1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 // Copyright (c) 2009 The Chromium Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style license that can be
5 // found in the LICENSE file.
6
7 #include "base/message_pump_win.h"
8
9 #include <math.h>
10
11 #include "base/message_loop.h"
12 #include "base/histogram.h"
13 #include "base/win_util.h"
14 #include "mozilla/ProfilerLabels.h"
15 #include "WinUtils.h"
16
17 using base::Time;
18
19 namespace base {
20
21 static const wchar_t kWndClass[] = L"Chrome_MessagePumpWindow";
22
23 // Message sent to get an additional time slice for pumping (processing) another
24 // task (a series of such messages creates a continuous task pump).
25 static const int kMsgHaveWork = WM_USER + 1;
26
27 //-----------------------------------------------------------------------------
28 // MessagePumpWin public:
29
AddObserver(Observer * observer)30 void MessagePumpWin::AddObserver(Observer* observer) {
31 observers_.AddObserver(observer);
32 }
33
RemoveObserver(Observer * observer)34 void MessagePumpWin::RemoveObserver(Observer* observer) {
35 observers_.RemoveObserver(observer);
36 }
37
WillProcessMessage(const MSG & msg)38 void MessagePumpWin::WillProcessMessage(const MSG& msg) {
39 FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg));
40 }
41
DidProcessMessage(const MSG & msg)42 void MessagePumpWin::DidProcessMessage(const MSG& msg) {
43 FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg));
44 }
45
RunWithDispatcher(Delegate * delegate,Dispatcher * dispatcher)46 void MessagePumpWin::RunWithDispatcher(Delegate* delegate,
47 Dispatcher* dispatcher) {
48 RunState s;
49 s.delegate = delegate;
50 s.dispatcher = dispatcher;
51 s.should_quit = false;
52 s.run_depth = state_ ? state_->run_depth + 1 : 1;
53
54 RunState* previous_state = state_;
55 state_ = &s;
56
57 DoRunLoop();
58
59 state_ = previous_state;
60 }
61
Quit()62 void MessagePumpWin::Quit() {
63 DCHECK(state_);
64 state_->should_quit = true;
65 }
66
67 //-----------------------------------------------------------------------------
68 // MessagePumpWin protected:
69
GetCurrentDelay() const70 int MessagePumpWin::GetCurrentDelay() const {
71 if (delayed_work_time_.is_null()) return -1;
72
73 // Be careful here. TimeDelta has a precision of microseconds, but we want a
74 // value in milliseconds. If there are 5.5ms left, should the delay be 5 or
75 // 6? It should be 6 to avoid executing delayed work too early.
76 double timeout =
77 ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF());
78
79 // If this value is negative, then we need to run delayed work soon.
80 int delay = static_cast<int>(timeout);
81 if (delay < 0) delay = 0;
82
83 return delay;
84 }
85
86 //-----------------------------------------------------------------------------
87 // MessagePumpForUI public:
88
MessagePumpForUI()89 MessagePumpForUI::MessagePumpForUI() { InitMessageWnd(); }
90
~MessagePumpForUI()91 MessagePumpForUI::~MessagePumpForUI() {
92 DestroyWindow(message_hwnd_);
93 UnregisterClass(kWndClass, GetModuleHandle(NULL));
94 }
95
ScheduleWork()96 void MessagePumpForUI::ScheduleWork() {
97 if (InterlockedExchange(&have_work_, 1))
98 return; // Someone else continued the pumping.
99
100 // Make sure the MessagePump does some work for us.
101 PostMessage(message_hwnd_, kMsgHaveWork, reinterpret_cast<WPARAM>(this), 0);
102
103 // In order to wake up any cross-process COM calls which may currently be
104 // pending on the main thread, we also have to post a UI message.
