1 // Copyright (C) 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 ******************************************************************************
5 *
6 *   Copyright (C) 2000-2016, International Business Machines
7 *   Corporation and others.  All Rights Reserved.
8 *
9 ******************************************************************************
10 *   file name:  ucnvmbcs.cpp
11 *   encoding:   US-ASCII
12 *   tab size:   8 (not used)
13 *   indentation:4
14 *
15 *   created on: 2000jul03
16 *   created by: Markus W. Scherer
17 *
18 *   The current code in this file replaces the previous implementation
19 *   of conversion code from multi-byte codepages to Unicode and back.
20 *   This implementation supports the following:
21 *   - legacy variable-length codepages with up to 4 bytes per character
22 *   - all Unicode code points (up to 0x10ffff)
23 *   - efficient distinction of unassigned vs. illegal byte sequences
24 *   - it is possible in fromUnicode() to directly deal with simple
25 *     stateful encodings (used for EBCDIC_STATEFUL)
26 *   - it is possible to convert Unicode code points
27 *     to a single zero byte (but not as a fallback except for SBCS)
28 *
29 *   Remaining limitations in fromUnicode:
30 *   - byte sequences must not have leading zero bytes
31 *   - except for SBCS codepages: no fallback mapping from Unicode to a zero byte
32 *   - limitation to up to 4 bytes per character
33 *
34 *   ICU 2.8 (late 2003) adds a secondary data structure which lifts some of these
35 *   limitations and adds m:n character mappings and other features.
36 *   See ucnv_ext.h for details.
37 *
38 *   Change history:
39 *
40 *    5/6/2001       Ram       Moved  MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U,
41 *                             MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2
42 *                             macros to ucnvmbcs.h file
43 */
44 
45 #include "unicode/utypes.h"
46 
47 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
48 
49 #include "unicode/ucnv.h"
50 #include "unicode/ucnv_cb.h"
51 #include "unicode/udata.h"
52 #include "unicode/uset.h"
53 #include "unicode/utf8.h"
54 #include "unicode/utf16.h"
55 #include "ucnv_bld.h"
56 #include "ucnvmbcs.h"
57 #include "ucnv_ext.h"
58 #include "ucnv_cnv.h"
59 #include "cmemory.h"
60 #include "cstring.h"
61 #include "umutex.h"
62 
63 /* control optimizations according to the platform */
64 #define MBCS_UNROLL_SINGLE_TO_BMP 1
65 #define MBCS_UNROLL_SINGLE_FROM_BMP 0
66 
67 /*
68  * _MBCSHeader versions 5.3 & 4.3
69  * (Note that the _MBCSHeader version is in addition to the converter formatVersion.)
70  *
71  * This version is optional. Version 5 is used for incompatible data format changes.
72  * makeconv will continue to generate version 4 files if possible.
73  *
74  * Changes from version 4:
75  *
76  * The main difference is an additional _MBCSHeader field with
77  * - the length (number of uint32_t) of the _MBCSHeader
78  * - flags for further incompatible data format changes
79  * - flags for further, backward compatible data format changes
80  *
81  * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitted from
82  * the file and needs to be reconstituted at load time.
83  * This requires a utf8Friendly format with an additional mbcsIndex table for fast
84  * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to maxFastUChar.
85  * (For details about these structures see below, and see ucnvmbcs.h.)
86  *
87  *   utf8Friendly also implies that the fromUnicode mappings are stored in ascending order
88  *   of the Unicode code points. (This requires that the .ucm file has the |0 etc.
89  *   precision markers for all mappings.)
90  *
91  *   All fallbacks have been moved to the extension table, leaving only roundtrips in the
92  *   omitted data that can be reconstituted from the toUnicode data.
93  *
94  *   Of the stage 2 table, the part corresponding to maxFastUChar and below is omitted.
95  *   With only roundtrip mappings in the base fromUnicode data, this part is fully
96  *   redundant with the mbcsIndex and will be reconstituted from that (also using the
97  *   stage 1 table which contains the information about how stage 2 was compacted).
98  *
99  *   The rest of the stage 2 table, the part for code points above maxFastUChar,
100  *   is stored in the file and will be appended to the reconstituted part.
101  *
102  *   The entire fromUBytes array is omitted from the file and will be reconstitued.
103  *   This is done by enumerating all toUnicode roundtrip mappings, performing
104  *   each mapping (using the stage 1 and reconstituted stage 2 tables) and
105  *   writing instead of reading the byte values.
106  *
107  * _MBCSHeader version 4.3
108  *
109  * Change from version 4.2:
110  * - Optional utf8Friendly data structures, with 64-entry stage 3 block
111  *   allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS
112  *   files which can be used instead of stages 1 & 2.
113  *   Faster lookups for roundtrips from most commonly used characters,
114  *   and lookups from UTF-8 byte sequences with a natural bit distribution.
115  *   See ucnvmbcs.h for more details.
116  *
117  * Change from version 4.1:
118  * - Added an optional extension table structure at the end of the .cnv file.
119  *   It is present if the upper bits of the header flags field contains a non-zero
120  *   byte offset to it.
121  *   Files that contain only a conversion table and no base table
122  *   use the special outputType MBCS_OUTPUT_EXT_ONLY.
123  *   These contain the base table name between the MBCS header and the extension
124  *   data.
125  *
126  * Change from version 4.0:
127  * - Replace header.reserved with header.fromUBytesLength so that all
128  *   fields in the data have length.
129  *
130  * Changes from version 3 (for performance improvements):
131  * - new bit distribution for state table entries
132  * - reordered action codes
133  * - new data structure for single-byte fromUnicode
134  *   + stage 2 only contains indexes
135  *   + stage 3 stores 16 bits per character with classification bits 15..8
136  * - no multiplier for stage 1 entries
137  * - stage 2 for non-single-byte codepages contains the index and the flags in
138  *   one 32-bit value
139  * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers
140  *
141  * For more details about old versions of the MBCS data structure, see
142  * the corresponding versions of this file.
143  *
144  * Converting stateless codepage data ---------------------------------------***
145  * (or codepage data with simple states) to Unicode.
146  *
147  * Data structure and algorithm for converting from complex legacy codepages
148  * to Unicode. (Designed before 2000-may-22.)
149  *
150  * The basic idea is that the structure of legacy codepages can be described
151  * with state tables.
152  * When reading a byte stream, each input byte causes a state transition.
153  * Some transitions result in the output of a code point, some result in
154  * "unassigned" or "illegal" output.
155  * This is used here for character conversion.
156  *
157  * The data structure begins with a state table consisting of a row
158  * per state, with 256 entries (columns) per row for each possible input
159  * byte value.
160  * Each entry is 32 bits wide, with two formats distinguished by
161  * the sign bit (bit 31):
162  *
163  * One format for transitional entries (bit 31 not set) for non-final bytes, and
164  * one format for final entries (bit 31 set).
165  * Both formats contain the number of the next state in the same bit
166  * positions.
167  * State 0 is the initial state.
168  *
169  * Most of the time, the offset values of subsequent states are added
170  * up to a scalar value. This value will eventually be the index of
171  * the Unicode code point in a table that follows the state table.
172  * The effect is that the code points for final state table rows
173  * are contiguous. The code points of final state rows follow each other
174  * in the order of the references to those final states by previous
175  * states, etc.
176  *
177  * For some terminal states, the offset is itself the output Unicode
178  * code point (16 bits for a BMP code point or 20 bits for a supplementary
179  * code point (stored as code point minus 0x10000 so that 20 bits are enough).
180  * For others, the code point in the Unicode table is stored with either
181  * one or two code units: one for BMP code points, two for a pair of
182  * surrogates.
183  * All code points for a final state entry take up the same number of code
184  * units, regardless of whether they all actually _use_ the same number
185  * of code units. This is necessary for simple array access.
186  *
187  * An additional feature comes in with what in ICU is called "fallback"
188  * mappings:
189  *
190  * In addition to round-trippable, precise, 1:1 mappings, there are often
191  * mappings defined between similar, though not the same, characters.
192  * Typically, such mappings occur only in fromUnicode mapping tables because
193  * Unicode has a superset repertoire of most other codepages. However, it
194  * is possible to provide such mappings in the toUnicode tables, too.
195  * In this case, the fallback mappings are partly integrated into the
196  * general state tables because the structure of the encoding includes their
197  * byte sequences.
198  * For final entries in an initial state, fallback mappings are stored in
199  * the entry itself like with roundtrip mappings.
200  * For other final entries, they are stored in the code units table if
201  * the entry is for a pair of code units.
202  * For single-unit results in the code units table, there is no space to
203  * alternatively hold a fallback mapping; in this case, the code unit
204  * is stored as U+fffe (unassigned), and the fallback mapping needs to
205  * be looked up by the scalar offset value in a separate table.
206  *
207  * "Unassigned" state entries really mean "structurally unassigned",
208  * i.e., such a byte sequence will never have a mapping result.
209  *
210  * The interpretation of the bits in each entry is as follows:
211  *
212  * Bit 31 not set, not a terminal entry ("transitional"):
213  * 30..24 next state
214  * 23..0  offset delta, to be added up
215  *
216  * Bit 31 set, terminal ("final") entry:
217  * 30..24 next state (regardless of action code)
218  * 23..20 action code:
219  *        action codes 0 and 1 result in precise-mapping Unicode code points
220  *        0  valid byte sequence
221  *           19..16 not used, 0
222  *           15..0  16-bit Unicode BMP code point
223  *                  never U+fffe or U+ffff
224  *        1  valid byte sequence
225  *           19..0  20-bit Unicode supplementary code point
226  *                  never U+fffe or U+ffff
227  *
228  *        action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points
229  *        2  valid byte sequence (fallback)
230  *           19..16 not used, 0
231  *           15..0  16-bit Unicode BMP code point as fallback result
232  *        3  valid byte sequence (fallback)
233  *           19..0  20-bit Unicode supplementary code point as fallback result
234  *
235  *        action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results
236  *        depending on the code units they result in
237  *        4  valid byte sequence
238  *           19..9  not used, 0
239  *            8..0  final offset delta
240  *                  pointing to one 16-bit code unit which may be
241  *                  fffe  unassigned -- look for a fallback for this offset
242  *                  ffff  illegal
243  *        5  valid byte sequence
244  *           19..9  not used, 0
245  *            8..0  final offset delta
246  *                  pointing to two 16-bit code units
247  *                  (typically UTF-16 surrogates)
248  *                  the result depends on the first code unit as follows:
249  *                  0000..d7ff  roundtrip BMP code point (1st alone)
250  *                  d800..dbff  roundtrip surrogate pair (1st, 2nd)
251  *                  dc00..dfff  fallback surrogate pair (1st-400, 2nd)
252  *                  e000        roundtrip BMP code point (2nd alone)
253  *                  e001        fallback BMP code point (2nd alone)
254  *                  fffe        unassigned
255  *                  ffff        illegal
256  *           (the final offset deltas are at most 255 * 2,
257  *            times 2 because of storing code unit pairs)
258  *
259  *        6  unassigned byte sequence
260  *           19..16 not used, 0
261  *           15..0  16-bit Unicode BMP code point U+fffe (new with version 2)
262  *                  this does not contain a final offset delta because the main
263  *                  purpose of this action code is to save scalar offset values;
264  *                  therefore, fallback values cannot be assigned to byte
265  *                  sequences that result in this action code
266  *        7  illegal byte sequence
267  *           19..16 not used, 0
268  *           15..0  16-bit Unicode BMP code point U+ffff (new with version 2)
269  *        8  state change only
270  *           19..0  not used, 0
271  *           useful for state changes in simple stateful encodings,
272  *           at Shift-In/Shift-Out codes
273  *
274  *
275  *        9..15 reserved for future use
276  *           current implementations will only perform a state change
277  *           and ignore bits 19..0
278  *
279  * An encoding with contiguous ranges of unassigned byte sequences, like
280  * Shift-JIS and especially EUC-TW, can be stored efficiently by having
281  * at least two states for the trail bytes:
282  * One trail byte state that results in code points, and one that only
283  * has "unassigned" and "illegal" terminal states.
284  *
285  * Note: partly by accident, this data structure supports simple stateful
286  * encodings without any additional logic.
287  * Currently, only simple Shift-In/Shift-Out schemes are handled with
288  * appropriate state tables (especially EBCDIC_STATEFUL!).
289  *
290  * MBCS version 2 added:
291  * unassigned and illegal action codes have U+fffe and U+ffff
292  * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP()
293  *
294  * Converting from Unicode to codepage bytes --------------------------------***
295  *
296  * The conversion data structure for fromUnicode is designed for the known
297  * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to
298  * a sequence of 1..4 bytes, in addition to a flag that indicates if there is
299  * a roundtrip mapping.
300  *
301  * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3
302  * like in the character properties table.
303  * The beginning of the trie is at offsetFromUTable, the beginning of stage 3
304  * with the resulting bytes is at offsetFromUBytes.
305  *
306  * Beginning with version 4, single-byte codepages have a significantly different
307  * trie compared to other codepages.
308  * In all cases, the entry in stage 1 is directly the index of the block of
309  * 64 entries in stage 2.
310  *
311  * Single-byte lookup:
312  *
313  * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3.
314  * Stage 3 contains one 16-bit word per result:
315  * Bits 15..8 indicate the kind of result:
316  *    f  roundtrip result
317  *    c  fallback result from private-use code point
318  *    8  fallback result from other code points
319  *    0  unassigned
320  * Bits 7..0 contain the codepage byte. A zero byte is always possible.
321  *
322  * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly
323  * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup
324  * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
325  * ASCII code points can be looked up with a linear array access into stage 3.
326  * See maxFastUChar and other details in ucnvmbcs.h.
327  *
328  * Multi-byte lookup:
329  *
330  * Stage 2 contains a 32-bit word for each 16-block in stage 3:
331  * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results
332  *             test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)
333  *             If this test is false, then a non-zero result will be interpreted as
334  *             a fallback mapping.
335  * Bits 15..0  contain the index to stage 3, which must be multiplied by 16*(bytes per char)
336  *
337  * Stage 3 contains 2, 3, or 4 bytes per result.
338  * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness,
339  * while 3 bytes are stored as bytes in big-endian order.
340  * Leading zero bytes are ignored, and the number of bytes is counted.
341  * A zero byte mapping result is possible as a roundtrip result.
342  * For some output types, the actual result is processed from this;
343  * see ucnv_MBCSFromUnicodeWithOffsets().
344  *
345  * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10),
346  * or (version 3 and up) for BMP-only codepages, it contains 64 entries.
347  *
348  * In version 4.3, a utf8Friendly file contains an mbcsIndex table.
349  * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup
350  * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3.
351  * ASCII code points can be looked up with a linear array access into stage 3.
352  * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h.
353  *
354  * In version 3, stage 2 blocks may overlap by multiples of the multiplier
355  * for compaction.
356  * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks)
357  * may overlap by any number of entries.
358  *
359  * MBCS version 2 added:
360  * the converter checks for known output types, which allows
361  * adding new ones without crashing an unaware converter
362  */
363 
364 /**
365  * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from
366  * consecutive sequences of bytes, starting from the one encoded in value,
367  * to Unicode code points. (Multiple mappings to reduce per-function call overhead.)
368  * Does not currently support m:n mappings or reverse fallbacks.
369  * This function will not be called for sequences of bytes with leading zeros.
370  *
371  * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode()
372  * @param value contains 1..4 bytes of the first byte sequence, right-aligned
373  * @param codePoints resulting Unicode code points, or negative if a byte sequence does
374  *        not map to anything
375  * @return TRUE to continue enumeration, FALSE to stop
376  */
377 typedef UBool U_CALLCONV
378 UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoints[32]);
379 
380 static void U_CALLCONV
381 ucnv_MBCSLoad(UConverterSharedData *sharedData,
382           UConverterLoadArgs *pArgs,
383           const uint8_t *raw,
384           UErrorCode *pErrorCode);
385 
386 static void U_CALLCONV
387 ucnv_MBCSUnload(UConverterSharedData *sharedData);
388 
389 static void U_CALLCONV
390 ucnv_MBCSOpen(UConverter *cnv,
391               UConverterLoadArgs *pArgs,
392               UErrorCode *pErrorCode);
393 
394 static UChar32 U_CALLCONV
395 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
396                   UErrorCode *pErrorCode);
397 
398 static void U_CALLCONV
399 ucnv_MBCSGetStarters(const UConverter* cnv,
400                  UBool starters[256],
401                  UErrorCode *pErrorCode);
402 
403 U_CDECL_BEGIN
404 static const char* U_CALLCONV
405 ucnv_MBCSGetName(const UConverter *cnv);
406 U_CDECL_END
407 
408 static void U_CALLCONV
409 ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
410               int32_t offsetIndex,
411               UErrorCode *pErrorCode);
412 
413 static UChar32 U_CALLCONV
414 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
415                   UErrorCode *pErrorCode);
416 
417 static void U_CALLCONV
418 ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
419                   UConverterToUnicodeArgs *pToUArgs,
420                   UErrorCode *pErrorCode);
421 
422 static void U_CALLCONV
423 ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
424                    const USetAdder *sa,
425                    UConverterUnicodeSet which,
426                    UErrorCode *pErrorCode);
427 
428 static void U_CALLCONV
429 ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
430                   UConverterToUnicodeArgs *pToUArgs,
431                   UErrorCode *pErrorCode);
432 
433 static const UConverterImpl _SBCSUTF8Impl={
434     UCNV_MBCS,
435 
436     ucnv_MBCSLoad,
437     ucnv_MBCSUnload,
438 
439     ucnv_MBCSOpen,
440     NULL,
441     NULL,
442 
443     ucnv_MBCSToUnicodeWithOffsets,
444     ucnv_MBCSToUnicodeWithOffsets,
445     ucnv_MBCSFromUnicodeWithOffsets,
446     ucnv_MBCSFromUnicodeWithOffsets,
447     ucnv_MBCSGetNextUChar,
448 
449     ucnv_MBCSGetStarters,
450     ucnv_MBCSGetName,
451     ucnv_MBCSWriteSub,
452     NULL,
453     ucnv_MBCSGetUnicodeSet,
454 
455     NULL,
456     ucnv_SBCSFromUTF8
457 };
458 
459 static const UConverterImpl _DBCSUTF8Impl={
460     UCNV_MBCS,
461 
462     ucnv_MBCSLoad,
463     ucnv_MBCSUnload,
464 
465     ucnv_MBCSOpen,
466     NULL,
467     NULL,
468 
469     ucnv_MBCSToUnicodeWithOffsets,
470     ucnv_MBCSToUnicodeWithOffsets,
471     ucnv_MBCSFromUnicodeWithOffsets,
472     ucnv_MBCSFromUnicodeWithOffsets,
473     ucnv_MBCSGetNextUChar,
474 
475     ucnv_MBCSGetStarters,
476     ucnv_MBCSGetName,
477     ucnv_MBCSWriteSub,
478     NULL,
479     ucnv_MBCSGetUnicodeSet,
480 
481     NULL,
482     ucnv_DBCSFromUTF8
483 };
484 
485 static const UConverterImpl _MBCSImpl={
486     UCNV_MBCS,
487 
488     ucnv_MBCSLoad,
489     ucnv_MBCSUnload,
490 
491     ucnv_MBCSOpen,
492     NULL,
493     NULL,
494 
495     ucnv_MBCSToUnicodeWithOffsets,
496     ucnv_MBCSToUnicodeWithOffsets,
497     ucnv_MBCSFromUnicodeWithOffsets,
498     ucnv_MBCSFromUnicodeWithOffsets,
499     ucnv_MBCSGetNextUChar,
500 
501     ucnv_MBCSGetStarters,
502     ucnv_MBCSGetName,
503     ucnv_MBCSWriteSub,
504     NULL,
505     ucnv_MBCSGetUnicodeSet,
506     NULL,
507     NULL
508 };
509 
510 /* Static data is in tools/makeconv/ucnvstat.c for data-based
511  * converters. Be sure to update it as well.
512  */
513 
514 const UConverterSharedData _MBCSData={
515     sizeof(UConverterSharedData), 1,
516     NULL, NULL, FALSE, TRUE, &_MBCSImpl,
517     0, UCNV_MBCS_TABLE_INITIALIZER
518 };
519 
520 
521 /* GB 18030 data ------------------------------------------------------------ */
522 
523 /* helper macros for linear values for GB 18030 four-byte sequences */
524 #define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d))
525 
526 #define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30)
527 
528 #define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff)
529 
530 /*
531  * Some ranges of GB 18030 where both the Unicode code points and the
532  * GB four-byte sequences are contiguous and are handled algorithmically by
533  * the special callback functions below.
534  * The values are start & end of Unicode & GB codes.
535  *
536  * Note that single surrogates are not mapped by GB 18030
537  * as of the re-released mapping tables from 2000-nov-30.
538  */
539 static const uint32_t
540 gb18030Ranges[14][4]={
541     {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)},
542     {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)},
543     {0x0452, 0x1E3E, LINEAR(0x8130D330), LINEAR(0x8135F436)},
544     {0x1E40, 0x200F, LINEAR(0x8135F438), LINEAR(0x8136A531)},
545     {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)},
546     {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)},
547     {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)},
548     {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)},
549     {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)},
550     {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)},
551     {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)},
552     {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)},
553     {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)},
554     {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)}
555 };
556 
557 /* bit flag for UConverter.options indicating GB 18030 special handling */
558 #define _MBCS_OPTION_GB18030 0x8000
559 
560 /* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */
561 #define _MBCS_OPTION_KEIS 0x01000
562 #define _MBCS_OPTION_JEF  0x02000
563 #define _MBCS_OPTION_JIPS 0x04000
564 
565 #define KEIS_SO_CHAR_1 0x0A
566 #define KEIS_SO_CHAR_2 0x42
567 #define KEIS_SI_CHAR_1 0x0A
568 #define KEIS_SI_CHAR_2 0x41
569 
570 #define JEF_SO_CHAR 0x28
571 #define JEF_SI_CHAR 0x29
572 
573 #define JIPS_SO_CHAR_1 0x1A
574 #define JIPS_SO_CHAR_2 0x70
575 #define JIPS_SI_CHAR_1 0x1A
576 #define JIPS_SI_CHAR_2 0x71
577 
578 enum SISO_Option {
579     SI,
580     SO
581 };
582 typedef enum SISO_Option SISO_Option;
583 
584 static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *value) {
585     int32_t SISOLength = 0;
586 
587     switch (option) {
588         case SI:
589             if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
590                 value[0] = KEIS_SI_CHAR_1;
591                 value[1] = KEIS_SI_CHAR_2;
592                 SISOLength = 2;
593             } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
594                 value[0] = JEF_SI_CHAR;
595                 SISOLength = 1;
596             } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
597                 value[0] = JIPS_SI_CHAR_1;
598                 value[1] = JIPS_SI_CHAR_2;
599                 SISOLength = 2;
600             } else {
601                 value[0] = UCNV_SI;
602                 SISOLength = 1;
603             }
604             break;
605         case SO:
606             if ((cnvOption&_MBCS_OPTION_KEIS)!=0) {
607                 value[0] = KEIS_SO_CHAR_1;
608                 value[1] = KEIS_SO_CHAR_2;
609                 SISOLength = 2;
610             } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) {
611                 value[0] = JEF_SO_CHAR;
612                 SISOLength = 1;
613             } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) {
614                 value[0] = JIPS_SO_CHAR_1;
615                 value[1] = JIPS_SO_CHAR_2;
616                 SISOLength = 2;
617             } else {
618                 value[0] = UCNV_SO;
619                 SISOLength = 1;
620             }
621             break;
622         default:
623             /* Should never happen. */
624             break;
625     }
626 
627     return SISOLength;
628 }
629 
630 /* Miscellaneous ------------------------------------------------------------ */
631 
632 /* similar to ucnv_MBCSGetNextUChar() but recursive */
633 static UBool
634 enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[],
635         int32_t state, uint32_t offset,
636         uint32_t value,
637         UConverterEnumToUCallback *callback, const void *context,
638         UErrorCode *pErrorCode) {
639     UChar32 codePoints[32];
640     const int32_t *row;
641     const uint16_t *unicodeCodeUnits;
642     UChar32 anyCodePoints;
643     int32_t b, limit;
644 
645     row=mbcsTable->stateTable[state];
646     unicodeCodeUnits=mbcsTable->unicodeCodeUnits;
647 
648     value<<=8;
649     anyCodePoints=-1;  /* becomes non-negative if there is a mapping */
650 
651     b=(stateProps[state]&0x38)<<2;
652     if(b==0 && stateProps[state]>=0x40) {
653         /* skip byte sequences with leading zeros because they are not stored in the fromUnicode table */
654         codePoints[0]=U_SENTINEL;
655         b=1;
656     }
657     limit=((stateProps[state]&7)+1)<<5;
658     while(b<limit) {
659         int32_t entry=row[b];
660         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
661             int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry);
662             if(stateProps[nextState]>=0) {
663                 /* recurse to a state with non-ignorable actions */
664                 if(!enumToU(
665                         mbcsTable, stateProps, nextState,
666                         offset+MBCS_ENTRY_TRANSITION_OFFSET(entry),
667                         value|(uint32_t)b,
668                         callback, context,
669                         pErrorCode)) {
670                     return FALSE;
671                 }
672             }
673             codePoints[b&0x1f]=U_SENTINEL;
674         } else {
675             UChar32 c;
676             int32_t action;
677 
678             /*
679              * An if-else-if chain provides more reliable performance for
680              * the most common cases compared to a switch.
