1 /* 2 * Copyright 2015 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef SkTHash_DEFINED 9 #define SkTHash_DEFINED 10 11 #include "SkChecksum.h" 12 #include "SkTypes.h" 13 #include "SkTemplates.h" 14 15 // Before trying to use SkTHashTable, look below to see if SkTHashMap or SkTHashSet works for you. 16 // They're easier to use, usually perform the same, and have fewer sharp edges. 17 18 // T and K are treated as ordinary copyable C++ types. 19 // Traits must have: 20 // - static K GetKey(T) 21 // - static uint32_t Hash(K) 22 // If the key is large and stored inside T, you may want to make K a const&. 23 // Similarly, if T is large you might want it to be a pointer. 24 template <typename T, typename K, typename Traits = T> 25 class SkTHashTable : SkNoncopyable { 26 public: 27 SkTHashTable() : fCount(0), fRemoved(0), fCapacity(0) {} 28 29 // Clear the table. 30 void reset() { 31 this->~SkTHashTable(); 32 new (this) SkTHashTable; 33 } 34 35 // How many entries are in the table? 36 int count() const { return fCount; } 37 38 // Approximately how many bytes of memory do we use beyond sizeof(*this)? 39 size_t approxBytesUsed() const { return fCapacity * sizeof(Slot); } 40 41 // !!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!! 42 // set(), find() and foreach() all allow mutable access to table entries. 43 // If you change an entry so that it no longer has the same key, all hell 44 // will break loose. Do not do that! 45 // 46 // Please prefer to use SkTHashMap or SkTHashSet, which do not have this danger. 47 48 // The pointers returned by set() and find() are valid only until the next call to set(). 49 // The pointers you receive in foreach() are only valid for its duration. 50 51 // Copy val into the hash table, returning a pointer to the copy now in the table. 52 // If there already is an entry in the table with the same key, we overwrite it. 53 T* set(const T& val) { 54 if (4 * (fCount+fRemoved) >= 3 * fCapacity) { 55 this->resize(fCapacity > 0 ? fCapacity * 2 : 4); 56 } 57 return this->uncheckedSet(val); 58 } 59 60 // If there is an entry in the table with this key, return a pointer to it. If not, NULL. 61 T* find(const K& key) const { 62 uint32_t hash = Hash(key); 63 int index = hash & (fCapacity-1); 64 for (int n = 0; n < fCapacity; n++) { 65 Slot& s = fSlots[index]; 66 if (s.empty()) { 67 return NULL; 68 } 69 if (!s.removed() && hash == s.hash && key == Traits::GetKey(s.val)) { 70 return &s.val; 71 } 72 index = this->next(index, n); 73 } 74 SkASSERT(fCapacity == 0); 75 return NULL; 76 } 77 78 // Remove the value with this key from the hash table. 79 void remove(const K& key) { 80 SkASSERT(this->find(key)); 81 82 uint32_t hash = Hash(key); 83 int index = hash & (fCapacity-1); 84 for (int n = 0; n < fCapacity; n++) { 85 Slot& s = fSlots[index]; 86 SkASSERT(!s.empty()); 87 if (!s.removed() && hash == s.hash && key == Traits::GetKey(s.val)) { 88 fRemoved++; 89 fCount--; 90 s.markRemoved(); 91 return; 92 } 93 index = this->next(index, n); 94 } 95 SkASSERT(fCapacity == 0); 96 } 97 98 // Call fn on every entry in the table. You may mutate the entries, but be very careful. 99 template <typename Fn> // f(T*) 100 void foreach(Fn&& fn) { 101 for (int i = 0; i < fCapacity; i++) { 102 if (!fSlots[i].empty() && !fSlots[i].removed()) { 103 fn(&fSlots[i].val); 104 } 105 } 106 } 107 108 // Call fn on every entry in the table. You may not mutate anything. 109 template <typename Fn> // f(T) or f(const T&) 110 void foreach(Fn&& fn) const { 111 for (int i = 0; i < fCapacity; i++) { 112 if (!fSlots[i].empty() && !fSlots[i].removed()) { 113 fn(fSlots[i].val); 114 } 115 } 116 } 117 118 private: 119 T* uncheckedSet(const T& val) { 120 const K& key = Traits::GetKey(val); 121 uint32_t hash = Hash(key); 122 int index = hash & (fCapacity-1); 123 for (int n = 0; n < fCapacity; n++) { 124 Slot& s = fSlots[index]; 125 if (s.empty() || s.removed()) { 126 // New entry. 127 if (s.removed()) { 128 fRemoved--; 129 } 130 s.val = val; 131 s.hash = hash; 132 fCount++; 133 return &s.val; 134 } 135 if (hash == s.hash && key == Traits::GetKey(s.val)) { 136 // Overwrite previous entry. 137 // Note: this triggers extra copies when adding the same value repeatedly. 138 s.val = val; 139 return &s.val; 140 } 141 index = this->next(index, n); 142 } 143 SkASSERT(false); 144 return NULL; 145 } 146 147 void resize(int capacity) { 148 int oldCapacity = fCapacity; 149 SkDEBUGCODE(int oldCount = fCount); 150 151 fCount = fRemoved = 0; 152 fCapacity = capacity; 153 SkAutoTArray<Slot> oldSlots(capacity); 154 oldSlots.swap(fSlots); 155 156 for (int i = 0; i < oldCapacity; i++) { 157 const Slot& s = oldSlots[i]; 158 if (!s.empty() && !s.removed()) { 159 this->uncheckedSet(s.val); 160 } 161 } 162 SkASSERT(fCount == oldCount); 163 } 164 165 int next(int index, int n) const { 166 // A valid strategy explores all slots in [0, fCapacity) as n walks from 0 to fCapacity-1. 