1 /*
2  * Copyright 2016 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkLinearBitmapPipeline_core_DEFINED
9 #define SkLinearBitmapPipeline_core_DEFINED
10 
11 #include <algorithm>
12 #include <cmath>
13 #include "SkNx.h"
14 
15 // New bilerp strategy:
16 // Pass through on bilerpList4 and bilerpListFew (analogs to pointList), introduce bilerpEdge
17 // which takes 4 points. If the sample spans an edge, then break it into a bilerpEdge. Bilerp
18 // span then becomes a normal span except in special cases where an extra Y is given. The bilerp
19 // need to stay single point calculations until the tile layer.
20 // TODO:
21 //  - edge span predicate.
22 //  - introduce new point API
23 //  - Add tile for new api.
24 
25 namespace {
26 struct X {
XX27     explicit X(SkScalar val) : fVal{val} { }
XX28     explicit X(SkPoint pt)   : fVal{pt.fX} { }
XX29     explicit X(SkSize s)     : fVal{s.fWidth} { }
XX30     explicit X(SkISize s)    : fVal((SkScalar)s.fWidth) { }
SkScalarX31     operator SkScalar () const {return fVal;}
32 private:
33     SkScalar fVal;
34 };
35 
36 struct Y {
YY37     explicit Y(SkScalar val) : fVal{val} { }
YY38     explicit Y(SkPoint pt)   : fVal{pt.fY} { }
YY39     explicit Y(SkSize s)     : fVal{s.fHeight} { }
YY40     explicit Y(SkISize s)    : fVal((SkScalar)s.fHeight) { }
SkScalarY41     operator SkScalar () const {return fVal;}
42 private:
43     SkScalar fVal;
44 };
45 
46 // The Span class enables efficient processing horizontal spans of pixels.
47 // * start - the point where to start the span.
48 // * length - the number of pixels to traverse in source space.
49 // * count - the number of pixels to produce in destination space.
50 // Both start and length are mapped through the inversion matrix to produce values in source
51 // space. After the matrix operation, the tilers may break the spans up into smaller spans.
52 // The tilers can produce spans that seem nonsensical.
53 // * The clamp tiler can create spans with length of 0. This indicates to copy an edge pixel out
54 //   to the edge of the destination scan.
55 // * The mirror tiler can produce spans with negative length. This indicates that the source
56 //   should be traversed in the opposite direction to the destination pixels.
57 class Span {
58 public:
Span(SkPoint start,SkScalar length,int count)59     Span(SkPoint start, SkScalar length, int count)
60         : fStart(start)
61         , fLength(length)
62         , fCount{count} {
63         SkASSERT(std::isfinite(length));
64     }
65 
66     operator std::tuple<SkPoint&, SkScalar&, int&>() {
67         return std::tie(fStart, fLength, fCount);
68     }
69 
isEmpty()70     bool isEmpty() const { return 0 == fCount; }
clear()71     void clear() { fCount = 0; }
count()72     int count() const { return fCount; }
length()73     SkScalar length() const { return fLength; }
startX()74     SkScalar startX() const { return X(fStart); }
endX()75     SkScalar endX() const { return this->startX() + this->length(); }
startY()76     SkScalar startY() const { return Y(fStart); }
emptySpan()77     Span emptySpan() { return Span{{0.0, 0.0}, 0.0f, 0}; }
78 
completelyWithin(SkScalar xMin,SkScalar xMax)79     bool completelyWithin(SkScalar xMin, SkScalar xMax) const {
80         SkScalar sMin, sMax;
81         std::tie(sMin, sMax) = std::minmax(startX(), endX());
82         return xMin <= sMin && sMax < xMax;
83     }
84 
offset(SkScalar offsetX)85     void offset(SkScalar offsetX) {
86         fStart.offset(offsetX, 0.0f);
87     }
88 
breakAt(SkScalar breakX,SkScalar dx)89     Span breakAt(SkScalar breakX, SkScalar dx) {
90         SkASSERT(std::isfinite(breakX));
91         SkASSERT(std::isfinite(dx));
92         SkASSERT(dx != 0.0f);
93 
94         if (this->isEmpty()) {
95             return this->emptySpan();
96         }
97 
98         int dxSteps = SkScalarFloorToInt((breakX - this->startX()) / dx);
99 
100         if (dxSteps < 0) {
101             // The span is wholly after breakX.
102             return this->emptySpan();
103         } else if (dxSteps >= fCount) {
104             // The span is wholly before breakX.
105             Span answer = *this;
106             this->clear();
107             return answer;
108         }
109 
110         // Calculate the values for the span to cleave off.
111         SkScalar newLength = dxSteps * dx;
112 
113         // If the last (or first if count = 1) sample lands directly on the boundary. Include it
114         // when dx < 0 and exclude it when dx > 0.
115         // Reasoning:
116         //  dx > 0: The sample point on the boundary is part of the next span because the entire
117         // pixel is after the boundary.
118         //  dx < 0: The sample point on the boundary is part of the current span because the
119         // entire pixel is before the boundary.