681              */
682             action=MBCS_ENTRY_FINAL_ACTION(entry);
683             if(action==MBCS_STATE_VALID_DIRECT_16) {
684                 /* output BMP code point */
685                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
686             } else if(action==MBCS_STATE_VALID_16) {
687                 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
688                 c=unicodeCodeUnits[finalOffset];
689                 if(c<0xfffe) {
690                     /* output BMP code point */
691                 } else {
692                     c=U_SENTINEL;
693                 }
694             } else if(action==MBCS_STATE_VALID_16_PAIR) {
695                 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry);
696                 c=unicodeCodeUnits[finalOffset++];
697                 if(c<0xd800) {
698                     /* output BMP code point below 0xd800 */
699                 } else if(c<=0xdbff) {
700                     /* output roundtrip or fallback supplementary code point */
701                     c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xdc00);
702                 } else if(c==0xe000) {
703                     /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
704                     c=unicodeCodeUnits[finalOffset];
705                 } else {
706                     c=U_SENTINEL;
707                 }
708             } else if(action==MBCS_STATE_VALID_DIRECT_20) {
709                 /* output supplementary code point */
710                 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
711             } else {
712                 c=U_SENTINEL;
713             }
714 
715             codePoints[b&0x1f]=c;
716             anyCodePoints&=c;
717         }
718         if(((++b)&0x1f)==0) {
719             if(anyCodePoints>=0) {
720                 if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) {
721                     return FALSE;
722                 }
723                 anyCodePoints=-1;
724             }
725         }
726     }
727     return TRUE;
728 }
729 
730 /*
731  * Only called if stateProps[state]==-1.
732  * A recursive call may do stateProps[state]|=0x40 if this state is the target of an
733  * MBCS_STATE_CHANGE_ONLY.
734  */
735 static int8_t
736 getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) {
737     const int32_t *row;
738     int32_t min, max, entry, nextState;
739 
740     row=stateTable[state];
741     stateProps[state]=0;
742 
743     /* find first non-ignorable state */
744     for(min=0;; ++min) {
745         entry=row[min];
746         nextState=MBCS_ENTRY_STATE(entry);
747         if(stateProps[nextState]==-1) {
748             getStateProp(stateTable, stateProps, nextState);
749         }
750         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
751             if(stateProps[nextState]>=0) {
752                 break;
753             }
754         } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
755             break;
756         }
757         if(min==0xff) {
758             stateProps[state]=-0x40;  /* (int8_t)0xc0 */
759             return stateProps[state];
760         }
761     }
762     stateProps[state]|=(int8_t)((min>>5)<<3);
763 
764     /* find last non-ignorable state */
765     for(max=0xff; min<max; --max) {
766         entry=row[max];
767         nextState=MBCS_ENTRY_STATE(entry);
768         if(stateProps[nextState]==-1) {
769             getStateProp(stateTable, stateProps, nextState);
770         }
771         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
772             if(stateProps[nextState]>=0) {
773                 break;
774             }
775         } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) {
776             break;
777         }
778     }
779     stateProps[state]|=(int8_t)(max>>5);
780 
781     /* recurse further and collect direct-state information */
782     while(min<=max) {
783         entry=row[min];
784         nextState=MBCS_ENTRY_STATE(entry);
785         if(stateProps[nextState]==-1) {
786             getStateProp(stateTable, stateProps, nextState);
787         }
788         if(MBCS_ENTRY_IS_FINAL(entry)) {
789             stateProps[nextState]|=0x40;
790             if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) {
791                 stateProps[state]|=0x40;
792             }
793         }
794         ++min;
795     }
796     return stateProps[state];
797 }
798 
799 /*
800  * Internal function enumerating the toUnicode data of an MBCS converter.
801  * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U
802  * table, but could also be used for a future ucnv_getUnicodeSet() option
803  * that includes reverse fallbacks (after updating this function's implementation).
804  * Currently only handles roundtrip mappings.
805  * Does not currently handle extensions.
806  */
807 static void
808 ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable,
809                        UConverterEnumToUCallback *callback, const void *context,
810                        UErrorCode *pErrorCode) {
811     /*
812      * Properties for each state, to speed up the enumeration.
813      * Ignorable actions are unassigned/illegal/state-change-only:
814      * They do not lead to mappings.
815      *
816      * Bits 7..6:
817      * 1 direct/initial state (stateful converters have multiple)
818      * 0 non-initial state with transitions or with non-ignorable result actions
819      * -1 final state with only ignorable actions
820      *
821      * Bits 5..3:
822      * The lowest byte value with non-ignorable actions is
823      * value<<5 (rounded down).
824      *
825      * Bits 2..0:
826      * The highest byte value with non-ignorable actions is
827      * (value<<5)&0x1f (rounded up).
828      */
829     int8_t stateProps[MBCS_MAX_STATE_COUNT];
830     int32_t state;
831 
832     uprv_memset(stateProps, -1, sizeof(stateProps));
833 
834     /* recurse from state 0 and set all stateProps */
835     getStateProp(mbcsTable->stateTable, stateProps, 0);
836 
837     for(state=0; state<mbcsTable->countStates; ++state) {
838         /*if(stateProps[state]==-1) {
839             printf("unused/unreachable <icu:state> %d\n", state);
840         }*/
841         if(stateProps[state]>=0x40) {
842             /* start from each direct state */
843             enumToU(
844                 mbcsTable, stateProps, state, 0, 0,
845                 callback, context,
846                 pErrorCode);
847         }
848     }
849 }
850 
851 U_CFUNC void
852 ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData,
853                                          const USetAdder *sa,
854                                          UConverterUnicodeSet which,
855                                          UConverterSetFilter filter,
856                                          UErrorCode *pErrorCode) {
857     const UConverterMBCSTable *mbcsTable;
858     const uint16_t *table;
859 
860     uint32_t st3;
861     uint16_t st1, maxStage1, st2;
862 
863     UChar32 c;
864 
865     /* enumerate the from-Unicode trie table */
866     mbcsTable=&sharedData->mbcs;
867     table=mbcsTable->fromUnicodeTable;
868     if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
869         maxStage1=0x440;
870     } else {
871         maxStage1=0x40;
872     }
873 
874     c=0; /* keep track of the current code point while enumerating */
875 
876     if(mbcsTable->outputType==MBCS_OUTPUT_1) {
877         const uint16_t *stage2, *stage3, *results;
878         uint16_t minValue;
879 
880         results=(const uint16_t *)mbcsTable->fromUnicodeBytes;
881 
882         /*
883          * Set a threshold variable for selecting which mappings to use.
884          * See ucnv_MBCSSingleFromBMPWithOffsets() and
885          * MBCS_SINGLE_RESULT_FROM_U() for details.
886          */
887         if(which==UCNV_ROUNDTRIP_SET) {
888             /* use only roundtrips */
889             minValue=0xf00;
890         } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ {
891             /* use all roundtrip and fallback results */
892             minValue=0x800;
893         }
894 
895         for(st1=0; st1<maxStage1; ++st1) {
896             st2=table[st1];
897             if(st2>maxStage1) {
898                 stage2=table+st2;
899                 for(st2=0; st2<64; ++st2) {
900                     if((st3=stage2[st2])!=0) {
901                         /* read the stage 3 block */
902                         stage3=results+st3;
903 
904                         do {
905                             if(*stage3++>=minValue) {
906                                 sa->add(sa->set, c);
907                             }
908                         } while((++c&0xf)!=0);
909                     } else {
910                         c+=16; /* empty stage 3 block */
911                     }
912                 }
913             } else {
914                 c+=1024; /* empty stage 2 block */
915             }
916         }
917     } else {
918         const uint32_t *stage2;
919         const uint8_t *stage3, *bytes;
920         uint32_t st3Multiplier;
921         uint32_t value;
922         UBool useFallback;
923 
924         bytes=mbcsTable->fromUnicodeBytes;
925 
926         useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET);
927 
928         switch(mbcsTable->outputType) {
929         case MBCS_OUTPUT_3:
930         case MBCS_OUTPUT_4_EUC:
931             st3Multiplier=3;
932             break;
933         case MBCS_OUTPUT_4:
934             st3Multiplier=4;
935             break;
936         default:
937             st3Multiplier=2;
938             break;
939         }
940 
941         for(st1=0; st1<maxStage1; ++st1) {
942             st2=table[st1];
943             if(st2>(maxStage1>>1)) {
944                 stage2=(const uint32_t *)table+st2;
945                 for(st2=0; st2<64; ++st2) {
946                     if((st3=stage2[st2])!=0) {
947                         /* read the stage 3 block */
948                         stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3;
949 
950                         /* get the roundtrip flags for the stage 3 block */
951                         st3>>=16;
952 
953                         /*
954                          * Add code points for which the roundtrip flag is set,
955                          * or which map to non-zero bytes if we use fallbacks.
956                          * See ucnv_MBCSFromUnicodeWithOffsets() for details.
957                          */
958                         switch(filter) {
959                         case UCNV_SET_FILTER_NONE:
960                             do {
961                                 if(st3&1) {
962                                     sa->add(sa->set, c);
963                                     stage3+=st3Multiplier;
964                                 } else if(useFallback) {
965                                     uint8_t b=0;
966                                     switch(st3Multiplier) {
967                                     case 4:
968                                         b|=*stage3++;
969                                         U_FALLTHROUGH;
970                                     case 3:
971                                         b|=*stage3++;
972                                         U_FALLTHROUGH;
973                                     case 2:
974                                         b|=stage3[0]|stage3[1];
975                                         stage3+=2;
976                                         U_FALLTHROUGH;
977                                     default:
978                                         break;
979                                     }
980                                     if(b!=0) {
981                                         sa->add(sa->set, c);
982                                     }
983                                 }
984                                 st3>>=1;
985                             } while((++c&0xf)!=0);
986                             break;
987                         case UCNV_SET_FILTER_DBCS_ONLY:
988                              /* Ignore single-byte results (<0x100). */
989                             do {
990                                 if(((st3&1)!=0 || useFallback) && *((const uint16_t *)stage3)>=0x100) {
991                                     sa->add(sa->set, c);
992                                 }
993                                 st3>>=1;
994                                 stage3+=2;  /* +=st3Multiplier */
995                             } while((++c&0xf)!=0);
996                             break;
997                         case UCNV_SET_FILTER_2022_CN:
998                              /* Only add code points that map to CNS 11643 planes 1 & 2 for non-EXT ISO-2022-CN. */
999                             do {
1000                                 if(((st3&1)!=0 || useFallback) && ((value=*stage3)==0x81 || value==0x82)) {
1001                                     sa->add(sa->set, c);
1002                                 }
1003                                 st3>>=1;
1004                                 stage3+=3;  /* +=st3Multiplier */
1005                             } while((++c&0xf)!=0);
1006                             break;
1007                         case UCNV_SET_FILTER_SJIS:
1008                              /* Only add code points that map to Shift-JIS codes corresponding to JIS X 0208. */
1009                             do {
1010                                 if(((st3&1)!=0 || useFallback) && (value=*((const uint16_t *)stage3))>=0x8140 && value<=0xeffc) {
1011                                     sa->add(sa->set, c);
1012                                 }
1013                                 st3>>=1;
1014                                 stage3+=2;  /* +=st3Multiplier */
1015                             } while((++c&0xf)!=0);
1016                             break;
1017                         case UCNV_SET_FILTER_GR94DBCS:
1018                             /* Only add code points that map to ISO 2022 GR 94 DBCS codes (each byte A1..FE). */
1019                             do {
1020                                 if( ((st3&1)!=0 || useFallback) &&
1021                                     (uint16_t)((value=*((const uint16_t *)stage3)) - 0xa1a1)<=(0xfefe - 0xa1a1) &&
1022                                     (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
1023                                 ) {
1024                                     sa->add(sa->set, c);
1025                                 }
1026                                 st3>>=1;
1027                                 stage3+=2;  /* +=st3Multiplier */
1028                             } while((++c&0xf)!=0);
1029                             break;
1030                         case UCNV_SET_FILTER_HZ:
1031                             /* Only add code points that are suitable for HZ DBCS (lead byte A1..FD). */
1032                             do {
1033                                 if( ((st3&1)!=0 || useFallback) &&
1034                                     (uint16_t)((value=*((const uint16_t *)stage3))-0xa1a1)<=(0xfdfe - 0xa1a1) &&
1035                                     (uint8_t)(value-0xa1)<=(0xfe - 0xa1)
1036                                 ) {
1037                                     sa->add(sa->set, c);
1038                                 }
1039                                 st3>>=1;
1040                                 stage3+=2;  /* +=st3Multiplier */
1041                             } while((++c&0xf)!=0);
1042                             break;
1043                         default:
1044                             *pErrorCode=U_INTERNAL_PROGRAM_ERROR;
1045                             return;
1046                         }
1047                     } else {
1048                         c+=16; /* empty stage 3 block */
1049                     }
1050                 }
1051             } else {
1052                 c+=1024; /* empty stage 2 block */
1053             }
1054         }
1055     }
1056 
1057     ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode);
1058 }
1059 
1060 U_CFUNC void
1061 ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData,
1062                                  const USetAdder *sa,
1063                                  UConverterUnicodeSet which,
1064                                  UErrorCode *pErrorCode) {
1065     ucnv_MBCSGetFilteredUnicodeSetForUnicode(
1066         sharedData, sa, which,
1067         sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ?
1068             UCNV_SET_FILTER_DBCS_ONLY :
1069             UCNV_SET_FILTER_NONE,
1070         pErrorCode);
1071 }
1072 
1073 static void U_CALLCONV
1074 ucnv_MBCSGetUnicodeSet(const UConverter *cnv,
1075                    const USetAdder *sa,
1076                    UConverterUnicodeSet which,
1077                    UErrorCode *pErrorCode) {
1078     if(cnv->options&_MBCS_OPTION_GB18030) {
1079         sa->addRange(sa->set, 0, 0xd7ff);
1080         sa->addRange(sa->set, 0xe000, 0x10ffff);
1081     } else {
1082         ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode);
1083     }
1084 }
1085 
1086 /* conversion extensions for input not in the main table -------------------- */
1087 
1088 /*
1089  * Hardcoded extension handling for GB 18030.
1090  * Definition of LINEAR macros and gb18030Ranges see near the beginning of the file.
1091  *
1092  * In the future, conversion extensions may handle m:n mappings and delta tables,
1093  * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/conversion_extensions.html
1094  *
1095  * If an input character cannot be mapped, then these functions set an error
1096  * code. The framework will then call the callback function.
1097  */
1098 
1099 /*
1100  * @return if(U_FAILURE) return the code point for cnv->fromUChar32
1101  *         else return 0 after output has been written to the target
1102  */
1103 static UChar32
1104 _extFromU(UConverter *cnv, const UConverterSharedData *sharedData,
1105           UChar32 cp,
1106           const UChar **source, const UChar *sourceLimit,
1107           uint8_t **target, const uint8_t *targetLimit,
1108           int32_t **offsets, int32_t sourceIndex,
1109           UBool flush,
1110           UErrorCode *pErrorCode) {
1111     const int32_t *cx;
1112 
1113     cnv->useSubChar1=FALSE;
1114 
1115     if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
1116         ucnv_extInitialMatchFromU(
1117             cnv, cx,
1118             cp, source, sourceLimit,
1119             (char **)target, (char *)targetLimit,
1120             offsets, sourceIndex,
1121             flush,
1122             pErrorCode)
1123     ) {
1124         return 0; /* an extension mapping handled the input */
1125     }
1126 
1127     /* GB 18030 */
1128     if((cnv->options&_MBCS_OPTION_GB18030)!=0) {
1129         const uint32_t *range;
1130         int32_t i;
1131 
1132         range=gb18030Ranges[0];
1133         for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) {
1134             if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) {
1135                 /* found the Unicode code point, output the four-byte sequence for it */
1136                 uint32_t linear;
1137                 char bytes[4];
1138 
1139                 /* get the linear value of the first GB 18030 code in this range */
1140                 linear=range[2]-LINEAR_18030_BASE;
1141 
1142                 /* add the offset from the beginning of the range */
1143                 linear+=((uint32_t)cp-range[0]);
1144 
1145                 /* turn this into a four-byte sequence */
1146                 bytes[3]=(char)(0x30+linear%10); linear/=10;
1147                 bytes[2]=(char)(0x81+linear%126); linear/=126;
1148                 bytes[1]=(char)(0x30+linear%10); linear/=10;
1149                 bytes[0]=(char)(0x81+linear);
1150 
1151                 /* output this sequence */
1152                 ucnv_fromUWriteBytes(cnv,
1153                                      bytes, 4, (char **)target, (char *)targetLimit,
1154                                      offsets, sourceIndex, pErrorCode);
1155                 return 0;
1156             }
1157         }
1158     }
1159 
1160     /* no mapping */
1161     *pErrorCode=U_INVALID_CHAR_FOUND;
1162     return cp;
1163 }
1164 
1165 /*
1166  * Input sequence: cnv->toUBytes[0..length[
1167  * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input
1168  *         else return 0 after output has been written to the target
1169  */
1170 static int8_t
1171 _extToU(UConverter *cnv, const UConverterSharedData *sharedData,
1172         int8_t length,
1173         const uint8_t **source, const uint8_t *sourceLimit,
1174         UChar **target, const UChar *targetLimit,
1175         int32_t **offsets, int32_t sourceIndex,
1176         UBool flush,
1177         UErrorCode *pErrorCode) {
1178     const int32_t *cx;
1179 
1180     if( (cx=sharedData->mbcs.extIndexes)!=NULL &&
1181         ucnv_extInitialMatchToU(
1182             cnv, cx,
1183             length, (const char **)source, (const char *)sourceLimit,
1184             target, targetLimit,
1185             offsets, sourceIndex,
1186             flush,
1187             pErrorCode)
1188     ) {
1189         return 0; /* an extension mapping handled the input */
1190     }
1191 
1192     /* GB 18030 */
1193     if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) {
1194         const uint32_t *range;
1195         uint32_t linear;
1196         int32_t i;
1197 
1198         linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2], cnv->toUBytes[3]);
1199         range=gb18030Ranges[0];
1200         for(i=0; i<UPRV_LENGTHOF(gb18030Ranges); range+=4, ++i) {
1201             if(range[2]<=linear && linear<=range[3]) {
1202                 /* found the sequence, output the Unicode code point for it */
1203                 *pErrorCode=U_ZERO_ERROR;
1204 
1205                 /* add the linear difference between the input and start sequences to the start code point */
1206                 linear=range[0]+(linear-range[2]);
1207 
1208                 /* output this code point */
1209                 ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets, sourceIndex, pErrorCode);
1210 
1211                 return 0;
1212             }
1213         }
1214     }
1215 
1216     /* no mapping */
1217     *pErrorCode=U_INVALID_CHAR_FOUND;
1218     return length;
1219 }
1220 
1221 /* EBCDIC swap LF<->NL ------------------------------------------------------ */
1222 
1223 /*
1224  * This code modifies a standard EBCDIC<->Unicode mapping table for
1225  * OS/390 (z/OS) Unix System Services (Open Edition).
1226  * The difference is in the mapping of Line Feed and New Line control codes:
1227  * Standard EBCDIC maps
1228  *
1229  *   <U000A> \x25 |0
1230  *   <U0085> \x15 |0
1231  *
1232  * but OS/390 USS EBCDIC swaps the control codes for LF and NL,
1233  * mapping
1234  *
1235  *   <U000A> \x15 |0
1236  *   <U0085> \x25 |0
1237  *
1238  * This code modifies a loaded standard EBCDIC<->Unicode mapping table
1239  * by copying it into allocated memory and swapping the LF and NL values.
1240  * It allows to support the same EBCDIC charset in both versions without
1241  * duplicating the entire installed table.
1242  */
1243 
1244 /* standard EBCDIC codes */
1245 #define EBCDIC_LF 0x25
1246 #define EBCDIC_NL 0x15
1247 
1248 /* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */
1249 #define EBCDIC_RT_LF 0xf25
1250 #define EBCDIC_RT_NL 0xf15
1251 
1252 /* Unicode code points */
1253 #define U_LF 0x0a
1254 #define U_NL 0x85
1255 
1256 static UBool
1257 _EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) {
1258     UConverterMBCSTable *mbcsTable;
1259 
1260     const uint16_t *table, *results;
1261     const uint8_t *bytes;
1262 
1263     int32_t (*newStateTable)[256];
1264     uint16_t *newResults;
1265     uint8_t *p;
1266     char *name;
1267 
1268     uint32_t stage2Entry;
1269     uint32_t size, sizeofFromUBytes;
1270 
1271     mbcsTable=&sharedData->mbcs;
1272 
1273     table=mbcsTable->fromUnicodeTable;
1274     bytes=mbcsTable->fromUnicodeBytes;
1275     results=(const uint16_t *)bytes;
1276 
1277     /*
1278      * Check that this is an EBCDIC table with SBCS portion -
1279      * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings.
1280      *
1281      * If not, ignore the option. Options are always ignored if they do not apply.
1282      */
1283     if(!(
1284          (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) &&
1285          mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) &&
1286          mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL)
1287     )) {
1288         return FALSE;
1289     }
1290 
1291     if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1292         if(!(
1293              EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) &&
1294              EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL)
1295         )) {
1296             return FALSE;
1297         }
1298     } else /* MBCS_OUTPUT_2_SISO */ {
1299         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
1300         if(!(
1301              MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 &&
1302              EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF)
1303         )) {
1304             return FALSE;
1305         }
1306 
1307         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
1308         if(!(
1309              MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 &&
1310              EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL)
1311         )) {
1312             return FALSE;
1313         }
1314     }
1315 
1316     if(mbcsTable->fromUBytesLength>0) {
1317         /*
1318          * We _know_ the number of bytes in the fromUnicodeBytes array
1319          * starting with header.version 4.1.
1320          */
1321         sizeofFromUBytes=mbcsTable->fromUBytesLength;
1322     } else {
1323         /*
1324          * Otherwise:
1325          * There used to be code to enumerate the fromUnicode
1326          * trie and find the highest entry, but it was removed in ICU 3.2
1327          * because it was not tested and caused a low code coverage number.
1328          * See Jitterbug 3674.
1329          * This affects only some .cnv file formats with a header.version
1330          * below 4.1, and only when swaplfnl is requested.
1331          *
1332          * ucnvmbcs.c revision 1.99 is the last one with the
1333          * ucnv_MBCSSizeofFromUBytes() function.
1334          */
1335         *pErrorCode=U_INVALID_FORMAT_ERROR;
1336         return FALSE;
1337     }
1338 
1339     /*
1340      * The table has an appropriate format.