167 // Both of these strategies are valid: 168 //return (index + 0 + 1) & (fCapacity-1); // Linear probing. 169 return (index + n + 1) & (fCapacity-1); // Quadratic probing. 170 } 171 172 static uint32_t Hash(const K& key) { 173 uint32_t hash = Traits::Hash(key); 174 return hash < 2 ? hash+2 : hash; // We reserve hash 0 and 1 to mark empty or removed slots. 175 } 176 177 struct Slot { 178 Slot() : hash(0) {} 179 bool empty() const { return this->hash == 0; } 180 bool removed() const { return this->hash == 1; } 181 182 void markRemoved() { this->hash = 1; } 183 184 T val; 185 uint32_t hash; 186 }; 187 188 int fCount, fRemoved, fCapacity; 189 SkAutoTArray<Slot> fSlots; 190 }; 191 192 // Maps K->V. A more user-friendly wrapper around SkTHashTable, suitable for most use cases. 193 // K and V are treated as ordinary copyable C++ types, with no assumed relationship between the two. 194 template <typename K, typename V, typename HashK = SkGoodHash> 195 class SkTHashMap : SkNoncopyable { 196 public: 197 SkTHashMap() {} 198 199 // Clear the map. 200 void reset() { fTable.reset(); } 201 202 // How many key/value pairs are in the table? 203 int count() const { return fTable.count(); } 204 205 // Approximately how many bytes of memory do we use beyond sizeof(*this)? 206 size_t approxBytesUsed() const { return fTable.approxBytesUsed(); } 207 208 // N.B. The pointers returned by set() and find() are valid only until the next call to set(). 209 210 // Set key to val in the table, replacing any previous value with the same key. 211 // We copy both key and val, and return a pointer to the value copy now in the table. 212 V* set(const K& key, const V& val) { 213 Pair in = { key, val }; 214 Pair* out = fTable.set(in); 215 return &out->val; 216 } 217 218 // If there is key/value entry in the table with this key, return a pointer to the value. 219 // If not, return NULL. 220 V* find(const K& key) const { 221 if (Pair* p = fTable.find(key)) { 222 return &p->val; 223 } 224 return NULL; 225 } 226 227 // Remove the key/value entry in the table with this key. 228 void remove(const K& key) { 229 SkASSERT(this->find(key)); 230 fTable.remove(key); 231 } 232 233 // Call fn on every key/value pair in the table. You may mutate the value but not the key. 234 template <typename Fn> // f(K, V*) or f(const K&, V*) 235 void foreach(Fn&& fn) { 236 fTable.foreach([&fn](Pair* p){ fn(p->key, &p->val); }); 237 } 238 239 // Call fn on every key/value pair in the table. You may not mutate anything. 240 template <typename Fn> // f(K, V), f(const K&, V), f(K, const V&) or f(const K&, const V&). 241 void foreach(Fn&& fn) const { 242 fTable.foreach([&fn](const Pair& p){ fn(p.key, p.val); }); 243 } 244 245 private: 246 struct Pair { 247 K key; 248 V val; 249 static const K& GetKey(const Pair& p) { return p.key; } 250 static uint32_t Hash(const K& key) { return HashK()(key); } 251 }; 252 253 SkTHashTable<Pair, K> fTable; 254 }; 255 256 // A set of T. T is treated as an ordiary copyable C++ type. 257 template <typename T, typename HashT = SkGoodHash> 258 class SkTHashSet : SkNoncopyable { 259 public: 260 SkTHashSet() {} 261 262 // Clear the set. 263 void reset() { fTable.reset(); } 264 265 // How many items are in the set? 266 int count() const { return fTable.count(); } 267 268 // Approximately how many bytes of memory do we use beyond sizeof(*this)? 269 size_t approxBytesUsed() const { return fTable.approxBytesUsed(); } 270 271 // Copy an item into the set. 272 void add(const T& item) { fTable.set(item); } 273 274 // Is this item in the set? 275 bool contains(const T& item) const { return SkToBool(this->find(item)); } 276 277 // If an item equal to this is in the set, return a pointer to it, otherwise null. 278 // This pointer remains valid until the next call to add(). 279 const T* find(const T& item) const { return fTable.find(item); } 280 281 // Remove the item in the set equal to this. 282 void remove(const T& item) { 283 SkASSERT(this->contains(item)); 284 fTable.remove(item); 285 } 286 287 // Call fn on every item in the set. You may not mutate anything. 288 template <typename Fn> // f(T), f(const T&) 289 void foreach (Fn&& fn) const { 290 fTable.foreach(fn); 291 } 292 293 private: 294 struct Traits { 295 static const T& GetKey(const T& item) { return item; } 296 static uint32_t Hash(const T& item) { return HashT()(item); } 297 }; 298 SkTHashTable<T, T, Traits> fTable; 299 }; 300 301 #endif//SkTHash_DEFINED 302