105 PostMessage(message_hwnd_, WM_NULL, 0, 0);
106 }
107
ScheduleDelayedWork(const TimeTicks & delayed_work_time)108 void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
109 //
110 // We would *like* to provide high resolution timers. Windows timers using
111 // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup
112 // mechanism because the application can enter modal windows loops where it
113 // is not running our MessageLoop; the only way to have our timers fire in
114 // these cases is to post messages there.
115 //
116 // To provide sub-10ms timers, we process timers directly from our run loop.
117 // For the common case, timers will be processed there as the run loop does
118 // its normal work. However, we *also* set the system timer so that WM_TIMER
119 // events fire. This mops up the case of timers not being able to work in
120 // modal message loops. It is possible for the SetTimer to pop and have no
121 // pending timers, because they could have already been processed by the
122 // run loop itself.
123 //
124 // We use a single SetTimer corresponding to the timer that will expire
125 // soonest. As new timers are created and destroyed, we update SetTimer.
126 // Getting a spurrious SetTimer event firing is benign, as we'll just be
127 // processing an empty timer queue.
128 //
129 delayed_work_time_ = delayed_work_time;
130
131 int delay_msec = GetCurrentDelay();
132 DCHECK(delay_msec >= 0);
133 if (delay_msec < USER_TIMER_MINIMUM) delay_msec = USER_TIMER_MINIMUM;
134
135 // Create a WM_TIMER event that will wake us up to check for any pending
136 // timers (in case we are running within a nested, external sub-pump).
137 SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), delay_msec, NULL);
138 }
139
PumpOutPendingPaintMessages()140 void MessagePumpForUI::PumpOutPendingPaintMessages() {
141 // If we are being called outside of the context of Run, then don't try to do
142 // any work.
143 if (!state_) return;
144
145 // Create a mini-message-pump to force immediate processing of only Windows
146 // WM_PAINT messages. Don't provide an infinite loop, but do enough peeking
147 // to get the job done. Actual common max is 4 peeks, but we'll be a little
148 // safe here.
149 const int kMaxPeekCount = 20;
150 int peek_count;
151 for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) {
152 MSG msg;
153 if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT)) break;
154 ProcessMessageHelper(msg);
155 if (state_->should_quit) // Handle WM_QUIT.
156 break;
157 }
158 }
159
160 //-----------------------------------------------------------------------------
161 // MessagePumpForUI private:
162
163 // static
WndProcThunk(HWND hwnd,UINT message,WPARAM wparam,LPARAM lparam)164 LRESULT CALLBACK MessagePumpForUI::WndProcThunk(HWND hwnd, UINT message,
165 WPARAM wparam, LPARAM lparam) {
166 switch (message) {
167 case kMsgHaveWork:
168 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
169 break;
170 case WM_TIMER:
171 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
172 break;
173 }
174 return DefWindowProc(hwnd, message, wparam, lparam);
175 }
176
DoRunLoop()177 void MessagePumpForUI::DoRunLoop() {
178 // IF this was just a simple PeekMessage() loop (servicing all possible work
179 // queues), then Windows would try to achieve the following order according
180 // to MSDN documentation about PeekMessage with no filter):
181 // * Sent messages
182 // * Posted messages
183 // * Sent messages (again)
184 // * WM_PAINT messages
185 // * WM_TIMER messages
186 //
187 // Summary: none of the above classes is starved, and sent messages has twice
188 // the chance of being processed (i.e., reduced service time).
189
190 for (;;) {
191 // If we do any work, we may create more messages etc., and more work may
192 // possibly be waiting in another task group. When we (for example)
193 // ProcessNextWindowsMessage(), there is a good chance there are still more
194 // messages waiting. On the other hand, when any of these methods return
195 // having done no work, then it is pretty unlikely that calling them again
196 // quickly will find any work to do. Finally, if they all say they had no
197 // work, then it is a good time to consider sleeping (waiting) for more
198 // work.