1341      * Allocate and build
1342      * - a modified to-Unicode state table
1343      * - a modified from-Unicode output array
1344      * - a converter name string with the swap option appended
1345      */
1346     size=
1347         mbcsTable->countStates*1024+
1348         sizeofFromUBytes+
1349         UCNV_MAX_CONVERTER_NAME_LENGTH+20;
1350     p=(uint8_t *)uprv_malloc(size);
1351     if(p==NULL) {
1352         *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1353         return FALSE;
1354     }
1355 
1356     /* copy and modify the to-Unicode state table */
1357     newStateTable=(int32_t (*)[256])p;
1358     uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024);
1359 
1360     newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL);
1361     newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF);
1362 
1363     /* copy and modify the from-Unicode result table */
1364     newResults=(uint16_t *)newStateTable[mbcsTable->countStates];
1365     uprv_memcpy(newResults, bytes, sizeofFromUBytes);
1366 
1367     /* conveniently, the table access macros work on the left side of expressions */
1368     if(mbcsTable->outputType==MBCS_OUTPUT_1) {
1369         MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL;
1370         MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF;
1371     } else /* MBCS_OUTPUT_2_SISO */ {
1372         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF);
1373         MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL;
1374 
1375         stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL);
1376         MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF;
1377     }
1378 
1379     /* set the canonical converter name */
1380     name=(char *)newResults+sizeofFromUBytes;
1381     uprv_strcpy(name, sharedData->staticData->name);
1382     uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING);
1383 
1384     /* set the pointers */
1385     umtx_lock(NULL);
1386     if(mbcsTable->swapLFNLStateTable==NULL) {
1387         mbcsTable->swapLFNLStateTable=newStateTable;
1388         mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults;
1389         mbcsTable->swapLFNLName=name;
1390 
1391         newStateTable=NULL;
1392     }
1393     umtx_unlock(NULL);
1394 
1395     /* release the allocated memory if another thread beat us to it */
1396     if(newStateTable!=NULL) {
1397         uprv_free(newStateTable);
1398     }
1399     return TRUE;
1400 }
1401 
1402 /* reconstitute omitted fromUnicode data ------------------------------------ */
1403 
1404 /* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() */
1405 static UBool U_CALLCONV
1406 writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]) {
1407     UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context;
1408     const uint16_t *table;
1409     uint32_t *stage2;
1410     uint8_t *bytes, *p;
1411     UChar32 c;
1412     int32_t i, st3;
1413 
1414     table=mbcsTable->fromUnicodeTable;
1415     bytes=(uint8_t *)mbcsTable->fromUnicodeBytes;
1416 
1417     /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */
1418     switch(mbcsTable->outputType) {
1419     case MBCS_OUTPUT_3_EUC:
1420         if(value<=0xffff) {
1421             /* short sequences are stored directly */
1422             /* code set 0 or 1 */
1423         } else if(value<=0x8effff) {
1424             /* code set 2 */
1425             value&=0x7fff;
1426         } else /* first byte is 0x8f */ {
1427             /* code set 3 */
1428             value&=0xff7f;
1429         }
1430         break;
1431     case MBCS_OUTPUT_4_EUC:
1432         if(value<=0xffffff) {
1433             /* short sequences are stored directly */
1434             /* code set 0 or 1 */
1435         } else if(value<=0x8effffff) {
1436             /* code set 2 */
1437             value&=0x7fffff;
1438         } else /* first byte is 0x8f */ {
1439             /* code set 3 */
1440             value&=0xff7fff;
1441         }
1442         break;
1443     default:
1444         break;
1445     }
1446 
1447     for(i=0; i<=0x1f; ++value, ++i) {
1448         c=codePoints[i];
1449         if(c<0) {
1450             continue;
1451         }
1452 
1453         /* locate the stage 2 & 3 data */
1454         stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f);
1455         p=bytes;
1456         st3=(int32_t)(uint16_t)*stage2*16+(c&0xf);
1457 
1458         /* write the codepage bytes into stage 3 */
1459         switch(mbcsTable->outputType) {
1460         case MBCS_OUTPUT_3:
1461         case MBCS_OUTPUT_4_EUC:
1462             p+=st3*3;
1463             p[0]=(uint8_t)(value>>16);
1464             p[1]=(uint8_t)(value>>8);
1465             p[2]=(uint8_t)value;
1466             break;
1467         case MBCS_OUTPUT_4:
1468             ((uint32_t *)p)[st3]=value;
1469             break;
1470         default:
1471             /* 2 bytes per character */
1472             ((uint16_t *)p)[st3]=(uint16_t)value;
1473             break;
1474         }
1475 
1476         /* set the roundtrip flag */
1477         *stage2|=(1UL<<(16+(c&0xf)));
1478     }
1479     return TRUE;
1480  }
1481 
1482 static void
1483 reconstituteData(UConverterMBCSTable *mbcsTable,
1484                  uint32_t stage1Length, uint32_t stage2Length,
1485                  uint32_t fullStage2Length,  /* lengths are numbers of units, not bytes */
1486                  UErrorCode *pErrorCode) {
1487     uint16_t *stage1;
1488     uint32_t *stage2;
1489     uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesLength;
1490     mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength);
1491     if(mbcsTable->reconstitutedData==NULL) {
1492         *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1493         return;
1494     }
1495     uprv_memset(mbcsTable->reconstitutedData, 0, dataLength);
1496 
1497     /* copy existing data and reroute the pointers */
1498     stage1=(uint16_t *)mbcsTable->reconstitutedData;
1499     uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2);
1500 
1501     stage2=(uint32_t *)(stage1+stage1Length);
1502     uprv_memcpy(stage2+(fullStage2Length-stage2Length),
1503                 mbcsTable->fromUnicodeTable+stage1Length,
1504                 stage2Length*4);
1505 
1506     mbcsTable->fromUnicodeTable=stage1;
1507     mbcsTable->fromUnicodeBytes=(uint8_t *)(stage2+fullStage2Length);
1508 
1509     /* indexes into stage 2 count from the bottom of the fromUnicodeTable */
1510     stage2=(uint32_t *)stage1;
1511 
1512     /* reconstitute the initial part of stage 2 from the mbcsIndex */
1513     {
1514         int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6;
1515         int32_t stageUTF8Index=0;
1516         int32_t st1, st2, st3, i;
1517 
1518         for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) {
1519             st2=stage1[st1];
1520             if(st2!=(int32_t)stage1Length/2) {
1521                 /* each stage 2 block has 64 entries corresponding to 16 entries in the mbcsIndex */
1522                 for(i=0; i<16; ++i) {
1523                     st3=mbcsTable->mbcsIndex[stageUTF8Index++];
1524                     if(st3!=0) {
1525                         /* an stage 2 entry's index is per stage 3 16-block, not per stage 3 entry */
1526                         st3>>=4;
1527                         /*
1528                          * 4 stage 2 entries point to 4 consecutive stage 3 16-blocks which are
1529                          * allocated together as a single 64-block for access from the mbcsIndex
1530                          */
1531                         stage2[st2++]=st3++;
1532                         stage2[st2++]=st3++;
1533                         stage2[st2++]=st3++;
1534                         stage2[st2++]=st3;
1535                     } else {
1536                         /* no stage 3 block, skip */
1537                         st2+=4;
1538                     }
1539                 }
1540             } else {
1541                 /* no stage 2 block, skip */
1542                 stageUTF8Index+=16;
1543             }
1544         }
1545     }
1546 
1547     /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */
1548     ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCode);
1549 }
1550 
1551 /* MBCS setup functions ----------------------------------------------------- */
1552 
1553 static void U_CALLCONV
1554 ucnv_MBCSLoad(UConverterSharedData *sharedData,
1555           UConverterLoadArgs *pArgs,
1556           const uint8_t *raw,
1557           UErrorCode *pErrorCode) {
1558     UDataInfo info;
1559     UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1560     _MBCSHeader *header=(_MBCSHeader *)raw;
1561     uint32_t offset;
1562     uint32_t headerLength;
1563     UBool noFromU=FALSE;
1564 
1565     if(header->version[0]==4) {
1566         headerLength=MBCS_HEADER_V4_LENGTH;
1567     } else if(header->version[0]==5 && header->version[1]>=3 &&
1568               (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) {
1569         headerLength=header->options&MBCS_OPT_LENGTH_MASK;
1570         noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0);
1571     } else {
1572         *pErrorCode=U_INVALID_TABLE_FORMAT;
1573         return;
1574     }
1575 
1576     mbcsTable->outputType=(uint8_t)header->flags;
1577     if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) {
1578         *pErrorCode=U_INVALID_TABLE_FORMAT;
1579         return;
1580     }
1581 
1582     /* extension data, header version 4.2 and higher */
1583     offset=header->flags>>8;
1584     if(offset!=0) {
1585         mbcsTable->extIndexes=(const int32_t *)(raw+offset);
1586     }
1587 
1588     if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) {
1589         UConverterLoadArgs args=UCNV_LOAD_ARGS_INITIALIZER;
1590         UConverterSharedData *baseSharedData;
1591         const int32_t *extIndexes;
1592         const char *baseName;
1593 
1594         /* extension-only file, load the base table and set values appropriately */
1595         if((extIndexes=mbcsTable->extIndexes)==NULL) {
1596             /* extension-only file without extension */
1597             *pErrorCode=U_INVALID_TABLE_FORMAT;
1598             return;
1599         }
1600 
1601         if(pArgs->nestedLoads!=1) {
1602             /* an extension table must not be loaded as a base table */
1603             *pErrorCode=U_INVALID_TABLE_FILE;
1604             return;
1605         }
1606 
1607         /* load the base table */
1608         baseName=(const char *)header+headerLength*4;
1609         if(0==uprv_strcmp(baseName, sharedData->staticData->name)) {
1610             /* forbid loading this same extension-only file */
1611             *pErrorCode=U_INVALID_TABLE_FORMAT;
1612             return;
1613         }
1614 
1615         /* TODO parse package name out of the prefix of the base name in the extension .cnv file? */
1616         args.size=sizeof(UConverterLoadArgs);
1617         args.nestedLoads=2;
1618         args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable;
1619         args.reserved=pArgs->reserved;
1620         args.options=pArgs->options;
1621         args.pkg=pArgs->pkg;
1622         args.name=baseName;
1623         baseSharedData=ucnv_load(&args, pErrorCode);
1624         if(U_FAILURE(*pErrorCode)) {
1625             return;
1626         }
1627         if( baseSharedData->staticData->conversionType!=UCNV_MBCS ||
1628             baseSharedData->mbcs.baseSharedData!=NULL
1629         ) {
1630             ucnv_unload(baseSharedData);
1631             *pErrorCode=U_INVALID_TABLE_FORMAT;
1632             return;
1633         }
1634         if(pArgs->onlyTestIsLoadable) {
1635             /*
1636              * Exit as soon as we know that we can load the converter
1637              * and the format is valid and supported.
1638              * The worst that can happen in the following code is a memory
1639              * allocation error.
1640              */
1641             ucnv_unload(baseSharedData);
1642             return;
1643         }
1644 
1645         /* copy the base table data */
1646         uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable));
1647 
1648         /* overwrite values with relevant ones for the extension converter */
1649         mbcsTable->baseSharedData=baseSharedData;
1650         mbcsTable->extIndexes=extIndexes;
1651 
1652         /*
1653          * It would be possible to share the swapLFNL data with a base converter,
1654          * but the generated name would have to be different, and the memory
1655          * would have to be free'd only once.
1656          * It is easier to just create the data for the extension converter
1657          * separately when it is requested.
1658          */
1659         mbcsTable->swapLFNLStateTable=NULL;
1660         mbcsTable->swapLFNLFromUnicodeBytes=NULL;
1661         mbcsTable->swapLFNLName=NULL;
1662 
1663         /*
1664          * The reconstitutedData must be deleted only when the base converter
1665          * is unloaded.
1666          */
1667         mbcsTable->reconstitutedData=NULL;
1668 
1669         /*
1670          * Set a special, runtime-only outputType if the extension converter
1671          * is a DBCS version of a base converter that also maps single bytes.
1672          */
1673         if( sharedData->staticData->conversionType==UCNV_DBCS ||
1674                 (sharedData->staticData->conversionType==UCNV_MBCS &&
1675                  sharedData->staticData->minBytesPerChar>=2)
1676         ) {
1677             if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) {
1678                 /* the base converter is SI/SO-stateful */
1679                 int32_t entry;
1680 
1681                 /* get the dbcs state from the state table entry for SO=0x0e */
1682                 entry=mbcsTable->stateTable[0][0xe];
1683                 if( MBCS_ENTRY_IS_FINAL(entry) &&
1684                     MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY &&
1685                     MBCS_ENTRY_FINAL_STATE(entry)!=0
1686                 ) {
1687                     mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry);
1688 
1689                     mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1690                 }
1691             } else if(
1692                 baseSharedData->staticData->conversionType==UCNV_MBCS &&
1693                 baseSharedData->staticData->minBytesPerChar==1 &&
1694                 baseSharedData->staticData->maxBytesPerChar==2 &&
1695                 mbcsTable->countStates<=127
1696             ) {
1697                 /* non-stateful base converter, need to modify the state table */
1698                 int32_t (*newStateTable)[256];
1699                 int32_t *state;
1700                 int32_t i, count;
1701 
1702                 /* allocate a new state table and copy the base state table contents */
1703                 count=mbcsTable->countStates;
1704                 newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024);
1705                 if(newStateTable==NULL) {
1706                     ucnv_unload(baseSharedData);
1707                     *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1708                     return;
1709                 }
1710 
1711                 uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024);
1712 
1713                 /* change all final single-byte entries to go to a new all-illegal state */
1714                 state=newStateTable[0];
1715                 for(i=0; i<256; ++i) {
1716                     if(MBCS_ENTRY_IS_FINAL(state[i])) {
1717                         state[i]=MBCS_ENTRY_TRANSITION(count, 0);
1718                     }
1719                 }
1720 
1721                 /* build the new all-illegal state */
1722                 state=newStateTable[count];
1723                 for(i=0; i<256; ++i) {
1724                     state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0);
1725                 }
1726                 mbcsTable->stateTable=(const int32_t (*)[256])newStateTable;
1727                 mbcsTable->countStates=(uint8_t)(count+1);
1728                 mbcsTable->stateTableOwned=TRUE;
1729 
1730                 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY;
1731             }
1732         }
1733 
1734         /*
1735          * unlike below for files with base tables, do not get the unicodeMask
1736          * from the sharedData; instead, use the base table's unicodeMask,
1737          * which we copied in the memcpy above;
1738          * this is necessary because the static data unicodeMask, especially
1739          * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data
1740          */
1741     } else {
1742         /* conversion file with a base table; an additional extension table is optional */
1743         /* make sure that the output type is known */
1744         switch(mbcsTable->outputType) {
1745         case MBCS_OUTPUT_1:
1746         case MBCS_OUTPUT_2:
1747         case MBCS_OUTPUT_3:
1748         case MBCS_OUTPUT_4:
1749         case MBCS_OUTPUT_3_EUC:
1750         case MBCS_OUTPUT_4_EUC:
1751         case MBCS_OUTPUT_2_SISO:
1752             /* OK */
1753             break;
1754         default:
1755             *pErrorCode=U_INVALID_TABLE_FORMAT;
1756             return;
1757         }
1758         if(pArgs->onlyTestIsLoadable) {
1759             /*
1760              * Exit as soon as we know that we can load the converter
1761              * and the format is valid and supported.
1762              * The worst that can happen in the following code is a memory
1763              * allocation error.
1764              */
1765             return;
1766         }
1767 
1768         mbcsTable->countStates=(uint8_t)header->countStates;
1769         mbcsTable->countToUFallbacks=header->countToUFallbacks;
1770         mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4);
1771         mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates);
1772         mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits);
1773 
1774         mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable);
1775         mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes);
1776         mbcsTable->fromUBytesLength=header->fromUBytesLength;
1777 
1778         /*
1779          * converter versions 6.1 and up contain a unicodeMask that is
1780          * used here to select the most efficient function implementations
1781          */
1782         info.size=sizeof(UDataInfo);
1783         udata_getInfo((UDataMemory *)sharedData->dataMemory, &info);
1784         if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) {
1785             /* mask off possible future extensions to be safe */
1786             mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3);
1787         } else {
1788             /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */
1789             mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES;
1790         }
1791 
1792         /*
1793          * _MBCSHeader.version 4.3 adds utf8Friendly data structures.
1794          * Check for the header version, SBCS vs. MBCS, and for whether the
1795          * data structures are optimized for code points as high as what the
1796          * runtime code is designed for.
1797          * The implementation does not handle mapping tables with entries for
1798          * unpaired surrogates.
1799          */
1800         if( header->version[1]>=3 &&
1801             (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 &&
1802             (mbcsTable->countStates==1 ?
1803                 (header->version[2]>=(SBCS_FAST_MAX>>8)) :
1804                 (header->version[2]>=(MBCS_FAST_MAX>>8))
1805             )
1806         ) {
1807             mbcsTable->utf8Friendly=TRUE;
1808 
1809             if(mbcsTable->countStates==1) {
1810                 /*
1811                  * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBCS_FAST_MAX or higher.
1812                  * Build a table with indexes to each block, to be used instead of
1813                  * the regular stage 1/2 table.
1814                  */
1815                 int32_t i;
1816                 for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) {
1817                     mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTable->fromUnicodeTable[i>>4]+((i<<2)&0x3c)];
1818                 }
1819                 /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if header->version[2]>(SBCS_FAST_MAX>>8) */
1820                 mbcsTable->maxFastUChar=SBCS_FAST_MAX;
1821             } else {
1822                 /*
1823                  * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBCS_FAST_MAX or higher.
1824                  * The .cnv file is prebuilt with an additional stage table with indexes
1825                  * to each block.
1826                  */
1827                 mbcsTable->mbcsIndex=(const uint16_t *)
1828                     (mbcsTable->fromUnicodeBytes+
1829                      (noFromU ? 0 : mbcsTable->fromUBytesLength));
1830                 mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff;
1831             }
1832         }
1833 
1834         /* calculate a bit set of 4 ASCII characters per bit that round-trip to ASCII bytes */
1835         {
1836             uint32_t asciiRoundtrips=0xffffffff;
1837             int32_t i;
1838 
1839             for(i=0; i<0x80; ++i) {
1840                 if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, i)) {
1841                     asciiRoundtrips&=~((uint32_t)1<<(i>>2));
1842                 }
1843             }
1844             mbcsTable->asciiRoundtrips=asciiRoundtrips;
1845         }
1846 
1847         if(noFromU) {
1848             uint32_t stage1Length=
1849                 mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ?
1850                     0x440 : 0x40;
1851             uint32_t stage2Length=
1852                 (header->offsetFromUBytes-header->offsetFromUTable)/4-
1853                 stage1Length/2;
1854             reconstituteData(mbcsTable, stage1Length, stage2Length, header->fullStage2Length, pErrorCode);
1855         }
1856     }
1857 
1858     /* Set the impl pointer here so that it is set for both extension-only and base tables. */
1859     if(mbcsTable->utf8Friendly) {
1860         if(mbcsTable->countStates==1) {
1861             sharedData->impl=&_SBCSUTF8Impl;
1862         } else {
1863             if(mbcsTable->outputType==MBCS_OUTPUT_2) {
1864                 sharedData->impl=&_DBCSUTF8Impl;
1865             }
1866         }
1867     }
1868 
1869     if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) {
1870         /*
1871          * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not roundtrip.
1872          * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength correctly.
1873          */
1874         mbcsTable->asciiRoundtrips=0;
1875     }
1876 }
1877 
1878 static void U_CALLCONV
1879 ucnv_MBCSUnload(UConverterSharedData *sharedData) {
1880     UConverterMBCSTable *mbcsTable=&sharedData->mbcs;
1881 
1882     if(mbcsTable->swapLFNLStateTable!=NULL) {
1883         uprv_free(mbcsTable->swapLFNLStateTable);
1884     }
1885     if(mbcsTable->stateTableOwned) {
1886         uprv_free((void *)mbcsTable->stateTable);
1887     }
1888     if(mbcsTable->baseSharedData!=NULL) {
1889         ucnv_unload(mbcsTable->baseSharedData);
1890     }
1891     if(mbcsTable->reconstitutedData!=NULL) {
1892         uprv_free(mbcsTable->reconstitutedData);
1893     }
1894 }
1895 
1896 static void U_CALLCONV
1897 ucnv_MBCSOpen(UConverter *cnv,
1898               UConverterLoadArgs *pArgs,
1899               UErrorCode *pErrorCode) {
1900     UConverterMBCSTable *mbcsTable;
1901     const int32_t *extIndexes;
1902     uint8_t outputType;
1903     int8_t maxBytesPerUChar;
1904 
1905     if(pArgs->onlyTestIsLoadable) {
1906         return;
1907     }
1908 
1909     mbcsTable=&cnv->sharedData->mbcs;
1910     outputType=mbcsTable->outputType;
1911 
1912     if(outputType==MBCS_OUTPUT_DBCS_ONLY) {
1913         /* the swaplfnl option does not apply, remove it */
1914         cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
1915     }
1916 
1917     if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) {
1918         /* do this because double-checked locking is broken */
1919         UBool isCached;
1920 
1921         umtx_lock(NULL);
1922         isCached=mbcsTable->swapLFNLStateTable!=NULL;
1923         umtx_unlock(NULL);
1924 
1925         if(!isCached) {
1926             if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) {
1927                 if(U_FAILURE(*pErrorCode)) {
1928                     return; /* something went wrong */
1929                 }
1930 
1931                 /* the option does not apply, remove it */
1932                 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL;
1933             }
1934         }
1935     }
1936 
1937     if(uprv_strstr(pArgs->name, "18030")!=NULL) {
1938         if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name, "GB18030")!=NULL) {
1939             /* set a flag for GB 18030 mode, which changes the callback behavior */
1940             cnv->options|=_MBCS_OPTION_GB18030;
1941         }
1942     } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->name, "keis")!=NULL)) {
1943         /* set a flag for KEIS converter, which changes the SI/SO character sequence */
1944         cnv->options|=_MBCS_OPTION_KEIS;
1945     } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->name, "jef")!=NULL)) {
1946         /* set a flag for JEF converter, which changes the SI/SO character sequence */
1947         cnv->options|=_MBCS_OPTION_JEF;
1948     } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->name, "jips")!=NULL)) {
1949         /* set a flag for JIPS converter, which changes the SI/SO character sequence */
1950         cnv->options|=_MBCS_OPTION_JIPS;
1951     }
1952 
1953     /* fix maxBytesPerUChar depending on outputType and options etc. */
1954     if(outputType==MBCS_OUTPUT_2_SISO) {
1955         cnv->maxBytesPerUChar=3; /* SO+DBCS */
1956     }
1957 
1958     extIndexes=mbcsTable->extIndexes;
1959     if(extIndexes!=NULL) {
1960         maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes);
1961         if(outputType==MBCS_OUTPUT_2_SISO) {
1962             ++maxBytesPerUChar; /* SO + multiple DBCS */
1963         }
1964 
1965         if(maxBytesPerUChar>cnv->maxBytesPerUChar) {
1966             cnv->maxBytesPerUChar=maxBytesPerUChar;
1967         }
1968     }
1969 
1970 #if 0
1971     /*
1972      * documentation of UConverter fields used for status
1973      * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset()
1974      */
1975 
1976     /* toUnicode */
1977     cnv->toUnicodeStatus=0;     /* offset */
1978     cnv->mode=0;                /* state */
1979     cnv->toULength=0;           /* byteIndex */
1980 
1981     /* fromUnicode */
1982     cnv->fromUChar32=0;
1983     cnv->fromUnicodeStatus=1;   /* prevLength */
1984 #endif
1985 }
1986 
1987 U_CDECL_BEGIN
1988 
1989 static const char* U_CALLCONV
1990 ucnv_MBCSGetName(const UConverter *cnv) {
1991     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNLName!=NULL) {
1992         return cnv->sharedData->mbcs.swapLFNLName;
1993     } else {
1994         return cnv->sharedData->staticData->name;
1995     }
1996 }
1997 U_CDECL_END
1998 
1999 
2000 /* MBCS-to-Unicode conversion functions ------------------------------------- */
2001 
2002 static UChar32 U_CALLCONV
2003 ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) {
2004     const _MBCSToUFallback *toUFallbacks;
2005     uint32_t i, start, limit;
2006 
2007     limit=mbcsTable->countToUFallbacks;
2008     if(limit>0) {
2009         /* do a binary search for the fallback mapping */
2010         toUFallbacks=mbcsTable->toUFallbacks;
2011         start=0;
2012         while(start<limit-1) {
2013             i=(start+limit)/2;
2014             if(offset<toUFallbacks[i].offset) {
2015                 limit=i;
2016             } else {
2017                 start=i;
2018             }
2019         }
2020 
2021         /* did we really find it? */
2022         if(offset==toUFallbacks[start].offset) {
2023             return toUFallbacks[start].codePoint;
2024         }
2025     }
2026 
2027     return 0xfffe;
2028 }
2029 
2030 /* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */
2031 static void
2032 ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
2033                                 UErrorCode *pErrorCode) {
2034     UConverter *cnv;
2035     const uint8_t *source, *sourceLimit;
2036     UChar *target;
2037     const UChar *targetLimit;
2038     int32_t *offsets;
2039 
2040     const int32_t (*stateTable)[256];
2041 
2042     int32_t sourceIndex;
2043 
2044     int32_t entry;
2045     UChar c;
2046     uint8_t action;
2047 
2048     /* set up the local pointers */
2049     cnv=pArgs->converter;
2050     source=(const uint8_t *)pArgs->source;
2051     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2052     target=pArgs->target;
2053     targetLimit=pArgs->targetLimit;
2054     offsets=pArgs->offsets;
2055 
2056     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2057         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2058     } else {
2059         stateTable=cnv->sharedData->mbcs.stateTable;
2060     }
2061 
2062     /* sourceIndex=-1 if the current character began in the previous buffer */
2063     sourceIndex=0;
2064 
2065     /* conversion loop */
2066     while(source<sourceLimit) {
2067         /*
2068          * This following test is to see if available input would overflow the output.