120         if (this->startX() + newLength == breakX && dx > 0) {
121             if (dxSteps > 0) {
122                 dxSteps -= 1;
123                 newLength -= dx;
124             } else {
125                 return this->emptySpan();
126             }
127         }
128 
129         // Calculate new span parameters
130         SkPoint newStart = fStart;
131         int newCount = dxSteps + 1;
132         SkASSERT(newCount > 0);
133 
134         // Update this span to reflect the break.
135         SkScalar lengthToStart = newLength + dx;
136         fLength -= lengthToStart;
137         fCount -= newCount;
138         fStart = {this->startX() + lengthToStart, Y(fStart)};
139 
140         return Span{newStart, newLength, newCount};
141     }
142 
clampToSinglePixel(SkPoint pixel)143     void clampToSinglePixel(SkPoint pixel) {
144         fStart = pixel;
145         fLength = 0.0f;
146     }
147 
148 private:
149     SkPoint  fStart;
150     SkScalar fLength;
151     int      fCount;
152 };
153 
154 template<typename Stage>
span_fallback(Span span,Stage * stage)155 void span_fallback(Span span, Stage* stage) {
156     SkPoint start;
157     SkScalar length;
158     int count;
159     std::tie(start, length, count) = span;
160     Sk4f xs{X(start)};
161     Sk4f ys{Y(start)};
162 
163     // Initializing this is not needed, but some compilers can't figure this out.
164     Sk4s fourDx{0.0f};
165     if (count > 1) {
166         SkScalar dx = length / (count - 1);
167         xs = xs + Sk4f{0.0f, 1.0f, 2.0f, 3.0f} * dx;
168         // Only used if count is >= 4.
169         fourDx = Sk4f{4.0f * dx};
170     }
171 
172     while (count >= 4) {
173         stage->pointList4(xs, ys);
174         xs = xs + fourDx;
175         count -= 4;
176     }
177     if (count > 0) {
178         stage->pointListFew(count, xs, ys);
179     }
180 }
181 
check_pixel(const Sk4f & pixel)182 inline Sk4f SK_VECTORCALL check_pixel(const Sk4f& pixel) {
183     SkASSERTF(0.0f <= pixel[0] && pixel[0] <= 1.0f, "pixel[0]: %f", pixel[0]);
184     SkASSERTF(0.0f <= pixel[1] && pixel[1] <= 1.0f, "pixel[1]: %f", pixel[1]);
185     SkASSERTF(0.0f <= pixel[2] && pixel[2] <= 1.0f, "pixel[2]: %f", pixel[2]);
186     SkASSERTF(0.0f <= pixel[3] && pixel[3] <= 1.0f, "pixel[3]: %f", pixel[3]);
187     return pixel;
188 }
189 
190 }  // namespace
191 
192 class SkLinearBitmapPipeline::PointProcessorInterface {
193 public:
~PointProcessorInterface()194     virtual ~PointProcessorInterface() { }
195     // Take the first n (where 0 < n && n < 4) items from xs and ys and sample those points. For
196     // nearest neighbor, that means just taking the floor xs and ys. For bilerp, this means
197     // to expand the bilerp filter around the point and sample using that filter.
198     virtual void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) = 0;
199     // Same as pointListFew, but n = 4.
200     virtual void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) = 0;
201     // A span is a compact form of sample points that are obtained by mapping points from
202     // destination space to source space. This is used for horizontal lines only, and is mainly
203     // used to take advantage of memory coherence for horizontal spans.
204     virtual void pointSpan(Span span) = 0;
205 };
206 
207 class SkLinearBitmapPipeline::SampleProcessorInterface
208     : public SkLinearBitmapPipeline::PointProcessorInterface {
209 public:
210     // Used for nearest neighbor when scale factor is 1.0. The span can just be repeated with no
211     // edge pixel alignment problems. This is for handling a very common case.
212     virtual void repeatSpan(Span span, int32_t repeatCount) = 0;
213 };
214 
215 class SkLinearBitmapPipeline::DestinationInterface {
216 public:
~DestinationInterface()217     virtual ~DestinationInterface() { }
218     // Count is normally not needed, but in these early stages of development it is useful to
219     // check bounds.
220     // TODO(herb): 4/6/2016 - remove count when code is stable.
221     virtual void setDestination(void* dst, int count) = 0;
222 };
223 
224 class SkLinearBitmapPipeline::BlendProcessorInterface
225     : public SkLinearBitmapPipeline::DestinationInterface {
226 public:
227     virtual void SK_VECTORCALL blendPixel(Sk4f pixel0) = 0;
228     virtual void SK_VECTORCALL blend4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) = 0;
229 };
230 
231 class SkLinearBitmapPipeline::PixelAccessorInterface {
232 public:
~PixelAccessorInterface()233     virtual ~PixelAccessorInterface() { }
234     virtual void SK_VECTORCALL getFewPixels(
235         int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const = 0;
236 
237     virtual void SK_VECTORCALL get4Pixels(
238         Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const = 0;
239 
240     virtual void get4Pixels(
241         const void* src, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const = 0;
242 
243     virtual Sk4f getPixelFromRow(const void* row, int index) const = 0;
244 
245     virtual Sk4f getPixelAt(int index) const = 0;
246 
247     virtual const void* row(int y) const = 0;
248 };
249 
250 #endif // SkLinearBitmapPipeline_core_DEFINED
251