199
200 bool more_work_is_plausible = ProcessNextWindowsMessage();
201 if (state_->should_quit) break;
202
203 more_work_is_plausible |= state_->delegate->DoWork();
204 if (state_->should_quit) break;
205
206 more_work_is_plausible |=
207 state_->delegate->DoDelayedWork(&delayed_work_time_);
208 // If we did not process any delayed work, then we can assume that our
209 // existing WM_TIMER if any will fire when delayed work should run. We
210 // don't want to disturb that timer if it is already in flight. However,
211 // if we did do all remaining delayed work, then lets kill the WM_TIMER.
212 if (more_work_is_plausible && delayed_work_time_.is_null())
213 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
214 if (state_->should_quit) break;
215
216 if (more_work_is_plausible) continue;
217
218 more_work_is_plausible = state_->delegate->DoIdleWork();
219 if (state_->should_quit) break;
220
221 if (more_work_is_plausible) continue;
222
223 WaitForWork(); // Wait (sleep) until we have work to do again.
224 }
225 }
226
InitMessageWnd()227 void MessagePumpForUI::InitMessageWnd() {
228 HINSTANCE hinst = GetModuleHandle(NULL);
229
230 WNDCLASSEX wc = {0};
231 wc.cbSize = sizeof(wc);
232 wc.lpfnWndProc = WndProcThunk;
233 wc.hInstance = hinst;
234 wc.lpszClassName = kWndClass;
235 RegisterClassEx(&wc);
236
237 message_hwnd_ =
238 CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, hinst, 0);
239 DCHECK(message_hwnd_);
240 }
241
WaitForWork()242 void MessagePumpForUI::WaitForWork() {
243 AUTO_PROFILER_LABEL("MessagePumpForUI::WaitForWork", IDLE);
244
245 // Wait until a message is available, up to the time needed by the timer
246 // manager to fire the next set of timers.
247 int delay = GetCurrentDelay();
248 if (delay < 0) // Negative value means no timers waiting.
249 delay = INFINITE;
250
251 mozilla::widget::WinUtils::WaitForMessage(delay);
252 }
253
HandleWorkMessage()254 void MessagePumpForUI::HandleWorkMessage() {
255 // If we are being called outside of the context of Run, then don't try to do
256 // any work. This could correspond to a MessageBox call or something of that
257 // sort.
258 if (!state_) {
259 // Since we handled a kMsgHaveWork message, we must still update this flag.
260 InterlockedExchange(&have_work_, 0);
261 return;
262 }
263
264 // Let whatever would have run had we not been putting messages in the queue
265 // run now. This is an attempt to make our dummy message not starve other
266 // messages that may be in the Windows message queue.
267 ProcessPumpReplacementMessage();
268
269 // Now give the delegate a chance to do some work. He'll let us know if he
270 // needs to do more work.
271 if (state_->delegate->DoWork()) ScheduleWork();
272 }
273
HandleTimerMessage()274 void MessagePumpForUI::HandleTimerMessage() {
275 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
276
277 // If we are being called outside of the context of Run, then don't do
278 // anything. This could correspond to a MessageBox call or something of
279 // that sort.
280 if (!state_) return;
281
282 state_->delegate->DoDelayedWork(&delayed_work_time_);
283 if (!delayed_work_time_.is_null()) {
284 // A bit gratuitous to set delayed_work_time_ again, but oh well.
285 ScheduleDelayedWork(delayed_work_time_);
286 }
287 }
288
ProcessNextWindowsMessage()289 bool MessagePumpForUI::ProcessNextWindowsMessage() {
290 // If there are sent messages in the queue then PeekMessage internally
291 // dispatches the message and returns false. We return true in this
292 // case to ensure that the message loop peeks again instead of calling
293 // MsgWaitForMultipleObjectsEx again.
294 bool sent_messages_in_queue = false;
295 DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE);
296 if (HIWORD(queue_status) & QS_SENDMESSAGE) sent_messages_in_queue = true;
297
298 MSG msg;
299 if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
300 return ProcessMessageHelper(msg);
301
302 return sent_messages_in_queue;
303 }
304
ProcessMessageHelper(const MSG & msg)305 bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
306 if (WM_QUIT == msg.message) {
307 // Repost the QUIT message so that it will be retrieved by the primary
308 // GetMessage() loop.