2069          * It does not catch output of more than one code unit that
2070          * overflows as a result of a surrogate pair or callback output
2071          * from the last source byte.
2072          * Therefore, those situations also test for overflows and will
2073          * then break the loop, too.
2074          */
2075         if(target>=targetLimit) {
2076             /* target is full */
2077             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2078             break;
2079         }
2080 
2081         entry=stateTable[0][*source++];
2082         /* MBCS_ENTRY_IS_FINAL(entry) */
2083 
2084         /* test the most common case first */
2085         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2086             /* output BMP code point */
2087             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2088             if(offsets!=NULL) {
2089                 *offsets++=sourceIndex;
2090             }
2091 
2092             /* normal end of action codes: prepare for a new character */
2093             ++sourceIndex;
2094             continue;
2095         }
2096 
2097         /*
2098          * An if-else-if chain provides more reliable performance for
2099          * the most common cases compared to a switch.
2100          */
2101         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2102         if(action==MBCS_STATE_VALID_DIRECT_20 ||
2103            (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2104         ) {
2105             entry=MBCS_ENTRY_FINAL_VALUE(entry);
2106             /* output surrogate pair */
2107             *target++=(UChar)(0xd800|(UChar)(entry>>10));
2108             if(offsets!=NULL) {
2109                 *offsets++=sourceIndex;
2110             }
2111             c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
2112             if(target<targetLimit) {
2113                 *target++=c;
2114                 if(offsets!=NULL) {
2115                     *offsets++=sourceIndex;
2116                 }
2117             } else {
2118                 /* target overflow */
2119                 cnv->UCharErrorBuffer[0]=c;
2120                 cnv->UCharErrorBufferLength=1;
2121                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2122                 break;
2123             }
2124 
2125             ++sourceIndex;
2126             continue;
2127         } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2128             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2129                 /* output BMP code point */
2130                 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2131                 if(offsets!=NULL) {
2132                     *offsets++=sourceIndex;
2133                 }
2134 
2135                 ++sourceIndex;
2136                 continue;
2137             }
2138         } else if(action==MBCS_STATE_UNASSIGNED) {
2139             /* just fall through */
2140         } else if(action==MBCS_STATE_ILLEGAL) {
2141             /* callback(illegal) */
2142             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2143         } else {
2144             /* reserved, must never occur */
2145             ++sourceIndex;
2146             continue;
2147         }
2148 
2149         if(U_FAILURE(*pErrorCode)) {
2150             /* callback(illegal) */
2151             break;
2152         } else /* unassigned sequences indicated with byteIndex>0 */ {
2153             /* try an extension mapping */
2154             pArgs->source=(const char *)source;
2155             cnv->toUBytes[0]=*(source-1);
2156             cnv->toULength=_extToU(cnv, cnv->sharedData,
2157                                     1, &source, sourceLimit,
2158                                     &target, targetLimit,
2159                                     &offsets, sourceIndex,
2160                                     pArgs->flush,
2161                                     pErrorCode);
2162             sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source);
2163 
2164             if(U_FAILURE(*pErrorCode)) {
2165                 /* not mappable or buffer overflow */
2166                 break;
2167             }
2168         }
2169     }
2170 
2171     /* write back the updated pointers */
2172     pArgs->source=(const char *)source;
2173     pArgs->target=target;
2174     pArgs->offsets=offsets;
2175 }
2176 
2177 /*
2178  * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages
2179  * that only map to and from the BMP.
2180  * In addition to single-byte optimizations, the offset calculations
2181  * become much easier.
2182  */
2183 static void
2184 ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs,
2185                             UErrorCode *pErrorCode) {
2186     UConverter *cnv;
2187     const uint8_t *source, *sourceLimit, *lastSource;
2188     UChar *target;
2189     int32_t targetCapacity, length;
2190     int32_t *offsets;
2191 
2192     const int32_t (*stateTable)[256];
2193 
2194     int32_t sourceIndex;
2195 
2196     int32_t entry;
2197     uint8_t action;
2198 
2199     /* set up the local pointers */
2200     cnv=pArgs->converter;
2201     source=(const uint8_t *)pArgs->source;
2202     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2203     target=pArgs->target;
2204     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
2205     offsets=pArgs->offsets;
2206 
2207     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2208         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2209     } else {
2210         stateTable=cnv->sharedData->mbcs.stateTable;
2211     }
2212 
2213     /* sourceIndex=-1 if the current character began in the previous buffer */
2214     sourceIndex=0;
2215     lastSource=source;
2216 
2217     /*
2218      * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
2219      * for the minimum of the sourceLength and targetCapacity
2220      */
2221     length=(int32_t)(sourceLimit-source);
2222     if(length<targetCapacity) {
2223         targetCapacity=length;
2224     }
2225 
2226 #if MBCS_UNROLL_SINGLE_TO_BMP
2227     /* unrolling makes it faster on Pentium III/Windows 2000 */
2228     /* unroll the loop with the most common case */
2229 unrolled:
2230     if(targetCapacity>=16) {
2231         int32_t count, loops, oredEntries;
2232 
2233         loops=count=targetCapacity>>4;
2234         do {
2235             oredEntries=entry=stateTable[0][*source++];
2236             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2237             oredEntries|=entry=stateTable[0][*source++];
2238             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2239             oredEntries|=entry=stateTable[0][*source++];
2240             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2241             oredEntries|=entry=stateTable[0][*source++];
2242             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2243             oredEntries|=entry=stateTable[0][*source++];
2244             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2245             oredEntries|=entry=stateTable[0][*source++];
2246             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2247             oredEntries|=entry=stateTable[0][*source++];
2248             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2249             oredEntries|=entry=stateTable[0][*source++];
2250             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2251             oredEntries|=entry=stateTable[0][*source++];
2252             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2253             oredEntries|=entry=stateTable[0][*source++];
2254             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2255             oredEntries|=entry=stateTable[0][*source++];
2256             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2257             oredEntries|=entry=stateTable[0][*source++];
2258             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2259             oredEntries|=entry=stateTable[0][*source++];
2260             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2261             oredEntries|=entry=stateTable[0][*source++];
2262             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2263             oredEntries|=entry=stateTable[0][*source++];
2264             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2265             oredEntries|=entry=stateTable[0][*source++];
2266             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2267 
2268             /* were all 16 entries really valid? */
2269             if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) {
2270                 /* no, return to the first of these 16 */
2271                 source-=16;
2272                 target-=16;
2273                 break;
2274             }
2275         } while(--count>0);
2276         count=loops-count;
2277         targetCapacity-=16*count;
2278 
2279         if(offsets!=NULL) {
2280             lastSource+=16*count;
2281             while(count>0) {
2282                 *offsets++=sourceIndex++;
2283                 *offsets++=sourceIndex++;
2284                 *offsets++=sourceIndex++;
2285                 *offsets++=sourceIndex++;
2286                 *offsets++=sourceIndex++;
2287                 *offsets++=sourceIndex++;
2288                 *offsets++=sourceIndex++;
2289                 *offsets++=sourceIndex++;
2290                 *offsets++=sourceIndex++;
2291                 *offsets++=sourceIndex++;
2292                 *offsets++=sourceIndex++;
2293                 *offsets++=sourceIndex++;
2294                 *offsets++=sourceIndex++;
2295                 *offsets++=sourceIndex++;
2296                 *offsets++=sourceIndex++;
2297                 *offsets++=sourceIndex++;
2298                 --count;
2299             }
2300         }
2301     }
2302 #endif
2303 
2304     /* conversion loop */
2305     while(targetCapacity > 0 && source < sourceLimit) {
2306         entry=stateTable[0][*source++];
2307         /* MBCS_ENTRY_IS_FINAL(entry) */
2308 
2309         /* test the most common case first */
2310         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2311             /* output BMP code point */
2312             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2313             --targetCapacity;
2314             continue;
2315         }
2316 
2317         /*
2318          * An if-else-if chain provides more reliable performance for
2319          * the most common cases compared to a switch.
2320          */
2321         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2322         if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2323             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2324                 /* output BMP code point */
2325                 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2326                 --targetCapacity;
2327                 continue;
2328             }
2329         } else if(action==MBCS_STATE_UNASSIGNED) {
2330             /* just fall through */
2331         } else if(action==MBCS_STATE_ILLEGAL) {
2332             /* callback(illegal) */
2333             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2334         } else {
2335             /* reserved, must never occur */
2336             continue;
2337         }
2338 
2339         /* set offsets since the start or the last extension */
2340         if(offsets!=NULL) {
2341             int32_t count=(int32_t)(source-lastSource);
2342 
2343             /* predecrement: do not set the offset for the callback-causing character */
2344             while(--count>0) {
2345                 *offsets++=sourceIndex++;
2346             }
2347             /* offset and sourceIndex are now set for the current character */
2348         }
2349 
2350         if(U_FAILURE(*pErrorCode)) {
2351             /* callback(illegal) */
2352             break;
2353         } else /* unassigned sequences indicated with byteIndex>0 */ {
2354             /* try an extension mapping */
2355             lastSource=source;
2356             cnv->toUBytes[0]=*(source-1);
2357             cnv->toULength=_extToU(cnv, cnv->sharedData,
2358                                     1, &source, sourceLimit,
2359                                     &target, pArgs->targetLimit,
2360                                     &offsets, sourceIndex,
2361                                     pArgs->flush,
2362                                     pErrorCode);
2363             sourceIndex+=1+(int32_t)(source-lastSource);
2364 
2365             if(U_FAILURE(*pErrorCode)) {
2366                 /* not mappable or buffer overflow */
2367                 break;
2368             }
2369 
2370             /* recalculate the targetCapacity after an extension mapping */
2371             targetCapacity=(int32_t)(pArgs->targetLimit-target);
2372             length=(int32_t)(sourceLimit-source);
2373             if(length<targetCapacity) {
2374                 targetCapacity=length;
2375             }
2376         }
2377 
2378 #if MBCS_UNROLL_SINGLE_TO_BMP
2379         /* unrolling makes it faster on Pentium III/Windows 2000 */
2380         goto unrolled;
2381 #endif
2382     }
2383 
2384     if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimit) {
2385         /* target is full */
2386         *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2387     }
2388 
2389     /* set offsets since the start or the last callback */
2390     if(offsets!=NULL) {
2391         size_t count=source-lastSource;
2392         while(count>0) {
2393             *offsets++=sourceIndex++;
2394             --count;
2395         }
2396     }
2397 
2398     /* write back the updated pointers */
2399     pArgs->source=(const char *)source;
2400     pArgs->target=target;
2401     pArgs->offsets=offsets;
2402 }
2403 
2404 static UBool
2405 hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) {
2406     const int32_t *row=stateTable[state];
2407     int32_t b, entry;
2408     /* First test for final entries in this state for some commonly valid byte values. */
2409     entry=row[0xa1];
2410     if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2411         MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2412     ) {
2413         return TRUE;
2414     }
2415     entry=row[0x41];
2416     if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2417         MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2418     ) {
2419         return TRUE;
2420     }
2421     /* Then test for final entries in this state. */
2422     for(b=0; b<=0xff; ++b) {
2423         entry=row[b];
2424         if( !MBCS_ENTRY_IS_TRANSITION(entry) &&
2425             MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL
2426         ) {
2427             return TRUE;
2428         }
2429     }
2430     /* Then recurse for transition entries. */
2431     for(b=0; b<=0xff; ++b) {
2432         entry=row[b];
2433         if( MBCS_ENTRY_IS_TRANSITION(entry) &&
2434             hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry))
2435         ) {
2436             return TRUE;
2437         }
2438     }
2439     return FALSE;
2440 }
2441 
2442 /*
2443  * Is byte b a single/lead byte in this state?
2444  * Recurse for transition states, because here we don't want to say that
2445  * b is a lead byte if all byte sequences that start with b are illegal.
2446  */
2447 static UBool
2448 isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly, uint8_t b) {
2449     const int32_t *row=stateTable[state];
2450     int32_t entry=row[b];
2451     if(MBCS_ENTRY_IS_TRANSITION(entry)) {   /* lead byte */
2452         return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry));
2453     } else {
2454         uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2455         if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) {
2456             return FALSE;   /* SI/SO are illegal for DBCS-only conversion */
2457         } else {
2458             return action!=MBCS_STATE_ILLEGAL;
2459         }
2460     }
2461 }
2462 
2463 U_CFUNC void
2464 ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs,
2465                           UErrorCode *pErrorCode) {
2466     UConverter *cnv;
2467     const uint8_t *source, *sourceLimit;
2468     UChar *target;
2469     const UChar *targetLimit;
2470     int32_t *offsets;
2471 
2472     const int32_t (*stateTable)[256];
2473     const uint16_t *unicodeCodeUnits;
2474 
2475     uint32_t offset;
2476     uint8_t state;
2477     int8_t byteIndex;
2478     uint8_t *bytes;
2479 
2480     int32_t sourceIndex, nextSourceIndex;
2481 
2482     int32_t entry;
2483     UChar c;
2484     uint8_t action;
2485 
2486     /* use optimized function if possible */
2487     cnv=pArgs->converter;
2488 
2489     if(cnv->preToULength>0) {
2490         /*
2491          * pass sourceIndex=-1 because we continue from an earlier buffer
2492          * in the future, this may change with continuous offsets
2493          */
2494         ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode);
2495 
2496         if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) {
2497             return;
2498         }
2499     }
2500 
2501     if(cnv->sharedData->mbcs.countStates==1) {
2502         if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
2503             ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode);
2504         } else {
2505             ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode);
2506         }
2507         return;
2508     }
2509 
2510     /* set up the local pointers */
2511     source=(const uint8_t *)pArgs->source;
2512     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2513     target=pArgs->target;
2514     targetLimit=pArgs->targetLimit;
2515     offsets=pArgs->offsets;
2516 
2517     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2518         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2519     } else {
2520         stateTable=cnv->sharedData->mbcs.stateTable;
2521     }
2522     unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
2523 
2524     /* get the converter state from UConverter */
2525     offset=cnv->toUnicodeStatus;
2526     byteIndex=cnv->toULength;
2527     bytes=cnv->toUBytes;
2528 
2529     /*
2530      * if we are in the SBCS state for a DBCS-only converter,
2531      * then load the DBCS state from the MBCS data
2532      * (dbcsOnlyState==0 if it is not a DBCS-only converter)
2533      */
2534     if((state=(uint8_t)(cnv->mode))==0) {
2535         state=cnv->sharedData->mbcs.dbcsOnlyState;
2536     }
2537 
2538     /* sourceIndex=-1 if the current character began in the previous buffer */
2539     sourceIndex=byteIndex==0 ? 0 : -1;
2540     nextSourceIndex=0;
2541 
2542     /* conversion loop */
2543     while(source<sourceLimit) {
2544         /*
2545          * This following test is to see if available input would overflow the output.
2546          * It does not catch output of more than one code unit that
2547          * overflows as a result of a surrogate pair or callback output
2548          * from the last source byte.
2549          * Therefore, those situations also test for overflows and will
2550          * then break the loop, too.
2551          */
2552         if(target>=targetLimit) {
2553             /* target is full */
2554             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2555             break;
2556         }
2557 
2558         if(byteIndex==0) {
2559             /* optimized loop for 1/2-byte input and BMP output */
2560             if(offsets==NULL) {
2561                 do {
2562                     entry=stateTable[state][*source];
2563                     if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2564                         state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2565                         offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2566 
2567                         ++source;
2568                         if( source<sourceLimit &&
2569                             MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2570                             MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2571                             (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2572                         ) {
2573                             ++source;
2574                             *target++=c;
2575                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2576                             offset=0;
2577                         } else {
2578                             /* set the state and leave the optimized loop */
2579                             bytes[0]=*(source-1);
2580                             byteIndex=1;
2581                             break;
2582                         }
2583                     } else {
2584                         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2585                             /* output BMP code point */
2586                             ++source;
2587                             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2588                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2589                         } else {
2590                             /* leave the optimized loop */
2591                             break;
2592                         }
2593                     }
2594                 } while(source<sourceLimit && target<targetLimit);
2595             } else /* offsets!=NULL */ {
2596                 do {
2597                     entry=stateTable[state][*source];
2598                     if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2599                         state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2600                         offset=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2601 
2602                         ++source;
2603                         if( source<sourceLimit &&
2604                             MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
2605                             MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
2606                             (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
2607                         ) {
2608                             ++source;
2609                             *target++=c;
2610                             if(offsets!=NULL) {
2611                                 *offsets++=sourceIndex;
2612                                 sourceIndex=(nextSourceIndex+=2);
2613                             }
2614                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2615                             offset=0;
2616                         } else {
2617                             /* set the state and leave the optimized loop */
2618                             ++nextSourceIndex;
2619                             bytes[0]=*(source-1);
2620                             byteIndex=1;
2621                             break;
2622                         }
2623                     } else {
2624                         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2625                             /* output BMP code point */
2626                             ++source;
2627                             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2628                             if(offsets!=NULL) {
2629                                 *offsets++=sourceIndex;
2630                                 sourceIndex=++nextSourceIndex;
2631                             }
2632                             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2633                         } else {
2634                             /* leave the optimized loop */
2635                             break;
2636                         }
2637                     }
2638                 } while(source<sourceLimit && target<targetLimit);
2639             }
2640 
2641             /*
2642              * these tests and break statements could be put inside the loop
2643              * if C had "break outerLoop" like Java
2644              */
2645             if(source>=sourceLimit) {
2646                 break;
2647             }
2648             if(target>=targetLimit) {
2649                 /* target is full */
2650                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2651                 break;
2652             }
2653 
2654             ++nextSourceIndex;
2655             bytes[byteIndex++]=*source++;
2656         } else /* byteIndex>0 */ {
2657             ++nextSourceIndex;
2658             entry=stateTable[state][bytes[byteIndex++]=*source++];
2659         }
2660 
2661         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
2662             state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
2663             offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
2664             continue;
2665         }
2666 
2667         /* save the previous state for proper extension mapping with SI/SO-stateful converters */
2668         cnv->mode=state;
2669 
2670         /* set the next state early so that we can reuse the entry variable */
2671         state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
2672 
2673         /*
2674          * An if-else-if chain provides more reliable performance for
2675          * the most common cases compared to a switch.
2676          */
2677         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2678         if(action==MBCS_STATE_VALID_16) {
2679             offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2680             c=unicodeCodeUnits[offset];
2681             if(c<0xfffe) {
2682                 /* output BMP code point */
2683                 *target++=c;
2684                 if(offsets!=NULL) {
2685                     *offsets++=sourceIndex;
2686                 }
2687                 byteIndex=0;
2688             } else if(c==0xfffe) {
2689                 if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
2690                     /* output fallback BMP code point */
2691                     *target++=(UChar)entry;
2692                     if(offsets!=NULL) {
2693                         *offsets++=sourceIndex;
2694                     }
2695                     byteIndex=0;
2696                 }
2697             } else {
2698                 /* callback(illegal) */
2699                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2700             }
2701         } else if(action==MBCS_STATE_VALID_DIRECT_16) {
2702             /* output BMP code point */
2703             *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2704             if(offsets!=NULL) {
2705                 *offsets++=sourceIndex;
2706             }
2707             byteIndex=0;
2708         } else if(action==MBCS_STATE_VALID_16_PAIR) {
2709             offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
2710             c=unicodeCodeUnits[offset++];
2711             if(c<0xd800) {
2712                 /* output BMP code point below 0xd800 */
2713                 *target++=c;
2714                 if(offsets!=NULL) {
2715                     *offsets++=sourceIndex;
2716                 }
2717                 byteIndex=0;
2718             } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
2719                 /* output roundtrip or fallback surrogate pair */
2720                 *target++=(UChar)(c&0xdbff);
2721                 if(offsets!=NULL) {
2722                     *offsets++=sourceIndex;
2723                 }
2724                 byteIndex=0;
2725                 if(target<targetLimit) {
2726                     *target++=unicodeCodeUnits[offset];
2727                     if(offsets!=NULL) {
2728                         *offsets++=sourceIndex;
2729                     }
2730                 } else {
2731                     /* target overflow */
2732                     cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset];
2733                     cnv->UCharErrorBufferLength=1;
2734                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2735 
2736                     offset=0;
2737                     break;
2738                 }
2739             } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
2740                 /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
2741                 *target++=unicodeCodeUnits[offset];
2742                 if(offsets!=NULL) {
2743                     *offsets++=sourceIndex;
2744                 }
2745                 byteIndex=0;
2746             } else if(c==0xffff) {
2747                 /* callback(illegal) */
2748                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2749             }
2750         } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
2751                   (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2752         ) {
2753             entry=MBCS_ENTRY_FINAL_VALUE(entry);
2754             /* output surrogate pair */
2755             *target++=(UChar)(0xd800|(UChar)(entry>>10));
2756             if(offsets!=NULL) {
2757                 *offsets++=sourceIndex;
2758             }
2759             byteIndex=0;
2760             c=(UChar)(0xdc00|(UChar)(entry&0x3ff));
2761             if(target<targetLimit) {
2762                 *target++=c;
2763                 if(offsets!=NULL) {
2764                     *offsets++=sourceIndex;
2765                 }
2766             } else {
2767                 /* target overflow */
2768                 cnv->UCharErrorBuffer[0]=c;
2769                 cnv->UCharErrorBufferLength=1;
2770                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
2771 
2772                 offset=0;
2773                 break;
2774             }
2775         } else if(action==MBCS_STATE_CHANGE_ONLY) {
2776             /*
2777              * This serves as a state change without any output.
2778              * It is useful for reading simple stateful encodings,
2779              * for example using just Shift-In/Shift-Out codes.
2780              * The 21 unused bits may later be used for more sophisticated
2781              * state transitions.
