][3] = { "hi", "lo" };
7549   const char c[][3] = { "hi", "li" };
7550 
7551   EXPECT_TRUE(ArrayEq(a, b));
7552   EXPECT_TRUE(ArrayEq(a, 2, b));
7553 
7554   EXPECT_FALSE(ArrayEq(a, c));
7555   EXPECT_FALSE(ArrayEq(a, 2, c));
7556 }
7557 
7558 // Tests ArrayAwareFind().
7559 
TEST(ArrayAwareFindTest,WorksForOneDimensionalArray)7560 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
7561   const char a[] = "hello";
7562   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
7563   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
7564 }
7565 
TEST(ArrayAwareFindTest,WorksForTwoDimensionalArray)7566 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
7567   int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
7568   const int b[2] = { 2, 3 };
7569   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
7570 
7571   const int c[2] = { 6, 7 };
7572   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
7573 }
7574 
7575 // Tests CopyArray().
7576 
TEST(CopyArrayTest,WorksForDegeneratedArrays)7577 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
7578   int n = 0;
7579   CopyArray('a', &n);
7580   EXPECT_EQ('a', n);
7581 }
7582 
TEST(CopyArrayTest,WorksForOneDimensionalArrays)7583 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
7584   const char a[3] = "hi";
7585   int b[3];
7586 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7587   CopyArray(a, &b);
7588   EXPECT_TRUE(ArrayEq(a, b));
7589 #endif
7590 
7591   int c[3];
7592   CopyArray(a, 3, c);
7593   EXPECT_TRUE(ArrayEq(a, c));
7594 }
7595 
TEST(CopyArrayTest,WorksForTwoDimensionalArrays)7596 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
7597   const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
7598   int b[2][3];
7599 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
7600   CopyArray(a, &b);
7601   EXPECT_TRUE(ArrayEq(a, b));
7602 #endif
7603 
7604   int c[2][3];
7605   CopyArray(a, 2, c);
7606   EXPECT_TRUE(ArrayEq(a, c));
7607 }
7608 
7609 // Tests NativeArray.
7610 
TEST(NativeArrayTest,ConstructorFromArrayWorks)7611 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
7612   const int a[3] = { 0, 1, 2 };
7613   NativeArray<int> na(a, 3, RelationToSourceReference());
7614   EXPECT_EQ(3U, na.size());
7615   EXPECT_EQ(a, na.begin());
7616 }
7617 
TEST(NativeArrayTest,CreatesAndDeletesCopyOfArrayWhenAskedTo)7618 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
7619   typedef int Array[2];
7620   Array* a = new Array[1];
7621   (*a)[0] = 0;
7622   (*a)[1] = 1;
7623   NativeArray<int> na(*a, 2, RelationToSourceCopy());
7624   EXPECT_NE(*a, na.begin());
7625   delete[] a;
7626   EXPECT_EQ(0, na.begin()[0]);
7627   EXPECT_EQ(1, na.begin()[1]);
7628 
7629   // We rely on the heap checker to verify that na deletes the copy of
7630   // array.
7631 }
7632 
TEST(NativeArrayTest,TypeMembersAreCorrect)7633 TEST(NativeArrayTest, TypeMembersAreCorrect) {
7634   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
7635   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
7636 
7637   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
7638   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
7639 }
7640 
TEST(NativeArrayTest,MethodsWork)7641 TEST(NativeArrayTest, MethodsWork) {
7642   const int a[3] = { 0, 1, 2 };
7643   NativeArray<int> na(a, 3, RelationToSourceCopy());
7644   ASSERT_EQ(3U, na.size());
7645   EXPECT_EQ(3, na.end() - na.begin());
7646 
7647   NativeArray<int>::const_iterator it = na.begin();
7648   EXPECT_EQ(0, *it);
7649   ++it;
7650   EXPECT_EQ(1, *it);
7651   it++;
7652   EXPECT_EQ(2, *it);
7653   ++it;
7654   EXPECT_EQ(na.end(), it);
7655 
7656   EXPECT_TRUE(na == na);
7657 
7658   NativeArray<int> na2(a, 3, RelationToSourceReference());
7659   EXPECT_TRUE(na == na2);
7660 
7661   const int b1[3] = { 0, 1, 1 };
7662   const int b2[4] = { 0, 1, 2, 3 };
7663   EXPECT_FALSE(na == NativeArray<int>(b1, 3, RelationToSourceReference()));
7664   EXPECT_FALSE(na == NativeArray<int>(b2, 4, RelationToSourceCopy()));
7665 }
7666 
TEST(NativeArrayTest,WorksForTwoDimensionalArray)7667 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
7668   const char a[2][3] = { "hi", "lo" };
7669   NativeArray<char[3]> na(a, 2, RelationToSourceReference());
7670   ASSERT_EQ(2U, na.size());
7671   EXPECT_EQ(a, na.begin());
7672 }
7673 
7674 // Tests SkipPrefix().
7675 
TEST(SkipPrefixTest,SkipsWhenPrefixMatches)7676 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
7677   const char* const str = "hello";
7678 
7679   const char* p = str;
7680   EXPECT_TRUE(SkipPrefix("", &p));
7681   EXPECT_EQ(str, p);
7682 
7683   p = str;
7684   EXPECT_TRUE(SkipPrefix("hell", &p));
7685   EXPECT_EQ(str + 4, p);
7686 }
7687 
TEST(SkipPrefixTest,DoesNotSkipWhenPrefixDoesNotMatch)7688 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
7689   const char* const str = "world";
7690 
7691   const char* p = str;
7692   EXPECT_FALSE(SkipPrefix("W", &p));
7693   EXPECT_EQ(str, p);
7694 
7695   p = str;
7696   EXPECT_FALSE(SkipPrefix("world!", &p));
7697   EXPECT_EQ(str, p);
7698 }
7699 
7700