309 state_->should_quit = true;
310 PostQuitMessage(static_cast<int>(msg.wParam));
311 return false;
312 }
313
314 // While running our main message pump, we discard kMsgHaveWork messages.
315 if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
316 return ProcessPumpReplacementMessage();
317
318 WillProcessMessage(msg);
319
320 if (state_->dispatcher) {
321 if (!state_->dispatcher->Dispatch(msg)) state_->should_quit = true;
322 } else {
323 TranslateMessage(&msg);
324 DispatchMessage(&msg);
325 }
326
327 DidProcessMessage(msg);
328 return true;
329 }
330
ProcessPumpReplacementMessage()331 bool MessagePumpForUI::ProcessPumpReplacementMessage() {
332 // When we encounter a kMsgHaveWork message, this method is called to peek
333 // and process a replacement message, such as a WM_PAINT or WM_TIMER. The
334 // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
335 // a continuous stream of such messages are posted. This method carefully
336 // peeks a message while there is no chance for a kMsgHaveWork to be pending,
337 // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
338 // possibly be posted), and finally dispatches that peeked replacement. Note
339 // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
340
341 MSG msg;
342 bool have_message = false;
343 if (MessageLoop::current()->os_modal_loop()) {
344 // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
345 have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) ||
346 PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE);
347 } else {
348 have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE));
349
350 if (have_message && msg.message == WM_NULL)
351 have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE));
352 }
353
354 DCHECK(!have_message || kMsgHaveWork != msg.message ||
355 msg.hwnd != message_hwnd_);
356
357 // Since we discarded a kMsgHaveWork message, we must update the flag.
358 int old_have_work = InterlockedExchange(&have_work_, 0);
359 DCHECK(old_have_work);
360
361 // We don't need a special time slice if we didn't have_message to process.
362 if (!have_message) return false;
363
364 // Guarantee we'll get another time slice in the case where we go into native
365 // windows code. This ScheduleWork() may hurt performance a tiny bit when
366 // tasks appear very infrequently, but when the event queue is busy, the
367 // kMsgHaveWork events get (percentage wise) rarer and rarer.
368 ScheduleWork();
369 return ProcessMessageHelper(msg);
370 }
371
372 //-----------------------------------------------------------------------------
373 // MessagePumpForIO public:
374
MessagePumpForIO()375 MessagePumpForIO::MessagePumpForIO() {
376 port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, 0, 1));
377 DCHECK(port_.IsValid());
378 }
379
ScheduleWork()380 void MessagePumpForIO::ScheduleWork() {
381 if (InterlockedExchange(&have_work_, 1))
382 return; // Someone else continued the pumping.
383
384 // Make sure the MessagePump does some work for us.
385 BOOL ret =
386 PostQueuedCompletionStatus(port_, 0, reinterpret_cast<ULONG_PTR>(this),
387 reinterpret_cast<OVERLAPPED*>(this));
388 DCHECK(ret);
389 }
390
ScheduleDelayedWork(const TimeTicks & delayed_work_time)391 void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
392 // We know that we can't be blocked right now since this method can only be
393 // called on the same thread as Run, so we only need to update our record of
394 // how long to sleep when we do sleep.
395 delayed_work_time_ = delayed_work_time;
396 }
397
RegisterIOHandler(HANDLE file_handle,IOHandler * handler)398 void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
399 IOHandler* handler) {
400 ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
401 HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1);
402 DCHECK(port == port_.Get());
403 }
404
405 //-----------------------------------------------------------------------------
406 // MessagePumpForIO private:
407
DoRunLoop()408 void MessagePumpForIO::DoRunLoop() {
409 for (;;) {
410 // If we do any work, we may create more messages etc., and more work may
411 // possibly be waiting in another task group. When we (for example)
412 // WaitForIOCompletion(), there is a good chance there are still more
413 // messages waiting. On the other hand, when any of these methods return
414 // having done no work, then it is pretty unlikely that calling them
415 // again quickly will find any work to do. Finally, if they all say they
416 // had no work, then it is a good time to consider sleeping (waiting) for
417 // more work.