2782              */
2783             if(cnv->sharedData->mbcs.dbcsOnlyState==0) {
2784                 byteIndex=0;
2785             } else {
2786                 /* SI/SO are illegal for DBCS-only conversion */
2787                 state=(uint8_t)(cnv->mode); /* restore the previous state */
2788 
2789                 /* callback(illegal) */
2790                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2791             }
2792         } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2793             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2794                 /* output BMP code point */
2795                 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2796                 if(offsets!=NULL) {
2797                     *offsets++=sourceIndex;
2798                 }
2799                 byteIndex=0;
2800             }
2801         } else if(action==MBCS_STATE_UNASSIGNED) {
2802             /* just fall through */
2803         } else if(action==MBCS_STATE_ILLEGAL) {
2804             /* callback(illegal) */
2805             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2806         } else {
2807             /* reserved, must never occur */
2808             byteIndex=0;
2809         }
2810 
2811         /* end of action codes: prepare for a new character */
2812         offset=0;
2813 
2814         if(byteIndex==0) {
2815             sourceIndex=nextSourceIndex;
2816         } else if(U_FAILURE(*pErrorCode)) {
2817             /* callback(illegal) */
2818             if(byteIndex>1) {
2819                 /*
2820                  * Ticket 5691: consistent illegal sequences:
2821                  * - We include at least the first byte in the illegal sequence.
2822                  * - If any of the non-initial bytes could be the start of a character,
2823                  *   we stop the illegal sequence before the first one of those.
2824                  */
2825                 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
2826                 int8_t i;
2827                 for(i=1;
2828                     i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly, bytes[i]);
2829                     ++i) {}
2830                 if(i<byteIndex) {
2831                     /* Back out some bytes. */
2832                     int8_t backOutDistance=byteIndex-i;
2833                     int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t *)pArgs->source);
2834                     byteIndex=i;  /* length of reported illegal byte sequence */
2835                     if(backOutDistance<=bytesFromThisBuffer) {
2836                         source-=backOutDistance;
2837                     } else {
2838                         /* Back out bytes from the previous buffer: Need to replay them. */
2839                         cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDistance);
2840                         /* preToULength is negative! */
2841                         uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength);
2842                         source=(const uint8_t *)pArgs->source;
2843                     }
2844                 }
2845             }
2846             break;
2847         } else /* unassigned sequences indicated with byteIndex>0 */ {
2848             /* try an extension mapping */
2849             pArgs->source=(const char *)source;
2850             byteIndex=_extToU(cnv, cnv->sharedData,
2851                               byteIndex, &source, sourceLimit,
2852                               &target, targetLimit,
2853                               &offsets, sourceIndex,
2854                               pArgs->flush,
2855                               pErrorCode);
2856             sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs->source);
2857 
2858             if(U_FAILURE(*pErrorCode)) {
2859                 /* not mappable or buffer overflow */
2860                 break;
2861             }
2862         }
2863     }
2864 
2865     /* set the converter state back into UConverter */
2866     cnv->toUnicodeStatus=offset;
2867     cnv->mode=state;
2868     cnv->toULength=byteIndex;
2869 
2870     /* write back the updated pointers */
2871     pArgs->source=(const char *)source;
2872     pArgs->target=target;
2873     pArgs->offsets=offsets;
2874 }
2875 
2876 /*
2877  * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-state codepages.
2878  * We still need a conversion loop in case we find reserved action codes, which are to be ignored.
2879  */
2880 static UChar32
2881 ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs,
2882                         UErrorCode *pErrorCode) {
2883     UConverter *cnv;
2884     const int32_t (*stateTable)[256];
2885     const uint8_t *source, *sourceLimit;
2886 
2887     int32_t entry;
2888     uint8_t action;
2889 
2890     /* set up the local pointers */
2891     cnv=pArgs->converter;
2892     source=(const uint8_t *)pArgs->source;
2893     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
2894     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
2895         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
2896     } else {
2897         stateTable=cnv->sharedData->mbcs.stateTable;
2898     }
2899 
2900     /* conversion loop */
2901     while(source<sourceLimit) {
2902         entry=stateTable[0][*source++];
2903         /* MBCS_ENTRY_IS_FINAL(entry) */
2904 
2905         /* write back the updated pointer early so that we can return directly */
2906         pArgs->source=(const char *)source;
2907 
2908         if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
2909             /* output BMP code point */
2910             return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2911         }
2912 
2913         /*
2914          * An if-else-if chain provides more reliable performance for
2915          * the most common cases compared to a switch.
2916          */
2917         action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
2918         if( action==MBCS_STATE_VALID_DIRECT_20 ||
2919             (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
2920         ) {
2921             /* output supplementary code point */
2922             return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
2923         } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
2924             if(UCNV_TO_U_USE_FALLBACK(cnv)) {
2925                 /* output BMP code point */
2926                 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
2927             }
2928         } else if(action==MBCS_STATE_UNASSIGNED) {
2929             /* just fall through */
2930         } else if(action==MBCS_STATE_ILLEGAL) {
2931             /* callback(illegal) */
2932             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
2933         } else {
2934             /* reserved, must never occur */
2935             continue;
2936         }
2937 
2938         if(U_FAILURE(*pErrorCode)) {
2939             /* callback(illegal) */
2940             break;
2941         } else /* unassigned sequence */ {
2942             /* defer to the generic implementation */
2943             pArgs->source=(const char *)source-1;
2944             return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2945         }
2946     }
2947 
2948     /* no output because of empty input or only state changes */
2949     *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2950     return 0xffff;
2951 }
2952 
2953 /*
2954  * Version of _MBCSToUnicodeWithOffsets() optimized for single-character
2955  * conversion without offset handling.
2956  *
2957  * When a character does not have a mapping to Unicode, then we return to the
2958  * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback
2959  * handling.
2960  * We also defer to the generic code in other complicated cases and have them
2961  * ultimately handled by _MBCSToUnicodeWithOffsets() itself.
2962  *
2963  * All normal mappings and errors are handled here.
2964  */
2965 static UChar32 U_CALLCONV
2966 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs,
2967                   UErrorCode *pErrorCode) {
2968     UConverter *cnv;
2969     const uint8_t *source, *sourceLimit, *lastSource;
2970 
2971     const int32_t (*stateTable)[256];
2972     const uint16_t *unicodeCodeUnits;
2973 
2974     uint32_t offset;
2975     uint8_t state;
2976 
2977     int32_t entry;
2978     UChar32 c;
2979     uint8_t action;
2980 
2981     /* use optimized function if possible */
2982     cnv=pArgs->converter;
2983 
2984     if(cnv->preToULength>0) {
2985         /* use the generic code in ucnv_getNextUChar() to continue with a partial match */
2986         return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2987     }
2988 
2989     if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) {
2990         /*
2991          * Using the generic ucnv_getNextUChar() code lets us deal correctly
2992          * with the rare case of a codepage that maps single surrogates
2993          * without adding the complexity to this already complicated function here.
2994          */
2995         return UCNV_GET_NEXT_UCHAR_USE_TO_U;
2996     } else if(cnv->sharedData->mbcs.countStates==1) {
2997         return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode);
2998     }
2999 
3000     /* set up the local pointers */
3001     source=lastSource=(const uint8_t *)pArgs->source;
3002     sourceLimit=(const uint8_t *)pArgs->sourceLimit;
3003 
3004     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3005         stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTable;
3006     } else {
3007         stateTable=cnv->sharedData->mbcs.stateTable;
3008     }
3009     unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits;
3010 
3011     /* get the converter state from UConverter */
3012     offset=cnv->toUnicodeStatus;
3013 
3014     /*
3015      * if we are in the SBCS state for a DBCS-only converter,
3016      * then load the DBCS state from the MBCS data
3017      * (dbcsOnlyState==0 if it is not a DBCS-only converter)
3018      */
3019     if((state=(uint8_t)(cnv->mode))==0) {
3020         state=cnv->sharedData->mbcs.dbcsOnlyState;
3021     }
3022 
3023     /* conversion loop */
3024     c=U_SENTINEL;
3025     while(source<sourceLimit) {
3026         entry=stateTable[state][*source++];
3027         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
3028             state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
3029             offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
3030 
3031             /* optimization for 1/2-byte input and BMP output */
3032             if( source<sourceLimit &&
3033                 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) &&
3034                 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 &&
3035                 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0xfffe
3036             ) {
3037                 ++source;
3038                 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
3039                 /* output BMP code point */
3040                 break;
3041             }
3042         } else {
3043             /* save the previous state for proper extension mapping with SI/SO-stateful converters */
3044             cnv->mode=state;
3045 
3046             /* set the next state early so that we can reuse the entry variable */
3047             state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */
3048 
3049             /*
3050              * An if-else-if chain provides more reliable performance for
3051              * the most common cases compared to a switch.
3052              */
3053             action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3054             if(action==MBCS_STATE_VALID_DIRECT_16) {
3055                 /* output BMP code point */
3056                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3057                 break;
3058             } else if(action==MBCS_STATE_VALID_16) {
3059                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3060                 c=unicodeCodeUnits[offset];
3061                 if(c<0xfffe) {
3062                     /* output BMP code point */
3063                     break;
3064                 } else if(c==0xfffe) {
3065                     if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&cnv->sharedData->mbcs, offset))!=0xfffe) {
3066                         break;
3067                     }
3068                 } else {
3069                     /* callback(illegal) */
3070                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3071                 }
3072             } else if(action==MBCS_STATE_VALID_16_PAIR) {
3073                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3074                 c=unicodeCodeUnits[offset++];
3075                 if(c<0xd800) {
3076                     /* output BMP code point below 0xd800 */
3077                     break;
3078                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
3079                     /* output roundtrip or fallback supplementary code point */
3080                     c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00);
3081                     break;
3082                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
3083                     /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
3084                     c=unicodeCodeUnits[offset];
3085                     break;
3086                 } else if(c==0xffff) {
3087                     /* callback(illegal) */
3088                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3089                 }
3090             } else if(action==MBCS_STATE_VALID_DIRECT_20 ||
3091                       (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv))
3092             ) {
3093                 /* output supplementary code point */
3094                 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000);
3095                 break;
3096             } else if(action==MBCS_STATE_CHANGE_ONLY) {
3097                 /*
3098                  * This serves as a state change without any output.
3099                  * It is useful for reading simple stateful encodings,
3100                  * for example using just Shift-In/Shift-Out codes.
3101                  * The 21 unused bits may later be used for more sophisticated
3102                  * state transitions.
3103                  */
3104                 if(cnv->sharedData->mbcs.dbcsOnlyState!=0) {
3105                     /* SI/SO are illegal for DBCS-only conversion */
3106                     state=(uint8_t)(cnv->mode); /* restore the previous state */
3107 
3108                     /* callback(illegal) */
3109                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3110                 }
3111             } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3112                 if(UCNV_TO_U_USE_FALLBACK(cnv)) {
3113                     /* output BMP code point */
3114                     c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3115                     break;
3116                 }
3117             } else if(action==MBCS_STATE_UNASSIGNED) {
3118                 /* just fall through */
3119             } else if(action==MBCS_STATE_ILLEGAL) {
3120                 /* callback(illegal) */
3121                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3122             } else {
3123                 /* reserved (must never occur), or only state change */
3124                 offset=0;
3125                 lastSource=source;
3126                 continue;
3127             }
3128 
3129             /* end of action codes: prepare for a new character */
3130             offset=0;
3131 
3132             if(U_FAILURE(*pErrorCode)) {
3133                 /* callback(illegal) */
3134                 break;
3135             } else /* unassigned sequence */ {
3136                 /* defer to the generic implementation */
3137                 cnv->toUnicodeStatus=0;
3138                 cnv->mode=state;
3139                 pArgs->source=(const char *)lastSource;
3140                 return UCNV_GET_NEXT_UCHAR_USE_TO_U;
3141             }
3142         }
3143     }
3144 
3145     if(c<0) {
3146         if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) {
3147             /* incomplete character byte sequence */
3148             uint8_t *bytes=cnv->toUBytes;
3149             cnv->toULength=(int8_t)(source-lastSource);
3150             do {
3151                 *bytes++=*lastSource++;
3152             } while(lastSource<source);
3153             *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3154         } else if(U_FAILURE(*pErrorCode)) {
3155             /* callback(illegal) */
3156             /*
3157              * Ticket 5691: consistent illegal sequences:
3158              * - We include at least the first byte in the illegal sequence.
3159              * - If any of the non-initial bytes could be the start of a character,
3160              *   we stop the illegal sequence before the first one of those.
3161              */
3162             UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0);
3163             uint8_t *bytes=cnv->toUBytes;
3164             *bytes++=*lastSource++;     /* first byte */
3165             if(lastSource==source) {
3166                 cnv->toULength=1;
3167             } else /* lastSource<source: multi-byte character */ {
3168                 int8_t i;
3169                 for(i=1;
3170                     lastSource<source && !isSingleOrLead(stateTable, state, isDBCSOnly, *lastSource);
3171                     ++i
3172                 ) {
3173                     *bytes++=*lastSource++;
3174                 }
3175                 cnv->toULength=i;
3176                 source=lastSource;
3177             }
3178         } else {
3179             /* no output because of empty input or only state changes */
3180             *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
3181         }
3182         c=0xffff;
3183     }
3184 
3185     /* set the converter state back into UConverter, ready for a new character */
3186     cnv->toUnicodeStatus=0;
3187     cnv->mode=state;
3188 
3189     /* write back the updated pointer */
3190     pArgs->source=(const char *)source;
3191     return c;
3192 }
3193 
3194 #if 0
3195 /*
3196  * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3197  * Removal improves code coverage.
3198  */
3199 /**
3200  * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages.
3201  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3202  * It does not handle conversion extensions (_extToU()).
3203  */
3204 U_CFUNC UChar32
3205 ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData,
3206                               uint8_t b, UBool useFallback) {
3207     int32_t entry;
3208     uint8_t action;
3209 
3210     entry=sharedData->mbcs.stateTable[0][b];
3211     /* MBCS_ENTRY_IS_FINAL(entry) */
3212 
3213     if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) {
3214         /* output BMP code point */
3215         return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3216     }
3217 
3218     /*
3219      * An if-else-if chain provides more reliable performance for
3220      * the most common cases compared to a switch.
3221      */
3222     action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3223     if(action==MBCS_STATE_VALID_DIRECT_20) {
3224         /* output supplementary code point */
3225         return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3226     } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3227         if(!TO_U_USE_FALLBACK(useFallback)) {
3228             return 0xfffe;
3229         }
3230         /* output BMP code point */
3231         return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3232     } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3233         if(!TO_U_USE_FALLBACK(useFallback)) {
3234             return 0xfffe;
3235         }
3236         /* output supplementary code point */
3237         return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3238     } else if(action==MBCS_STATE_UNASSIGNED) {
3239         return 0xfffe;
3240     } else if(action==MBCS_STATE_ILLEGAL) {
3241         return 0xffff;
3242     } else {
3243         /* reserved, must never occur */
3244         return 0xffff;
3245     }
3246 }
3247 #endif
3248 
3249 /*
3250  * This is a simple version of _MBCSGetNextUChar() that is used
3251  * by other converter implementations.
3252  * It only returns an "assigned" result if it consumes the entire input.
3253  * It does not use state from the converter, nor error codes.
3254  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
3255  * It handles conversion extensions but not GB 18030.
3256  *
3257  * Return value:
3258  * U+fffe   unassigned
3259  * U+ffff   illegal
3260  * otherwise the Unicode code point
3261  */
3262 U_CFUNC UChar32
3263 ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData,
3264                         const char *source, int32_t length,
3265                         UBool useFallback) {
3266     const int32_t (*stateTable)[256];
3267     const uint16_t *unicodeCodeUnits;
3268 
3269     uint32_t offset;
3270     uint8_t state, action;
3271 
3272     UChar32 c;
3273     int32_t i, entry;
3274 
3275     if(length<=0) {
3276         /* no input at all: "illegal" */
3277         return 0xffff;
3278     }
3279 
3280 #if 0
3281 /*
3282  * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. markus
3283  * TODO In future releases, verify that this function is never called for SBCS
3284  * conversions, i.e., that sharedData->mbcs.countStates==1 is still true.
3285  * Removal improves code coverage.
3286  */
3287     /* use optimized function if possible */
3288     if(sharedData->mbcs.countStates==1) {
3289         if(length==1) {
3290             return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*source, useFallback);
3291         } else {
3292             return 0xffff; /* illegal: more than a single byte for an SBCS converter */
3293         }
3294     }
3295 #endif
3296 
3297     /* set up the local pointers */
3298     stateTable=sharedData->mbcs.stateTable;
3299     unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits;
3300 
3301     /* converter state */
3302     offset=0;
3303     state=sharedData->mbcs.dbcsOnlyState;
3304 
3305     /* conversion loop */
3306     for(i=0;;) {
3307         entry=stateTable[state][(uint8_t)source[i++]];
3308         if(MBCS_ENTRY_IS_TRANSITION(entry)) {
3309             state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
3310             offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
3311 
3312             if(i==length) {
3313                 return 0xffff; /* truncated character */
3314             }
3315         } else {
3316             /*
3317              * An if-else-if chain provides more reliable performance for
3318              * the most common cases compared to a switch.
3319              */
3320             action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry));
3321             if(action==MBCS_STATE_VALID_16) {
3322                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3323                 c=unicodeCodeUnits[offset];
3324                 if(c!=0xfffe) {
3325                     /* done */
3326                 } else if(UCNV_TO_U_USE_FALLBACK(cnv)) {
3327                     c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset);
3328                 /* else done with 0xfffe */
3329                 }
3330                 break;
3331             } else if(action==MBCS_STATE_VALID_DIRECT_16) {
3332                 /* output BMP code point */
3333                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3334                 break;
3335             } else if(action==MBCS_STATE_VALID_16_PAIR) {
3336                 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
3337                 c=unicodeCodeUnits[offset++];
3338                 if(c<0xd800) {
3339                     /* output BMP code point below 0xd800 */
3340                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) {
3341                     /* output roundtrip or fallback supplementary code point */
3342                     c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00));
3343                 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) {
3344                     /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */
3345                     c=unicodeCodeUnits[offset];
3346                 } else if(c==0xffff) {
3347                     return 0xffff;
3348                 } else {
3349                     c=0xfffe;
3350                 }
3351                 break;
3352             } else if(action==MBCS_STATE_VALID_DIRECT_20) {
3353                 /* output supplementary code point */
3354                 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3355                 break;
3356             } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) {
3357                 if(!TO_U_USE_FALLBACK(useFallback)) {
3358                     c=0xfffe;
3359                     break;
3360                 }
3361                 /* output BMP code point */
3362                 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry);
3363                 break;
3364             } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) {
3365                 if(!TO_U_USE_FALLBACK(useFallback)) {
3366                     c=0xfffe;
3367                     break;
3368                 }
3369                 /* output supplementary code point */
3370                 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
3371                 break;
3372             } else if(action==MBCS_STATE_UNASSIGNED) {
3373                 c=0xfffe;
3374                 break;
3375             }
3376 
3377             /*
3378              * forbid MBCS_STATE_CHANGE_ONLY for this function,
3379              * and MBCS_STATE_ILLEGAL and reserved action codes
3380              */
3381             return 0xffff;
3382         }
3383     }
3384 
3385     if(i!=length) {
3386         /* illegal for this function: not all input consumed */
3387         return 0xffff;
3388     }
3389 
3390     if(c==0xfffe) {
3391         /* try an extension mapping */
3392         const int32_t *cx=sharedData->mbcs.extIndexes;
3393         if(cx!=NULL) {
3394             return ucnv_extSimpleMatchToU(cx, source, length, useFallback);
3395         }
3396     }
3397 
3398     return c;
3399 }
3400 
3401 /* MBCS-from-Unicode conversion functions ----------------------------------- */
3402 
3403 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */
3404 static void
3405 ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3406                                   UErrorCode *pErrorCode) {
3407     UConverter *cnv;
3408     const UChar *source, *sourceLimit;
3409     uint8_t *target;
3410     int32_t targetCapacity;
3411     int32_t *offsets;
3412 
3413     const uint16_t *table;
3414     const uint16_t *mbcsIndex;
3415     const uint8_t *bytes;
3416 
3417     UChar32 c;
3418 
3419     int32_t sourceIndex, nextSourceIndex;
3420 
3421     uint32_t stage2Entry;
3422     uint32_t asciiRoundtrips;
3423     uint32_t value;
3424     uint8_t unicodeMask;
3425 
3426     /* use optimized function if possible */
3427     cnv=pArgs->converter;
3428     unicodeMask=cnv->sharedData->mbcs.unicodeMask;
3429 
3430     /* set up the local pointers */
3431     source=pArgs->source;
3432     sourceLimit=pArgs->sourceLimit;
3433     target=(uint8_t *)pArgs->target;
3434     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3435     offsets=pArgs->offsets;
3436 
3437     table=cnv->sharedData->mbcs.fromUnicodeTable;
3438     mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
3439     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3440         bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3441     } else {
3442         bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
3443     }
3444     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3445 
3446     /* get the converter state from UConverter */
3447     c=cnv->fromUChar32;
3448 
3449     /* sourceIndex=-1 if the current character began in the previous buffer */
3450     sourceIndex= c==0 ? 0 : -1;
3451     nextSourceIndex=0;
3452 
3453     /* conversion loop */
3454     if(c!=0 && targetCapacity>0) {
3455         goto getTrail;
3456     }
3457 
3458     while(source<sourceLimit) {
3459         /*
3460          * This following test is to see if available input would overflow the output.
3461          * It does not catch output of more than one byte that
3462          * overflows as a result of a multi-byte character or callback output
3463          * from the last source character.
3464          * Therefore, those situations also test for overflows and will
3465          * then break the loop, too.
3466          */
3467         if(targetCapacity>0) {
3468             /*
3469              * Get a correct Unicode code point:
3470              * a single UChar for a BMP code point or
3471              * a matched surrogate pair for a "supplementary code point".
3472              */
3473             c=*source++;
3474             ++nextSourceIndex;
3475             if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
3476                 *target++=(uint8_t)c;
3477                 if(offsets!=NULL) {
3478                     *offsets++=sourceIndex;
3479                     sourceIndex=nextSourceIndex;
3480                 }
3481                 --targetCapacity;
3482                 c=0;
3483                 continue;
3484             }
3485             /*
3486              * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
3487              * to avoid dealing with surrogates.
3488              * MBCS_FAST_MAX must be >=0xd7ff.
3489              */
3490             if(c<=0xd7ff) {
3491                 value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)bytes, c);
3492                 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
3493                 if(value==0) {
3494                     goto unassigned;
3495                 }
3496                 /* output the value */
3497             } else {
3498                 /*
3499                  * This also tests if the codepage maps single surrogates.
3500                  * If it does, then surrogates are not paired but mapped separately.
3501                  * Note that in this case unmatched surrogates are not detected.
3502                  */
3503                 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
3504                     if(U16_IS_SURROGATE_LEAD(c)) {
3505 getTrail:
3506                         if(source<sourceLimit) {
3507                             /* test the following code unit */
3508                             UChar trail=*source;
3509                             if(U16_IS_TRAIL(trail)) {
3510                                 ++source;
3511                                 ++nextSourceIndex;
3512                                 c=U16_GET_SUPPLEMENTARY(c, trail);
3513                                 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
3514                                     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3515                                     /* callback(unassigned) */
3516                                     goto unassigned;
3517                                 }
3518                                 /* convert this supplementary code point */
3519                                 /* exit this condition tree */
3520                             } else {
3521                                 /* this is an unmatched lead code unit (1st surrogate) */
3522                                 /* callback(illegal) */
3523                                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3524                                 break;
3525                             }
3526                         } else {
3527                             /* no more input */
3528                             break;
3529                         }
3530                     } else {
3531                         /* this is an unmatched trail code unit (2nd surrogate) */
3532                         /* callback(illegal) */
3533                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3534                         break;
3535                     }
3536                 }
3537 
3538                 /* convert the Unicode code point in c into codepage bytes */
3539                 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
3540 
3541                 /* get the bytes and the length for the output */
3542                 /* MBCS_OUTPUT_2 */
3543                 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
3544 
3545                 /* is this code point assigned, or do we use fallbacks? */
3546                 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
3547                      (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
3548                 ) {
3549                     /*
3550                      * We allow a 0 byte output if the "assigned" bit is set for this entry.
3551                      * There is no way with this data structure for fallback output
3552                      * to be a zero byte.
3553                      */
3554 
3555 unassigned:
3556                     /* try an extension mapping */
3557                     pArgs->source=source;
3558                     c=_extFromU(cnv, cnv->sharedData,
3559                                 c, &source, sourceLimit,
3560                                 &target, target+targetCapacity,
3561                                 &offsets, sourceIndex,
3562                                 pArgs->flush,
3563                                 pErrorCode);
3564                     nextSourceIndex+=(int32_t)(source-pArgs->source);
3565 
3566                     if(U_FAILURE(*pErrorCode)) {
3567                         /* not mappable or buffer overflow */
3568                         break;
3569                     } else {
3570                         /* a mapping was written to the target, continue */
3571 
3572                         /* recalculate the targetCapacity after an extension mapping */
3573                         targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3574 
3575                         /* normal end of conversion: prepare for a new character */
3576                         sourceIndex=nextSourceIndex;
3577                         continue;
3578                     }
3579                 }
3580             }
3581 
3582             /* write the output character bytes from value and length */
3583             /* from the first if in the loop we know that targetCapacity>0 */
3584             if(value<=0xff) {
3585                 /* this is easy because we know that there is enough space */
3586                 *target++=(uint8_t)value;
3587                 if(offsets!=NULL) {
3588                     *offsets++=sourceIndex;
3589                 }
3590                 --targetCapacity;
3591             } else /* length==2 */ {
3592                 *target++=(uint8_t)(value>>8);
3593                 if(2<=targetCapacity) {
3594                     *target++=(uint8_t)value;
3595                     if(offsets!=NULL) {
3596                         *offsets++=sourceIndex;
3597                         *offsets++=sourceIndex;
3598                     }
3599                     targetCapacity-=2;
3600                 } else {
3601                     if(offsets!=NULL) {
3602                         *offsets++=sourceIndex;
3603                     }
3604                     cnv->charErrorBuffer[0]=(char)value;
3605                     cnv->charErrorBufferLength=1;
3606 
3607                     /* target overflow */
3608                     targetCapacity=0;
3609                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3610                     c=0;
3611                     break;
3612                 }
3613             }
3614 
3615             /* normal end of conversion: prepare for a new character */
3616             c=0;
3617             sourceIndex=nextSourceIndex;
3618             continue;
3619         } else {
3620             /* target is full */
3621             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3622             break;
3623         }
3624     }
3625 
3626     /* set the converter state back into UConverter */
3627     cnv->fromUChar32=c;
3628 
3629     /* write back the updated pointers */
3630     pArgs->source=source;
3631     pArgs->target=(char *)target;
3632     pArgs->offsets=offsets;
3633 }
3634 
3635 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */
3636 static void
3637 ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
3638                                   UErrorCode *pErrorCode) {
3639     UConverter *cnv;
3640     const UChar *source, *sourceLimit;
3641     uint8_t *target;
3642     int32_t targetCapacity;
3643     int32_t *offsets;
3644 
3645     const uint16_t *table;
3646     const uint16_t *results;
3647 
3648     UChar32 c;
3649 
3650     int32_t sourceIndex, nextSourceIndex;
3651 
3652     uint16_t value, minValue;
3653     UBool hasSupplementary;
3654 
3655     /* set up the local pointers */
3656     cnv=pArgs->converter;
3657     source=pArgs->source;
3658     sourceLimit=pArgs->sourceLimit;
3659     target=(uint8_t *)pArgs->target;
3660     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3661     offsets=pArgs->offsets;
3662 
3663     table=cnv->sharedData->mbcs.fromUnicodeTable;
3664     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3665         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3666     } else {
3667         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3668     }
3669 
3670     if(cnv->useFallback) {
3671         /* use all roundtrip and fallback results */
3672         minValue=0x800;
3673     } else {
3674         /* use only roundtrips and fallbacks from private-use characters */
3675         minValue=0xc00;
3676     }
3677     hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
3678 
3679     /* get the converter state from UConverter */
3680     c=cnv->fromUChar32;
3681 
3682     /* sourceIndex=-1 if the current character began in the previous buffer */
3683     sourceIndex= c==0 ? 0 : -1;
3684     nextSourceIndex=0;
3685 
3686     /* conversion loop */
3687     if(c!=0 && targetCapacity>0) {
3688         goto getTrail;
3689     }
3690 
3691     while(source<sourceLimit) {
3692         /*
3693          * This following test is to see if available input would overflow the output.
3694          * It does not catch output of more than one byte that
3695          * overflows as a result of a multi-byte character or callback output
3696          * from the last source character.
3697          * Therefore, those situations also test for overflows and will
3698          * then break the loop, too.
3699          */
3700         if(targetCapacity>0) {
3701             /*
3702              * Get a correct Unicode code point:
3703              * a single UChar for a BMP code point or
3704              * a matched surrogate pair for a "supplementary code point".
3705              */
3706             c=*source++;
3707             ++nextSourceIndex;
3708             if(U16_IS_SURROGATE(c)) {
3709                 if(U16_IS_SURROGATE_LEAD(c)) {
3710 getTrail:
3711                     if(source<sourceLimit) {
3712                         /* test the following code unit */
3713                         UChar trail=*source;
3714                         if(U16_IS_TRAIL(trail)) {
3715                             ++source;
3716                             ++nextSourceIndex;
3717                             c=U16_GET_SUPPLEMENTARY(c, trail);
3718                             if(!hasSupplementary) {
3719                                 /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
3720                                 /* callback(unassigned) */
3721                                 goto unassigned;
3722                             }
3723                             /* convert this supplementary code point */
3724                             /* exit this condition tree */
3725                         } else {
3726                             /* this is an unmatched lead code unit (1st surrogate) */
3727                             /* callback(illegal) */
3728                             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3729                             break;
3730                         }
3731                     } else {
3732                         /* no more input */
3733                         break;
3734                     }
3735                 } else {
3736                     /* this is an unmatched trail code unit (2nd surrogate) */
3737                     /* callback(illegal) */
3738                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3739                     break;
3740                 }
3741             }
3742 
3743             /* convert the Unicode code point in c into codepage bytes */
3744             value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3745 
3746             /* is this code point assigned, or do we use fallbacks? */
3747             if(value>=minValue) {
3748                 /* assigned, write the output character bytes from value and length */
3749                 /* length==1 */
3750                 /* this is easy because we know that there is enough space */
3751                 *target++=(uint8_t)value;
3752                 if(offsets!=NULL) {
3753                     *offsets++=sourceIndex;
3754                 }
3755                 --targetCapacity;
3756 
3757                 /* normal end of conversion: prepare for a new character */
3758                 c=0;
3759                 sourceIndex=nextSourceIndex;
3760             } else { /* unassigned */
3761 unassigned:
3762                 /* try an extension mapping */
3763                 pArgs->source=source;
3764                 c=_extFromU(cnv, cnv->sharedData,
3765                             c, &source, sourceLimit,
3766                             &target, target+targetCapacity,
3767                             &offsets, sourceIndex,
3768                             pArgs->flush,
3769                             pErrorCode);
3770                 nextSourceIndex+=(int32_t)(source-pArgs->source);
3771 
3772                 if(U_FAILURE(*pErrorCode)) {
3773                     /* not mappable or buffer overflow */
3774                     break;
3775                 } else {
3776                     /* a mapping was written to the target, continue */
3777 
3778                     /* recalculate the targetCapacity after an extension mapping */
3779                     targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
3780 
3781                     /* normal end of conversion: prepare for a new character */
3782                     sourceIndex=nextSourceIndex;
3783                 }
3784             }
3785         } else {
3786             /* target is full */
3787             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
3788             break;
3789         }
3790     }
3791 
3792     /* set the converter state back into UConverter */
3793     cnv->fromUChar32=c;
3794 
3795     /* write back the updated pointers */
3796     pArgs->source=source;
3797     pArgs->target=(char *)target;
3798     pArgs->offsets=offsets;
3799 }
3800 
3801 /*
3802  * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages
3803  * that map only to and from the BMP.
3804  * In addition to single-byte/state optimizations, the offset calculations
3805  * become much easier.
3806  * It would be possible to use the sbcsIndex for UTF-8-friendly tables,
3807  * but measurements have shown that this diminishes performance
3808  * in more cases than it improves it.
3809  * See SVN revision 21013 (2007-feb-06) for the last version with #if switches
3810  * for various MBCS and SBCS optimizations.
3811  */
3812 static void
3813 ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs,
3814                               UErrorCode *pErrorCode) {
3815     UConverter *cnv;
3816     const UChar *source, *sourceLimit, *lastSource;
3817     uint8_t *target;
3818     int32_t targetCapacity, length;
3819     int32_t *offsets;
3820 
3821     const uint16_t *table;
3822     const uint16_t *results;
3823 
3824     UChar32 c;
3825 
3826     int32_t sourceIndex;
3827 
3828     uint32_t asciiRoundtrips;
3829     uint16_t value, minValue;
3830 
3831     /* set up the local pointers */
3832     cnv=pArgs->converter;
3833     source=pArgs->source;
3834     sourceLimit=pArgs->sourceLimit;
3835     target=(uint8_t *)pArgs->target;
3836     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
3837     offsets=pArgs->offsets;
3838 
3839     table=cnv->sharedData->mbcs.fromUnicodeTable;
3840     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
3841         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
3842     } else {
3843         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
3844     }
3845     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
3846 
3847     if(cnv->useFallback) {
3848         /* use all roundtrip and fallback results */
3849         minValue=0x800;
3850     } else {
3851         /* use only roundtrips and fallbacks from private-use characters */
3852         minValue=0xc00;
3853     }
3854 
3855     /* get the converter state from UConverter */
3856     c=cnv->fromUChar32;
3857 
3858     /* sourceIndex=-1 if the current character began in the previous buffer */
3859     sourceIndex= c==0 ? 0 : -1;
3860     lastSource=source;
3861 
3862     /*
3863      * since the conversion here is 1:1 UChar:uint8_t, we need only one counter
3864      * for the minimum of the sourceLength and targetCapacity
3865      */
3866     length=(int32_t)(sourceLimit-source);
3867     if(length<targetCapacity) {
3868         targetCapacity=length;
3869     }
3870 
3871     /* conversion loop */
3872     if(c!=0 && targetCapacity>0) {
3873         goto getTrail;
3874     }
3875 
3876 #if MBCS_UNROLL_SINGLE_FROM_BMP
3877     /* unrolling makes it slower on Pentium III/Windows 2000?! */
3878     /* unroll the loop with the most common case */
3879 unrolled:
3880     if(targetCapacity>=4) {
3881         int32_t count, loops;
3882         uint16_t andedValues;
3883 
3884         loops=count=targetCapacity>>2;
3885         do {
3886             c=*source++;
3887             andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3888             *target++=(uint8_t)value;
3889             c=*source++;
3890             andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3891             *target++=(uint8_t)value;
3892             c=*source++;
3893             andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3894             *target++=(uint8_t)value;
3895             c=*source++;
3896             andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3897             *target++=(uint8_t)value;
3898 
3899             /* were all 4 entries really valid? */
3900             if(andedValues<minValue) {
3901                 /* no, return to the first of these 4 */
3902                 source-=4;
3903                 target-=4;
3904                 break;
3905             }
3906         } while(--count>0);
3907         count=loops-count;
3908         targetCapacity-=4*count;
3909 
3910         if(offsets!=NULL) {
3911             lastSource+=4*count;
3912             while(count>0) {
3913                 *offsets++=sourceIndex++;
3914                 *offsets++=sourceIndex++;
3915                 *offsets++=sourceIndex++;
3916                 *offsets++=sourceIndex++;
3917                 --count;
3918             }
3919         }
3920 
3921         c=0;
3922     }
3923 #endif
3924 
3925     while(targetCapacity>0) {
3926         /*
3927          * Get a correct Unicode code point:
3928          * a single UChar for a BMP code point or
3929          * a matched surrogate pair for a "supplementary code point".
3930          */
3931         c=*source++;
3932         /*
3933          * Do not immediately check for single surrogates:
3934          * Assume that they are unassigned and check for them in that case.
3935          * This speeds up the conversion of assigned characters.
3936          */
3937         /* convert the Unicode code point in c into codepage bytes */
3938         if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
3939             *target++=(uint8_t)c;
3940             --targetCapacity;
3941             c=0;
3942             continue;
3943         }
3944         value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
3945         /* is this code point assigned, or do we use fallbacks? */
3946         if(value>=minValue) {
3947             /* assigned, write the output character bytes from value and length */
3948             /* length==1 */
3949             /* this is easy because we know that there is enough space */
3950             *target++=(uint8_t)value;
3951             --targetCapacity;
3952 
3953             /* normal end of conversion: prepare for a new character */
3954             c=0;
3955             continue;
3956         } else if(!U16_IS_SURROGATE(c)) {
3957             /* normal, unassigned BMP character */
3958         } else if(U16_IS_SURROGATE_LEAD(c)) {
3959 getTrail:
3960             if(source<sourceLimit) {
3961                 /* test the following code unit */
3962                 UChar trail=*source;
3963                 if(U16_IS_TRAIL(trail)) {
3964                     ++source;
3965                     c=U16_GET_SUPPLEMENTARY(c, trail);
3966                     /* this codepage does not map supplementary code points */
3967                     /* callback(unassigned) */
3968                 } else {
3969                     /* this is an unmatched lead code unit (1st surrogate) */
3970                     /* callback(illegal) */
3971                     *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3972                     break;
3973                 }
3974             } else {
3975                 /* no more input */
3976                 if (pArgs->flush) {
3977                     *pErrorCode=U_TRUNCATED_CHAR_FOUND;
3978                 }
3979                 break;
3980             }
3981         } else {
3982             /* this is an unmatched trail code unit (2nd surrogate) */
3983             /* callback(illegal) */
3984             *pErrorCode=U_ILLEGAL_CHAR_FOUND;
3985             break;
3986         }
3987 
3988         /* c does not have a mapping */
3989 
3990         /* get the number of code units for c to correctly advance sourceIndex */
3991         length=U16_LENGTH(c);
3992 
3993         /* set offsets since the start or the last extension */
3994         if(offsets!=NULL) {
3995             int32_t count=(int32_t)(source-lastSource);
3996 
3997             /* do not set the offset for this character */
3998             count-=length;
3999 
4000             while(count>0) {
4001                 *offsets++=sourceIndex++;
4002                 --count;
4003             }
4004             /* offsets and sourceIndex are now set for the current character */
4005         }
4006 
4007         /* try an extension mapping */
4008         lastSource=source;
4009         c=_extFromU(cnv, cnv->sharedData,
4010                     c, &source, sourceLimit,
4011                     &target, (const uint8_t *)(pArgs->targetLimit),
4012                     &offsets, sourceIndex,
4013                     pArgs->flush,
4014                     pErrorCode);
4015         sourceIndex+=length+(int32_t)(source-lastSource);
4016         lastSource=source;
4017 
4018         if(U_FAILURE(*pErrorCode)) {
4019             /* not mappable or buffer overflow */
4020             break;
4021         } else {
4022             /* a mapping was written to the target, continue */
4023 
4024             /* recalculate the targetCapacity after an extension mapping */
4025             targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
4026             length=(int32_t)(sourceLimit-source);
4027             if(length<targetCapacity) {
4028                 targetCapacity=length;
4029             }
4030         }
4031 
4032 #if MBCS_UNROLL_SINGLE_FROM_BMP
4033         /* unrolling makes it slower on Pentium III/Windows 2000?! */
4034         goto unrolled;
4035 #endif
4036     }
4037 
4038     if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs->targetLimit) {
4039         /* target is full */
4040         *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4041     }
4042 
4043     /* set offsets since the start or the last callback */
4044     if(offsets!=NULL) {
4045         size_t count=source-lastSource;
4046         if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) {
4047             /*
4048             Caller gave us a partial supplementary character,
4049             which this function couldn't convert in any case.
4050             The callback will handle the offset.
4051             */
4052             count--;
4053         }
4054         while(count>0) {
4055             *offsets++=sourceIndex++;
4056             --count;
4057         }
4058     }
4059 
4060     /* set the converter state back into UConverter */
4061     cnv->fromUChar32=c;
4062 
4063     /* write back the updated pointers */
4064     pArgs->source=source;
4065     pArgs->target=(char *)target;
4066     pArgs->offsets=offsets;
4067 }
4068 
4069 U_CFUNC void
4070 ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs,
4071                             UErrorCode *pErrorCode) {
4072     UConverter *cnv;
4073     const UChar *source, *sourceLimit;
4074     uint8_t *target;
4075     int32_t targetCapacity;
4076     int32_t *offsets;
4077 
4078     const uint16_t *table;
4079     const uint16_t *mbcsIndex;
4080     const uint8_t *p, *bytes;
4081     uint8_t outputType;
4082 
4083     UChar32 c;
4084 
4085     int32_t prevSourceIndex, sourceIndex, nextSourceIndex;
4086 
4087     uint32_t stage2Entry;
4088     uint32_t asciiRoundtrips;
4089     uint32_t value;
4090     /* Shift-In and Shift-Out byte sequences differ by encoding scheme. */
4091     uint8_t siBytes[2] = {0, 0};
4092     uint8_t soBytes[2] = {0, 0};
4093     uint8_t siLength, soLength;
4094     int32_t length = 0, prevLength;
4095     uint8_t unicodeMask;
4096 
4097     cnv=pArgs->converter;
4098 
4099     if(cnv->preFromUFirstCP>=0) {
4100         /*
4101          * pass sourceIndex=-1 because we continue from an earlier buffer
4102          * in the future, this may change with continuous offsets
4103          */
4104         ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode);
4105 
4106         if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) {
4107             return;
4108         }
4109     }
4110 
4111     /* use optimized function if possible */
4112     outputType=cnv->sharedData->mbcs.outputType;
4113     unicodeMask=cnv->sharedData->mbcs.unicodeMask;
4114     if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) {
4115         if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4116             ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode);
4117         } else {
4118             ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode);
4119         }
4120         return;
4121     } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) {
4122         ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode);
4123         return;
4124     }
4125 
4126     /* set up the local pointers */
4127     source=pArgs->source;
4128     sourceLimit=pArgs->sourceLimit;
4129     target=(uint8_t *)pArgs->target;
4130     targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target);
4131     offsets=pArgs->offsets;
4132 
4133     table=cnv->sharedData->mbcs.fromUnicodeTable;
4134     if(cnv->sharedData->mbcs.utf8Friendly) {
4135         mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
4136     } else {
4137         mbcsIndex=NULL;
4138     }
4139     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
4140         bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
4141     } else {
4142         bytes=cnv->sharedData->mbcs.fromUnicodeBytes;
4143     }
4144     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
4145 
4146     /* get the converter state from UConverter */
4147     c=cnv->fromUChar32;
4148 
4149     if(outputType==MBCS_OUTPUT_2_SISO) {
4150         prevLength=cnv->fromUnicodeStatus;
4151         if(prevLength==0) {
4152             /* set the real value */
4153             prevLength=1;
4154         }
4155     } else {
4156         /* prevent fromUnicodeStatus from being set to something non-0 */
4157         prevLength=0;
4158     }
4159 
4160     /* sourceIndex=-1 if the current character began in the previous buffer */
4161     prevSourceIndex=-1;
4162     sourceIndex= c==0 ? 0 : -1;
4163     nextSourceIndex=0;
4164 
4165     /* Get the SI/SO character for the converter */
4166     siLength = getSISOBytes(SI, cnv->options, siBytes);
4167     soLength = getSISOBytes(SO, cnv->options, soBytes);
4168 
4169     /* conversion loop */
4170     /*
4171      * This is another piece of ugly code:
4172      * A goto into the loop if the converter state contains a first surrogate
4173      * from the previous function call.
4174      * It saves me to check in each loop iteration a check of if(c==0)
4175      * and duplicating the trail-surrogate-handling code in the else
4176      * branch of that check.
4177      * I could not find any other way to get around this other than
4178      * using a function call for the conversion and callback, which would
4179      * be even more inefficient.
4180      *
4181      * Markus Scherer 2000-jul-19
4182      */
4183     if(c!=0 && targetCapacity>0) {
4184         goto getTrail;
4185     }
4186 
4187     while(source<sourceLimit) {
4188         /*
4189          * This following test is to see if available input would overflow the output.
4190          * It does not catch output of more than one byte that
4191          * overflows as a result of a multi-byte character or callback output
4192          * from the last source character.
4193          * Therefore, those situations also test for overflows and will
4194          * then break the loop, too.
4195          */
4196         if(targetCapacity>0) {
4197             /*
4198              * Get a correct Unicode code point:
4199              * a single UChar for a BMP code point or
4200              * a matched surrogate pair for a "supplementary code point".
4201              */
4202             c=*source++;
4203             ++nextSourceIndex;
4204             if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) {
4205                 *target++=(uint8_t)c;
4206                 if(offsets!=NULL) {
4207                     *offsets++=sourceIndex;
4208                     prevSourceIndex=sourceIndex;
4209                     sourceIndex=nextSourceIndex;
4210                 }
4211                 --targetCapacity;
4212                 c=0;
4213                 continue;
4214             }
4215             /*
4216              * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX
4217              * to avoid dealing with surrogates.
4218              * MBCS_FAST_MAX must be >=0xd7ff.
4219              */
4220             if(c<=0xd7ff && mbcsIndex!=NULL) {
4221                 value=mbcsIndex[c>>6];
4222 
4223                 /* get the bytes and the length for the output (copied from below and adapted for utf8Friendly data) */
4224                 /* There are only roundtrips (!=0) and no-mapping (==0) entries. */
4225                 switch(outputType) {
4226                 case MBCS_OUTPUT_2:
4227                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
4228                     if(value<=0xff) {
4229                         if(value==0) {
4230                             goto unassigned;
4231                         } else {
4232                             length=1;
4233                         }
4234                     } else {
4235                         length=2;
4236                     }
4237                     break;
4238                 case MBCS_OUTPUT_2_SISO:
4239                     /* 1/2-byte stateful with Shift-In/Shift-Out */
4240                     /*
4241                      * Save the old state in the converter object
4242                      * right here, then change the local prevLength state variable if necessary.
4243                      * Then, if this character turns out to be unassigned or a fallback that
4244                      * is not taken, the callback code must not save the new state in the converter
4245                      * because the new state is for a character that is not output.
4246                      * However, the callback must still restore the state from the converter
4247                      * in case the callback function changed it for its output.