418
419 bool more_work_is_plausible = state_->delegate->DoWork();
420 if (state_->should_quit) break;
421
422 more_work_is_plausible |= WaitForIOCompletion(0, NULL);
423 if (state_->should_quit) break;
424
425 more_work_is_plausible |=
426 state_->delegate->DoDelayedWork(&delayed_work_time_);
427 if (state_->should_quit) break;
428
429 if (more_work_is_plausible) continue;
430
431 more_work_is_plausible = state_->delegate->DoIdleWork();
432 if (state_->should_quit) break;
433
434 if (more_work_is_plausible) continue;
435
436 WaitForWork(); // Wait (sleep) until we have work to do again.
437 }
438 }
439
440 // Wait until IO completes, up to the time needed by the timer manager to fire
441 // the next set of timers.
WaitForWork()442 void MessagePumpForIO::WaitForWork() {
443 // We do not support nested IO message loops. This is to avoid messy
444 // recursion problems.
445 DCHECK(state_->run_depth == 1) << "Cannot nest an IO message loop!";
446
447 int timeout = GetCurrentDelay();
448 if (timeout < 0) // Negative value means no timers waiting.
449 timeout = INFINITE;
450
451 WaitForIOCompletion(timeout, NULL);
452 }
453
WaitForIOCompletion(DWORD timeout,IOHandler * filter)454 bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
455 IOItem item;
456 if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
457 // We have to ask the system for another IO completion.
458 if (!GetIOItem(timeout, &item)) return false;
459
460 if (ProcessInternalIOItem(item)) return true;
461 }
462
463 if (item.context->handler) {
464 if (filter && item.handler != filter) {
465 // Save this item for later
466 completed_io_.push_back(item);
467 } else {
468 DCHECK(item.context->handler == item.handler);
469 item.handler->OnIOCompleted(item.context, item.bytes_transfered,
470 item.error);
471 }
472 } else {
473 // The handler must be gone by now, just cleanup the mess.
474 delete item.context;
475 }
476 return true;
477 }
478
479 // Asks the OS for another IO completion result.
GetIOItem(DWORD timeout,IOItem * item)480 bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
481 memset(item, 0, sizeof(*item));
482 ULONG_PTR key = 0;
483 OVERLAPPED* overlapped = NULL;
484 AUTO_PROFILER_LABEL("MessagePumpForIO::GetIOItem::Wait", IDLE);
485 if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
486 &overlapped, timeout)) {
487 if (!overlapped) return false; // Nothing in the queue.
488 item->error = GetLastError();
489 item->bytes_transfered = 0;
490 }
491
492 item->handler = reinterpret_cast<IOHandler*>(key);
493 item->context = reinterpret_cast<IOContext*>(overlapped);
494 return true;
495 }
496
ProcessInternalIOItem(const IOItem & item)497 bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
498 if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
499 this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
500 // This is our internal completion.
501 DCHECK(!item.bytes_transfered);
502 InterlockedExchange(&have_work_, 0);
503 return true;
504 }
505 return false;
506 }
507
508 // Returns a completion item that was previously received.
MatchCompletedIOItem(IOHandler * filter,IOItem * item)509 bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
510 DCHECK(!completed_io_.empty());
511 for (std::list<IOItem>::iterator it = completed_io_.begin();
512 it != completed_io_.end(); ++it) {
513 if (!filter || it->handler == filter) {
514 *item = *it;
515 completed_io_.erase(it);
516 return true;
517 }
518 }
519 return false;
520 }
521
522 } // namespace base
523