4248                      */
4249                     cnv->fromUnicodeStatus=prevLength; /* save the old state */
4250                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
4251                     if(value<=0xff) {
4252                         if(value==0) {
4253                             goto unassigned;
4254                         } else if(prevLength<=1) {
4255                             length=1;
4256                         } else {
4257                             /* change from double-byte mode to single-byte */
4258                             if (siLength == 1) {
4259                                 value|=(uint32_t)siBytes[0]<<8;
4260                                 length = 2;
4261                             } else if (siLength == 2) {
4262                                 value|=(uint32_t)siBytes[1]<<8;
4263                                 value|=(uint32_t)siBytes[0]<<16;
4264                                 length = 3;
4265                             }
4266                             prevLength=1;
4267                         }
4268                     } else {
4269                         if(prevLength==2) {
4270                             length=2;
4271                         } else {
4272                             /* change from single-byte mode to double-byte */
4273                             if (soLength == 1) {
4274                                 value|=(uint32_t)soBytes[0]<<16;
4275                                 length = 3;
4276                             } else if (soLength == 2) {
4277                                 value|=(uint32_t)soBytes[1]<<16;
4278                                 value|=(uint32_t)soBytes[0]<<24;
4279                                 length = 4;
4280                             }
4281                             prevLength=2;
4282                         }
4283                     }
4284                     break;
4285                 case MBCS_OUTPUT_DBCS_ONLY:
4286                     /* table with single-byte results, but only DBCS mappings used */
4287                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
4288                     if(value<=0xff) {
4289                         /* no mapping or SBCS result, not taken for DBCS-only */
4290                         goto unassigned;
4291                     } else {
4292                         length=2;
4293                     }
4294                     break;
4295                 case MBCS_OUTPUT_3:
4296                     p=bytes+(value+(c&0x3f))*3;
4297                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4298                     if(value<=0xff) {
4299                         if(value==0) {
4300                             goto unassigned;
4301                         } else {
4302                             length=1;
4303                         }
4304                     } else if(value<=0xffff) {
4305                         length=2;
4306                     } else {
4307                         length=3;
4308                     }
4309                     break;
4310                 case MBCS_OUTPUT_4:
4311                     value=((const uint32_t *)bytes)[value +(c&0x3f)];
4312                     if(value<=0xff) {
4313                         if(value==0) {
4314                             goto unassigned;
4315                         } else {
4316                             length=1;
4317                         }
4318                     } else if(value<=0xffff) {
4319                         length=2;
4320                     } else if(value<=0xffffff) {
4321                         length=3;
4322                     } else {
4323                         length=4;
4324                     }
4325                     break;
4326                 case MBCS_OUTPUT_3_EUC:
4327                     value=((const uint16_t *)bytes)[value +(c&0x3f)];
4328                     /* EUC 16-bit fixed-length representation */
4329                     if(value<=0xff) {
4330                         if(value==0) {
4331                             goto unassigned;
4332                         } else {
4333                             length=1;
4334                         }
4335                     } else if((value&0x8000)==0) {
4336                         value|=0x8e8000;
4337                         length=3;
4338                     } else if((value&0x80)==0) {
4339                         value|=0x8f0080;
4340                         length=3;
4341                     } else {
4342                         length=2;
4343                     }
4344                     break;
4345                 case MBCS_OUTPUT_4_EUC:
4346                     p=bytes+(value+(c&0x3f))*3;
4347                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4348                     /* EUC 16-bit fixed-length representation applied to the first two bytes */
4349                     if(value<=0xff) {
4350                         if(value==0) {
4351                             goto unassigned;
4352                         } else {
4353                             length=1;
4354                         }
4355                     } else if(value<=0xffff) {
4356                         length=2;
4357                     } else if((value&0x800000)==0) {
4358                         value|=0x8e800000;
4359                         length=4;
4360                     } else if((value&0x8000)==0) {
4361                         value|=0x8f008000;
4362                         length=4;
4363                     } else {
4364                         length=3;
4365                     }
4366                     break;
4367                 default:
4368                     /* must not occur */
4369                     /*
4370                      * To avoid compiler warnings that value & length may be
4371                      * used without having been initialized, we set them here.
4372                      * In reality, this is unreachable code.
4373                      * Not having a default branch also causes warnings with
4374                      * some compilers.
4375                      */
4376                     value=0;
4377                     length=0;
4378                     break;
4379                 }
4380                 /* output the value */
4381             } else {
4382                 /*
4383                  * This also tests if the codepage maps single surrogates.
4384                  * If it does, then surrogates are not paired but mapped separately.
4385                  * Note that in this case unmatched surrogates are not detected.
4386                  */
4387                 if(U16_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) {
4388                     if(U16_IS_SURROGATE_LEAD(c)) {
4389 getTrail:
4390                         if(source<sourceLimit) {
4391                             /* test the following code unit */
4392                             UChar trail=*source;
4393                             if(U16_IS_TRAIL(trail)) {
4394                                 ++source;
4395                                 ++nextSourceIndex;
4396                                 c=U16_GET_SUPPLEMENTARY(c, trail);
4397                                 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4398                                     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4399                                     cnv->fromUnicodeStatus=prevLength; /* save the old state */
4400                                     /* callback(unassigned) */
4401                                     goto unassigned;
4402                                 }
4403                                 /* convert this supplementary code point */
4404                                 /* exit this condition tree */
4405                             } else {
4406                                 /* this is an unmatched lead code unit (1st surrogate) */
4407                                 /* callback(illegal) */
4408                                 *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4409                                 break;
4410                             }
4411                         } else {
4412                             /* no more input */
4413                             break;
4414                         }
4415                     } else {
4416                         /* this is an unmatched trail code unit (2nd surrogate) */
4417                         /* callback(illegal) */
4418                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
4419                         break;
4420                     }
4421                 }
4422 
4423                 /* convert the Unicode code point in c into codepage bytes */
4424 
4425                 /*
4426                  * The basic lookup is a triple-stage compact array (trie) lookup.
4427                  * For details see the beginning of this file.
4428                  *
4429                  * Single-byte codepages are handled with a different data structure
4430                  * by _MBCSSingle... functions.
4431                  *
4432                  * The result consists of a 32-bit value from stage 2 and
4433                  * a pointer to as many bytes as are stored per character.
4434                  * The pointer points to the character's bytes in stage 3.
4435                  * Bits 15..0 of the stage 2 entry contain the stage 3 index
4436                  * for that pointer, while bits 31..16 are flags for which of
4437                  * the 16 characters in the block are roundtrip-assigned.
4438                  *
4439                  * For 2-byte and 4-byte codepages, the bytes are stored as uint16_t
4440                  * respectively as uint32_t, in the platform encoding.
4441                  * For 3-byte codepages, the bytes are always stored in big-endian order.
4442                  *
4443                  * For EUC encodings that use only either 0x8e or 0x8f as the first
4444                  * byte of their longest byte sequences, the first two bytes in
4445                  * this third stage indicate with their 7th bits whether these bytes
4446                  * are to be written directly or actually need to be preceeded by
4447                  * one of the two Single-Shift codes. With this, the third stage
4448                  * stores one byte fewer per character than the actual maximum length of
4449                  * EUC byte sequences.
4450                  *
4451                  * Other than that, leading zero bytes are removed and the other
4452                  * bytes output. A single zero byte may be output if the "assigned"
4453                  * bit in stage 2 was on.
4454                  * The data structure does not support zero byte output as a fallback,
4455                  * and also does not allow output of leading zeros.
4456                  */
4457                 stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
4458 
4459                 /* get the bytes and the length for the output */
4460                 switch(outputType) {
4461                 case MBCS_OUTPUT_2:
4462                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4463                     if(value<=0xff) {
4464                         length=1;
4465                     } else {
4466                         length=2;
4467                     }
4468                     break;
4469                 case MBCS_OUTPUT_2_SISO:
4470                     /* 1/2-byte stateful with Shift-In/Shift-Out */
4471                     /*
4472                      * Save the old state in the converter object
4473                      * right here, then change the local prevLength state variable if necessary.
4474                      * Then, if this character turns out to be unassigned or a fallback that
4475                      * is not taken, the callback code must not save the new state in the converter
4476                      * because the new state is for a character that is not output.
4477                      * However, the callback must still restore the state from the converter
4478                      * in case the callback function changed it for its output.
4479                      */
4480                     cnv->fromUnicodeStatus=prevLength; /* save the old state */
4481                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4482                     if(value<=0xff) {
4483                         if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)==0) {
4484                             /* no mapping, leave value==0 */
4485                             length=0;
4486                         } else if(prevLength<=1) {
4487                             length=1;
4488                         } else {
4489                             /* change from double-byte mode to single-byte */
4490                             if (siLength == 1) {
4491                                 value|=(uint32_t)siBytes[0]<<8;
4492                                 length = 2;
4493                             } else if (siLength == 2) {
4494                                 value|=(uint32_t)siBytes[1]<<8;
4495                                 value|=(uint32_t)siBytes[0]<<16;
4496                                 length = 3;
4497                             }
4498                             prevLength=1;
4499                         }
4500                     } else {
4501                         if(prevLength==2) {
4502                             length=2;
4503                         } else {
4504                             /* change from single-byte mode to double-byte */
4505                             if (soLength == 1) {
4506                                 value|=(uint32_t)soBytes[0]<<16;
4507                                 length = 3;
4508                             } else if (soLength == 2) {
4509                                 value|=(uint32_t)soBytes[1]<<16;
4510                                 value|=(uint32_t)soBytes[0]<<24;
4511                                 length = 4;
4512                             }
4513                             prevLength=2;
4514                         }
4515                     }
4516                     break;
4517                 case MBCS_OUTPUT_DBCS_ONLY:
4518                     /* table with single-byte results, but only DBCS mappings used */
4519                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4520                     if(value<=0xff) {
4521                         /* no mapping or SBCS result, not taken for DBCS-only */
4522                         value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4523                         length=0;
4524                     } else {
4525                         length=2;
4526                     }
4527                     break;
4528                 case MBCS_OUTPUT_3:
4529                     p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
4530                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4531                     if(value<=0xff) {
4532                         length=1;
4533                     } else if(value<=0xffff) {
4534                         length=2;
4535                     } else {
4536                         length=3;
4537                     }
4538                     break;
4539                 case MBCS_OUTPUT_4:
4540                     value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c);
4541                     if(value<=0xff) {
4542                         length=1;
4543                     } else if(value<=0xffff) {
4544                         length=2;
4545                     } else if(value<=0xffffff) {
4546                         length=3;
4547                     } else {
4548                         length=4;
4549                     }
4550                     break;
4551                 case MBCS_OUTPUT_3_EUC:
4552                     value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c);
4553                     /* EUC 16-bit fixed-length representation */
4554                     if(value<=0xff) {
4555                         length=1;
4556                     } else if((value&0x8000)==0) {
4557                         value|=0x8e8000;
4558                         length=3;
4559                     } else if((value&0x80)==0) {
4560                         value|=0x8f0080;
4561                         length=3;
4562                     } else {
4563                         length=2;
4564                     }
4565                     break;
4566                 case MBCS_OUTPUT_4_EUC:
4567                     p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c);
4568                     value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4569                     /* EUC 16-bit fixed-length representation applied to the first two bytes */
4570                     if(value<=0xff) {
4571                         length=1;
4572                     } else if(value<=0xffff) {
4573                         length=2;
4574                     } else if((value&0x800000)==0) {
4575                         value|=0x8e800000;
4576                         length=4;
4577                     } else if((value&0x8000)==0) {
4578                         value|=0x8f008000;
4579                         length=4;
4580                     } else {
4581                         length=3;
4582                     }
4583                     break;
4584                 default:
4585                     /* must not occur */
4586                     /*
4587                      * To avoid compiler warnings that value & length may be
4588                      * used without having been initialized, we set them here.
4589                      * In reality, this is unreachable code.
4590                      * Not having a default branch also causes warnings with
4591                      * some compilers.
4592                      */
4593                     value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4594                     length=0;
4595                     break;
4596                 }
4597 
4598                 /* is this code point assigned, or do we use fallbacks? */
4599                 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 ||
4600                      (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
4601                 ) {
4602                     /*
4603                      * We allow a 0 byte output if the "assigned" bit is set for this entry.
4604                      * There is no way with this data structure for fallback output
4605                      * to be a zero byte.
4606                      */
4607 
4608 unassigned:
4609                     /* try an extension mapping */
4610                     pArgs->source=source;
4611                     c=_extFromU(cnv, cnv->sharedData,
4612                                 c, &source, sourceLimit,
4613                                 &target, target+targetCapacity,
4614                                 &offsets, sourceIndex,
4615                                 pArgs->flush,
4616                                 pErrorCode);
4617                     nextSourceIndex+=(int32_t)(source-pArgs->source);
4618                     prevLength=cnv->fromUnicodeStatus; /* restore SISO state */
4619 
4620                     if(U_FAILURE(*pErrorCode)) {
4621                         /* not mappable or buffer overflow */
4622                         break;
4623                     } else {
4624                         /* a mapping was written to the target, continue */
4625 
4626                         /* recalculate the targetCapacity after an extension mapping */
4627                         targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target);
4628 
4629                         /* normal end of conversion: prepare for a new character */
4630                         if(offsets!=NULL) {
4631                             prevSourceIndex=sourceIndex;
4632                             sourceIndex=nextSourceIndex;
4633                         }
4634                         continue;
4635                     }
4636                 }
4637             }
4638 
4639             /* write the output character bytes from value and length */
4640             /* from the first if in the loop we know that targetCapacity>0 */
4641             if(length<=targetCapacity) {
4642                 if(offsets==NULL) {
4643                     switch(length) {
4644                         /* each branch falls through to the next one */
4645                     case 4:
4646                         *target++=(uint8_t)(value>>24);
4647                         U_FALLTHROUGH;
4648                     case 3:
4649                         *target++=(uint8_t)(value>>16);
4650                         U_FALLTHROUGH;
4651                     case 2:
4652                         *target++=(uint8_t)(value>>8);
4653                         U_FALLTHROUGH;
4654                     case 1:
4655                         *target++=(uint8_t)value;
4656                         U_FALLTHROUGH;
4657                     default:
4658                         /* will never occur */
4659                         break;
4660                     }
4661                 } else {
4662                     switch(length) {
4663                         /* each branch falls through to the next one */
4664                     case 4:
4665                         *target++=(uint8_t)(value>>24);
4666                         *offsets++=sourceIndex;
4667                         U_FALLTHROUGH;
4668                     case 3:
4669                         *target++=(uint8_t)(value>>16);
4670                         *offsets++=sourceIndex;
4671                         U_FALLTHROUGH;
4672                     case 2:
4673                         *target++=(uint8_t)(value>>8);
4674                         *offsets++=sourceIndex;
4675                         U_FALLTHROUGH;
4676                     case 1:
4677                         *target++=(uint8_t)value;
4678                         *offsets++=sourceIndex;
4679                         U_FALLTHROUGH;
4680                     default:
4681                         /* will never occur */
4682                         break;
4683                     }
4684                 }
4685                 targetCapacity-=length;
4686             } else {
4687                 uint8_t *charErrorBuffer;
4688 
4689                 /*
4690                  * We actually do this backwards here:
4691                  * In order to save an intermediate variable, we output
4692                  * first to the overflow buffer what does not fit into the
4693                  * regular target.
4694                  */
4695                 /* we know that 1<=targetCapacity<length<=4 */
4696                 length-=targetCapacity;
4697                 charErrorBuffer=(uint8_t *)cnv->charErrorBuffer;
4698                 switch(length) {
4699                     /* each branch falls through to the next one */
4700                 case 3:
4701                     *charErrorBuffer++=(uint8_t)(value>>16);
4702                     U_FALLTHROUGH;
4703                 case 2:
4704                     *charErrorBuffer++=(uint8_t)(value>>8);
4705                     U_FALLTHROUGH;
4706                 case 1:
4707                     *charErrorBuffer=(uint8_t)value;
4708                     U_FALLTHROUGH;
4709                 default:
4710                     /* will never occur */
4711                     break;
4712                 }
4713                 cnv->charErrorBufferLength=(int8_t)length;
4714 
4715                 /* now output what fits into the regular target */
4716                 value>>=8*length; /* length was reduced by targetCapacity */
4717                 switch(targetCapacity) {
4718                     /* each branch falls through to the next one */
4719                 case 3:
4720                     *target++=(uint8_t)(value>>16);
4721                     if(offsets!=NULL) {
4722                         *offsets++=sourceIndex;
4723                     }
4724                     U_FALLTHROUGH;
4725                 case 2:
4726                     *target++=(uint8_t)(value>>8);
4727                     if(offsets!=NULL) {
4728                         *offsets++=sourceIndex;
4729                     }
4730                     U_FALLTHROUGH;
4731                 case 1:
4732                     *target++=(uint8_t)value;
4733                     if(offsets!=NULL) {
4734                         *offsets++=sourceIndex;
4735                     }
4736                     U_FALLTHROUGH;
4737                 default:
4738                     /* will never occur */
4739                     break;
4740                 }
4741 
4742                 /* target overflow */
4743                 targetCapacity=0;
4744                 *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4745                 c=0;
4746                 break;
4747             }
4748 
4749             /* normal end of conversion: prepare for a new character */
4750             c=0;
4751             if(offsets!=NULL) {
4752                 prevSourceIndex=sourceIndex;
4753                 sourceIndex=nextSourceIndex;
4754             }
4755             continue;
4756         } else {
4757             /* target is full */
4758             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4759             break;
4760         }
4761     }
4762 
4763     /*
4764      * the end of the input stream and detection of truncated input
4765      * are handled by the framework, but for EBCDIC_STATEFUL conversion
4766      * we need to emit an SI at the very end
4767      *
4768      * conditions:
4769      *   successful
4770      *   EBCDIC_STATEFUL in DBCS mode
4771      *   end of input and no truncated input
4772      */
4773     if( U_SUCCESS(*pErrorCode) &&
4774         outputType==MBCS_OUTPUT_2_SISO && prevLength==2 &&
4775         pArgs->flush && source>=sourceLimit && c==0
4776     ) {
4777         /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output stream to SBCS */
4778         if(targetCapacity>0) {
4779             *target++=(uint8_t)siBytes[0];
4780             if (siLength == 2) {
4781                 if (targetCapacity<2) {
4782                     cnv->charErrorBuffer[0]=(uint8_t)siBytes[1];
4783                     cnv->charErrorBufferLength=1;
4784                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4785                 } else {
4786                     *target++=(uint8_t)siBytes[1];
4787                 }
4788             }
4789             if(offsets!=NULL) {
4790                 /* set the last source character's index (sourceIndex points at sourceLimit now) */
4791                 *offsets++=prevSourceIndex;
4792             }
4793         } else {
4794             /* target is full */
4795             cnv->charErrorBuffer[0]=(uint8_t)siBytes[0];
4796             if (siLength == 2) {
4797                 cnv->charErrorBuffer[1]=(uint8_t)siBytes[1];
4798             }
4799             cnv->charErrorBufferLength=siLength;
4800             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
4801         }
4802         prevLength=1; /* we switched into SBCS */
4803     }
4804 
4805     /* set the converter state back into UConverter */
4806     cnv->fromUChar32=c;
4807     cnv->fromUnicodeStatus=prevLength;
4808 
4809     /* write back the updated pointers */
4810     pArgs->source=source;
4811     pArgs->target=(char *)target;
4812     pArgs->offsets=offsets;
4813 }
4814 
4815 /*
4816  * This is another simple conversion function for internal use by other
4817  * conversion implementations.
4818  * It does not use the converter state nor call callbacks.
4819  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4820  * It handles conversion extensions but not GB 18030.
4821  *
4822  * It converts one single Unicode code point into codepage bytes, encoded
4823  * as one 32-bit value. The function returns the number of bytes in *pValue:
4824  * 1..4 the number of bytes in *pValue
4825  * 0    unassigned (*pValue undefined)
4826  * -1   illegal (currently not used, *pValue undefined)
4827  *
4828  * *pValue will contain the resulting bytes with the last byte in bits 7..0,
4829  * the second to last byte in bits 15..8, etc.
4830  * Currently, the function assumes but does not check that 0<=c<=0x10ffff.
4831  */
4832 U_CFUNC int32_t
4833 ucnv_MBCSFromUChar32(UConverterSharedData *sharedData,
4834                  UChar32 c, uint32_t *pValue,
4835                  UBool useFallback) {
4836     const int32_t *cx;
4837     const uint16_t *table;
4838 #if 0
4839 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4840     const uint8_t *p;
4841 #endif
4842     uint32_t stage2Entry;
4843     uint32_t value;
4844     int32_t length;
4845 
4846     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4847     if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4848         table=sharedData->mbcs.fromUnicodeTable;
4849 
4850         /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
4851         if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) {
4852             value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
4853             /* is this code point assigned, or do we use fallbacks? */
4854             if(useFallback ? value>=0x800 : value>=0xc00) {
4855                 *pValue=value&0xff;
4856                 return 1;
4857             }
4858         } else /* outputType!=MBCS_OUTPUT_1 */ {
4859             stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
4860 
4861             /* get the bytes and the length for the output */
4862             switch(sharedData->mbcs.outputType) {
4863             case MBCS_OUTPUT_2:
4864                 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4865                 if(value<=0xff) {
4866                     length=1;
4867                 } else {
4868                     length=2;
4869                 }
4870                 break;
4871 #if 0
4872 /* #if 0 because this is not currently used in ICU - reduce code, increase code coverage */
4873             case MBCS_OUTPUT_DBCS_ONLY:
4874                 /* table with single-byte results, but only DBCS mappings used */
4875                 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4876                 if(value<=0xff) {
4877                     /* no mapping or SBCS result, not taken for DBCS-only */
4878                     value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip flags */
4879                     length=0;
4880                 } else {
4881                     length=2;
4882                 }
4883                 break;
4884             case MBCS_OUTPUT_3:
4885                 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4886                 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4887                 if(value<=0xff) {
4888                     length=1;
4889                 } else if(value<=0xffff) {
4890                     length=2;
4891                 } else {
4892                     length=3;
4893                 }
4894                 break;
4895             case MBCS_OUTPUT_4:
4896                 value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4897                 if(value<=0xff) {
4898                     length=1;
4899                 } else if(value<=0xffff) {
4900                     length=2;
4901                 } else if(value<=0xffffff) {
4902                     length=3;
4903                 } else {
4904                     length=4;
4905                 }
4906                 break;
4907             case MBCS_OUTPUT_3_EUC:
4908                 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4909                 /* EUC 16-bit fixed-length representation */
4910                 if(value<=0xff) {
4911                     length=1;
4912                 } else if((value&0x8000)==0) {
4913                     value|=0x8e8000;
4914                     length=3;
4915                 } else if((value&0x80)==0) {
4916                     value|=0x8f0080;
4917                     length=3;
4918                 } else {
4919                     length=2;
4920                 }
4921                 break;
4922             case MBCS_OUTPUT_4_EUC:
4923                 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes, stage2Entry, c);
4924                 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2];
4925                 /* EUC 16-bit fixed-length representation applied to the first two bytes */
4926                 if(value<=0xff) {
4927                     length=1;
4928                 } else if(value<=0xffff) {
4929                     length=2;
4930                 } else if((value&0x800000)==0) {
4931                     value|=0x8e800000;
4932                     length=4;
4933                 } else if((value&0x8000)==0) {
4934                     value|=0x8f008000;
4935                     length=4;
4936                 } else {
4937                     length=3;
4938                 }
4939                 break;
4940 #endif
4941             default:
4942                 /* must not occur */
4943                 return -1;
4944             }
4945 
4946             /* is this code point assigned, or do we use fallbacks? */
4947             if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
4948                 (FROM_U_USE_FALLBACK(useFallback, c) && value!=0)
4949             ) {
4950                 /*
4951                  * We allow a 0 byte output if the "assigned" bit is set for this entry.
4952                  * There is no way with this data structure for fallback output
4953                  * to be a zero byte.
4954                  */
4955                 /* assigned */
4956                 *pValue=value;
4957                 return length;
4958             }
4959         }
4960     }
4961 
4962     cx=sharedData->mbcs.extIndexes;
4963     if(cx!=NULL) {
4964         length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback);
4965         return length>=0 ? length : -length;  /* return abs(length); */
4966     }
4967 
4968     /* unassigned */
4969     return 0;
4970 }
4971 
4972 
4973 #if 0
4974 /*
4975  * This function has been moved to ucnv2022.c for inlining.
4976  * This implementation is here only for documentation purposes
4977  */
4978 
4979 /**
4980  * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages.
4981  * It does not handle the EBCDIC swaplfnl option (set in UConverter).
4982  * It does not handle conversion extensions (_extFromU()).
4983  *
4984  * It returns the codepage byte for the code point, or -1 if it is unassigned.
4985  */
4986 U_CFUNC int32_t
4987 ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData,
4988                        UChar32 c,
4989                        UBool useFallback) {
4990     const uint16_t *table;
4991     int32_t value;
4992 
4993     /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
4994     if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) {
4995         return -1;
4996     }
4997 
4998     /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */
4999     table=sharedData->mbcs.fromUnicodeTable;
5000 
5001     /* get the byte for the output */
5002     value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnicodeBytes, c);
5003     /* is this code point assigned, or do we use fallbacks? */
5004     if(useFallback ? value>=0x800 : value>=0xc00) {
5005         return value&0xff;
5006     } else {
5007         return -1;
5008     }
5009 }
5010 #endif
5011 
5012 /* MBCS-from-UTF-8 conversion functions ------------------------------------- */
5013 
5014 /* minimum code point values for n-byte UTF-8 sequences, n=0..4 */
5015 static const UChar32
5016 utf8_minLegal[5]={ 0, 0, 0x80, 0x800, 0x10000 };
5017 
5018 /* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail)<<6+trail... */
5019 static const UChar32
5020 utf8_offsets[7]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 };
5021 
5022 static void U_CALLCONV
5023 ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
5024                   UConverterToUnicodeArgs *pToUArgs,
5025                   UErrorCode *pErrorCode) {
5026     UConverter *utf8, *cnv;
5027     const uint8_t *source, *sourceLimit;
5028     uint8_t *target;
5029     int32_t targetCapacity;
5030 
5031     const uint16_t *table, *sbcsIndex;
5032     const uint16_t *results;
5033 
5034     int8_t oldToULength, toULength, toULimit;
5035 
5036     UChar32 c;
5037     uint8_t b, t1, t2;
5038 
5039     uint32_t asciiRoundtrips;
5040     uint16_t value, minValue;
5041     UBool hasSupplementary;
5042 
5043     /* set up the local pointers */
5044     utf8=pToUArgs->converter;
5045     cnv=pFromUArgs->converter;
5046     source=(uint8_t *)pToUArgs->source;
5047     sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
5048     target=(uint8_t *)pFromUArgs->target;
5049     targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
5050 
5051     table=cnv->sharedData->mbcs.fromUnicodeTable;
5052     sbcsIndex=cnv->sharedData->mbcs.sbcsIndex;
5053     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
5054         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
5055     } else {
5056         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
5057     }
5058     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
5059 
5060     if(cnv->useFallback) {
5061         /* use all roundtrip and fallback results */
5062         minValue=0x800;
5063     } else {
5064         /* use only roundtrips and fallbacks from private-use characters */
5065         minValue=0xc00;
5066     }
5067     hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
5068 
5069     /* get the converter state from the UTF-8 UConverter */
5070     c=(UChar32)utf8->toUnicodeStatus;
5071     if(c!=0) {
5072         toULength=oldToULength=utf8->toULength;
5073         toULimit=(int8_t)utf8->mode;
5074     } else {
5075         toULength=oldToULength=toULimit=0;
5076     }
5077 
5078     /*
5079      * Make sure that the last byte sequence before sourceLimit is complete
5080      * or runs into a lead byte.
5081      * Do not go back into the bytes that will be read for finishing a partial
5082      * sequence from the previous buffer.
5083      * In the conversion loop compare source with sourceLimit only once
5084      * per multi-byte character.
5085      */
5086     {
5087         int32_t i, length;
5088 
5089         length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
5090         for(i=0; i<3 && i<length;) {
5091             b=*(sourceLimit-i-1);
5092             if(U8_IS_TRAIL(b)) {
5093                 ++i;
5094             } else {
5095                 if(i<U8_COUNT_TRAIL_BYTES(b)) {
5096                     /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */
5097                     sourceLimit-=i+1;
5098                 }
5099                 break;
5100             }
5101         }
5102     }
5103 
5104     if(c!=0 && targetCapacity>0) {
5105         utf8->toUnicodeStatus=0;
5106         utf8->toULength=0;
5107         goto moreBytes;
5108         /*
5109          * Note: We could avoid the goto by duplicating some of the moreBytes
5110          * code, but only up to the point of collecting a complete UTF-8
5111          * sequence; then recurse for the toUBytes[toULength]
5112          * and then continue with normal conversion.
5113          *
5114          * If so, move this code to just after initializing the minimum
5115          * set of local variables for reading the UTF-8 input
5116          * (utf8, source, target, limits but not cnv, table, minValue, etc.).
5117          *
5118          * Potential advantages:
5119          * - avoid the goto
5120          * - oldToULength could become a local variable in just those code blocks
5121          *   that deal with buffer boundaries
5122          * - possibly faster if the goto prevents some compiler optimizations
5123          *   (this would need measuring to confirm)
5124          * Disadvantage:
5125          * - code duplication
5126          */
5127     }
5128 
5129     /* conversion loop */
5130     while(source<sourceLimit) {
5131         if(targetCapacity>0) {
5132             b=*source++;
5133             if((int8_t)b>=0) {
5134                 /* convert ASCII */
5135                 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
5136                     *target++=(uint8_t)b;
5137                     --targetCapacity;
5138                     continue;
5139                 } else {
5140                     c=b;
5141                     value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c);
5142                 }
5143             } else {
5144                 if(b<0xe0) {
5145                     if( /* handle U+0080..U+07FF inline */
5146                         b>=0xc2 &&
5147                         (t1=(uint8_t)(*source-0x80)) <= 0x3f
5148                     ) {
5149                         c=b&0x1f;
5150                         ++source;
5151                         value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1);
5152                         if(value>=minValue) {
5153                             *target++=(uint8_t)value;
5154                             --targetCapacity;
5155                             continue;
5156                         } else {
5157                             c=(c<<6)|t1;
5158                         }
5159                     } else {
5160                         c=-1;
5161                     }
5162                 } else if(b==0xe0) {
5163                     if( /* handle U+0800..U+0FFF inline */
5164                         (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 &&
5165                         (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5166                     ) {
5167                         c=t1;
5168                         source+=2;
5169                         value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2);
5170                         if(value>=minValue) {
5171                             *target++=(uint8_t)value;
5172                             --targetCapacity;
5173                             continue;
5174                         } else {
5175                             c=(c<<6)|t2;
5176                         }
5177                     } else {
5178                         c=-1;
5179                     }
5180                 } else {
5181                     c=-1;
5182                 }
5183 
5184                 if(c<0) {
5185                     /* handle "complicated" and error cases, and continuing partial characters */
5186                     oldToULength=0;
5187                     toULength=1;
5188                     toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5189                     c=b;
5190 moreBytes:
5191                     while(toULength<toULimit) {
5192                         /*
5193                          * The sourceLimit may have been adjusted before the conversion loop
5194                          * to stop before a truncated sequence.
5195                          * Here we need to use the real limit in case we have two truncated
5196                          * sequences at the end.
5197                          * See ticket #7492.
5198                          */
5199                         if(source<(uint8_t *)pToUArgs->sourceLimit) {
5200                             b=*source;
5201                             if(U8_IS_TRAIL(b)) {
5202                                 ++source;
5203                                 ++toULength;
5204                                 c=(c<<6)+b;
5205                             } else {
5206                                 break; /* sequence too short, stop with toULength<toULimit */
5207                             }
5208                         } else {
5209                             /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5210                             source-=(toULength-oldToULength);
5211                             while(oldToULength<toULength) {
5212                                 utf8->toUBytes[oldToULength++]=*source++;
5213                             }
5214                             utf8->toUnicodeStatus=c;
5215                             utf8->toULength=toULength;
5216                             utf8->mode=toULimit;
5217                             pToUArgs->source=(char *)source;
5218                             pFromUArgs->target=(char *)target;
5219                             return;
5220                         }
5221                     }
5222 
5223                     if( toULength==toULimit &&      /* consumed all trail bytes */
5224                         (toULength==3 || toULength==2) &&             /* BMP */
5225                         (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &&
5226                         (c<=0xd7ff || 0xe000<=c)    /* not a surrogate */
5227                     ) {
5228                         value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
5229                     } else if(
5230                         toULength==toULimit && toULength==4 &&
5231                         (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff)
5232                     ) {
5233                         /* supplementary code point */
5234                         if(!hasSupplementary) {
5235                             /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5236                             value=0;
5237                         } else {
5238                             value=MBCS_SINGLE_RESULT_FROM_U(table, results, c);
5239                         }
5240                     } else {
5241                         /* error handling: illegal UTF-8 byte sequence */
5242                         source-=(toULength-oldToULength);
5243                         while(oldToULength<toULength) {
5244                             utf8->toUBytes[oldToULength++]=*source++;
5245                         }
5246                         utf8->toULength=toULength;
5247                         pToUArgs->source=(char *)source;
5248                         pFromUArgs->target=(char *)target;
5249                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5250                         return;
5251                     }
5252                 }
5253             }
5254 
5255             if(value>=minValue) {
5256                 /* output the mapping for c */
5257                 *target++=(uint8_t)value;
5258                 --targetCapacity;
5259             } else {
5260                 /* value<minValue means c is unassigned (unmappable) */
5261                 /*
5262                  * Try an extension mapping.
5263                  * Pass in no source because we don't have UTF-16 input.
5264                  * If we have a partial match on c, we will return and revert
5265                  * to UTF-8->UTF-16->charset conversion.
5266                  */
5267                 static const UChar nul=0;
5268                 const UChar *noSource=&nul;
5269                 c=_extFromU(cnv, cnv->sharedData,
5270                             c, &noSource, noSource,
5271                             &target, target+targetCapacity,
5272                             NULL, -1,
5273                             pFromUArgs->flush,
5274                             pErrorCode);
5275 
5276                 if(U_FAILURE(*pErrorCode)) {
5277                     /* not mappable or buffer overflow */
5278                     cnv->fromUChar32=c;
5279                     break;
5280                 } else if(cnv->preFromUFirstCP>=0) {
5281                     /*
5282                      * Partial match, return and revert to pivoting.
5283                      * In normal from-UTF-16 conversion, we would just continue
5284                      * but then exit the loop because the extension match would
5285                      * have consumed the source.
5286                      */
5287                     *pErrorCode=U_USING_DEFAULT_WARNING;
5288                     break;
5289                 } else {
5290                     /* a mapping was written to the target, continue */
5291 
5292                     /* recalculate the targetCapacity after an extension mapping */
5293                     targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5294                 }
5295             }
5296         } else {
5297             /* target is full */
5298             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5299             break;
5300         }
5301     }
5302 
5303     /*
5304      * The sourceLimit may have been adjusted before the conversion loop
5305      * to stop before a truncated sequence.
5306      * If so, then collect the truncated sequence now.
5307      */
5308     if(U_SUCCESS(*pErrorCode) &&
5309             cnv->preFromUFirstCP<0 &&
5310             source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5311         c=utf8->toUBytes[0]=b=*source++;
5312         toULength=1;
5313         toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5314         while(source<sourceLimit) {
5315             utf8->toUBytes[toULength++]=b=*source++;
5316             c=(c<<6)+b;
5317         }
5318         utf8->toUnicodeStatus=c;
5319         utf8->toULength=toULength;
5320         utf8->mode=toULimit;
5321     }
5322 
5323     /* write back the updated pointers */
5324     pToUArgs->source=(char *)source;
5325     pFromUArgs->target=(char *)target;
5326 }
5327 
5328 static void U_CALLCONV
5329 ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
5330                   UConverterToUnicodeArgs *pToUArgs,
5331                   UErrorCode *pErrorCode) {
5332     UConverter *utf8, *cnv;
5333     const uint8_t *source, *sourceLimit;
5334     uint8_t *target;
5335     int32_t targetCapacity;
5336 
5337     const uint16_t *table, *mbcsIndex;
5338     const uint16_t *results;
5339 
5340     int8_t oldToULength, toULength, toULimit;
5341 
5342     UChar32 c;
5343     uint8_t b, t1, t2;
5344 
5345     uint32_t stage2Entry;
5346     uint32_t asciiRoundtrips;
5347     uint16_t value;
5348     UBool hasSupplementary;
5349 
5350     /* set up the local pointers */
5351     utf8=pToUArgs->converter;
5352     cnv=pFromUArgs->converter;
5353     source=(uint8_t *)pToUArgs->source;
5354     sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
5355     target=(uint8_t *)pFromUArgs->target;
5356     targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
5357 
5358     table=cnv->sharedData->mbcs.fromUnicodeTable;
5359     mbcsIndex=cnv->sharedData->mbcs.mbcsIndex;
5360     if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) {
5361         results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes;
5362     } else {
5363         results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes;
5364     }
5365     asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips;
5366 
5367     hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY);
5368 
5369     /* get the converter state from the UTF-8 UConverter */
5370     c=(UChar32)utf8->toUnicodeStatus;
5371     if(c!=0) {
5372         toULength=oldToULength=utf8->toULength;
5373         toULimit=(int8_t)utf8->mode;
5374     } else {
5375         toULength=oldToULength=toULimit=0;
5376     }
5377 
5378     /*
5379      * Make sure that the last byte sequence before sourceLimit is complete
5380      * or runs into a lead byte.
5381      * Do not go back into the bytes that will be read for finishing a partial
5382      * sequence from the previous buffer.
5383      * In the conversion loop compare source with sourceLimit only once
5384      * per multi-byte character.
5385      */
5386     {
5387         int32_t i, length;
5388 
5389         length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength);
5390         for(i=0; i<3 && i<length;) {
5391             b=*(sourceLimit-i-1);
5392             if(U8_IS_TRAIL(b)) {
5393                 ++i;
5394             } else {
5395                 if(i<U8_COUNT_TRAIL_BYTES(b)) {
5396                     /* exit the conversion loop before the lead byte if there are not enough trail bytes for it */
5397                     sourceLimit-=i+1;
5398                 }
5399                 break;
5400             }
5401         }
5402     }
5403 
5404     if(c!=0 && targetCapacity>0) {
5405         utf8->toUnicodeStatus=0;
5406         utf8->toULength=0;
5407         goto moreBytes;
5408         /* See note in ucnv_SBCSFromUTF8() about this goto. */
5409     }
5410 
5411     /* conversion loop */
5412     while(source<sourceLimit) {
5413         if(targetCapacity>0) {
5414             b=*source++;
5415             if((int8_t)b>=0) {
5416                 /* convert ASCII */
5417                 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) {
5418                     *target++=b;
5419                     --targetCapacity;
5420                     continue;
5421                 } else {
5422                     value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b);
5423                     if(value==0) {
5424                         c=b;
5425                         goto unassigned;
5426                     }
5427                 }
5428             } else {
5429                 if(b>0xe0) {
5430                     if( /* handle U+1000..U+D7FF inline */
5431                         (((t1=(uint8_t)(source[0]-0x80), b<0xed) && (t1 <= 0x3f)) ||
5432                                                         (b==0xed && (t1 <= 0x1f))) &&
5433                         (t2=(uint8_t)(source[1]-0x80)) <= 0x3f
5434                     ) {
5435                         c=((b&0xf)<<6)|t1;
5436                         source+=2;
5437                         value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2);
5438                         if(value==0) {
5439                             c=(c<<6)|t2;
5440                             goto unassigned;
5441                         }
5442                     } else {
5443                         c=-1;
5444                     }
5445                 } else if(b<0xe0) {
5446                     if( /* handle U+0080..U+07FF inline */
5447                         b>=0xc2 &&
5448                         (t1=(uint8_t)(*source-0x80)) <= 0x3f
5449                     ) {
5450                         c=b&0x1f;
5451                         ++source;
5452                         value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1);
5453                         if(value==0) {
5454                             c=(c<<6)|t1;
5455                             goto unassigned;
5456                         }
5457                     } else {
5458                         c=-1;
5459                     }
5460                 } else {
5461                     c=-1;
5462                 }
5463 
5464                 if(c<0) {
5465                     /* handle "complicated" and error cases, and continuing partial characters */
5466                     oldToULength=0;
5467                     toULength=1;
5468                     toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5469                     c=b;
5470 moreBytes:
5471                     while(toULength<toULimit) {
5472                         /*
5473                          * The sourceLimit may have been adjusted before the conversion loop
5474                          * to stop before a truncated sequence.
5475                          * Here we need to use the real limit in case we have two truncated
5476                          * sequences at the end.
5477                          * See ticket #7492.
5478                          */
5479                         if(source<(uint8_t *)pToUArgs->sourceLimit) {
5480                             b=*source;
5481                             if(U8_IS_TRAIL(b)) {
5482                                 ++source;
5483                                 ++toULength;
5484                                 c=(c<<6)+b;
5485                             } else {
5486                                 break; /* sequence too short, stop with toULength<toULimit */
5487                             }
5488                         } else {
5489                             /* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
5490                             source-=(toULength-oldToULength);
5491                             while(oldToULength<toULength) {
5492                                 utf8->toUBytes[oldToULength++]=*source++;
5493                             }
5494                             utf8->toUnicodeStatus=c;
5495                             utf8->toULength=toULength;
5496                             utf8->mode=toULimit;
5497                             pToUArgs->source=(char *)source;
5498                             pFromUArgs->target=(char *)target;
5499                             return;
5500                         }
5501                     }
5502 
5503                     if( toULength==toULimit &&      /* consumed all trail bytes */
5504                         (toULength==3 || toULength==2) &&             /* BMP */
5505                         (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &&
5506                         (c<=0xd7ff || 0xe000<=c)    /* not a surrogate */
5507                     ) {
5508                         stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
5509                     } else if(
5510                         toULength==toULimit && toULength==4 &&
5511                         (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff)
5512                     ) {
5513                         /* supplementary code point */
5514                         if(!hasSupplementary) {
5515                             /* BMP-only codepages are stored without stage 1 entries for supplementary code points */
5516                             stage2Entry=0;
5517                         } else {
5518                             stage2Entry=MBCS_STAGE_2_FROM_U(table, c);
5519                         }
5520                     } else {
5521                         /* error handling: illegal UTF-8 byte sequence */
5522                         source-=(toULength-oldToULength);
5523                         while(oldToULength<toULength) {
5524                             utf8->toUBytes[oldToULength++]=*source++;
5525                         }
5526                         utf8->toULength=toULength;
5527                         pToUArgs->source=(char *)source;
5528                         pFromUArgs->target=(char *)target;
5529                         *pErrorCode=U_ILLEGAL_CHAR_FOUND;
5530                         return;
5531                     }
5532 
5533                     /* get the bytes and the length for the output */
5534                     /* MBCS_OUTPUT_2 */
5535                     value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c);
5536 
5537                     /* is this code point assigned, or do we use fallbacks? */
5538                     if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) ||
5539                          (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0))
5540                     ) {
5541                         goto unassigned;
5542                     }
5543                 }
5544             }
5545 
5546             /* write the output character bytes from value and length */
5547             /* from the first if in the loop we know that targetCapacity>0 */
5548             if(value<=0xff) {
5549                 /* this is easy because we know that there is enough space */
5550                 *target++=(uint8_t)value;
5551                 --targetCapacity;
5552             } else /* length==2 */ {
5553                 *target++=(uint8_t)(value>>8);
5554                 if(2<=targetCapacity) {
5555                     *target++=(uint8_t)value;
5556                     targetCapacity-=2;
5557                 } else {
5558                     cnv->charErrorBuffer[0]=(char)value;
5559                     cnv->charErrorBufferLength=1;
5560 
5561                     /* target overflow */
5562                     *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5563                     break;
5564                 }
5565             }
5566             continue;
5567 
5568 unassigned:
5569             {
5570                 /*
5571                  * Try an extension mapping.
5572                  * Pass in no source because we don't have UTF-16 input.
5573                  * If we have a partial match on c, we will return and revert
5574                  * to UTF-8->UTF-16->charset conversion.
5575                  */
5576                 static const UChar nul=0;
5577                 const UChar *noSource=&nul;
5578                 c=_extFromU(cnv, cnv->sharedData,
5579                             c, &noSource, noSource,
5580                             &target, target+targetCapacity,
5581                             NULL, -1,
5582                             pFromUArgs->flush,
5583                             pErrorCode);
5584 
5585                 if(U_FAILURE(*pErrorCode)) {
5586                     /* not mappable or buffer overflow */
5587                     cnv->fromUChar32=c;
5588                     break;
5589                 } else if(cnv->preFromUFirstCP>=0) {
5590                     /*
5591                      * Partial match, return and revert to pivoting.
5592                      * In normal from-UTF-16 conversion, we would just continue
5593                      * but then exit the loop because the extension match would
5594                      * have consumed the source.
5595                      */
5596                     *pErrorCode=U_USING_DEFAULT_WARNING;
5597                     break;
5598                 } else {
5599                     /* a mapping was written to the target, continue */
5600 
5601                     /* recalculate the targetCapacity after an extension mapping */
5602                     targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)target);
5603                     continue;
5604                 }
5605             }
5606         } else {
5607             /* target is full */
5608             *pErrorCode=U_BUFFER_OVERFLOW_ERROR;
5609             break;
5610         }
5611     }
5612 
5613     /*
5614      * The sourceLimit may have been adjusted before the conversion loop
5615      * to stop before a truncated sequence.
5616      * If so, then collect the truncated sequence now.
5617      */
5618     if(U_SUCCESS(*pErrorCode) &&
5619             cnv->preFromUFirstCP<0 &&
5620             source<(sourceLimit=(uint8_t *)pToUArgs->sourceLimit)) {
5621         c=utf8->toUBytes[0]=b=*source++;
5622         toULength=1;
5623         toULimit=U8_COUNT_TRAIL_BYTES(b)+1;
5624         while(source<sourceLimit) {
5625             utf8->toUBytes[toULength++]=b=*source++;
5626             c=(c<<6)+b;
5627         }
5628         utf8->toUnicodeStatus=c;
5629         utf8->toULength=toULength;
5630         utf8->mode=toULimit;
5631     }
5632 
5633     /* write back the updated pointers */
5634     pToUArgs->source=(char *)source;
5635     pFromUArgs->target=(char *)target;
5636 }
5637 
5638 /* miscellaneous ------------------------------------------------------------ */
5639 
5640 static void U_CALLCONV
5641 ucnv_MBCSGetStarters(const UConverter* cnv,
5642                  UBool starters[256],
5643                  UErrorCode *) {
5644     const int32_t *state0;
5645     int i;
5646 
5647     state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState];
5648     for(i=0; i<256; ++i) {
5649         /* all bytes that cause a state transition from state 0 are lead bytes */
5650         starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]);
5651     }
5652 }
5653 
5654 /*
5655  * This is an internal function that allows other converter implementations
5656  * to check whether a byte is a lead byte.
5657  */
5658 U_CFUNC UBool
5659 ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) {
5660     return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8_t)byte]);
5661 }
5662 
5663 static void U_CALLCONV
5664 ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs,
5665               int32_t offsetIndex,
5666               UErrorCode *pErrorCode) {
5667     UConverter *cnv=pArgs->converter;
5668     char *p, *subchar;
5669     char buffer[4];
5670     int32_t length;
5671 
5672     /* first, select between subChar and subChar1 */
5673     if( cnv->subChar1!=0 &&
5674         (cnv->sharedData->mbcs.extIndexes!=NULL ?
5675             cnv->useSubChar1 :
5676             (cnv->invalidUCharBuffer[0]<=0xff))
5677     ) {
5678         /* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */
5679         subchar=(char *)&cnv->subChar1;
5680         length=1;
5681     } else {
5682         /* select subChar in all other cases */
5683         subchar=(char *)cnv->subChars;
5684         length=cnv->subCharLen;
5685     }
5686 
5687     /* reset the selector for the next code point */
5688     cnv->useSubChar1=FALSE;
5689 
5690     if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) {
5691         p=buffer;
5692 
5693         /* fromUnicodeStatus contains prevLength */
5694         switch(length) {
5695         case 1:
5696             if(cnv->fromUnicodeStatus==2) {
5697                 /* DBCS mode and SBCS sub char: change to SBCS */
5698                 cnv->fromUnicodeStatus=1;
5699                 *p++=UCNV_SI;
5700             }
5701             *p++=subchar[0];
5702             break;
5703         case 2:
5704             if(cnv->fromUnicodeStatus<=1) {
5705                 /* SBCS mode and DBCS sub char: change to DBCS */
5706                 cnv->fromUnicodeStatus=2;
5707                 *p++=UCNV_SO;
5708             }
5709             *p++=subchar[0];
5710             *p++=subchar[1];
5711             break;
5712         default:
5713             *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
5714             return;
5715         }
5716         subchar=buffer;
5717         length=(int32_t)(p-buffer);
5718     }
5719 
5720     ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode);
5721 }
5722 
5723 U_CFUNC UConverterType
5724 ucnv_MBCSGetType(const UConverter* converter) {
5725     /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */
5726     if(converter->sharedData->mbcs.countStates==1) {
5727         return (UConverterType)UCNV_SBCS;
5728     } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) {
5729         return (UConverterType)UCNV_EBCDIC_STATEFUL;
5730     } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) {
5731         return (UConverterType)UCNV_DBCS;
5732     }
5733     return (UConverterType)UCNV_MBCS;
5734 }
5735 
5736 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */
5737